5. Physikalisches Institut

Hauptseminar: SS16: Controlled interactions in quantum systems






Hauptseminar SS 16:
Controlled interactions in quantum systems





Many aspects of single particle quantum physics is by now well understood and establisehd in many foundational experiments. But when it comes to interactions between two or more
particles the complexity quickly increases. As well in theory and experiment researchers work hard to gain control over interacting many body quantum systems. One approach is to built up
more complex system by combining well controlled single quantum particles (mostly atoms). The other approach is to find effective models for large scale systems to explain macroscopic phenomena
like magnetism, conductivity etc. In this seminar we will discuss both cases with examples from theory and experiment.


  • Dr. Robert Löw
  • In collaboration with Prof. Büchler
  • SS 2016
  • Time:  Thu, 15:45 (Auxiliary Tue 15:45 for holidays, the same week)
  • Location: PWR 57, room 3.123
  • contact:

Course requirements (Bedingungen für den Schein)

  • This seminar is in English. This includes the talk, discussions, and the summary paper
  • Attend all seminar classes
  • Timely and intensive study of your own topic. The suggested literature for each topic serves as a starting point and is NOT sufficient. Independent literature search is required.
  • Presentation of your topic in the seminar, duration 45 minutes
  • Written summary paper on your topic (6-8 pages "PRL style" using LaTeX)
  • The following deadlines have to be met to successfully complete this class. You are responsible to organize the meetings with the class supervisors!
    • 4 weeks before your talk: Discussion with your supervisor AFTER finding & reading the literature
    • 2 weeks before your talk: test talk
    • 4 weeks after your talk: Hand-in of your summary paper






    HS 57.02

      General information event (Vorbesprechung)
    • Presentation of all the seminars available in SS2016
    • Sign up for seminars




    Organizational Meeting (Treffen zur Organisation)

    • Assignment of talks
    • Find a preliminary day and time for the seminar
    • Define schedule
    • ...

    Talk schedule: Tuesday/Thursday - 15:45

    Talk #1: Tuesday, 5. April 2016 - Ultracold scattering theory - Lukas Arnhold

    Talk #2: Thursday, 14. April 2016 - Interacting Bose-Einstein Condensates - Cedric Sommer

    Talk #3: Thursday, 21. April 2016 - Magnetic dipole-dipole interactions in BECs - Christoph Braun

    Talk #4: Thursday, 28. April 2016 - Quantum gases in lower dimensions - Andreas Ehrmann

    Talk #5: Tuesday 3. May 2016 - Interacting Rydberg atoms - Michael Eisenmann

    Talk #6: Thursday, 12. May 2016 - Non-linear optics with Rydberg atoms - Sebastian Kotzur

    Talk #7: Tuesday, 24. May 2016 - Rydberg molecules - Daniela Tabrea

    Talk #8: Thursday, 02. June 2016 - Ultracold molecules - Thomas Dieterle

    Talk #9: Thursday, 9. June 2016 - Efimov states - Tobias Ilg

    Talk #10: Thursday, 16. June 2016 - Bose-Hubbard model - Tina Mathea

    Talk #11: Thursday, 23. June 2016 - Strongly interacting fermions - Ke Liao

    Talk #12: Thursday, 30. June 2016 - Quantum magnetism - Felix Dangel

    Talk #13 Thursday, 7. July 2016 - Cavity QED - Denis Uhland

    Talk #14 Tuesday 12. July 2016 - Quantum simulation with ions - Robin Schuldt

    Talk #15 Thursday 14. July 2016 - Topological states - Marcel Wagner






    We will discuss the 12 following topics:

    • 1. Ultracold scattering theory
      Supervisor: Robert Löw

      literature & about:
      • Description of elastic scattering in low energy systems
      • Tuning the scattring length and Feshbach-resonances
      • Inelastic effects in scattering
      • C.J. Pethick and H. Smith
        "Bose-Eisntein Condensation in Dilute gases"
        Cambridge Press
      • W. Nolting
        "Theoretische Physik"
        Springer Press


    • 2. Interacting Bose-Einstein condensates
      Supervisor: Robert Löw
    • literature & about:
      • Nuts and bolts of Bose-Einstein condensates
      • Superfluidity, Vortices, Phonons, Solitons ...
      • C.J. Pethick and H. Smith
        "Bose-Eisntein Condensation in Dilute gases"
        Cambridge Press
      • W. Ketterle, D. S. Durfee, D. Stamper Kurn
        "Making, Probing and understanding Bose-Einstein Condensates"




    • 4. Quantum gases in lower dimensions
      Supervisor: Krzysztof Jachymski
    • literature & about:
      • creation and control of low-dimensional quantum gases
      • Mermin-Wagner theorem and low-dimensional condensation
      • Kosterlitz-Thouless transition in 2D
      • quasicondensate and Tonks-Girardeau gas in 1D
      • Olshanii, PRL 81, 938 (1998)
      • Hadzibabic et al, arXiv 0912.1410
      • Cazalilla et al, arXiv 1101.5337
      • Paredes et al, Nature 429, 277-281 (2004)
      • Hung et al, Nature 470, 236–239 (2011)

