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Ehrenwörtliche Erklärung
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Zusammenfassung

Die aktuell große Popularität von Quantencomputern sorgt auch für ein erhöhtes Inter-
esse an den damit verbundenen Schlüsseltechnologien. Die Funktionsweise eines Quan-
tencomputers basiert auf nicht binären Quanten-Bits (Qubits), welche als quantenmech-
anisches zwei-Niveau System realisiert werden können. Ein Ansatz basiert einzig auf
linear-optischen Komponenten wie Strahlteilern und Verzögerungsplättchen. In einem
solchen System wird das Qubit als die Polarisation einzelner Photonen realisiert, wobei,
neben weiteren Bauteilen, eine parametrische Einzelphotonenquelle benötigt wird.
Ein Ansatz zu deren Realisierung basiert auf Rydbergatomen. Dies sind Atome mit
mindestens einem Elektron in einem Zustand mit hoher Hauptquantenzahl. Der große
Abstand zwischen Rumpfelektronen und Rydbergelektron und dessen daraus resultieren-
der schwacher Bindung, sorgt für eine erhöhte Empfindlichkeit gegenüber elektromag-
netischen Feldern. Dies führt zur Rydbergblockade, einem kollektiven Effekt der pro
Blockadevolumen nur ein Atom im Rydbergzustand zulässt.
In unserer Gruppe wurde die Machbarkeit einer Einzelphotonenquelle basierend auf Ry-
dbergblockade und gepulstem Vier-Wellen-Mischen mit Rubidium bei Raumtemperatur
demonstriert. Aufgrund von technischen Limitierungen bei Anregung über die 5P1/2

bzw. 5P3/2 Zwischenniveaus konnte nur eine Photonenausbeute von 4 % erreicht wer-
den. Um diese zu verbessern, kann ein anderes Anregungsschema mit 6P1/2 und 6P3/2

als Zwischenniveaus verwendet werden.
Im Rahmen dieser Arbeit wurden erste systematische Messungen zur Anregung in den
Rydbergzustand in diesem invertierten Levelschema durchgeführt.
Im ersten Teil wurden dazu Dauerstrichlaser verwendet, wobei zunächst eine Autler-
Townes Aufspaltung untersucht wurde. Simulationen eines Dreiniveausystems im Gle-
ichgewichtszustand bestätigen diese Messungen quantitativ und qualitativ. Weiterhin
wurden Elektromagnetisch induzierte Transparenz sowie der Übergang zu induzierter
Absorption beobachtet.
Im zweiten Teil wurde ein gepulster Faserverstärker verwendet um Nanosekundenpulse
mit Spitzenleistungen von bis zu 100 W für den Rydbergübergang zu erzeugen. Durch
stärkeres Fokussieren konnten so Rabi-Frequenzen von bis zu einem Gigahertz erreicht
werden. Diese Oszillationen konnten direkt gemessen werden und sind in guter Übere-
instimmung mit zugehörigen Simulationen eines Dreiniveausystems.
Bei Untersuchungen zum Verhalten bei zusätzlicher Verstimmung des Rydberglasers
war das Experiments nicht derartig zu reproduzieren, was den Rückschluss auf weitere
Prozesse, wie die Entstehung eines Plasmas zulässt.
Um den Ursprung für diese Diskrepanzen nachzuvollziehen sind weitere, systematis-
che Messungen, zum Beispiel im Rahmen verstimmungsaufgelöster Messreihen für beide
beteiligte Laser notwendig.
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Introduction
The current omnipresent interest in quantum computers is creating a great demand for
the associated key-technologies. The working principle of a quantum computer is based
on non-binary quantum bits (qubits), which can be implemented as a two-level quan-
tum mechanical system. One possible approach relies solely on linear optical elements,
like beam splitters and phase shifters [1]. In those systems the qubit is encoded as
the polarization of single photons, which requires, among other components, on-demand
single-photon sources.
Such single-photon sources can be realized through different solid-state effects e.g. by
embedding quantum dots into semiconductors [2] or color centers into diamond [3]. Due
to additional noise in solids caused by e.g. phonons, the spectral stability and phase
noise of the emitted photons is inherently limited. Atoms on the other hand, emit iden-
tical photons possibly only restricted by the time bandwidth product.
One approach to create single photons employs Rydberg atoms [4]. Those have at least
one electron excited to a state with high principle quantum number. Due to the large
distance between the core electrons and the Rydberg electron and its subsequently weak
binding, such atoms are highly sensitive towards external electromagnetic fields including
other Rydberg atoms. This leads to the Rydberg blockade [5], describing the collective
effect of only a single allowed excitation to the Rydberg state per blockade volume.
Our research group demonstrated [6] a room-temperature on-demand single-photon
source using rubidium by combining the Rydberg blockade effect and a pulsed four-wave
mixing process. However, this experiment suffered from a mean generation efficiency of
only 4 % and a low repetition rate of 50 Hz. The main limiting factors were the home-
made dye amplifiers at a fundamentally hard to amplify wavelength of 480 nm between
the 5P1/2 and 5P3/2 intermediate state and the Rydberg level. In order to improve these
issues, a different excitation scheme using the 6P1/2 and 6P3/2 intermediate states can
be employed.
In the frame of this thesis, first systematic measurements investigating the pulsed two
photon excitation in rubidium using this inverted level scheme were performed.
As a first step, these were done using continuous wave lasers. In the resulting steady state
regime, Autler-Townes splitting, electromagnetically induced transparency, enhanced ab-
sorption and the smooth transition between these effects could be observed.
Subsequently, a customized Yb-doped fiber amplifier [7], creating nanosecond pulses with
a peak power of up to 100 W, was used to drive the Rydberg transition. Rabi oscillations
between the 6P1/2 and Rydberg state with oscillation frequencies of up to 1 · 2πGHz
were directly measured. These observations in the inverted scheme show fully coherent
dynamics involving a Rydberg state above room temperature in a millimeter cell.
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Part I

Theoretical Foundation
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1 Atom-Light Interaction

Experiments in the field of quantum optics are based on the interaction between atoms,
light fields and the effects arising from them. Therefore their theory will be briefly
discussed in the following chapter. A more detailed discussion can be found in [8–11].

1.1 General Concepts

The state of any quantum mechanical system can be described by using the density
matrix operator

ρij = |i〉 〈j| (1.1)

where the population of the state |i〉 is given by the diagonal element ρii and the coher-
ence between the states |i〉 and |j〉 by ρij. The density operator is hermitian (ρ = ρ†) and

for a closed system the population has to be conserved, which results in trace(ρ)
!

= 1.
The temporal evolution is given by the von Neumann equation

∂ρ(t)

∂t
= − i

~

[
Ĥ(t) , ρ̂(t)

]
(1.2)

with the Hamiltonian H and reduced Planck constant ~.
In the following the specific quantum mechanical system shall consists of an atom with
n degenerate, non interacting energy levels that interacts with a light field E. The
Hamiltonian of this system consists of two parts, the Hamiltonian of the atom Hatom

and the interaction with the light field Hint

H = Hatom +Hint. (1.3)

In the eigenbasis of the atom Hatom is given by the eigenstates |i〉 and corresponding
eigenvalues ~ωi derived from the transition frequency ωi:

Hatom =
∑
i

~ωi |i〉 〈i| . (1.4)

The light field is assumed to be classical and furthermore any interaction with the
magnetic moment of the atom is neglected due to small contribution. The interaction is
therefore given by

Hint = −dE (1.5)
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1 Atom-Light Interaction

with the dipole operator d of the atom. Additionally the light field is assumed to be a
plane wave propagating in z-direction

E(z, t) =
1

2

(
E0(z, t) ei(ωL,ijt−kL,ijz) + E0(z, t)∗ e−i(ωL,ijt−kL,ijz)

)
ez (1.6)

with the frequency ωL,ij, wavenumber kL,ij = ωL,ij/c with the speed of light c, amplitude
E0 and the unit vector ez in propagation direction.
The von Neumann equation does not include the finite lifetime of the excited states of an
atom, which is caused by different decay and dephasing effects e.g. spontaneous emission
or collisions between the atoms. Those are included in the so called von Neumann
equation in Lindblad form

∂ρ(t)

∂t
= − i

~
[H(t) , ρ(t)] + L(ρ(t)) . (1.7)

The Lindblad operator [12] is defined as

L(ρ(t)) = Ldecay(ρ(t)) + Ldeph(ρ(t)) (1.8)

=
∑
{i→j}

Γi→j

(
|f〉 ρii 〈f | −

1

2
{|i〉 〈i| , ρ}

)
+
∑
i

γi,deph

(
|i〉 ρii 〈i| −

1

2
{|i〉 〈i| , ρ}

)
(1.9)

with the decay and dephasing rates Γ and γdeph, respectively.
In order to solve eq. (1.7) analytically the system is transformed to a reference frame
which rotates with the frequency of the light field and subsequently fast oscillating
terms are neglected. This is the so called ’Rotating Wave Approximation’ (RWA) and
is discussed in more detail in [8]. The diagonal transformation matrix U is given by

Uii = exp
(
−iϕ|1〉→|i〉 |i〉 〈i|

)
(1.10)

with the accumulated phase

ϕ|1〉→|i〉 =
∑

{ab||1〉→|i〉}

+/− (ωL,abt− kL,abx) (1.11)

=
∑

{ab||1〉→|i〉}

+/−ϕab (1.12)

where a positive sign corresponds to an absorbed photon and a negative sign to an
emitted one. When transforming the density matrix the diagonal elements are not
effected, ρ̃ii = ρii, whereas the new off diagonal elements are

ρ̃ij = ρije
iϕ|i〉→|j〉 . (1.13)
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1.2 Transition Dipole Moment

The diagonal entries of the Hamiltonian yield

(H̃)ii = ~ωi +/−
∑

{ab||1〉→|i〉}

~ωL,ab (1.14)

= ~ −/+

∑
{ab||1〉→|i〉}

∆ab (1.15)

with the multiphoton detuning given by the sum over all detunings −/+∆ab, where the
sign depends on whether the photon gets absorbed or emitted. The off diagonal part of
the Hamiltonian is given by

(H̃)ij =
1

2
~Ωij |i〉 〈j| (1.16)

with the Rabi frequency

Ωij = −dijE0,ij

~
(1.17)

and dipole transition matrix element dij from level i to j. For a Gaussian beam with a
1/e2 waist radius wr and power P the electric field is given by

E0 =

√
4P

cε0πw2
r

(1.18)

with the vacuum permittivity ε0, leading to

Ωij = −dij
~

√
4P

cε0πw2
r

. (1.19)

The Lindblad operator is invariant under the RWA.
Using this set of equations all systems discussed in the scope of this thesis can be
described.

1.2 Transition Dipole Moment

The origin of the transition dipole moment, arising from the coupling of the involved
levels, will now be discussed in more detail. The derivation and notation is based on
[13].
In order to calculate the Rabi frequency according to eq. (1.17) the dipole matrix element
for the corresponding transition is necessary. In general for the transition between two
hyperfine sublevels this is given by dij = 〈FmF | er |F ′m′F 〉, with the position vector r
and total angular momentum quanten number of the atom F , where the prime marks
the final state. It is useful to transform r into the spherical basis where the angular part

7



1 Atom-Light Interaction

can be factored out and written as a product of Clebsch-Gordan coefficients using the
Wigner-Eckart theorem

〈FmF | erq |F ′m′F 〉 = 〈F ||er||F ′〉 (−1)F
′−1+mF

√
2F + 1

(
F ′ 1 F
m′F q −mF

)
. (1.20)

Here (...) denotes the Wigner-3j symbol and 〈...||er||...〉 the reduced matrix element. In
order to further simplify the radial part one can transform into the basis of the total
angular momentum J

〈F ||er||F ′〉 = 〈J ||er||J ′〉 (−1)F
′+J+1+I

√
(2F ′ + 1) (2J + 1)

{
J J ′ 1
F ′ F I

}
(1.21)

with the nuclear spin I and Wigner-6j symbol {...}. Further transformation into the
basis of the orbital angular momentum L yields

〈J ||er||J ′〉 = 〈L||er||L′〉 (−1)J
′+L+1+S

√
(2J ′ + 1) (2L+ 1)

{
L L′ 1
J ′ J S

}
(1.22)

with the electron spin S. The value for 〈L||er||L′〉 can be expressed using the radial
wavefunctions Rnl(r) and theoretically calculated from the overlap integral of the two
states.
When assuming near resonance excitation and non degenerate hyperfine levels the effec-
tive dipole moment for one F transition is given by

|〈F ||er||F ′〉|2 = SFF ′ |〈J ||er||J ′〉|2 (1.23)

with the relative hyperfine transition strength factors

SFF ′ = (2F ′ + 1) (2J + 1)

{
J J ′ 1
F ′ F I

}2

. (1.24)

For a far detuned excitation all hyperfine states are addressed and therefore the sum
over all transition strengths has to be considered and because∑

F ′

SFF ′ = 1 (1.25)

this leaves
|〈F ||er||F ′〉|2 = |〈J ||er||J ′〉|2 . (1.26)
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1.3 Two-Level Atom

1.3 Two-Level Atom

|2〉

|1〉

ωL ω0

∆

Γ

Figure 1.1: Level scheme of a two-
level system. The vari-
ables are defined in the
text.

