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Zusammenfassung

Die Quantenmechanik bildet die Grundlage für viele Bereiche der modernen

Physik. Die Beschreibung von Materie und Licht wird im kleinsten Detail von

der Quantentheorie erfasst. Insbesondere werden Prozesse auf atomarer Ebene

mit bemerkenswerter Genauigkeit und Zuverlässigkeit wiedergegeben. Auf dem

Maßstab von Atomen verhalten sich die Dinge typischerweise überhaupt nicht

so wie etwas das wir mit Erfahrungen aus dem täglichen Leben in Verbindung

bringen können. Die Quantennatur atomarer Objekte (z.B. Elektronen, Protonen,

Neutronen, Photonen, usw.) wird häufig mit dem Begriff „Teilchenwelle“ bzw.

„Wellenteilchen“ assoziiert. Der Grund für die (mehr oder weniger zutreffende)

Bezeichnung ist, dass alle diese Objekte Eigenschaften von beiden besitzen, die

eines Teilchens, da wir einzelne Klicks auf einem Detektor erfassen können, und

die einer Welle, da wir die Interferenz zwischen Objekten durch mehrmaliges

Wiederholen von Experimenten sichtbar machen können.

Zu Beginn des 20. Jahrhunderts sorgte eine immer mehr wachsende Anzahl an

Experimenten auf atomarer Ebene, welche bereits Hinweise zu dem Verhalten

kleinster Teilchen lieferten, für eine zunehmende Verwirrung der noch großteils

klassisch denkenden Gesellschaft. Schließlich gelang es Schrödinger, Heisenberg

und Born um 1926/27 eine konsistente Beschreibung des Verhaltens der Materie

auf kleinstem Maßstab zu formulieren, mit der die Verwirrung größtenteils aufglöst

wurde. Die Theorie bildet die Grundlage der heute bekannten Quantenmechanik.[9]



Einer der grundlegendsten Unterschiede zwischen der Beschreibung der klassi-

schen und der Quantenmechanik besteht darin, dass wir in der klassischen Mechanik

das Ergebnis einer Messung anhand der Anfangsbedingungen (deterministisch)

bestimmen. In der Quantenmechanik hingegen müssen wir den Determinismus

aufgeben und akzeptieren, dass wir lediglich eine Chance ein Messergebnis zu

erhalten vorhersagen können. Bei der Anwendung der Quantentheorie erkennen

wir, dass unser vom klassischen Standpunkt aus idealisiertes Verständnis der Natur

eingeschränkt wird, was in manchen Situationen schwierig zu akzeptieren sein kann.

Auf diese Weise jedoch können wir quantenmechanische Phänomene beschreiben,

die aus klassischer Sicht nicht zu verstehen sind. In der Quantentheorie ergibt sich

die Wahrscheinlichkeit des Auftretens eines Ereignisses aus der Wellenfunktion,

die das quantenmechanische System beschreibt.

In dieser Hinsicht sind Rydberg-Atome faszinierende Objekte mit für Atome

übertriebenen Eigenschaften und Größen, was sie zu perfekten Kandidaten für die

Untersuchung quantenmechanischer Phänomene auf „klassischem Maßstab“ macht.

Manchmal kann das Ergebnis dieser Studien sehr überraschend sein, und in diesem

Fall ist zu Beginn oft nicht klar, ob das beobachtete Phänomen quantenmechani-

scher oder klassischer Natur ist. Diese Studien sind meist die aufregendsten, da wir

unser Wissen über die Natur wie wir sie verstehen erweitern können, indem wir

die Grenzen der klassischen und der quantenmechanischen Beschreibung austesten.

Diese Arbeit berichtet über Studien von positiven und negativen Ionen basierend

auf Rydberg-Spektroskopie. Die Experimente werden in einem ultrakalten Gas aus

Rubidium-87-Atomen durchgeführt. Im Bereich der kalten und ultrakalten Atome

ist die Bewegung der Gasatome auf der Zeit- und Längenskala (Mikrometer pro

Mikrosekunde) von typischen Rydberg-Experimenten eingefroren.
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In den vergangenen Jahren haben sich ultrakalte Rydberg-Atome als vielseitige

Plattform für die Quantensimulation von langreichweitig-wechselwirkenden Viel-

körpersystemen [10–12], für die Erzeugung nichtklassischer photonischer Zustände

[13, 14] und für die Verarbeitung von Quanteninformationen [15–17], erwiesen. Ein

zentraler Aspekt für zukünftige Vorhaben in diesen Bereichen ist das Phänomen

der Rydberg-Blockade [18–20]. Das Blockadephänomen beruht auf der starken

Wechselwirkung der Rydberg-Atome, welche die Unterdrückung der gleichzeiti-

gen Anregung von zwei oder mehr Atomen in Rydberg-Zustände innerhalb eines

bestimmten Blockadevolumens zur Folge hat. Die Rydberg-Rydberg Blockade

in einem kalten und dichten Atomensemble wurde erstmals 2004 experimentell

beobachtet [21, 22] und 2009 für ein Paar einzelner Atome demonstriert [23].

Ein ähnliches Konzept existiert für Hybridsysteme aus Ionen und Rydberg-

Atomen. In diesem Fall führen starke Wechselwirkungen zwischen einem einzelnen

Ion und Rydberg-Atomen zu ladungsinduzierten Blockadephänomenen, die über

makroskopische Entfernungen wirken. Die ioneninduzierte Rydberg-Blockade wur-

de zur Anwendung für den Quanteninformationstransfer zwischen ionischen und

atomaren Quantensystemen vorgeschlagen [24]. Die experimentelle Beobachtung

des Blockademechanismus ist jedoch bisher ausgeblieben. Der Grund hierfür liegt

darin, dass in traditionellen Hybridsystemen die durch Ionenfallen induzierte

Linienverschiebung in den Rydberg-Zuständen die Beobachtung von Wechsel-

wirkungseffekten erschwert [25]. Dennoch wurde erst kürzlich in einer Studie

zum Ladungstransfer in einem solchen Hybridsystem über erste Hinweise auf

ioneninduzierte Linienverschiebungen berichtet [26]. Darüber hinaus wurden Ionen-

Rydberg-Atom-Wechselwirkungen in Atomstrahlexperimenten untersucht [27] und

in jüngster Zeit wurde gezeigt, dass die Ionen-Rydberg-Atom-Wechselwirkung

quantenoptische Anwendungen, die auf Dämpfen bei Raumtemperatur basieren,

beeinflussen [28].
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Im Rahmen dieser Arbeit wird ein alternativer Ansatz zur Realisierung ei-

nes Ionen-Rydberg-Atomsystems erarbeitet. Hierfür wird ein einzelnes Ion in

einem ultrakalten Gas aus Rubidium-Atomen erzeugt. Das Vorhandensein des

Ions wird überprüft, indem das Valenzelektron eines einzelnen Gasatoms in den

Rydberg-Zustand angeregt wird. Eine hohe räumliche Kontrolle über das Ion und

die Rydberg-Anregung wird durch einen eng fokussierten Photoionisations- und

Anregungslaser erreicht. Die Ionen-Rydberg-Atom-Wechselwirkung wird mittels

einer ioneninduzierten Rydberg-Anregungsblockade untersucht und der Blocka-

demechanismus wird dazu eingesetzt, ein einzelnes Ion als empfindliche Sonde

für kleine elektrische Felder zu verwenden. Das Ergebnis dieser Studien wurde in

Ref. [S1] veröffentlicht. Zusätzlich werden Experimente mit einem einzelnen Ion in

einem Bose-Einstein Kondensat durchgeführt und erste Blockademessungen des

Ions im Kondensat vorgestellt.

Studien über Wechselwirkungen zwischen Rydberg-Atomen und neutralen Ato-

men reichen zurück bis in das späte 19. Jahrhundert. Im Jahr 1879 kategorisierten

Liveing und Dewar die spektrale Linienformen von Natrium in scharfe und diffuse

Linien [29]. Heute wissen wir, dass diese diffuse Linien in Natrium den d-Zuständen

entsprechen. Da d-Zustände in Natrium energetisch nahe der entarteten wasser-

stoffartigen Zuständen liegen, weisen diese im Spektrum eher eine Druckverbreite-

rung auf [27]. Die Verbreiterung der Emissionslinie folgt aus der Wechselwirkung

des Rydberg-Atoms mit den umgebenden Atomen. Im Jahr 1934 berichteten

Amaldi und Segré (Ref. [30]) für Experimente mit hohem Hintergrundgasdruck

über wechselwirkungsinduzierte Linienverschiebungen und Verbreiterungen der

Rydberg-Serie in Natrium für Hauptquantenzahlen im Bereich von n = 30. Sie

erwarteten, dass das Puffergas die Rydberg-Serie unterbrechen würde, da das

Rydberg-Atom für die experimentellen Bedingungen 10.000 Moleküle des Hinter-
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grundgases enthalten müsste. Im selben Jahr führte Enrico Fermi das heutzutage

bekannte Fermi-Pseudopotential [31] für die Streuung des Rydberg-Elektrons an

Atomen ein, um diese Ergebnisse zu erklären und ebnete damit den Weg für im-

mer mehr faszinierende Perspektiven der Rydberg-Atom-Wechselwirkungen. Diese

erstrecken sich über den Bereich von einzelnen oder wenigen Atomen, welche mit

dem Rydberg-Atom interagieren [S2, S5, 32–45], bis hin zu unzähligen neutralen

Atomen die sich in dem Rydberg-Elektronenorbit aufhalten [S4, S6–S8, 38, 46, 47].

Dies ist lediglich eine unvollständige Liste an experimentellen Studien, die sich

mit der Untersuchung von Rydberg-Atom-Wechselwirkungen in dem vergangenen

Jahrzehnt befasst haben.

In dieser Arbeit werden ultralangreichweitige Rydberg-Moleküle verwendet, um

Resonanzen im Rubidium-Anion zu untersuchen. Ultralangreichweitige Rydberg-

Moleküle (ULRMs) können sich bilden, wenn sich ein oder mehrere neutrale Atome

innerhalb der Rydberg-Elektronenwellenfunktion aufhalten. Die neutralen Ato-

me sind durch attraktive Elektron-Atom-Streuwechselwirkungen innerhalb des

Elektronenorbits gebunden und bilden lokal ein negatives Ion. Die resultierenden

gebundenen Molekülzustände sind hochempfindlich gegenüber der Streuwechselwir-

kung und ermöglichen daher einen detaillierten Einblick in die zugrundeliegenden

Anionenzustände nahe der Elektronenablösungsgrenze. Zu diesem Zweck wird die

ULRM-Spektroskopie in einer kombinierten experimentellen und theoretischen

Studie auf ein bislang unerreichtes quantitatives Maß an Präzision angehoben.

Hierbei werden die ultralangreichweitigen Rydberg-Moleküle als ein ultrasensiti-

ves Werkzeug zur Untersuchung der quasi-gebundenen Negativionenresonanzen

der Rubidiumanion eingesetzt. Das Ergebnis dieser Studien wurde in Ref. [S2]

veröffentlicht.
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Im letzten Teil dieser Arbeit wird das Ergebnis einer experimentellen Untersu-

chung eines lokalen Atomverlusts in einem Bose-Einstein Kondensat vorgestellt,

der durch ein einzelnes Rydberg-Atom induziert wird. Die ersten Experimente

sind ursprünglich der optischen Abbildung einer Elektronenwellenfunktion eines

Rydberg-Atoms gewidmet. Für das Wellenfunktionsbildgebungsverfahren wird

das Rydberg-Atom im Zentrum eines Bose-Einstein Kondensats präpariert. Die

Elektron-Atom-Wechselwirkung führt zur Aufprägung einer Phase auf der Konden-

satwellenfunktion, die in erster Ordnung proportional zum absoluten Quadrat der

Elektronenwellenfunktion ist. Aufgrund des Gradienten der eingeprägten Phase,

fließen die Kondensatatome in Bereiche mit hoher Elektronendichte. Der Atom-

fluss setzt sich fort, auch wenn das Rydberg-Atom nicht mehr vorhanden ist. Im

Gegensatz zur erwarteten Dichtezunahme aufgrund der attraktiven Elektron-Atom-

Wechselwirkung, wird experimentell eine lokale Abnahme der Kondensatdichte

im Bereich der Rydberg-Anregung beobachtet. Das beobachtete lokale Atom-

verlustmerkmal wird für ein einzelnes Rydberg-Atom und mehrere nachfolgende

Rydberg-Anregungen sowie für unterschiedliche Atomdichten charakterisiert. Dar-

über hinaus wird der experimentell beobachtete Verlust mit numerischen Simula-

tionen abgeglichen, bei denen das Ausmaß der Änderung der Kondensatdichte im

Anregungsbereich des Rydberg-Atoms weitgehend unterschätzt wird.
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1
Introduction

General introduction Quantum mechanics forms the basis for many areas of modern

physics. The theory of quantum mechanics comprises a description of matter and

light in every detail. In particular, the behavior of processes on the atomic scale is

accurately described with remarkable reliability. On the very small scale of atoms,

things usually don’t behave at all like something we’ve experience from our daily

life. The quantum nature of atomic objects (electrons, protons, neutrons, photons,

et cetera) is often associated with the term “wave particle”. The reason for this

(more or less accurate) term is that all of these objects have properties of both a

particle, as we can detect single clicks on a detector, and a wave, as interference

effects can be made visible by repeating experiments many times.

At the beginning of the 20th century, the results of a gradually increasing

number of experiments on the atomic and small-scale, which already gave some

clues as to how small things behave, led to increasing confusion in the largely

classical-thinking physical society. Around 1926/27, Schrödinger, Heisenberg, and

Born succeeded in formulating a consistent description of the behavior of matter

on a small scale, which largely resolved the confusion. The theory forms the basis

of quantum mechanics known today.[9]



Chapter 1 Introduction

One of the most important differences between the description of classical and

quantum mechanics is that in classical mechanics we predict the outcome of a

measurement based on the initial conditions (deterministically). Meanwhile, we

give up determinism for quantum mechanics and are content with the fact that

we can only predict the odds of a measurement result. When applying quantum

theory, we recognize that we have to withdraw our ideal understanding of nature

from the classic point of view, which sometimes can be difficult to accept. In

this way, however, we can describe quantum mechanical phenomena that are

impossible to understand by classic means. In quantum theory, the probability

of the occurrence of an event results from the wavefunction that describes the

quantum mechanical system.

