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Abstract

Absorption imaging is a very common probing technique in experiments with ultracold
atoms. It allows the determination of the atom number in a sample. Typically an ab-
sorption image is divided by a reference image and the logarithm of the result is taken,
yielding the optical densities as described by Beer’s law. In this thesis, the effects of
saturation on the reconstructed atom number are studied, leading, amongst others,
to the modified Lamert-Beer law. A flexible optical setup for imaging atom clouds in
a magneto-optic trap as well as Bose-Einstein-condensates is designed, simulated and
characterized.

The corrections to the atom number are demonstrated by performing absorption imag-
ing with wavelengths of 421 nm and 626 nm. For the latter transition extended mea-
surements on the power broadening of this transition are done and it is demonstrated,
that the variance of the reconstructed atom number can be reduced by introducing
a correction factor. Additionally, two EMCCD cameras for use in a quantum gas
microscope are characterized.

Zusammenfassung

Absorptionsabbildungen sind eine sehr weit verbreitete Untersuchungstechnik bei Ex-
perimenten mit ultrakalten Atomen. Sie erlauben es, die Atomzahl in einer Probe zu
bestimmen. Typischerweise wird ein Absorptionsbild und ein Referenzbild durcheinan-
der dividert und der Logarithmus davon berechnet. Dies ergibt, nach dem Lambert-
Beer-Gesetz, die optische Dichte. In dieser Arbeit wird der Einfluss von Sättigungsef-
fekten auf die aus der optischen Dichte bestimmte Atomzahl untersuchst, was, unter
anderem, auf das modifizierte Lambert-Beer-Gesetz führt. Desweiteren wird ein flexi-
bler optischer Aufbau konstruiert, simuliert und charakterisiert mit dem Atomwolken
in magnetooptischen Fallen und auch Bose-Einstein-Kondensate abgebildet werden
können.

Die Korrekturen zur bestimmten Atomzahl werden am Beispiel von Abbildungen mit
Wellenlängen von 421 nm und 626 nm demonstriert. An letzterem Übergang werden er-
weiterte Messungen der Leistungsverbreiterung durchgeführt und es wird gezeigt, dass
durch Einführung eines Korrekturfaktors die Varianz der rekonstruierten Atomzahl
verringert werden kann. Zusätzlich werden zwei EMCCD-Kameras für die Nutzung in
einem Quantengasmikroskop charakterisiert.
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1 Introduction

In 1924 the article "Plancks Gesetz und Lichtquantenhypothese" by Satyendranath
Bose was published, in which quantum statistics were used for the first time [1]. The
idea was picked up by Albert Einstein, who expanded on the theory, leading to the
Bose-Einstein statistics [2]. One of the key predictions in this theory, the Bose-Einstein
condensate (BEC) was experimentally realized in 1995 by C. Wieman and E. Cornell
and shortly afterwards by W. Ketterle [3, 4]. They were jointly awarded the Nobel
Prize in Physics in 2001 for their discovery [5]. Since then BECs and ultracold quan-
tum gases, in general, have been studied extensively. Dipolar quantum gases have
become a topic of particular interest within this field. They interact not only via
short-range contact interaction but also via an anisotropic, long-range dipolar-dipolar
interaction. This leads to a variety of exotic phenomena occurring in them.
At the 5th Physical Institute at the University of Stuttgart, the first BEC of a dipolar
quantum gas consisting of Chromium atoms was realized in 2005 [6]. Since then, the
atomic species has been changed from Chromium to Dysprosium, which has a mag-
netic moment of µ = 9.93µB with Bohr’s magneton µB. This is the highest magnetic
moment of all stable elements. In this setup, self-bound quantum droplets [7, 8, 9]
and supersolid crystals formed from quantum droplets have been observed [10]. At
the moment the experiment is being updated to produce larger BECs. Additionally,
a quantum gas microscope is being implemented. This will allow single-site resolving
of atoms trapped in an optical potential and the study of Fermi- and Bose-Hubbard
models [11, 12].
In this thesis an absorption imaging system is set up and the effects of imaging at high
intensities are studied. In experiments with ultracold atoms, it is necessary to per-
form imaging in order to gain information about the size, position, and density of the
trapped atom cloud. One of the most used imaging methods is absorption imaging,
as it is versatile and robust. Using Beer’s law is a simple way to calculate the atom
densities from these images. Only few calibrations are necessary to get to an estimate
for the atom number. This estimation can however deviate drastically from the real
atom number, depending on the imaging conditions: The higher the intensity of the
imaging beam, the larger this deviation will be as the atomic transition saturates.
In these cases, Beer’s law can be modified to include this saturation effect. For this
precise atom reconstruction, several calibration measurements are necessary.
A short overview of the theory of optical imaging is given in Chapter 2. The interac-
tion of a two-level system with light is described, utilizing a semiclassical approach,
and the modified Lambert-Beer law is discussed (Chapter 3). In preparation for the
absorption imaging, two CCD cameras used in the experiment are characterized. For
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Chapter 1. Introduction

the quantum gas microscope, the use of an EMCCD camera is necessary, as it can
be used to detect small numbers, up to only one, of photons. These characterizations
are described in Chapter 4. Afterwards, the optical setup is designed, simulated and
characterized (Chapter 5). The results of using wavelengths of 421 nm and 626 nm for
absorption imaging on Dysprosium are presented in Chapter 6. At last an overview of
the necessary steps for setting up an absorption imaging system is given in Chapter
7, so that further imaging setups can be added to the experiment in the future.
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2 Theory of optical imaging

As one of the central aims of this thesis is to build and characterize an optical setup for
taking absorption images of a cloud of Dysprosium atoms first the necessary theoretical
foundation of optical imaging is presented.

2.1 Geometric optics

In geometric optics, light is treated as rays, rather than waves. Effects like diffraction
or interference are therefore neglected within this framework. In general, geometric
optics is applicable if the diameter of the beam is significantly larger than the wave-
length λ. In this case, light beams propagate in straight lines through homogeneous
media and are reflected or refracted at surfaces. One of the goals of this thesis is to
perform imaging, meaning that light originating from a source is focused on a second
point. To achieve this lenses will be used.
Lenses are optical components consisting of a (for the used wavelength) transparent
material separated from a surrounding medium, within this thesis air, by polished sur-
faces. They can focus or disperse light, depending on their specific form. In general,
the light beam is refracted twice when passing through a lens: Once when entering
the lens and once when exiting. A collimated beam, meaning that all the rays in the
beam are parallel, passing through a lens will be focussed after the focal length f .
The situation can be simplified if the distance between the surfaces of the lens is small
compared to the focal length, this case is called the thin lens approximation. Then
the imaging equation of thin lenses [13]

1

a
+

1

b
=

1

f
(2.1.1)

is valid. Here a is the distance from the light source to the lens and b is the distance
from the lens to the image. From this equation, the behaviour of a two-lens system
can be discussed. A collimated beam of light entering this system, as shown in figure
2.1.1, will be focussed after the focal length f1 of the first lens as can be found from

1

f1
=

1

b
(2.1.2)

with a → ∞. This point can then be viewed as a point source. If a second lens is
placed one focal length f2 away from the focus of the first lens the beam will again be
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Chapter 2. Theory of optical imaging

collimated after passing through the first lens. This is called a 4f imaging setup, as
shown in Figure 2.1.1, and it has a magnification of [13]

M =
f2
f1
. (2.1.3)

f1 f2f1 + f2

Figure 2.1.1: Two lenses in a 4f imaging setup. Collimated light coming in from the
left side gets focused after the focal length f1. At a distance of f2 from
the focus the second lens is placed, therefore the outgoing beam is again
collimated and magnified by a factor of M = f2

f1
.

Combining two 4f setups leads to the situation shown in Figure 2.1.2. With this setup,
it is possible to create a flexible imaging system which can be switched between two
different magnifications. It has the key feature that only the positions of the two outer
lenses relative to each other and the two inner lenses respectively are important for
the magnification. Both of these lens pairs fulfil the conditions for a 4f setup. The
magnification of the complete system is

M =
f4
f1

· f2
f3

=
M14

M23

(2.1.4)

with the lenses numbered from left to right concerning Figure 2.1.2. The latter mag-
nifications M14 and M23 are the magnifications of only the outer, respectively inner,
lenses. From these considerations one finds that the two inner lenses can be removed,
creating again a focused imaging system with magnification M14.

2.2 Airy pattern

If light is diffracted at a circular aperture an Airy pattern can be observed in the
image plane. It consists of a central bright spot with concentric bright rings around
it. As given in [14] the mathematical expression of this pattern can be derived using
the Fraunhofer diffraction integral

U(P ) = C

∫ ∫
A
e−ik(pξ+qη) dξdη. (2.2.1)
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2.2. Airy pattern

f1 + f4

f2 + f3

Figure 2.1.2: Four lenses combined from an outer and inner 4f imaging setup. The
position of the inner two lenses with respect to the outer two lenses is
irrelevant, only their relative distance is important. The magnification
of the system is given by M = f4·f2

f1·f3

The light is here not anymore treated as a geometric ray but as a wave. U(P ) is the
amplitude of the electromagnetic field at a point P in the image plane, A is the area
of the aperture, (ξ, η) a point on the aperture and p and q are the direction cosines.
The constant C follows from the incoming intensity and conservation of energy.
In the case of a circular aperture, it is convenient to switch to polar coordinates by

ρ cos θ = ξ and ρ sin θ = η (2.2.2)

for the aperture as well as

w cosψ = p and w sinψ = q (2.2.3)

for a point in the Airy pattern. Let a be the radius of the aperture. Then the
diffraction integral becomes

U(P ) = C

∫ a

0

∫ 2π

0

e−ikρw cos θ−ψρ dρ dθ (2.2.4)

= 2πC

∫ a

0

J0(kρw)ρ dρ. (2.2.5)

In order to reduce the expression from the first to the second line the integral definition
of the Bessel functions Jn(x) has been used. This integral can be solved analytically
leading to the field distribution

U(P ) = Cπa2
2J1(kaw)

kaw
. (2.2.6)

The intensity distribution is then given by the absolute square of U(P ) and is shown
in figure 2.2.1. Due to diffraction, the image is considerably larger then what would
be expected by treating the situation purely geometrical, as indicated by the orange
line.

5



Chapter 2. Theory of optical imaging
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Figure 2.2.1: Normalized intensity distribution |U(P )|2 obtained from the Fraunhofer
diffraction integral (2.2.1) for a circular aperture. The orange line indi-
cates the radius of the aperture. If diffraction is not taken into account,
the intensity distribution for radii larger than this line would be zero.

