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Abstract

Alkaline-earth atoms have lately gained in relevance as candidates for circular Ry-
dberg atom preparation to be used in quantum simulators. In this thesis, the
calculation of Rydberg electron wavefunctions and dipole matrix elements for 88Sr
is discussed and implemented. Considerations about different approaches regarding
atomic potentials and numerical methods are described by discussing limitations.
As an powerful, yet simple approach a Coulomb approximation is pursued. To
compensate for errors in this approach, quantum defects are gathered and arith-
metically expanded for further usage. The obtained results for wavefunctions and
dipole matrix elements are set in context with numerical methods implemented by
other works.



Zusammenfassung

Die Benutzung von Erdalkali Atomen als Basis für die Erzeugung zirkularer Ryd-
berg Zustände, welche in Quantensimulatoren genutzt werden können, hat in den
letzten Jahren deutlich an Relevanz gewonnen. In dieser Arbeit wird die Berechnung
von Wellenfunktionen und Dipolmatrixelementen für 88Sr diskutiert und implemen-
tiert. Es werden verschiedene Lösungsverfahren, welche Atom-Potentiale und nu-
merische Verfahren verwenden auf ihre Einschränkungen untersucht. Eine Coulomb
Näherung wird als effizienter Ansatz eingeführt. Um mögliche Fehler der Näherung
zu kompensieren, werden Quantendefekte gesammelt und für die weitere Nutzung
rechnerisch erweitert. Die errechneten Wellenfunktionen und Dipolmatrixelemente
werden mit anderen numerischen Methoden verglichen, um die Genauigkeit der
Rechnung abschätzen zu können.
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Weiterhin stimmt das elektronische Exemplar mit der gedruckten Version überein.
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1. Introduction

Ever since computational physics exists it is of interest to simulate physical systems. Starting
from classical systems defined by classical differential equations, those methods also found
their way into quantum systems. Here simulations now face the difficulty to process an “ex-
ploding amount of data”. This problem was outlined by R. P. Feynman [1] in 1981 who
proposed a solution using quantum computers instead of classical computers which can sim-
ulate problems by using quantum systems themselves. Those simulation systems should be
more accessible and better tuneable than the target systems. This proposal did become real-
ity when in the last twenty years the first realizations of quantum simulators were achieved
which are capable of simulating specific analogous systems [2].
Such quantum simulators have been implemented using numerous methods [3]. As in prin-
ciple every well controllable quantum system is a candidate, multiple methods have been
proven to be a good approach. The start was made in 1999 by nuclear magnetic resonance
methods [4] used to simulate dynamics of quantum oscillators. Approximately ten years later,
superconducting circuits [5], which promise a good individual control, were demonstrated.
They were accompanied by trapped ions [6, 7] and ultracold quantum gases [8]. In the same
time span an approach was introduced using photons [9], which was however not yet demon-
strated experimentally at the time of this thesis. In the last years, two new systems where
proposed. First to be mentioned is the usage of quantum dot arrays [10] in semiconductors.
The second, very promising approach is the employment of neutral atoms trapped in optical
tweezers.
In particular the use of highly excited Rydberg states proved very promising and comes with
many advantages. Highly excited Rydberg states provide strong long-range interactions,
which allows fast operation, while maintaining long coherence times. These effects are com-
bined good laser accessible. Rydberg quantum simulators have been demonstrated recently
with low-L Rydberg states [11, 12, 13]. These implementations are however limited by the
Rydberg state lifetime, which can be challenged by using circular Rydberg states. Circular
Rydberg states come with high lifetimes thus impressive coherence times. This approach was
proposed by the Haroche group [14] in a cryogenic environment and recently adapted by our
group [15] to higher principle quantum numbers and room temperature environment. The
setup of such a quantum simulator consists of single atoms trapped in an array of optical
microtraps that provide an accessible system which can also be manipulated with ease. The
individual trapping combined with the application of circular states allows for trapped Ryd-
berg states which for low-L states is only possible with more complex trap geometries, such
as holocore beam traps [16].
Many trapped Rydberg atom experiments are realized using well known alkali atoms like ru-
bidium [17]. This established method has lately been expanded to alkaline-earth atoms which
promise advantages over one-electron systems [18]. Alkaline-earth atoms are well suited for
laser cooling using weak intercombination lines and magic wavelength optical trapping [19].
The absence of a nuclear spin and the second valence electron, which can be used for fluores-
cence imaging without disturbing the Rydberg state, renders strontium 88Sr as a promising
candidate. Further, strontium has a level scheme offering two clock transitions from the
ground state 5s5s 1S0 to the 5s5p 3P0 [20] and 5s5p 3P1 [21] states and generally well acces-
sible laser-wavelengths. Due to these promising properties, 88Sr is already used in numerous
ultracold atom experiments [22, 23, 24].
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1. Introduction

The use of circular Rydberg states also brings new challenges concerning their creation and
detection compared to low-L Rydberg states. Since many quanta of angular momentum have
to be transferred, direct laser excitation is hardly possible, but adiabativ transfer schemes
must be used [25, 26]. Those states rely heavily on the coupling between different Rydberg
state manifolds. Further, the use of Rydberg states as qubit states requires exact knowledge
of the coupling to surrounding states. Therefore it is necessary to calculate the wavefunctions
and dipole transitions of strontium Rydberg states to a high precision. Up to this point, there
is not much theoretical work available for 88Sr. In the scope of this thesis a one-electron treat-
ment of the complex divalent atom strontium is introduced to allow numerical calculations of
wavefunctions and thus dipole matrix elements of 88Sr using collected quantum defect data.
Different readily available methods and implementations are included for comparison. The
results of this work provide a versatile basis for further calculation of stark maps and Zeeman
shifts in strontium.

Outline

In the first chapter, theoretical foundations for the further discussions and implementations
are given. To discuss possible approximations a method using atomic model potentials is in-
troduced and outlined in chapter 3. This chapter also gives a detailed introduction to atomic
potentials of alkaline-earth atoms.
This is followed by chapter 4 where the importance of quantum defects in alkaline-earth
atoms is described and underlined. Furthermore, a database for strontium quantum defects
is calculated using a fitting procedure on experimental values. The calculated data is used
in chapter 5 where a Coulomb approximation of the Schrödinger equation is proposed, im-
plemented and discussed. The implementation is done in form of python classes which is
also documented in detail. Potential errors and limitations of the approach are considered to
outline possible results. The obtained wavefunctions and dipole matrix elements are put into
context in chapter 6 by comparing to other methods. For this purpose a wavefunction and
dipole matrix element implementation by Weber et al. [27] is used besides the alkali Rydberg
calculator [28], which only implements dipole matrix elements.
At the end of the work a summary of the current status is given. Furthermore, future imple-
mentations and general goals of the calculation procedure are outlined.

2



2. Theoretical Foundation

In this chapter, an overview of the theoretical foundation needed in the course of this work
will be given, starting with the basic properties of Rydberg atoms. An overview of the
Schrödinger equation and its solution follows with the main focus on the so-called Numerov
method. Finally a brief introduction of dipole transitions moments, which are the main
interest of this work, will be given.

2.1. Rydberg Atoms

Rydberg atoms are characterized by their highly excited valence electron. Many atom proper-
ties scale with the excitation to high principal quantum numbers n, which leads to interesting
effects in Rydberg states. The theory behind Rydberg atoms is discussed very detailed in
T. F. Gallagher’s “Rydberg Atoms” [29]. Here the most important information about Ryd-
berg atoms in the frame of this work should be given.

Property Scaling

The Rydberg states are often described with the semi-classical Bohr theory, as the excited
electron reaches large orbits. The formula for energies of the Rydberg states is in the semi-
classical case given by

E = − R
n2

(2.1)

where R denotes the Rydberg constant which is an experimentally determined property of
the atom. The atomic potential, seen by electrons in Rydberg states, furthermore approaches
the Coulomb case, as will be discussed in later chapters.
With decreasing eigenenergies the wavefunction and therefore the orbit radius of the electron
increase in size. The energies scale with n−2 which leads to a scaling of the orbit radius with
n2. The low binding energies of Rydberg states is also the main limitation for the size, as
small field fluctuations can easily disturb the electron wavefunction and even ionize highly
excited Rydberg atoms.
The scaling of the principal quantum number also effects the electron transitions: The radia-
tive lifetime scales with n3 and the dipole moment scales with n2. As these properties can
also be observed in later calculations, it is necessary to keep the scaling in mind.

As the scaling of all properties is always given with the principal quantum number, it seems
necessary to discuss, what high principal quantum numbers are. This is not specified in any
literature but it seems reasonable to choose n = 20 as the lowest n for Rydberg states in the
context of this work.

Circular Rydberg States

In the introduction, so-called circular Rydberg states where mentioned as Rydberg states
with extremely long coherence times. Physically, circular states are just states with the
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2. Theoretical Foundation

maximal possible angular momentum quantum number L = n− 1. This leads to large orbit
radii, which is why circular states can be treated nearly classical. Circular Rydberg states
possess many more interesting properties which are beyond the scope of this work but can
be found in literature [30].

Rydberg Wavefunctions

Since the goal of this work is to obtain dipole matrix elements from Rydberg wavefunctions
of strontium, it is important to mention how these wavefunctions behave. In figure 2.1 the
radial wavefunction, in form of a probability density, of the 5s50s 1S0 state in 88Sr can be
seen as a plot over the radius r.
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Figure 2.1.: Calculated radial wavefunction of the 5s50s 1S0 state in 88Sr. For better visual-
ization the plot shows the radial probability density r2R(r)2 where R(r) denotes
the radial wavefunction.

Typical for Rydberg wavefunctions are the oscillating amplitudes which reach their maxi-
mum at the outermost peak before decaying to zero. The radius value of the outer maxima
corresponds to the orbit radius 〈r〉.

2.2. Schrödinger Equation

The Schrödinger equation describes the motion of the electron in the atomic potential and
gives the frame for wavefunction calculation. In this section a theoretical introduction of the
basic equation should be given which will be needed later on.

2.2.1. Hydrogen

The quantum mechanical treatment of hydrogen via the Schrödinger equation is of significant
historical interest as it is known since 1926. Considerations about the solution can be used also
to approximate other atoms and to understand Schrödinger equations of higher complexity.
The generic form of the Schrödinger equation is given by[

−∇
2

2
+ V (r)

]
ψ = Eψ (2.2)
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2.2. Schrödinger Equation

where E denotes the eigenenergy and V (r) is the atomic potential classically given as
V (r) = r−1. The function ψ denotes the total wavefunction. As the problem is radially
symmetric, the equation is typically described in spherical coordinates, where the wavefunc-
tion ψ depends on r, θ and ϕ. It is convenient to separate via

ψ(r, θ, ϕ) = R(r)Y (θ, ϕ) (2.3)

where R(r) denotes the radial wavefunction and Y (θ, ϕ) denotes the angular wavefunction.
The further calculation of both solutions is done in great detail by many authors. A good
overview can be found in [31, pp. 22-29] where the solution of the angular wavefunction is
given by

Yl,ml
∝ (l−)l−ml sinl θ exp(ilϕ). (2.4)

Here l− denotes the lowering operator of the angular momentum quantum number. The
angular wavefunction only defines the spatial shape of the total wavefunction and is often of
reduced interest when calculating atomic properties. More important is the radial wavefunc-
tion which is obtained by solving the radially dependent part of the Schrödinger equation.
This is done by introducing u(r) = rR(r) for which now the equation simplifies to[

− d2

dr2
+
l(l + 1)

r2
− 1

r

]
u(r) = Eu(r). (2.5)

This differential equation is commonly known as the Coulomb equation which can be solved
via the Numerov method introduced in section 2.2.3.

2.2.2. Divalent Atoms

The hydrogen atom discussed above outlines the general idea of solving the Schrödinger equa-
tion. This will also help to study divalent atoms which are much more complicated, since
new effects arise induced by the interaction between the two valence electrons.

As the complicated calculations with divalent atoms in general are beyond the scope of
this work, only some brief discussion on the theory will be done. A detailed discussion on
this topic is provided by Bransden et al. [32]. The Schrödinger equations of two electron
systems is given by[

−
∇2

r1

2
−
∇2

r2

2
− Z

r1
− Z

r2
+

1

r12

]
ψ(r1, r2) = Eψ(r1, r2) (2.6)

where valence electron interactions are included via the r−1
12 term.

Symmetry of the Wavefunctions

Wavefunctions of divalent atoms are coupled due to the fact that interaction terms of both
electrons make them inseparable. This means especially that the wavefunction solutions can
not be expressed as simple products of single-particle wavefunctions. Interesting to discuss are
symmetries of the entangled solutions. Therefore an interchange operator P12 is introduced
that permutes the two valence electrons. The wavefunctions

ψ(r2, r1) = P12ψ(r1, r2) (2.7)

and ψ(r1, r2) satisfy the same Schrödinger equation which leads to the relation

ψ(r2, r1) = ±ψ(r1, r2). (2.8)

5



2. Theoretical Foundation

This defines now if solutions of the Schrödinger equation are symmetric (+) or antisymmet-
ric (-) wavefunctions. Those two cases correspond to the singlet- and triplet-states, where
singlet-states correspond to symmetric wavefunctions ψ+ and triplet-states correspond to an-
tisymmetric wavefunctions ψ−. In later chapters these two valence shell configurations will
be treated as two independent series which are separated only by their energy.