    • 5. Interacting Rydberg atoms
      Supervisor: Harald Kübler

      • How to create Rydberg atoms (laser excitation, recombination, ...)
      • Energy levels in hydrogen vs. alkali atoms: Quantum defect theory
      • van-der-Waals interaction
      • Förster resonances
      • R. Löw, H. Weimer, J. Nipper, J. B. Balewski, B. Butscher, H. P. Büchler, and T. Pfau
        "An experimental and theoretical guide to strongly interacting Rydberg gases"
        J. Phys. B: At. Mol. Opt. Phys. 45, 113001 (2012); doi: 10.1088/0953-4075/45/11/113001
      • T. Gallagher
        "Rydberg Atoms"
        Cambridge (1994)
      • J. Choi, B. Knuffman, T. Liebisch, A. Reinhard and G. Raithel
        "Cold Rydberg Atoms"
        Advances in Atomic, Molecular and Optical Physics vol.54 ch.3
      • H. Metcalf
        "Highly Excited Atoms"
        Nature 284, 127 (1980)

    • 6. Non-linear optics with Rydberg atoms
      Supervisor: S. Hofferberth
    • literature & about:
      • Electromagnetically Induced Transparency (EIT) & dark state polaritons
      • strong interaction between polaritons as a consequence of Rydberg state in the EIT scheme
      • non-classical states of light: train of single-photon pulses
      •  M. Fleischhauer, A. Imamoglu, J.P. Marangos
        "Electromagnetically induced transparency: Optics in coherent media"
         Rev. Mod. Phys. 77, 633
      •  A.A. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, M. Lukin
        "Photon -Photon Interactions via Rydberg Blockade"
         Phys. Rev. Lett. 107, 133602
      •  M. Fleischhauer, M. Lukin
        "Dark-state polaritons in electromagnetically induced transparency"
         Phys. rev. Lett. 84, 5094
      •  T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A.V. Gorshkov, T. Pohl, M.D. Lukin, V. Vuletic,
        "Quantum nonlinear optics with single photons enabled by strongly interacting atoms"
         Nature 488, 57
      •  O. Firstenberg, T. Peyronel, Q.-Y. Liang, A.V. Gorshkov, M. D. Lukin and V. Vuletic
        "Attractive photons in a quantum nonlinear medium"
        Nature 502, 71
      •  P. Bienias, S. Choi, O. Firstenberg, M.F. Maghrebi, M. Gullans, M.D. Lukin, A.V. Gorshkov and H.P. Büchler
        "Scattering resonances and bound states for strongly interacting Rydberg polaritons"
      • M. Saffman and T.G. Walker
        Creating single-atom and single-photon sources from entangled atomic ensembles
        Phys. Rev. A 66, 065403
      • P. Goy, J. M. Raimond, M. Gross and S. Haroche
        Observation of Cavity-Enhanced Single-Atom Spontaneous Emission
        Phys. Rev. Lett. 50, 1903
      • Y.O. Dudin and A. Kuzmich
        Observation of Cavity-Enhanced Single-Atom Spontaneous Emission
        Science 336 (2012)

    • 7. Rydberg molecules
      Supervisor: Tara Liebisch
    • literature & about:
      • Scattring in a 1/r^4 potential
      • A new kind of bond
      • V. Bendkowsky, B. Butscher, J. Nipper, J.P. Shaffer, R. Löw and T. Pfau
        "Oberservation of ultralong-range Rydberg molecules"
        Nature 458, 1005 (2009); doi: 10.1038/nature07945
      • C.H. Green, A.S. Dickenson and H.R. Sadeghpour
        "Creation of polar and nonplar ultra-long-range Rydberg molecules"
         Phys. Rev. Lett. 85, 2458
      • J.B. Balewski, A.T. Krupp, A. Gaj, D. Peter, H.P. Büchler, R. Löw, S. Hofferberth and T. Pfau
        "Coupling a single electron to a Bose-Einstein condensate"
        Nature 502, 664 (2013)
      • T. Karpiuk, M. Brewczyk, K. Rzążewski, J.B. Balewski, A.T. Krupp, A. Gaj, R. Löw, S. Hofferberth and T. Pfau
        "Detecting and imaging single Rydberg electrons in a Bose-Einstein condensate"
        arXiv: 1402.6875
    • 9. Efimov states
      Supervisor: Krzysztof Jachymski
    • literature & about:
      • Resonant scattering
      • Scaling symmetries
      • Three body recombination
      • Efimov physics in cold atoms, Ann. Phys. 322, 120-163 (2007).
      • Efimov resonances in ultracold quantum gases, Few Body Syst 51, 113 (2011).
      • Evidence for Efimov quantum states in an ulltracold gas of cesium atoms, Nature 440, 315-318 (2006)
    • 10. Bose-Hubbard model
      Supervisor: Robert Löw
    • literature & about:
      • atoms in optical lattices
      • Cold atoms as a simulator for solid state problems
      • Mott-insulator transition
      • Lecture Notes by Eugene Demler, http://cmt.harvard.edu/demler/TEACHING/Physics284/chapter6.pdf
      • Quantum phase transition of a superfluid to a Mott-insulator in a gas of ultracold atoms, Nature 415 39 (2002)