2.3 Resolving power and diffraction limit

Using the Airy pattern derived in the previous chapter a quantitative definition for
the resolving power of an optical system can be given. The resolving power describes
the ability of an optical system to differentiate objects close together from each other.
According to the Rayleigh criterion, the minimum distance, where two objects can be
separated from each other. The minimum distance where two objects can be separated
from each other, according to the Rayleigh criterion, is reached when the maximum
of the intensity distribution of one object falls together with the minimum of the
other object. The relative positions of the extrema can be found from equation (2.2.6)
leading to [14]

Y ≈ 0.61
λ

NA
(2.3.1)

for the minimal distance Y between two point sources so that their images are dis-
tinguishable. If the resolution of a system equals the minimal resolution given by the
Rayleigh criterion, the system is called diffraction-limited. The numerical aperture

NA = n sin θ (2.3.2)
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2.4. Aberrations

introduced in the Rayleigh criterion is an important quantity when characterizing
imaging systems. It is a measure of the amount of light emitted from a point source in
the object plane that can enter the system. n is the refractive index of the medium in
which the lens is working, within the scope of this thesis n = 1 as all experiments are
being done in air. The angle θ is the maximum half angle of a cone of light entering
the imaging system. In many cases, it is fixed by the diameter of the objective lens
and its focal length.

2.4 Aberrations

The description in the two previous chapters only hold for idealized lenses. In reality
deviations from the described properties will occur, so-called aberrations. Aberra-
tions will cause blur or distortions in the generated image, therefore they should be
minimized. Chromatic aberrations occur because the diffraction index n is frequency
dependent. Monochromatic aberrations in contrast also occur for nearly monochro-
matic light. In absorption imaging nearly monochromatic light is used, therefore the
following description of aberrations will focus on monochromatic aberrations. [13, 15]
For near-axis beams Snell’s law sinΘ1n1 = sinΘ2n2 can be approximated using
sinx = x. The sinus can however also be expanded including higher terms:

sinx = x− x3

3!
+
x5

5!
−O(x7). (2.4.1)

Therefore deviations from the approximated Snell law caused by the first non-linear
term are called third-order aberrations. They have been first described by Ludwig von
Seidel and are also named Seidel aberrations. The aberrations caused by third-order
effects can be given as [16]

W (r, ϕ, h) =
1

8
SIr

4 +
1

2
SIIhr

3 cosϕ+
1

2
SIIIh

2r2 cosϕ2

+
1

4
(SIII + SIV )h

2r2 +
1

2
SV h

3r cosϕ (2.4.2)

with the azimuth angle ϕ, the pupil coordinate r and the object coordinate h. The
five coefficients Si are called the Seidel coefficients and each corresponds to one of the
five Seidel aberrations as given in Table 2.4.1. For an ideal imaging system, all five
coefficients would equal zero. Now a brief summary of the effects of the five Seidel
aberrations is given as described in [13, 17].

Spherical aberration
Spherical aberrations are described by the first term of Equation (2.4.2). They are
caused by the dependency of the focal length on the distance of the ray from the
optical axis, rays nearer to the optical axis have a larger focal length. Therefore they
are particularly important when working with rays with large diameters. If spherical
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Chapter 2. Theory of optical imaging

aberration occurs, the spot size is increased and thus the resolution is decreased.
Coma
Coma occurs either when the object is not on the optical axis or the lens is tilted
with respect to the direction of the beam. In these cases, the magnification for rays
far from the optical axis is different from near-axis rays. If the image points are also
off-axis the image will be distorted to a shape similar to a comet tail, therefore the
name.
Astigmatism
Optical systems display astigmatism if the focus positions are different for rays in two
perpendicular planes. The image in the image plane, therefore, looks elliptical, not
round. If one moves the position of the image plane on the optical axis from one of
the foci to the other one the main axis of the ellipse varies and the direction of the
long axis is rotated by 90°.
Petzval field
Petzval field curvature occurs at points on the image plane which are so far away from
the optical axis that the paraxial approximation is no longer valid. The image can
then not be focussed on a plane but on a parabolic surface.
Distortion
The last aberration, the distortion, is again caused by the dependence of the focal
length, and therefore the magnification, on the position of the lens. If none of the
other four aberrations occurs the image can be completely in focus. However, the
position of a point in the image can be moved depending on its distance from the
optical axis. Straight lines, for example, then become curved, and lengths and angles
are not imaged to scale.

Aberration Seidel coefficient
Spherical aberration SI

Coma SII
Astigmatism SIII
Petzval field SIV
Distortion SV

Table 2.4.1: Connection between the Seidel coefficients used in Equation (2.4.2) and
the five aberrations of third order. Adapted from [16].

2.5 Point-spread-function

The intensity distribution of a focused optical system caused by a point source is given
by the point-spread function (PSF). If the theoretical PSF is known it can be used to
optimize the performance of the real optical system.
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2.5. Point-spread-function

The intensity distribution in the image plane I(x, y) can be expressed as

I(x, y) = PSF (x, y) ∗2D O(x, y) (2.5.1)

with the two dimensional convolution denoted as ∗2D, the point-spread function
PSF (x, y) and the intensity distribution in the object plane O(x, y). One sees imme-
diately that for an object described by a delta distribution δ(x, y) the PSF equals the
intensity distribution in the image plane I(x, y).[18]
The mathematical description of the PSF can be highly complex, especially if aberra-
tions like coma are present, which break the radial symmetry of the PSF. Often times
it is, however, sufficient to approximate it with a Gaussian function

f(r) = I0 exp

(
−(r − r0)

2

w2

)
. (2.5.2)

where w is the width, r0 the center of the spot, I0 the maximum intensity and r the
radial distance from the center. In the experimental characterisation circular apertures
of different sizes will be used to characterise a setup. Therefore the expected intensity
profile can be calculated to be

Iap(r) = PSF (r) ∗ rect
(r
a

)
(2.5.3)

=
1

2
I0
√
πw

(
Erf

(
a− x

w

)
+ Erf

(
a+ x

w

))
, (2.5.4)

where the angular symmetry of the complete imaging system has been used to reduce
the problem to one dimension. Here the rectangular function

rect
(r
a

)
=

{
0 if |r| > a

2

1 if |r| ≤ a
2

(2.5.5)

with the diameter a of the circular aperture is used. By fitting equation (2.5.4) to
the measured intensity profile information about the width of the PSF, and there-
fore the resolution of the system, can be recovered. Note that some deviations from
Equation (2.5.4) are to be expected as effects like the Airy pattern are neglected when
approximating the PSF with a Gaussian distribution.
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3 Atom-light interaction

As the goal of this thesis is to accurately reconstruct the atom number in a cloud
of Dysprosium atoms, the interaction between these atoms and the imaging light has
to be described first, especially focusing on absorption. For this, a semiclassical ap-
proach is chosen, in which the electromagnetic field is not quantized, but the atoms are.

3.1 The two-level atom

The energy structure of an atom can be highly complicated with a multitude of states
and possible transitions. Transitions used for absorption imaging are chosen so that
they can be well approximated as a two-level system. For this case, the Hamilton
operator can be, as described in [19], given as

H0 = Eg |g⟩ ⟨g|+ Ee |e⟩ ⟨e| (3.1.1)

where |g⟩ and |e⟩ denote the wavefunction of the ground and the excited state and
Eg and Ee are the respective eigenenergies of these eigenstates of the unperturbed
Hamiltonian. The resonance frequency

ω0 =
Ee − Eg

ℏ
(3.1.2)

with the reduced Planck constant ℏ follows directly from these eigenenergies.
Applying an electric field with amplitude E0 and a frequency of ω introduces an
additional Hamilton operator

H1 = er · E0 cos (ωt) (3.1.3)

perturbing the system. H1 describes the energy of an electric dipole −er interacting
with an electric field. As a simplification the dipole moment of the atoms is here
only caused by one electron, a more precise treatment would include a sum over all
electrons and their respective positions. The new complete Hamilton operator is given
by

H = H0 +H1. (3.1.4)
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Chapter 3. Atom-light interaction

Therefore |g⟩ and |e⟩ are no longer eigenstates to this system. It is however possible
to write the wavefunction of the perturbed system in terms of the eigenstates of the
unperturbed system as

ψ(r, t) = cg(t) |g⟩ e−iωgt + ce(t) |e⟩ e−iωet. (3.1.5)

Here ωi = Ei/ℏ has been used as an abbreviation. The time-dependent coefficients are
subject to the normalization condition

|cg|2 + |ce|2 = 1 (3.1.6)

and are the populations of the ground and the excited state. Using these coefficients
the density matrix

|ψ⟩ ⟨ψ| =
(
|cg|2 cgc

∗
e

c∗gce |ce|2
)

=

(
ρ11 ρ12
ρ21 ρ22

)
(3.1.7)

can be given, describing not only the populations |cg|2 = ρ11 and |ce|2 = ρ22 but also
the so called coherences ρ12 and ρ21. These coherences describe the interaction of the
system with the perturbing electric field.
The time evolution of the wavefunction (3.1.5) can be studied by using the time-
dependent Schrödinger equation

iℏ
∂ψ

∂t
= Hψ. (3.1.8)

Plugging the wavefunction (3.1.5) into the Schrödinger equation leads to a system of
coupled differential equation

iċg = Ωcos (ωt)e−iω0tce (3.1.9)
iċe = Ω∗ cos (ωt)eiω0tcg (3.1.10)

with the Rabi frequency

Ω =
⟨g|er · E0|e⟩

ℏ
(3.1.11)

=
e ⟨g|x|e⟩ |E0|

ℏ
. (3.1.12)

For the second equality, it was assumed that the light is linearly polarized in the x
direction, meaning that

E = E0ex cos (ωt). (3.1.13)

Additionally, the dipolar approximation has been used, assuming that the electric field
is nearly constant over the length of the atom. Therefore E0 can be treated as constant
and pulled out of the integral in Equation (3.1.11).
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3.2. Optical Bloch equations

3.2 Optical Bloch equations

Now a shortened derivation of the optical Bloch equations can be given. First, the ex-
pectation value of the x component of the dipole moment of an atom can be calculated
to be

D(t)x =
1

e

∫
ψ†(t)exψ(t) d3r (3.2.1)

= cgc
2
e ⟨e|x|g⟩ (3.2.2)

With the detuning

δ = ω − ω0 (3.2.3)

between the resonance frequency ω0 and the frequency ω of the driving electric field,
a new set of variables can be defined according to

c̃g = cge
−iδt/2c̃e = cee

iδt/2 (3.2.4)

which does not affect the populations, so that ρ̃ii = ρii. With this transformation, the
dipole moment can be rewritten as

D(t)x = ⟨g|x|e⟩
(
ρ̃12e

iωt + ρ̃21e
−iωt) (3.2.5)

= ⟨g|x|e⟩ (u cos (ωt)− v sin (ωt)). (3.2.6)

with

u = ρ̃12 + ρ̃21 = ρ12e
−iδt + ρ21e

iδt (3.2.7)
v = −i(ρ̃12 − ρ̃21). (3.2.8)

By using Equation (3.1.10) a set of coupled differential equations

u̇ = δv (3.2.9)
v̇ = −δu+ Ω(ρ11 − ρ22) (3.2.10)
ẇ = −Ωv (3.2.11)

can be found with

w = ρ11 − ρ22. (3.2.12)