Solution Methods

A common approximation for solving equation (2.6) is to neglect the interaction term r−1
12 .

This approximation is called individual particle approximation and makes it possible to pro-
pose a separation ansatz

ψ = ψ(1)ψ(2) (2.9)

which leads to separate equations for both electrons. These equations can now be solved
individually like one-electron systems. This approximation could be made in general to any
multi-electron system but neglecting interaction forces can lead to significant errors for low
n states where the typical electron separation is small.

Besides the individual particle approximation it is also possible to solve the problem with
included interactions. This comes with many mathematical complications and makes it neces-
sary to introduce complex solving methods like the so-called multi-configuration Hartree-Fock
theory. These methods are discussed by C. Froese Fischer [33] and Vaeck et al. [34] but will
not be further used in the scope of this work.

2.2.3. Numerov Algorithm

Since the Schrödinger equation is just analytically solvable for a few special cases, it is nec-
essary to introduce numerical solution methods. The Numerov algorithm is the most com-
mon method when calculating simple, one-dimensional differential equations as for example
the Schrödinger equation of hydrogen. It was first introduced by B. V. Numerov (see also
Noumerov) [35] and is described in many newer publications.

The algorithm is capable of solving all differential equations of the form

d2f(x)

dx2
= −g(x)f(x) + s(x) (2.10)

by discretizing the domain of f(x) → fn in equally distant steps δx where n denotes the
step-number. This yields the iterative relation

fn+1

(
1 +

(δx)2

12
gn+1

)
=2fn

(
1− 5(δx)2

12
gn

)
− fn−1

(
1 +

(δx)2

12
gn−1

)
+

(δx)2

12
(sn+1 + 10sn + sn−1)

(2.11)

where terms of O((δx)6) are neglected. This relation allows to obtain an out- or inward
integration by rearranging the equation either for fn+1 or fn−1.

As the method will be used later to calculate Rydberg wavefunctions, it is useful to de-
scribe the implemented algorithm. The equation which has to be solved is of the form of
equation (2.5). The problem will be solved as an inward integration. The term s(x) men-
tioned in equation (2.11) is zero for the Schrödinger equation so the steps of the function

6



2.3. Dipole Transitions

u(r) are given by

un−1 =
2un

(
1− 5(δr)2

12 gn

)
− un+1

(
1 + (δr)2

12 gn−1

)
(

1 + (δr)2

12 gn−1

) (2.12)

where g(r) is given by

g(r) = V (r) + E. (2.13)

The solution of equation (2.5) is obtained by calculating a defined range step-wise from given
initial values at the outermost point of u(r).

2.3. Dipole Transitions

Between two electronic states, characterized by their quantum numbers and the eigenenergy,
electromagnetic transitions of different order are possible. This section will give a short
introduction to electric dipole transitions and their quantum mechanical treatment.

2.3.1. Dipole Approximation

Optical transitions in general are treated as an interaction of an electric light field with
the atom. The electric moments of this field can be expanded in a multipole expansion [36]
where all multipole terms are neglected except the dipole moment term. This is called “dipole
approximation” and introduces a perturbation ansatz

H = H0 − d ·E (2.14)

where d denotes the transition dipole moment defined as

d = −er. (2.15)

This ansatz can now be used to derive properties of dipole transitions.

2.3.2. Dipole Matrix Elements

Transitions between atomic states, and therefore the dipole transition moments, depend on
the wavefunctions of the states and their overlap. The property describing this transition is
called dipole matrix element and is defined as

〈1|r|2〉 =

∫ ∞
0

Rn1,L1(r)rRn2,L2(r) r2 dr

∫ 2π

0

∫ π

0
Y ∗n1,L1

(θ, ϕ)
r

r
Y ∗n2,L2

(θ, ϕ) sin θ dθdϕ

= R12 Iangular

(2.16)

for transitions from state 1 to state 2 [31]. Here R(r) and Y (θ, ϕ) denote the radial and
the angular part of the electron wavefunction. Dipole matrix elements are used to calculate
properties of the transitions like lifetimes and transition probabilities. Furthermore the an-
gular part of the dipole matrix element includes the well-known selection rules and can also
be written by using Wigner symbols. This leads to a property called reduced dipole matrix
element which is defined as

〈L1|r|L2〉 = (−1)L1
√

(2L1 + 1)(2L2 + 1)

(
L1 1 L2

0 0 0

)
︸ ︷︷ ︸

*

Rn1L1,n2L2 (2.17)

7
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where * is a Wigner-3j symbol. The Wigner symbols, introduced by E. P. Wigner [37], im-
plement Clebsch-Gordan-Coefficients and selection rules for transitions. This representation
of the reduced dipole matrix element makes it possible to calculate dipole matrix elements
solely from radial dipole matrix elements and the angular quantum numbers.
The previous calculation just allows transitions between L degenerate states and does not
include fine structure. This can be changed by coupling the angular momentum quantum
number and the spin to the total angular monetum J via

〈J1|r|J2〉 = (−1)L1+s+J2+1
√

(2J1 + 1)(2J2 + 1)

[
J1 1 J2

L2 S L1

]
︸ ︷︷ ︸

**

〈L1|r|L2〉 (2.18)

where ** is a Wigner-6j symbol. Furthermore the Wigner-Eckart theorem

〈n, J1,mJ1 |r|n, J2,mJ2〉 = (−1)J1−mJ1

(
J1 1 J2

−mJ1 −q mJ2

)
〈J1|r|J2〉 (2.19)

can be used to write a resulting dipole matrix element dependent on the projection of the
total angular momentum of both states [38].

2.3.3. Selection Rules

The selection rules for dipole transitions, mentioned in section 2.3.2, are obtained by the
integral over the angular wavefunctions in equation (2.16). This integral vanishes for certain
constellations of the quantum numbers which leads to so-called forbidden transitions where
respectively the whole dipole matrix vanishes. In addition to these selection rules, the parity
of the wavefunctions also introduces further restrictions. The complete theory behind the
selection rules is described in detail in [39]. Here, just a short overview should be given to
also understand, what the Wigner symbols implement. All rules are denoted in the notation
of multivalent atoms but also apply to one-electron atoms.

The spin quantum number S is subject to the selection rule ∆S = 0 in the case of a small
spin-orbit coupling. As alkaline-earth atoms are heavy atoms and therefore have a large
spin-orbit coupling, this selection rule is not valid at least for the ground states. For Rydberg
states it is assumed that the selection rule is valid to appoint to separate the singlet and
triplet series.
For the angular momentum quantum number L the rule ∆L = ±1 generally applies. When
∆S = 0 applies the selection rule for L can be expanded to ∆L = 0,±1.
The total angular momentum quantum number selection rules are ∆J = 0,±1 where
J1 = 0 → J2 = 0 is forbidden. The change of the magnetic quantum number further-
more describes the polarization of the transition. Here, the selection rule ∆mJ = 0 implies
a linear polarized transition, ergo π-light. For ∆mJ = ±1 the transition is circular polarized
where +1 denotes σ+-light and −1 denotes σ−-light.
All selection rules are introduced in further calculations via the Wigner symbols already men-
tioned above. Since it is not possible to evaluate the symbols without further knowledge of
the formalism, it is useful to keep the selection rules in mind.

8



3. Model Potential Approach

The model potential approach describes the method of using model potentials to approximate
atomic potentials for valence electrons. It is commonly used for alkali atoms where multiple
model potentials are defined which can be fitted on experimental data for high accuracy
approximations. This chapter will focus on model potentials for alkaline-earth atoms and
their issues in terms of solving the Schrödinger equation.

3.1. Formulation of Atom Potentials

Atom potentials combine different effects which influence the eigenstates of the atoms, namely
the electron states. This section should give a detailed overview over potential terms and their
physical background. Furthermore different forms of alkaline-earth potentials are discussed.

3.1.1. Screened Coulomb Potential

The Coulomb term in potentials generally describes the electrostatic interaction between
the core and the electrons. In the most simple case, namely the hydrogen atom, the term
simplifies to

VC(r) = −1

r
(3.1)

where r denotes the radial coordinate of the radially symmetric problem. The potential is
purely attractive.

For more complicated one-electron systems like alkali atoms this potential needs to be modi-
fied, since the core potential is partially screened by the electrons of the closed electron-shells.
This effect is treated by using the so-called central-field approximation which summarizes the
closed-shell electrons in one electric field which can be integrated into a modified Coulomb
potential. A detailed discussion of this process is given by C. J. Foot [31, pp. 64-68].
As for the described approach only the form of the potential is interesting, a derivation by
the means of the frame conditions described in [38, pp. 179-180] as

VS(r) =


−Z
r r → 0

−1
r + VC,mod(r) in between

−1
r r →∞

(3.2)

where Z denotes the nuclear charge, is satisfactory. For the modified Coulomb potential the
simple example

VC,mod(r) =
−(Z − 1) e

− r
rS

r
(3.3)

can be chosen, where rS is a variable screening radius. In equation (5.11) an actual screened
Coulomb potential for Rb87 is used. This potential was introduced by Marinescu et al. [40]
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3. Model Potential Approach

and includes more pre-factors for the exponential term. This principle can often be found
in alkali model potentials and is used to fit model potentials on experimental values. By
determining fitting parameters one can now do wavefunction calculations which is also the
basic principle behind the model potential approach in general.

In divalent atoms, like the alkaline-earth atoms, it is necessary to treat the electrostatic
interaction of both electrons with the core and between each other. The most simple exam-
ple would be the helium case. This system includes a potential energy of

Epot = −
(
Z

r1
+
Z

r2
− 1

r12

)
(3.4)

where ri (i = 1, 2) denotes the distance of the electrons to the core and r12 denotes the
distance between the electrons. However this problem is hard to calculate and not practicable
for implementations. To solve the problem the divalent system is separated into two one-
electron systems which, in the most simple case, do not interact with each other. This
approximation now leads back to the alkali case, but now with two terms for two electrons
which are both interacting with a screened core. The screened Coulomb term therefore is
simply given by

VS(r) = −1

r

[
2 + (Z − 2) e−a1(L)r + a2(L)r e−a3(L)r

]
(3.5)

with fitting parameters ai(L) (i = 1, 2, 3), which is the same potential as in equation (5.11)
but modified for strontium in this case [41, p. 18]. This screened Coulomb potential now
describes a single ionized strontium atom. To still get both electrons into the picture it is
necessary to sum up equation (3.5) two times and replace r with ri (i = 1, 2) to get a total
Coulomb potential

VC(r1, r2) =
2∑
i=1

VC(ri). (3.6)

One has to be careful, since interaction processes are neglected. A simpler form of this
potential can be seen in [42] where an unscreened Coulomb potential is used.

3.1.2. Polarization Potential

Atomic potentials are not only depending on direct electrostatic interactions but also on the
dynamic core polarization by the order of r−4. This effect occurs because the valence electrons
interact with the so-called ionic core, consisting of the nucleus and the closed electron-shells.
The interaction with the core can be understood as a change in the charge distribution
induced by the valence electron. This change depends on the core polarizability αc which is
an experimental or simulated fixed value.
The treatment of polarization terms is important because it reduces errors which result from
the frozen-core approximation [42]. This approximation describes the treatment of the core
as a fixed charge distribution with the nuclear charge Z.
The detailed calculation of the polarization potentials is beyond the scope of this work and
is treated in detail in [42] and [43]. The conclusion of both papers is a potential

Vpol(r1, r2) = − αc

2r4
1

w2(r1)− αc

2r4
2

w2(r2)− αc
r1er1 · r2er2

r3
1r

3
2

w(r1)w(r2) (3.7)

which includes the core polarisability and two cutoff functions w(r). This potential treats
both effects of single valence electrons and also interaction effects between both valence elec-
trons.

10



3.1. Formulation of Atom Potentials

To give another example for polarization potentials, the more simple formulation of R.
Mukherjee [41]

Vpol(r) =
αc

2r4

[
1− e−

(
r
rL

)6]
(3.8)

for a single electron system can be mentioned. This approach does not treat interactive pro-
cesses of both valence electrons.

Both potential term approaches are mostly interesting in low r and therefore low n regimes.
Since this regime is not relevant when calculating Rydberg states, it would be unnecessary
to include those terms. A detailed discussion on this topic is given in section 4.3 where an
alternative to the polarization potential solution is given.

3.1.3. Fine Structure Term

Another term in the model potential approach is defined by the treatment of fine structure
effects. Following [41] one can use the potential term

Vs.o.(r) =
1

4m2c2

1

r

dVS

dr
[J(J + 1)− L(L+ 1)− S(S + 1)] (3.9)

where VC(r) is the Coulomb term defined in equation (3.5). As this term scales as r−1 and
n−3 it can be neglected for Rydberg atoms but should be used for the calculation of ground
states for example. It must be kept in mind that this term just denotes the potential induced
by spin-orbit interaction and not the fine structure itself, which is important in all n regimes.