In order to illustrate the basic principles of atom-
light interactions an atomic system with only two
non-degenerate energy levels is considered in the
following section. The resulting level scheme for
this is shown schematically in fig. 1.1. Here the
angular transition frequency between the ground
state |1〉 and excited state |2〉 is given by the dif-
ference of the corresponding eigenenergies ω0 =
ω2 − ω1, the excited state decays to the ground
state with a rate Γ, while the levels are coupled by
a light field with the energy ~ωL and a frequency
detuning in relation to the transition frequency of
∆ = ωL − ω0. With |1〉 =

(
1
0

)
and |2〉 =

(
0
1

)
the Hamilton and Lindblad operator from eqs. (1.3)
and (1.9) are given by

H = ~

 0
1

2
Ω

1

2
Ω∗ ∆

 (1.27)

and

LD = Γ

 ρ̃22 −1

2
ρ̃12

−1

2
ρ̃21 −ρ̃22

 . (1.28)

With those, the von Neumann equation (1.7) can be set up. After simplifying the
resulting coupled differential equations are

∂

∂t
ρ̃11 = Γρ̃22 − Im (ρ̃12Ω∗) (1.29a)

∂

∂t
ρ̃12 =

(
−Γ

2
− i∆

)
ρ̃12 − i

Ω

2
(ρ̃22 − ρ̃11) (1.29b)

∂

∂t
ρ̃21 =

(
−Γ

2
− i∆

)
ρ̃12 + i

Ω

2
(ρ̃22 − ρ̃11) (1.29c)

∂

∂t
ρ̃22 = −Γρ̃22 + Im (ρ̃12Ω∗) (1.29d)

which are also known as the Optical Bloch Equations.
To further understand the dynamics of the system, a solution for an on resonance
excitation with the initial condition, that initially all atoms are in the ground state

9



1 Atom-Light Interaction

Figure 1.2: Time evolution of a two-level system with the initial condition ρ̃11(t=0) = 1,
∆ = 0 and a) Γ = 0 and b) Γ = 0.2 · Ω

ρ̃11(t = 0) = 1 can be seen in fig. 1.2. The special case where the excited state has an
infinite lifetime, Γ = 0, can be seen in fig. 1.2 a). Here, the population of atoms simply
oscillates between the two energy levels with the angular frequency equaling the Rabi
frequency. This coherent population transfer is called Rabi oscillation. When the finite
lifetime of the excited state is included, Γ 6= 0, the Rabi oscillations are damped, which
can be seen in fig. 1.2 b). For long timescales t � 1

Γ
a steady state regime is reached.

This can be derived from eq. (1.29) with ∂
∂t
ρ̃ = 0 and its solution is given by:

ρ̃11 =
|Ω|2 + 4∆2 + Γ2

2 |Ω|2 + 4∆2 + Γ2
(1.30a)

ρ̃12 =
Ω (2∆ + iΓ)

2 |Ω|2 + 4∆2 + Γ2
(1.30b)

ρ̃21 =
Ω∗ (2∆− iΓ)

2 |Ω|2 + 4∆2 + Γ2
(1.30c)

ρ̃22 =
|Ω|2

2 |Ω|2 + 4∆2 + Γ2
. (1.30d)

1.3.1 Optical Response

In the experiments presented later the measured quantity is the light intensity after
interacting with a number of atoms. So in order to compare theoretical calculations
and experimentally determined values, the response to the electromagnetic fields of the

10



1.4 Three-Level Atom

atoms is required. This can be done via the electric susceptibility χ which is defined by
the polarizability P of the medium

P = ε0χE (1.31)

=
1

2
ε0χE0e

−iωLt + c.c. . (1.32)

Analogously, the polarizability can also be calculated for an atomic ensamble with the
density n

P = n 〈d〉 (1.33)

= nTrace (ρd) (1.34)

= n
(
d12ρ̃21e

−iωLt + d21ρ̃12e
iωLt
)
. (1.35)

By comparing this equation to eq. (1.32) an expression for the susceptibility can be
derived:

χ = −2n |d12|2
ε0~Ω12

ρ̃21. (1.36)

The imaginary part of the susceptibility is proportional to the absorption coefficient α

α = kLIm (χ) . (1.37)

Using the Beer-Lambert Law the corresponding intensity I after traveling through the
medium for the distance l can be calculated

I = I0e
−αl. (1.38)

1.4 Three-Level Atom

Exciting an atom to a specific state can often not be achieved via a direct transition
from the ground state for a number of reasons, e.g. laser availability or dipole selection
rules. Therefore an intermediate state is necessary and the previously discussed two-level
system has to be expanded to at least a three-level system. To deepen the understanding
of multi level atoms, the dynamics of a three level system will be derived in this section.
The level scheme can be seen in fig. 1.3, including the used notations for the transitions
and decays. Equivalently to section 1.3 the Hamiltonian and Lindblad operator can be
set up using the equations derived in section 1.1:

H =


0

1

2
Ω12 0

1

2
Ω12 −∆12

1

2
Ω23

0
1

2
Ω23 − (∆12 + ∆23)

 (1.39)
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1 Atom-Light Interaction

|2〉

|1〉

|3〉

ω12

ω23

ωL,12

∆12

Γ21

ωL,23

∆23

Γ32

Γ31

Figure 1.3: Scheme of a three level system. The variables are defined in the text.

LD =


Γ21ρ̃22 + Γ31ρ̃33 −1

2
Γ21ρ̃12 −1

2
(Γ31 + Γ32) ρ̃13

−1

2
Γ21ρ̃21 −Γ21ρ̃22 + Γ32ρ̃33 −1

2
(Γ21 + Γ31 + Γ32) ρ̃23

−1

2
(Γ31 + Γ32) ρ̃31 −

1

2
(Γ21 + Γ32 + Γ31) ρ̃32 − (Γ31 + Γ32) ρ̃33

 .

(1.40)
With them the optical Bloch equations can be set up and solved. In contrast to the two
level system there are additional distinctive effects, which can be observed in a three
level system.

1.4.1 Electromagnetically Induced Transparency

One of those effects is electromagnetically induced transparency (EIT). Here, an atomic
transition coupled by a weak light field (probe field) becomes transparent on resonance
when a second strong light field (coupling field), which couples one of the involved states
to a third one, is applied. This can be seen in fig. 1.4. Without the coupling light
field (Ω23 = 0) the probe field gets absorbed with a maximum on resonance, but for
an increasing coupling field a transmission window around the resonance appears and
becomes broader for higher coupling frequencies and two separate absorption peaks arise.
This effect is called Autler Townes splitting and emerges for higher coupling frequencies
from the EIT regime, whereby the two areas can not be clearly separated from each
other [14].
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1.4 Three-Level Atom

Figure 1.4: Imaginary (top) and real (bottom) part of ρ̃21 with Ω12 � Γ21 and Γ32 � Γ21

for increasing coupling frequencies a) Ω23/Γ21 = 0, b) Ω23/Γ21 = 1 and c)
Ω23/Γ21 = 2.

1.4.2 Autler-Townes Splitting

In order to explain the splitting of the absorption signal for high coupling frequencies
one has to take a closer look at the three level Hamiltonian in eq. (1.39). If we assume
two-photon resonance (∆12 + ∆23 = 0) |1〉, |2〉 and |3〉 are no longer eigenstates of the
system, but by diagonalizing, new eigenstates, the so called ’dressed states’ [10]

|0〉 = cos θ |1〉 − sin θ |3〉 (1.41a)

|−〉 = sin θ cosφ |1〉 − sinφ |2〉+ cos θ cosφ |3〉 (1.41b)

|+〉 = sin θ sinφ |1〉+ cosφ |2〉+ cos θ sinφ |3〉 (1.41c)

can be derived with the mixing angles

tan θ =
Ω12

Ω23

(1.42a)

tan (2φ) =

√
Ω2

12 + Ω2
23

∆12

=
Ω2ph

∆12

(1.42b)

and the effective two photon Rabi frequency Ω2ph =
√

Ω2
12 + Ω2

23. For a weak probe
frequency thus |0〉 corresponds to the previous ground state |1〉 and the other two states
|±〉 are the superposition of the previous intermediate and excited state with

|±〉 =
1√
2

(|2〉 ± |3〉) . (1.43)
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1 Atom-Light Interaction

Figure 1.5: Im(ρ̃21) as a function of the probe and coupling detuning with Ω12/Γ21 = 1
100

,
Ω23/Γ21 = 2 and Γ21 = 100 · Γ32

It can be easily seen that for |0〉 the eigenenergy remains zero, whereas |+〉 and |−〉 are
shifted by

E± =
1

2

(
∆12 ±

√
∆2

12 + Ω2
12 + Ω2

23

)
=

1

2

(
∆12 ±

√
∆2

12 + Ω2
2ph

)
(1.44)

respectively. Subsequently the observed splitting is Ω2ph. In fig. 1.5 the absorption signal
for different probe and coupling detunings is shown. Here the avoided crossing at zero
two-photon detuning (∆12 = −∆23) can be clearly observed, but for high detunings the
dressed states are slowly approaching the initial eigenstates again.

1.5 Broadening Effects

The natural linewidth of an atomic transition has a Lorentzian lineshape whose width
is given by the lifetime of the exited state, but there are additional effects, that lead to
a further broadening.

1.5.1 Doppler Broadening

One property that has not been considered so far is the movement of the atoms caused
by the temperature of the ensemble. This movement results in an additional and for
each atom individual frequency shift ∆D = kv with the velocity v of the atom and the
wavevector k of the light field. This means, that slightly off resonant light appears to be
on resonance for atoms moving with a specific velocity that compensates for the initial
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1.5 Broadening Effects

offset. To take this into account the Doppler detuning has to be added to the laser
detunings in the Hamiltonian in eq. (1.3) with

∆ij,D = ∆ij − kLv. (1.45)

In a thermal vapor the velocity classes are Maxwell-Boltzmann distributed in all spatial
directions. Due to the scalar product in eq. (1.45) only atoms moving parallel to the
light field need to be considered, so an 1-dimensional Gaussian distribution is sufficient:

f(v, T ) =

√
m

2πkBT
exp

(
− mv2

2kBT

)
(1.46)

with the Boltzmann constant kB, atom mass m and Temperature T . The resulting
lineshape h(∆ij) of the transition is the convolution of the natural Lorentz g(∆ij − kLv)
and the Doppler broadened Gaussian lineshape which results in a Voigt profile

h(∆ij, T ) =

∫ ∞
−∞

f(v, T ) g(∆ij − kLv) dv. (1.47)

For experiments with atoms at, or above room temperature, the Doppler broadening is
usually orders of magnitude larger than the natural linewidth so the lineshape can be
approximated to be only Gaussian.

