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Chapter 1

Introduction

The creation, arrangement and characteristics of vortices is an important area of
study across a wide range of physics. They are essential in understanding the ef-
fects of rotation in a classical fluid. As a result, they make up a significant part of the
study of turbulence, where they are characterised by circulation and vorticity. Unlike
classical vortices, quantum vortices cannot take an arbitrary value of circulation and
are instead quantised.

Quantised vortices are a key observation in the detection of superfluidity, a phe-
nomenon closely related to Bose-Einstein condensation (BEC). These quantised vor-
tices were first observed in superfluid Helium [31], though they have subsequently
been observed in Bose-Einstein condensates, non-linear optics and type-II super-
conductors. The prediction of quantised vortices was first made by Onsager, later
extended by Feynman in 1955 [20], and by Abrikosov in 1957 [2].

Though first observed in superfluid Helium, current studies of quantum vortices
focuses on ultracold gases, or BECs. These were first observed by Ketterle and Dal-
ibard [28, 1].

Most studies of quantised vortices have been done in BEC systems with only short
ranged contact interactions. Dipolar gases have an anisotropic nature, the formation
and observation of quantised vortices within these gases opens up new and exotic
phases of dilute quantum gases.

In this thesis, we explore the formation and organization of these vortices using
the extended Gross-Pitaevskii Equation (eGPE). While the standard GPE provides
a mean-field description, the eGPE incorporates quantum fluctuations, crucial in
preventing the collapse of dipolar BECs [15]. This inclusion is realized through the
Lee-Huang-Yang (LHY) correction term.

The eGPE cannot be solved exactly and must be calculated through numerical meth-
ods. Ground-state search is conducted via, Conjugate Gradient and Imaginary Time
evolution methods. The inclusion of the rotating term in the eGPE requires modifi-
cations to algorithms.

This work aims to investigate the behaviour of quantized vortices in dipolar BECs,
the formation and spatial arrangements of ground-states.
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Chapter 2

Rotating Dipolar BEC Theory

To investigate the effects of rotation on a Dysprosium Bose-Einstein condensate, we
need to understand the Gross-Pitaevskii equation and its extensions. Additionally,
we should understand the anisotropic effects of an atom with a large magnetic mo-
ment and the physics of vortices in a superfluid.

2.1 Ideal Bose Gas

Our theoretical study of BECs begins with the analysis of the ideal, non-interacting
Bose gas.

A Bose gas is composed of bosons, identical particles with wave-function symmet-
ric under exchange. To understand the probability distribution of the microscopic
states of a Bose gas, we consider the grand canonical ensemble. In this ensemble,
the system can exchange energy and particles with a reservoir while maintaining a
fixed temperature, T, and fixed chemical potential, µ.

The ideal Bose gas is presumed to have a correlation length much shorter than the
density variations across the gas.

The distribution function of a system of bosons

ni =
gi

e
ϵi−µ

kBT − 1
(2.1)

is characterised by energy levels ϵi, degeneracy gi, and ni bosons.

The system described by Equation 2.1 is constrained by

∑
i

ni = N; ∑
i

ϵini = U (2.2)

where, N is total number of particles and U is total energy

Now, we transition from the discussion of discrete energy levels to continuous en-
ergy levels, switching from a sum over states to an integral,
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N ≈
∫

dϵ
1

e
ϵ−µ
kBT − 1

g(ϵ) (2.3)

where ϵ is the density of states, we have also set the degeneracy to 1.

The density of states for a three-dimensional homogeneous system is

g(ϵ) = V
√

2
3π2h̄3 (m)

3
2
√

ϵ (2.4)

where V is the volume and m is the mass.

We will now explore how Equation 2.3 behaves when additional particles are intro-
duced into the system, while keeping the temperature fixed.

By combining Equations 2.3 and 2.4, we can express the density

n =
N
V

=
m

3
2

√
2π2h̄3

∫
dϵ

ϵ
1
2

e
ϵ−µ
kBT

(2.5)

As the density increases, µ must also increase, while remaining negative.

Leading to

n(µ = 0) =
m

3
2

√
2π2h̄3

∫
dϵ

ϵ
1
2

e
ϵ−µ
kBT

(2.6)

=
m

3
2

√
2π2h̄3 (kBT)

3
2

∫
dx

√
x

ex − 1

where x = ϵ
kBT .

The evaluation of Equation 2.6

nc = Γ(3/2)ζ(3/2)
m

3
2

√
2π2h̄3 (2.7)

is in term of Gamma function Γ and the Riemann zeta function ζ.

However, this expression shows the density of states is bounded and independent
of the particle number.

The underlying issue arises from Equation 2.3 when transitioning from discrete to
continuous states. The transition, as currently formulated, does not hold when the
density of states approaches zero. This can be rectified by considering the lowest
energy state in addition to other excited states, yielding n = n0 + nex
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n0 =
1
V

1

e
−µ
kBT − 1

; nex =
m

3
2

√
2π2h̄3

∫
dϵ

ϵ
1
2

e
ϵ−µ
kBT

(2.8)

As new particles are added µ must approach zero and nex is bound as seen in Equa-
tion 2.7 and n0 grows without an upper-bound. Physically, any new particles added
to the system, over the critical density, must then go to ground-state. This is Bose-
Einstein condensation.

The critical density, nc can be expressed as the thermal de-Broglie wavelength, λ3
T

nc = 2.3
2√
π

1
λ3

T
(2.9)

Physically, this can be understood to be how far the wave-function of particles ex-
tends in real space.

We can understand that the phenomenon of BEC will occur as the inter particle dis-
tance approaches the de Broglie wavelength, with critical temperature

Tc = 3.31
h̄2n

2
3

mkB
(2.10)

and condensate fraction

n0 = 1 −
(

T
Tc

) 3
2

(2.11)

2.2 Atomic Interactions

At low temperatures, an interacting atomic system exhibits behaviours that signif-
icantly impact its phase and properties. One of the key phenomena that occur in
such conditions is three-body recombination, wherein three atoms come together
and form molecules. This process has a significant influence on the system, often
shifting it towards a solid state of matter due to the formation of molecular struc-
tures.

A BEC phase is only meta-stable for interacting atoms if the density remains suffi-
ciently low to prevent three-body interactions. When the atoms are more dilute, with
a typical inter-atomic spacing of the order of 102 nm [33], two-body interactions tend
to dominate the behaviour of the system.

The prevalent two-body interactions in such dilute atomic gases can be effectively
modelled using s-wave scattering theory. This theory allows for a mathematical
understanding of the collisions between two atoms and offers valuable insights into
the interactions that occur at the atomic level.
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2.2.1 Contact Interaction

The behaviour of neutral atoms in a Bose-Einstein Condensate (BEC) is influenced
by the Van der Waals force between atoms, typically described by the Lennard-Jones
potential

V(r) =
A

r12 − B
r6 (2.12)

where r is the inter-particle distance and A and B are species-specific constants. First
term is an overlap of electron orbitals leading to an electrostatic repulsion, the sec-
ond term describes the long-range interaction.

However, Equation 2.12 contains many solutions which are not relevant to our sys-
tem (ie. scattering states), thus we aim to reduce the LJ potential into a pseudo-
potential.

In the absence of relativistic spin-spin and spin-orbital interactions, the Schrödinger
equation for two colliding atoms can be written as [34]

(
−h̄2

2mr
∇+ V(r)− E

)
ψ(r) = 0 (2.13)

where r is the relative distance between particles, and mr is the reduced mass.