3.1.4. Angular Momentum Terms

Literature on atomic physics is inconsistent regarding the treatment of angular momentum
terms in atomic potentials. Sometimes typical rotational barriers are used to model the
shielding of the ionic core and sometimes L-dependent terms are included directly in the
potentials. The most famous term regarding angular momentum influences is the so-called
“centrifugal barrier”

Vcb(r) =
L(L+ 1)

r2
(3.10)

which arises from the separation of the Schrödinger equation into a radial and angular part.
Following [32] the Hamiltonian of the one dimensional Schrödinger equation in the one-
electron system case can be written as

H = −∇
2

2
+ V (r) = −1

2

[
1

r2
∂r(r

2 ∂r) +
1

r2 sin θ
∂θ(sin θ ∂θ) +

1

r2 sin2 θ
∂2
ϕ

]
+ V (r) (3.11)

where the Laplace operator in spherical coordinates can also be written as

1

r2
∂r(r

2 ∂r) +
1

r2 sin θ
∂θ(sin θ ∂θ) +

1

r2 sin2 θ
∂2
ϕ =

1

r2
∂r(r

2 ∂r)−
L2

r2
.

By inserting into the Schrödinger equation and separating ψ(r, θ, ϕ) = R(r)Y (θ, ϕ)

−1

2

[
1

r2
∂r(r

2 ∂r)−
L2

r2

]
R(r) + V (r)R(r) = ER(r) (3.12)
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3. Model Potential Approach

is obtained which can be separated in the later used Coulomb equation (5.2). The centrifugal
barrier is often used to define the effective potential

Veff(r) = V (r) +
L(L+ 1)

2r2
. (3.13)

which is normally plotted when discussing potentials.
In the case of alkaline-earth atoms it is necessary to include effects of the second electron on
angular momentum terms. Those effects are mostly interesting if the valence electrons have
the same L and are both in a region near the ionic core. This case is included in the potential
proposed by Fuentealba et al. [42]. For Rydberg states effects besides the centrifugal barrier
should be negligible and therefore need not be treated in a potential approach.

3.2. Discussion of the Approach

In the last section two different examples of alkaline-earth model potentials where proposed.
To implement the model potential, it is necessary to first fit the potentials to known experi-
mental data. The conventional approach is to use energy data from spectroscopy experiments.
The so obtained well defined potentials are then plugged into the Schrödinger equation which
is discussed in detail in section 2.2.2. It is now necessary to solve the problem which will then
return wavefunctions by minimizing the eigenenergie. As already mentioned in the discussion
of the multivalent Schrödinger equation, this solving procedure is numerically difficult and
inefficient when treating large n ranges.

At this point it is necessary to recap for what purpose an accurate atomic potential would
be needed and if the complex calculation process is necessary to implement. As mentioned
above the introduced potential terms, except the Coulomb term, are mostly significant for the
calculation of low lying states and electron series where interaction effects are significantly
large. For high n states, namely Rydberg states, most of the effects vanish due to low contri-
butions. Since it is the goal of this work to calculate Rydberg atom wavefunctions and dipole
matrix elements it appears to be reasonable to choose a simpler approach to the problem.
This new approach must include a simple version of the atomic potential and other inputs of
experimental values to compensate errors which result from the potential approximation.
One can now look again at the Schrödinger equation and check possible inputs. It is obvious
that other approaches must contain some sort of variable modification which can for example
be realized via the eigenenergies of the problem. This will be discussed in the next chapter
4 by introducing the quantum defect. The ansatz to choose simpler atomic potentials which
will solve the problem of including electron-electron interactions is furthermore discussed in
chapter 5.
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4. The Quantum Defect

As discussed in section 3.2, a further approximation would need an input of experimental
data in the wavefunction, which can be achieved via eigenenergies. This chapter will treat
the theory behind the so-called quantum defects and explains their importance for the im-
plementation of eigenenergies in the later used Coulomb approximation.

4.1. Theoretical Introduction

4.1.1. Energy Shift

The idea of the quantum defect arises when observing Rydberg states and measuring their
energies as shown in figure 4.1. It can be observed that the states seem to be shifted by a
dynamic factor in relation to the respective hydrogen state. This observation can be explained
by the already discussed effect that Rydberg states are mostly described by Coulomb like
potentials. In hydrogen, where no other electrons occur, the potential is solely −r−1 wherever
in more complex atoms the potential is disturbed by the shell electrons. The dynamic factor,
which describes this disturbance and shifts the state energies, is known today as the quantum
defect δ. Its relation to the energy is given by the Rydberg formula (2.1) when introducing
the effective principal quantum number neff = n−δ as the shifted principal quantum number.
The shifted energy in Hartree atomic units is then given by

Ea.u. = − hcR

(n− δ)2
(4.1)

where h denotes the Planck constant, c the speed of light in vacuum and R the Rydberg
constant. This simple relation allows calculations of one property from the other, simply
by knowing the principal quantum number of the state. As one wants to calculate exact
eigenenergies as an input for the Schrödinger equation, it is necessary to have a database
with exact quantum defects. This problem will later be discussed for strontium.

4.1.2. Physical Properties of the Quantum Defect

The quantum defect is a versatile property which describes real physical effects. To under-
stand the physical nature of the quantum defect one has to look again at the energy level
scheme in figure 4.1. It can be seen that the quantum defect varies with different angular mo-
mentum quantum numbers. For increasing L the quantum defect vanishes. This behavior can
be intuitively understood by considering the following analogy: The excited valence electron
experiences a Coulomb potential at large distances which changes with decreasing distance.
At some point the electron scatters at the shell consisting of the inner electrons [44]. As in
scattering problems a phase shift occurs which is for example used in multichannel quantum
defect theory. The phase shift like the energy shift itself, decreases for higher L since the
centrifugal barrier increases. This can be thought of as an orbit which gets “rounder” and
therefor the electron has a smaller probability density at the core. The effect will later on be
discussed to possibly correct errors of the Coulomb approximation.
Additionally to this dependency on the angular momentum quantum number, the quantum
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4. The Quantum Defect
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Figure 4.1.: Energies of the hydrogen and strontium singlet series states for 20 ≤ n ≤ 24 to
show the energy shift described by the quantum defect. States with the same
n are connected so one can observe the dependence of the quantum defect on
the angular momentum quantum number L. It can be seen that for L → 3 the
energy shift and therefore also the quantum defect nearly vanishes.

defects in alkaline-earths are also highly depending on the principal quantum number. This
behavior is due to the existence of the second valence electron which is influencing the po-
tential experienced by the excited electron. For principal quantum numbers in the region
of the non-excited electron, the quantum defects show a resonance. That can be seen later
and causes problems when calculating values in this region. For higher principal quantum
numbers the electrons depart from each other and this effect vanishes. The quantum defects
converge and can therefore be approximated quite good as discussed below.
An intersection between the physical and mathematical properties is the so-called Rydberg-
Ritz formula

δ = δ0 +
δ2

(n− δ0)2
+

δ4

(n− δ0)4
+O(δ6

0) (4.2)

which introduces a series expansion for the quantum defect with the Rydberg-Ritz-Coefficients
δi (i = 0, 2, 4). This formula furthermore describes the quantum defect for a perturbation
theory approach when disturbing the Coulomb potential hamiltonian with a short-range
spherically symmetric correction potential as mentioned by Drake et al. [45]. The coeffi-
cients then have a physical significance as they can be associated with the ci coefficients in
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4.2. Determination of Strontium Quantum Defects

the potential formulation

V (r) = −1

2

[ c4

r4
+
c6

r6
+O

(
r−7
)]

(4.3)

where c4 denotes the dipole polarizability and c6 denotes the corrected quadrupole polar-
izability. Including the δ2 and δ4 terms in equation (4.2) directly correlates with doing
approximations under respect of the multipole polarizability.

4.2. Determination of Strontium Quantum Defects

As mentioned before it is necessary to determine the quantum defects up to a sufficient
accuracy. For alkali elements like rubidium the quantum defect is dominated by an angular
momentum quantum number L dependent δ0 which has almost no n dependence. Therefore
it is possible to just mention one quantum defect for each l-state. Those precise values were
often measured and are therefore widely available. As an example for experimental data of
rubidium quantum defects [46] can be mentioned.
As described above for alkaline-earths like strontium an n-dependency occurs which makes

Table 4.1.: List of quantum defects obtained by fitting equation (4.2) to the data listed in
Appendix A.1. For every state the n-range is given since the fit does not converge
for all n values. Fit functions and data are plotted in figure 4.2. The fitting
parameters are rounded up to the numerical error given by the fit.

State Fit Range δ0 δ2 δ4

L = 0
5sns 1S0 10 ≤ n ≤ 80 3.268 942 7(7) −0.1333(9) 0.7(1)

5sns 3S1 11 ≤ n ≤ 45 3.366(3) 2(1) −7(9)× 101

L = 1

5snp 1P1 10 ≤ n ≤ 29 2.726(3) −4(2) −1(2)× 102

5snp 3P2 5 ≤ n ≤ 60 2.882(2) 0.1(2) 4.5(9)

5snp 3P1 5 ≤ n ≤ 22 2.881(3) 0.5(1) 3.0(7)

5snp 3P0 5 ≤ n ≤ 15 2.883(6) 0.5(2) 2.9(9)

L = 2

5snd 1D2 15 ≤ n ≤ 80 2.387 83(5) −4.548(9)× 101 1.4(3)× 102

5snd 3D3 15 ≤ n ≤ 45 2.52(2) 1.0(2)× 102 −6.1(8)× 104

5snd 3D2 16 ≤ n ≤ 50 2.6548(5) −1.10(7)× 101 −8.9(2)× 103

5snd 3D1 18 ≤ n ≤ 32 2.67(7) −0(1)× 102 −1(3)× 104

L = 3

5snf 1F3 5 ≤ n ≤ 21 0.0841(2) −1.05(7) −1.6(5)× 101

5snf 3F4 4 ≤ n ≤ 28 0.113(1) −0.5(1) 2(2)

5snf 3F3 4 ≤ n ≤ 28 0.113(1) −0.4(1) 1(2)

5snf 3F2 4 ≤ n ≤ 28 0.112(1) −0.4(1) 1(2)

it necessary to fit measured values using the Rydberg-Ritz formula shown in equation (4.2).
In the scope of this work all known measurements and calculations of quantum defects in 88Sr
were combined in one database to enable a quick access in the further calculations. The data
tables are listed in Appendix A.1. With this set of data it is quite simple to obtain fitting
parameters for equation (4.2). The plots, showing the quantum defects and the fit itself, are
shown in figure 4.2. Obtained quantum defects with the used n-range are listed in table 4.1.
The collected data represent the basis of further calculations since it combines all deviations
of strontium in relation to one electron systems. The exact process of working with the
calculated data is described in section 5.2.
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Figure 4.2.: Plot of the quantum defect data listed in table A.2, A.3 and A.4. States with
the same angular momentum quantum number are plotted in the same panel, to
give a better impression of the quantum defect regime. It can be seen that the
quantum defect decreases for higher L which leads to a hydrogen-like situation
for high L states. Also visible is the difference between singlet and triplet states.
The quantum defects of triplet states with the same angular momentum quantum
number often converge for higher principal quantum numbers, however the singlet
state never combines with the triplet states.
The data for every state was fitted with a function of the form of equation (4.2)
to obtain n dependent quantum defect formulations. The obtained fit data is
listed in table 4.1.
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4.3. Error Compensation in the Coulomb Approximation

4.3. Error Compensation in the Coulomb Approximation

As mentioned in section 3.2, the input of quantum defects in the Schrödinger equation pre-
vents errors in the state energies and wavefunctions occurring due to potential approxima-
tions. To discuss this one has to check which errors are expected to occur. Therefore it
should already be anticipated that the approximation will neglect core polarizability terms
and will only consist of a Coulomb potential. This means that the quantum defect must give
accurate parameters for all Rydberg-Ritz-Coefficients in equation (4.2). As it can be seen in
table 4.1, fit values where obtained up to a good accuracy for principal quantum numbers
larger as ten in average. Using the δ2 and δ4 coefficients in all calculations can, as described
in section 4.1.2, compensate for the not included polarization effects. Here one has to be
careful not to overestimate this capability: Core polarizability effects are mostly present in
regions with small r. Since r scales with n2, this means that quantum defects have to be the
most accurate at small n. This cannot be achieved since the second valence electron largely
affects the measured defects in this area, as can be seen in figure 4.2. Therefore the only
solution is to cut off the whole n regime below the fitted area at approximately n = 15, which
is below the mentioned n = 20 limit of Rydberg states.
Regarding Rydberg states one also has to ask if the accuracy for high n is good enough.
Therefore it is helpful to compare the data to other work. For this purpose calculated de-
viations are listed in table 4.2. The largest deviations can be observed for the 3D3 and the

Table 4.2.: List of reference values (Ref. Val.) for the δ0 coefficient in equation (4.2) [47]
and the deviation (Dev.) of the values obtained in the scope of this work to the
reference.

