5. Physikalisches Institut
 
 
 
 

Hauptseminar: Optics at the limit

 
 

Veranstaltung


Summary:

The goal of this seminar is to discuss current "hot topics" in modern optics. In each presentation, the current leading experiment in one research area will be discussed. The goal of each talk is to first introduce the motivation & background for this specific topic and then to discuss the specific experiment.

Organisation:

  • Time:  Do 9:45
  • Location: PWR 57, room 3.123
  • contact:
    • Dr. Sebastian Hofferberth - 67460
    • Dr. Axel Griesmaier - 67893

Course requirements (Bedingungen für den Schein)

  • This seminar is in English. This includes the talk, discussions, and the summary paper
  • Attend all seminar classes
  • Timely and intensive study of your own topic. The suggested literature for each topic serves as a starting point and is NOT sufficient. Independent literature search is required.
  • Presentation of your topic in the seminar, duration ca. 45 minutes
  • Written summary paper on your topic (4 pages "PRL style" using LaTeX)
  • The following deadlines have to be met to successfully complete this class. You are responsible to organize the meetings with the class supervisors!
    • 4 weeks before your talk: Discussion with your supervisor AFTER finding & reading the literature
    • 2 weeks before your talk: test talk
    • 4 weeks after your talk: Hand-in of your summary paper

List of presentations

 
     

    Inhalt


    Possible topics

    • The most stable laser
      literature:
    • The shortest wavelength laser
      literature:
      • Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray freeelectron laser, Nature 481, 488–491 (26 January 2012)
      • Laser science: Even harder X-rays, Nature 481, 452–453 (26 January 2012)
      • Scientists Create First Atomic X-Ray Laser, http://www.sciencedaily.com/releases/2012/01/120125132819.htm
    • The highest output power laser
      literature:
      • same references for shortest wavelength
    • The lowest noise laser
      literature:
      • The LIGO Scientific Collaboration (J. Abadie et al.), A gravitational wave observatory operating beyond the quantum shot-noise limit, Nature Physics 7, 962 (2011)
      • T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010)
      • Moritz Mehmet, Stefan Ast, Tobias Eberle, Sebastian Steinlechner, Henning Vahlbruch, and Roman Schnabel, Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB, Optics Express, Vol. 19, Issue 25, pp. 25763-25772 (2011))
    • The most broadband laser
      literature:
    • The shortest laser pulse
      literature:
    • The best optical microscope
      literature:
      • STED microscopy reveals crystal colour centres with nanometric resolution, E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling and S. W. Hell, Nature Photonics 3, 144–147 (2009)
    • The fastest frequency counter
      literature:
      • "DEFINING AND MEASURING OPTICAL FREQUENCIES: THE OPTICAL CLOCK OPPORTUNITY – AND MORE"
        Nobel Lecture, December 8, 2005 by John L. Hall
        "PASSION FOR PRECISION"
        Nobel Lecture, December 8, 2005 by Theodor W. Hänsch
        http://www.nobelprize.org/nobel_prizes/physics/laureates/2005/
      • Frequency Comb project @ MPQ Garching: http://www.mpq.mpg.de/~haensch/comb/
      • NIST Optical Frequency Measurements Group: http://www.nist.gov/pml/div688/grp80/index.cfm
      • Jun Ye and Steven T. Cundiff: "Femtosecond Optical Frequency Comb:Principle, Operation, and Applications", Kluwer Academic Publishers / Springer (2005) / http://jila.colorado.edu/~junye/yelabs/pubs/scienceArticles/2005/sArticle_2005_YeCundiff_CombBook.pdf
    • The best optical clock
      literature:
      • Rosenband T.; Hume D. B.; Schmidt P. O.; et al.; Frequency ratio of Al+ and Hg+ single-ion optical clocks; Metrology at the 17th decimal place SCIENCE Volume: 319 2008)
      • Schmidt et al.,Spectroscopy Using Quantum Logic; Science 309 (5735): 749-752 (2005))
    • The best interferometer
    • The fastest frequency counter
      literature:
      • "DEFINING AND MEASURING OPTICAL FREQUENCIES: THE OPTICAL CLOCK OPPORTUNITY – AND MORE"
        Nobel Lecture, December 8, 2005 by John L. Hall
        "PASSION FOR PRECISION"
        Nobel Lecture, December 8, 2005 by Theodor W. Hänsch
        http://www.nobelprize.org/nobel_prizes/physics/laureates/2005/
      • Frequency Comb project @ MPQ Garching: http://www.mpq.mpg.de/~haensch/comb/
      • NIST Optical Frequency Measurements Group: http://www.nist.gov/pml/div688/grp80/index.cfm
      • Jun Ye and Steven T. Cundiff: "Femtosecond Optical Frequency Comb:Principle, Operation, and Applications", Kluwer Academic Publishers / Springer (2005) / http://jila.colorado.edu/~junye/yelabs/pubs/scienceArticles/2005/sArticle_2005_YeCundiff_CombBook.pdf
    • The highest optical data transfer rate
      literature:
      • 26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing, Nature Photonics 5, 364–371 (2011)
      • Terabit free-space data transmission employing orbital angular momentum multiplexing, Nature Photonics 6, 488–496 (2012)
      • Laser puts record data rate through fibre, http://www.bbc.co.uk/news/scienceenvironment-13469924
    • The best quantum correlations between photons
      literature:
      • Aspect et al., Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell's Inequalities, Phys. Rev. Lett. 49, 91 (1982)
      • Ultrabright source of polarization-entangled photons, P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, Phys. Rev. A 60, R773–R776 (1999)
      • Experimental Demonstration of Four-Photon Entanglement and High-Fidelity Teleportation, J.-W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, Phys. Rev. Lett. 86, 4435–4438 (2001)
    • longest distance quantum communication
      literature:
      • W. Tittel et al., Experimental demonstration of quantum-correlations over more than 10 kilometers, Physical Review A 57, 3229 (1998)
      • Violation of Bell inequalities by photons more than 10 km apart, Physical Review Letters 81, 3563 (1998)
    • The most efficient single photon sources
      literature:
      • M.D. Eisaman et al., Single-photon sources and detectors, Rev. Sci. Instrum. 82, 071101 (2011)
      • N. Mizuochi et al., Electrically driven single-photon source at room temperature in diamond, Nature Photonics 6, 299-303 (2012)
    • The strongest optical nonlinearities
      • literature:
        • A.K. Mohapatra et al., A giant electro-optic effect using polarizable dark states, Nature Phys. 4, 890 (2008)
        • Y. O. Dudin and A. Kuzmich, Strongly Interacting Rydberg Excitations of a Cold Atomic Gas, Science 336, 887 (2012)
        • Jonathan D Pritchard, Kevin J Weatherill, Charles S Adams, Non-linear optics using cold Rydberg atoms, Arxiv preprint arXiv:1205.4890 (2012)
    • The most complex optical (quantum) circuit
      literature

    • The weakest laser (one-photon laser)
      literature:

      • Justin G. Bohnet et al., A steady-state superradiant laser with less than one intracavity photon, Nature 484, 78-81 (2012)

     

     
    Fragen zu dieser Seite an: webmaster   |   © Universität Stuttgart   |   Impressum