These equations fail to describe the exponential decay of the population of the excited
state into the ground state if no external field acts on the system. Therefore a damping
term has to be added, assuming that the decay is exponential. With this term, one
arrives at the optical Bloch equations

u̇ = δv − Γ

2
u (3.2.13)

v̇ = −δu+ Ω(ρ11 − ρ22)−
Γ

2
v (3.2.14)

ẇ = −Ωv − Γ(w − 1) (3.2.15)
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Chapter 3. Atom-light interaction

with the natural linewidth Γ. For t ≫ Γ−1 the systems reaches an equilibrium de-
scribed by the steady state solutionu

v
w

 =
1

δ2 + Ω2/2 + Γ2/4

 Ωδ
ΩΓ/2

δ2 + Γ2/4

 . (3.2.16)

From this solution, the population of the excited state can be found to be

ρ22 =
Ω2/4

δ2 + Ω2/2 + Γ2/4
. (3.2.17)

3.3 Light absorption

From this treatment of the two-level atom, the necessary theory for absorption imaging
can be developed. In the limit of low intensities absorption can be described by Beer’s
Law

dI

dz
= −κ(ω)I = −Nσ(ω)I (3.3.1)

where the absorption coefficient κ(ω), the atom density N and the scattering cross
section σ(ω) have been introduced. Additonally the optical density can be defined as
od = Nσ(ω) This equation states that the attenuation dI

dz
is proportional to the atom

density N . It is derived from the intuitive idea, that photons scatter with atoms,
depending only on the scattering cross section σ(ω) and the density of photons N .
This is however not true for all cases. At high intensity, the atoms reach a limit, and
the transition saturates. Equation (3.3.1) is therefore only valid for intensities, where
the number of atoms in the ground state N1 is much larger than the number of atoms
in the excited state N2. If this constraint is released Equation (3.3.1) needs to be
modified to

dI

dz
= −(N1 −N2)σ(ω)I. (3.3.2)

Within this equation, the effects of absorption as well as stimulated emission are
included. Considering this and the conservation of energy, the scattering cross section
is found to be

σ(ω) =
ρ22Γℏω
ωI

= 3
π2c2

ω2
o

ΓgH(ω) (3.3.3)

≈ 3
λ20
2π

=: σ0. (3.3.4)

Here c is the speed of light and

gH(ω) =
1

2π

Γ

(ω − ω0)2 + Γ2/4
(3.3.5)
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3.3. Light absorption

is the line shape function of a Lorentzian profile. For the last approximation, it was
assumed that light is absorbed exactly at the resonance frequency ω0. This will not
be true in the experiment and a correction factor for this situation is estimated in
Chapter 3.6.
If the intensity of the incoming light is so high that the rate of absorption of photons
is larger than the rate of decay from the excited state, the transition will saturate.
The saturation intensity is defined as

Isat(ω) =
ℏωΓ
2σ(ω)

≤ π

3

hcΓ

λ3
(3.3.6)

where the right expression is the maximum saturation intensity. As this saturation
of the transition will reduce the number of absorbed photons Beer’s Law has to be
modified to [20]

dI

dz
= −Nσ(ω) I

1 + I/Isat
. (3.3.7)

The real saturation intensity and absorption cross section will deviate from this the-
oretical value. Reasons can be imperfections in the polarization of the imaging beam
and the orientation of the magnetic field. To compensate for this effect two parameters
α, β > 1 can be defined so that

Ieff
sat = αIsat and σeff =

σ

β
. (3.3.8)

These parameters have to be experimentally calibrated.
Finally, Equation (3.3.7) can be integrated along the z direction to find an explicit
expression for the column density

N = − 1

σ(ω)

(
ln

(
Iout

Iin

)
+
Iin − Iout

Isat

)
, (3.3.9)

where Iout is the intensity of the imaging light after passing through the atoms. Figure
3.3.1 illustrates the deviations between the atom number calculated using simple Beer’s
law and the modified Lambert-Beer law. For imaging intensities close to or above the
saturation intensity Isat the deviation is, for all optical densities, larger than 20%
and therefore definitely significant when performing absorption imaging. As a general
trend the deviation decreases for larger optical densities. Here however experimental
limitations come into play, as the signal to noise ratio of the camera, used to measure
the intensities, limits the minimal intensity which can be used for imaging. Ideally
these considerations on optical density and imaging intensity are not necessary, as a
well calibrated imaging system can account for these deviations by using the modified
Lambert-Beer law.
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Figure 3.3.1: Relative deviations ∆ between Beer’s law (3.3.2) and the modified
Lambert-Beer law (3.3.9) for different imaging intensities and optical
densities. Note that for high optical densities typically higher intensities
have to be used in order to get a sufficient signal on the camera, leading
to an increase in the deviation from Beer’s law.

3.4 Line widths and power broadening

The absorption coefficient κ(ω) depends on the angular frequency ω, therefore it is
not only possible to absorb photons directly at the resonance frequency ω0 but in
a wider range. Linewidths have a non-zero width under all circumstances due to
natural broadening. If an atom absorbs a photon it gets into an excited state which
will exponentially decay back to the ground state. The time constant of this decay
is the natural lifetime τ of this state. Then Heisenberg’s uncertainty relation can be
used to find the uncertainty of the transition frequency: [13]

∆E∆τ > ℏ ⇔ ∆E >
ℏ
δτ

⇔ ∆ω >
1

τ
. (3.4.1)

If only natural broadening is present in the system the last inequality will be an
inequality and the natural linewidth can be defined as

Γ = τ−1. (3.4.2)

Another meachism is power broadening. The absorption coefficient κ(ω) is given as

κ(ω) =
Nσ(ω)

1 + I/Isat(ω)
. (3.4.3)
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Figure 3.4.1: Normalized absorption coefficient κ(ω)/Nσ0 against the detuning δ =
ω − ω0. For the natural linewidth Γ = 31.9MHz is used as this is the
wavelenght of the 421 nm transition of Dysprosium used for imaging in
the experiment, see Chapter 6 for further details.

In the limit of low intensities, the full width at half maximum (FWHM) can be found
from

lim
I→0

κ(ω) = Nσ(ω) (3.4.4)

to be the same as the FWHM of the scattering cross section, which is the natural
linewidth Γ. For higher intensities, the absorption coefficient can be written out to

κ(ω) = Nσ0
Γ2/4

(ω − ω0)2 +
1
4
Γ2(1 + I/Isat)

(3.4.5)

with a FWHM of

∆ωFWHM = Γ

√
1 +

I

Isat
. (3.4.6)

Figure 3.4.1 shows absorption coefficients κ(ω) for multiple different saturations s at
a natural linewidth of Γ = 31.9MHz. The increase in FWHM is clearly visible as the
absorption coefficient around the resonance decreases.
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Chapter 3. Atom-light interaction

Equations (3.4.6) and (3.4.5) are only valid in the ideal case. Accounting for ex-
perimental imperfections the saturation intensities Isat in both equations needs to be
replaced with the effective saturation intensity Ieff

sat. By measuring the power broaden-
ing and fitting Equation (3.4.6) to the obtained linewidths it is possible to determine
this effective saturation intensity.

There can be further broadening mechanism, for example Doppler or transit-time
broadening. Within the experiment, however, the atoms are cold enough to neglect
these effects. [19]

3.5 Imaging noise

From the treatment in the chapter above two parameters are left that can be chosen in
absorption imaging: The exposure time T and the imaging intensity I. In this chapter
the relative noise of the atom number is calculated to find the ideal imaging intensity,
as discussed in [21].
Experimentally accessible are not the intensities Iin and Iout, but rather the dimen-
sionless count numbers Cin and Cout measured by a camera. The photons incident on
the camera chip are converted to electrons by the photoelectric effect, the number of
electrons is increased and converted to a digital output, the count number C. This
number can then be converted into an intensity using the calibrations described in
Chapter 4.1.
The count numbers are subjects to a technical noise term ∆i as well as to the shot
noise. Shot noise is caused by the discrete nature of the electric charge in the form of
electrons. The number of electrons will then fluctuate according to Poisson statistics.
The number of photons incident on the sensor is also subject to this shot noise, there-
fore it might seem reasonable to assume this shot noise directly on the intensities I.
This is not justified, however, since the conversion process from photons to photoelec-
trons by means of the photoelectric effect is again a stochastic process, just like the
generation of the photons. If it is assumed that no other noise terms are present and
that these two contributions are independent, the variance of the count number can
be written as

δC2
i = Ci +∆i. (3.5.1)

The variance of the column density can then be calculated directly using Gaussian
error propagation to be

δN2 =
1

σ2

[
Ct +∆t

C2
t

(
1 +

Ct

Csat

)2

+
C0 +∆0

C2
0

(
1 +

C0

Csat

)2
]
. (3.5.2)

The first term describes the noise caused by taking the absorption image itself, and the
second one the noise caused by the reference image. The variance could be reduced by
increasing the imaging time due to the quadratic terms C2

t and C2
0 in the denominators.
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3.5. Imaging noise

This will however on the one hand lead to a larger Doppler shift, which would then
have to be compensated by chirping the laser frequency, and on the other hand might
lead to saturation of the camera. Effects of interference patterns on the images can also
become problematic when using longer exposure times as they might move, increasing
the noise on the determined optical densities.

Figure 3.5.1 shows the relative noise for multiple intensities depending on the optical
density of the atom cloud. For the sake of shorter notation the saturation parameter
s = I/Isat is introduced here. For low and high densities the relative noise drastically
increases. In these regions absorption imaging is not a good choice for probing the
atom number. At high densities the noise is increased by the technical limitations of
the camera used to detect the intensities, as the intensity coming out of the cloud will
be relatively small. For low densities the number of scattered photons is small and it
is not possible to calculate the density accurately from this. There is however a large
center region with a low relative noise, corresponding to atom densities from roughly
50 to 300 atoms per pixel. Note that these densities are column densities and therefore
averaged about the direction of imaging as described with Equation (3.3.9). Within
this range, the noise can be minimized by choosing an appropriate imaging intensity.
As seen from the figure I = 0.8Isat minimizes the noise. The densities here are given
in units of atoms per pixel. This means that, depending on the magnification of the
imaging system, for a given physical density within a cloud the density per pixel can
be varied to reduce the relative noise. This leads however to a tradeoff between the
resolution and the magnification. If, for example, the number of atoms per pixel needs
to be increased to reach the minimum of the relative noise, the size of the image of
the cloud on the camera decreases. Therefore less details of the cloud form can be
resolved.
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Figure 3.5.1: Relative imaging noise (3.5.2) in dependence of the atom density N per
pixel for multiple intensities. At I = 0.8Isat the lowest relative noise
can be found. The inset shows the relative imaging noise for different
saturations s for atom densities of 100 per pixel, a typical value found in
the experiment.