We use the Ansatz, a sum of the incoming wave and the scattered wave.

ψ(rr) = eik·r + ψscat.wave (2.14)

The ψscat.wave part of Equation 2.14 depends only on the angle θ of the two particles
after collision, simplifying Equation 2.14

ψ = eik·r + f (θ)
eikr

r
(2.15)

assuming f (θ) is constant due to low energy state conditions, written in terms of the
scattering length a

ψ = 1 − a
r

(2.16)

The differential cross section, representing elastic collisions between atoms, is

dσ = | f (θ)|2 sin θdθdϕ (2.17)

For identical bosons, the equation simplifies further,

dσ = | f (θ) + f (π − θ)|2 dΩ (2.18)
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The total scattering cross-section for a polarized boson is given by integrating over
all possible final states. The symmetric nature of Equation 2.18 , means we integrate
over half the 4π solid angle,

σ = 8πa2 (2.19)

This can be inserted into the pseudo-potential,

Vs(r) = gs · δ(r) (2.20)

why this form of pseudo-potential can be applied to this situation can be found in
[33].

where δ is the Dirac delta, and gs is defined

gs =
4πh̄2

m
as (2.21)

The entire contact interaction can is described by varying the scattering length as,
which can be positive or negative- depending on Feshbach resonances.

2.2.2 Dipolar Interaction

Dysprosium atoms in the ground state possess a large magnetic moment (µm ≈
10µB) and experience the magnetic dipole-dipole interaction, also known as dipolar
interaction. In contrast to the short-range contact interaction this is anisotropic and
long-range [17].

To achieve alignment of dipoles, an external magnetic field is applied, resulting in
polarization of the atom cloud.

Dipole-dipole interaction potential, Vdd(r, θ),

Vdd(r, θ) =
µ0µ2

m
4π

1 − 3 cos2 θ

r3 (2.22)

where r is the relative distance between dipoles, θ is the angle between the external
magnetic field and the dipole, µ0 is the magnetic permeability of vacuum.

The anisotropy of the interaction arises due to the cos2θ term in the potential equa-
tion. This means that the potential may be attractive or repulsive, depending on the
relative angle between dipoles. This anisotropy changes sign at the "magic angle"
θm = arccos

(
1√
3

)
. Shape of the trap plays a vital role in maintaining or collapsing a

dipolar BEC. A trap that is elongated along the axis of polarization will, for instance,
be prone to collapse as the dipoles will have a large attractive potential [17].

Analogous to 2.21 the dipolar coupling strength is

gdd =
4πh̄2

m
add (2.23)

where characteristic length scale for the dipolar interaction is
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add =
µ0µ2

mm
12πh̄2 (2.24)

with m as the mass, µ0 is vacuum permeability and µm is the magnetic moment.

An interaction ratio ϵdd between the dipolar and contact interactions can be de-
fined

ϵdd =
add

as
=

µ0µ2
mm

12πh̄2as
(2.25)

When ϵdd > 1, the dipolar interaction dominates, leading to instability in a homoge-
neous BEC.

In the weak dipolar interaction limit (first order Born approximation), the effective
potential is the sum of contact and dipolar potentials

Vint(r) =
gs

2
(
1 + ϵdd

(
3 cos2 θ − 1

))
(2.26)

The dipolar interaction, due to its long-range nature and anisotropy, significantly
impacts the scattering problem. It involves all partial waves (l > 0) and cannot be
reduced to a simple pseudo-potential. However, at low collision energies, dipolar
scattering becomes universal and mainly involves s-wave channels. The Born ap-
proximation remains valid in this regime, allowing the total elastic scattering cross-
sections to be conveniently added for identical bosons and fermions [19].

This thesis focuses on Dysprosium dipolar BECs, it’s ground state angular momen-
tum (J = 8) results in one of the largest permanent dipole moments among all ele-
ments, making each atom behave like an individual dipole.

In conclusion, the dipolar interaction in BECs is characterised by its anisotropic and
long-range nature. Understanding its interplay with the contact interaction is essen-
tial for studying and manipulating ultracold quantum gases.

2.3 Gross-Pitaevskii Equation

In this section, we derive the Gross-Pitaevskii equation, a fundamental equation in
understanding Bose-Einstein condensates (BECs).

Let’s begin with the most general case. In a condensed system, all particles occupy
the same single-particle state ϕ(r), satisfying normalization condition

∫
d3r|ψ(r)|2 = 1.

The total wave function in a mean-field approximation is a symmetric product of the
single-particle wave functions.

As this is a simple case, we define the mean-field energy as only contact interaction
2.21, leading to the total Hamiltonian

H =
N

∑
i=1

(
p2

i
2m

+ Vext(ri)

)
+ gs ∑

i<j
δ(ri − rj) (2.27)
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To solve this Hamiltonian, we employ the variation method with an appropriate
Ansatz. By minimizing the energy functional under variations of the wave func-
tion while keeping the total atom number constant, we obtain the time-independent
Gross-Pitaevskii Equation

µψ(r) =

(
− h̄2

2m
∇2 + Vext(r) + gs|ψ(r)|2

)
(2.28)

Our focus will extend beyond this fundamental form, incorporating beyond mean-
field additions and dipolar terms, leading to an extended Gross-Pitaevskii Equa-
tion.

With inclusion of the interaction potential 2.26 Hamiltonian of the system transforms
from 2.27 to

H =
∫

drψ†(r)
(

p2
i

2m
+ Vext(ri)

)
ψ(r) +

1
2

∫
dr′ψ†(r)ψ†(r′)Vint(r′ − r)ψ(r′)ψ(r)

(2.29)

Employing the assumption that for a ground state BEC the macroscopic occupation
number is much larger than 1, it becomes possible to neglect parts of the ψ that are
not condensed [14], and apply a treatment similar to the contact interaction approach
to get the time-independent dipolar GPE (dGPE)

ih̄
∂

∂t
ψ =

(
− h̄2

2m
∇2 + Vext + g|ψ|2 + Φdd

)
ψ (2.30)

with

Φdd =
∫

dr′Vdd(r − r′)|ψ(r′)|2 (2.31)

This is a non-linear Schrödinger Equation.

So far, the physics has been based on mean-field theories however stable quantum
droplet states with dysprosium have been observed [19]. To account for these exper-
imental observations we modify the dGPE. Introducing quantum fluctuations, that
shift the ground state density, n, and the µ [27].

The resultant extended GPE

ih̄
∂

∂t
ψ =

(
− h̄2

2m
∇2 + Vext + g|ψ|2 + Φdd + gq f |ψ|3

)
ψ (2.32)

with

gq f =
32ga

3
2
s

3
√

π

(
1 +

3
2

ϵdd

)
(2.33)



10 Chapter 2. Rotating Dipolar BEC Theory

This form of the GPE has been used recently in the discovery and research of quan-
tum droplets[18, 22, 16, 37, 29, 32].

2.4 Rotation and Vortices

BECs and superfluids are both irrational fluids that form vortices upon the addi-
tional angular momentum. The vortex in this case can be thought of as can excitation
that carries angular momentum, or a density hole with particles rotating around the
core.

From equation 2.28, we can get the continuity equation, showing that the velocity
field of the condensate is connected to the wave function.

∂

∂t
|ψ|2 =

−ih̄
2m

∇ (ψ ∗ ∇ψ + ψ∇ψ∗) = 0 (2.34)

which can be compared to the continuity question derived from the linear Schrödinger
Equation

∂

∂t
n +∇(nv) = 0 (2.35)

From this comparison we get the velocity field for the condensate as

v =
−ih̄
2m

(ψ ∗ ∇ψ + ψ∇ψ∗)
|ψ|2 (2.36)

where m is the mass.