State Ref. Val. δ0 Dev. (%) State Ref. Val. δ0 Dev. (%)

5sns 1S0 3.26896(2) 5.2922× 10−4 5snd 3D2 2.636(5) −7.132 02× 10−1

5sns 3S1 3.371(2) 1.483 24× 10−1 5snd 3D1 2.658(6) −4.514 67× 10−1

5snp 1P1 2.7295(7) 1.282 29× 10−1 5snf 1F3 0.089(1) 5.505 62

5snp 3P2 2.8719(2) −3.516 84× 10−1 5snf 3F4 0.12(1) 5.833 33

5snp 3P1 2.8824(2) 4.857 06× 10−2 5snf 3F3 0.12(1) 5.833 33

5snp 3P0 2.8866(1) 1.247 14× 10−1 5snf 3F2 0.12(1) 6.666 67

5snd 1D2 2.3807(2) −2.994 92× 10−1

5snd 3D3 2.63(1) 4.182 51

F states and are in the range of 5%. Those deviations could occur because the lower end
of the fitting range is smaller in this work compared to the reference. Also the accuracy of
the coefficients themselves plays a role since the reference values are give with only three
significant digits. Considering these factors it still can be assumed that the values in table
4.1 are accurate enough if one takes care by calculating the states mentioned.

In summary it is expected that the quantum defects obtained by fit parameters should be
accurate enough to compensate errors occurring due to the Coulomb approximation. To un-
derline the statements of this section there will be further test calculations in the next chapter.
Also the obtained final results will give a further possibility to discuss, if the approach using
quantum defects is as accurate as expected.
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5. Coulomb Approximation

Since the model potential approach comes with many further problems, it is necessary to
find a simpler approach which still solves the problem with a satisfying accuracy. In this
chapter a final approach combining potential approximations and quantum defect theory will
be discussed and implemented. Also limitations of the approach are mentioned and examined.

5.1. Idea of the Approximation

As already mentioned in section 3.1, the potential of the Rydberg electron has the general
form

V (r) = −1

r
− αc

r4
(5.1)

where the first term denotes the Coulomb potential and the second term considers the effect
of the core polarizability α. The idea now is to neglect the second potential term to be left
with the so-called Coulomb approximation of the potential. This step seems tough but it will
be shown that the obtained results of this method are good for Rydberg states. This is very
helpful, since this approximation gives the possibility to address the strontium atom nearly
hydrogen-like for Rydberg states.

The goal of the approximation is to obtain a new differential equation which can be solved
numerically with little effort. As the only potential term is a Coulomb potential after the
approximation it is possible to simplify to the Coulomb equation of the hydrogen case as
described in section 2.2.1. By including the reduced mass µ this equation is now given as[

− d2

dr2
+
l(l + 1)

r2
− 2µ

r

]
uE,l(r) = 2µEuE,l(r) (5.2)

where the notation of C. L. Vaillant is used because his work [47, 48] gives the frame for the
following calculations. Equation (5.2) is expected to return the radial wavefunctions when
precise energies are used. At this point it is important to not ignore the errors obtained by
the approximation. In the following an appraisal of the accuracy will be done to validate the
Coulomb equation.

As mentioned in section 4.3, the quantum defect input into the Schrödinger equation should
compensate errors occurring due to the approximation. Especially the core polarizability is
expected to be obtained quite accurate if quantum defects with good accuracy are used. This
guess must be tested by actual calculations.
Calculated values for comparison can be found in the already mentioned work of C. L. Vail-
lant [48]. Sadly, all calculations have just been done for rubidium which as an alkali atom
just represents the one-electron problem. Since there are no available values calculated for
strontium by more sophisticated means like multichannel quantum defect theory or a model
potential approach, the comparison with rubidium must be satisfactory. Here it has to be
differentiated between high n and low n regimes since ground states are much more affected
by core polarizability effect. For the ground state transitions it is possible to directly compare
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5. Coulomb Approximation

Table 5.1.: Comparison between oscillator strengths of transitions in rubidium obtained by
using a quantum defect approach and literature values. The quantum defect
approach uses a Coulomb approximation of the atom potential. All values listed
are taken from [48, p. 26]. The reference values were taken out of [49].

Transition QDT Value Reference Value Difference [%]

5S 1
2
→ 5P 1

2
0.347 0.3456 0.5

5S 1
2
→ 5P 3

2
0.703 0.7015 0.3

7S 1
2
→ 8P 1

2
0.0189 0.0185 2.2

7S 1
2
→ 8P 3

2
0.0436 0.0428 2.0

5P 1
2
→ 7D 3

2
0.0163 0.01711 4.4

5P 3
2
→ 7D 3

2
0.00176 0.00186 5.3

5P 3
2
→ 7D 5

2
0.0157 0.01657 5.2

4D 3
2
→ 5P 1

2
0.304 0.3324 8.5

4D 3
2
→ 5P 3

2
0.0605 0.0654 7.5

4D 3
2
→ 7P 1

2
0.0118 0.0077 54.4

4D 3
2
→ 7P 3

2
0.00233 0.0015 51.7

5D 3
2
→ 6P 3

2
0.0989 0.0975 1.4

5D 5
2
→ 6P 3

2
0.594 0.5864 1.3

matrix elements in the form of oscillator strengths. This comparison is listed in table 5.1.
It can easily be seen that the Coulomb approximation does not work for each transition but
it is in good agreement for most of the cases. Regarding the low n regime which is looked
at this is surprising. The largest errors at the transitions 4D 3

2
→ 7P 1

2
and 4D 3

2
→ 7P 3

2

can be traced back to the fact, that the effective quantum number neff of 4Dj is close to the
angular momentum quantum number l which leads to problems due to the formulation of
the Coulomb method [50]. These errors differ in their strength from 7.5% up to 54.4% where
the lower end is still acceptable. But since in the few values no regularity can be seen it has
to be assumed that the whole series lacks accuracy.
Up to this point there is no publication (to the author’s knowledge) on Rydberg state dipole
matrix elements in rubidium. Nevertheless it is important to compare the Coulomb approx-
imation to literature values for all n regimes. One option is to compare radiative lifetimes
which directly correspond to the dipole matrix elements via

Dab =

√
3πε0~c3

ω3
ba

1

Γb
a

(5.3)

where Dab denotes the matrix element itself, ωba denotes the transition frequency and
Γb

a = τ−1
ba denotes the rate of radiative decay. The lifetime values can be found for ru-

bidium to expand table 5.1 to higher n regimes. Vaillant also included blackbody radiation
effects to the calculated lifetimes and then plotted both calculated and experimental values in
a graph shown in figure 5.1. As it can be seen in the graph also for high n values the Coulomb
approximation gives quite good results for the lifetimes and therefore also the dipole matrix
elements for the nS 1

2
and nD 5

2
states. Problems occur for the nP 3

2
states where Vaillant

assumes that the strong coupling to the 4Dj states, which show large inaccuracies, is the
cause. The errors for these states were already mentioned above.

To summarize the considerations it can be said that it is very difficult to make assumptions
about the accuracy of the approximation. There are many reference values for alkali atoms,
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5.1. Idea of the Approximation

Figure 5.1.: Plots of rubidium lifetimes obtained by quantum defect theory (QDT) calcula-
tion and experimental values. The dashed lines are the QDT values without
blackbody radiation, solid lines include blackbody radiation and the expermien-
tal data sets are pictured as closed and open symbols. The figure was taken from
[48, p. 33].

especially for rubidium, but just calculated values for strontium. Since it cannot be concluded
that an approximation works for two-electron atoms just by testing it on one-electron atoms
the preliminary considerations can just give a vague idea of the actual accuracy of the model.
Later in this work, the obtained results will also be cross checked with other calculation
methods to assure a validation not just based on the assumptions made above.
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5. Coulomb Approximation

5.2. Python Implementation

This section will focus on explaining the python implementation of calculating radial wave-
functions and dipole matrix elements. For this purpose the three modules sr state properties.py,
sr wavefunction.py and sr dipolematrixelement.py are described and an implementation ex-
ample for the modules is given. In the following all calculations are implemented in Hartree
atomic units.

5.2.1. Characterize Strontium States: sr state properties.py

The general goal is to solve equation (5.2) numerically. This equation is dependent on the
eigenenergy of atomic states, the angular momentum quantum number L and the reduced
mass µ. To distinguish the energy it is necessary to use the quantum defects determined in
section 4.2. The other dependencies are either defined by the state definition or are constant.
To gather all parameters needed to solve the Coulomb equation, a class named strontium state
is defined. This class combines the two functions get Quantumdefect and calc Stateproperties.
Both functions are working with the class wide defined input variables n, S, L and J which
precisely define one strontium state. The function get Quantumdefect converts a database
Fitdata QuantumDefects.csv, which stores all values listed in table 4.1, into numpy arrays
and returns the data for the specified quantum numbers. This data is then passed to
calc Stateproperties, where the quantum defect δ, the effective principal quantum number
neff = n− δ and the eigenenergy E via equation (4.1) are calculated. The constants used in
the calculations are imported from the scipy.constants module. The Rydberg constant is de-
fined as RSr = 109 736.627 cm−1 following [51]. Furthermore the effective mass of strontium
is defined in atomic units as

µ =
ma.u.

Sr88

ma.u.
Sr88 + 1

(5.4)

where the mass of strontium is ma.u.
Sr88 = 160242.12798792866me [52].

With this set of variables it is possible to implement the wavefunction calculation itself. Since
all variables are defined as attributes of strontium state they can easily be called by importing
the class and setting its initial parameters as can be seen in section 5.2.4.

5.2.2. Calculate Radial Wavefunctions: sr wavefunction.py

This module implements the calculation of radial wavefunctions by solving the Coulomb equa-
tion (5.2) with a Numerov algorithm [29]. The solving algorithm itself is a straight forward
calculation which follows section 2.2.3. In the following section just the important frame
aspects of the implementation will be commented on.
Even though it is not necessary the wavefunction calculation works best if it is combined with
the class strontium state. If this class is not used one needs to define the input parameters
separately which would be useful when other elements than strontium are calculated. Since
this is not included in the scope of this work, this section is limited to the calculation of
strontium wavefunctions. In this case of use it is not necessary to define parameters when
using the class strontium wavefunction. If implemented correctly, all arguments of the func-
tion, namely n, L, neff, µ, E and state variables, are imported from strontium state. The
calculation itself is introduced by the function calc radialWavefunction.

Most important to discuss are two of the optional arguments in calc radialWavefunction,
namely rmin and rmax. They define the inner and outer turning point of the integration. If
set manually, those parameters can lead to a diverging wavefunction at r → 0. This effect
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arises because the Coulomb equation is solved by calculating inwards. The outer turning
point rmax should lie further out than the last maximum of the wavefunction, where it is
decayed to almost zero, to not cut parts of the solution. Besides this condition it can theo-
retically be chosen arbitrarily at some point rmax →∞.
For the inner turning point rmin harder conditions are required. It is possible to guess values
for the turning point but this is time-consuming and not very effective. Therefore the inner
turning point is defined as

rmin = n2
eff

1−

√
1− (L+ 0.5)2

n2
eff

 . (5.5)

This definition was proposed by Rudolph E. Langer [53] as this is also the definition of the
classical turning points in a Coulomb potential. Accordingly it is possible to define the outer
turning point as

rmax = n2
eff

1 +

√
1− (L+ 0.5)2

n2
eff

 (5.6)

which is used if no other input is given to the function. This leads to a cutoff at the almost
completely decayed outer end of the wavefunction.
These definitions are crucial, but not sufficient to hinder the wavefunction from diverging.
Another critical aspect of the calculation is the choice of initial parameters. Proposed is a
solution depending on the number of wavefunction slopes. This is implemented as follows:

1 if ((self.n-self.L) % 2)==0:

2 div_init=-1e-3

3 else:

4 div_init =1e-3

5

6 self.initial_values =[div_init ,0]

The idea behind this solution can be understood graphically. For this purpose two different
Coulomb functions are plotted in figure 5.2. The function displayed in figure 5.2a shows the
state 5s10s 1S0 for which the number of nodes gives an even number. For the state 5s9s 1S0

shown in 5.2b on the other hand, the number of nodes ∝ n − L gives an odd number. By
knowing this correlation it is furthermore possible to make a statement about the slope at the
outer turning point. To achieve a negative slope for r → 0 it is necessary that for even node
numbers the slope is negative at rmax. The opposite case is true for odd node numbers. To
force this behavior the first initial condition set in the code snippet gives a small tendency to
the second outmost point of the wavefunction. Additionally the initial values also include the
continuity conditions at r →∞ which assures a decay of the wavefunction when set to zero.
Although parts of the initial conditions are only used for numerical purposes it is important
to mention that the conditions are of a physical nature. As in every quantum mechanical
calculation it is inevitable to satisfy continuity conditions of the wavefunction.