In this regard, Rydberg atoms are intriguing objects that feature exaggerated

properties and sizes, making them a perfect platform for studying quantum

mechanical phenomena on a “classical scale”. Sometimes the outcome of these

studies can be very surprising, and in this case, it is often not clear at the beginning

whether the observed phenomenon is of quantum mechanical or classical nature.

These studies are the most exciting ones since we can extend our knowledge of

nature by testing the boundaries between the classical and the quantum world.

This thesis reports on studies of positive and negative ions based on Rydberg

spectroscopy. The experiments are carried out in an ultracold gas of rubidium-87

atoms. In the cold and ultracold regime, the motion of atoms is usually frozen out

on the time and length scale (micrometer per microsecond) of typical Rydberg

experiments.

In recent years, ultracold Rydberg atoms have proven to be a versatile platform

for quantum simulation of long-range interacting many-body systems [10–12],

for nonclassical photonic state generation [13, 14], and for quantum information

14



Chapter 1 Introduction

processing [15–17]. A central aspect for many proposals in these fields is the phe-

nomenon of the Rydberg blockade [18–20]. The blockade phenomenon originates

from strong interactions between Rydberg atoms, which lead to the suppression of

simultaneous excitation of two or more atoms into Rydberg states within a certain

blockade volume. The Rydberg-Rydberg blockade in a cold and dense atomic

ensemble was first observed experimentally in 2004 (ref. [21, 22]) and has been

demonstrated for two individual atoms in 2009 by Urban et al. [23].

A similar concept applies to hybrid systems of ions and Rydberg atoms. In

this case, strong interactions between a single ion and Rydberg atoms lead to

charge-induced blockade phenomena mediated over macroscopic distances. The

ion-induced Rydberg blockade has been proposed as a useful tool for quantum

information transfer between ionic and atomic quantum systems [24]. However,

experimental observation of the blockade mechanism has so far remained elusive.

The reason for this is that in traditional hybrid settings, the ion-trap induced

lineshift on the Rydberg states complicates the observation of interaction effects

[25]. Recently, first indications of ion-induced lineshifts have been reported in a

study of charge transfer in a hybrid setting [26]. Besides that, ion-Rydberg atom

interactions have been explored in atom-beam experiments [27] and more recently

have been demonstrated to influence quantum optics applications based on room

temperature vapors [28].

In the context of this thesis, an alternative approach to the realization of an

ion-Rydberg atom hybrid system is elaborated. A single ion is generated in an

ultracold gas of rubidium-87 atoms. The ion is probed by exciting the valence

electron of a single atom from the gas into the Rydberg state. High spatial control

over the ion and the Rydberg excitation is achieved by a tightly focused photo-

ionization and excitation laser. The ion-Rydberg atom interaction is examined by

means of an ion-induced Rydberg excitation blockade and the blockade mechanism

15



Chapter 1 Introduction

is employed to utilize a single ion as a sensitive probe for small electric fields.

The outcome of these studies is published in ref. [S1]. In addition, experiments

of a single ion placed in a Bose-Einstein condensate are presented and blockade

measurements of the single ion in the condensate are carried out.

Studies of Rydberg atoms interacting with neutral atoms go back to the late

19th century. In 1879 Liveing and Dewar categorized the spectral line shape of

sodium into sharp and diffuse lines [29]. Today we know that the lines associated

with d-states in sodium are the diffuse ones as they are more likely to suffer from

pressure broadening [27], meaning that the interaction with the surrounding atoms

leads to a broadened emission line. In 1934 Amaldi and Segré (ref. [30]) reported

on interaction induced line shifts and broadening of the Rydberg series of sodium

for principal quantum numbers around n = 30 due to high background buffer gas

pressure. They expected that the buffer gas would destroy the Rydberg series

since the Rydberg atom must contain 10,000 molecules of the background gas

for the experimental conditions. Within the same year, Enrico Fermi introduced

the nowadays well-known Fermi pseudopotential [31] for Rydberg electron-atom

scattering to explain these findings, paving the way for evermore fascinating

perspectives of Rydberg-neutral atom interactions; ranging from a single or few

atoms interacting with the Rydberg atom [S2, S5, 32–45] to many atoms within

the Rydberg electron orbit [S4, S6–S8, 38, 46, 47]. This is just an incomplete list

of experiments dedicated to the study of Rydberg-neutral atom interactions.

In this thesis, ultralong-range Rydberg molecules are utilized to study negative-

ion resonances in the rubidium-anion. Ultralong-range Rydberg molecules (ULRMs)

can form when one or several neutral atoms reside within the Rydberg electron

wavefunction. The neutral atoms are bound within the electron orbit by attractive

electron-atom scattering interactions, forming locally a negative ion compound.

16



Chapter 1 Introduction

The resulting molecular bound states are highly sensitive to the scattering interac-

tions and therefore allow detailed insight into the underlying near-threshold anion

states. For this purpose, ULRM-spectroscopy is elevated to a so-far unequaled

quantitative level of precision, in a combined experimental and theoretical effort,

devising ultralong-range Rydberg molecules as an ultrasensitive tool for studying

the quasi-bound negative-ion resonances of the rubidium-anion. The outcome of

these studies has been published in [S2].

In the last part of this thesis, the outcome of an experimental study of a local

atom loss in the Bose-Einstein condensate induced by a single Rydberg atom is

presented. The first experiments were originally intended to optically image the

electron wavefunction of a Rydberg atom. For the wavefunction imaging method,

the Rydberg atom is immersed in a Bose-Einstein condensate. The electron-atom

interaction leads to a phase imprint on the condensate wavefunction which is

to first order proportional to the absolute square of the electron wavefunction.

Due to the gradient of the imparted phase, the condensate atoms flow towards

regions of high electron density. The atomic flow continues even when the Rydberg

atom is no longer present. Contrary to the expected density increase, due to the

attractive electron-atom interaction, a local decrease of the condensate density is

experimentally observed in the region of the Rydberg excitation.
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2
Theory and background

This thesis studies interactions of Rydberg atoms with neutral atoms and with

single ions. While for the studies of Rydberg atom-neutral interaction the case

of one, few or even many atoms interacting with a single Rydberg electron is

investigated, for the ion-Rydberg atom system mostly binary interaction is studied.

The purpose of this chapter is to introduce here relevant experimental work and

to build a theoretical foundation for the studies following in the main part of the

thesis.



Chapter 2 Theory and background

2.1 Rydberg atoms

Rydberg atoms are atoms with at least one valence electron in a highly excited

electronic state. In comparison to atoms in the electronic ground-state, they

show exaggerated properties such as huge size and very large polarizability. A

fundamental and detailed description of Rydberg atoms and their properties can

be found in numerous atomic physics textbooks like [27, 48–51].

In this section, we briefly discuss the most important properties of Rydberg alkali-

metal atoms, such as the energy levels, the wavefunction, and the polarizability of

the Rydberg state. To begin with, a historical introduction to Rydberg atoms is

given and the Rydberg energy levels including the quantum defect for alkali-metal

atoms are introduced. Following this, an overview of the here most relevant

properties and their scaling laws are presented, and the electron wavefunction is

introduced and discussed. In the last part of this section, we consider Rydberg

atoms in external electric fields. In particular, we calculate the energy level

shifts induced on the Rydberg states for a static electric field and introduce the

interaction between Rydberg atoms and ions.

2.1.1 Rydberg energy levels and wavefunction

Energy levels of alkali Rydberg atoms. Rydberg atoms made their first historical ap-

pearance at the end of the 19th century. In 1885 Johann Jakob Balmer formulated

a mathematical expression to describe the measured absorption spectra of the

converging line series in hydrogen, which later became known as the Balmer series

[52]. After, Johannes Rydberg generalized the formula found by Balmer to all

levels of alkali-metal atoms in terms of wavenumbers of the line series observed.

ν` = ν∞` −
R∞

(n− δ`)2 (2.1)

Here ν∞` denotes the limit of each line series and δ` the quantum defect for
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alkali-metal atoms, while n corresponds to the principal quantum number. ` is

historically termed with s, p and d describing the line series as sharp, principal and

diffuse respectively. The introduced constant R∞, nowadays known as the Rydberg

constant, can be used to describe not only the wavenumbers for transitions of

different series, but also transitions of different atoms.[27]

It was with the phenomenologically motivated model for hydrogen by Niels

Bohr in 1913 that the principal quantum number n and the angular momentum

` were given a physical meaning [53]. Bohr considered the electron on circular

orbits moving around the core, with a circle length of n-multiple of the de-Broglie

wavelength nλD = 2πr, leading to a constant angular momentum L of the electron.

Further, he assumed the electron being held on stable orbits in the electrostatic

field of the core, that means the Coulomb force acting on the electron is equal to

the centripetal force holding the electron captured. Assuming this and using the

de-Broglie wavelength λD = h/p, the electron orbit radius immediately ensues as:

rn = n2

Z

4πε0~2

mee2 , (2.2)

with the electron mass me, the elementary charge e, the core charge Z (Z = 1 for

hydrogen), the dielectric constant ε0 and ~ being the Planck constant h divided

by 2π. From this, Bohr derived the electron energy levels in hydrogen.

En = −Ry
Z2

n2 (2.3)

Here n is the principal quantum number and Ry is the Rydberg energy, which is

related with the Rydberg constant via Ry = hcR∞. From equation 2.2 and 2.3

we find that the binding energies of the electron are discrete (n = 1, 2, 3, . . . ) and

decrease with n−2 as the energy levels converge to the ionization threshold, while

the size of the atom rapidly increases with n2. Consequently, these highly excited

atoms can reach for atomic scales abnormal sizes but on the downside are much

more loosely bound by the ionic core.
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With this, the Bohr-model gives an intuitive n-scaling not only for the binding

energy (∼ n−2) but also for the Rydberg electron orbit size (∼ n2) and additionally

connects the Rydberg constant (cf. equation 2.1) with fundamental constants.

Ry = mee
4

8ε20h2 ≈ 13.6 eV (2.4)

Note that in (Hartree) atomic units the hartree energy Eh is twice the Rydberg

energy, and thus in atomic units equation 2.3 with Z = 1 reads: En = − 1
2n2 .

In 1916, the electron-shell model of Bohr was extended by Sommerfeld [54], who

introduced two additional quantum numbers ` and m`. He proposed to lift the

restriction of electrons moving in circles to allow elliptical electron orbits. For

this, he considered the electron motion in spherical coordinates and derived a

quantized quantity for each degree-of-freedom, which led to the azimuthal (or

orbital) quantum number ` (with ` = 0, 1, 2, . . . n − 1), describing the angular

momentum of the electron, and the magnetic quantum number m` (with m` =

−`,−(`− 1), . . . (`− 1), `) defining the orientation of the angular momentum in

space. With that, he found that the electrons with the same n but different ` and

m` have the same binding energy. The electron energy levels of the same principal

quantum number are degenerate.

In 1922 Otto Stern and Walther Gerlach proved experimentally the existence

of the spatial quantization by sending a beam of silver atoms through a strong

gradient magnetic field, which deflected the atom beam before hitting the detector

screen. The outcome was rather surprising since with previous experiments

suggesting an angular momentum of ` = 1, and based on the Bohr-Sommerfeld

model, Stern and Gerlach expected a splitting into 2` + 1 = 3 lines. However,

in the experiment they clearly observed two lines. The middle line of straight

flying atoms was missing. The reason for this is that in silver atoms only the 5s

electron contributes to the total magnetic moment of the atom and thus only the

line for m` = 0 appears which, however, is split into two lines due to the non-zero
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magnetic moment of the electron spin. The findings of Stern and Gerlach already

indicated the presence of a half-integer angular momentum of the electron. It was

later with the introduction of the electron spin S and the corresponding magnetic

quantum number mS that the experiment was correctly interpreted.

The spin of an electron ~S is connected with a magnetic moment ~µS and couples

with the orbital angular momentum ~L. The total angular momentum ~J = ~L+ ~S

best describes the resulting coupled system, where the total angular momentum

quantum number J can take integer or half-integer values between |L− S| and

|L+ S|. The spin-orbit coupling lifts the degeneracy in each n-manifold for energy

levels assigned with a different quantum number J .

Semi-classically, the spin-orbit coupling can be understood by considering the

ionic core from the resting frame of the electron. In this frame, the ion moves

around the electron inducing a magnetic field ~BL, which interacts with the electrons

magnetic moment ~µS. The resulting spin-orbit interaction is given as:

HLS = − ~BL · ~µS = a

~2
~L · ~S, (2.5)

with the coupling constant a. Introducing the electron spin and the spin-orbit

coupling was an important step towards the explanation of the spectroscopically

measured fine structure.

In a similar fashion one can treat the coupling between the nuclear spin ~I

and the total electron angular momentum ~J , which leads to a new total angular

momentum ~F = ~I + ~J . Again, the corresponding quantum number F can take

integer of half-integer values of |J − I| < F < |J + I|. In first order the energy

shift of the electron levels is given by:

∆EHFS = AHFS ~I · ~J = AHFS

2 [F (F + 1)− I(I + 1)− J(J + 1)], (2.6)

with the hyperfine structure constant AHFS [55]. Note that the coupling constant

decreases rapidly with increasing n, as the electron overlap with the nucleus quickly
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abates. Generally, the IJ-coupling is neglected for highly excited electronic states

and thus a Rydberg state is usually described by the four quantum numbers n, L,

J and mJ , including the LS-coupling.