    • 11. Strongly interacting fermions
      Supervisor: Krzysztof Jachymski
    • literature & about:
      • BEC-BCS crossover
      • Pair correlation functions
      • Tan relations
      • Energetics of a strongly interacting Fermi gas, Ann. Phys. 323, 2952 (2008)
      • Verfication of universal relations in a strongly interacting Fermi gas, PRL 104, 235301 (2010)
      • Universal behavior of pair correlations in a strongly interacting fermi gas, PRL 105, 070402 (2010)
      • BCS-BEC crossover: From high temperature superconductors to ultracold superfluids, Physics Reports 412, 1-88 (2005)

    • 12. Quantum magnetism
      Supervisor: Przemek Bienas
    • literature & about:
      • Hubbard model
      • Heisenberg magnetism & Spin models
      • Frustrated states & Ising model
      • Subir Sachdev. (2011). Quantum Phase Transitions.
      • Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms, Nature 519 211(2015)
      • Itinerant ferromagnetism, Science 325 , 1521-1524 (2009)
      • J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss and M. Greiner, Quantum simulation of antiferromagnetic spin chains in an optical lattice., Nature, 472, 307–12 (2011).

    • 13. Cavity QED
      Supervisor: Przemek Bienas
    • literature & about:
      • Properties of cavities
      • Light in a cavity
      • Atom-light interaction, Jaynes-Cummings Hamiltonian
      • Dicke phase transition
      • C. C. Gerry and P. L. Knight: Introductory Quantum Optics, Cambridge university press (2005)
      • S. Haroche and J.-M. Raimond, Exploring the Quantum Atoms, Cavities, and Photons, Oxford Univ. Press (2006)
      • K. Baumann, C. Guerlin, F. Brennecke and T. Esslinger, Dicke quantum phase transition with a superfluid gas in an optical cavity., Nature, 464, 1301–6 (2010).
      • K. Baumann, R. Mottl, F. Brennecke and T. Esslinger, Exploring Symmetry Breaking at the Dicke Quantum Phase Transition, Phys. Rev. Lett., 107, 140402 (2011)
    • 14. Quantum simulation with ions
      Supervisor: Robert Löw
    • literature & about:
      • Ultracold ions and ion trapping
      • Quantum information and simulation with ions
      • Simulation of the Dirac equation with ions
      • Zitterbewegung, Klein paradox
      • J.J. Sakurai, Advanced quantum mechanics
      • General information on quantum information with ions: http://www.quantumoptics.at
      • Quantum simulation of the Dirac equation
        R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt, C. F. Roos
        Nature 463, 68 (2010)
      • Klein tunneling and Dirac potentials in trapped ions
        J. Gasanova, J. J. Garcia-Ripoll, R. Gerritsma, C. F. Roos, E. Solano
        Phys. Rev. A 82, 020101(R) (2010).
      • Quantum simulation of the Klein paradox
        R. Gerritsma, B.P. Lanyon, G. Kirchmair, Zähringer, C. Hempel, J. Casanova, J.J. Garcia-Ripoll, E. Solano, R. Blatt, C. F. Roos
        Phys. Rev. Lett. 106, 060503 (2011)
    • 15. Topological states
      Supervisor: Przemek Bienas
    • literature & about:
      • Topologically protected properties (Hall conductance)
      • Artificial magnetic fields in cold atomic systems
      • Geometric (Berry) phase
      • Edge states
      • Chern number
      • An introduction to topological orders, http://dao.mit.edu/~wen/topartS3.pdf
      • Preparing topological states of a Bose Einstein condensate, Nature 401, 568 (1999) 2015.
      • B. A. Bernevig. Topological insulators and topological superconductors. Princeton University Press, 2013
      • G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger. “Experimental realization of the topological Haldane model with ultracold fermions”. Nature 515 (2014), 237
      • D. Thouless, M. Kohmoto, M. Nightingale, and M. den Nijs. “Quantized Hall Conductance in a Two-Dimensional Periodic Potential”. Phys. Rev. Lett. 49 (1982), 405
      • F. D. M. Haldane. “Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly"”. Phys. Rev. Lett. 61 (1988), 2015
      • M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor. “Imaging topological edge states in silicon photonics”. Nat. Photonics 7 (2013), 1001. arXiv: 1302.2153
      • M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit. “Photonic Floquet topological insulators”. Nature 496 (2013), 196
      • R. Süsstrunk and S. D. Huber. “Observation of phononic helical edge states in a mechanical ’topological insulator’” (2015). arXiv: 1503.06808
      • M. Atala, M. Aidelsburger, J. T. Barreiro, D. Abanin, T. Kitagawa, E. Demler, and I. Bloch. “Direct measurement of the Zak phase in topological Bloch bands”. Nat. Phys. 9 (2013), 795
      • L. Duca, T. Li, and M. Reitter. “An Aharonov-Bohm interferometer for determining Bloch band topology”. Science 347 (2014), 288. arXiv: 1407.5635.



    Fragen zu dieser Seite an: webmaster   |   © Universität Stuttgart   |   Impressum