1.5.2 Transit Time Broadening

The finite size of the laser beam used for the excitation of the atoms is also causing
an additional broadening, the so called transit time broadening, as atoms can simply
move out of the excitation volume given by the laser geometry. In approximation one
can assume that for every atom flying out of the beam another atom is flying into it,
which is however in the ground state. In the formalism of the Lindblad operator, this is
given by a decay rate coupling every level directly to the ground state. The timescale of
this effect can be estimated by taking the average velocity v of the Maxwell Boltzmann
distribution

v(T ) =

√
πkBT

2m
(1.48)

and calculating the time they need for the average path d orthogonal to a Gaussian beam
with 1/e2 beam radius wr

d =
π

4

√
2 ln (2)wr. (1.49)

This results in

Γtt =
v

d
=

2√
π ln (2)

√
kBT

m

1

wr
. (1.50)

Especially for strongly focused laser beams with a small waist, or at really high temper-
atures this decay becomes the dominating factor.
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2 Rydberg Atoms

2.1 General Properties

Rydberg atoms are atoms with at least one valence electron excited to a state with a
high principle quantum number (typically n > 15), the so called Rydberg states [4]. In
the following section the case with exactly one electron in the Rydberg state will be
discussed. Due to the large distance between this electron and the nucleus, shielded
by the core electrons, the atom can be considered hydrogen-like and subsequently be
described via the Bohr model with the energy levels

En∗ = − 1

(4πε0)2

e4me

2 (n∗)2 ~2
(2.1)

with the elementary charge e, electron mass me, vacuum permittivity ε0 and the effective
principle quantum number n∗ = n− δn,l,j. The quantum defect δn,l,j takes into account,
that the ionic core is not, as assumed in the Bohr model, point like but has a structure
and can be calculated from the Rydberg-Ritz formula, a series expansion in n

δn,l,j = δ0 +
δ2

(n− δ0)2 +
δ4

(n− δ0)4 +
δ6

(n− δ0)6 + · · · (2.2)

wherein the coefficients δi must be determined experimentally for each state and atom.
E.g. for rubidium S-states those values can be found in [15]. The electron in the Rydberg
state is only weakly bound to the nucleus due to its large distance. This leads to some
interesting properties of the atom like a long lifetime or a high sensitivity to external
fields. More properties of Rydberg atoms and the corresponding scaling laws can be
found in table 2.1.

Table 2.1: Scaling laws for properties of Rydberg atoms [4]

property scaling

orbital radius (n∗)−3

binding energy (n∗)−2

lifetime (n∗)3

polarizability (n∗)7
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2.2 Rydberg-Rydberg Interactions

2.2 Rydberg-Rydberg Interactions

Due to their high polarizability Rydberg atoms are not only sensitive towards externally
applied electric and magnetic fields, but also towards other Rydberg atoms. This leads,
among other effects, to the so-called Rydberg blockade: A Rydberg atom induces an
electric field which shifts the eigenenergies of the eigenstates from all neighboring atoms.
If the bandwidth of the optical excitation to the Rydberg state is smaller than this energy
shift the neighboring atoms can not be excited to the Rydberg state, which means
depending on the interaction strength and excitation bandwidth a so called blockade
volume can be calculated in which only one atom is excited to the Rydberg state. This
Rydberg-Rydberg interaction is van der Waals like and therefore scales proportional to
1
r6

with the distance r between the atoms [16].
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3 Rubidium

Rubidium is part of the alkali metal group and accordingly has only one valence electron.
The two naturally abundant isotopes are the stable 85Rb (72.17 %) [13] and the semi
stable 87Rb (27.83 %) with a nuclear lifetime of 4.88·1010 years [17]. Both isotopes have a
melting point at around 39.3 ◦C [13, 17]. In a confined volume V with temperature T the
atomic density N = N0/V can be calculated by using the ideal gas law PV V = kBN0T
wherein the vapor pressure PV in torr is given by

log10 PV = 2.881 + 4.312− 4040

T
(3.1)

for liquid rubidium [13] with the temperature T in kelvin. The resulting curve can be
seen in fig. 3.1.
The level scheme for the two isotopes including the hyperfine structure of the, in the
scope of this thesis important, 5S and 6P states can be found in appendix A.
For all experiments performed in this theses, cells filled with natural rubidium were used
so accordingly 85Rb and 87Rb occur in the previously described ratio.

Figure 3.1: Atomic density of rubidium calculated from the vapor pressure as a function
of the temperature
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Part II

Laser Setup
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4 Frequency Stabilization

A crucial part of every experiment in the field of atomic physics is the reliable control of
the frequency of the lasers. In principle to do so an absolute frequency reference and a
way to stabilize the laser at the desired frequency are needed. To determine the absolute
frequency some form of atomic reference is required, since the frequency can not be re-
solved otherwise. If this is not possible for the desired wavelength one can use a reference
laser with known frequency (specified with an atomic transition) and then measure the
relative frequency difference between the two lasers with an interferometer. This is the
working principle of commercially available wavelength meters. The accuracy of such
devices can vary from tenths of a nanometer to far below 1 pm. For the experiments
presented in this thesis the coarse adjustment of the laser frequencies were done with a
wavelength meter and the fine adjustment with corresponding rubidium transitions.

4.1 Optical Resonator

A practical way to determine the absolute frequency change of a laser is an optical
resonator e.g. a Fabry–Pérot interferometer consisting of one planar and one concave
mirror. In the following section this specific type of optical resonator is referred to as
cavity. The two mirrors of the cavity have a spacing d. As the light gets confined
in the cavity and reflects multiple times before exiting through one of the mirrors a
standing wave is formed inside the cavity with a certain resonance frequency, producing
the characteristic transmission signal which can be seen in fig. 4.1. The main features
of a cavity are the free spectral range

δν =
c

2d
(4.1)

which defines the frequency distance between two adjacent transmission peaks and the
finesse

F =
δν

∆ν
(4.2)

defined as the free spectral range divided by the full with at half-maximum bandwidth of
the transmission peak ∆ν. The finesse is a relative measure on how sharp the frequency
resonances are.
By observing the position of the transmission peaks, a change in the frequency of the
laser can be detected if the spacing is fixed. In order to stabilize the frequency two
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4 Frequency Stabilization

Figure 4.1: Transmitted intensity of the cavity with the linewidth δν and free spectral
range ∆ν.

things are needed; an error signal which gives the difference between the current and
the desired frequency (from now on referred to as set point) and a feedback loop to
counteract the change.

4.2 Pound-Drever-Hall Technique

One possible error signal would be the transmission signal of the cavity and define the set
point to the steep side fringe. The main difficulty with this technique is, that there is no
way to distinguish between an intensity change and a frequency change. To eliminate this
problem the so called Pound-Drever-Hall (PDH) technique [18] is used. The interesting
part here is the phase of the signal which on resonance not only has a zero crossing but
also changes sign. Unfortunately photo detectors are not able to directly resolve the
phase of an optical signal. A method to determine the phase is through interference. An
elegant way to do this is by phase modulating the laser frequency (usually done with an
electro-optical modulator (EOM)), creating side bands in the frequency domain. The
interference between those and the main frequency is then detected on the photo diode
and by demodulating the signal with the modulation frequency the Pound-Drever-Hall
error signal can be obtained as shown in fig. 4.2. But as the sidebands are not transmitted
through the cavity the transmitted light is not suited as an optical signal but the reflected
light. This is a combination of the light which gets directly reflected at the first mirror
and the part entering and leaving the cavity from the same mirror after multiple round
trips. If the laser frequency matches the resonance frequency of the cavity both parts
cancel out each other and the reflection signal goes to zero. For simplicity, the reflection
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4.3 PID Controller

Figure 4.2: Reflection signal of the cavity and corresponding Pound-Drever-Hall signal

signal can be thought of as the inverted transmission signal with respect to the phase.
A detailed theoretical description of the PDH-technique can be found in [19].

4.3 PID Controller

For the feedback loop a commonly used technique is the proportional-integral-derivative
(PID) controller. As the name already suggests it consist of three parts. The proportional
component only takes the difference between the current signal and the set point and
gives an output proportional to that. This leads to the fact, that with a proportional
controller itself in theory the set point can never be reached, in practical use one can
increase the proportional response to reach the set point but that will lead to the system
oscillating. To prevent this the integrational part is added which is proportional to
the sum of the error signal over time. A controller consisting of those two components
(PI-controller) is for some applications already sufficient enough. The only remaining
problem is the risk of overshooting which happens especially with fast changing signals.
In order to also regulate those the derivative part is added. It decreases the output if
the signal is changing too fast and will thereby not only reduce overshooting but also
increase the overall speed of the controller.
To get the best possible performance of a PID controller all parts have to be set in the
right proportion to each other and adjusted to the application.
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4 Frequency Stabilization

4.4 Transfer Lock

By combining the PDH-technique and a PID controller in theory, a stable and reliable
laser lock can be achieved. In practice, however, there are some problems which also
have to be considered. For example temperature and air pressure can not only cause the
properties of optical components to change slightly, but also influence the refractive index
of air. Both lead to a change of the optical path d in the cavity and thereby change the
main properties. In order to reduce those effects an ultra-low-expansion (ULE) cavity can
be used which is an active temperature stabilized Fabry–Pérot interferometer, where the
space between the two mirrors is filled with a glass block made from ultra low expansion
glass. For the final pulsed four-wave-mixing experiment however a total of four lasers
have to be frequency locked, where two have a blue and two an infrared wavelength.
This makes it first of all more complicated to find an ULE cavity, that works for all
of those wavelengths and as especially the two blue lasers are very close to each other
in wavelength it would be hard to overlap and separate them in the same ULE cavity.
Also the laser locking setup should be constructed in a way that it is possible to add
lasers with other wavelengths at a later point in time. Therefore the most suitable
system is using transfer cavities. The working principle is based on one reference laser
and multiple transfer lasers. The reference laser is locked on the ULE cavity and its
frequency can be chosen freely. The locked laser is then sent on an additional cavity
consisting of an planar mirror mounted on an piezo to remotely adjust the distance to
the second concave mirror. As scanning the length of the cavity has the same effect
as scanning the laser frequency, the reference laser and piezo voltage of the transfer
cavity can be used to actively stabilize the length of the cavity against unwanted drifts.
Lastly another laser (referred to as transfer laser) is coupled into the same transfer
cavity and frequency stabilized onto this one. In both cases EOMs are used to modulate
the frequency sidebands. Later in the experiments it should be possible to choose the
locking point freely, e.g. to be exactly on resonance with an atomic transition, therefore
a second modulation frequency is applied to the EOM in the order of 50 − 500 MHz.
In contrast to the modulation for the PDH-signal here the amplitude is optimized for
maximum signal in the first order, which will be used as locking signal. By changing
the modulation frequency the position of the first order relative to the non modulated
signal can be shifted and accordingly also the locking position. If the modulation range
of the EOM is larger than half the free spectral range of the cavity, it is possible to lock
the laser to every wavelength.
The schematic setup of a transfer cavity can be seen in fig. 4.3. Both lasers first pass
through a polarizing beam splitting cube in transmission, a quarter waveplate and a
lens (l1 and l2 respectively) which is individually calculate for optimized mode matching
inside the cavity [20], before being overlapped by a dichroic mirror and coupled into
the cavity. The transmitted signals get separated again using a dichroic mirror. The
reflection signal, which is needed for the PDH-signal, first travels back the same way
as the incoming beam until the polarizing beam splitting cube. Since it passed the
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4.4 Transfer Lock

Figure 4.3: Schematic set up of the laser locking technique using a transfer cavity, refer-
ence and transfer laser.

quarter waveplate a total of two times now the polarization of the reflected beam has
been rotated by 90 ◦ and gets reflected at the cube and can be observed on photodiodes
PD1 and PD3 respectively.
The advantage of this system is not only that it can be extended by an arbitrary number
of additional transfer lasers but it is also more cost-efficient than having multiple ULE
cavities. A more detailed description of the set up and measurements on the locking
performance can be found in [21].
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5 Laser System

5.1 Ground State Transition

As the ground state excitation for all experiments the 5S1/2 → 6P1/2 transition was used.
Important properties of this transition can be calculated using [23]. For rubidium 85 they
can be found in table 5.1. The corresponding spectrum can be seen in fig. 5.1 with the

Table 5.1: Optical properties for the 5S1/2 → 6P1/2 transition in rubidium 85 calculated
using [23].

transition wavelength λ 421.673 nm
reduced dipole moment 〈J ||er||J ′〉 0.235 a0e

decay rate Γ 1.498 · 106 s−1

lifetime τ6P1/2
129.3 ns

absolute values taken from [22]. This is always used as an absolute frequency reference
to stabilize the laser frequency resonant to a specific hyperfine transition. Therefore,
the corresponding reduced dipole moment has to be considered as derived in section 1.2.
The required transition strength factors are shown in table 5.2. The used laser system

Table 5.2: Relative hyperfine transition strength factors SFF ′ for the 5S1/2 → 6P1/2

transition calculated with eq. (1.24).