In contrast to hydrogen, alkali-metal atoms have several inner-bound electrons,

which shield the charged nucleus. Considering Rydberg states with large angular

momentum such as circular Bohr orbitals, the electron never comes close to

the shielded atom core and, like in hydrogen, interacts with a point-like singly

charged core. For low-angular momentum states, however, the electron orbitals

are highly elliptical, and as a result can penetrate and polarize the screened core.

In this case, the polarizability of the cloud of inner-bound electrons leads to a

depression of the energies below the hydrogen levels. Additionally, when close to

the core, the electron is exposed to the now unshielded charges Z of the nucleus

and consequently is more tightly bound (see also equation 2.3), resulting in an

increased binding energy.[27, 56]

In total, the energy levels of alkali-metal atoms for high-L states are degenerate,

like in hydrogen, while for low L the energy levels are depressed. Their energy

levels EnLJ are given by:

EnLJ = −Ry
Z2

(n− δnLJ)2 , (2.7)

with the quantum defect δnLJ , which additionally includes the spin-orbit coupling

[56]. Note that the quantum defect was already empirically included in the Rydberg

formula introduced by Johannes Rydberg (cf. equation 2.1). The quantum defects

are accurately described by the empiric Rydberg-Ritz formula.

δnLJ = δ0 + δ2

(n− δ0)2 + δ4

(n− δ0)4 + δ6

(n− δ0)6 + · · · (2.8)

Throughout this thesis, the Rydberg-Ritz formula is employed to estimate the

quantum defect up to the second term (δ2). The corresponding Rydberg-Ritz
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State n0 δ0 δ2

S1/2 13 3.131 180 7(8) 0.1787(2)

P1/2 20 2.654 884 9(10) 0.2900(6)

P3/2 20 2.641 673 7(10) 0.2950(7)

D3/2 11 1.348 094 8(11) −0.6054(4)

D5/2 11 1.346 462 2(11) −0.5940(4)

F5/2 9 0.016 519 2(9) −0.085(9)

F7/2 9 0.016 543 7(7) −0.086(7)

Table 2.1: Rubidium Rydberg-Ritz parameters up to the second term (δ2), taken from

[57–59]. n0 denotes the lowest principal quantum number for which the energy levels are

calculated using the Rydberg-Ritz parameters.

parameters δ0 and δ2 for rubidium are listed in table 2.1 and can be found in

[57–59]. Here, n0 denotes the lowest principal quantum number for which the

energy levels are calculated using equation 2.7 and 2.8.

For high angular momentum states (typically L > 3) the quantum defect

becomes negligible and the hydrogen solution can be used. In this case, the energy

levels are determined from the Dirac theory [48, 51]. A sufficiently accurate result

can be achieved by expanding the resulting energies in powers of (Za) [48] (with a

being the fine-structure constant and Z the core charge) and by further, including

the core polarization by adding the energy shift caused by the static dipole core

polarizability αc [27, 56]. With this, the resulting energy levels of the high angular

momentum states up to the second-order in (Za) are given by:

EnLJ ' −Ry
Z2

n2

[
1− (Za)2

n2

(3
4 −

n

J + 1/2

)]
− 3αc

4n3L5 . (2.9)

The leading term recovers the Bohr-like Rydberg energy levels, while the following

term gives the first relativistic correction proportional to (Za)2 [51].
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Fig. 2.1: Energy level diagram for rubidium and hydrogen. Numbers below the levels

indicate the principal quantum number n. The values are obtained from equation 2.3 or

2.7 and 2.9 or taken from [55, 59–61]

Figure 2.1 illustrates the calculated energy levels of rubidium and hydrogen. For

rubidium, the binding energies are either obtained from equation 2.7 and 2.9 for

low and high (L > 3) angular momentum, using the reduced Rydberg constant Ry
for rubidium [58, 59] and the in table 2.1 listed quantum defects, or taken from [55,

57–61]. For hydrogen, the Bohr-like energy levels are calculated from equation 2.3.

In comparison, the quantum defect shifted energy levels (L ≤ 3) of rubidium

converge towards the hydrogen energies with increasing angular momentum L.

For L > 3 the energy difference to the hydrogen-like states becomes imperceptibly

small. Note that the fine structure splitting in rubidium is much smaller than the

energy range plotted in figure 2.1 and thus is hardly visible.
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Property n-scaling Rb(5S1/2) nS1/2 for n = 30 . . . 130

Binding energy (n?)−2 4.18 eV 18.8 . . . 0.8 meV

Energy spacing of

adjacent n states
(n?)−3 604 THz 321 . . . 3 GHz

Classical

ionization field
(n?)−4 30 MV/cm 616 . . . 1.2 V/cm

Orbital radius (n?)2 2.98Å 76 nm . . . 1.7µm

Radiative lifetime (n?)3 26.2 ns 13µs . . . 1 ms

Polarizability n7 −79.6 mHz
(V/cm)2 −1.4 . . .−4× 104 MHz

(V/cm)2

Table 2.2: Scaling laws of selected properties for rubidium atoms in the nS1/2 Rydberg

state taken from [27, 62, 63]. The corresponding values for the range of principal quantum

numbers (n = 30− 130) investigated in this work are shown in the fourth column.

Scaling with the principal quantum number n. Despite its shortcomings, the Bohr-

model contains many properties of Rydberg atoms and offers quick access to the

scaling with the principal quantum number for many characteristic parameters.

Some of the most useful scaling laws for Rydberg atoms are listed in table 2.2.

For many properties it is practical to introduce an effective principal quantum

number n?, which includes the quantum defect δnLJ . Motivated by equation 2.7

one finds n? = n− δnLJ . The depict properties show in several ways that Rydberg

atoms differ fundamentally from atoms in their ground state.[27] For example,

the ground-state electron is more than 200 times deeper bound than the electron

in the 30S state, while the size of the Rydberg atom is over 200 times larger.

Because of its size, the Rydberg electron is more loosely bound and consequently

easier to ionize. While for n = 30 an ionization voltage of about 600 V/cm is

required, for n = 130 a few V/cm are sufficient to ionize the Rydberg electron.

With increasing size of the Rydberg atom, the electron cloud becomes much easier
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to polarize, leading to relatively large energy shifts in external electric fields for

the spherical symmetric nS Rydberg state. While many of the properties can

be deduced from the semi-classical perspective of Bohr, for some, the quantum

mechanical treatment of the Rydberg electron is essential.

Rydberg electronwavefunction of alkali-metal atoms. Next, to describe Rydberg atoms

quantitatively we need to introduce the electron wavefunction. In the framework

of quantum mechanics, the electron wavefunction allows for calculations of many

properties, in particular, dipole moments and transition matrix elements, energy

shifts in external electric fields and many more.

To introduce the wavefunction for alkali-metal atoms, it is educative to start

with the hydrogen atom and bring in corrections later, accounting for the non-

hydrogenic atom core and the spin-orbit coupling. For the treatment of the

hydrogen wavefunction, we follow the standard introduction in the literature as it

can be found in many textbooks, for example in [48–50].

First, let us start with the well-known stationary Schrödinger equation. The

Hamilton operator H consists of a kinetic Hkin and potential term Hpot. With

the spherical symmetric Coulomb potential of the hydrogen core acting on the

electron, we get the following expression (equation 2.10).

HΨ(~r) = (Hkin +Hpot) Ψ(~r)

=
(
− ~2

2µ∇
2 − Zq2

r

)
Ψ(~r) = EΨ(~r) (2.10)

Here, E is the eigenenergy for the relative motion of the electron and the nucleus,

−e and +eZ are the electron charge and the core charge respectively, where we

used q2 = e2/(4πε0) and the reduced mass µ = meM/(me +M) with the electron

mass me and the nuclear mass M .
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For the spherical symmetric Coulomb potential, it is advisable to use spherical

coordinates. In these, the second derivative ∇2 reads:

∇2 = 1
r2

∂

∂r

(
r2 ∂

∂r

)
− 1

~2r2L
2(θ, φ),

where we introduced the angular momentum operator ~L. Inserting this in equa-

tion 2.10 one finds that L2 acts only on the angular part (θ, φ) but not on the

radial part (r) of the eigenfunctions and consequently, Ψ(r, θ, φ) also have to be

an eigenfunction to L2 (and also Lz for completeness). This can also be seen by

the fact that H, L2 and Lz all commute. With this, the variables in equation 2.10

separate with Ψ(r, θ, φ) = R(r)Ylm(θ, φ). Here, Ylm(θ, φ) are the well-known

Laplace’s spherical harmonics which are the eigenfunctions of Lz and L2.

LzYlm(θ, φ) = m~Ylm(θ, φ)

L2Ylm(θ, φ) = ~2l(l + 1)Ylm(θ, φ)

With this, the stationary Schrödinger equation for the radial part R(r) of the

wavefunction is given by:

− ~2

2µ
1
r2

d

dr

(
r2 d

dr

)
R(r) +

[
−Zq

2

r
+ ~2

2µ
l(l + 1)
r2

]
R(r) = ER(r), (2.11)

where the first term corresponds to a radial kinetic energy and the second to

the radial potential, consisting of the Coulomb potential and a centrifugal term.

For the hydrogen atom, we recover the Bohr-like energy levels E = −Ry Z
2

n2 ,

neglecting the prior discussed spin-orbit coupling, and an analytic solution for

the eigenfunctions Rn,l(r) for the quantum numbers n and l, proportional to the

generalized Laguerre polynomial L(2l+1)
n−l−1 [50].

For alkali-metal atoms, the same reasoning from above applies with the exception

that one has to adept the outlined method for taking into account the inner

electrons of the alkali core. Essentially, for electron wavefunctions penetrating the
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core, a modified potential acts on the electron. It turns out that it is sufficient to

adept the radial Schrödinger equation 2.11 by replacing the Coulomb potential

with the modified potential Vmod, while the angular wavefunction is still described

by the spherical harmonics [64].

Vmod(r) = −q
2Zeff(r)
r

+ Vpol(r) + Vso(r) (2.12)

The first term equals the Coulomb potential with an effective charge Zeff taking

into account the enhanced Coulomb interaction for small electron-core distances, in

particular, when the valence electron penetrates the cloud of inner-bound electrons.

An expression for the effective charge is given in [64]:

Zeff(r) = 1 + (Z − 1)e−a1r − r(a3 + a4r)e−a2r, (2.13)

where the model parameters a1, a2, a3 and a4 depend on the angular momentum

of the valence electron. The second term in equation 2.12 represents the core

polarization, which originates from the inner electrons polarizability. The core

polarization potential can be approximated by:

Vpol = − αc
2r4

(
1− e(r/rc)6

)
, (2.14)

where αc is the static dipole polarizability of the positively charged ion core and

rc is a short range cut-off parameter.[64] With the last term we also include the

potential resulting from spin-orbit coupling (taken from [51]) in the modified

potential Vmod.

Vso(r) = Zq2

2m2
ec

2
~2

2r3

[
j(j + 1)− l(l + 1)− s(s+ 1)

]
(2.15)

Here, for the spin-orbit coupling we neglect the energy shifts due to core penetration,

assuming a point-like charge Z = 1. Note that only for the hydrogen atom an

exact solution for the radial Schrödinger equation exists. For alkali-metal atoms
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Fig. 2.2: Calculated radial Rydberg wavefunction for different angular momentum l in

rubidium. The amplitude ∼ |Ψ|2r2 is plotted over the radial distance r. For better

visibility the curves are each offset by 1. For comparison, in the case of l = 0, the

wavefunction is shown for a principal quantum number of n = 33 instead of n = 30.

one has to fall back on numerical approximation methods. One of the methods

for solving the radial Schrödinger equation for alkali-metal atoms is the Numerov

method [27].

Exemplary, in figure 2.2 the calculated radial Rydberg wavefunction for rubidium-

87 is shown for different angular momentum l and n = 30 (n = 33 for l = 0). From

the figure above, we can deduce that for decreasing l the number of nodes increases

by one. Consequently, the maximum number of nodes of the wavefunction is given

by n− 1− l, like in hydrogen. Further, with increasing angular momentum, the

outermost lobe shifts to a smaller radial distance r, as, classically, the electron

orbit transitions from a highly elliptical to a circular trajectory. For the maximum

l = n−1 only one lobe of the radial wavefunction remains, which position naturally

coincides with the Rydberg atom size predicted by Bohr. In contrast, for l = 0

31



Chapter 2 Theory and background

the outermost lobe is equal to twice the radius of the circular orbits given by the

Bohr-model. Classically speaking, in this case, the electron moves back and forth

in the core potential on an infinitesimal thin ellipse, where the outermost turning

point of the electron is approximately equal to the position of the last lobe of the

electron wavefunction. More precisely, since the kinetic energy of the wavefunction

is given by the derivative (cf. equation 2.10) the classical outermost turning point

coincides with the outermost inflection point of the wavefunction.

The fact that the low angular momentum states are lowered energetically due

to the quantum defect is reflected in the electron wavefunction by the fact that

the outermost turning point is shifted towards smaller distances. This can be

seen in particular when comparing the blue and the black curve in figure 2.2,

for which the outermost lobe almost coincides. The black curve corresponds to

the wavefunction for the low angular momentum S-state, while the blue curve

represents the wavefunction for higher l, for which the quantum defect is negligible.

Next, let us recall that the quantum defect for the nS Rydberg state in rubidium

is δ0 = 3.13 . . . ' 3. Now, it comes naturally that the outermost turning point of

the electron coincides for the two wavefunctions, as the difference in the principal

quantum number of both is equal to three.

2.1.2 Rydberg atoms in external electric fields

In this section, we discuss the influence of external electric fields on Rydberg

atoms. In contrast to ground state atoms, where the valence electron is deeply

bound, Rydberg atoms exhibit an enormous sensitivity to electric fields increasing

with principal quantum number n.

In the following, first we introduce the interaction Hamilton and calculate the

electric field induced energy shift on Rydberg states. Following this, we briefly

discuss the situation of a Rydberg atom in the Coulomb field of an ion.
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The unperturbed Hamilton H0 for an atom is given by equation 2.10. For an

atom placed in a static electric field we can define an interaction Hamilton HE .