Using the Ansatz, ψ = f eiϕ, with f as the modulus and ϕ as the phase, we write the
velocity field

v =
h̄
m
∇ϕ (2.37)

Importantly, the gradient of the phase of the wave function describes the velocity
field of the condensate.

From classical physics, we define the measure circulation

Γ =
h
m

∫
A
∇×∇ϕ = 0 (2.38)

C is a contour that encloses the area A.

This equation implies that a superfluid cannot rotate.

The expression circulation of a superfluid is still valid in cases where the phase, ϕ,
has a singularity. The change in the phase going around the contour must then be a
multiple of 2π. The circulation becomes quantised

Γ = 2πl
h̄
m

(2.39)
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where integer l is the winding number.

Rotating Frame

There are numerous methods to introduce vortices into a superfluid, an incomplete
list includes cooling across a phase transition, perturbations via focused laser beams,
artificial gauge fields [25, 11, 24, 30]. Angular momentum is included in the GPE by
considering the rotation of the trapping potential in the laboratory frame. [26]

Let {ex, ey, ez} denote the orthogonal basis for the three-dimensional space in which
the trapping potential resides. The potential is rotated around the z-axis with an
angular frequency Ω.

The transformation matrix for this rotation

R(t) =

cos(Ωt) − sin(Ωt) 0
sin(Ωt) cos(Ωt) 0

0 0 1

 (2.40)

The primed unit vectors e′i = R(t) · ei describe the rotated frame. The time deriva-
tives of these transformed unit vectors are expressed as

d
dt

e′i = Ṙ(t) · ei (2.41)

Using a substitution, R̃(t) = Ṙ(t) · RT(t), we define a new transformation ma-
trix

R̃(t) = Ω

0 −1 0
1 0 0
0 0 1

 (2.42)

Thus, Equation 2.41 can be simplified

d
dt

e′i = ei‘ × Ω (2.43)

For a vector u = ui · ei in the original three-dimensional space, its time derivative
can be expressed as

d
dt

u(t) =
d
dt

ui · e′i + Ω × u(t) (2.44)

Extending this treatment to the wave function ψ, we can express its time derivative
in the rotated frame as follows, employing the chain rule

∂

∂t
ψ(x, t) =

∂

∂t
ψ(x′, t) + (Ω × x′) · ∇ψ(x′, t) (2.45)

The second term of Equation 2.45 can be simplified with the introduction of angular
momentum operator L = −ih̄(Ω × x) · ∇ and can be inserted into the extended GPE
2.32



12 Chapter 2. Rotating Dipolar BEC Theory

ih̄
∂

∂t
ψ =

(
− h̄2

2m
∇2 + Vext + g|ψ|2 + Φdd + gq f |ψ|3 − ΩLz

)
ψ (2.46)

Equation 2.46 the system we explore numerically.
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Chapter 3

Numerical Methods

In the previous chapter, we developed the physics of a rotating, dipolar, BEC, which
is described by a non-linear Schrödinger equation. This cannot be solved analytically
and requires the use of numerical methods, we explore two different methods to find
the ground state.

3.1 Conjugate Gradient Method

The Conjugate Gradient Method (CGM) is a widely employed iterative technique
utilized to solve systems of linear equations,

Ax = b (3.1)

where A represents a known square, symmetric, positive-definite matrix, b is a known
vector, and x is an unknown vector.

This method is notably advantageous when A is sparse. A matrix is deemed positive-
definite if, for any non-zero vector v, vT Av > 0 (where vT denotes the transpose of
v), and all the eigenvalues of A are positive.

The precursor to the CGM is the steepest descent method. In its simplest form,
it takes the system of linear equations as shown in Equation 3.1 and constructs a
functional

f (x) =
1
2

xT Ax − bTx + c (3.2)

A must be positive-definite as then surface described by Equation 3.2 parabolic. Our
objective becomes locating the global minimum of this surface. The gradient is com-
puted by taking the first-order derivative of Equation 3.2

f ′ = Ax − b (3.3)

Steepest descent methods initiate at an arbitrary point x0 and iteratively generate
points xi to approach the final solution x. Assuming we start far from x, Equation
3.3 will yield a non-zero value. To determine the next point x1 such that we move
along the steepest descent, two pieces of information are needed: the direction of
steepest descent and an estimate of how far along that direction to move. Thus, we
define
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r = b − Ax (3.4)

α =
⟨r|r⟩
⟨r, Ar⟩ (3.5)

Here, Equation 3.4 represents the residual and Equation 3.5 denotes the step size,
obtained through a process known as line search. This allows us to calculate the
next step xi

xi = xi−1 + αx−1rx−1 (3.6)

This method exhibits a ’zig-zag’ convergence towards the minimum due to the or-
thogonal nature of consecutive residuals, resulting in extended convergence times.
This issue can be mitigated by first obtaining a residual from the initial guess and
then creating a set of directions, orthogonal to the residue, to search for the next
point. Another perspective is that, unlike the steepest descent method where we
keep finding new residuals built from the previous ones through line searches, we
are ’sweeping’ across the entire space to find the steepest direction across a set of
residuals, rather than one at a time. This significantly reduces the number of itera-
tions required to approach the minimum.

The CGM begins by setting an initial guess x0 and finding the first search direc-
tion

d0 = b − Ax0 (3.7)

this is set as the first residual, r0 = d0.

Then, we begin a loop, finding the step size, α

αi =
⟨ri, ri⟩
⟨di, Adi⟩

(3.8)

which is used for a new x

xi+1 = xi + αidi (3.9)

in turn gives a new residual

ri+1 = ri + Adi (3.10)

from which we define β, a parameter utilized to ascertain the conjugacy between
the search directions in successive iterations of the CGM, ensuring that each search
direction remains conjugate to the previous ones

βi+1 =
⟨ri+1, ri+1⟩
⟨ri, ri⟩

(3.11)
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the next search direction is found

di+1 = ri+1 + βi+1di (3.12)

The process will loop till the successive results differ by less than the set criteria, in
our case 10−14. This method is most computationally expensive when having to do
multiplication with matrix A.

This cost can be reduced through preconditioning. We want a matrix P such that the
system can we re-written

P−1Ax = P−1b (3.13)

with Ã = P−1A. We select P such that Ã has a condition number less than A. The
condition number is a measure of how sensitive a system is to changes in input.
Practically, we a looking for P that is symmetric and can approximate A.