85Rb
S22 2/9 S32 5/9
S23 7/9 S33 4/9

87Rb
S11 1/6 S21 1/2
S12 5/6 S22 1/2

to excite the ground state transition is a TA-SHG Pro from Toptica with a fundamental
design wavelength of 840.6 nm resulting in the frequency doubled output of 420.3 nm
with a maximum power of roughly 70 mW. A side output of the fundamental laser was
used to stabilize the laser frequency.
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5.2 Rydberg Transition

Figure 5.1: Saturation spectrum for the 5S1/2 → 6P1/2 transition for natural rubidium.
Values taken from [22].

5.2 Rydberg Transition

In the scope of this thesis two different Rydberg states were used, namely the 40S1/2

and 32S1/2 were excited via a two photon transition with the intermediate state 6P1/2.
The relevant optical properties are shown in table 5.3.

Both transitions were investigated with the same Toptica DL pro diode laser with

Table 5.3: Optical properties for the Rydberg transition in rubidium 85 calculated using
[23].

6P1/2 → 32S1/2 6P1/2 → 40S1/2

transition wavelength λ 1015.84 nm 1010.61 nm
reduced dipole moment 〈J ||er||J ′〉 0.033 a0e 0.023 a0e

decay rate Γ 2.11 · 103 s−1 1.01 · 103 s−1

lifetime τ 30.1µs 62.7µs

a maximum output power of around 100 mW. When comparing the properties of the
ground and Rydberg transition there are a few things to note. First of all the reduced
dipole matrix element is roughly a factor 10 smaller which means in order to achieve
the same Rabi frequency for identical beam parameters a 100 times higher laser power
is needed. E.g. in order to achieve a Rabi frequency of around 1 · 2πGHz, with a beam
waist of around 40µm the infrared laser needs a peak power of roughly 100 W. This is
impossible to achieve with currently commercially available continuous wave lasers and
as the four wave mixing experiment will be done with pulsed lasers anyway a custom
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5 Laser System

build pulsed amplifier will be used.

5.2.1 Pulsed Fiber Amplifier

Apart from the high peak power additional requirements for the amplifier given by the
plans for the pulsed four wave mixing experiment are:

� Working range between 1008-1024 nm

� Pulse duration between 0.5-10 ns

� Pulse duration jitter < 100 ps

� Repetition rate from 50 Hz to 1 MHz

As those requirements can not be fulfilled by commercially available amplifiers, one was
custom build by the Fraunhofer Institute for Applied Optics and Precision Engineering
IOF in Jena [7], based on a solid state amplifier using Ytterbium doped glass fibers.
The previous described diode laser is used as master oscillator, which in the first stage
passes through an electro-optical intensity modulator (EOIM) to create 1 ns pulses with a
repetition rate of 3 MHz. These subsequently get preamplified before passing an acousto
optical modulator (AOM) where the repetition rate can be further reduced by factor 3-30.
A smaller repetition rate leads to a higher amplification factor in the following amplifier,
as more time passes between two pulses, leading to a higher inversion population in
the gain medium of the amplifier. Before the main amplifier the pulses pass once again
a preamplifier. With a second AOM the repetition rate can once again be reduced
without affecting the peak power. The pulselength can be adjusted through the EOIM
from roughly 1 ns to 10 ns. When changing the pulselength the repetition rate has to be
adapted accordingly to guarantee a high enough inversion in the amplifier for consistent
amplification over the whole duration of the pulse. Figure 5.2 shows the pulse shape for a
10 ns pulse. Here it can be seen that the amplifier is approaching its operation limit and
the amplification starts to decrease over the pulse duration. But as the decrease is in the
order of 20 % the pulse can still be assumed to be rectangular in a first approximation.
It is also to note, that the slow decrease at the end of the pulse is due to the properties
of the used photodiode as this was not observed in [7] and can therefore be neglected.
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5.2 Rydberg Transition

Figure 5.2: Measured single shot temporal pulse shape for a pulselength of 10 ns and
with a repetition rate of 100 kHz.
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Part III

Thermal Steady State Rydberg
Spectroscopy
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Introduction

The first important step towards pulsed four wave mixing is exciting the Rydberg atoms
in the two photon scheme with continuous wave lasers. This is not only needed as the
mandatory absolute frequency reference for the Rydberg transition, but also to examine
the occurring effects like Autler Townes Splitting and EIT.
In this part the experimental setup is described, before the underlying principle for sim-
ulating steady state experiments is presented. Subsequently, the experimental results
are shown and compared to simulations.

5S1/2

6P1/2

40S1/2

422 nm

1011 nm

Figure 5.3: Excitation scheme used
for the continuous wave
Rydberg spectroscopy.

Figure 5.3 shows the used excitation scheme. The
interesting part of this is, that the probe wave-
length with 422 nm is shorter than the coupling
wavelength 1011 nm. At room temperature this can
lead to unique features due to the response of dif-
ferent velocity classes and has been studied before
using a similar levelscheme in cesium [24].

33



6 Experimental Setup

In fig. 6.1 the experimental setup can be seen. The blue probe laser, which corresponds
to the ground state transition is divided into two arms such that their the power ratio
can be manually adjust through a λ/2 waveplate and polarizing beamsplitting cube
combination. Inside the 20 cm long rubidium cell both beams are overlapped again in
counter propagating geometry and have a waist radius of 600(10) µm. This part can be
used for the ground state saturation spectroscopy as seen in fig. 5.1. For the Rydberg
spectroscopy both beams are additionally overlapped with the infrared Rydberg laser,
in this chapter referred to as coupling laser. The advantage of this setup is that for the
Rydberg spectroscopy both the co- and counter propagating case can be investigated
on photodiode PD1 or PD2 respectively, by simply blocking the other side arm of the
probe laser or changing the orientation of the flip mirror. Since the signals are expected
to be very small, they are measured using a lock-in amplifier. The working principle of
this type of amplifier is to extract a signal oscillating with a known carrier frequency
and thereby suppressing random noise effects. Therefore the coupling laser is modulated
using the 0th order beam of an acousto optical modulator (AOM) with a frequency of
roughly 80 kHz. The lenses l1 and l2 are used to first focus inside the AOM to reduce
the switching time and subsequently modify the beam waist and accordingly the Rabi
frequency, inside the cell.
For all following measurements in this part, if not stated otherwise, both lasers were
locked on resonance, onto the actively stabilized transfer cavity using the cavity peak
generated by the first order frequency modulation of the EOM. The frequency of the
EOM was then increased or decreased in small steps (< 1 MHz) which the PID controller
can follow, meaning the lasers can be slowly scanned while still being locked, where the
EOM frequency also gives a relative frequency scaling. This technique also ensures that
noise is sufficiently reduced by the lock-in amplifier, since long integration times, in the
order of 50 ms, can be used.
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Figure 6.1: Schematic setup for the Rydberg spectroscopy.
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7 Steady State Simulations

In order to not only get a feeling of what to expect, but to compare the results to the
theory, it is necessary to also have simulations of the experiments. Those are based on
the theoretical approach presented in chapter 1. Depending on the number n of atomic
energy levels included in the simulation the n-dimensional Hamiltonian is set up with
the corresponding Rabi frequencies and multi-photon detunings, as well as the Lindblad
operator including all decay and dephasing rates. Putting those into the steady state
Master equation in Lindblad form and solving the system of linear equations with the
additional condition Tr(ρ) = 1, a first result can already be obtained. But as men-
tioned before for experiments at or above room temperature the Doppler effect can not
be neglected. Therefore, for each velocity class the density matrix has to be calculated
individually, where the corresponding Doppler shift is included in the Hamiltonian. The
determined results are then each weighted with the probability of the corresponding ve-
locity class according to the Boltzmann distribution and summed up. To qualitatively
compare them with measured results, in first approximation one can take the absorption
coefficient of the corresponding transition which is proportional to the imaginary part
of the susceptibility. This is the working principle for all simulations in this part.
With a simple three level system, the previous mentioned wavelength dependence of
the EIT signal can be investigated. With two lasers in counter propagating geometry
the calculated absorption coefficient can be seen in fig. 7.1. The upper row shows the
obtained results per velocity class and in the lower row the resulting Doppler averaged
signal can be seen, each for three different wavelength ratios between the probe and
coupling laser, λ12,a/λ23,a = 1000 nm/400 nm = 5/2, λ12,b/λ23,b = 400 nm/400 nm = 1
and λ12,c/λ23,c = 400 nm/1000 nm = 2/5 for the subplots a) - c) correspondingly. The
other parameters are identical for all simulations (Rabi frequencies, decays, tempera-
ture). In the velocity classes resolved simulations two features can be found in all three
cases. First it can be seen that if the coupling laser is far off resonant, the probe only
gets absorbed for a range of velocity classes (bright horizontal line around v = 0) and
then stays in the intermediate state. This range is given by the Doppler width of the
probe transition and thus proportional to 1/kp, which explains the broader feature for
the first and the equal broadening for the second and third case. The second charac-
teristic feature is the dark and narrow line at two-photon resonance. In the case of
equal k vectors this occurs at ∆23 = 0. In general the gradient of the line is given by
1/ (kp − kc). Close to resonance the strong coupling laser perturbs the intermediate and
excited state which leads to an avoided crossing. After weighting each velocity class
with its according probability and summing over them the resulting transmission signal
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can be seen in the lower row of fig. 7.1. For the second case with equal wavelengths the
result is as expected a very narrow dip, because due to the counter propagating beams
the Doppler broadening cancels out. For the other two cases the lineshape is not only
given by the Doppler broadening but is dominated by the exact behavior of the avoided
crossing. For longer probe wavelengths this leads, as seen in the lower left, to a very
large and broad EIT feature and additional enhanced absorption caused by two-photon
transitions at the wings. In contrast, if the wavelength of the coupling laser is longer,
the EIT signal is strongly suppressed as seen in the lower right (note the different scaling
of the y-axis compared to the other plots). Here the ratio of the two wavelengths is 0.4
while it is roughly 0.42 in the experiment. Accordingly, the EIT signal from a thermal
vapor in the inverted scheme is expected to be weaker compared to the not inverted
scheme.
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7 Steady State Simulations

Figure 7.1: Simulated coherence between the ground and intermediate state −Im (ρ̃21)
for different coupling detunings ∆23 and velocity classes v in the upper row
and the resulting Doppler-averaged signal (lower row) in a three-level ladder
system for counter propagating laser beams for different wavelength ratios

of probe and coupling wavelengths: a)
λ12,a

λ23,a

=
1000 nm

400 nm
=

5

2
, b)

λ12,b

λ23,b

=

400 nm

400 nm
= 1 and c)

λ12,c

λ23,c

=
400 nm

1000 nm
=

2

5
. For all simulations: Ω12/Γ21 =

1

500
, Ω23/Γ21 =

2

5
, Γ21 = 200 · Γ32 and T = 100 ◦C.
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8 Experimental Results

8.1 Autler-Townes-Splitting

To observe Autler-Townes splitting in the classical way, e.g. [25], the strong coupling
laser is used to induce the splitting, which is then measured with a coupling laser.
Therefore, it is crucial that for the whole spatial probing area the splitting is equal,
meaning the coupling power is constant. This can be achieved by accordingly choosing
a larger beam diameter for the coupling laser and a more focused probe laser. But for
this experiment the laser inducing the splitting is the probe laser itself, as the coupling
between the Rydberg and intermediate state is very weak. This splitting can also be
observed by probing the Rydberg transition. To be able to do this, one has to compromise
and choose the beam waist of the coupling laser in the same order as the probe laser,
with 700(20) µm, which means that one the one hand the splitting can be observed on
both transitions, but the splitting is given by the average over all induced splittings in
the probing area.
For high coupling and low probe frequencies the typical EIT signal can be clearly seen in
fig. 8.1, but for increasing probe power the dip starts to split into two according to the
Rabi frequency of the ground state transition. The splitting of the intermediate state
can be directly observed, like theoretically derived in section 1.4.2. When neglecting an
additional splitting of the excited state, the splitting is given by the effective two photon
Rabi frequency Ω2,ph =

√
Ω2

12 + Ω2
23, according to eq. (1.44).