HE = −e~E · ~x = −~d · ~E (2.16)

Here, ~d is the dipole operator and ~E the external electric field, with the field

strength E . The order of magnitude of electric fields in atoms is given by EH/ea0 '

10× 1010 V/m, with the electron charge e and the typical atomic length scale

a0 (Bohr radius) and energy scale EH (hartree energy). For that reason, in the

case of ground-state atoms, the external electric field can be treated as a small

perturbation to the Hamilton H0 for the field strengths typically achievable in

atomic physics laboratories [50]. However, for highly excited Rydberg atoms this is

not necessarily the case. In practice, one usually needs to use a full diagonalization

method with a truncated basis set to solve for the eigenenergies and the eigenstates

of the total Hamilton operator H = H0 +HE [65].

For the hydrogen atom one can use parabolic coordinates to solve the problem

analytically. In this case, the Hamiltonian H is diagonal for the so-called parabolic

states, for which n, m, and the parabolic quantum numbers n1 and n2 are good

quantum numbers. To the first order, the energy levels shift linearly with the

applied electric field E , while the energy shift itself is proportional to the quantum

numbers n and k, where k is associated with n1 and n2 via k = n1 − n2. Note

that n1 and n2 are related to n and |m| via n = n1 + n2 + |m|+ 1.

E = −Ry
1
n2 + 3ea0

2 Ekn (2.17)

In contrast, for alkali-metal atoms, states with the same quantum number m and

different n can interact, as the electron wavefunction penetrates the non-hydrogenic

ionic core. As a result, the Hamiltonian does not diagonalize in the parabolic
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Fig. 2.3: Calculated energy shifts for different static electric fields E . (a) shows an

overview of the energy levels in the vicinity of the 100S Rydberg state. (b) depicts the

quadratic energy shift of the 100S state. Blue solid line represents a quadratic fit up to a

maximum field indicated by a vertical dashed line. For zero electric field, the states are

labeled via the principal quantum number n and the angular momentum S P and D for

low l. For high l the states are degenerate at a zero electric field and collectively assigned

as hydrogenic manifold m of the corresponding n.

basis [65]. Therefore, instead of the parabolic basis, one usually uses the spherical

representation |n, l,m〉 to calculate the energy shifts.

Now, armed with the electron wavefunctions which we introduced in the previous

section 2.1.1, we are able to calculate the energy level coupling
〈
~d · ~E

〉
ψ
and the

resulting energy level shift (Stark shift).

〈
~d · ~E

〉
ψ

=
〈
ψnLJmJ

∣∣∣~d · ~E ∣∣∣ψn′L′J ′m′
J

〉
(2.18)

In figure 2.3 the resulting energies in the vicinity of the 100S Rydberg state

are presented for different static electric fields E . On the left, the energy levels

between the n = 97 and n = 96 manifolds are shown. The energy levels of
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the low angular momentum states (l < 3) are energetically lowered with respect

to the corresponding n-manifold due to the quantum defect. For high angular

momentum states, the energy level shifts linear like in hydrogen, up to the field

where the hydrogenic manifolds of two different principal quantum numbers n

cross. As mentioned earlier, in alkali-metal atoms states with the same quantum

number m of different n can interact due to the quantum defect, and as a result,

the corresponding energy levels reveal an avoided crossing which appears for an

electric field of E ' 0.2 V/cm for the presented case. Note that in the literature

the crossing point between two neighboring n-manifolds is usually referred to as

the Inglis-Teller limit.

On the right in figure 2.3, the energy shift of the 100S Rydberg state is depicted

for smaller electric fields. The quadratic behavior of the S-state arises from the

polarizability of the electron wavefunction and can be understood as the interaction

between an induced dipole moment and the external electric field.

In the case of small electric fields, when the energy spacing to neighboring

states is large, one can treat the problem perturbatively. Explicitly, when applying

perturbation theory to the energetically well-isolated low angular momentum

states, one finds for the first non-vanishing term (in second-order) the following

energy shift for the S-state:

∆E(E) = −α2 E
2
z (2.19)

where α corresponds to the polarizability of the S-state and E is the electric field

strength, which we assumed to be in the z-direction defining the quantization axis.

Further, the perturbation theory yields an expression for the polarizability.

α = −2e2
∞∑
k 6=k′

|〈k|z|k′〉|2

Ek − Ek′
(2.20)

Here, k and k′ are the collective indices for (n, L, J,mJ) and (n′, L′, J ′,m′J),

respectively. Note that, when evaluating the expression above for the Rydberg
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Fig. 2.4: Polarizability of the nS Rydberg state obtained from quadratic fits to the energy

level shifts for asymptotic small electric fields. The data is fitted with a power law for the

(effective) principal quantum number n (n?). nx: x = 6.941(2) (n?)x: x = 6.671(8)

electron wavefunction, one can derive the prior mentioned scaling with the principal

quantum number of the polarizability. The spacing between the manifolds scales

with n−3 and the dipole moment
〈
ψnLJmJ

∣∣∣z∣∣∣ψn′L′J ′m′
J

〉
with n2, which in total

yields the scaling n7 for αnS [27].

Regarding the polarizability of the nS Rydberg state used in this work (chapter

3), we do not simply rely on the n-scaling with the principal quantum number,

but instead deduce αnS from calculated energy shifts for the limit of small electric

fields. As an example, figure 2.3b shows a fit (blue solid line) of the energies for

the quadratically shifting 100S Rydberg state. The vertical (blue dashed) line

indicates an electric field cutoff, for which the electric field is low enough that the

100S state is still well described by equation 2.19.

Figure 2.4 shows the determined S-state polarizability αnS over a large range of

principal quantum numbers n. The obtained αnS are fitted via ∼nx and ∼(n?)x,

where we find a quite significant deviation from the n7 scaling when using the
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effective principal quantum number n?. To point this out let us exercise a small ex-

ample. When applying the (n?)7 scaling to determine the polarizability for a 100S

state based on αnS for n = 40 we get a ratio of
(
n?(100)
n?(40)

)7
/
(
n?(100)
n?(40)

)6.671
' 1.34

between the estimated and the actually fitted polarizability.

Finally, let us turn to the situation where the external electric field is given

by the Coulomb potential of an ion near the Rydberg atom. Without loss of

generality, any arbitrary electric field can be decomposed into multipole fields. In

particular, for the Coulomb interaction one finds in second-order perturbation

theory the adiabatic polarization potential:

Vpol(R) = −e2
∞∑
k=1

α(k)

2R2k+2 , (2.21)

with the elementary charge e, the multipole polarizability α(k) of order k and

ion-Rydberg atom distance R.[66]

In the case of a S-state Rydberg atom interacting with a S-state ion, the

multipole expansion can be approximated by:

Vpol(R) ≈ −C4

R4 −
C6

R6 + · · · ≈ −C4

R4 , (2.22)

where we identify the C-coefficients with the polarizabilities α(k). For sufficiently

large ion-Rydberg atom distances, when the ion is far away from the Rydberg

atom (R � n2a0), the leading contribution to Vpol is usually contained by the

long-range polarization potential ∼1/R4 [67].

At last, let us consider the physical meaning of the approximated polarization

potential Vpol(R) = C4/R
4. The C4-term in equation 2.22 can be interpreted as

follows: The charge of the ion induces an electric dipole moment (~p = αnS ~E) in

the atom. The induced dipole moment in turn, interacts with the electric field of

the ion ~E. When considering the interaction energy Uind = −1
2α| ~E|

2 between the
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induced dipole moment ~p and the electric field ~E, we get the following expression

− C4/R
4 = −αnS2

∣∣∣ ~E (
~R
)∣∣∣2 = −αnS2

(
e

4πε0

)2 1
R4 , (2.23)

from which we further identify the relation αnS = 2(4πε0)2C4.

2.2 Ultralong-range Rydberg molecules

Rydberg atoms exhibit a remarkably long-range interaction among each other.

The strong interaction between the Rydberg states can lead to the formation of

diatomic molecules which consist of two Rydberg atoms. The binding results from

the interplay of long-range attractive and short-range repulsive forces induced by

the Rydberg pair-state potential. This, in turn, results in deep potential wells,

which can support a ladder of vibrational molecular states. Such exotic molecules

are called Rydberg macrodimers as their bond-length reaches the micrometer scale.

These types of Rydberg molecules were first predicted by Boisseau et al. [68] and

observed for the first time by Overstreet et al. [69] via ion-recoil spectroscopy.

More recently, macrodimers have been directly measured spectroscopically [70]

in an optically trapped ensemble of atoms and in a quantum gas microscope

experiment [71] in an optical lattice.

A second type of exotic molecules associated with highly excited Rydberg states

are ultralong-range Rydberg molecules (ULRM). In contrast to macrodimers,

these molecules form when a ground-state atom resides within the Rydberg

electron orbital. Large interaction energies can arise from low-energy electron-

atom scattering between the ground-state atom and the Rydberg electron, which

potentially leads to molecular bound states for a negative electron-atom s-wave

scattering length. In this case, the Rydberg electron binds the ground-state atom in

a well-confined location, defined by potential minima associated with the oscillating

radial Rydberg electron wavefunction. Typically, these types of molecules yield
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bond lengths of several thousand Bohr radii (set by the size of the electron orbit),

as close to the classical turning point the electron probability is the largest and

consequently the ground-state atom is attracted the most (for s-wave scattering)

to the outermost well of the potential. ULRM were first predicted by Greene et

al. [72] in 2000. In their publication, the authors classified two types of ULRMs,

polar and non-polar molecules. For the non-polar molecules, the molecular bound

states are associated with the quantum defect states of the Rydberg atom and the

ground-state atom is bound at a distance close to the classical outermost turning

point of the Rydberg electron. In contrast, the polar ULRM (also called trilobite

molecule) are associated with the hydrogen-like degenerate manifolds. In these

molecules, the ground-state atom is bound in a comparatively deep potential well

formed from a mixture of high angular momentum states (with opposite parity

[72, 73]) detaching from the hydrogenic manifold.

Shortly after, Hamilton et al. [74] predicted yet another type of polar ULRMs

(also called butterfly molecules), which arise from the presence of a p-wave shape

resonance (e.g. found in all alkali-metal atoms) in electron-atom scattering. The

first type of ULRMs (non-polar) were observed for the first time by Bendkowsky

et al. [32] via two-color photo-association (S-state Rydberg molecule), which

triggered intensive studies of ULRMs in various experimental realizations [S4–

S7, 33–46]. The second type of ULRMs (polar) were observed by Booth et al.

[40] (trilobite ULRM) in an ensemble of ultracold Cs atoms, while the p-wave

dominated butterfly molecules were first realized by Niederprüm et al. [44] in

Bose-Einstein condensate of 87Rb atoms.

More recently, the interest in the field of ULRMs shifted from qualitative studies

towards a more quantitative and detailed description of the molecular bound

states. A renewed interest in including spin effects, in particular the hyperfine

interaction in the ground-state atom and spin-orbit coupling effects between the
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Rydberg atom and the ground-state atom, has been shown recently [75–77].

In this section, a brief overview of the description of ULRMs of the non-polar

type is given with the aim to build a theoretical foundation for the presented work

outlined in the main body (chapter 4) of this thesis. First, we discuss the Ryd-

berg electron-neutral atom interaction in the context of electron-atom scattering.

Importantly, we include the spin-orbit interaction between the scattering angular

momentum and the total electron spin, leading to three p-wave scattering phase

shifts, which differ due to the non-zero spin-orbit coupling. Second, exemplarily,

the resulting scattering potentials are then used to calculate the Born-Oppenheimer

potential energy curves and the molecular bound state of a ULRM dimer which is

radially confined in the outermost well of the Rydberg electron.

2.2.1 Electron-neutral atom interaction in ULRM

In ultralong-range Rydberg molecules, the molecular bound states are supported by

interaction energies originating from the Rydberg electron scattering off a neutral

atom. In this case, the electron-atom interaction can be described by an effective

potential VL including the polarizability of the atom (see also equation 2.22) and

a centrifugal term for the relative angular momentum of the scattering partners:

VL(r) = −αgs

2r4 + ~2

2µ
L(L+ 1)

r2 (2.24)

Here, αgs is the polarizability of the ground-state atom, r the electron ground-state

atom distance, µ the reduced mass, and L the scattering angular momentum. The

short-range interactions are included via an inner hard-wall at a variable distance

r0. Due to the low kinetic energy of the Rydberg electron for large enough Rydberg

core-electron distances (typically distances larger than a few hundred Bohr radii)

only s- and p-wave scattering (L = 0 and L = 1) has to be taken into account [78].

Note that p-wave scattering has to be included due to the presence of a 3P shape
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resonance for low-energy electron scattering with alkali-metal atoms [79, 80].

Additionally, one has to take into account relativistic electron-electron inter-

actions between the (quasi)free Rydberg electron and the valence electron of the

ground-state atom. Treating this to its full extent quickly reaches a high level of

complexity. However, it turns out that in the case of alkali-metal atoms, relativistic

effects can be neglected for low-energy scattering, except for the mutual spin-orbit

coupling between the valence electron of the ground-state atom and the incident

scattering electron [81].

In state-of-the-art calculations, the electron-atom system is described by a model

potential of two active electrons in an effective core potential. The problem is

then solved by applying relativistic R-matrix scattering theory [81–83]. These

calculations are mainly performed in the context of heavy alkali-metal negative ions.

In particular, ab initio phase shift calculations for the scattering of a low-energy

electron off alkali-metal atoms (Rb, Cs, Fr) were carried out by Bahrim et al.

[80, 84], revealing the presence of excited bound states for resonant electron-atom

p-wave scattering. The exact treatment via relativistic R-matrix scattering theory

is beyond the scope of this thesis but can be looked up in literature [85].