The methods preventing divergence and the intial conditions define most of the calcula-
tion. With them beeing already discussed in detail it is now possible to take a short look at
the Numerov algorithm implementation. The algorithm only solves the Coulomb equation
under all considerations mentioned above and returns the Coulomb function.

1 ’’’

2 Numerov Method Implementation as an Inward Integration

3 ’’’

4 def numerov(r,dr ,V,E,initial_values):

23



5. Coulomb Approximation

0 50 100 150

Radius r (a0)

−0.15

−0.10

−0.05

0.00

0.05

0.10

C
o
u
lo
m
b
F
u
n
ct
io
n
(a
.u
.)

n =10, L =0

(a) State 5s10s 1S0

0 50 100

Radius r (a0)

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

C
o
u
lo
m
b
F
u
n
ct
io
n
(a
.u
.)

n =9, L =0

(b) State 5s9s 1S0

Figure 5.2.: Plot of the Coulomb functions u(r) = rR(r) for the two states 5s10s 1S0 and
5s9s 1S0. It can be seen that the number of nodes and therefore the initial
conditions of the wavefunctions depend on the difference n− L. Further details
are given in the text.

5 steps = r.shape [0]-1

6 coulomb_function = np.zeros(steps +1)

7 coulomb_function[steps -1: steps +1] = initial_values

8

9 def g(n):

10 return (V(r[n])+2* self.mu*self.E)

11

12 for i in range(steps -1,1,-1):

13 coulomb_function[i-1] = (2* coulomb_function[i]*(1-

(5/12)*dr**2 *g(i))-coulomb_function[i+1] \

14 *(1+ (1/12)*dr**2 *g(i+1)))/(1+(1/12)*dr**2 *g(i-1))

15

16 return coulomb_function

The turning points discussed above are taken into account via the definition of the radial
coordinate r as a discrete array

1 self.r = np.arange(self.r_min ,self.r_max ,self.dr)

which is from now on always used as the calculation basis.
The returned Coulomb function resembles the radial wavefunction after resubstitution. It is
mandatory to define a norm of the radial wavefunction. The normalized function is defined
as

Rnorm(r) =
R(r)∫ rmax

rmin
|R(r)|2 r2 dr

(5.7)

where the integral is implemented as the sum over the array of the radial coordinate r.
Furthermore the normalized Coulomb function is defined as

unorm(r) = rRnorm(r). (5.8)
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Both functions are returned by the calc radialWavefunction function via

1 ’’’

2 Output of the Solution gives Coulomb Function and Radial

Wavefunction

3 ’’’

4 self.coulomb_function = numerov(self.r,self.dr,V,self.E,self.

initial_values)

5 self.radial_Wavefunction = self.coulomb_function/self.r

6

7 ’’’

8 Normalization of the Radial Wavefunction

9 ’’’

10 self.norm_radial = np.sqrt(np.sum(self.radial_Wavefunction **2 *self.r**2

*self.dr))

11 self.radial_Wavefunction_norm = self.radial_Wavefunction/self.

norm_radial

12

13 self.coulomb_function_norm = self.r*self.radial_Wavefunction_norm

14

15 return self.coulomb_function , self.coulomb_function_norm , self.

radial_Wavefunction , self.radial_Wavefunction_norm

5.2.3. Calculate Dipole Matrix Elements: sr dipolematrixelement.py

The calculation of dipole matrix elements follows section 2.3.2 where all steps are described
with their physical background. In the following the class strontium dipolematrixelement
should be described in detail to understand how every step is implemented separately. This
class relies on the strontium state class as well as on the strontium wavefunction class since
the dipole matrix elements are calculated using radial wavefunctions for two different states.
Therefore an implementation of the strontium dipolematrixelement class also includes the
other two modules. Alternatively one can also calculate dipole matrix elements out of exist-
ing wavefunctions. In this case the other modules are imported but not used.

Since dipole matrix elements always describe transitions between two states, it is necessary to
input two sets of quantum numbers. This includes all four state defining quantum numbers
n, S, L and J . To calculate state transitions the function calc radialDipolematrixelement
starts by importing the state properties of both states. This is implemented via calling the
class strontium state respectively for each state. To calculate the radial wavefunctions, a
commonly used array for the radial coordinate must be defined. Even though this is not
inevitable for the calculation itself, it becomes important when calculating the dipole matrix
element, since a numerical integration over two different arrays is not possible. By defining
this array one has to be careful to not cut off parts of the radial wavefunctions or cause a
divergence at r → 0. To assure that this will not happen, the array range is defined by the
largest rmin and rmax via

1 r_min_state1 = self.state1.n_eff **2 *(1-np.sqrt(1-(self.state1.L+.5) **2/

self.state1.n_eff **2))

2 r_max_state1 = self.state1.n_eff **2 *(1+np.sqrt(1-(self.state1.L+.5) **2/

self.state1.n_eff **2))

3 r_min_state2 = self.state2.n_eff **2 *(1-np.sqrt(1-(self.state2.L+.5) **2/

self.state2.n_eff **2))

4 r_max_state2 = self.state2.n_eff **2 *(1+np.sqrt(1-(self.state2.L+.5) **2/

self.state2.n_eff **2))

5

6 if r_min_state1 > r_min_state2:

7 r_min = r_min_state1

8 else:
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9 r_min = r_min_state2

10

11 if r_max_state1 > r_max_state2:

12 r_max = r_max_state1

13 else:

14 r_max = r_max_state2

where state1 and state2 relate to the state properties of both states defined by stron-
tium state. The so defined inner and outer turning points are used as input variables in
the calc radialWavefunction function of strontium wavefunction. Furthermore the step size
dr is defined by the input variables of the class for both wavefunctions. These confinements
now allow easy calculations using the array

1 self.r = np.arange(r_min ,r_max ,self.dr)

for all needs.
It is also possible to calculate the radial dipole matrix elements out of precalculated wave-
functions. This is implemented by the function calc radialDME precalcWF. This tool does
have a few constraints: The wavefunctions have to be arrays with the same length and step
size. Furthermore the start- and endpoints, namely rmin and rmax, must be identical for both
arrays. If those constraints are defined as input arguments, the radial dipole matrix element
can easily be calculated out of two .npy files.

The calculation of the total dipole matrix element is separated into three steps which are
further discussed in section 2.3.2. In this chapter there will only be a short comment on
the calculation to not go beyond the scope of the implementation documentation. As a first
input, the radial dipole matrix element is calculated via

Rn1L1→n2L2 =

∫ rmax

rmin

Rn1,L1(r) r Rn2,L2(r) r2 dr (5.9)

from the radial wavefunctions. Here the normalized wavefunctions are used, but the index is
neglected for the sake of clarity.
For further calculations an implementation of Wigner symbols is needed. Since there is a
functioning implementation in the Alkali Rydberg Calculator (ARC) [28] there was no need
to design another. To still have an alternative method, it is also possible to choose the Wigner
symbols provided by the sympy package. Both methods are stored in wigner.py where the
ARC code is embedded as complete code to be independent of changes.
The Wigner symbols are now used to implement reduced dipole matrix elements and fine
structure effects. These calculations are defined in the function calc angularDipolematrixelement
listed below.

1 def calc_angularDipolematrixelement(self):

2 ’’’

3 Calculates the angular dipole matrix element between two

states using Wigner symbols.

4 The Wigner symbols are defined in ’wigner.py’. There are

two methods available:

5 1) Calculation via ARC code

6 2) Calculation via Sympy

7 Both methods are working equally good.

8

9 Returns:

10 reduced_DME_L (float): reduced dipole matrix

element

11 reduced_DME_J (float): reduced dipole matrix

element in the fine structure basis
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12 ’’’

13 ’’’

14 Calculation of the reduced dipole matrix element.

15 ’’’

16 def calc_reduced_DME_L(self):

17 reduced_DME_L = (-1)**( self.L1) *np.sqrt ((2* self.L1+1)

*(2* self.L2+1)) \

18 *ARC_Wigner3j(self.L1 , 1,self.L2 ,0,0,0) \

19 *self.radial_Dipolematrixelement

20 return reduced_DME_L

21

22 self.reduced_DME_L = calc_reduced_DME_L(self)

23

24 ’’’

25 Manual implementation of the selection rule ’delta S=0’

to make sure , that singlet and triplet

26 series are treated separately and no spin flip processes

occure. This is justified only for rydberg atoms ,

27 but since the whole wavefunction calculation is only

suited for high n-states this asumption is valid.

28 ’’’

29 if self.S1 == self.S2:

30 self.S = self.S1

31 self.selection_rule_S = 1

32 else:

33 self.S=0

34 print("Error: Calculation not possible. The condition S1

=S2 must be satisfied.")

35 self.selection_rule_S = 0

36

37 ’’’

38 Calculation of the reduced dipole matrix element in the

fine structure basis.

39 ’’’

40 def calc_reduced_DME_J(self):

41 reduced_DME_J = (-1)**(int(self.L1+self.S+self.J2+1)) \

42 *np.sqrt ((2*J1+1) *(2*J2+1)) \

43 *ARC_Wigner6j(self.J1 ,1,self.J2 ,self.L2 ,self.S,

self.L1) \

44 *self.reduced_DME_L \

45 *self.selection_rule_S

46 return reduced_DME_J

47

48 self.reduced_DME_J = calc_reduced_DME_J(self)

49

50 return self.reduced_DME_L ,self.reduced_DME_J

The calculation is relatively straightforward. The idea for the implementation of the basis
change was taken from [28]. To ensure correct calculation of dipole matrix elements, a manual
implementation of the selection rule ∆S = 0 was included. This separates the singlet and
triplet series which can be motivated by the fact that transitions between these series are weak
compared to transitions inside the series. To check this behavior one can compare Einstein
coefficients for spontaneous emission which are proportional to the absolute value squared of
the reduced dipole matrix element. To give examples, the 5s4d 1D2 → 5s6p 1P1 transition has
an Einstein coefficient of Aij = 9.4(19)× 106 s−1 where the 5s4d 1D2 → 5s6p 3P2 transitions
only has a coefficient of Aij = 6.0(12)× 106 s−1. For the 5s4d 1D2 → 5s6p 3P1 transition the
coefficient reaches Aij = 1.6(3)× 106 s−1. For other transitions the effect gets even larger.
The transition 5s4d 3D1 → 5s6p 1P1 features an Einstein coefficient of Aij = 1.4(3)× 104 s−1

which is smaller by a factor of 102 compared to the 5s4d 3D1 → 5s6p 3P1 transition with
Aij = 3.7(8)× 106 s−1. All of the values are taken from [52]. This selection rule is just valid
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for dipole transitions and must be abandoned for higher order transitions which are, however,
currently not implemented in the software.
A resulting reduced dipole matrix element in the fine structure basis can be converted into the
resulting dipole matrix element by using the Wigner-Eckart theorem following section 2.3.2.
This is done in the calc Dipolematrixelement function which requires an additional input of
the total angular momentum quantum number projection mJ of both states. Furthermore
an additional parameter q specifies the transition driven by light with π or σ± polarisation.
For those cases one has to set the parameter to q = 0 and q = ±1. The additional parameters
are put into the calculation shown below.

1 self.Dipolematrixelement = (-1)**( int(self.J1-self.M_J1)) \

2 *ARC_Wigner3j(self.J1 ,1,self.J2 ,-self.M_J1 ,-self.q,self.M_J2) \

3 *self.reduced_DME_J

The resulting dipole matrix element contains all selection rules for electric dipole transitions.

5.2.4. Implementation Example

As the implementation of the Coulomb approximation approach is done via classes, it is
necessary to programm a small frame to access all features. In this paragraph two minimal
examples should be given to show which functions have to be called. All information about
the functions can be found above. Since this is just about the program usage, no further
explanations will be given.

Single State Wavefunction

1 from sr_state_properties import strontium_state

2 from sr_wavefunction import strontium_wavefunction

3

4 ’’’

5 Loading a single state with quantum defect data.

6 ’’’

7 state = strontium_state(n,S,L,J) #calling the class

8 state_QD = state.get_Quantumdefect () #calculate QD

9 state_prop = state.calc_Stateproperties () #calculate energy etc

10

11 ’’’

12 Calculate the radial wavefunction of the loaded state.

13 Abbreviations:

14 WF - (radial) wavefunction (normalized)

15 CF - Coulomb function (normalized)

16 ’’’

17 init_radial_Wavefunction = strontium_wavefunction(state_variables=state)

#calling the class

18 calc_radial_Wavefunction = init_radial_Wavefunction.

calc_radialWavefunction(r_min ,r_max ,dr) #calculate radial WF

19 WF = init_radial_Wavefunction.radial_Wavefunction_norm #ouput WF array

20 CF = init_radial_Wavefunction.coulomb_function_norm #ouput CF array

Dipole Matrix Element

1 from sr_dipolematrixelement import strontium_dipolematrixelement

2

3 ’’’

4 The DME class automatically loads two states and WFs.

5 Abbreviations:

6 DME - dipole matrix element
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7 WF - (radial) wavefunction (normalized)

8 ’’’

9 init_DME = strontium_dipolematrixelement(n1,S1,L1 ,J1 ,n2 ,S2 ,L2 ,J2 ,dr)

#calling the class

10

11 ’First option: Calculating WFs and DME’

12 radial_DME = init_DME.calc_radialDipolematrixelement ()

13 ’Second option: Use precalculated WFs to calculate DME’

14 radial_DME = init_DME.calc_radialDME_precalcWF(state1_file ,state2_file ,

r_min ,r_max ,dr)

15

16 angular_DME = init_DME.calc_angularDipolematrixelement ()

#calculating reduced DME

17 total_DME = init_DME.calc_Dipolematrixelement(M_J1 ,M_J2 ,q)

#calculate total DME
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5. Coulomb Approximation

5.3. Limitations

The Coulomb approximation itself and also the Python implementation have their limita-
tions. It is important to be aware of both physical and numerical limits to avoid errors
in calculations. This section should give an overview and a quick discussion on all known
restrictions.