3.6 Doppler shift and effective scattering cross
section

The dependence of the scattering cross section given by Equation (3.3.3) on the detun-
ing is often neglected when doing absorption imaging. However significant corrections
to the reconstructed atom number can arise from this dependence. These are calcu-
lated by numerical means here.
The imaged atoms are accelerated by the imaging beam. The force on atoms absorbing
photons is given by the momentum transferred per photon multiplied by the scattering
rate Rsc. Therefore one finds

Fscatt = ℏk · Γ
2

s

1 + s+ 4δ2/Γ2
(3.6.1)

which can then be connected to the velocity of the atoms by the differential equation
dv

dt
=
Fscatt

m
(3.6.2)
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3.6. Doppler shift and effective scattering cross section

where m is the mass of an atom. This equation is solved numerically to get the velocity
profile of the cloud.
If the atoms have a non-zero velocity a Doppler shift occurs. The frequency acting on
the atoms is detuned so that

δ = ω0 − kv (3.6.3)

with the angular frequency ω0, the wave number k and the speed of the atoms v. It
was assumed that the movement of the atoms is parallel to the propagation direction
of the beam, in other cases a scalar product between k⃗ and v⃗ would need to be used.
As the scattering cross section given in Equation (3.3.3) is dependent on the detuning,
it will also be dependent on the velocity.
An effective scattering cross section can be defined as the mean cross section over the
imaging time T where

σeff =
1

T
dt

∫ T

0

σ(ω, δ). (3.6.4)

From this equation the correction factor

γ = σeff/σ(ω) (3.6.5)

can be introduced. The velocity profile v(t) can be obtained from solving Equation
(3.6.2) numerically. With this information Equation (3.6.4) can be integrated numer-
ically, which leads to a correction factor γ dependent on the saturation parameter
s as well as the imaging time. Results for selected parameters are shown in Figure
3.6.1. Under some conditions, the correction reaches around 30%. For a high intensity
imaging scheme, meaning that s ≈ 1, this correction is relevant for all imaging times
shown in this figure. Note that this correction would also need to be applied to the
saturation intensity as given by Equation (3.3.6).
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Figure 3.6.1: Correction factors γ caused by the Doppler shift of the atoms depending
on the imaging intensity for multiple imaging times t. The parameter is
calculated for the transition at 421 nm with a linewidth of Γ = 31.9MHz.
[22] The lines are a guide to the eye.

3.7 Random walk

The atoms are not only accelerated in z-direction, but also perform a random walk in
the plane perpendicular to the propagation direction of the imaging beam. This leads
to blurring of the image. As discussed in the previous chapter the atoms gain velocity
in z-direction due to the photon recoil. However, they also gain a random, isotropic
velocity component [4]

vran =
√
NP

hλ

m
(3.7.1)

where NP is the number of scattered photons.
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3.7. Random walk

The average displacement after a random walk of time t can then be calculated using
[23]

∆rran =

∫ t

0

√
⟨v2ran ⟩ dt′ (3.7.2)

=

∫ t

0

√
2

3

h2λ2

m2
Rsc dt

′ (3.7.3)

=
2

33/2
h

mλ
t3/2

(
1

Γ

1 + s

s

)−1/2

. (3.7.4)

This sets a condition on either the saturation s or the imaging time t, if one wants
to take images with good resolution. Figure 3.7.1 shows the maximum imaging time
t for the 421 nm and the 626 nm transition of Dysprosium, if the atoms should move
not further than one pixel, with a length of 2.4 µm, during the random walk.1 For
the narrow 626 nm the random walk effect is not relevant for any saturation. For the
much broader 421 nm transition the situation is different. For high intensities, e.g
s ≈ 1, the maximum imaging time is roughly 40 µs, a value close to the imaging times
usually employed in the experiment. However, for determining the atom number the
resolution, and therefore the random walk, is not critical and the random walk is not
a limiting factor.
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Figure 3.7.1: Maximum imaging times calculated from Equation (3.7.4) for two differ-
ent transitions of Dysprosium if the atoms are not to move more than
2.4 µm during the imaging.

1These requirements are chosen for imaging an atom cloud with a magnification of M = 1 and the
pixel size of a BFS-U3-63S4M-C CCD camera, which is used in the experiment.
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4 Camera characterisation

Within the Dysprosium quantum gas experiment, multiple cameras are used to gather
information about the atoms. To calculate intensities from CCD camera images a
careful calibration of the gain and the quantum efficiency is necessary. If these are
known the measred number of counts can be, using the gain, converted into the number
of photoelectrons and, using the quantum efficiency, these can then be converted into
the number of photons incident on each pixel of the CCD sensor. By characterizing
EMCCD cameras their suitability for single photon detection and, therefore, their use
in the quantum gas microscope, can be evaluated. In this chapter, an overview of the
necessary theory is given and the results of characterising two types of CCD and two
types of EMCCD cameras are given.

4.1 CCD camera characteristics

Charge-coupled device (CCD) cameras are one of the dominating types of cameras not
only in scientific but also in general consumer applications. In order to calculate the
intensity distribution of an image it is necessary to first calibrate the camera, which
will be done in this chapter. First, a brief overview of the working principle of CCD
cameras is given, then the experimental results are presented.

4.1.1 Theoretical background

In general CCD sensors consist of a bulk material, a doped semiconductor, and many
electrodes placed in an array on top of the bulk material. If a voltage is applied to one
of these electrodes a potential well forms beneath it. Photons with an energy larger
than the bandgap of the semiconductor used can excite electrons from the conduction
into the valence band, generating an electron-hole pair in the semiconductor. Due
to the potential well, the minority charge carriers are collected in the well. After the
exposure, the charge carriers in the potential well are moved to neighbouring potential
wells until the end of the sensor array is reached and they can be read out. The number
of electrons is first increased by an on-chip amplifier and, depending on the chosen
settings and the camera type, may again be amplified by an off-chip amplifier. The
voltage generated by these electrons is then fed into an analogue-to-digital converter,
finally leading to a digital signal proportional to the number of photons that reached
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Chapter 4. Camera characterisation

the pixel during the exposure time. A more detailed treatment of the physics of CCD
cameras can be found in [24].
The generated image is affected by various noise sources as well as the dark current.
The dark current is caused by the thermal generation of electrons in the depletion
region, the bulk material as well as surface states. As the number of electrons generated
is directly proportional to the exposure time this contribution can be simply subtracted
from the image. Due to fluctuations of the dark current, this will lead to an increased
noise in the image. Note that in general, the dark current is different for different
pixels creating the so-called fixed pattern noise. The number of primary photoelectrons
(PPE) on the detector is also affected by shot noise. The conversion from photons
to PPEs is a stochastic process. Due to the discrete nature of the electric charge, in
the form of electrons, it can be described using Poisson statistics, the variance of the
number of PPEs then equals the number of PPEs: [25]

δn2
PPE = nPPE. (4.1.1)

Further noise is added to the signal by both amplifiers and the analogue-to-digital
converter. These contributions can be summarized into the read-out noise σr. With
these pieces of information a first model describing the measured signal can be con-
structed. Let Ne be the noise in electrons, consisting of the aforementioned noise
sources. Therefore

N2
e = σr + ne (4.1.2)

which can be translated into the number of counts measured by

N2
C =

1

g
σr +

1

g
nc. (4.1.3)

The measured signal has therefore a linear affine relation to the variance of the signal
In this equation, the gain g has been introduced. It relates the number of electrons on
a pixel to the number of counts on the final image and is given in units of electrons
per counts.[26]
After characterising the gain the quantum efficiency

QE =
ne

nph
(4.1.4)

as the ratio between generated photoelectrons and incoming photons can be measured.
The number of photons can be found by multiplying the photon flux

Φ =
I

ℏω
(4.1.5)

with the exposure time

nph =
It

ℏω
=
Itλ

hc
. (4.1.6)

Here t is the exposure time, λ the wavelength of the used light and c the speed of
light.[17]
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4.1. CCD camera characteristics

4.1.2 Characterisation of the BFS-U3-63S4M-C camera

Based on the theory developed in the previous chapter the BFS-U3-63S4M-C camera
by FLIR was characterised, relevant documents for this camera are available in [27]. It
is a monochrome CMOS camera with a rolling shutter, a summary of its properties is
given in Table 4.1.2. To measure the gain the camera is illuminated nearly uniformly
using a LED and two diffusers. A region of 100 pixels by 100 pixels with nearly
constant intensity is selected from an image and the mean count number as well as its
variance are calculated. Figure 4.1.2 shows three histogramms calculated from these
images. It can be seen that the distributions are not cut off and have the form of
Gaussian distributions, showing that these measurements are valid to determine the
gain. The left plot in Figure 4.1.1 shows an exemplary variance-signal plot with a
linear fit function according to Equation (4.1.3). The right part shows the gain set
in the control software gs as well as the corresponding measured values gm. An affine
function is fitted to the data from which the equation

gm = (0.97± 0.02) dB · gs + (13.1± 0.3) dB (4.1.7)

is found, describing how the real gain gm is related to the set gain gs. Especially one
finds the on-chip gain to be

g = 0.21± 0.01
e−

ADU
. (4.1.8)
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Figure 4.1.1: The left plot shows the variance over the mean signal for a uniformly
illuminated image with a fit according to Equation (4.1.3). The right
figure shows the measured gain plotted over the set gain, again with a
linear fit function.
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Figure 4.1.2: Histogram of the count distributions for one image with a low, medium
and high mean count number. For all three cases the distribution follows
a Gaussian distribution, which is fully captured and not cut off. It follows
that all data points can be used for determining the gain as shown in
Figure 4.1.1, in contrast to what is observed for the second characterized
camera discussed in the next section.

The dark current was measured by taking 100 images with exposure times ranging
between 1 s and 9 s. The mean count value nC for all pictures with an equal exposure
time is calculated, as shown in Figure 4.1.3 and plotted over the exposure time. By
fitting an affine function and multiplying with the gain one finds for the dark current

d = 21± 4
e−

s
. (4.1.9)

For the absorption imaging techniques employed in this thesis exposure times of a few
ten microseconds are chosen, therefore the dark current is negligible.

The third parameter investigated is the read-out noise. Two dark images with the
minimal possible exposure time of 16 µs are taken. They are subtracted from each
other to correct for flat-field irregularities and an offset. The variance of the difference
image is the read-out noise, which can be converted from counts into electrons using
the calibrated gain. For this camera, the read-out noise was found to be

σR = 2.55 e−. (4.1.10)
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4.1. CCD camera characteristics

Lastly to measure the quantum efficiency a beam of blue light with a wavelength of
421 nm is imaged using the camera. The intensity is measured using a handheld power
meter and the number of photoelectrons is calculated from the measured count value
and the gain. Using a λ

2
plate and a polarizing beam splitter the intensity is varied.