In the context of Rydberg atoms, a different approach has been employed by

Khuskivadze et al. [78]. In their phase shift calculations, the electron-neutral

atom interaction is modeled via a pseudopotential, which reproduces the phase

shifts from Dirac R-matrix calculations and the resulting binding energies of the

corresponding negative ion system.

In the context of this thesis (investigation of negative ion resonances in ULRM

see [S2] and chapter 4), yet another more simple approach is used. In addition to

the electron-atom interaction VL (see equation 2.24), for p-wave scattering, we add

the standard spin-orbit coupling term given by equation 2.25 and then use the
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inner hard-wall position r0 to fine tune the outcome of the scattering calculations.

VLS(r) = dVL(r)/dr
2mec2r

〈
~L · ~S

〉
= dVL(r)/dr

2mec2r

~
2 [J(J + 1)− 4] . (2.25)

Here, me is the electron mass, c is the speed of light, ~S is the total spin (S = 1) of

the valence electron and the Rydberg electron, ~L is the angular momentum (L = 1

for p-wave scattering) of the scattering partners, and J is the quantum number

associated with the resulting total angular momentum ~J = ~L+ ~S (J ∈ {0, 1, 2}).

With the interaction terms (equation 2.24 and 2.25) set up, solving the radial

Schrödinger equation for a range of momenta k yields the (triplet) s- and p-

wave scattering phase shifts δTs (k) and δTp,J(k), respectively. The corresponding

scattering length (scattering volume) aTs/p,J(k) are connected to the calculated

phase shifts by:

aTs (k) = −tan(δTs (k))
k

(2.26)

aTp,J(k) = −
tan(δTp,J(k))

k3 . (2.27)

Note that the scattering parameter ap is often referred to as a scattering volume

since ap has the dimension of a length cubed. Thus, in literature ap is denoted

regularly as a3
p, which is not to be confused with the here introduced nomenclature

of triplet scattering (aTs/p,J). Here, we will not bother with the exact distinction

between scattering length and scattering volume as it is not of essential importance

and out of convenience call both, as and ap a scattering length or parameter.

In order to verify the model potential introduced above, the s- and p-wave

phase shifts from [78, 79, 84] (for comparison see also appendix B.1) have been

reproduced by adjusting the inner hard-wall position r0 for each scattering channel

[86]. Furthermore, it has been found that the functional k-dependence of the

phase shifts is insensitive to the precise value of αgs, i.e. for small variations of αgs

a slightly different hard-wall position can be found to reproduce the same shifts.
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Fig. 2.5: k-dependent e−-Rb scattering phase shifts δT
s/p,J(k) and scattering lengths

(volume) aT
s/p,J(k). In (a) the calculated triplet s- and p-wave scattering phase shifts [78,

84] are shown for different kinetic energies Ekin = ~2k2/2me. (b) shows the corresponding

p-wave scattering parameter δT
p,J(k) obtained from the phase shifts in (a) via equation 2.27.

In figure 2.5, the calculated triplet phase shifts for e−-Rb scattering [78, 84] and

the resulting scattering lengths are shown for kinetic energies in the meV regime.

Let us first have a look at aTp,J . Mathematically, the scattering length diverges

for a phase shift of δ = π/2. However, an infinitely large scattering length is

unphysical, and naturally, the scattering length is limited, e.g., due to uncertainties

in the kinetic energy of the scattering event. Nonetheless, the divergence of the

scattering length, as it is apparent for all three p-wave scattering channels, strongly

indicates the presence of a scattering resonance. In fact, each p-wave channel

(3PJ , J ∈ {0, 1, 2}) exhibits a shape-resonance, which can be associated with the

corresponding Rb− (3PJ) negative ion resonance, where the resonance position

can be defined as the inflection point of δTp,J(k) [80]. Note that one can assign a

resonance position Er and a resonance width Γr to the characteristic form of the

scattering length in figure 2.5(b) [85]. By doing so, τ = ~/Γr can be interpreted
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as the lifetime of a metastable state, with energy Er, which is temporarily formed

by the scattering partners.

Armed with the scattering length which describes the electron-atom scattering

in Rydberg atoms, we can define the well-known Fermi pseudopotential for s-wave

scattering. Historically, it was Enrico Fermi [31] who first realized that the low-

energy scattering of the Rydberg electron with perturber atoms in its wavefunction

can be described effectively by a short-range elastic scattering interaction. To this

day, Fermi’s model of an effective pseudopotential had much success in determining

the electron-atom scattering length for low-energy scattering of many species [87].

Moreover, his model of short-range scattering interaction sets up the foundation

on which the state-of-the-art description of ultralong-range Rydberg molecules is

built. Following the approach of Fermi, the form of zero-energy s-wave scattering

of the Rydberg electron scattering off a neutral atom in its electron orbit, is given

by:

Vs(~r, ~R) = 2π~2

me
as(k)δ(3)(~r − ~R), (2.28)

including the contact interaction of the Rydberg electron with a neutral atom

via the (three-dimensional) Dirac delta function δ(3) and the k-dependent s-wave

scattering length as(k). Here, ~r is the electronic coordinate of the Rydberg electron

in the core potential, while the vector ~R connects the Rydberg core with the

nucleus of the neutral atom. The delta-function contact interaction formalism has

been extended by Omont [88] to higher scattering angular momenta in an analytic

form. He derived the following p-wave scattering potential:

Vp(~r, ~R) = 6π~2

me
ap(k)δ(3)(~r − ~R)←−∇ · −→∇ , (2.29)

with the scattering volume ap(k). Note that for reasons of simplicity the prior

introduced nomenclature of (singlet) triplet scattering is omitted in the definition

of the scattering potentials above.
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2.2.2 Born-Oppenheimer potential energy curves

In the previous section, the electron-atom interaction for a Rydberg electron

scattering with a neutral atom has been introduced, and based on the concept

of contact interaction, the scattering potentials for s- and p-wave scattering were

defined (see equation 2.28 and 2.29). The purpose of this section is to convey

a basic understanding of how the Born-Oppenheimer potential energy curves

(PECs) resulting from the low-energy Rydberg electron-neutral atom scattering

are calculated. Exemplary, the PEC for n = 35 is employed to determine the

molecular bound state of an ultralong-range S-state Rydberg molecule.

When applying the Born-Oppenheimer approximation, namely that the nuclear

motion of the Rydberg atom and the neutral atom can be separated from the

electronic motion of the Rydberg atom, solving the stationary Schrödinger equation

yields the potential energy curves (PECs) for the electronic degrees of freedom.

With the interaction potential for s- and p-wave scattering defined in equation 2.28

and 2.29, we have all important ingredients to construct the electronic Hamilton H

for calculating the PECs, which are employed later on to calculate the molecular

bound states:

H = HRyd +HG +HB + V. (2.30)

Here, HRyd describes the Rydberg electron dynamics at position ~r in the ionic

core potential of the Rydberg atom, which is placed at the coordinate origin. The

Rydberg electron possesses an angular momentum ~l and spin ~s1, which couple

to a total angular momentum ~j = ~l + ~s1. The energy eigenvalues Enlj of HRyd

are given by equation 2.7. HG = A ~I · ~s2 corresponds to the hyperfine interaction

in the ground-state atom, where the spin ~s2 of the valence electron couples with

the nuclear spin ~I to the angular momentum ~F = ~I + ~s2. The coupling strength

for the ground-state of 87Rb is given by the hyperfine constant A = h · 3.417 GHz
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(see section 2.1). With HB = e
me

~B · (~s1 + ~s2 +~l/2), the Zeeman coupling of the

electronic angular momenta with an external magnetic field is included. Finally,

V represents the interaction between the Rydberg electron and the ground-state

atom. The interaction depends on the total electron spin ~S = ~s1 + ~s2 and the

relative orbital angular momentum ~L of the scattering partners (see also section

2.2.1). For the interaction potential V , one can employ a generalized form of the

Fermi pseudopotential given by [75] (in atomic units):

V =
∑
β

(2L+ 1)2

2 a
T/S
s/p,J(k) δ(X)

X2(L+1) |β〉 〈β| , (2.31)

for singlet (S = 0) and triplet (S = 1) interaction in the s-wave (L = 0) and

p-wave (L = 1) scattering channel. Here, X = |~r− ~R| denotes the distance between

the Rydberg electron and the ground-state atom and β = {(LS)JMJ} is a multi

index, while |β〉 〈β| represents the projector onto the different interaction channels

|β〉 = |(LS)JMJ〉. The quantum number J (MJ) corresponds to the total angular

momentum ~J = ~L + ~S (and the corresponding magnetic quantum number MJ)

of the two electrons in the reference frame of the ground-state atom. Note that

the commutator of the interaction potential V with HR, HG or HB is non-zero.

However, for a zero magnetic field, the projection of the total angular momentum

onto the internuclear axis Ω = ml +m1 +m2 +mI turns out to be a good quantum

number to discriminate the PECs [75, 76], which we will use later on.

Next, we turn to the calculation of the Born-Oppenheimer PECs. For this,

let us first recall that the nuclear motion is frozen out in the Born-Oppenheimer

approximation, which allows us to solve the stationary radial Schrödinger equation

for different internuclear distances R between the Rydberg core and the ground-

state atom independently. For each R, the local kinetic energy of the Rydberg

electron scattering off the static ground-state atom can be determined by the

kinetic energy gain Ekin = ~2k2

2me
of the Rydberg electron moving towards the ionic

Rydberg core, which leads to the semi-classical relation for the wave number
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k(R) =
√

2me

~2

(
e2

4πε0R − Enlj
)
, where Enlj is the binding energy of the atomic

Rydberg state of interest.

In this thesis, there are two different approaches used for calculating the PECs,

namely, a truncated diagonalization method, which uses a finite basis set of

the system Hamiltonian, and the Green’s function approach. While the latter

intrinsically yields converging results, which include all Rydberg levels [78], the

former, in contrast, allows one to include all relevant spin degrees of freedom [37,

75, 89], but suffers from uncertainties that result from the size of the basis set

chosen [90].

With the potential energies set up for different internuclear distances, the radial

vibrational bound states can be calculated. For this, the PECs are plugged

into the Schrödinger equation, which is then solved numerically by applying the

Numerov method in a similar fashion as it is done for calculations of the Rydberg

wavefunction (cf. 2.1.1). In figure 2.6 the calculated potential energies for different

internuclear distances R for both the truncated diagonalization method and the

Green’s function approach, are shown for energies close to the 35S1/2 Rydberg

state. The oscillatory potential energy curve mimics the Rydberg electron density

distribution, which, given the attractive electron-atom interaction, allows for

bound molecular states; especially close to the outermost turning point of the

Rydberg electron, where the electron density is the largest. As a result of the

strong radial confinement, the motion of the ground-state atom is determined

by the deep wells of the PEC, which support discrete vibrational dimer states.

An exemplary molecular bound state (lowest lying vibrational state) is depicted

for the outermost well which is centered around R = 1900 a0. In this case, the

attractive s-wave scattering interaction between the 35S1/2 Rydberg electron and

ground-state atom dominates allowing for the formation of a spherically symmetric

so-called S-state Rydberg molecule. Later on (in chapter 4), we will see that the
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Fig. 2.6: Potential energy curve resulting from e−-Rb scattering for zero magnetic field

in the vicinity of the 35S1/2 Rydberg state. The asymptotic zero potential energy is

set to the binding energy of the Rydberg electron. Black dots represent the outcome of

the Green’s function calculus, while the gray lines show the results from the truncated

diagonalization. Exemplarily, a molecular bound state is depicted, indicated by the gray

shaded area at R = 1900 a0. The vibrational wavefunction is offset by its binding energy.

spherical symmetry for Rydberg molecules that are located closer to the Rydberg

core, where p-wave scattering dominates, is broken due to the non-zero spin-orbit

coupling between the total electron spin ~S and the scattering angular momentum
~L, which mixes the different scattering channels [77].

For the truncated diagonalization calculations the fitted s- and p-wave phase

shifts from [S2] are employed, while for the Green’s function calculus the J-

averaged phase shifts from [S2] (see also [84]) are used for the p-wave. The basis

set used for the diagonalization method can be tested against the Green’s function

calculations by switching off the LS-coupling term (equation 2.25). An optimal
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match between the two methods has been found for taking into account in total

four manifolds of the electronic Rydberg state, two below and above (n − 5 to

n− 2) the nS1/2 Rydberg state of interest. Moreover, the total angular momenta

j is considered completely, while the projection mj is truncated for |mj| > 3/2

as for these states the interaction with the ground-state atom can be neglected.

The complete basis set |F,mF 〉 of the ground-state atom is taken into account.[S2]

More details about the calculations can be found in [75–77] and in the supplement

material of [S2].

2.3 Rydberg atoms in a Bose-Einstein condensate

This section gives a brief introduction to Rydberg atoms immersed in an ultracold

and highly dense gas, here a Bose-Einstein condensate (BEC). First, we will discuss

the interaction between a single Rydberg atom and many neutral atoms, stemming

from the condensate. For this, we review the most important experimental and

theoretical work carried out in this field. Afterwards, with regard to the ion

creation and probing in a BEC (section 3.6), involving the Rydberg excitation

in the condensate, exemplarily, an experimentally obtained Rydberg excitation

spectrum in a BEC is presented and discussed.

As introduced earlier in section 2.2.1, the low-energy Rydberg electron can

scatter off neutral atoms in its orbital wavefunction. In the case of one or even

multiple neutrals, the attractive scattering can lead to the formation of Rydberg

molecules, in which the atoms are bound inside the Rydberg wavefunction (see

section 2.2.2).

In the case of many neutral atoms, the strong scattering induced interaction

results in line shifts and broadening of the Rydberg energy levels. This was already
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observed in 1934 by E. Amaldi and E. Segré [30] for principal quantum numbers

around n = 30 and high buffer gas densities at pressures reaching up to one

atmosphere, for which on average more than 10,000 atoms are inside the Rydberg

orbit. Within the same year, Enrico Fermi introduced the nowadays well-known

Fermi pseudopotential [31] (see also section 2.2.1) to explain the findings of Amaldi

and Segré.