5.3.1. Physical Limitations

Every approximation is limited to certain aspects of a problem. The Coulomb approximation
is no exception. To determine the physical limits, two influences have to be considered: First
the atom potential and second the effects of the core. Those two influences will be discussed
briefly in this section. More detailed informations about the general background of the factors
can be found in chapters 3 and 4.

Atom Potential

The atom potential is the most obvious limitation to be discussed, as the simplest form of
an atomic potential is used in the approach. Without including the quantum defects in the
calculation, the problem would just consist of the well known hydrogen case.
To motivate the used potential it is helpful to compare it to other approaches. Since there
are no one-dimensional model potentials for strontium (to the author’s knowledge) the alkali
atom 87Rb is used in the further discussion. In figure 5.3 one can see the Coulomb potential
in comparison to a model potential from [40]. This potential has the form

Vmodel = VS(r) + VPol(r) + Vs.o.(r) (5.10)

where VS(r) denotes the screened Coulomb term

VS(r) =
1

r

[
1 + (Z − 1) e−a1r − r(a3 + a4r) e

−a2r] (5.11)

VPol(r) the core polarizibility term

VPol(r) = − αc
2r4

[
1− e−

(
r
rc

)6]
(5.12)

and Vs.o.(r) the fine structure term

Vs.o.(r) =
α2
c

4r3
(J(J + 1)− L(L+ 1)− S(S + 1)) . (5.13)

The constants used are the nuclear charge Z, the emperical obtained model parameters ai
(i = 1, 2, 3, 4), the core dipole polarizibility αc, the effective core size rc and the fine structure
constant α.
In the plot of both potentials it can be seen that the difference vanishes for approximately
5 ≤ r < ∞. In this regime the Coulomb potential is expected to be a good approximation.
Since here physical limits are discussed, it is important to note that smaller r are not covered
with the Coulomb approach. This problem would be covered by better model potentials
for strontium as it is implemented for rubidium. Those potentials must then be adapted
individually for different positions of the second electron. This is possible in general but
was not done yet and involves extensive numerics. The neglection of the term mentioned
in equation (5.12) is directly correlated to the neglection of core effects. Those are briefly
commented about below.
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(a) Rubidium Potential
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Figure 5.3.: Plot of a model potential for rubidium after (5.10) (fig. 5.3a) and the Coulomb
potential used in the implementation (fig. 5.3b). On both potentials a centrifugal
barrier term L(L+ 1) r−2 is added. Each potential is plotted for four different L
values as listed in the legend. Differences are discussed in the text.

Core Effects

As mentioned above the core effects directly influence the potential. In the Coulomb approx-
imation the general idea is to treat the core as a point charge which is unaffected by the
outer electrons. In the real atom this is of course not the case. The core has a finite size rc as
mentioned in equation (5.12) and a finite charge Zeff which is influenced by core penetration
effects of the electrons. This gives a state dependent variation of the potential problem which
directly influences electron wavefunctions. By neglecting core effects one basically treats all
electrons the same which is also a harsh approach at first. By using quantum defects as
a disturbance for the eigenenergies it is possible to compensate the effects up to a certain
degree. It has to be kept in mind that a quantum defect approach never replaces a good
guess for atom potentials, so the model is limited regarding this problem.

5.3.2. Implementation Limitations

As described in section 5.2, the implementation mainly consists of a Numerov algorithm
solving the Coulomb equation (5.2). This process requires a few steps to prevent wavefunction
divergence. They lead to limitations of the application and numerical errors.

Influence of the Turning Points

The most important input in the Numerov method is the inner turning point rmin since it
cuts off divergences at r → 0 and neglects areas where the Coulomb approximation would not
be valid. As described in section 5.2.2, the turning point is defined by classical arguments.
The formula used to determine the absolute value for each state depends on the effective
principal quantum number neff and the angular momentum quantum number L. Whereas
the dependence on neff is negligible, the L dependence has a huge influence on the value. For
L → ∞ the inner turning point gets larger until it is not defined anymore. At this point it
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equals the outer turning point. This behaviour is shown in figure 5.4. Additionally one can
look at the Rydberg radius

〈r〉 =
1

2

[
3n2

eff − L (L+ 1)
]

(5.14)

which is defined as the orbit radius in Rydberg atoms [54].
As it can be seen in the plot, this radius also intersects with the turning points. The in-
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Figure 5.4.: Plot of the Rydberg radius (5.14) and the inner/outer turning points of the
Numerov method over the angular momentum quantum number L at an effective
principal quantum number of neff = 50. It can be seen that all three functions
have a common point of intersection at L = 49.5 marked by the dashed line.
This impacts the solution method of the radial wavefunction as discussed in the
text.

tersection itself is not problematic since the maximum L = n − 1 ≈ neff − 1 is below it.
More of a problem is the shrinking calculation interval for high L states which makes the
implementation unsuitable for circular Rydberg state calculations. In this regime just about
half of the wavefunction would be present due to the inner turning point. This would affect
the dipole matrix elements enormously.
For low L calculations on the other hand this limitation vanishes. Therefore in the calcula-
tions done in the scope of this work no problems with the turning points should occur.

Influence of the Step Size

Although the step size does not have a physical meaning, it also influences the wavefunctions
and thus the dipole matrix elements. To guarantee consistency it is necessary to confine all
calculations on a certain resolution. To show the differences in a variety of resolutions, four
different wavefunctions are plotted in figure 5.5. As it can be seen in the plot, the influence of
the step size on the wavefunction shape vanishes for dr < 1. This limit seems very large since
the wavefunction interval only has a size of approximately 600 a0. To double check this step
size limit one can also calculate dipole matrix elements. For a π-transition of the 5s20p 3P2
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Figure 5.5.: Plots of the 5s20p 3P2 wavefunction for different step sizes dr. The step size
influences the calculation array r as described in section 5.2.2 and can therefore
change the wavefunction and dipole matrix elements. This is discussed in detail
in the text. The inset shows a more detailed view of the wavefunctions to get an
idea about the differences caused by the step size.

state to the 5s20d 2D3 state (mJ1 = 1→ mJ2 = 1) the dipole matrix elements

|D|dr=10 ≈138.579 a0

|D|dr=1 ≈140.097 a0

|D|dr=0.1 ≈139.943 a0

|D|dr=0.01 ≈139.936 a0

|D|dr=0.001 ≈139.935 a0

can be calculated. All values are rounded to six significant digits. As it can be seen, the values
differ largely for dr ≥ 1. For lower dr the value seems to converge. Since the calculation of
wavefunctions is very time costly for dr = 0.001, a dr of 0.01 is used for all calculations. This
seems to be sufficient for dipole matrix calculations as it just differs by 0.001 a0 in the values
calculated above. By this choice, a good accuracy and efficiency can be achieved.

Influcence of the Initial Values

The numerical limitations discussed above directly influence the values of the wavefunctions
and dipole matrix elements. The influence of the initial values on the other hand does not
have any physical effects on the solution of the Coulomb equation since it only causes sign
changes of R(r) and therefore ψ which are arbitrary. However, there is a dependency of the
dipole matrix element sign which can be noticed when calculated values are compared to
reference values. In figure 5.6 calculated dipole matrix elements and matrix elements of the
Alkali Rydberg Calculator (ARC) [28] are plotted to illustrate this effect.
As it can be seen, the calculated values of the implementation are entirely negative whilst
the ARC values change their sign for every n increase. The only sign dependence of the
DME has its origin in the wavefunction respectively the integral of two wavefunctions. This
integral is written as a sum because the wavefunctions are discrete arrays. The sign change
is solely existent because the last slopes differ for different n values as shown in figure 5.7. It
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5. Coulomb Approximation
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Figure 5.6.: Plots of the dipole matrix element between the states 5s20p 1P1 and 5snd 1D2

over the principal quantum number n of the second state. Here the π-transition
from mJ1 = 1 → mJ2 = 1 is shown. To illustrate the influence of the initial
values the calculated dipole matrix elements are compared with dipole matrix
elements calculated with the ARC [28].
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Figure 5.7.: Plot of the 5s20p 1P1 and 5snd 1D2 wavefunctions. The principal quantum num-
ber n is varied to show the sign change of the wavefunction. Further details are
given in the text.

now depends on the initial values, which apply on the right side of the wavefunction, if the
sum of both wavefunctions, ergo the integral, is positive or negative. In the implementation
it is arbitrary chosen that both 5snd 1D2 wavefunctions must end with the same slope at
r → 0 by setting the initial values. It can not be physically motivated that the 5s21d 1D2

wavefunction in figure 5.7b should not be inverted by multiplying with (−1) (which would
be needed for a sign change in the DME).
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5.3. Limitations

This effect defines the sign of the dipole matrix element and leads to the difference pictured
in figure 5.6. The error can not be avoided which makes it impossible to plot oscillating
dipole matrix elements as in [29, p. 42] or in the ARC data. Since this is just a mathematical
flaw which is not of physical nature, one can just use absolute dipole matrix elements.
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5. Coulomb Approximation
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6. Results and Discussion

With the Coulomb approximation described in chapter 5 it is possible to calculate wavefunc-
tions (WF) and dipole matrix elements (DME) easily. This chapter will focus on the results
of those calculations and a comparison to other methods, to set this work in context with
other calculations and determine its shortcomings.

Radial Wavefunctions

Radial wavefunctions for strontium are not readily available in literature. To still put the ob-
tained values into context the “Pairinteraction” Rydberg calculator (PI) v0.9.4-alpha [27] is
used to calculate reference functions. It is to note, that those results are also not experimen-
tally verified. As the implementation is focused on quantum mechanical approximations, the
Numerov wavefunctions of the PI will be used for comparison as far as possible. If necessary,
the PI also includes a semi-classical implementation of radial wavefunctions. The following
discussion will focus on differences between both methods which might show individual er-
rors. It is important to note that radial probability densities are compared, which however
correlate directly with the radial wavefunctions.

The first state to be discussed is the ground state 5s50s 1S0 which is plotted in figure 6.1.
For this state the quantum defects are given with high accuracy (see table 4.1) and also
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Figure 6.1.: Plot of the radial probability density r2R(r)2 of the Rydberg state 5s50s 1S0

where R(r) denotes the radial wavefunction. For comparison the calculated wave-
functions are plotted with wavefunctions calculated using the PI [27]. The inset
shows a zoomed in view of the area around the inner turning point.

show very low deviations from reference values (see table 4.2). The calculated wavefunction
should therefore be as accurate as the approximation allows. As can be seen in the plot, the

37



6. Results and Discussion

calculated wavefunction shows a high level of agreement with the PI wavefunction. At very
low radii the calculated wavefunction is cut off at a larger value than the PI wavefunction.
This is not an error and only occurs because of technical settings. However attention has to
be paid also to the inner turning point since the wavefunction integral influences the dipole
matrix elements. For the Rydberg wavefunctions, the cut-off does not play a large role since
the function is small for small r. Besides this effect no deviations, like phase-shifts can be
observed.
The same good agreement can be found for the 5s50p 1P1 state. To check if the matching
between the calculated values and the PI reference is independent from the spin-series, the
state 5s50s 3S1 is plotted in figure 6.2. The wavefunctions again show no obvious deviations
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Figure 6.2.: Plot of the radial probability density r2R(r)2 of the Rydberg state 5s50s 3S1.
Further details are given in the caption of figure 6.1.

besides the cut-off effect. This does also apply to the 5s50p 3PJ states. In general the S-
and P -states show a very high accordance in the Rydberg regime like it can also be seen
in the quantum defects. It is expected that also the dipole matrix elements of the S → P
transitions are well in agreement with other methods.