The CGM is modified into the Preconditioned CGM by defining a new residual,
r̃ = P−1r, and updating 3.7 - 3.13 into

d0 = b − Ax0 (3.14)

r̃0 = P−1d0 (3.15)

αi =
⟨ri, r̃i⟩
⟨di, Adi⟩

(3.16)

xi+1 = xi + αidi (3.17)

ri+1 = ri + Adi (3.18)

r̃i+1 = ri + Adi (3.19)

βi+1 =
⟨ri+1, r̃i+1⟩
⟨ri, ri⟩

(3.20)

di+1 = r̃i+1 + βi+1di (3.21)

This is simply an intuition for the process of the Preconditioned CGM. The exact
Algorithm 1 used has been adapted from [6].
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Algorithm 1 The Preconditioned Conjugate Gradient Method

1: n = 0, given initial data ϕn
2: while not converged do
3: µn =

〈
Hϕn

ϕn, ϕn
〉

4: rn = Hϕn
ϕn − µnϕn

5: β
cg
n = Re ⟨rn − rn−1, Prn⟩ / ⟨rn−1, Prn−1⟩

6: β
cg
n = max

(
β

cg
n , 0

)
7: dn = −Prn +β

cg
n pn−1

8: pn = dn − Re ⟨dn, ϕn⟩ϕn
9: θn = argminθ E (cos(θ)ϕn + sin(θ)pn/ ∥pn∥)

10: ϕn+1 = cos (θn)ϕn + sin (θn) pn/ ∥pn∥
11: n = n + 1
12: end while

For the rotated extended GPE, 2.46, the energy functional (3.2) is

E[ψ] =
∫

dr
(

1
2
|∇ψ|2 + Vext|ψ|2 +

1
2

gs|ψ|4

+
1
2
|ψ|2(Vdd ∗ |ψ|2) +

2
5

gq f |ψ|5 − Ωψ∗Lzψ

)
(3.22)

The calculation of dipole interaction, 2.31, can be computed by find the product of
|ψ|2 and Vdd in momentum space. This is done via a fast Fourier transforms that
assumes a periodic density distribution, to prevent computationally expensive and
unnecessary long-range interaction we can employ a ’cut-off’ dipolar interaction dis-
cussed in the Appendix of [36].

Vdd =
(
−1 + 3 · k̂ · B̂

)
×
(

1 + 3 × cos(kR)
(kR)2 − sin(kR)

(kR)3

)
(3.23)

To solve the minimization problem numerically, wave-function 2.46 needs to be dis-
cretized. Various approaches to the finding numerical discretisation of the standard
and extended Gross-Pitaveskii Equation exist [8]. However, new challenges are in-
troduced with the addition of the rotating term, the presence of the vortices man-
dates need for a finer grid, in order to resolve potential vortex lattices [9]. While var-
ious methods of discretisation have been followed for specific GPEs [7, 3, 4].

3.2 Imaginary Time Evolution

The imaginary time evolution method is a common approach for finding the ground
states of BECs. It involves solving a time-independent Hamiltonian, which can be
expressed as the sum of kinetic (T) and potential (V) energy operators: H = T +
V.

The state ψ(r, t) can be described by the time-evolution operator, e
−i
h̄ tH acting on

ψ(r, t = 0)

ψ(r, t) = e
−i
h̄ tHψ(r, 0) (3.24)
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ψ(r, t = 0) can be decomposed into a sum of stationary states 1 ψi

ψ(r, t) = ∑
i

e
−i
h̄ tEi ψi (3.25)

where Ei is the eigen-energy of state ψi.

Changing the time variable to imaginary time τ = −it, 3.25 becomes

ψ(r, τ) = ∑
i

e
−Ei

h̄ τψi (3.26)

describing how the states ψi will reduce proportionally to their eigen-energies and
converge to the lowest energy state, the ground state.

This technique can also be applied to non-linear Hamiltonians [10].

The operator e
−i
h̄ tH from 3.24 is decomposed into kinetic and potential operators that

can be applied sequentially to approximate a full time-step.

To handle the non-commutativity of kinetic and potential operators, we use the
Baker-Hausdorff expansion and approximate

e
−i
h̄ tHψ(r, t) ≈ e

−i
2h̄ tTe

−i
h̄ tVe

−i
2h̄ tTψ(r, t) (3.27)

this is a second-order expansion known as Strang splitting.

Time Splitting

We split 2.46 into kinetic

i
∂

∂t
ψ(r, t) =

[
− h̄2

2m
∇2 − ΩLz

]
︸ ︷︷ ︸

T

ψ(r, t) (3.28)

and potential parts

i
∂

∂t
ψ(r, t) =

[
Vext + g|ψ|2 + Φdd + gq f |ψ|3

]︸ ︷︷ ︸
V

ψ(r, t) (3.29)

that have to computed in the same time-step, dt.

Equation 3.28 can be expanded

i
∂

∂t
ψ(r, t) =

[
−h̄2

2m

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
+ Ω

(
y

∂

∂x
− x

∂

∂y

)]
ψ(r, t) (3.30)

1For a time-independent potential.
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and evaluated with the application of a Fourier transform2 F . However, a 3D F will
not decouple F

(
y ∂

∂x ψ(r, t)
)

. Instead two successive 1D F in x, z are taken, y will
be constant for Fx,z and can be removed from the Fourier transform. Similarly, for
F
(

x ∂
∂y ψ(r, t)

)
.

Equation 3.30 is split, via the alternating direction implicit (ADI) method, into

i
∂

∂t
ψ(r, t) =

(
−1
2

∂2

∂2x
+

−1
4

∂2

∂2z
− iΩy

∂

∂x

)
ψ(r, t) (3.31)

i
∂

∂t
ψ(r, t) =

(
−1
2

∂2

∂2y
+

−1
4

∂2

∂2z
+ iΩx

∂

∂y

)
ψ(r, t) (3.32)

that also have to be computed in the same time-step.

We evaluate Fx,zψ(r, t), for a fixed y, through the decomposition

ψ(x, y, z, t) = ∑
s

∑
p

Ψps(y, t)eiµp(x−a)eiγp(z−e) (3.33)

where µp = 2π×p
b−a , γs = 2π×s

f−e are the spatial discretisation along x and z. Ψps is
the Fourier coefficient p-th mode in the x direction and s-th mode in the z direc-
tion.

Inserting into 3.31 gives a linear ordinary differential equation

i
∂

∂t
Ψps(y, t) =

[
1
4

µ2
p +

1
8

γ2
s +

1
2

Ωyµp

]
Ψps(y, t) (3.34)

which can be integrated in time exactly

Ψps(y, t) = e−i 1
8 [2µ2

p+γ2
s+4Ωyµp]dt︸ ︷︷ ︸

e
1
4 ·

−i
2h̄ tT

Ψps(y, tn) (3.35)

where tn ∈ [t, t + dt].

Replacing 3.35 in the decomposition 3.33 we have the first step of Strang splitting

ψ(1)(xj, yk, zl) = ∑
p

∑
s

e−i 1
8 [2µ2

p+γ2
s+4Ωykµp]dt(ψn

k )pseiµp(xj−a)eiγp(zl−e) (3.36)

j, k, l are integers that run from 0 to the max grid size for the respective dimen-
sion.

Evaluation of Fy,zψ(x, t), for a fixed x, will lead to a similar result

ψ(2)(xj, yk, zl) = ∑
q

∑
s

e−i 1
8 [2λ2

q+γ2
s−4Ωxjλq]dt(ψ1

j )qseiλq(yk−c)eiγp(zl−e) (3.37)

2We can use the property F
[

d
dx

]n
f (x) = (−ikx)nF ( f )
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where λq =
2π×q
d−c .

We have completed the application of first Strang splitting term on the initial state
ψ(x, t). Now, we compute the middle term of 3.27, the potential term

ψ(3)(xj, yk, zl) = e−idt[Vext+g|ψ(2)|2+(Vdd∗|ψ(2)|2)+gq f |ψ(2)|3]ψ(2)(xj, yk, zl) (3.38)

Now, the Fourier decomposition steps outlined for 3.31 are repeated for 3.32. The
final result of those operations will be the initial state ψ(r, t) time-evolved to ψ(r, t +
dt).
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Chapter 4

Results

4.1 Verification

After implementing the rotating term, we validate the accuracy of ground states by
comparing them with those obtained in Example 4.6 of [6]. The comparison involves
a symmetric trap with ωtrap = 2π × [100, 100, 100], atom number 75 × 103, final
grid size of [128, 128, 128], and interaction strengths as = 6.3578a0, add = 0.9(as) =
5.7220a0, add = 0.5(as) = 3.1789a0

1. We specifically focus on examples with dipole
orientation in the z-direction.

We were able to reproduce these results, with good agreement, by configuring the
same parameters as shown in Figure 4.1.