To describe the Rydberg electron interacting with many neutral atoms, first

let us recall the Fermi pseudopotential (cf. equation 2.28), which describes the

short-range interaction of a neutral ground-state atom at a distance R from the

ionic Rydberg core with the quasifree Rydberg electron at distance r:

Vpseudo(~r, ~R) = 2π~2as

me
δ(3)(~r − ~R) (2.32)

Here δ(3) is the Dirac delta function in three dimensions, which represents the

short-range contact interaction between the Rydberg electron and the neutral

ground-state atoms. When neglecting the k-dependence, the contribution of higher

partial waves, and the internal spin structure, then the interaction strength is

given by the expression for Vpseudo, which is characterized solely by the s-wave

scattering length as. This is certainly true for large internuclear distances, where

the electron momentum is low and s-wave scattering dominates. An evaluation

of equation 2.32, given the Rydberg electron wavefunction Ψ(r), leads to a mean

field potential

Vmean(R) = 2π~2as

me
|Ψ(R)|2 . (2.33)

The resulting potential is proportional to the scattering length as and the electron

density distribution |Ψ(R)|2 of the Rydberg wavefunction at the position of the

neutral atom R.

Finally, considering many neutral atoms inside the Rydberg orbit, Fermi used

this expression to formulate a density-dependent mean field energy shift ∆E(ρ)
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by summing up the energy shifts given by equation 2.33 of each atom inside the

Rydberg orbit, in order to explain the line shifts observed by Amaldi and Segré.

∆E(ρ) = 2π~2as

me
ρ (2.34)

It turns out that this definition of the mean field energy shift holds in the regime

of ultracold temperatures for sufficiently high densities. Balewski et al. (ref. [46])

experimentally observed a mean field shift given by equation 2.34 for a single

Rydberg atom excited inside a Bose-Einstein condensate.

In a work of Gaj et al. (ref. [38]) the transition from a few to many neutral atoms

inside the Rydberg orbit is demonstrated. It directly corresponds to a step from

spectroscopically resolvable molecular bound states, essentially supported by the

mean field potential Vmean of equation 2.33, to the mean density shift ∆E(ρ) given

by equation 2.34 with an additional broadening caused by the randomness of the

spatial distribution of the many neutral atoms. Gaj et al. showed a series of spectra

ranging from n = 51 up to n = 111 for a BEC density of 3× 1012 atoms/cm3.

For low principal quantum numbers n, on average one or even less atoms are

inside the electron orbit and strong molecular lines are observed when detuning

the excitation laser from the bare Rydberg state by the binding energy of the

photo-associated Rydberg molecule. The separated lines can be associated with

one (dimer), two (trimer), three (tetramer) and so on neutral atoms bound by the

quasifree Rydberg electron. For increasing n, the number of atoms inside increases

rapidly, since the Rydberg orbit grows with n2. In turn, the potential depth of the

scattering induced electron-atom potential decreases, since the integrated electron

density distribution is conserved by the norm of the wavefunction. Consequently,

for increasing n the observed molecular lines shift closer to the bare Rydberg

state and become broader and more equally in height with more perturbing atoms

inside the electron orbit. Eventually, a single broad spectroscopic feature emerges,

shifted by the mean density shift equal to the expression given by equation 2.34.
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Beyond the above presented mean field energy shift, a more detailed considera-

tion of the electron-neutral atom interaction additionally revealed the importance

of a p-wave shape resonance in rubidium (ref. [79]) and allowed Schlagmüller et al.

(ref. [S6]) for an accurate modeling of the experimentally obtained Rydberg excita-

tion spectra in a BEC, by means of a classical statistical model of the spectral line

shape. Moreover, a more rich theoretical description by a functional determinant

approach (ref. [91]) including the many-body Rydberg electron-neutral atom

molecular states, shows a remarkable agreement with the experimental results

of Camargo et al. (ref. [47]) and validates the classical statistical approach of

Schlagmüller et al. (ref. [S6]) even for on average only a few tens of atoms

randomly distributed in the Rydberg orbit. In the following (figure 2.7) a typical

experimental spectrum of a single Rydberg atom excited in a Bose-Einstein con-

densate is shown. The excitation laser is detuned from the atomic resonance of

the bare Rydberg state and for each Rydberg detuning δ a Rydberg signal NR

is obtained by electric field ionization of the prior excited Rydberg electron and

detection of the remaining ion on a microchannel plate detector. The spectrum

can be separated into three different regions of detuning. Due to the high density

in the BEC, even for a detuning much larger than the excitation bandwidth (here

Γ = 450 kHz), a Rydberg atom is successfully excited. In this case, the scattering

induced interaction between the Rydberg electron and the neutral atoms inside

its orbit compensates for the energy difference of the Rydberg detuning δ. Since

the interaction potential is mostly negative (as < 0) with respect to the atomic

resonance (δ = 0), adding more atoms into the electron wavefunction increases

the resulting mean field shift towards red detuning (δ < 0). Consequently, for

large red detunings (region 1) a Rydberg excitation is favored in the center of

the BEC, where the density is the highest. When decreasing the red detuning

(region 2), the mean field shift in the BEC center is larger than δ and an excitation
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Fig. 2.7: 53S Rydberg excitation spectrum in a BEC (ref. [S6]). The Rydberg signal NR

is shown as a function of the Rydberg detuning δ. The atomic resonance of the Rydberg

excitation is set to zero detuning. Vertical dotted lines separate the spectrum in three

different regions of addressed densities. (1) For large red detuning the Rydberg atom

is excited in a high density region. (2) For less red detuning, lower density regions are

addressed. (3) Close to the atomic resonance shallow bound molecular states are observed.

is preferred in a region with less atoms inside the Rydberg orbit. The density

dependence of the Rydberg excitation probability is a direct consequence of the

mean field energy shift given in equation 2.34, which allows for a detuning to

density mapping [S8, 91]. As a consequence, for a certain Rydberg detuning

(δ < 0) a Rydberg excitation is favored in a narrow shell of similar density inside

the BEC [S8]. For small red detunings δ > −10 MHz (region 3) sharp peaks of

molecular bound states become prominent in the spectrum of figure 2.7. In this

case, ultralong-range Rydberg molecules are predominantly photo-associated in

the very low-density region, mostly in the thermal atom cloud around the BEC,

where only a few atoms are located within the Rydberg electron wavefunction.
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3
Ion-induced Rydberg blockade

In recent years, ultracold Rydberg atoms have been proven to provide a versatile

platform for quantum simulation of long-range interacting many-body systems

[10–12], for nonclassical photonic state generation [13, 14], and for quantum

information processing [15–17]. In particular, the Rydberg blockade phenomenon

is a central aspect for many proposals in these fields [18–20]. The blockade

phenomenon results from strong Rydberg-Rydberg interactions, which suppress

the simultaneous excitation of two or more atoms into Rydberg states within a

certain blockade volume. The Rydberg-Rydberg blockade in a cold and dense

atomic ensemble has been first observed experimentally in 2004 (ref. [21, 22]) and

has been demonstrated for two individual atoms (ref. [23]) in 2009.

In hybrid systems of ions and Rydberg atoms, a similar concept applies. Strong

interactions between a single ion and Rydberg atoms potentially lead to charge-

induced blockade phenomena mediated over macroscopic distances, which have

been proposed as a tool for quantum information transfer between ionic and

atomic quantum systems [24]. The experimental observation of such a blockade

mechanism, however, remained so far elusive. In traditional hybrid settings, which

typically consist of a radio-frequency (rf) ion trap and Rydberg states excited in an
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ensemble of trapped neutral atoms, the ion-trap induced lineshift on the Rydberg

states complicates the observation of interaction effects [25]. First indications

of ion-induced lineshifts have been reported in a study of charge transfer in a

hybrid setting [26]. The ion-Rydberg atom interaction has been investigated in

the context of atom-beam experiments [27] and more recently has been shown to

affect quantum optics applications based on room temperature vapors [28].

In this chapter studies of ion-Rydberg atom interactions are presented. In

particular measurements on an ion-induced Rydberg blockade are carried out.

Parts of this work has been published in [S1].

First, the creation of a single ion in an ultracold ensemble of rubidium-87

atoms is presented in section 3.1. The low energy ion is efficiently created by

employing a novel V-type photo-ionization scheme [S1, 92, 93]. The ionization

scheme incorporates a Rydberg state to ensure the creation of a single ion at a time,

utilizing the Rydberg blockade mechanism [19]. A Photo-ionization efficiency of up

to 75 % is reached. The efficiency is predominantly limited by the photo-ionization

rate of the 6P3/2 state, which is given by the photo-ionization cross-section and the

laser field intensity of the ionization laser [94], that in general, can be overcome

by higher laser intensity.

In section 3.2, an experimental measurement strategy is presented, including the

aforementioned V-type photo-ionization scheme, a subsequent Rydberg excitation,

and a tailored electric field pulse sequence, with which interactions between a single

ion and a Rydberg atom are demonstrated by means of an ion-induced Rydberg

excitation blockade. Note, these ion-Rydberg atom interactions were demonstrated

for the first time in this work (ref. [S1]). Only shortly after, indications of strong

interactions between ions and Rydberg atoms were observed (ref. [26]) in a hybrid

system consisting of a single rf-trapped ion overlapped with a cold atomic cloud.
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Following that, measurements of the ion-induced Rydberg excitation blockade

for different interaction strengths and ion-Rydberg atom distances are carried

out in section 3.3. The ion’s motion is precisely controlled by tunable external

electric fields, while the creation center of the Rydberg atom is well localized. This

allows for probing ion-atom interactions between a single ion and a Rydberg atom,

mediated over tens of micrometer distances. The tailored electric field pulses are

designed for field ionization of Rydberg atoms and the separation of the ion signal,

stemming from the field ionized and the photo-ionized Rydberg atoms, on the

detector. With this, we are able to directly measure the suppressed on-resonance

Rydberg excitation probability in the presence of the Coulomb field the ion. By

post-selection on the ion signal of the photo-ionized Rydberg atom, the contrast

of the blockade measurements is increased by a substantial amount.

Furthermore, the ion-induced blockade mechanism is utilized to use a single ion as

a sensitive probe for electric fields (section 3.4). For this, the blockade measurement

sensitivity is enhanced by increasing the ion-atom interaction strength, allowing for

a stray field compensation down to a level of 100µV/cm. Moreover, a remarkable

precise control of electric fields is demonstrated on the micrometer scale.

Additionally, characterization measurements on the V-type photo-ionization

scheme in an ultracold and dense ensemble are presented (section 3.6.1) and finally,

the ion-induced Rydberg blockade mechanism is employed (section 3.6.3) to trace

the motion of the ion when pulled through the ultracold and dense sample of

atoms in a Bose-Einstein condensate.

3.1 Single Ion creation

In order to probe Rydberg atom-ion interactions, first a single initially slow ion is

created. For this purpose, out of an ultracold sample of rubidium-87 atoms the
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Fig. 3.1: All-optical V-type photo-ionization scheme incorporating the intermediate state

6P3/2 and the nS Rydberg state. The Rydberg state is addressed via a two-photon excita-

tion scheme (420 nm and 1015 nm) and subsequently deexcited via a resonant 1015 nm

laser and coupled to the continuum by 1010 nm laser light, involving the intermediate

state 6P3/2.

valence electron of a single atom is elevated to a highly excited Rydberg state and

subsequently ripped off from its ionic core, leaving a single Rb+ ion behind. The

Rydberg atom is ionized by applying an all-optical V-type photo-ionization scheme

(ref. [92]). A schematic of the used ionization scheme is depicted in figure 3.1.

Applying this specific ionization scheme, which is outlined in the following

paragraph, serves a threefold purpose. First, by incorporating the nS Rydberg

state multiple creations of Rydberg atoms and thus subsequently photo-ionized

ions is heavily suppressed through Rydberg-Rydberg interaction. Consequently,

for a small enough excitation volume the preparation of a single photo-ionized ion

is ensured through the Rydberg excitation blockade. Second, the kinetic energy

transfer onto the initially ultracold atom corresponds to the total photon recoil
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energy of the photo-ionization scheme, which is kept very low by using counterprop-

agating (co-propagating) beam paths for the Rydberg excitation (photo-ionization).

In an ideal situation, the ionization excess energy of the ion is then only given

by the energy difference between the intermediate |nS〉 Rydberg state and the

continuum limit. Eventually, the ions initial position overlaps with the excitation

center of Rydberg atoms and thus eases the preparation for probing the Rydberg

atom-ion interaction.

In the experiments the
∣∣∣5S1/2, F = 2,mF = 2

〉
ground state is coupled to a

excited state via a two-photon excitation scheme, involving 420 nm and 1015 nm

laser light, for the lower (σ+) and upper (σ−) transition respectively, addressing the

mJ = +1/2 Zeeman substate of nS Rydberg state. The 6P3/2 state population of

the intermediate state is kept low by employing a large detuning of ∆ = +160 MHz.

The Rydberg population is measured by detecting single ions on a microchannel

plate (MCP) detector, stemming from electric field ionized Rydberg atoms. A

Rydberg signal NR is obtained by averaging the number of electric field ionized

Rydberg atoms detected on the MCP for many realizations of the performed

experiments. For the Rydberg excitation, the laser powers are adjusted to reach

a Rydberg signal of NR = 0.3, which by including the detection efficiency of the

MCP corresponds to a mean number of 0.5 Rydberg atoms per experiment [95].