From all measurements the quantum efficiency

QE = 0.70± 0.02 (4.1.11)

was found. The precision of this measurement is limited by the fluctuation of the
intensity of the used beam. It was observed that the measured power fluctuated by
around 5% during the measurement, which takes a few seconds as multiple images
are taken. This could be resolved by employing a beam splitter, directing one of the
beams onto the camera and measuring the power in the second beam simultaneously
to taking the images.
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Figure 4.1.3: Average count value per pixel calculated from the mean of 100 dark
images each with the shown exposure times. The orange line is a linear
affine function, the slope of this function corresponds to the dark current
in ADU

s
. The gain was set to 30 dB, using this information the dark

current is converted in e−

s
.
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Chapter 4. Camera characterisation

Table 4.1.1: Properties of the BFS-U3-63S4M-C camera. The values in brackets are
taken from the datasheet and the imaging performance measurements
provided by the manufacturer. [27]

Property Value
Resolution 3072 px x 2048 px
Pixel size 2.4 µm x 2.4 µm

Dynamic range 14 bit
Quantum efficiency at 421 nm 0.70± 0.02 (≈ 0.77)

Gain 0.21± 0.01 e−

ADU
( 0.23 e−

ADU
)

Read noise 2.55 e− (2.45 e−)
Dark current 21± 4 e−

s

4.1.3 Characterisation of the BFS-U3-70S7M camera

The BFS-U3-70S7M is again a monochromatic CMOS camera by FLIR, it possesses,
however, a global shutter. Relevant documents are available in [28]. For this camera,
the same measurements are done as for the one described above. Figure 4.1.4 again
shows an exemplary variance-signal plot. The first three data points strongly deviate
from the expected linear behaviour and are excluded from further evaluations. The
reason for this deviation can be understood from Figure 4.1.5. As the probability
distribution in images with low illumination is not Gaussian anymore because it is
cut-off, the variance of the distribution calculated using

Var(X) = E(x2)− (E(x))2 (4.1.12)

does not equal the effective variance of the Gaussian distribution of the count values.
Here the expectation value of a variable is denoted as E. Omitting these datapoints
one can calibrate the gain to

gm = (0.98± 0.01) dB · gs + (9.31± 0.17) dB (4.1.13)

with the on-chip gain

g = 0.33± 0.01
e−

ADU
. (4.1.14)
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Figure 4.1.4: The left plot shows the variance over the mean signal for a uniformly
illuminated image with a fit according to Equation (4.1.3). Points not
included in the evaluation are shown in grey. The right figure shows the
measured gain plotted over the set gain, again with a linear fit function.
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Figure 4.1.5: Histogram of the count distributions for one image with a low, medium
and high mean count number. The distribution of the image with low
illumination is cut off. Therefore the variance calculated using Equation
(4.1.12) underestimates the variance of the count distribution.
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Chapter 4. Camera characterisation

Again the read-out noise was determined to be

σread = 3.63e− (4.1.15)

and the quantum efficiency to be

QE = 0.44± 0.02 (4.1.16)

The dark current was measured to be

d = 62± 7
e−

s
. (4.1.17)

Table 4.1.2: Properties of the BFS-U3-70S7M camera. The values in brackets are taken
from the datasheet and the imaging performance measurements provided
by the manufacturer. [28]

Property Value
Resolution 3208 px x 2200 px
Pixel size 4.5 µm x 4.5 µm

Dynamic range 12 bit
Quantum efficiency at 421 nm (0.44± 0.02) (≈ 0.56)

Gain 0.33± 0.01 e−

ADU
( 0.41 e−

ADU
)

Read noise 3.63 e− (2.70 e−)
Dark current 62± 7 e−

s
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4.2. EMCCD camera characteristics

4.2 EMCCD camera characteristics

As regular CCD cameras have a read-out noise of a few electrons, it is not possible
to directly detect single photons with them. Electron multiplying CCD (EMCCD)
cameras enable measurements beyond this limit, making it possible to count single
photons. This is achieved by amplifying the number of electrons even before the read-
out.

4.2.1 Theoretical background

The electron multiplication is being done in a multiplication register. In these registers,
spurious charges can occur by impact ionization, for traditional CCD cameras an
undesirable side effect. In EMCCD cameras, however, the probability of creating
spurious charges is enhanced by using a register with hundreds of cells. Then the
strength of the amplification can be controlled by adjusting the clock voltage. Gains
of up to 1000 are achievable. [29]

The distribution of the number of secondary photoelectrons (SPE) nS after the am-
plification of the primary photoelectrons (PPE) n is given by the Erlang distribution
[30]

Pn(nS) =
nn−1

S e−nS/g

gnΓ(n)
Θ(x). (4.2.1)

Here Θ(nS) is the Heavyside step function, Γ(n) the Gamma function and g the gain
described above. This distribution is plotted for multiple values of n in figure 4.2.1.
One directly sees a large overlap between the distribution for different numbers of
PPEs. With EMCCD cameras it is therefore hard to discriminate exactly the number
of PPEs, however, one PPE can be distinguished from the read-out noise, enabling
single-photon detection
To characterize an EMCCD camera firstly multiple dark images are taken and from

the number of SPEs, a histogram of the probability distribution is calculated. This
histogram is defined by the noise sources affecting the camera. Firstly, the read-out
noise is modelled by a Gaussian probability distribution G(nS). Its mean is the offset
nS, offset of the picture while its standard deviation is the readout noise σread. Secondly,
clock-induced charges (CICs) and dark noise generates electrons which are then am-
plified in the multiplication register. CICs are generated when PPEs are transported
from the camera chip into the read-out electronics. This is done by applying a voltage
alternating between a low and a high value. Due to this voltage impact ionization
can occur within the semiconductor used to build the electronics, generating a free
electron. It is not possible to differentiate an electron generated by this mechanism
from a PPE. The probability of finding such an electron is ppar. It can be approxi-
mated that at most one PPE per pixel is generated by these mechanisms, therefore
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Figure 4.2.1: Plot of the Erlang distribution (4.2.1) for one to four PPEs. From this
plot, the limitations of EMCCD cameras can already be seen, as the
distributions overlap. Therefore distinguishing exact photon numbers is
not easily possible.

the probability of finding nS, par SPEs is given by [31]

Ppar(nS, par) = pparP1(nS, par) =
ppare

−nS, par/g

g
. (4.2.2)

Thirdly, with a probability pser it is possible that CICs are, by the same mechanism as
described for parallel SPEs, generated in the multiplication register. These electrons,
called serial CICs, are only amplified by the remaining cells of the register, therefore
the probability of finding xser SPEs is given by [31]

Pser(nS, ser) =
m∑

l=1

psere
−nS, ser/p

m-lc

pm-l
c

. (4.2.3)

pc is the probability of duplicating an electron at a cell of the multiplication register.
The complete distribution is then obtained as the convolution of these three distribu-
tions as

Pdark(nS) = G(σread) ∗ Ppar ∗ Pser (4.2.4)
≈ G(σread) ∗ Ppar (4.2.5)

where the contribution of the serial spurious charges can be neglected, as it is not
necessary for the characterisation of the EMCCD camera. In practice, a Gaussian
distribution is fitted to the peak in the measured data while the gain is extracted from
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4.2. EMCCD camera characteristics

the exponentially decaying tail of the distribution as shown in figure 4.2.2. From these
fits the gain g and the read-out noise σread is received. Their ratio g/σread is the key
characteristic of an EMCCD camera as it quantifies how well a single photon event
can be distinguished from the read-out noise.
In order to detect a photon a threshold σtres has to be set. Images are then binarized
according to

Ii,j =

{
1 ni,j > σtres

0 ni,j < σtres.
(4.2.6)

ni,j is the number of SPEs in a pixel and Ii,j is the value of the binarized image. Due
to the statistical nature of the PPE amplification process not all PPEs are recognized
correctly in the binarized images. The probability of identifying a PPE correctly is
given by the extraction fidelity

P (1 → 1) =

∫ ∞

σtres

e−x/g

g
dx = e−σtres/g = e−k·σread/g. (4.2.7)

where the exponent has been separated in the ratio of gain and read-out noise as well as
a parameter k which relates the read-out noise to the threshold as σtres = k ·σread The
extraction fidelity could be optimized by choosing a smaller threshold. This however
increases the probability of incorrectly identifying an event

P (0 → 1) =

∫ ∞

σtres

G(σread)dx =
1

2

(
1− erf

(
σtres√
2σread

))
(4.2.8)

=
1

2

(
1− erf

(
k√
2

))
. (4.2.9)

Additionally setting a higher threshold will reduce the effect of serial SPEs. For
suppressing the read noise using a threshold of around 4 to 5σread would be enough,
with serial SPEs high thresholds of up to 8σread need to be used [32]. Therefore a
higher ratio of gain and read noise is desirable to optimize the accuracy of detecting
single photons.
Two different EMCCD cameras are characterized in this thesis. Their ratio of gain
over read noise is measured for different camera settings to find the optimum.
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Chapter 4. Camera characterisation

4.2.2 Characterization of the Andor iXon Ultra 888 EMCCD
camera

The histograms expected according to Equation (4.2.5) are calculated from 70 images
without illumination. There are several possible settings that can be changed:

• Gain: The gain setting controls the clock voltage and therefore the probability
pc of generating a second electron in one of the cells of the multiplication register.
The maximum value is 1000.

• Preamp-gain: The preamplifier gain can be reduced to prevent saturation of
the well capacity. For low-light applications, it is strongly suggested to use the
highest setting as this will result in the highest sensitivity.[33]

• Temperature: The camera can be cooled down to −70 ◦C using a multi-stage
thermoelectric cooler. Colder temperatures could be achieved by water-cooling
the system, this was however not done in this thesis. In terms of camera per-
formance colder temperatures are desirable as they will reduce the dark-current
noise.[34]

• Vertical shift speed: The vertical shift speed determines how fast the rows of
the sensor array are moved into the shift register. The time this shifting takes
can be varied from 0.6 µs to 4 µs.1

• Horizontal shift speed: The horizontal shift moves charges from the shift
register into the multiplication register. Possible shift rates range from 1MHz
to 30MHz.

The best performance was achieved for a horizontal shift rate of 1MHz, a vertical
shift period of 0.60 µs and the lowest possible temperature of −70 ◦C. These settings
resulted in a gain over read-noise ratio of

g

σread
= 57.41± 0.60, (4.2.10)

the corresponding histogram is shown in figure 4.2.2. This gain over read-noise ratio
corresponds to an extraction fidelity of (86.99 ± 0.13)%. The probability of wrongly
identifying an event at a threshold of 8σread is completely negligible as P (0 → 1) ≈
6.2 · 10−16.

1The value of 4 µs is acquired by reading out this information from the camera using the control
software. In [34] ANDOR provides information about the shift speeds, indicating that this value
could be rounded from 4.33 µs.
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Figure 4.2.2: Histogram calculated from 70 dark images with the described optimal
settings. The red line is a Gaussian distribution used to determine the
read noise σread, and the orange line is an exponential decay with the
decay constant being the gain g. Serial SPEs, generated in the multi-
plication register, have a much lower effective gain than SPEs generated
before the multiplication register. Therefore they can be found close to
the read noise distribution. In this figure, they cause the deviation from
the exponential fit shown in orange. The vertical green line is drawn at
the threshold of 8σread.

Further measurements were done to explore the influence of the mentioned parameters.
The results are listed in the Tables 4.2.1, 4.2.2 and 4.2.3. The vertical shift period does
not have a large influence on the performance, the horizontal shift rate however does.
Setting its values above 10MHz reduces the achievable gain over read-noise roughly
by a factor of 5. Lastly increasing the temperature decreases, as expected, the gain
over read-noise significantly.