1a0 = 5.291772x10−11m
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FIGURE 4.1: Phase and Density plots in the XY plane (left to right).
Ω = 0.8ωtrap, Ω = 0.7ωtrap, and Ω = 0.9ωtrap (top to bottom). The
x-axis is in µm, and density is in 1021m−3. Run times: 1538 s, 41614 s,

and 41970 s respectively.

The increased convergence times compared to Example 4.6 of [6] in Figure 4.1 are
attributed to using a random noise initial state and the standard conjugate gradient
method, as opposed to the cascading grid method. Moreover, these vortex ground
states serve as development of the cascadic multigrid method.

4.2 Cascadic Multigrid Method

A method to speed up ground state search is the implementation of the cascadic
multigrid method (CMM) [6]. Initial guesses for ψ are generally Guassian functions,
with an imposed phase. However, for fast rotating systems these produce large
convergence times. The CMM process involves a series of steps to efficiently solve
a problem on a grid with increasing resolution. It begins with a coarse mesh grid of
size Np × Np = 2p × 2p. A ground-state search is performed on this coarse mesh grid
using standard preconditions and initial data, resulting in a computed GS solution
denoted as ϕ

p
g . This ground state exhibits a relatively efficient computational time

expenditure. On course grids vortices are often, close to, optimally arranged and
serves as a significantly better initial guess for finer grids. The mesh is then refined
by doubling the grid size to Np+1 × Np+1. The solution ϕ

p
g is interpolated onto the

new mesh. Applying the PCG method to solve the problem on the refined mesh
produces a new computed ground state solution ϕ

p+1
g . These steps are repeated

iteratively, incrementing p and doubling the grid size (Np × Np) until the desired
resolution N × N is achieved.



4.2. Cascadic Multigrid Method 23

We repeatedly generate the previously identified vortex ground-states, commencing
from diverse initial states outlined in Appendix C. Utilizing a starting state that en-
compasses a vortex significantly expedites the process. We observe that the CMM
generally demonstrates accelerated convergence, and never reaches the maximum
step limit of 2 × 105. For the vortex lattice case in Figure 4.4, the larger number of
steps is compensated by faster convergence times.

(A) Run Times (in s)

(B) Total Steps

FIGURE 4.2: Single Vortex Ground-state. All final energies varied by
less than 10−14
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(A) Run Times (in s)

(B) Total Steps

FIGURE 4.3: Four Vortex Ground-state. All final energies varied by
less than 10−8
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(A) Run Times (in s)

(B) Total Steps in the CGM

FIGURE 4.4: Vortex Lattice Ground-state. All final energies varied by
less than 10−5
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4.3 Preconditioners

Preconditioners tested were adapted from [6, 5].

The Kinetic Energy preconditioner, labeled "Pki",

P∆ =

(
α∆ − ∆

2

)−1

(4.1)

α∆ is the positive shifting constant

α∆ = µ̃ = −1
2
⟨ψn, ∆ψn⟩+

〈
Vext, |ψn|2

〉
+ gs

〈
|ψn|2 , |ψn|2

〉
+
∣∣∣gdd

〈
ψn, |ψn|2

〉∣∣∣ (4.2)

The Potential-Interaction preconditioner, labeled "Ppo",

PV =

(
αV + Vext + gs |ψn|2 + |gdd| (1 + sign (Φn))

Φn

2

)−1

(4.3)

with αV = µ̃.

The Combined 1 preconditioner, labeled "PC1" and Combined 2 preconditioner, labeled
"PC2", as a combination of the previous preconditioners

PC1 = P1/2
V P∆P1/2

V ; PC2 = P1/2
∆ PV P1/2

∆ (4.4)

The Laplace preconditioner, labeled "Pla",

PLa = PV P∆ (4.5)

The Ronen Kinetic preconditioner, adapted from S. Ronen [36], labeled "PRK", where
α = max(⟨ψn, ψn⟩, ⟨ψn, ∆ψn⟩)

and the identity preconditioner, "Pi", PI = 1

Ground state searches were conducted with initial state "b", Gaussian with phase
imprinting and random noise, "r".

For the single vortex case, preconditioning had a minimal effect, convergence times
were 103.39s, with standard deviation 1.86, and 118.63, with standard deviation 1.55,
for initial states "b" and "r" respectively. Results table in Appendix C.

Results for the four vortex case and vortex lattice case are reported in Figures 4.5,
4.6. Performance for all preconditioners in the vortex lattice state differed minimally
from the identity operator. The Ronen Kinetic preconditioner showed significant
improvement in the four vortex case.
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FIGURE 4.5: Run Times (in s) for Four Vortex

FIGURE 4.6: Run Times (in s) for Vortex Lattice
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FIGURE 4.7: (Top to Bottom) No Vortex Ground-state, Single Vortex
Ground State, Three Vortex Ground-state. The x-axis is in µm, and

density is in 1021m−3. Image from [128, 128, 128] grid.

4.4 Spatial Resolution Error

Numerical models often are tasked with conducting ground state searches across for
a large range of atom numbers, scattering lengths and trap configurations to chart
the boundary between phases or search for new ones. We look at the difference
between ⟨Etot⟩ for ground-states of grid sizes [32, 32, 32], [64, 64, 64], [128, 128, 128].
Three values of Ω = 0.75ωtrap, 0.88ωtrap, 0.95ωtrap were selected, Figure 4.7. Atom
number N = 5000, trap frequency ωtrap = 2π × [100, 100, 100], as = 6.3578a0, add =
5.7220a0.

We present ⟨Etot⟩ values for a [128, 128, 128] grid, and deviations of ⟨Etot⟩ for grid
sizes of [32, 32, 32] and [64, 64, 64] in Tables 4.1, 4.2, and 4.3. ⟨Etot⟩ denotes energy per
particle in units of 100 Hz. Notably, the ground state energies for Ω = 0.75ωtrap and
0.88ωtrap exhibit good agreement. However, a more pronounced error is observed
for 0.95ωtrap due to the presence of multiple vortices.
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IS ⟨Etot⟩ Deviation for G32 ⟨Etot⟩ Deviation for G64 ⟨Etot⟩ for G128
a -3.90E-07 2.98E-14 2.02390591702593
b -3.90E-07 2.98E-14 2.02390591702593
c -3.90E-07 2.00E-14 2.02390591702593
e -3.90E-07 1.02E-14 2.02390591702592
n -3.90E-07 2.98E-14 2.02390591702593

TABLE 4.1: Difference in ⟨Etot⟩ between [128, 128, 128] and [32, 32, 32]
and [64, 64, 64] for the ground state of Ω = 0.88ωtrap. ⟨Etot⟩ energy

per particle in units of 100 Hz

IS ⟨Etot⟩ Deviation for G32 ⟨Etot⟩ Deviation for G64 ⟨Etot⟩ for G128
a -1.57E-06 9.99E-15 1.99955567917781
b -1.57E-06 0.00E+00 1.99955567917781
c -1.57E-06 0.00E+00 1.99955567917781
e -1.57E-06 9.99E-15 1.99955567917781
n -1.57E-06 9.99E-15 1.99955567917782