Next to be discussed are the D-states. The calculated singlet state 5s50d 1D2 wavefunc-
tion shown in figure 6.3 shows no deviations from the PI reference for large radii. At r → 0 a
new effect regarding the PI wavefunction can be observed: As the inner turning point seems
to be chosen too low, the wavefunctions diverge for small radii. Although this does not affect
the data obtained in this work, it still has to be kept in mind that the PI reference might
include errors due to divergences.
When regarding the triplet-series, another issue occurs which can already be observed in the
5s50d 3D1 state wavefunction plotted in figure 6.4. A small phase-shift between the calculated
wavefunction and the PI wavefunction can be observed. For J = 3 this situation changes.
The state 5s50d 3D3 wavefunction plotted in 6.5 shows an easily visible phase-shift of approx-
imately one a0. As for just two methods no statement could be given about a possible flaw, it
is necessary to include a third method. This is achieved by including the already mentioned
semi-classical approach also implemented in the PI. Comparison of all three methods now
reveals that the phase-shift presumably occurs in the implementation of this work. It can
be assumed that this error occurs due to wrong quantum defect data as the D-state defects
especially for the 3D3 state show some large n-dependencies (see figure 4.2).
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Figure 6.3.: Plot of the radial probability density r2R(r)2 of the Rydberg state 5s50d 1D2.
Further details are given in the caption of figure 6.1.
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Figure 6.4.: Plot of the radial probability density r2R(r)2 of the Rydberg state 5s50d 3D1.
Further details are given in the caption of figure 6.1.

Issues with phase-shift occurrences continue for the F -states. Here, the problem is not lim-
ited to the triplet-series but also occurs for the singlet-state 5s50f 1F3. As all F -states show
approximately the same behavior, only the 5s50f 3F4 state wavefunction plotted in figure
6.6 will be discussed as an example. The shift seems to be approximately two a0 and is
shifted to larger radii unlike the D state in figure 6.5, where the calculated data is shifted to
smaller radii compared to the PI wavefunction. For the F -state nearly no quantum defect is
present and existing data largely varies for n ≥ 25 (see figure 4.2). This is very similar to the
D-states and might lead to serious problems regarding dipole matrix element calculations. A
compensation of this error could in general be accomplished by using other quantum defect
data which in the best case has no deviation to the one used in reference values. This is not
as simple as it might seem, since no “right” quantum defects exist. It would be necessary to
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6. Results and Discussion
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Figure 6.5.: Plot of the radial probability density r2R(r)2 of the Rydberg state 5s50d 3D3.
For comparison the calculated wavefunctions are plotted with Numerov wave-
functions calculated using the PI and semi-classical Coulomb functions calculated
using the PI [27].
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Figure 6.6.: Plot of the radial probability density r2R(r)2 of the Rydberg state 5s50f 3F3.
Further details are given in figure 6.5.

compare the quantum defect database with many other databases and in the best case also
with measured data for Rydberg states. This data is not available at the time of this work
but the error has to be checked when data is available.

Currently it only seems likely that S- and P−states are calculable without large deviations.
As long as no good compensation for the deviations in the D- and F -states is available,
they have to be treated with care. However it is inevitable to systematically eliminate the
occurring issues before future usage.
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Dipole Matrix Elements

The dipole matrix elements are calculated via the radial wavefunctions. To include angular
dependencies it is necessary to calculate resulting dipole matrix elements to crosscheck the
implementations of selection rules and Wigner symbols.
For comparison it is again possible to use the “Pairinteraction” Rydberg calculator (PI)
v0.9.4-alpha [27] for calculating dipole matrix elements. Additionally a semi-classical ap-
proach implemented in the Alkali Rydberg Calculator (ARC) v3.0.4 [28] is used.
To allow a good graphical evaluation of the dipole matrix elements, transitions between a
fixed initial state and a dynamic final state with varying principal quantum number are sim-
ulated. This also allows to identify defective principal quantum number ranges of individual
methods. It is also important to discuss the obtained dipole matrix elements regarding all
possible quantities which influence the results. Therefore the plotted values will be discussed
regarding different transitions in general, different spin-series (singlet and triplet) and change
of the initial state principal quantum number.

General Observations

A first approach to test the obtained results is to look at example transitions between all
possible angular momentum quantum numbers. That means discussing one S → P , one
P → D and one D → F transition. For this purpose the singlet-transitions are used.

The first transition in this comparison is the 5s20s 1S0 to 5snp 1P1 transition. The dipole
moment is plotted in figure 6.7. As the quantum defect data for these states is given to
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Figure 6.7.: Plots of the dipole matrix element between the states 5s20s 1S0 and 5snp 1P1

over the principal quantum number n of the second state. Here the π-transition
from mJ1 = 0 → mJ2 = 0 is shown. For the discussion of the values calculated
dipole matrix elements are compared with dipole matrix elements calculated with
the ARC [28] and dipole matrix elements calculated with the PI [27].
On the left side an inset is shown to display deviations. The right side shows the
whole range on a logarithmic scale.

a good accuracy (see table 4.1) and also has a low deviation to reference values (see table
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6. Results and Discussion

4.2), it is expected that the calculated dipole matrix elements are also accurate. As can be
seen in the plot, the calculated values nearly match with the reference values of the PI. The
ARC matrix elements on the other hand are significantly larger than the obtained values,
especially for high target-n. To see the deviation more detailed, the quotient of the cal-
culated values and the references is plotted in figure 6.8a. One can see that the quotient
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Figure 6.8.: Plot of the quotients between the calculated values and the ARC values and
respectively between the calculated values and the PI values. The transition is
given in the sub-caption and more detail is given in the text.

between the calculated values and the ARC values increases for larger n. This is surprising
as the semi-classical approach should approach the quantum-mechanical method for Rydberg
states. The PI values have a nearly constant deviation of approximately 2.5% to the calcu-
lated values. Here it would be interesting in the future, where experimental values are located.

For the second transition the states 5s20p 1P1 and 5snd 1D2 are observed. As the final state
is a D-state, it can be expected that errors occur since a large n dependency can be seen in
figure 4.2. This indicates a large interaction with the ground state valence electron which can
lead to errors due to the used approximations. In figure 6.9 the obtained data out of all three
methods is shown. The data seems to vary between all three methods. To observe tendencies
especially of the Coulomb approximation the quotient between the methods is plotted in fig-
ure 6.8b. The quotients show a large resonance located at the zero point of the dipole matrix
element. This is related to the fact, that the matrix elements get very small at this point
but still have a constant absolute deviation. Therefore the relative deviation, calculated via
the quotient, diverges. The resonance location at target-n values of approximately 30 has its
source in the wavefunctions, as minima and maxima of the functions cancel each other out
in this region. A shift of the wavefunctions can be excluded by plotting the wavefunctions of
initial and final state.
Besides this effect it is hard to derive statements about the accuracy of the method from
this transition. Even though the deviation from the PI values is smaller than the one from
the ARC values it is still in the region of about 10% to 15% which is large compared to the
results obtained from the S → P transition. This could introduce large errors in stark map
calculations.
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Figure 6.9.: Plots of the dipole matrix element between the states 5s20p 1P1 and 5snd 1D2

over the principal quantum number n of the second state. Here the π-transition
from mJ1 = 1 → mJ2 = 1 is shown. Detail on the colors and the subplots is
given in the caption of figure 6.7.

The third transition to be discussed is the transition between 5s20d 1D2 and 5snf 1F3. The
results are shown in figure 6.10. Although the initial state is a D-state no large deviations
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Figure 6.10.: Plots of the dipole matrix element between the states 5s20d 1D2 and 5snf 1F3

over the principal quantum number n of the second state. Here the π-transition
from mJ1 = 2 → mJ2 = 2 is shown. Detail on the colors and the subplots is
given in the caption of figure 6.7.

to the PI values can be observed. Only for large n the calculated values seem to diverge.
However, the transition probabilities are small in that regime and are therefore negligible.
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6. Results and Discussion

By calculating the dipole matrix elements up to n = 55 it can be shown, that the increase
of the matrix elements is only a local maximum. As this does not occur in the other meth-
ods, there must be an error in the Coulomb approximation. This might have its source in
numerical errors due to turning points or divergences of the wavefunction. When examining
the wavefunctions of those states no obvious errors can be observed. However this occurrence
has to be double-checked with other D → F transitions to evaluate its severity.

Singlet- and Triplet-Series

As the singlet- and triplet-series are treated separately, it is also necessary to take a look at
the dipole matrix elements when the spin of the states is changed.

The transition between the states 5s20s 3S1 and 5snp 3P1 plotted in figure 6.11 validates
the observations of figure 6.7. The calculated values seem to match the PI values. The ARC
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Figure 6.11.: Plots of the dipole matrix element between the states 5s20s 3S1 and 5snp 3P1

over the principal quantum number n of the second state. Here the π-transition
from mJ1 = 1 → mJ2 = 1 is shown. Detail on the colors and the subplots is
given in the caption of figure 6.7.

matrix elements are again larger than the other two approximations. This is the same be-
havior as for the singlet S → P transition.

As the D-states have shown severe deviations in the singlet-series, it is probable that similar
problems occur for the triplet-series. This is indeed the case for the 5s20d 3D3 to 5snf 3F3

transition as seen in picture 6.12. The increasing dipole matrix element at n→ 50 still exists
and furthermore the values show a large deviation from both other methods.
In the case of the 5s20p 3P2 to 5snd 3D2 transition shown in figure 6.13, the tendency for
large principal quantum numbers looks promising. The deviation to the PI values vanishes
as for the S → P transitions. However for small target-n large deviations occur as the calcu-
lated matrix elements decrease faster as the other two methods predict. Errors like this can
always result from finite accuracy of the quantum defects. By varying the starting state to
a higher principal quantum number, possible errors, created by the strong n-dependence for
low-n quantum defects, could be circumvented.
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Figure 6.12.: Plots of the dipole matrix element between the states 5s20d 3D3 and 5snf 3F3

over the principal quantum number n of the second state. Here the π-transition
from mJ1 = 3 → mJ2 = 3 is shown. Detail on the colors and the subplots is
given in the caption of figure 6.7.
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Figure 6.13.: Plots of the dipole matrix element between the states 5s20p 3P2 and 5snd 3D2

over the principal quantum number n of the second state. Here the π-transition
from mJ1 = 2 → mJ2 = 2 is shown. Detail on the colors and the subplots is
given in the caption of figure 6.7.

Change of Initial State

As some tendencies were already outlined before, only the critical transitions should be dis-
cussed in details regarding a change of the initial state. By changing the principal quantum
number of the initial state it is expected that errors induced by the quantum defect data
disappear or at least change. Disappearing errors can be a sign for a principal quantum
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6. Results and Discussion

number for Rydberg state treatment, which is chosen too low.

The S → P transitions show the same behavior as in the two cases considered before. This
was checked with the 5s30s 1S0 to 5snp 1P1 and the 5s30s 3S1 to 5snp 3P1 transitions. As no
new effects were observed, these transitions should not be discussed further.

Transitions including D-states again show problematic behavior. This is mainly the case
for the 5s30p 1P1 to 5snd 1D2 transition shown in figure 6.14 and the 5s30d 3D3 to 5snf 3F3

shown in figure 6.15. These two transitions did already show discrepancies for a principal
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Figure 6.14.: Plots of the dipole matrix element between the states 5s30p 1P1 and 5snd 1D2

over the principal quantum number n of the second state. Here the π-transition
from mJ1 = 1 → mJ2 = 1 is shown. Detail on the colors and the subplots is
given in the caption of figure 6.7.

quantum number of n = 20 of the first state (see figure 6.9 and 6.12). For the higher n of
the initial state the error seems to change. In the case of the first transition it now appears
as if the ARC data and the calculated values match over nearly the whole range. Without
detailed analysis of the PI calculation no obvious outline about this transition can be given.
The second transition from 5s30d 3D3 to 5snf 3F3 has a smaller deviation between the meth-
ods than the 5s20d 3D3 to 5snf 3F3 transition shown in figure 6.12. It can be concluded, that
indeed most of the deviations between the three implementations are caused by the lower
state as it was expected since the approximation mostly affects low-n states.
The transitions 5s20d 1D2 to 5snf 1F3 and 5s20p 3P2 to 5snd 3D2 shown in figure 6.16 and
6.17 do look more promising regarding at least high quantum numbers. This confirms the
observations made regarding figure 6.10 and 6.13. The errors which occurred for a lower
initial state decrease and the calculated data seems to converge with the PI reference for
large n. It is still possible to observe an increase of the matrix element in figure 6.16 but this
appears to be a local problem in this regime.
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Figure 6.15.: Plots of the dipole matrix element between the states 5s30d 3D3 and 5snf 3F3

over the principal quantum number n of the second state. Here the π-transition
from mJ1 = 3 → mJ2 = 3 is shown. Detail on the colors and the subplots is
given in the caption of figure 6.7.
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Figure 6.16.: Plots of the dipole matrix element between the states 5s20d 1D2 and 5snf 1F3

over the principal quantum number n of the second state. Here the π-transition
from mJ1 = 2 → mJ2 = 2 is shown. Detail on the colors and the subplots is
given in the caption of figure 6.7.