Table 4.2.1: Gain over read-noise g/σread for all possible vertical shift periods. The
measurements were taken with a horizontal shift rate of 1MHz and at
−70 ◦C.

Vertical shift period gain over read-noise extraction fidelity
4 µs 53.40± 1.53 (86.09± 0.37) %
2 µs 56.97± 0.76 (86.90± 0.17) %
1 µs 44.90± 1.24 (83.68± 0.41) %

0.60 µs 57.41± 0.60 (86.99± 0.13) %
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Chapter 4. Camera characterisation

Table 4.2.2: Gain over read-noise g/σread for all possible horizontal shift rates. The
measurements were taken with a vertical shift period of 4 µs and at
−70 ◦C.

Horizontal shift rate gain over read-noise extraction fidelity
1MHz 53.40± 1.53 (86.09± 0.37) %
10MHz 53.11± 0.77 (86.02± 0.19) %
20MHz 10.68± 0.02 (47.28± 0.07) %
30MHz 9.11± 0.01 (41.55± 0.04) %

Table 4.2.3: Gain over read-noise g/σread for multiple different temperatures. The mea-
surements were taken with a vertical shift period of 4 µs and a horizontal
shift rate of 1MHz.

Temperature gain over read-noise extraction fidelity
−70 ◦C 53.40± 1.53 (86.09± 0.37) %
−60 ◦C 43.00± 0.89 (83.02± 0.32) %
−50 ◦C 44.42± 0.20 (83.52± 0.07) %
−40 ◦C 21.91± 0.87 (69.41± 0.98) %
−30 ◦C 17.68± 0.26 (63.60± 0.42) %

4.2.3 Characterization of the Andor iXon 3 EMCCD camera

The Andor iXon 3 EMCCD camera is a precursor to the iXon Ultra series. The camera
characterised in this thesis has already been used to study Dysprosium quantum gases,
therefore some degradation of the performance is expected.
Figure 4.2.3 shows a histogramm of the dark image for the optimized settings. Here
the best result with

g

σr
= 18.59± 0.23 (4.2.11)

was achieved with similiar parameters as for the iXon Ultra: The temperature was set
to −80 ◦C, the vertical readout speed to the highest value and the horizontal shift rate
to the lowest value. Even for the best possible parameters the ratio of gain over read-
noise is still too low to perform efficient single photon detection. It might be possible
to recalibrate this camera using software provided by Andor Technology, making the
camera again suitable for use in the experiment. This has however not been done
within this thesis.
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Figure 4.2.3: Histogram calculated from 70 dark images with the described optimal
settings. The red line is a Gaussian distribution used to determine the
read noise σread, the orange line is an exponential decay with the decay
constant being the gain g. The vertical green line is drawn at the thresh-
old of 8σread.
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5 Experimental setup

The imaging beam is not directly pointed onto the camera but rather gets manipulated
using a system of lenses. First, a simulation is performed to understand the behaviour
of the system regarding the positioning of the components. This setup is then charac-
terised in terms of magnification and resolution outside of the experiment. After the
setup was integrated into the experiment the magnification was characterized again.

5.1 Requirements and constraints

To be able to design an imaging setup first the performance requirements as well as
the constraints on the setup must be defined:

• It should be possible to image atoms in an MOT as well as a BEC. In terms of
magnification, M ≈ 1 and M ≈ 5 should be reachable. This can be achieved by
adding, respectively removing, lenses from the system. This mechanism should
be realized in a way that does not require an extensive alignment procedure
when switching between these two modes.1

• The setup should be diffraction limited. For the BEC imaging a resolution of
around 10 µm should be reached.

• Aberrations should be minimized.

• The system should be optimized for a wavelength of 421 nm as this wavelength
corresponds to the imaging transition

• After passing through the atoms the imaging beam shares a beam path with
another beam. They are separated by two dichroic mirrors after exiting the
vacuum chambers. This adds a lower limit to the distance between the atoms
and the first lens of about 400mm.

1Simply using flip mounts is not possible because magnets are used within them. Any magnetic
materials should not be used near the experiment as they will act on the Dysprosium atoms due
to their large magnetic moment.
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5.2. Imaging setup

5.2 Imaging setup

The described requirements can be reached by using a four lens setup as shown in
Figure 5.2.1. It consists of an outer telescope with a magnification of 1. The first lens
with a focal length of f1 = 500mm is placed one focal length away from the atoms.
Another lens with the same focal length f4 = f1 is placed 1m behind the first lens.
Between these lenses, an inner telescope is mounted. These two lenses are mounted on
a small, movable breadboard so that they can be put in and out of the system without
completely losing the alignment. The inner lenses have focal lengths of f2 = 500mm
and f3 = 100mm. The magnification in the four lens configuration is

M4 =
f4
f1

· f2
f3

= 5 (5.2.1)

as desired, in the two lens configuration it is

M2 =
f4
f1

= 1. (5.2.2)

In order to be able to switch the magnification from 5 to 1 one needs to be able to
put the lenses L2 and L3 in and out of the system. The necessary optical alignment
caused by this switch should be as low as possible. To realize this the inner lenses
are put on a small separate breadboard. After the system has been aligned the ideal
position of the breadboard is marked using two clamps. They are placed so that the
position of the breadboard is completely fixed if it is aligned to the clamps but it is
still possible to remove the breadboard.
The best possible resolution in this configuration can be approximated using the
Rayleigh condition to be

Y ≈ 0.61
421 nm

sin (12.7mm/500mm)
= 10.1 µm. (5.2.3)

5.3 Simulation of the optical setup

The setup is simulated in Zeemax OpticsStudio in order to decide which lenses to use
and to gain information on the positioning sensitivity of the components. For the
lenses L1, L2 and L4 the planoconvex lens LA1908-A may be used, alternatively, the
AC254-500-A achromatic doublet lens could be used. For the element L3 the lenses
LA1509-A or AC254-100-A can be used.2
Figure 5.3.1 shows the results of the simulations done with multiple configurations
including simple planoconvex as well as achromatic lenses. The choice of the lenses

2All lenses mentioned here are bought from Thorlabs.
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ATOMS

Camera

L1

L2

L3 L4

Lower breadboard

Figure 5.2.1: Drawing of the optical setup. The absorption imaging path shares a
viewport of the vacuum chamber with another beam path. These beams
are separated by a dichroic mirror, shown in read. The beam passes
through the first lens L1 and is guided onto an upper breadboard. It
then passes through the lenses L2 and L3, which are mounted in parallel
on a small, removable breadboard (light grey). Due to this construction,
the magnification of the system can be changed by removing these two
lenses. Afterwards, the beam passes through lens L4 and is pointed onto
the camera.

L3 and L4 does not significantly influence the results, the results for configurations
where only these two lenses are changed to achromatic lenses are not shown in order
not to make the analysis unnecessarily confusing. Replacing the lenses L1 and L2 with
achromatic lenses does however change the performance of the system significantly.
The only aberration present, even in the configuration without achromatic lenses, is
spherical aberration. This can simply be inferred from the Seidel coefficients, which
are not explicitly listed here as they are zero except for the coefficient S1 shown in the
bar chart in Figure 5.3.1, there is however also the possibility of using ray trace curves.
They are computed by tracing rays through the exit pupil of the optical system. As a
reference, the height on the image plane of the ray passing through the center of the
pupil is taken. The deviation of rays passing through the outer parts of the exit pupil
from this height is then plotted in dependence on a normalized pupil coordinate, which
is basically the distance from the centre of the exit pupil normalized by the diameter of
the pupil. The forms of these curves characterise the aberrations. A defocused system
would for example exhibit a linear ray trace curve, spherical aberrations produce a
third-order polynomial. The amplitude of these curves is a measure of the strength of
these aberrations. [35]
As expected it is possible to significantly reduce the presence of spherical aberrations
by using achromatic doublet lenses. Note that the reduction, or complete elimina-
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5.3. Simulation of the optical setup

tion, of spherical aberrations is not a normal property of achromatic lenses. They are
usually designed to correct for chromatic aberrations. The achromatic doublet lenses
by Thorlabs are however also optimized for the reduction of spherical aberrations. In
theory aspheric lenses could have also been used to reduce aberrations. Using achro-
matic doublets has two main advantages: More focal lengths are available, especially
for the necessary lenses with focal lengths of 500mm, and they have a better off-axis
performance than aspheres. This is especially relevant for taking images of the atom
cloud when it is moving, e.g. falling under gravity, as the image will not be centered.
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Figure 5.3.1: Simulation results for a configuration without achromatic lenses (blue),
with the first lens (yellow), the first two lenses (green) and all lenses
(red) replaced by achromatic lenses. a) Ray trace curves for the four
setups. They have the form of a cubic polynomial, indicating the pres-
ence of spherical aberrations. The magnitude of this presence decreases
drastically when the number of achromatic lenses is increased. b) The
Seidel coefficient S1 for all four setups. Replacing the first two lenses
by achromatic lenses drastically decreases the presence of aberrations,
the last two lenses do not have a significant influence. This confirms
the conclusions drawn from a). c) The lower plot shows the PSFs for
all four configurations as well as Gaussian functions (dashed lines) fitted
to them. It can be seen that the width of the PSF can be significantly
reduced by employing achromatic lenses. The fitted Gaussian functions
describe the numerical PSF quite well, proving that the approximation
of the PSF with Gaussian functions is justified for this system.
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5.3. Simulation of the optical setup

As for the sensitivity of the system to tilting, decentering or shifting the lenses L3

and L4 do not have a significant impact. The geometric spots within the airy disk,
corresponding to the diffraction limit, are shown in Figures 5.3.2 and 5.3.3 for tilting
the lenses L1 and L2 respectively. The maximum tilt with respect to the optical axis
for the shown spots is 0.5◦. However, even for these small tilts, the performance of
the system is drastically decreased. Starting at tilts of 0.25◦ the system is no longer
diffraction limited due to coma.

a) b) c)0° 0.25° 0.5°

Figure 5.3.2: Simulated spots for tilts of a) 0◦, b) 0.25◦ and c) 0.5◦ of the first lens. For
the tilts shown in b) and c) the system is no longer diffraction limited.
As described in Chapter 2.4 coma is occurring. The first minimum of
the airy disk is shown as a black circle and the squares have side lengths
of 20 µm

a) b) c)0° 0.25° 0.5°

Figure 5.3.3: Simulated spots for tilts of a) 0◦, b) 0.25◦ and c) 0.5◦ of the second lens.
For a tilt of 0.25◦ the system is still diffraction limited, only for larger
tilts this is no longer true.
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Another degree of freedom is the position of the lenses relative to the object or to
each other. Figure 5.3.4 shows the geometric spots for four variations of the distance
between the point source and the first lens. Variations from the optimal distance
by only 0.5mm cause the system to no longer be diffraction limited. This can be
compared to the theoretical depth-of-focus (DOF) by calculating the DOF using [14]