In a simplified approach one can simulate this by assuming a three level system (|1〉
ground, |2〉 intermediate and |3〉 rydberg state). The Lindblad operator consists of three
parts the direct decays between the levels Γdir,21 and Γdir,32 with the values from table 5.1
and 5.3, indirect decays to the ground state over other, not included dark states Γindir,21

and Γindir,31, as well as the transit time decays Γtt,31, Γtt,21 and Γtt,11. As the transit time
decay is caused by atoms flying out of the excitation volume, which is here limited by
the probe beam waist with ωr = 600µm, this rate is the same for all transitions and can
be calculated using eq. (1.50) resulting in

ΓTT = 0.066 · 2πMHz. (8.1)

The values used for the indirect decays are calculated with [23] and can be found in
appendix B. Here it was neglected that the atoms remain in other, not-included inter-
mediate states for a finite time before they decay further into the ground state. For
the remaining parameters (Rabi frequencies, temperature, detunings) the same values
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8 Experimental Results

Figure 8.1: Measured probe and coupling transmission for different probe powers. The
coupling laser was kept at a Rabi frequency of 1.28 · 2πMHz and the cell at
a temperature of 75 ◦C.

Figure 8.2: Simulated absorption coefficient for the ground state α12 and Rydberg transi-
tion α23 in dependence of the rydberg state detuning ∆23 for different ground
state Rabi frequencies Ω21. The temperature was set to 75 ◦C and the Ryd-
berg Rabi frequency at 1.28 · 2πMHz.
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8.1 Autler-Townes-Splitting

Figure 8.3: From the measurement and simulation extracted Autler Townes Splitting
γATS for different probe Rabi frequencies Ω12. The coupling Rabi frequency
was set to 1.28 · 2πMHz and the cell temperature at 75 ◦C.

as in the experiment were chosen. The result can be seen in fig. 8.2. The fast additional
oscillations, which can be seen on the wings of the signal are a sampling feature caused
by the discrete selection of velocity classes and can be reduced by increasing the number
of velocity classes taken into account.
Qualitatively, the signal shape and behavior of the measurement can be reproduced very
well. In order to quantitatively compare the experimental results with the simulations,
from both the corresponding Autler Townes splittings γATS are abstracted. As seen in
fig. 8.3 the measured splitting is always larger than the simulated one but in the same
order of magnitude. The difference in the experimental data can be attributed to the
uncertainty of the Rabi frequencies, that is namely influenced by the beam waist and
laser power, additionally the measured splitting can be distorted by the drifting of the
transfer cavity, caused by temperature or pressure changes. In addition the fitting of the
Gaussian peaks are also subject to errors, which is shown by the corresponding errorbars.
Those are all summarized in the error bars displayed with the results. Furthermore, only
a very simplified model of the actual level system is assumed in the simulation, neglect-
ing additional states or interactions and additionally, all spacial properties of the laser
beams like the divergence in propagation direction or the Gaussian beam profile are not
included.
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8 Experimental Results

8.2 Electromagnetically Induced Transparency

To further investigate the behavior of EIT in the inverted scheme the coupling laser was
focused down to a waist radius of 160(10) µm, to achieve higher Rabi frequencies. For all
following measurements the cell was kept at a temperature of 115 ◦C, the ground state
laser was locked to the 85Rb 5S1/2 F = 3 → 6P1/2 F

′ = 3 transition and the coupling
laser to the corresponding Rydberg transition 6P1/2 F

′ = 3 → 40S1/2.

8.2.1 Observed Hyperfine Splitting

Even though the probe laser is locked to the F ′ = 3 intermediate hyperfine state, due
to the Doppler broadening of the atoms inside the cell, for a certain velocity class v the
Doppler detuning of the probe laser is equal to the hyperfine splitting ∆HFS of the 6P1/2

state

∆HFS = k12 · v (8.2)

with the probe wavevector k12, meaning the excitation is on resonance to the F ′ = 2
intermediate state. To excite the atoms of this velocity class also to the Rydberg state
the coupling laser has to be detuned accordingly depending on whether the lasers are co-
or counter-propagating. By scanning the coupling laser this effective hyperfine splitting
∆HFS’ can be measured

∆HFS’ = k12 · v ± k23 · v

= ∆HFS

(
1± k23

k12

)
= ∆HFS

(
1± λ12

λ23

) (8.3)

here the positive sign corresponds to co- and the negative sign to counter-propagating
beams.
Figure 8.4 shows the measured EIT-signal for both cases. By fitting a Gaussian profile
to the absorption peaks the splitting can be calculated. The obtained values can be
compared to the, with eq. (8.3) calculated, theoretical values. For those a hyperfine
splitting of 117.33 · 2πMHz [22] is assumed. The obtained values are shown in table 8.1.

Table 8.1: Comparison of the theoretical and measured splittings between the two inter-
mediate states 6P1/2 F

′ = 2 and F ′ = 3 ∆HFS’ for co- and counter-propagating
laser beams. For the hyperfine splitting 117.33 · 2πMHz [22] is assumed.

∆HFS’, theo (2πMHz) ∆HFS’, meas (2πMHz)
co-propagating 166.29 165.29(260)

counter-propagating 68.37 68.52(190)
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8.2 Electromagnetically Induced Transparency

Figure 8.4: Measured probe absorption in dependence of the coupling detuning ∆1011

for the lasers in co- and counter-propagating configuration. In both cases
the coupling Rabi frequency was 6.07 · 2πMHz and the probe frequency
7.78 · 2πMHz in the co-propagating and 7.51 · 2πMHz in the counter-
propagating case. Marked by the gray dashed lines are the center of the
fitted absorption dips.
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8 Experimental Results

It can be seen that the measured values are in good agreement with the theoretical
values. For co-propagating lasers the EIT-signal is weaker due to the Doppler averaging,
which is the reason for the worse signal to noise ratio and the resulting greater deviation
from the theoretical value.

8.2.2 Power Dependency

To further investigate the behavior of the EIT-signal, systematic measurements were per-
formed for different probe and coupling Rabi frequencies, by changing the corresponding
laser power.

Counter-Propagating

Figure 8.5 shows the obtained signal for different probe Rabi frequencies for counter-
propagating lasers. On the left side, the unmodified results are shown, whereas on
the right side, the data sets have been individually normalized. The most prominent
feature is that for certain frequencies the prominence of the EIT-dip not only decreases
but also changes sign and turns into a peak. This behavior was also observed in a
similar level scheme using cesium [24]. The changing point from dip to peak is also
different for the two hyperfine intermediate states. For the F ′ = 2 transition one can
clearly see the EIT dip starting to appear but only at higher Rabi frequencies compared
to the F ′ = 3 transition. It is also important to note, that the stated probe Rabi
frequencies are calculated using the reduced dipole moment 〈J | |er| |J ′〉, so in order
to calculate the Rabi frequency for the specific hyperfine transitions this value has to
be weighted according to eq. (1.23) with the corresponding transition strength factor√
SFF ′ . This supports the intuitive idea, that the different tipping points are connected

to the corresponding transition strength factors, as S33 < S32. This behavior change of
the signal can be explained by two competing phenomena, enhanced transmission (EIT)
and enhanced absorption (EA), with one of them dominating depending on the Rabi
frequencies. For constant coupling power the transition from EIT to EA takes place
for decreasing probe Rabi frequencies. A possible explanation for this is that EIT is a
phase sensitive process, whereas EA is not. This means that a dephasing faster than the
Rabi frequencies would make it impossible to observe EIT but not influence EA. Since
dephasing processes often depend on the velocity of the atoms, this would also explain
the difference between the two intermediate hyperfine states. However, to confirm this
theory, further measurements and detailed theoretical studies are necessary.
It can also be seen that for increasing probe intensities the EIT feature gets broader,
which can be attributed to an Autler-Townes splitting. But in contrast to the previous
section, here, the other occurring effects are more prominent, and overlay the splitting
which therefore cannot be resolved.
For a higher coupling Rabi frequency and increasing probe power (lower left of fig. 8.5),
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8.2 Electromagnetically Induced Transparency

Figure 8.5: Measured probe absorption signal for counter-propagating beams and differ-
ent probe Rabi frequencies in dependence of the coupling detuning. The left
side shows the unmodified measurement results, whereas on the right side
they are individually normalized and plotted in a waterfall-like fashion.
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8 Experimental Results

Figure 8.6: Measured prominence of the side peak for different probe Rabi frequencies
and a coupling frequency of 4.23·2πMHz, as well as a first degree polynomial
fit function, fitted to the data points with Ω422 > 3 · 2πMHz.

the enhanced absorption on the wings of the EIT signal can be seen. Between the two
hyperfine signals they overlap leading to the effect, that the intensity does not go back
to zero.
Another feature visible in the upper left part of fig. 8.5 is that for increasing probe Rabi
frequencies a side peak emerges from the main EIT peak towards negative coupling
detungings, corresponding to lower energies. As Rydberg-Rydberg interactions for S-
states are always repulsive, those would lead to a feature towards positive detunings and
can therefore not be the underlying effect causing the side peak. An attractive force and
thus possible reason is the DC-Stark effect. In general, an external electric field induces
a dipole moment inside the atom, leading to a change in the energy levels, the so called
Stark-shift ∆Stark. The size of the shift depends on the polarizability of the atom α and
the electric field E and is given by

∆Stark = −1

2
αE2 (8.4)

for small electric fields, which cannot break the degeneracy of the angular momentum
quantum number [26]. In order to examine the cause of this electric field, a Gaussian
profile if fitted to the side peak and the obtained prominence is plotted over the corre-
sponding probe Rabi frequency in fig. 8.6. Here, a clear threshold can be seen, after with
the prominence of the side peak increases proportional with the Rabi frequency. This
behavior indicates, that the electric field inducing the Stark effect is due to the creation
of a plasma like investigated in [27]. The observation of the linear scaling with the probe
Rabi frequency also matches the results from [27], as for this data set the coupling laser
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8.2 Electromagnetically Induced Transparency

was scanned from high to low detunings.
In fig. 8.7 the measured signal for different coupling Rabi frequencies is shown. For
the on resonance transition it can be seen, that in the case of the investigated probe
intensities the coupling laser is not able to induce the change from EIT to EA. The off
resonant transition shows the beginning of the transition from EA to EIT for increasing
coupling Rabi frequencies.
Furthermore it can be seen, that higher coupling Rabi frequencies not only increase the
prominence of the EIT dip but also lead to a broadening of the feature. This effect
occurs due to saturation, which reduces the absorption near the resonance more than
for frequencies far off-resonant. The absorption coefficient is Lorentzian shaped and has
a full-width at half maximum Γ of [28]

Γ =
√

2Ω2 + Γ2
0 (8.5)

with the natural linewidth Γ0 and the Rabi frequency Ω inducing the so called power
broadening. In first approximation fitting a Lorentzian profile to the main EIT dip of
the data in fig. 8.7 and extracting the corresponding FWHM can be used to compare the
measurements to the theory. The obtained broadenings for different coupling frequencies
and two different probe frequencies can be seen in fig. 8.8, as well as the fitted theoretical
behavior according to eq. (8.5). In direct comparison, it is noticeable, that there is
an offset between the two measurement series and the case with a lower probe Rabi
frequency matches the theory better. The offset shows the additional broadening caused
by the probe laser. For the Lorentzian fit the data points in the detuning range of
the side peak were neglected but for high coupling and probe Rabi frequencies the two
peaks start to overlap which also leads to a broadening of the EIT dip not included
in the previous theoretical model explaining the higher derivation of the second data
set. Also not included is the broadening by a beginning Autler-Townes splitting. The
fitting parameter Γ0 does not resemble the natural linewidth but the combined linewidth
resulting from all additionally occurring broadening effects e.g. Doppler broadening.
The obtained values for the probe Rabi frequency of 4.49 · 2πMHz, Γ0,1 and Γ0,2 for
6.35 · 2πMHz are

Γ0,1 = 4.20(87) · 2πMHz (8.6)

Γ0,2 = 6.94(147) · 2πMHz (8.7)

and in the expected order of magnitude.