47



6. Results and Discussion

36 38 40 42 44 46 48 50

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

|<
5
s3
0
p

3
P
2
|r
|5
sn
d

3
D

2
>
|(
a
0
)

ARC DME

Calculated DME

PI DME

30 40 50

100

101

102

Principal Quantum Number Upper State

Figure 6.17.: Plots of the dipole matrix element between the states 5s20p 3P2 and 5snd 3D2

over the principal quantum number n of the second state. Here the π-transition
from mJ1 = 2 → mJ2 = 2 is shown. Detail on the colors and the subplots is
given in the caption of figure 6.7.
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7. Summary and Outlook

The goal of this work was to calculate wavefunctions and dipole matrix elements of the
alkaline-earth atom 88Sr. For this purpose, a theoretical foundation consisting of quantum-
mechanical principles and calculation methods was introduced.
Atomic potentials were discussed regarding the importance of potential terms in different
radial regimes. Furthermore it was outlined, why a simplified potential approach is sufficient
for treating Rydberg states when combined with experimental quantum defect data.
The physical properties of the quantum defect were discussed and a database was calculated.
As a final approach the Coulomb approximation was proposed and discussed. A detailed
outline about the influence of the quantum defects in the approximation was given. A docu-
mented numerical implementation of the Coulomb equation, obtained by the approximation,
was done and limitations were discussed.
By comparing the obtained results with two other readily available implementations, the re-
sults were set in context. It was observed, that calculations of the S-states and P -states with
n ≥ 20 agree very well across all used methods. Neither the wavefunctions nor the dipole
matrix elements showed large deviations. Transitions including D-states have shown large
derivation. The wavefunction calculation for the singlet-series was constant across the imple-
mentations, but phase-shifts occurred for the triplet-series when using J ≥ 2. This error lead
to the dipole matrix elements to also differ between the methods. The discussed transitions
to an 3D2 state gave quite good results for higher states, where surprisingly transitions to
an 1D2 state gave deviating results even for high Rydberg states. The F -state wavefunctions
showed large phase-shifts when compared to reference values. This error is expected to have
its source in the quantum defect data which would confirm the observation, that at least
singlet transitions gave comparable results for high principal quantum numbers. Transitions
to triplet-series deviated also for high initial states.
In conclusion it can be said, that a good accordance with reference methods was achieved
in most of the cases. Deviations occurring between the approximations can partly be traced
back to the quantum defect data, but no general claim can be made, why certain deviations
occur. Just by regarding the comparison with the reference methods, the approach does work
good for Rydberg state calculations. Limitations occur when calculating high-L states. It
will be necessary in the future to include experimental reference values to eliminate errors
due to the approximation.

The implementation of Rydberg state calculations gives an important foundation for our
quantum simulator setup using circular Rydberg states [15]. Discussions of the results did
show difficulties when calculating high-L states. This remains a challenge for the future,
that can be solved by implementing hydrogen wavefunctions, as core defects get negligible
for high-L states.
With the obtained dipole matrix elements it will be possible to calculate stark maps. This
step is mathematically difficult as large hamiltonians need to be diagonalized. Calculated
stark maps for strontium could then be compared with the work of Millen et al. [55] which
is currently (to the authors knowledge) the only source for literature values of stark maps.
This comparison here is very important as for example stark maps calculated with the al-
kali Rydberg calculator [28] show large deviations to those experimental values. If accurate
stark maps are obtained they allow for example high precision calculations of avoided cross-
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ings needed for the circularization method of Delande et al. [56] is used. This method uses
ramped crossed electric and magnetic fields which has to be precise to have full control over
the transitions. For this method it is also required that the stark map calculation code sup-
ports arbitrary angles between the electric and magnetic field, which is not supported by any
publicly available implementation.
With a working implementation of all calculations outlined in this section it will finally be
possible to supply the quantum simulator experiment and also further experiments with
accurate atomic state data for all purposes.
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A. Appendix

A.1. Quantum Defects of Strontium

In the following tables A.2, A.3 and A.4 the known quantum defects of strontium are listed.
The collection includes values from different experiment papers published up to the date of
this thesis. The quantum defects are either obtained by experiment or calculated. Since each
paper only considers a limited n-range, it is not possible to find quantum defects for every
principal quantum number. Where alternative data points were available, the one with the
best accuracy was chosen. The sources for every value are listed in table A.1.

Table A.1.: Overview of all sources used in table A.2, A.3 and A.4 sorted by state and n-range.

State n-range Source

L = 0
5sns 1S0

5 to 9 Rubbmark et al., PS 18, 196 (1978)[51]

10 to 80 Beigang et al., OC 42, 19 (1982)[57]

5sns 3S1 11 to 45 Beigang et al., PS 26, 183 (1982)[58]

L = 1

5snp 1P1 5 to 29 Rubbmark et al., PS 18, 196 (1978)[51]

5snp 3P2 5 to 60 Armstrong et al., JOSA 69, 211 (1979)[59]

5snp 3P1 5 to 22 Armstrong et al., JOSA 69, 211 (1979)[59]

5snp 3P0 5 to 15 Armstrong et al., JOSA 69, 211 (1979)[59]

L = 2

5snd 1D2
4 to 9 Rubbmark et al., PS 18, 196 (1978)[51]

10 to 80 Beigang et al., OC 42, 19 (1982)[57]

5snd 3D3
4 to 8 Rubbmark et al., PS 18, 196 (1978)[51]

12 to 45 Beigang et al., PS 26, 183 (1982)[58]

5snd 3D2
4 Rubbmark et al., PS 18, 196 (1978)[51]

6 to 50 Esherick, PRA 15, 1920 (1977)[60]

5snd 3D1
4 to 7 Rubbmark et al., PS 18, 196 (1978)[51]

12 to 32 Beigang et al., PS 26, 183 (1982)[58]

L = 3

5snf 1F3 4 to 29 Rubbmark et al., PS 18, 196 (1978)[51]

5snf 3F4 4 to 28 Rubbmark et al., PS 18, 196 (1978)[51]

5snf 3F3 4 to 28 Rubbmark et al., PS 18, 196 (1978)[51]

5snf 3F2 4 to 28 Rubbmark et al., PS 18, 196 (1978)[51]
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Table A.2.: Quantum defects of the strontium 5sns 1S0, 5snp 1P1, 5snd 1D2, 5snf 1F3,
5sns 3S1, 5snp 3P2 and 5snp 3P1 states in the n-range from 4 to 40. The source
for every quantum defect is listed in table A.1.

n 5sns 1S0 5snp 1P1 5snd 1D2 5snf 1F3 5sns 3S1 5snp 3P2 5snp 3P1

4 1.936929 -0.143061

5 3.4543267 2.8720247 1.870486 0.013466 3.120 3.131

6 3.325401 2.954799 1.792596 0.04308 2.971 2.984

7 3.1718327 3.047734 1.82690 0.05611 2.883 2.893

8 3.25784 2.37624 1.86021 0.06352 2.886 2.896

9 3.26419 2.50856 1.89910 0.06836 2.883 2.893

10 3.26612 2.58484 1.94844 0.07186 2.880 2.890

11 3.26699 2.62804 1.99580 0.07406 3.3780 2.888 2.888

12 3.26846 2.65408 2.02346 0.0759 3.3770 2.877 2.887

13 3.26754 2.67109 2.07954 0.0772 3.3749 2.876 2.886

14 3.26782 2.6828 2.13058 0.0781 3.3745 2.875 2.885

15 3.26801 2.6908 2.18851 0.0792 3.3734 2.875 2.885

16 3.26815 2.6968 2.12569 0.0799 3.3736 2.875 2.885

17 3.26826 2.7017 2.16944 0.0802 3.3726 2.874 2.884

18 3.26834 2.7051 2.19997 0.0809 3.3730 2.874 2.885

19 3.26842 2.7082 2.22417 0.0814 3.3727 2.874 2.884

20 3.26848 2.7100 2.24283 0.0811 3.373 2.875 2.884

21 3.26853 2.7120 2.25809 0.0816 3.371 2.874 2.884

22 3.26857 2.7127 2.27090 0.0821 3.374 2.875 2.885

23 3.26860 2.7140 2.28184 0.082 3.376 2.876

24 3.26863 2.7156 2.29129 0.082 3.373 2.876

25 2.717 2.29952 0.080 3.366 2.878

26 3.26869 2.716 2.30675 0.087 3.364 2.877

27 2.716 0.068 3.370 2.878

28 3.26872 2.716 2.31876 0.081 3.369 2.876

29 2.725 2.32380 0.064 3.372 2.874

30 3.26876 2.32831 3.375 2.880

31 2.33236 3.374 2.876

32 3.26878 2.33601 3.381 2.874

33 2.33932 3.354 2.875

34 3.26880 2.34232 3.366 2.876

35 2.34505 3.359 2.879

36 3.26882 2.34755 3.370 2.878

37 3.26883 2.34984 3.373 2.879

38 3.26883 2.35193 3.371 2.879

39 3.26884 2.35386 3.37 2.885

40 3.26884 2.35564 3.37 2.877
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Table A.3.: Continuation of table A.2 for the n-range from 41 to 80. The source for every
quantum defect is also listed in table A.1.

n 5sns 1S0 5snp 1P1 5snd 1D2 5snf 1F3 5sns 3S1 5snp 3P2 5snp 3P1

41 3.26885 3.36 2.878

42 3.26885 2.35881 3.37 2.865

43 3.26886 2.36022 3.33 2.872

44 3.26886 2.36154 3.36 2.887

45 3.26887 2.36276 3.39 2.892

46 3.26887 2.36390 2.894

47 3.26887 2.36496 2.898

48 3.26888 2.36596 2.888

49 3.26888 2.36689 2.894

50 3.26888 2.36777 2.885

51 3.26888 2.36859 2.870

52 3.26889 2.36936 2.878

53 3.26889 2.37009 2.919

54 3.26889 2.37078 2.887

55 3.26889 2.37143 2.872

56 3.26890 2.37204 2.889

57 3.26890 2.37262 2.897

58 3.26890 2.37317 2.924

59 3.26890 2.37369 2.916

60 3.26890 2.37418 2.922

61 3.26890 2.37465

62 3.26890 2.37509

63 3.26891 2.37551

64 3.26891 2.37592

65 3.26891 2.37630

66 3.26891 2.37667

67 3.26891 2.37702

68 3.26891 2.37735

69 3.26891 2.37767

70 3.26891 2.37797

71

72

73

74 2.37906

75 3.26892 2.37931

76

77

78

79 2.38019

80 3.26892 2.38039
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Table A.4.: Quantum defects of the strontium 5snp 3P0, 5snd 3D3, 5snd 3D2, 5snd 3D1,
5snf 3F4, 5snf 3F3 and 5snf 3F2 states in the n-range from 4 to 50. The source
for every quantum defect is listed in table A.1.

n 5snp 3P0 5snd 3D3 5snd 3D2 5snd 3D1 5snf 3F4 5snf 3F3 5snf 3F2

4 2.0064805 2.0100976 2.0122392 0.089724 0.090475 0.091018

5 3.137 1.8251699 1.8307130 0.097292 0.097922 0.09840

6 2.986 1.802713 1.807 1.808522 0.101407 0.10195 0.10244

7 2.898 1.799302 1.804 1.806028 0.10379 0.10443 0.10489

8 2.901 1.80282 1.808 0.10546 0.10620 0.10665

9 2.897 1.817 0.10658 0.10726 0.10770

10 2.895 1.832 0.10756 0.10831 0.10831

11 2.893 1.853 0.10783 0.10872 0.10872

12 2.891 1.8586 1.884 1.9114 0.1082 0.1090 0.1090

13 2.891 1.8860 1.929 1.9801 0.1084 0.1092 0.1092

14 2.890 1.9181 1.990 2.0821 0.1095 0.1095 0.1095

15 2.890 1.9632 2.063 2.2151 0.1103 0.1103 0.1103

16 2.0194 2.127 2.3717 0.1101 0.1101 0.1101

17 2.0824 2.351 2.4418 0.1106 0.1106 0.1106

18 2.1567 2.424 2.5014 0.1100 0.1100 0.1100

19 2.225 2.478 2.541 0.1118 0.1118 0.1118

20 2.289 2.515 2.571 0.1113 0.1113 0.1113

21 2.347 2.542 2.592 0.1119 0.1119 0.1119

22 2.366 2.562 2.606 0.1118 0.1118 0.1118

23 2.420 2.577 2.615 0.112 0.112 0.112

24 2.448 2.589 2.622 0.112 0.112 0.112

25 2.481 2.598 2.628 0.101 0.101 0.101

26 2.488 2.605 2.630 0.122 0.122 0.122

27 2.515 2.611 2.640 0.118 0.118 0.118

28 2.524 2.616 2.638 0.110 0.110 0.110

29 2.528 2.620 2.642

30 2.546 2.624 2.651

31 2.561 2.627 2.654

32 2.544 2.629 2.651

33 2.573 2.632

34 2.579 2.634

35 2.568 2.636

36 2.579 2.637

37 2.543 2.639

38 2.57 2.640

39 2.56 2.641

40 2.56 2.642

41 2.57 2.643

42 2.54 2.644

43 2.54 2.645

44 2.58 2.645

45 2.54 2.646

46 2.647

47 2.647

48 2.648

49 2.648

50 2.649
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Weiterhin möchte ich mich bei Dr. Florian Meinert für seine sehr hilfreichen Beiträge
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