DOF =
λ · n
NA2

=
421 nm · 1
0.02542

= 0.65mm. (5.3.1)

Therefore the observations within the simulation agree with the theoretical prediction.
For variations of the relative distance between the lenses L2 and L3, which is shown in
Figure 5.3.5, this sensitivity to misplacement can also be found. In summary, it can be
said that any misalignment of the first two lenses will heavily impair the performance
of the system.

a)  -1.0 mm b)  -0.5 mm c)  0.0 mm d)  0.5 mm e)  1.0 mm

Figure 5.3.4: Simulated spots for moving the first lens a) 1mm and b) 0.5mm closer,
as well as d) 0.5mm and e) 1mm away from the object. c) shows the
spot for the optimited position. In the cases a), d) and e) the system
is no longer diffraction limited. From this simulation it can be roughly
estimated that the DOF is above 0.5mm

a)  -1.0 mm b)  -0.5 mm c)  0.0 mm d)  0.5 mm e)  1.0 mm

Figure 5.3.5: Simulated spots for increasing the distance between the second and third
lens by a) 1mm and b) 0.5mm as well as decreasing it by c) 0.5mm and
d) 1mm. c) shows the spot for the optimited position. In the cases a), d)
and e) the system is no longer diffraction limited. This movement does
not directly correspond to the DOF, it shows however that the resolution
of the system is sensitive to the distance between the lenses L2 and L3.
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5.4. Characterisation of the magnification and resolution

5.4 Characterisation of the magnification and
resolution

With the information obtained from the simulation, the setup is built up and coarsely
aligned, by sending a collimated beam in and optimizing the outgoing beam to be
again collimated. Then a 1951 USAF resolution test chart is placed in the object
plane and imaged onto a camera. The optimized images are shown in Figure 5.4.1.
The element 3 in group 1 consists of lines with a width of 198.43 µm and is used to
determine the magnification. To do that the width in pixels is determined from an
image, from which the magnification

M =
459 px · 2.4 µm

198.43 µm
= 5.55 (5.4.1)

can be calculated. The resolution of the system can be estimated from the smallest
still resolved group of lines. As element 6 from group 5 is still resolvable an upper
limit to the resolution of 8.77 µm can be given.

Figure 5.4.1: Images of a USAF resolution test chart. The left image shows element
3 from group 1, this image is used to determine the magnification of the
system. The right image provides an overview of groups 4 and 5, used to
estimate the resolution. Element 6 from group 5 (the smallest element
from group 5), which is the smallest element with clearly distinguishable
lines, corresponds to a resolution of 8.77 µm[36].

Another way of characterising the resolution of the system is by imaging circular
apertures. The resulting intensity distribution is described by Equation (2.5.2). Figure
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5.4.2 shows cuts in x- and y-direction of the intensity distribution of the image. By
fitting (2.5.2) to these intensity profiles and setting the aperture diameter a to the
value given by the used pinhole, the width w of the approximated PSF can be found.
Note that the values obtained from the fit have to be divided by 5.55 to account for the
magnification of the system. This method also allows some judgement on the presence
of aberrations, as the resolutions in x- and y-direction should be equal, except when
coma or astigmatism are present. The results of the fits are shown in Table 5.4.1.
From these values resolutions in x- and y-direction of

wx = (11.5± 0.2) µm and wy = (10.0± 0.2) µm (5.4.2)

can be found. Positioning these pinholes exactly at the same spot as the resolution test
chart, to get the exact same measurement, as well as in the centre of the beam is not
easily possible. Therefore some deviations between the resolution estimated from the
test chart and this method are expected. In general, however, both methods prove that
the imaging setup has a resolution on the order of 10 µm as needed. The deviations
between wx and wy mainly stem from the measurement with a 20 µm pinhole. This
pinhole might have been misplaced, some of the deviation may however also come
from the aperture deviating from a circle. The minimal circularity of the aperture is
specified to be 85% [37].
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Figure 5.4.2: Intensity profiles of pinholes with aperture diameters of 20 µm (green),
50 µm (blue) and 100 µm (purple). Shown are cuts through the profile in
x- and y-direction as well as fit functions according to Equation (2.5.4).
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5.5. Characterisation of the magnification in the experiment

Table 5.4.1: Resolutions calculated from the fits shown in Figure 5.4.2.
Aperture diameter wx wx

20 µm (13.3± 0.1) µm (8.04± 0.05) µm
50 µm (8.88± 0.13) µm (9.39± 0.14) µm
100 µm (12.4± 0.2) µm (12.6± 0.3) µm

5.5 Characterisation of the magnification in the
experiment

Characterisations like the ones shown in the previous chapter are not possible anymore
when the setup is integrated into the experiment. The object plane is not accessible as
it is situated in the vacuum chamber. Properties of the system can only be recovered
by evaluating absorption images of atoms in the vacuum chamber.
Important for accurate recovery of the atom number is the magnification of the system.
It is measured using a time of flight (ToF) measurement. Atoms are loaded into the
MOT and then compressed into the compressed MOT (cMOT). The cMOT is turned
off and the atoms fall down due to gravity. The ToF is therefore the time difference
between turning of the cMOT and taking the absorption image. The center of mass
of the atom cloud is determined from these images by fitting a Gaussian in x and y
direction to them. By using the well known relation(

x
y

)
=

1

2

(
ax

ay

)
t2 (5.5.1)

with the accelerations ax and ay in x and y direction. Note that the direction of gravi-
tational force is not aligned with one of the image axis, therefore this two-dimensional
equation has to be used. The magnitude of the acceleration vector is then the apparent
gravitational acceleration. The results of ToF measurements in the two and four lens
configuration are shown in the Figures 5.5.1 and 5.5.2. From the fits the accelerations

|⃗a2| = (6.04± 0.01)
m

s2
and |⃗a4| = (31.93± 0.03)

m

s2
(5.5.2)

were found. These correspond to magnifications of

M2 = 0.616± 0.001 and M4 = 3.25± 0.01 (5.5.3)

with the ratio of the magnifications being

M4

M2

= 5.29. (5.5.4)

With this method it is possible to precisely measure the magnification of the imaging
setup, a necessary prerequisite for absorption imaging. From these measurements,
however, large deviations to the theoretically expected magnifications are found. The
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Chapter 5. Experimental setup

reasons for this is most likely an error in the placement of the first lens. As it is not
easily possible to place it at the necessary distance to the atoms, this would need to
be fixed by further alignment. For the further work done in this thesis, reaching the
theoretical magnifications is not necessary, problems might only arise when trying to
image a small BEC.
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Figure 5.5.1: The left plot shows the position of the free falling atom cloud aquired
by fitting Gaussian functions to absorption images taken in the two lens
configuration with magnification M2. Due to the optical elements the
image is rotated, on the camera the cloud is moving in x-y-direction. The
distance between the points is calculated and plotted against the time
of flight. From two quadratic fits an acceleration of (6.04± 0.01)m/s2 is
found.
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Figure 5.5.2: The left plot shows the position of the free falling atom cloud aquired
by fitting Gaussian functions to absorption images taken in the four lens
configuration with magnification M4. Due to the optical elements the
image is rotated, on the camera the cloud is moving in x-y-direction. The
distance between the points is calculated and plotted against the time of
flight. From two quadratic fits an acceleration of (31.92 ± 0.03)m/s2 is
found.



6 Experimental results

In this chapter the experimental results of performing absorption imaging with wave-
lengths of 421 nm and 626 nm are presented. For the first wavelength it can be shown
that, under the circumstances in the experiment, high-intensity corrections do not
need to be accounted for. The transition at 626 nm is used to illustrate the effects of
imaging at and above saturation.

6.1 Imaging with λ = 421nm

The transition employed for absorption imaging in the experiment is located at 421 nm
and has a large natural linewidth of Γ = (31.9± 0.8)MHz. [22] From this linewidth a
theoretical saturation intensity of Isat = (88.9± 2.4)W/m2 results.
In Figure 6.1.1 the images necessary for performing absorption imaging are shown.
First, an image with the imaging beam turned on is taken. On this image the ab-
sorption can already be seen as a shadow on the image. A reference image without
atoms is also taken. In both images interference patterns can be seen. By dividing the
absorption imaging through the reference image the optical density as seen in the third
picture is found. If the time between the absorption and reference image is sufficiently
short, the interference patterns do not move and cancel out in this division. In the
case shown a lot of these patterns cancel out, however some finer patterns are still
visible on the plot of the optical density.
With the laser power available in the experiment it was not possible to perform high
intensity imaging. Figure 6.1.2 shows the atom densities calculated from absorption
images at saturations on the order of less than 10%. The atom number fluctuates
heavily, which is however not a result of the imaging but from the preparation of the
cloud. To compensate for these effects a Savitzky-Golay filter with a window length
of 20 and a polynomial order of 1 is applied, shown as dashed lines. From this data
some dependence on the intensity can be found: At the lowest imaging intensity the
calculated atom number is reduced by 1.3% due to saturation effects, at the highest
intensity it is reduced by 4.7%. Therefore some dependency on the imaging intensity
can be seen. Due to the large fluctuations of the atom number extracting quantitative
information from this data is complicated and it would be necessary to go to higher
intensities, so that the effects caused by saturation become larger, or at least compa-
rable, to the fluctuations of the atom number.
The data presented here was taken at significantly higher intensities than the absorp-
tion imaging usually performed in the experiment to try to illustrate effects occurring
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6.1. Imaging with λ = 421 nm

at higher intensities. Even using these increased intensities the corrections to Beer’s
law are small, at significantly lower intensities they become negligible. On one hand
this results is quite positive for the experiment in general, as no complicated calibra-
tions are necessary. On the other hand for studying high-intensity effects, the aim
of this thesis, this is quite impractical. A solution in form of switching to another
transition is presented in the next chapter.
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Figure 6.1.1: a) Absorption image of an atom cloud at a wavelength of 421 nm. The
cloud can be identified as the shadow in the center region. b) Reference
image taken under the same conditions as the absorption image, however
no atoms are trapped. c) Atom density calculated from the absorption
and the reference image by applying Equation (3.3.9). The atom number
in the cloud can be calculated by summing the atom densities in this
image up.
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Chapter 6. Experimental results
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Figure 6.1.2: Atom densities calculated from absorption imaging with a wavelength
of 421 nm. The uncorrected densities are calculated using Beer’s law
(3.3.2), the corrected densities take saturation into account according
to Equation (3.3.9). The dashed lines are obtained from appliying a
Savitzky-Golay filter with a window length of 20 and a polynomial order
of 1. The difference between the corrected and uncorrected atom number
increases for larger intensities. This effect is here however not large
enough to quantitatively analyse and calibrate the imaging.

6.2 Imaging with λ = 626nm

In contrast to the 421 nm transition the 626 nm has a small natural linewidth of (136±
4) kHz with a saturation intensity of Isat = (115± 4)mW/m2.[38] It is therefore easily
possible to use intensities significantly above saturation for imaging.