TABLE 4.2: Difference in ⟨Etot⟩ between [128, 128, 128] and [32, 32, 32]
and [64, 64, 64] for the ground state of Ω = 0.75ωtrap. ⟨Etot⟩ energy

per particle in units of 100 Hz

IS ⟨Etot⟩ Deviation for G32 ⟨Etot⟩ Deviation for G64 ⟨Etot⟩ for G128
a -7.88E-07 1.91E-11 1.90454298833922
b -6.38E-07 1.92E-11 1.90454298833924
c -6.21E-07 1.92E-11 1.90454298833899
e -1.32E-06 1.86E-11 1.90454298833872
n -6.18E-07 1.92E-11 1.90454298833929

TABLE 4.3: Difference in ⟨Etot⟩ between [128, 128, 128] and [32, 32, 32]
and [64, 64, 64] for the ground state of Ω = 0.95ωtrap. ⟨Etot⟩ energy

per particle in units of 100 Hz

4.5 Comparison with ITE

As a further test to confirm the correct implementation of the ground state search
with rotation using CG, we implement rotation in ITE. The agreement with litera-
ture and the agreement between both methods shows that both algorithms are im-
plemented correctly. The time evolution algorithm for the ground state search can
be easily adapted for real time evolution with minor modifications.

Due to the addition of rotating term we find that the convergence times ground
states via imaginary time evolution exceed 2x105, even for non-vortex examples. We
are able to test if the ground state convergences through the ITE by loading ground-
states found via CGM as initial states in the ITE. We find that only for dt < 10−6 the
loaded state converge to a ground-state, larger values of dt result in a increase of the
final ground-state energy.
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Loaded State (via CGM) ITE Error (ITE - CGM)
⟨µ⟩ 2.14442334913674 × 100 2.14442336374844 × 100 1.46116998500645 × 10−8

⟨Etot⟩ 1.90454298833929 × 100 1.90454298833926 × 100 −2.99760216648792 × 10−14

⟨Ekin⟩ 1.78097986970094 × 100 1.78097977132795 × 100 −9.83729899761698 × 10−8

⟨Eext⟩ 2.14080042894980 × 100 2.14080024400850 × 100 −1.84941300052088 × 10−7

⟨Econ⟩ 1.97816297904632 × 10−1 1.97816315523977 × 10−1 1.76193449830109 × 10−8

⟨Edip⟩ 4.20640628928162 × 10−2 4.20640598852046 × 10−2 −3.00761160421104 × 10−9

⟨Erot⟩ −2.25711767110889 × 100 −2.25711740240638 × 100 2.68702510020091 × 10−7

TABLE 4.4: Totals Steps taken by ITE 105 with dt = 10−6. We note that
the total energy value remains almost constant but values of ⟨Econ⟩
and ⟨Erot⟩ increase proportional to the decrease of other expectation

values.
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Chapter 5

Conclusion and Outlook

In this thesis, we formulated numerical approaches to simulate a rotating dipolar
Bose-Einstein condensate. We successfully validated our results against existing lit-
erature and also compared distinct the two ground-state search methods, demon-
strating their consistent effectiveness.

Simulations in this thesis primarily focused on symmetric traps. However, exploring
different trap geometries, especially those with strong confinement in the z direction,
may yield intriguing results due to the quasi-2D nature of the traps.

Previous research has investigated structured forms of dipolar BECs under oblate
traps [23]. Exploring the influence of rotation on these phases of matter could lead
to the discovery of new ground-state arrangements and extend the general phase
diagram of dipolar gases under a range of conditions.

Recent studies have delved into collective excitations described by Bogoliubov the-
ory for ground states of self-bound droplets in a dipolar BEC [12]. Investigating the
influence of rotation on these excitations is may lead to further insights about the
nature of self-bound droplets.

Experiments have reported the observation of supersolidity in dipolar Bose-Einstein
condensates. Although quantized vortices are challenging to observe in the super-
solid phase due to low-density regions, transitioning to a purely superfluid phase
allows vortex observation [37]. Simulations can be used to find suitable experimen-
tal parameters.

The effects of introducing ellipticity by breaking radial trap symmetry on vortex
nucleation can be explored. Additionally, angular momentum can be induced into a
dipolar system through magneto-stirring [13].

New trapping potential for BECs, like uniform box potentials [21], have been re-
alised. Dipolar systems confined in such traps exhibit an accumulation of high den-
sity at the edges, due to their anisotropic nature [35]. Rotation under these condi-
tions may result in unique ground-state configurations of vortices.

Further improvements to numerical methods are possible. Employing Rotating La-
grangian Coordinates to model the dynamics of a rotating BEC may be less compu-
tationally intensive [9].
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Appendix A

Code Snippets

StrangSplittingKineticLz

1 func t ion doEvolut ion Step_St rangS pl i t t ingKine t i cLz ( ob j )
2

3 KinLzX_temp = exp ( 0 . 5 * ob j . gevo * ( . . .
4 −0.50 * ( −1 .0 * ob j . Kx . * ob j . Kx) + . . .
5 −0.25 * ( −1 .0 * ob j . Kz . * ob j . Kz) + . . .
6 −1.0 i * ob j . grot * ob j . Ry . * ( −1 .0 i * ob j . Kx) ) ) ;
7

8

9

10 KinLzY_temp = exp ( 0 . 5 * ob j . gevo * ( . . .
11 −0.50 * ( −1 .0 * ob j . Ky . * ob j . Ky) + . . .
12 −0.25 * ( −1 .0 * ob j . Kz . * ob j . Kz) + . . .
13 1 . 0 i * ob j . grot * ob j . Rx . * ( −1 .0 i * ob j . Ky) ) ) ;
14

15

16

17 % F i r s t Step , X
18 phiKxz = f f t ( f f t ( ob j . psi_time , [ ] , 3 ) , [ ] , 1 ) ; %z then

x
19

20 obj . ps i_t ime = i f f t ( i f f t ( KinLzX_temp . * phiKxz , [ ] ,
1 ) , [ ] , 3 ) ;

21

22 % Second Step , Y
23 phiKyz = f f t ( f f t ( ob j . psi_t ime , [ ] , 3 ) , [ ] , 2 ) ; %z then

y
24

25 obj . ps i_t ime = i f f t ( i f f t ( KinLzY_temp . * phiKyz , [ ] ,
2 ) , [ ] , 3 ) ;

26

27 % Thrid Step , Middle
28 % evolut ion ~ |ps i| ( middle )
29 obj . psin = abs ( ob j . ps i_t ime ) . ^ 2 ;
30 obj . psid = obj . convolve ( ob j . psin , ob j . Vdip ) ;
31 obj . ps i_t ime = obj . ps i_t ime . * exp ( ob j . gevo . * ( ob j .