Statistics is gained by repeating experiments within one atom sample up to 500

times and averaging over typically 10-20 thermal atom cloud realizations. The

experiments are performed with a spin polarized (F = mF = +2) atom sample

prepared in a crossed optical dipole trap, cf. section A.2, with typical atom

temperatures and atom numbers of Ttherm = 1µK and Ntherm = 1.2× 105. For

the V-type photo-ionization (cf. figure 3.1), after a successful Rydberg excitation

the Rydberg atom is resonantly deexcited to the 6P3/2 state by employing a laser
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pulse of circular polarized light driving σ− transitions. Subsequently, an infrared

1010 nm laser with the same circular polarization, photo-ionizes the prior excited

Rydberg atom by coupling the 6P3/2 state to the continuum. The photo-ionization

laser is locked to a wavelength of 1010.2 nm, resulting in a total ionization excess

energy of about 25 GHz, which is determined by the energy difference between the

ionization laser and the continuum relative to the 6P3/2 state. The time-resolved

detection of ions on the MCP allows for separate evaluation of electric field ionized

and photo-ionized ions.

3.1.1 Deexcitation

In order to demonstrate the deexcitation involved in the photo-ionization scheme,

Rabi oscillations between the |51S,mJ = +1/2〉 Rydberg state and the interme-

diate state 6P3/2 are measured. For this, a single Rydberg atom is excited and

afterwards coupled back to the 6P3/2 state via the resonant deexcitation laser. In

the following (figure 3.2) the Rydberg signal NR is shown as a function of the

pulse length, while the power of the deexcitation laser (Pde = 0.5 mW) is kept

constant. In absence of deexcitation laser light, the mean Rydberg signal is set to

NR = 0.3. The blue data points correspond to the measured Rydberg signal, while

the red curve serves as a guide to the eye based on a calculated Rabi frequency

of Ωde = 28 MHz using an estimated beam waist of about 7µm. For a short

pulse duration, especially for t ≤ 60 ns, the limited rise time of the acousto-optic

modulator used for switching the laser light on and off becomes comparable to the

pulse length, thus the pulse area, defined as the coupling strength (here the Rabi

frequency Ωde) times the pulse length, does only change linear with the pulse length

for sufficiently long laser pulses. For a long pulse duration the Rydberg signal

NR does not drop to zero, indicating a non-fully blockaded atom ensemble for

the 51S Rydberg state. Indeed for the Rydberg excitation bandwidth (≈ 2 MHz),
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Fig. 3.2: Measurement of resonant single-photon Rabi oscillations between

|51S,mJ = +1/2〉 Rydberg state and 6P3/2 state, driven by the deexcitation laser. The

deexcitation pulse length is varied between 50 ns and 140 ns. Blue diamonds represent

the measured data points, with error bars corresponding to the standard deviation, while

the red line is a guide to the eye based on a calculated Rabi frequency of Ωde = 28 MHz.

The mean Rydberg signal in absence of the deexcitation laser pulse is set to NR = 0.3 by

adjusting the Rydberg excitation laser powers.

given by the Fourier width of a 500 ns square pulse for a non-power broadened

transition, the Rydberg blockade of about 5µm is on the same order as the cloud

radius along the direction of the infrared Rydberg excitation laser (1015 nm) beam

path (see chapter A.2). Additionally to the limited rise time of the laser pulse,

which considerably diminishes the oscillation contrast, the comparatively short

lifetime of the 6P3/2 state of τ = 112 ns [96], rapidly damps the Rabi oscillations.

Nonetheless, the experimental data show about two full Rabi cycles, ranging from

about 60 ns to 140 ns. Furthermore and most importantly, the Rydberg signal

decreases by more than 50 % from NR = 0.3 to NR ≤ 0.15 within 60 ns exposure

time of the deexcitation laser, demonstrating a successful deexcitation of Rydberg

atoms. Note that the lifetime of the 51S Rydberg state amounts several tens of

microseconds and thus can be neglected [62].
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3.1.2 Photo-ionization efficiency

In the following the V-type photo-ionization of a single 51S Rydberg atom is

presented and the corresponding photo-ionization efficiency is measured. After

the preparation of a single Rydberg atom, the excited atom is deexcited to

the 6P3/2 state, following the first branch of the V-type ionization scheme, cf.

figure 3.1. The Rydberg electron is then photo-ionized by coupling an infrared

laser, with a wavelength of λ = 1010.28 nm1, which reaches above the ionization

threshold, and with this completing the ionization protocol; following the second

branch in figure 3.1 to the continuum. In order to overcome the low deexcitation

efficiency owing to the short lifetime of the 6P3/2 state, the ionization laser

pulse is kept short and is applied immediately after the Rydberg atom is excited.

Furthermore, the Rydberg atom is simultaneously exposed to the photo-ionization

and deexcitation laser. Additionally, the beam paths of the photo-ionization laser

and the deexcitation laser are overlapped and co-propagating, passing through a

high numerical aperture lens (NA = 0.55). Both laser beams are focused down

onto the atomic cloud, reaching a beam waist of about 1.8µm for the photo-

ionization laser and a beam waist of roughly 7µm for the deexcitation laser.

This allows for relatively high light intensities with the laser powers available in

the experiment, especially for the photo-ionization laser. Thus, high ionization

efficiencies are reached employing short but intense laser pulses. For the efficiency

measurement, subsequent to a Rydberg excitation pulse of 500 ns, the deexcitation

and photo-ionization laser illuminate the prior excited Rydberg atom for 200 ns,

photo-detaching the Rydberg electron from its ionic core. The deexcitation power

is set to 5 mW, while the photo-ionization laser power is varied between 0 mW and

1The ionization threshold for the 6P3/2 state is estimated by using the ionization energy of

the
∣∣5S1/2, F = 1

〉
state [59], the hyperfine splitting of the 5S1/2 ground state [97], and the

energy level of the 6P3/2 state [61], neglecting the hyperfine splitting of the excited state.
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Fig. 3.3: Photo-ionization efficiency of the V-type photo-ionization scheme, incorporating

the |51S,mJ = +1/2〉 Rydberg state and the 6P3/2 state, for different photo-ionization

laser powers of up to 125 mW and a deexcitation power of 5 mW. The experimentally

obtained ionization probability is shown by blue diamonds (standard deviations, indicated

by error bars, are smaller than the symbols), while the blue curve corresponds to an

exponential fit. The red line is the theoretical prediction of a time-dependent four-level

system (see text). The deexcitation and photo-ionization laser are simultaneously pulsed

into the atom sample for 200 ns, photo-ionizing the prior excited Rydberg atom.

125 mW. Figure 3.3 shows the photo-ionization efficiency measured for different

powers of the ionization laser. The blue data points represent the experimentally

obtained photo-ionization probability fitted by an exponential curve (blue), which

saturates at higher laser powers to an ionization efficiency of 75 %. From an

independent measurement the Rydberg signal is obtained as NR = 0.3012(50),

allowing to deduce the photo-ionization probability shown in figure 3.3. Owing to

the tight focus of the photo-ionization and deexcitation laser an efficiency of up

to 70 % is reached for a laser power ≥ 90 mW.
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For the experimental parameters listed above, simulations of the time-dependent

energy level distribution for the photo-ionization process have been performed.

The calculations are carried out, solving the Liouville-von Neumann equation

for the states primarily involved in the ionization scheme. Starting from the

populated 51S Rydberg state, a resonant laser couples the excited state with the

intermediate 6P3/2 state, which represents the deexcitation process. From the

intermediate state two possible decay channels are introduced. The first one is a

laser induced loss channel to an artificial state with infinite lifetime, modeling the

photo-ionization process to the continuum. The second channel is a rapid decay

from the intermediate state to the ground state. For the performed calculations

a photo-ionization cross section of σPI = 15× 10−22 m2 [98] and a decay rate

of Γdecay = 1/τ = 8.93 MHz for the intermediate 6P3/2 state (τ = 112 ns ref.

[96]), are applied. In the context of this work, a more detailed description of the

time-dependent four-level evolution modeling for the photo-ionization process is

outlined in [99]. Based on this, a theoretical photo-ionization efficiency of up to

90 % is predicted for an ionization laser power of 90 mW. The photo-ionization

probability is ultimately limited due to the decay from the intermediate state

to the ground state, and in general can be overcome by applying shorter and

more intense laser pulses for deexcitation and photo-ionization. The calculated

efficiency exceeds the experimentally obtained ionization probability by about 20 %.

For the theoretical description so far, neither the extension of the laser beams

nor of the atom sample are taken into account, assuming a point-like excitation

volume. Furthermore, the differential ac stark shift between the intermediate

6P3/2 state and the Rydberg state, resulting from the high photo-ionization laser

intensities, is expected to be on the order of several tens of MHz [99] and thus

need to be taken into account as well.
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In order to include the finite size of the excitation volume, a Monte Carlo

sampling for both, the spatial laser intensities and atom density distribution, is

performed, which yields a photo-ionization probability of 0.8 for the aforementioned

mentioned experimental parameters. Additionally introducing an ac stark shift, an

ionization efficiency curve (cf. red curve of figure 3.3) matching the measured data

is obtained from the simulations. The ac stark shift calculations performed in [99]

suggest a differential shift of 58 MHz. However, for a shift of 35 MHz a much better

agreement with the experimentally obtained data is found. A conceivable reason

for the apparent discrepancy between the simulations matching the experimental

data and the findings of [99], is the break-down of the four-level picture due to

an off-resonant coupling to different hyperfine substates of the intermediate 6P3/2

state. A comparison of the simulated efficiencies for the two different ac stark

shifts is shown in section A.1. For a further investigation, the ac stark shift can be

measured by e.g. varying the intermediate detuning of the 6P3/2 state, maximizing

the ionization efficiency.

The achieved photo-ionization probability of 75 % is already quite remarkable

and allows for a detailed investigation of the ion-Rydberg atom interaction by

means of the aforementioned ion-induced Rydberg excitation blockade.

3.2 Ion motion and ion-induced Rydberg excitation blockade

So far the preparation of single ions in an ensemble of ultracold rubidium-87

atoms is presented. The prepared ions are created by employing the V-type

photo-ionization scheme presented in the previous section 3.1.

This section reviews the ion-Rydberg atom interactions and introduces the con-

cept of an ion-induced Rydberg excitation blockade. Following that, measurements

of the ion-induced Rydberg excitation blockade are carried out and the results
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are discussed. For demonstrating the excitation blockade, a measurement tech-

nique is presented that has been specifically adapted for probing the ion-Rydberg

atom interaction, involving the V-type photo-ionization scheme and a subsequent

probe Rydberg excitation. Exemplarily, the excitation blockade is measured in a

time-resolved manner, allowing to draw conclusions on the ion trajectory. The

time-dependent Rydberg signal is modeled employing an interaction energy shift

of the Rydberg levels based on the pair interaction potential. Furthermore, the

contrast of the obtained Rydberg signal is greatly increased by post-selecting on

the signal of the photo-ionized ions on the detector.

First, consider an ion in its electronic ground state and a highly excited Rydberg

atom separated by a distance R. Due to the polarizability of the Rydberg atom,

in the presence of an ion the Rydberg energy levels are shifted as a consequence

of the ion-induced stark effect. The pair interaction between ion and Rydberg

atom can be described asymptotically by the long-range polarizability potential

for sufficiently large internuclear distances where the Coulomb field of the ion is

abated well below the Inglis-Teller limit [100].

As introduced in section 2.1.2 the polarization potential for a pair of an ion and

a Rydberg atom can be described by

V (R) = −C4/R
4. (3.1)

The ion-Rydberg atom interaction strength is defined by the state-dependent

Rydberg atom polarizability αRyd = 2 (4πε0/e)2
C4 (cf. equation 2.23), which

scales strongly with the principal quantum number n. In the case of a nS Rydberg

state, the polarizability approximately scales with n7 (see section 2.1.2). For the

principal quantum numbers investigated in the context of the ion-induced Rydberg

blockade measurements (n > 50), the large polarizability of the Rydberg atom

leads to sizable interactions of several MHz over a distance of tens of micrometer.
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Fig. 3.4: Illustration of measurement method for probing single ions by means of an

ion-induced Rydberg excitation blockade. (Top) Rydberg excitation probes a single

ion at distance R. Rydberg excitation beams counterpropagating. The tightly focused

1015 nm beam confines along z-direction, while 420 nm beam much larger and illuminates

everything. (Bottom) Pair-interaction potential V (R) of a single ion and Rydberg atom

separated by distance R for n = 71 (dotted) and n = 100 (line). The Rydberg excitation

bandwidth Γ is indicated with a shaded red curve.

Figure 3.4 illustrates the measurement method for probing the ion-Rydberg

atom interactions by means of an ion-induced excitation blockade. A single

Rydberg excitation is probed in the presence of a beforehand photo-ionized ion

at distance R. With an ion nearby a laser excitation attempt into a certain

Rydberg state may be affected due to the ion-Rydberg atom interactions. More

precise, an excitation suppression sets in for a pair interaction strength larger than

the excitation bandwidth Γ, which occurs at a certain distance between ion and
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Rydberg atom. In analogy to the Rydberg-Rydberg blockade mechanism, this

defines a blockade sphere enclosing the ion, with a radial extension of

Rb = (C4/Γ)1/4
. (3.2)

In the lower half of figure 3.4 the pair interaction potential for n = 71 (dotted)

and n = 100 (line) are depicted. The energy level shifts depend upon the distance

between ion and Rydberg atom, for smaller internuclear distances huge energy

shifts are revealed. The excitation bandwidth Γ = 1.09(1) MHz is indicated by

a shaded red curve. In the case of n = 100, we can obtain a blockade radius of

about 28µm (indicated by a vertical dashed line) by comparing the ion-induced

energy shift with the excitation bandwidth Γ.

In the upper half of figure 3.4, a single Rydberg atom is successfully excited in

the presence of a distant ion. On the right hand side the tightly focused 1015 nm

excitation laser beam path for the upper transition is illustrated. The 1015 nm

laser beam passes through a lens with high numerical aperture and is focused down

to a beam waist of 1.8µm. The counterpropagating 420 nm laser homogeneously

illuminates the entire atom cloud. Combined with the strongly compressed atom

sample along the excitation beam path, see chapter A.2, a high spatial control over

the created Rydberg atoms is achieved. In the experiment, the same lasers are used

for both Rydberg excitations, the one involved in the photo-ionization scheme and

the other used for probing the ion-Rydberg atom interactions, utilizing the precise

control for positioning and for probing the ion. For probing the interactions, not

only an accurate spatial control of the initial positioning for both ion and Rydberg

atom is indispensable, but also the motion of the ion has to be precisely controlled,

which places high demands on the electric field control. For the measurements

performed, Stark spectroscopy [101] at a principal quantum number of n = 133

allows for a stray electric field compensation on the level of ∼1 mV/cm.