6.2.1 Power-broadening

As a first step the effective saturation intensity Ieff
sat is determined by measuring the

linewidth of this transition at multiple intensities. Figure 6.2.1 shows the absorption
coefficient κ(ω) for 5 different intensities. A global shift away from the resonance at
626 nm is caused by the Zeeman effect as magnetic fields are present in the vacuum
chamber. For higher intensities the transition saturates and the fraction of absorbed
photons decreases. Therefore the linewidth of the transition decreases. By fitting the
lineshape function (3.3.5) to the data sets
alpha 1.30(14) The linewidths ∆ωFWHM extracted from these fits are shown in Figure
6.2.2 plotted over the intensity I. A fit according to equation (3.4.6) is fitted to the
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6.2. Imaging with λ = 626 nm
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Figure 6.2.1: Power broadening of the 421 nm transition at multiple imaging intensi-
ties. The maximum of the absorption coefficient is located at a detuning
of about −15.6MHz because the transition is shifted by the Zeeman ef-
fect. The lines are fits using equation (3.3.5), resulting in the linewidths
∆ωFWHM. The expected broadening of the profiles is clearly visible.

linewidths. The fit parameter is the correction factor α, which was determined to be

α = 1.30± 0.14. (6.2.1)

Note that the aim of imaging this transition is to show the high intensity effects in
absorption imaging and demonstrating that it is possible to correct them. Therefore
this value was not determined in a way that would yield a highly precise value. For
example, the camera was not calibrated for the used wavelength, rather the quantum
efficiency was taken from the datasheet. The determined linewidths also deviate signif-
icantly from the fit function, especially for low intensities. In this range the linewidths
should be close to the natural linewidth of 136 kHz, the measured values are signifi-
cantly larger. This hints to the presence of additional broadening mechanisms in the
sample.

6.2.2 Atom number reconstruction

At ten different intensities sets of absorption images are taken and the atom numbers
are calibrated. The top right plot in Figure 6.2.3 shows the atom number calculated
using Beer’s law as purple circles. As all images were taken under similar conditions,
except for the intensity of the imaging beam, the atom number within the clouds
should be roughly the same, except for fluctuations. Therefore multiple measurements
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Chapter 6. Experimental results
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Figure 6.2.2: Linewidths ∆ωFWHM extracted from the fits shown in Figure 6.2.1 in
dependence of the saturation s. The orange line is a fit using Equation
(3.4.6), from which the correction coefficient α can be determined to be
1.30± 0.14. For low intensities the determined linewidths are still signif-
icantly above the natural linewidth Γ = 136 kHz, which might indicate
the presence of further broadening mechanisms.

at one intensity are taken and averaged, to reduce the influence of fluctuations. It is
clearly visible that the calculated atom number is heavily dependent on the imaging
intensity. Therefore the correction term is taken into account, which in theory should
reduce the variance σ of the calculated atom numbers. Especially the variance should
be minimal for the effective saturation intensity measured in the previous chapter.
This was not the case for this measurement, as is shown in the top left figure. The
atom numbers were calculated for multiple values of the correction parameter α, the
minimum of the variance was found at α = 8.67. The atom number calculated with
this value are shown as green crosses in the large plot as well as in the top right plot
compared to the uncorrected atom number. It is clearly visible that the variance of
the atom number can be greatly reduced. For the shown calculations the scattering
cross section σ0 is used, which is not corrected for the Doppler shift. A numerical
calculation as presented in Section 3.6 for the properties of the 626 nm however shows
that the influence of the Doppler shift is completely negligible. Even for the largest
calculated correction factor 1 − γ < 1.3 · 10−12 holds true. In order to find out if
this value of α is really the correct one or is caused by errors in the measurements or
calculations it would be possible to perform a much more extensive calibration process.
Firstly, the calibration factor can be determined by a second, independent method.
As the momentum transfer is also dependent on the saturation intensity measuring
the acceleration of the cloud parallel to the imaging beam yields α, see [39] for a
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6.2. Imaging with λ = 626 nm

detailed description. Secondly, in [40] a calibration process using the here presented
variance minimization process is shown, which is however done for multiple different
atom densities. This allows for a comparison with a theoretical model, also presented
in [40], going beyond the single-atom description of the absorption process given in
this thesis. As this transition will not be used further to do absorption imaging, no
further calibration is done in this thesis.
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Figure 6.2.3: a) The variance σ of the atom number can be reduced by varying the
correction parameter α. There is an optimum, at which the variance has
a global minimum, the chosen value is marker with a vertical green line.
b) The top right plot shows the uncorrected atom density in purple. It
is heavily dependent on the imaging intensity. The green crosses show
the corrected atom density. In this case it is still not constant, indicating
that there might be another problem in the imaging process. However,
the deviations of the density are greatly reduced by taking saturation of
the transition into account. c) By choosing different parameters α it is
possible to change the dependence of the atom number on the imaging
intensity. Atom numbers calculated using a wide range of correction
parameters are show, none of them, however, manages to produce a
constant atom number.
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7 Scheme for setting up an
absorption imaging system

In this chapter a short guide to setting up an an absorption imaging system is given.
What has been done concretely in the previous chapter is being presented in form of
a checklist. Therefore additional absorption imaging setups can be integrated into the
experiment in a much shorter time.

1. Define the performance requirements and operating conditions

• At which wavelength will the imaging be performed, what is the natural
linewidth of the corresponding transition?
→ Find the scattering cross section and saturation intensity.

• What are the expected atomic densities?
→ At intermediate densities imaging at s ≈ 0.8 or smaller is optimal. For
higher intensities it may be necessary to use higher intensities to achieve a
sufficient signal-to-noise ratio on the camera. In this case the Doppler shift
during the imaging should be evaluated (see Chapter 3.6).

2. Characterise the used camera

• The gain is calibrated by illuminating the camera uniformly and calculating
mean and variance of these images at multiple intensities. The variance is
directly proportional to the mean with the proportionality constant being
the inverse gain.

• For the quantum efficiency focus a laser beam at the wavelength used in the
absorption imaging. Measure the power in the beam. Convert the count
numbers of the image into primary electrons using the previously calibrated
gain and sum them up to get the total number of generated photoelectrons.
Divide this by the number of photons incident onto the chip during the
exposure time.

3. Design and set up the optical setup

• Optimize the setup to achieve the desired resolution and magnification

• Calibrate the magnification by measuring the free fall of an atom cloud.
By comparing the acceleration calculated from these images to the gravi-
tational acceleration the magnification can be found.
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4. Calibrate the atom number

• The effective saturation intensity can be found from the power broadening.
Determine the line width of the transition, preferably at intensities at or
above saturation, then use Equation (3.4.6).

• Take sets of images at multiple intensities. If the calculated atom number
is dependent on the intensity the correction factor needs to be adapted to
minimize the variance of the atom number
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8 Conclusion & Outlook

In this thesis the process of setting up an absorption imaging setup for a cloud of
Dysprosium atoms was covered from the theoretical foundations to the application. It
was theoretically shown that depending on the density of the cloud and the imaging
intensity significant deviations from Beer’s law, which is usually used to calculate the
densities, occur.

In a first step two scientific CCD cameras where characterised to enable the conversion
of counts in the image to intensities. The BFS-U3-63S4M-C camera was found to have
an on-chip gain of g = 0.21± 0.01 e−

ADU
with a quantum efficiency of QE = 0.70± 0.02

at a wavelength of 421 nm. For the BFS-U3-70S7M camera the on-chip gain was
determined to g = 0.33±0.01 e−

ADU
with a quantum efficiency of QE = 0.44±0.02. For

the imaging conditions used in absorption imaging the dark current and read noise
were found to be negligible. Two EMCCD cameras, which offer the possibility of
detecting up to single photons, are characterized to determine their suitability for use
in a quantum gas microscope. From dark images, the distribution of count values is
calculated and the gain as well as the read noise is extracted from these histogramms.
For the Andor iXon Ultra 888 EMCCD camera the highest reachable gain over read-
noise ratio was found to be g/σread = 57.41, corresponding to an extraction fidelity
of 86.99% at a threshold of 8σread. This allows single photon detection, especially
as the performance might be enhanced even more by employing water cooling. The
Andor iXon 3 EMCCD camera was only able to reach a gain over read-noise ratio of
at most g/σread = 18.59 ± 0.23 with an extraction fidelity of 65.03%, which is below
the performance needed for single photon detection.

In the second step toward performing absorption imaging an optical setup with a mag-
nification switchable between 1 and 5 was designed. Using a simulation it was shown
that, using achromatic lenses, it is possible to optimize the system to be diffraction
limited with a resolution of around 10 µm. A test setup was assembled and character-
ized. The magnification of this system was measured to be M = 5.55 at a resolution of
8.77 µm using a USAF resolution test chart. By imaging pinholes, the resolution was
again determined, this resulted in a value of (10.7 ± 0.2) µm slightly above the value
inferred from the test chart. Lastly, the setup was integrated into the experiment and
time of flight measurements with free falling atom clouds were done to again measure
the magnification. In the two lens configuration, it was found to beM2 = 0.616±0.001,
in the four lens configuration it is M4 = 3.25 ± 0.01, deviating from the theoretical
values.

With this setup absorption imaging at 421 nm is performed, it is however not possible
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to reach saturations larger than s = 0.1 with the laser power available. Using the
modified Lambert-Beer law corrections on the order of a few percent arise. Calibrating
the calculation of the atom number is not possible at these intensities, it is however
also not necessary.

The calibration of high intensity absorption imaging can be demonstrated using imag-
ing light at a wavelength of 626 nm, the corresponding transition in Dysprosium has a
small natural linewidth, leading to a comparably small saturation intensity. Therefore
it is possible to observe the power broadening of this transition and determining the
effective saturation intensity to Ieff

sat = (1.30 ± 0.14)Isat. Then multiple sets of ab-
sorption images are taken and the atom number is calculated from them for multiple
values of the correction factor α. By minimizing the variance of the atom number a
correction factor of α = 8.67 is determined. Contrary to the theoretical prediction it
was not possible to completely eliminate the dependence on the intensity.

Within this thesis, the steps necessary for setting up and calibrating a high intensity
absorption imaging system were described. It was found that under the conditions
present in the experiment corrections caused by saturation effects do not significantly
change the reconstructed atom number. This thesis can however be used as a guideline
for future absorption imaging of BECs or quantum droplets, in which, due to their
high density, the described corrections will be significant. In these situations again
absorption images using multiple different imaging intensities need to be taken and
the determination of the correction factors needs to be repeated. Additionally for
precisely reconstructing the atom number of small structures the four lens setup needs
to be used, which has not yet been done. Only these measurements will reveal the
performance of the designed setup under real experimental conditions.

Further improvements to the implemented imaging setup can be made in the processing
of the taken images. Fringe removal algorithms are capable of reducing the noise
in the calculated density distributions. The increased noise is caused by differences
between the light distributions in the absorption and the reference image. A fringe
removal algorithm calculates an ideal reference image out of the fringe pattern on
the absorption image, decreasing or even completely eliminating fringes in the final
picture.
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