Vext + ob j . gd* ob j . psid . . .
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32 + obj . psin . * ( ob j . gs + r e a l ( ob j . gqf ) . * s q r t ( ob j . psin )
) ) ) ;

33

34

35 % Fourth Step , Y
36 phiKyz = f f t ( f f t ( ob j . psi_t ime , [ ] , 3 ) , [ ] , 2 ) ; %z then

y
37

38 obj . ps i_t ime = i f f t ( i f f t ( KinLzY_temp . * phiKyz , [ ] ,
2 ) , [ ] , 3 ) ;

39

40 % F i f t h Step , X
41 phiKxz = f f t ( f f t ( ob j . psi_time , [ ] , 3 ) , [ ] , 1 ) ; %z then

x
42

43 obj . ps i_t ime = i f f t ( i f f t ( KinLzX_temp . * phiKxz , [ ] ,
1 ) , [ ] , 3 ) ;

44

45

46 end

1 func t ion doEvolut ionStep_St rangSpl i t t ingKine t i cLz_s t reaml ined
( ob j )

2

3 % F i r s t Step , X
4 phiKxz = f f t ( f f t ( ob j . psi_time , [ ] , 1 ) , [ ] , 3 ) ; %x then z
5

6 obj . ps i_t ime = i f f t ( ob j . KinLzX . * phiKxz , [ ] , 1 ) ; % keep z in
Fspace

7

8 % Second Step , Y
9 phiKyz = f f t ( ob j . psi_t ime , [ ] , 2 ) ; % bring y to Fspace

10

11 obj . ps i_t ime = i f f t ( i f f t ( ob j . KinLzY . * phiKyz , [ ] , 2 ) , [ ] , 3 ) ;
% y , z i n t o Rspace

12

13 % Thrid Step , Middle
14 % evolut ion ~ |ps i| ( middle )
15 obj . psin = abs ( ob j . ps i_t ime ) . ^ 2 ;
16 obj . psid = obj . convolve ( ob j . psin , ob j . Vdip ) ;
17 obj . ps i_t ime = obj . ps i_t ime . * exp ( ob j . gevo . * ( ob j . Vext +

obj . gd* ob j . psid . . .
18 + obj . psin . * ( ob j . gs + r e a l ( ob j . gqf ) . * s q r t ( ob j . psin ) ) ) ) ;
19

20

21 % Fourth Step , Y
22 phiKyz = f f t ( f f t ( ob j . psi_t ime , [ ] , 2 ) , [ ] , 3 ) ; %z then y
23

24 obj . ps i_t ime = i f f t ( ob j . KinLzY . * phiKyz , [ ] , 2 ) ; % keep z in
Fspace

25
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26 % F i f t h Step , X
27 phiKxz = f f t ( ob j . psi_time , [ ] , 1 ) ; % bring z to Fspace
28

29 obj . ps i_t ime = i f f t ( i f f t ( ob j . KinLzX . * phiKxz , [ ] , 1 ) , [ ] , 3 ) ;
% x , z i n t o Rspace

30

31 end

1 func t ion LzPhi = Lz ( obj , phi )
2 phiK = f f t n ( phi ) ;
3 LzPhi = −1.0 i * ( ob j . Rx . * i f f t n ( 1 . 0 i * ob j . Ky . *

phiK ) − obj . Ry . * i f f t n ( 1 . 0 i * ob j . Kx . * phiK ) )
;

4 end
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doAys

Introduction

This document provides a detailed walkthrough of the Python code "doAys" that
was developed for data analysis during this thesis. The code is organized into a
class named "Analysis" and various helper functions.

The "Analysis" class takes a file path as input. The control dictionary is used to spec-
ify which parts of the analysis should be performed. If not provided, default control
settings are determined based on the file name. A naming convention is followed,
where ground-states found via CGM begin with ’CGM’, otherwise ’fGS’.

In the constructor’s initialization section, the code extracts the file name from the
given path and then calls the "detMethod" method to determine the analysis method
(either ’CG’ or ’fGS’) based on the file name prefix.

File Paths

1 # From the MATLAB output f o l d e r read the fol lowing
f i l e s

2 s e l f . f i l e = f i l e + "/GPEGrids3D . h5 "
3 s e l f . f i l e _ i n f o = f i l e + "/ i n f o . j son "
4 s e l f . file_CGM = f i l e + "/CGmonitor . csv "
5 s e l f . f i l e_CGI = f i l e + "/CGinfo . csv "
6 s e l f . f i l e _ c o n v c r i t = f i l e + "/ s t a t s C o n v c r i t . csv "

The code constructs file paths for various data files within the provided folder. These
files include simulation data in HDF5 format (’GPEGrids3D.h5’), simulation infor-
mation in JSON format (’info.json’), data from the CG method in (’CGmonitor.csv’)
and (’CGinfo.csv’), and convergence criteria statistics (’statsConvcrit.csv’). Unless a
ground-state has been loaded, only one of CGmonitor or statsConvcrit will be pop-
ulated.

Control Settings

1 # Control i s a l i s t of bools t h a t decides what i s run
in the _ i n i t _ func

2 # The way CGm and fGS methods s t o r e the r e s u l t s i s
d i f f e r e n t , and t h i s ’ c o n t r o l ’

3 # method prevents unexpected e r r o r s .
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4 # The c o n t r o l method i s s e t by looking at the name of
the input f i l e

5

6 i f c o n t r o l i s None :
7 i f s e l f . method == ’ fGS ’ :
8 c o n t r o l _ g s = {
9 " h5 " : True , # Needed f o r : p l o t t i n g

10 " i n f o " : True , # Not needed but used in
p l o t t i n g

11 "CGe" : False , # Needed f o r : CGm energy
12 "CGi" : False , # Needed f o r CGm energy
13 "Conv" : True , # Needed f o r : fGS energy
14 }
15 c o n t r o l = c o n t r o l _ g s
16

17 i f s e l f . method == ’CG’ :
18 contro l_cg = {
19 " h5 " : True , # Needed f o r : p l o t t i n g
20 " i n f o " : True , # Not needed but used in

p l o t t i n g
21 "CGe" : True , # Needed f o r : CGm energy
22 "CGi" : True , # Needed f o r CGm energy
23 "Conv" : False , # Needed f o r : fGS energy
24 }
25 c o n t r o l = contro l_cg

The code defines control dictionaries based on the analysis method (’CG’ or ’fGS’).
These control dictionaries determine which parts of the analysis will be performed.
For example, if the method is ’fGS’, certain options like ’CGe’ and ’CGi’ are set to
False because they are not needed for the ’fGS’ method.

Reading HDF5 Data

1 # S t u f f e x t r a c t e d from h5 f i l e
2 i f c o n t r o l [ ’ h5 ’ ] :
3 t r y :
4 s e l f . data = h5py . F i l e ( s e l f . f i l e , ’ r ’ ) # Gets data
5 except :
6 p r i n t ( " Error in reading h5 f i l e . " )
7

8 t r y :
9 s e l f . x , s e l f . y , s e l f . z = s e l f . data [ ’ xax ’ ] [ 0 ] , s e l f .

data [ ’ yax ’ ] [ 0 ] , s e l f . data [ ’ zax ’ ] [ 0 ] # r e a l space
pos

10 except :
11 p r i n t ( " Error in g e t t i n g ( x , y , z ) " )
12

13 t r y :
14 s e l f . kx , s e l f . ky , s e l f . kz = np . array ( s e l f . data [ ’nuxAx

’ ] [ : , 0 ] ) , np . array ( s e l f . data [ ’nuyAx ’ ] [ : , 0 ] ) , np .
array (
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15 s e l f . data [ ’nuzAx ’ ] [ : , 0 ] ) # k space pos
16 except :
17 p r i n t ( " Error in g e t t i n g ( kx , ky , kz ) " )
18

19 t r y :
20 s e l f . d a t a _ r e a l = np . array ( s e l f . data [ ’ ps iReal ’ ] )
21 s e l f . data_imag = np . array ( s e l f . data [ ’ psiImag ’ ] )
22 except :
23 p r i n t ( " Error in g e t t i n g r e a l /imag part of Ps i " )

If the ’h5’ option is enabled in the control dictionary, the code attempts to read data
from the HDF5 file. It reads information such as the axes for real and k-space posi-
tions, as well as the real and imaginary parts of the wavefunction (psi).