Co-Propagating

The same systematic analysis of the power dependency of the EIT- and EA-signal can
also be done with co-propagating laser beams. This is shown in fig. 8.9. Compared to
the counter-propagating case, for increasing probe power an Autler-Townes splitting of
the EA peak can be seen for both hyperfine transitions. For increasing coupling Rabi
frequencies however, this splitting does not significantly increase.
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8 Experimental Results

Figure 8.7: Measured probe absorption signal for counter-propagating beams and differ-
ent coupling Rabi frequencies in dependence of the coupling detuning. The
left side shows the unmodified measurement results, whereas on the right
side they are individually normalized and plotted in a waterfall-like fashion.
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8.2 Electromagnetically Induced Transparency

Figure 8.8: Linewidth ΓF’=3 of the EIT-signal from the 85Rb 5S1/2 F = 3→ 6P1/2 F
′ = 3

→ 40S1/2 transition for different coupling Rabi frequencies Ω1011, obtained by
fitting a Lorentzian profile. The measurements are fitted with a theoretical
model for power broadening Γ =

√
2Ω2 + Γ2

0 shown in a solid black line for
the red data points and dashed lines for the blue data points.

Figure 8.9: Measured probe absorption signal for co-propagating beams in dependence of
the coupling detuning for different probe and coupling Rabi frequencies. The
measurement result are individually normalized and plotted in a waterfall-
like fashion.
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8 Experimental Results

8.2.3 Simulations

To further investigate and understand the, in this system occurring, effects like enhanced
transmission and enhanced absorption or Autler-Townes splitting simulations are needed.
But therefore it if not sufficient enough to assume a three or for level system, as also
the optical pumping of other, not by laser fields coupled, intermediate states plays an
important role. A first approximation would be to include one additional state for every
coupled level. When including all hyperfine states (in total 6 states) this would mean
solving the Lindblad equation for a 12-level system, which was out of scope for this
thesis.
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Part IV

Thermal Nanosecond Pulsed Rydberg
Spectroscopy
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Introduction

Observing coherent Rydberg dynamics in the form of Rabi oscillations is more challeng-
ing in thermal vapors compared to ultra cold experiments, due to the short coherence
time given by the velocity distribution of the atoms. As this timescale can also not be
easily extended the only possibility is inducing dynamics faster than the decoherence
time, in this case in the order of one gigahertz.

5S1/2

6P1/2

32S1/2

422 nm

1016 nm

Figure 8.10: Excitation scheme
used for the pulsed
Rydberg spectroscopy.

The excitation to the Rydberg state in this exper-
iment is also done via a three-level ladder system
as shown in fig. 8.10. But in contrast to the ex-
periment discussed in part III, here the Rydberg
transition was changed to excite the 32S1/2 state.
This has multiple reasons the most important one
is the nearly 1.5 times larger transition dipole mo-
ment compared to the 40S1/2 state (see table 5.3),
which means that with the same laser parameters
(power and beam waist) the Rabi frequency is also
1.5 times larger. Additionally a dephasing of the
Rydberg state of rubidium has been observed [29],
which scales, like the Van der Waals interaction,
with (n∗)11/2 and dampens the Rabi oscillations.
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9 Experimental Setup

In order to achieve high Rabi frequencies for a certain transition there are two parameters
one can optimize. Either increase the laser power or decrease the beam waist. For the
Rydberg transition both things are needed due to the small dipole moment. By using
the pulsed fiber amplifier (described in section 5.2.1) a peak power of 100 W can be
provided and the beam is additionally tightly focused into the cell, with a focal radius
of around 35µm. The ground state probe laser is kept continuous, but has also to be
tightly focused to at least half the beam size of the coupling laser, to ensure that in the
probing area the coupling Rabi frequency is homogeneous.
In fig. 9.1 the complete experimental setup can be seen. The 422 nm probe laser and
1016 nm coupling laser are overlapped inside a 5 mm rubidium cell in counter propagating
configuration using dichroic mirrors and individually focused inside the cell. The first
photodiode PD1 is used to monitor the pulses and as an optical trigger. With PD2,
an AC-coupled photodiode from Femto with a bandwidth from 10 kHz to 1.4 GHz, the
transmission signal is measured.
To determine the exact focus size of both lasers, the cell was first replaced with a pinhole
with a diameter of 10µm which was moved through the focus in horizontal and vertical
direction and the transmitted intensities of the two lasers were measured individually.
The obtained signals in horizontal direction can be seen in Figure 9.2. This signal does
not directly correspond to the beam profile but the convolution of the beam and pinhole
shape. Therefore this convolution is fitted to the data and the obtained focus radii are

wr,422 = 17.03(150) µm (9.1)

wr,1016 = 37.35(65) µm. (9.2)

Measurements for the vertical axis yielded results included in this uncertainty range.
For tightly focused beams the problem arises, that they are more divergent along the
propagation axis. The quantity used to measure this is the Rayleigh length zR, which is
defined as the distance from the minimum beam waist wr,0 to where the beam radius is
increased by a factor of

√
2

zR =
πw2

r,0

λ
. (9.3)

As for these experiments it is important, to have a homogeneous Rabi frequency along
the propagation axis, therefore half the cell length has to be in the same order of magni-
tude as the Rayleigh length. Therefore a 5 mm cell was chosen. To obtain high enough
rubidium densities, the reservoir of the cell was heated to 130 ◦C and additionally, to
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Figure 9.1: Schematic setup for the pulsed Rydberg spectroscopy to measure Rabi oscil-
lations.
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9 Experimental Setup

Figure 9.2: Measured intensity for the blue probe and infrared coupling beam in depen-
dence of the position of a 10µm pinhole moving horizontally through the
beam, as well as the fitted convolution of the pinhole and Gaussian shaped
beam profile. The obtained focus radii are 17.03(150) µm and 37.35(65) µm
for the probe and coupling beam respectively.

ensure that no rubidium condensates to the cell windows, where the laser beams pass
trough this part was heated to 150 ◦C. This temperature however, does not change the
vapor pressure in the cell, but determines the velocity distribution.
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10 Time Dependent Simulations

In the case of pulsed excitations on the nanosecond timescale, it is not sufficient to
calculate the steady state solution, as this regime is only reached for long timescales
with respect to the occurring decay and dephasing rates, which are also in the nano-
/microsecond range. Therefore, the time dependent Master equation has to be solved,
which will be done numerically by using the Runge-Kutta method. The coupled system
of differential equations is set up in the same way as described in chapter 7, also includ-
ing the Doppler effect. To solve differential equations, additionally an initial condition
is needed, which is determined by the exact system itself. For all experiments discussed
here the probe laser, driving the ground state transition, is continuous waved so the ini-
tial condition before the Rydberg pulse arrives is thus given by the steady state solution
of the two-level system consisting of the ground and excited state coupled by the probe
laser and can be calculated using eq. (1.30).

As previously stated, the goal of this experiment is to measure the Rydberg Rabi os-
cillations by probing the ground state transition. In order to understand the working
principle of this and illustrate the dynamics of such a system the three-level system from
fig. 8.10 is simulated. The assumed decays can be found in appendix B, for simplicity
reasons only the natural lifetime of the excited states are considered. For the coupling
laser a rectangular pulse shape with a pulselength of 10 ns and a Rabi frequency of
500 · 2πMHz was chosen. Figure 10.1 shows the resulting time evolution of the popu-
lations (top) and coherences (bottom). The gray dashed lines mark the beginning and
end of the pulse. The dynamics of the system can be separated in three parts, before,
during and after the coupling pulse.

Before the coupling pulse arrives, the only present light field is the continuous waved
probe laser, here with a Rabi frequency of 25 · 2πMHz, coupling the ground |1〉 and
intermediate state |2〉. Therefore, no atom can be excited in the Rydberg state |3〉, and
the system can be described as a two-level system in the steady state regime. This is the
initial condition for the simulations. Due to the weak probe Rabi frequency more than
96 % of the population stays in the ground state and correspondingly less than 4 % end
up in the intermediate state, resulting in a coherence Im(ρ̃21) close to zero. As expected
those properties stay constant for t < 0 as no additional effect arises which could disturb
the steady state.

At t = 0 the pulse arrives and accordingly the coupling Rabi frequency starts to in-
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10 Time Dependent Simulations

Figure 10.1: Simulated populations and coherences for a three level system of the
5S1/2 → 6P1/2 → 32S1/2 transition with counter propagating laser beams,
the corresponding decays (see appendix B) and a temperature of 155 ◦C.
The assumed coupling and probe Rabi frequencies are 500 · 2πMHz and
25 · 2πMHz respectively. The probe laser is continuous wave and the cou-
pling laser pulsed, whereby a rectangular pulseshape and duration of 10 ns
is assumed. The gray dashed lines mark the beginning and end of the pulse.
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crease, the previous steady state is disturbed as population from the intermediate state
gets pumped into the Rydberg state. After a so called π pulse, with Ωt = π, in this case
at 1 ns, nearly all population previously in the intermediate state has been moved to
the Rydberg state. As the population decreases in the intermediate state, it gets refilled
with atoms from the ground state, leading to an increasing average population in the
intermediate and Rydberg state per Rabi cycle. The coherence between the two states
Im(ρ̃32) shows oscillations with the same frequency. The coherence between ground and
intermediate state however shows oscillations with only half the frequency. In order
to explain this, it is helpful to transform the system into the dressed state picture as
described in section 1.4.2, where the splitting of the eigenstates directly corresponds to
the oscillation frequency occurring between those. On resonance, the splitting between
|+〉 and |−〉, which are given by the superposition of the intermediate |2〉 and excited
state |3〉, is

√
Ω2

12 + Ω2
23 ≈ Ω23. The energy of the ground state zero in the dressed

state picture, in first approximation for Ω12 ≈ 0. Therefore the splitting between |0〉
and |−〉 is 1

2

√
Ω2

12 + Ω2
23 ≈ 1

2
Ω23, which matches the simulation results. In a more visual

explanation of the factor 1
2

one can think of the Bloch sphere [28]. In a two level system,
a π pulse with Ωt = π flips all population from the ground to the excited state, but also
adds the factor i to the phase. This means that after one Rabi oscillation (2π pulse) all
population is back in the ground state but the phase is inverted. Therefore, to restore
the population and phase in the initial value two Rabi cycles are needed. Since coher-
ences are phase sensitive, the oscillations between ground and intermediate state have a
frequency of exactly half the coupling frequency between the intermediate and Rydberg
state.
If the coupling Rabi frequency would remain constant the system would reach a new
steady state, which however is not the case on the nanosecond timescale.