Reading Simulation Information

1 # S t u f f from json f i l e
2 i f c o n t r o l [ ’ i n f o ’ ] :
3 t r y :
4 with open ( s e l f . f i l e _ i n f o ) as f :
5 s e l f . i n f o = j son . load ( f , object_hook=lambda d :

SimpleNamespace ( * * d ) )
6 except :
7 p r i n t ( " Error in reading i n f o . j son " )

If the ’info’ option is enabled in the control dictionary, the code attempts to read
simulation information from the JSON file.

If either ’CGe’ or ’CGi’ options are enabled in the control dictionary, the code at-
tempts to read data from the CG monitor CSV file.
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Numerical Results

Initial States

1 func t ion ps i = s e t P s i _ a ( ob j )
2 % Gaussian l i k e s t a t e
3 a = 1/ s q r t ( pi ) ;
4 sigma = [ 5 . 0 , 5 . 0 , 5 . 0 ] ;
5 pos = [ 0 . 0 , 0 . 0 , 0 . 0 ] ;
6 ps i = ob j . setGaussian ( a , sigma , pos ) ;
7 obj . I n i t i a l S t a t e = ’ a ’ ;
8 end
9

10 func t ion ps i = s e t P s i _ b ( ob j )
11 % ( x+iy ) i n t o Gaussian l i k e s t a t e
12 a = 1/ s q r t ( pi ) ;
13 sigma = [ 5 . 0 , 5 . 0 , 5 . 0 ] ;
14 pos = [ 0 . 0 , 0 . 0 , 0 . 0 ] ;
15 ps i = ( ob j . Rx + 1 i . * ob j . Ry ) . * ob j . setGaussian ( a , sigma , pos )

;
16 obj . I n i t i a l S t a t e = ’ b ’ ;
17 end
18

19 func t ion ps i = s e t P s i _ b c o n j ( ob j )
20 % ( x−iy ) i n t o Gaussian l i k e s t a t e
21 a = 1/ s q r t ( pi ) ;
22 sigma = [ 5 . 0 , 5 . 0 , 5 . 0 ] ;
23 pos = [ 0 . 0 , 0 . 0 , 0 . 0 ] ;
24 ps i = ( ob j . Rx − 1 i . * ob j . Ry ) . * ob j . setGaussian ( a , sigma , pos )

;
25 obj . I n i t i a l S t a t e = ’ bconj ’ ;
26 end
27

28 func t ion ps i = s e t P s i _ c ( ob j )
29 % ( psi_a + psi_b ) /||psi_a + psi_b||
30 ps i = ( ( ob j . s e t P s i _ a + obj . s e t P s i _ b ) ./ s q r t ( ob j . i n t e g r a t e ( abs

( ob j . s e t P s i _ a + obj . s e t P s i _ b ) .^2 ) ) ) ;
31 obj . I n i t i a l S t a t e = ’ c ’ ;
32 end
33
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34 func t ion ps i = s e t P s i _ c c o n j ( ob j ) % confirm t h a t cong ( Ps i_c )
i s same as j u s t taking con j ( Psi_b )

35 % conj ( ( ps i_a + psi_b ) /||psi_a + psi_b ||)
36 ps i = ( ( ob j . s e t P s i _ a + obj . s e t P s i _ b c o n j ) ./ s q r t ( ob j . i n t e g r a t e (

abs ( ob j . s e t P s i _ a + obj . s e t P s i _ b c o n j ) .^2 ) ) ) ;
37 obj . I n i t i a l S t a t e = ’ ccon j ’ ;
38 end
39

40 func t ion ps i = s e t P s i _ d ( ob j )
41 % ((1 −w) psi_a + w* psi_b ) /||(1−w) psi_a + w* psi_b||
42 w_rot = ob j . get_w_rot ( ob j . omegaRot ) ;
43 ps i = ( ( ( 1 − w_rot ) * ob j . s e t P s i _ a + w_rot * ob j . s e t P s i _ b ) ./ s q r t (

ob j . i n t e g r a t e ( abs ((1 − w_rot ) * ob j . s e t P s i _ a + w_rot * ob j .
s e t P s i _ b ) .^2 ) ) ) ;

44 obj . I n i t i a l S t a t e = ’d ’ ;
45 end
46

47 func t ion ps i = s e t P s i _ d c o n j ( ob j )
48 % ((1 −w) psi_a + w* ps i_bcon j ) /||(1−w) psi_a + w* ps i_bcon j||
49 w_rot = ob j . get_w_rot ( ob j . omegaRot ) ;
50 ps i = ( ( ( 1 − w_rot ) * ob j . s e t P s i _ a + w_rot * ob j . s e t P s i _ b c o n j ) ./

s q r t ( ob j . i n t e g r a t e ( abs ((1 − w_rot ) * ob j . s e t P s i _ a + w_rot * ob j
. s e t P s i _ b c o n j ) .^2 ) ) ) ;

51 obj . I n i t i a l S t a t e = ’ dconj ’ ;
52 end
53

54 func t ion ps i = s e t P s i _ e ( ob j )
55 % ((1 −w) psi_a + w* psi_b ) /||(1−w) psi_a + w* psi_b||
56 w_rot = ob j . get_w_rot ( ob j . omegaRot ) ;
57 ps i = ( ( w_rot * ob j . s e t P s i _ a + (1 − w_rot ) * ob j . s e t P s i _ b ) ./ s q r t (

ob j . i n t e g r a t e ( abs ( w_rot * ob j . s e t P s i _ a + (1 − w_rot ) * ob j .
s e t P s i _ b ) .^2 ) ) ) ;

58 obj . I n i t i a l S t a t e = ’ e ’ ;
59 end
60

61 func t ion ps i = s e t P s i _ e c o n j ( ob j )
62 % ((1 −w) psi_a + w* ps i_bcon j ) /||(1−w) psi_a + w* ps i_bcon j||
63 w_rot = ob j . get_w_rot ( ob j . omegaRot ) ;
64 ps i = ( ( w_rot * ob j . s e t P s i _ a + (1 − w_rot ) * ob j . s e t P s i _ b c o n j ) ./

s q r t ( ob j . i n t e g r a t e ( abs ( w_rot * ob j . s e t P s i _ a + (1 − w_rot ) * ob j
. s e t P s i _ b c o n j ) .^2 ) ) ) ;

65 obj . I n i t i a l S t a t e = ’ econ j ’ ;
66 end



Appendix C. Numerical Results 43

FIGURE C.1:
Ini-
tial
State

a

FIGURE C.2:
Ini-
tial
State

b

FIGURE C.3:
Ini-
tial
State

c

FIGURE C.4:
Ini-
tial
State

d

FIGURE C.5:
Ini-
tial
State

e

FIGURE C.6:
Ini-
tial
State

r



44 Appendix C. Numerical Results

Preconditioner Run Time (s)
PC1 107.515928
PC2 103.736981
Pid 101.317611
Pki 103.326758
Pla 102.089074
Ppo 103.308813
PRK 103.433049

TABLE C.1: Convergence times for Single vortex ground-state, with
initial state "b", with various preconditioners

Preconditioner Run Time (s)
PC1 116.906329
PC2 119.640565
Pid 117.631551
Pki 118.185651
Pla 120.674358
Ppo 116.703419
PRK 118.708186

TABLE C.2: Convergence times for Single vortex ground-state, with
initial state "r", with various preconditioners
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