With the end of the coupling pulse at t = 10 ns the dynamics of the system change once
more. As the coupling Rabi frequency is zero, the atoms in the Rydberg state at the end
of the pulse remain there and slowly decay back to the intermediate and ground state.
But as the lifetime of the 32S1/2 Rydberg state is roughly 30µs this can be neglected on
the nanosecond timescale. The population remaining in the Rydberg state depends on
the exact point in the Rabi cycle at which the pulse ends. Without the coupling laser
the dominating driving force in the system is the probe laser. The system can again be
described as a two level system, like before the pulse, where the total population is not 1
but 1− ρ̃33(t = 10). The exact behavior of the population and coherence of the two-level
system depend solely on the density matrix in the moment the pulse end, as this sets
the starting values for the following dynamics. The system will reach an approximate
steady state solution again on the hundred nanosecond timescale. However, the actual
steady state is only reached once all Rydberg atoms have decayed back into the ground
or intermediate state. This will then also equal the initial starting point before the cou-
pling pulse ρ̃(t = 0) = ρ̃(t→∞).
For the following experiments in this part, due to the finite beam sizes, the dominating
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10 Time Dependent Simulations

effect for the decay will be the transit time, meaning the Rydberg atoms fly out of the
probe area, which will reduce the effective lifetime to below 100 ns. The repetition rate
of the pulses is 100 kHz, corresponding to a pulse every 10µs, which means that it can
be assumed that on this timescale the initial steady state is restored.

Those calculations and observations however, are only valid if the probe laser is weak in
comparison the the occurring decay rates and can be neglected on the timescale of the
pulse. Figure 10.2 shows the coherences for two different probe Rabi frequencies and a
coupling Rabi frequency of 1000 · 2πMHz. In the upper plot a) the previously discussed
case for a weak probe laser with a Rabi frequency of 10 · 2πMHz is shown again and in
the lower plot b) the probe Rabi frequency is 100 · 2πMHz. In comparison it becomes
noticeable that for the coherence Im(ρ̃32) the oscillation frequency is increased slightly
(see different phase of oscillation at the end of the coupling pulse), like predicted in
the dressed state picture where the oscillation frequency is given by

√
Ω2

12 + Ω2
23. Also

the probe frequency leads to a respective amplitude modulation of the signal. In the
coherence between ground and intermediate state the effect of a stronger probe laser is
more significant. The probe Rabi frequency superimposes the actual signal and the over-
lap of both frequencies is measured. On the other hand, when comparing the absolute
values the maximum amplitude in case b) is more than five times stronger than in case a).

In summary, from the simulations, the best way to directly measure Rydberg Rabi
oscillations is with a weak probe laser and very strong coupling laser. But, as a weak
probe laser corresponds to less Rydberg atoms this would mean an accordingly weaker
signal which is more challenging to actually measure. Therefore, for the experiment a
compromise between these two has to be found, so that the signal can be measured
with the given technical means, but the probe Rabi frequency does not superimpose the
actual signal.
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Figure 10.2: Simulated coherences for a three level system of the 5S1/2 → 6P1/2 → 32S1/2

transition with counter propagating laser beams, the corresponding decays
(see appendix B) and a temperature of 155 ◦C. The assumed coupling Rabi
frequency is 1000 ·2πMHz and the probe Rabi frequency for the upper plot
a) 10 · 2πMHz and for the lower plot b) 100 · 2πMHz. The probe laser
is continuous wave and the coupling laser pulsed, whereby a rectangular
pulseshape and duration of 10 ns is assumed. The gray dashed lines mark
the beginning and end of the pulse.
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11.1 Resonant GHz Rabi Flopping

When measuring signals on the nanosecond timescale, the properties of the used devices
play an important role, as e.g. the bandwidth of the coaxial cables and oscilloscope
must be higher than the frequency of the measured signal. Also the finite travel speed
of light and electronic signals can not be neglected any more as 1 m equals a time delay
of roughly 3 ns. As shown in fig. 9.1 two different photodiodes are used to measure
the coupling pulse and the probe transmission, resulting in a time difference between
those signals, which has to be deducted manually. In the top of fig. 11.1 both signals
are shown with the adjusted offset. The gray dashed lines mark the beginning and end
of the pulse, which is defined as the point on the rising or falling slope at which the
mean value changes the most, resulting in a pulse length of 10.65 ns. Here it is to note
that as stated in section 5.2.1 the slow decay after the pulse is an effect caused by the
photodiode as the actual pulse goes back to zero. As a first response to the coupling
laser the probe transmission increases slightly before decreasing and uniform oscillations
can be observed. This first increase, which could not be observed in the simulations
in fig. 10.2, can be attributed to the rise time of the coupling pulse, which is not, as
assumed in the simulations, infinitesimally small. With the end of the pulse, the probe
transmission drops abruptly due to the fast decrease of the coupling Rabi frequency.
The number of atoms remaining in the Rydberg state depends on the the exact point
in the Rabi cycle where the pulse stops. Those atoms then slowly decay back into the
ground state, either by direct/indirect decays or because the fly out of the probe area.
In the probe transmission signal it can also be seen that the two level system between
ground and intermediate states approaches the steady state solution again, whereby the
timescale of this is given by the different decays from the intermediate to the ground
state and can be determined by fitting the function of an exponential decay to the they
tail of the transmission after the coupling pulse (shown as black dashed line in fig. 11.1.
The obtained lifetime and resulting decay rate are

τmeas = 30.85(19) ns (11.1)

γmeas = 32.42(20) · 106 1

s
. (11.2)

The effective lifetime of the 6P1/2 state consists of two parts, the natural lifetime with
τ0 = 129.29 ns (calculated using [23]) which equals γ0 = 7.735 · 106 1

s
and the transit
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11.1 Resonant GHz Rabi Flopping

Figure 11.1: Top: In blue the coupling pulse is shown and in red the temporal probe
transmission signal. The gray dashed lines mark the beginning and end
of the pulse (definition in text). The corresponding Rabi frequencies are
Ω422 = 15.82 · 2πMHz and Ω1016 = 1315.22 · 2πMHz for the probe and
coupling transition. Bottom: Fourier transformation of the oscillating probe
transmission signal in the time window of the coupling pulse (gray dashed
lines).
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time. The transit time rate can be estimated using eq. (1.50)

γtt = 16.23 · 106 1

s
(11.3)

compared to the value obtained from the measurement

γtt,meas = γmeas − γ0

= 24.69 · 106 1

s

(11.4)

the theoretical value is roughly 1.5 times smaller, but as previously stated eq. (1.50)
is only an estimation for the order of magnitude of the value and does not give exact
values.
In order to determine the oscillation frequency of the measured Rabi oscillations the
probe signal in the corresponding time window is Fourier transformed which can be seen
in the bottom of fig. 11.1. The oscillation frequency corresponds to the visible peak
at a frequency of 381(95) · 2πMHz. In theory this should equal half the coupling Rabi
frequency 658(11) · 2πMHz. In comparison the measured value is significantly smaller
than the theoretical, meaning the actual Rabi frequency of the coupling laser is smaller
than calculated. This can be attributed to two different things, either the laser power
was smaller than assumed or the beam waist larger. One weakness of the setup of this
experiment is that the cell has to be removed in order to overlap the two beams and
perform the pinhole measurement. But when returning the cell, due to the dichroic
properties of glass and the different propagation directions the position of the two foci
changes. Due to the Gaussian profile of the two beams this could lead to the situation
that the probing area is not at the maximum coupling frequency. In order to compensate
this it is necessary to optimize the probe signal to achieve a maximum Rabi oscillation
frequency. In the scope of this thesis, this was done by manually varying the in-coupling
of the Rydberg laser. However, in this setup the necessary fine tuning was technically
not possible. In order to improve the signal it is therefore necessary to have more con-
trol over the overlap of the two laser beams with e.g. motorized mirrors which can be
remotely controlled to systematically optimize the signal.
By taking the values for the coupling Rabi frequency and transit time decay determined
in the experiment as well as the measured pulse shape, those can be used in order to
simulate the results like described in chapter 10. The result can be seen in fig. 11.2.
For the coupling pulse (shown in blue) the measured pulseshape was slightly modified
by cutting of the slow decay after the actual pulse, which is caused by a glitch of the
photodiode. Also a peak Rabi frequency of 900 · 2πMHz is assumed which corresponds
to an average Rabi frequency of 750 · 2πMHz during the duration of the pulse. The
probe Rabi frequency is also the same as in the experiment with 15.82 MHz. All decay
rates can be found in appendix B. When directly comparing experiment and simulation
figs. 11.1 and 11.2 a few things can be noted. First of all the assumption, that the initial
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11.1 Resonant GHz Rabi Flopping

Figure 11.2: Simulated coherences Im(ρ̃21) for a three level system of the 5S1/2 →
6P1/2 → 32S1/2 transition with counter propagating laser beams, the cor-
responding decays (see appendix B) and a temperature of 155 ◦C. In blue
the pulse shape of the coupling Rabi frequency Ω23 is shown with a peak
frequency of 900 · 2πMHz the pulseshape is adapted from the experimental
measurement where the glitch after the pulse caused by the photodiode is
removed. The probe laser is continuous waved with a Rabi frequency of
15.82 · 2πMHz
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11 Experimental Results

increase of the signal once the pulse arrives is due to the finite rise time of the coupling
pulse can be confirmed, as this peak was not visible in the simulations in chapter 10, with
a perfect rectangular pulse, but is visible in this simulation using the actual pulseshape.
Furthermore, the frequency of the oscillations match nicely due to the equal coupling
Rabi frequencies. But a difference can be seen in the amplitude of the oscillations. In
both cases the maximum amplitude of each Rabi cycle decreases with time after the first
oscillation, but in the experiment this is more significant. This behavior indicates that
in the experiment additional decay or dephasing effects occur which are not included in
the simulations, like collisions between the atoms. The sharp decrease of the signal after
the pulse, as seen in the measurement, is also found in the simulation. However, the
exact decay back into the steady state can not be reproduced, but as previously stated
this depends heavily on the exact point of the Rabi oscillation at which the coupling
pulse stops and the corresponding phase of the coherence at that moment. As both
Rabi frequencies could not have been determined to the precision needed to reproduce
this, the behavior of the measured probe transmission signal after the pulse could not
be reproduce in the simulations.

As the presented measurement is done using an AC coupled photodiode, the information
of the absolute value of the signal is lost. The advantage of the AC photodiode is
however, that it is technically easier to amplify a signal with a certain frequency range,
than the whole frequency spectrum which would be needed for a DC photodiode. Here,
the additional amplification is needed in order to measure the Rydberg Rabi oscillations
with low probe intensities. For higher probe powers the signal can also be detected using
a DC photodiode without additional amplification.
The comparison between the AC- and DC- photodiode can be seen in the upper part
of fig. 11.3. Both signals show the previously described features and as expected the
signal-to-noise ratio is significantly higher for the AC-photodiode. This is both due to
the additional amplifier, but also the limited bandwidth serves as a noise filter. The
absolute value given by the DC-photodiode can be used to compare the relative drop
of the signal to the simulation shown in the lower plot of fig. 11.3. The experimentally
determined decrease from the steady state level to the first dip in the Rabi oscillation is
≈ 11 % and from the simulation ≈ 6 %.
It can be concluded from this, that the presented simulation model is not only suitable
for a qualitative description of the experiment, but also provides quantitative results
in the correct order of magnitude. This is an important tool for the pulsed four wave
mixing experiment later on, as e.g. the Rydberg population can be extracted from the
simulation, which can not be easily measured.

66



11.1 Resonant GHz Rabi Flopping

Figure 11.3: Top: Comparison of the measured output voltage Vout of an AC and DC cou-
pled photodiode, with probe and coupling Rabi frequencies of 41.85·2πMHz
and 1315.22 ·2πMHz respectively. Bottom: Corresponding simulation with
the same probe Rabi frequency but coupling Rabi frequency of 900·2πMHz.

67



11 Experimental Results

11.2 Dependency on Rabi Frequency

In order to investigate the influence of the coupling Rabi frequency in more detail the
probe transmission is measured for different powers of the Rydberg laser. As previously
stated the effective Rabi frequency, corresponding to the oscillation frequency measured
in the probe transmission is given by

Ωeff =
1

2

√
Ω2

422 + Ω2
1016

≈ 1

2
Ω422 for Ω1016 � Ω422

(11.5)

This means for high coupling and low probe Rabi frequencies, the dependency can be
approximated as linear, whereas if the two Rabi frequencies are in the same order of
magnitude the square root-like behavior is expected. The top part of fig. 11.4 shows
the measurement results. For points of constant phase, e.g. the yellow lines regions
indicating a peak in the oscillation cycle, the square-root behavior according to eq. (11.5)
can be seen. The lower part of fig. 11.4 shows the according simulations. Similar to
section 11.1 lower than calculated Rabi frequencies were used for this simulation, but an
otherwise good agreement to the experiment can be found.

11.3 Detuning Dependency

All previously discussed formulas only account for resonant excitations. Therefore in
this section the influence of an additional detuning for the Rydberg laser shall be inves-
tigated. Figure 11.5 shows the simulated coherence between ground and intermediate
state for different detunings ∆23 of the coupling laser. It can be seen, that for increasing
detunings the frequency of the Rabi oscillations decreases. This behavior contradicts the
behavior of a simple two level system, in which the off resonant effective Rabi frequency
is given by Ωeff =

√
Ω2 + ∆2 and thus increases with the detuning. This is due to an

Autler-Townes splitting between the intermediate and Rydberg state, induced by the
strong coupling pulse. Therefore, it is useful to transform the system in the dressed
state picture, where the superposition of intermediate and Rydberg state form the new
states |+〉 and |−〉 like derived in section 1.4.2 and the splitting between those is given
by the coupling Rabi frequency.
In the case of atoms at rest and resonant excitation, the probed oscillation frequency
is exactly half of the coupling Rabi frequency. With an increasing coupling detuning
however, the distance from one of the dressed state to the ground state decreases while
the other increases, depending on the sign of the detuning (see p.53, fig.4.9 in [30]). As
the respective state gets closer to the ground state, the probed Rabi frequency decreases
while for the other state moving away from the ground state, the Rabi frequency in-
creases. As the population also increases for the state closer to the ground state, this
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11.3 Detuning Dependency

Figure 11.4: Top: Measured transmission of the probe laser in dependence of the peak
coupling Rabi frequency. Bottom: Simulated transmission Im(ρ̃21) assumed
decay rates can be found in appendix B for both cases Ω422 = 18.04·2πMHz.
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11 Experimental Results

Figure 11.5: Simulation of the coherence between ground and intermediate state Im(ρ̃21)
for different coupling detunings ∆23, with a probe and coupling Rabi fre-
quency of 10 · 2πMHz and 1000 · 2πMHz respectively.

signal with decreased Rabi frequency dominates.

For moving atoms the Doppler effect leads to an additional detuning, which means that
for certain velocity classes the dressed states even approach resonance, leading to an
even more prominent signal with slower oscillation. The average contribution from all
velocity results in the signal shown in fig. 11.5
This however is, only a very simplified explanation and further discussion can be found
in [8, 30, 31].

The data obtained from the measurement shown in fig. 11.6 however, does not match
the simulation. The frequency axis was relatively scaled using a reference cavity and the
absolute zero point corresponds to the on-resonance EIT signal observed in a reference
cell using the reference continuous wave output of the fiber amplifier. In the detuning
range between roughly ±1000 ·2πMHz, Rabi oscillations can be seen, which do not have
the maximum frequency at ∆1016 = 0 but rather at 1000 · 2πMHz. For higher positive
detunings comparably slow frequencies can be observed, further decreasing for higher
detunings. This part matches quantitatively to the simulations.
For negative detunings on the other hand, the Rabi oscillations get slower until at
≈ −1900 · 2πMHz a regime is reached, where the coupling laser does not induce any
measurable effect on the probe transition, and the signal stays constant. Decreasing
the detuning more for ∆1016 < −2100 · 2πMHz the probe transmission decreases again
during the pulse time. It can not be determined, whether this corresponds to a Rabi
oscillation with a period longer than the pulselength or solely a decay.
In comparison, in [31] a similar experiment was done in the not inverted scheme and
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11.3 Detuning Dependency

Figure 11.6: Measured probe transmission for different coupling detunings ∆1016, with
probe and coupling frequencies of 22.4 · 2πMHz and 1357 · 2πMHz respec-
tively.

the 5P3/2 intermediate state, they also used the same simulation method, however, they
present good agreement between measurement and simulation. Furthermore, the quali-
tative behavior matches the one observed in fig. 11.5.

The most puzzling part about the measurement results is, that it does not show any
symmetry around the suspected resonance. This suggests, that this is not the perceived
resonance from the perspective of atoms experiencing the pulse. As previously stated,
this reference point was determined in a different reference cell using continuous wave
spectroscopy with comparable weak Rabi frequencies.

An explanation of this effect therefore likely needs to include additional line shifts in-
troduced by the excitation. One possibility is the AC-Stark shift [32]. Similar to the
DC-Stark effect (see eq. (8.4)), a strong pulsed laser leads to a shift of all atomic levels.
Depending on the field strength E of the pulsed laser and the dynamic polarizability
α(λ), the shift can be approximated as

δAC-Stark ≈ −
1

4
α(λ)E2. (11.6)

The dynamic polarizability of the ground state, induced by a light field with a wavelength
of 1016 nm, can be calculated using [23], resulting in

α(1016 nm) = 1.90 · 10−5 Hz

(V/m)2 . (11.7)
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11 Experimental Results

Figure 11.7: Simulation of the coherence between ground and intermediate state Im(ρ̃21)
for different coupling detunings ∆23, with a probe and coupling Rabi fre-
quency of 10·2πMHz and 1000·2πMHz, including the AC-Stark shift of the
ground state with 327 · 2πMHz. In first approximation the AC-Stark shift
is assumed to be constant during the coupling pulse and otherwise zero.

Assuming a peak power of 100 W and a beam waist of 37.35µm this corresponds to an
energy shift of

δAC-Stark ≈ −327 · 2πMHz. (11.8)

This can be included into the simulations as an additional time dependent detuning to
the ground state and the result can be seen in fig. 11.7. Before and after the coupling
pulse the Stark shift is estimated to be zero and assumed to be constant during the pulse.
It can be seen, that the simulated coherence shows also a not symmetric behavior, with
slower oscillations for positive detunings and faster oscillations for negative detunings.
Apart from this the overall behavior is still not in good agreement with the experimental
data. This indicates, that in the measurement additional effects occur. For example, it
was neglected so far, that the Stark shift has an influence on the other energy levels,
also the coupling laser could induce a ionization shift or broadening due to the creation
of a plasma.

In order to investigate the detuning dependency of the signal further and understand the
underlying theory, further measurements are required, like a systematic scan not only
for the coupling detuning but also the probe detuning.
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Conclusion and Outlook

In the course of this thesis systematic measurements were performed, investigating the
two photon excitations to the Rydberg state in the inverted level scheme via the 6P1/2

intermediate state in rubidium.

Initial measurements were performed using continuous wave lasers. In the resulting
steady state regime it was shown, that an Autler-Townes splitting can be induced as
well as probed by the ground state laser using a probe Rabi frequency in the order of a
few megahertz and a coupling Rabi frequency of around one megahertz. The absolute
value of the Autler-Townes splitting was in good agreement with corresponding three-
level steady state simulations.
For higher coupling Rabi frequencies (a few megahertz), electromagnetically induced
transparency (EIT) could be observed for the two intermediate hyperfine states 6P1/2

F ′ = 2 and F ′ = 3. The effective separation between those transitions can be compared
with the literature hyperfine splitting, if the wavelength ratio is respected. This was
done for co- and counter-propagating laser configurations and in both cases good agree-
ment to the literature was found.
Furthermore, for decreasing probe Rabi frequency with counter-propagating lasers a
transition between induced transmission and induced absorption was observed. This is
attributed to an additional, dominant dephasing, which suppresses the phase sensitive
EIT-process in contrast to the non-phase sensitive enhanced absorption. Other shifts
and broadenings, that might be attributed to the creation of a plasma were observed
and discussed.

In the second part of this thesis, a customized fiber amplifier was used to create nanosec-
ond pulses with a peak power of up to 100 W in order to excite the Rydberg transition.
By focusing the coupling laser to a focal waist below 50µm, Rabi frequencies of up to one
gigahertz could be reached. These Rabi oscillations were directly detected by measuring
the probe transmission signal, proving that fully coherent dynamics can be achieved on
the nanosecond timescale. The dynamics of the system and its behavior for different
coupling Rabi frequencies are in good agreement with simulations of a three-level sys-
tem.
However, detuning dependent measurements could not be reproduced in the same fash-
ion. This implies additional effects inducing a line shift, which are not included in the
simulations. Possible explanations include the formation of a plasma, similar to the
continuous wave case.
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Conclusion and Outlook

To determine the origin of these effects and to further understand the underlying pro-
cesses in this pulsed scheme, additional systematic measurements are required. This
could include a variation of both laser detunings, or extended power scans.

Once the two-photon process is understood it will pave the way towards the realization of
the single-photon source in the new excitation scheme. After adding the second Rydberg
laser the full four-wave-mixing process can be explored.
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A Rubidium Level Scheme
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Figure A.1: Level scheme of 85Rb and 87Rb for the 5S1/2, 6P1/2 and 6P3/2 states including
the hyperfine splittings. All values are given in units of 2π and taken from
[22]. Drawing not to scale.
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B Decay Rates

The following decay rates were used for all simulations including the corresponding
rubidium states.

Table B.1: Lifetime and corresponding decay rates for selected rubidium states calcu-
lated using [23]

state lifetime (s) decay rate
(

1
s

)
6P1/2 1.29 · 10−7 7.73 · 106

6P3/2 1.18 · 10−7 8.46 · 106

32S1/2 3.01 · 10−5 3.32 · 104

32S1/2 6.27 · 10−5 1.59 · 104

Table B.2: Decay rates between specific rubidium states calculated using [23]

transition decay rate
(

1
s

)
6P1/2 → 5S1/2 1.498 · 106

32S1/2 → 6P1/2 2.11 · 103

40S1/2 → 6P1/2 1.01 · 103
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R. Trawiński, R. Ciury lo, H. Abe, and J. Hodges, “Pound-drever-hall-locked,
frequency-stabilized cavity ring-down spectrometer,” The Review of scientific in-
struments, vol. 82, p. 063107, 06 2011.

[20] H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt., vol. 5, pp. 1550–
1567, Oct 1966.

[21] M. Seltenreich, Eigenschaften eines digitalen, vielseitigen und erweiterbaren Sys-
tems zur Laserfrequenzstabilisierung. Bachelor thesis Universität Stuttgart, 2021.

[22] C. Glaser, F. Karlewski, J. Kluge, J. Grimmel, M. Kaiser, A. Günther, H. Hatter-
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83


	Introduction
	I Theoretical Foundation
	1 Atom-Light Interaction
	1.1 General Concepts
	1.2 Transition Dipole Moment
	1.3 Two-Level Atom
	1.3.1 Optical Response

	1.4 Three-Level Atom
	1.4.1 Electromagnetically Induced Transparency
	1.4.2 Autler-Townes Splitting

	1.5 Broadening Effects
	1.5.1 Doppler Broadening
	1.5.2 Transit Time Broadening


	2 Rydberg Atoms
	2.1 General Properties
	2.2 Rydberg-Rydberg Interactions

	3 Rubidium

	II Laser Setup
	4 Frequency Stabilization
	4.1 Optical Resonator
	4.2 Pound-Drever-Hall Technique
	4.3 PID Controller
	4.4 Transfer Lock

	5 Laser System
	5.1 Ground State Transition
	5.2 Rydberg Transition
	5.2.1 Pulsed Fiber Amplifier



	III Thermal Steady State Rydberg Spectroscopy
	Introduction
	6 Experimental Setup
	7 Steady State Simulations
	8 Experimental Results
	8.1 Autler-Townes-Splitting
	8.2 Electromagnetically Induced Transparency
	8.2.1 Observed Hyperfine Splitting
	8.2.2 Power Dependency
	8.2.3 Simulations



	IV Thermal Nanosecond Pulsed Rydberg Spectroscopy
	Introduction
	9 Experimental Setup
	10 Time Dependent Simulations
	11 Experimental Results
	11.1 Resonant GHz Rabi Flopping
	11.2 Dependency on Rabi Frequency
	11.3 Detuning Dependency

	Conclusion and Outlook

	Appendix
	A Rubidium Level Scheme
	B Decay Rates
	Bibliography