Figure 3.5 shows a sketch of the relevant section of the experimental measurement
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Fig. 3.5: Experimental measurement sequence starting with a first Rydberg excitation

pulse, which is immediately followed by a photo-ionization pulse. After a variable time-of-

flight of the created ion, a second (probe) Rydberg excitation pulse is applied. Subsequently,

an ion extraction electric field is used to pre-accelerate the photo-ionized ions before a

larger field pulse electric field ionizes the still present Rydberg atoms, which stem from

the first or second Rydberg excitation attempt. The ions are guided to the MCP and a

time-resolved ion-signal is recorded. The experimental sequence is repeated 500 times

within one thermal atom cloud.

sequence. The experimental setup and atom sample preparation starting from

cooling hot atoms in a magneto-optical trap is outlined in [102].

After an ultracold sample of atoms is prepared, the actual measurement is

initiated by the creation of an ultracold ion. The ion is generated by the V-type

photo-ionization scheme described in section 3.1. Briefly summarized, a single Ryd-

berg atom is excited (cf. first red pulse in figure 3.5) from an ultracold ensemble of

rubidium-87 atoms. Immediately afterwards, the Rydberg atom is photo-ionized

by ripping off the Rydberg electron from its ionic core using a strong infrared

photo-ionization laser pulse, which leaves a single ion, the prior Rydberg core,

behind. Following the ion preparation, after a certain time ttof , a probe Rydberg

excitation takes place. Eventually, a small ion-extraction electric field is applied

to pre-accelerate the prior photo-ionized ion, before a large electric field ionization
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pulse ionizes present Rydberg atoms. In a final step, both the photo-ionized ion

and the electric field ionized ion are guided towards a microchannel plate (MCP)

detector and the number of ions and their corresponding arrival times at the

detector are recorded for many realizations of the experiment. As a result of the

pre-acceleration, the arrival time on the detector is different for photo-ionized

and electric field ionized ions, indicated by the two green bars in figure 3.5, al-

lowing for separate evaluation of the ion signals stemming from photo-ionized

ions and Rydberg atoms. The experiment is performed 500 times within a single

atom cloud of typically Ntherm = 1.2× 105 thermal atoms with a temperature of

Ttherm = 1µK. In order to gain statistics the ion signal is averaged over 20-30

atom cloud realizations.

During the time-of-flight ttof , the ions trajectory is dictated by external electric

fields. As mentioned before (see section 3.1), the photo-ionization laser is locked

to a wavelength of 1010.2 nm, which gives rise to a total ionization excess energy

of about 25 GHz, determined by the energy difference between the ionization laser

and the continuum relative to the 6P3/2 state. The kinetic excess energy of the

photo-ionized Rydberg atom is distributed between the detached electron and the

remaining ion. Due to momentum conservation, the kinetic energy carried away

by the prior Rydberg electron is over five orders of magnitude higher than the

excess energy transfer on the ion. Essentially, the ionization excess energy ratio

between the photo-ionized ion and the detached electron is given by the inverse

mass ratio of the Rb+ and the electron. The resulting kinetic excess energy of

the photo-ionized Rb+ ion is below 10µK or 0.86 neV. Thus, for typical residual

stray electric fields present in the experiment (∼1 mV/cm), the motion of the

initially ultracold ion is dominated rather by external electric fields than the

photo-ionization excess energy. Note that the total photon recoil caused by the
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Fig. 3.6: Conditioned measurement of the ion-induced Rydberg blockade, probed with a

90S Rydberg state. In blue experimentally obtained Rydberg signal over the free evolution

time-of-flight of the ion. In red the simulation of a two-level system with ground state and

excited Rydberg state including the excitation bandwidth and the distance dependent

ion-Rydberg atom interaction.

Rydberg excitation lasers is several orders of magnitudes smaller than the ion

excess energy and thus can be neglected for the presented experimental findings.

In figure 3.6 an exemplary measurement of the ion-induced Rydberg excitation

blockade is presented. In the line with the above introduced measurement protocol,

after a single ion preparation, a probe excitation of a single atom into the 90S

Rydberg state is performed in the presence of the close-by ion. A photo-ionization

is achieved with an ionization laser pulse of 200 ns and a laser power of 210(5) mW.

The probe Rydberg excitation is performed via a two-photon transition from the

5S ground state into the 90S Rydberg state, involving a 420 nm and 1015 nm laser,

driving σ+ and σ− transitions respectively, in order to address the mJ = +1/2

Zeeman substate of the Rydberg atom. For both, the Rydberg excitation involved
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in the photo-ionization and for probing the ion-Rydberg atom interactions, a

500 ns excitation pulse with the same laser parameters is applied (see also section

3.1). The total electric field pulse sequence for ionization and acceleration is 20

microseconds long. The pulse sequence starts with the pre-acceleration pulse with

an electric field strength of Eext = 1.5 V/cm. After 5 microseconds, additionally,

the Rydberg ionization field is switched on (Eioni = 115 V/cm). Within the total

pulse length of 20µs the created ions reach the MCP detector. The obtained

Rydberg signal NR of the probe Rydberg excitation is conditioned on the presence

of a photo-ionized ion.

First consider the experimentally obtained data, represented by the blue di-

amonds in figure 3.6. For a short time-of-flight of the ion, the probe Rydberg

excitation is strongly suppressed due to the strong ion-Rydberg atom interaction at

close internuclear distances. Thus, the energy levels of the addressed 90S Rydberg

state are stark shifted out of resonance from the two-photon excitation. Explicitly,

the energy shift on the 90S Rydberg state is greater than the two-photon excitation

bandwidth. The excitation bandwidth is independently determined by measuring

the spectral width of the bare 90S Rydberg state for the aforementioned excitation

laser parameters, resulting in an excitation bandwidth of Γ = 1.09(1) MHz, which

is essentially given by the Fourier width of the excitation laser pulse. In figure 3.6

a strong suppression is evident for ttof . 13µs. In this case the Rydberg signal

NR has dropped below 0.03.

For longer times (ttof > 13µs) a sharp increase is apparent, and in total the

Rydberg signal resembles an almost step-like function depending on the flight time

of the ion. The signal reaches a plateau of NR = 0.3 for later times-of-flight, which

corresponds to a signal height of the bare Rydberg excitation. In this case, the

ion-induced energy shift is much smaller than the Rydberg excitation bandwidth,

and the probe Rydberg atom can be excited in an undisturbed manner. Thus,
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the ion trajectories for t ≥ 20µs surpass a distance for which the pair interaction

energy shift on the 90S Rydberg state can be neglected.

In accordance to the step-like behavior, it seems reasonable to define a critical

time tB ≈ 16µs at the center of the step function, for which the Rydberg signal

NR reaches 50% of its maximum signal height. In this case, the ion-induced

energy shift on the 90S Rydberg state is approximately equal to the excitation

bandwidth, which is in accordance to the blockade radius definition given in

equation 3.2. Assuming the ion being exposed to a homogeneous electric field

of about 1.5 mV/cm, which is on the order of the stray fields present in the

experiment, the ion travels a distance of about 21µm in 16µs. In fact, we will see

later on that this matches the predicted blockade radius for n = 90 quite nicely.

Next consider the red curve depicted in figure 3.6. In order to model the

experimentally obtained data, the Liouville-von Neumann equation for a two-level

system, here the ground state and the excited Rydberg state, is applied to obtain

the Rydberg excitation dynamic including the ion-Rydberg atom interactions.

Steady state calculations are carried out including the ion-Rydberg atom interac-

tion for different internuclear distances, which yields the excitation dynamics for

different ion-Rydberg atom separations. For this, an effective detuning, given by

the distance dependent pair interaction potential as defined in equation 3.1 is ap-

plied, using the experimentally determined polarizability α90S = 0.3 MHz/(V/m)2

of the 90S Rydberg state. In the calculations, the Rydberg excitation strength

(Ω = 2π × 0.43 MHz) has been adjusted to match the Rydberg signal height of

the experimentally obtained data for long ion flight times, corresponding to a

bare Rydberg excitation with the ion-Rydberg atom interaction being negligible.

Additionally, the calculated results are offset by 0.02 to account for the finite

size of the excitation volume, which is defined through the spatial atom density

and excitation laser intensity distribution. Ensuing that, the obtained excitation
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probabilities for different separations are mapped onto the ion time-of-flight as-

suming an accelerated motion caused by a constant homogeneous electric field.

For the simulated Rydberg signal shown in figure 3.6 a constant electric field of

1.7 mV/cm has been used. Note that for the discussed modeling, both the stray

electric field and the ion motion is neglected in the Rydberg excitation process,

which is valid for the small stray electric fields present.

For the experimentally obtained data, presented above and in the following

section 3.3, the Rydberg signal is conditioned on detecting ions stemming from

photo-ionization. Owing to the pre-acceleration electric field pulse, the photo-

ionized ions and the ions stemming from Rydberg atoms arrive at the detector

for different arrival times. Thus, allowing conditioned measurement on detected

photo-ionized ions.

In the following (figure 3.7) the time-resolved ion counts of the above pre-

sented ion-Rydberg blockade measurement of the 90S Rydberg state is depicted.

After the probe Rydberg excitation, an elaborated electric field pulse sequence

(cf. experimental sequence in figure 3.5) is applied to separate the ion counts,

stemming from photo-ionization and electric field ionized Rydberg atoms, on the

microchannel plate detector. Due to the ion extraction electric field, the ions

originated by photo-ionization arrive at later times t & 10.1µs. The count signal

at earlier arrival times t = 9.8µs corresponds to the electric field ionized Rydberg

atoms. At first this might seem odd. However, on a closer examination of the

applied electric field sequence, guiding the ions towards the MCP detector, and

the finite distance of the electric field plates1, it becomes apparent that the electric

field ionized ions overtake the pre-accelerated ions before reaching the detector.

The reason for this is a shorter exposure time, of photo-ionized ions, to the strong

1Currently used second generation electric field compensation box [102, 103]
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Fig. 3.7: Time-resolved ion counts, recorded by the microchannel plate detector, for the

ion-induced Rydberg blockade measurement of the 90S Rydberg state shown in figure 3.6.

The first peak, at an arrival time of 9.8µs, corresponds to the ions stemming from electric

field ionized Rydberg atoms. Ions produced by photo-ionization arrive the detector after

about 10.1µs.

electric field ionization pulse, which aims to field ionize the prior excited Rydberg

atom and accelerate the produced ions towards the detector. The allocation of the

ion count signal in figure 3.7 to ions stemming from electric field ionized Rydberg

atoms and to photo-ionized atoms has been experimentally verified.

The Rydberg signal contrast for the blockade measurements is enormously

increased by post-selection on the presence of an ion stemming from photo-

ionization. In comparison, for the previously presented blockade measurement,

the unconditioned total Rydberg signal and the conditioned Rydberg signal NR is

shown in figure 3.8.
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Fig. 3.8: Unconditioned total Rydberg signal and conditioned Rydberg signal NR, for

the 90S Rydberg blockade measurement presented in figure 3.6. In red, the total Rydberg

signal without post-selection on detected ions stemming from photo-ionization is shown.

In contrast, the blue data represent the post-selected or conditioned Rydberg signal.

By post-selecting on detected photo-ionized ions, the measurement is to a

certain degree disentangled from the limited deexcitation and photo-ionization

efficiencies, which is of particular importance. Since, deexcitation and photo-

ionization not only depend on the laser powers but also on the Rydberg state

involved in the ionization scheme. For technical reasons the same Rydberg state is

used for both, photo-ionization and ion probing. Thus, by applying post-selection,

the contrast, and comparability of the ion-Rydberg blockade measurements for

different principal quantum numbers n, is increased. The blockade contrast for

the total Rydberg signal presented in red in figure 3.8 is about 30%, while for the

post-selected Rydberg signal NR the contrast almost reaches 100%.
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3.3 Ion-induced Rydberg blockade measurements

In the previous section, the pair interaction of a single ion and a single Rydberg

atom, and the measurement technique for probing ion-Rydberg atom interactions

was introduced. To demonstrate the ion-Rydberg atom interactions, the performed

measurements of an ion-induced excitation blockade for the 90S Rydberg state

were presented. For the demonstrated excitation blockade, a high contrast between

suppressed and non-suppressed Rydberg excitations was revealed by post-selecting

on detected photo-ionized ions. However, the blockade measurements so far,

strongly depend on the stray electric fields present in the experiment.

In this section, the measurement method of the previous section is modified in

order to minimize the importance of the stray electric fields, allowing a quantitative

measurement of the ion-induced Rydberg excitation blockade. To perform this,

an external electric field is applied, which dominates over the weak stray electric

fields. With this, not only the field strength is defined during the measurements

but also the electric field direction, which enables precise control of the ion motion

down to the level of the stray electric field compensation.

In order to suppress the stray electric fields, which are evident in the blockade

measurement presented in the previous section, a strong external electric field is

applied to control the ion motion during the time-of-flight. In fact, instead of

changing the flight time (cf. figure 3.5), the external electric field is scanned for a

constant time-of-flight of the ion. For the measurement, the same ion preparation

as presented in section 3.1, and the same measurement method as outlined in

section 3.2, is used. Additionally, during a time-of-flight of 7µs, the ion is exposed

to an external electric field Ex. The measurements are performed for different

electric fields, ranging from −11.5 mV/cm to 11.5 mV/cm. Figure 3.9 shows the

blockade measurements for a range of principal quantum numbers (51 ≤ n ≤ 100).

77



Chapter 3 Ion-induced Rydberg blockade

Fig. 3.9: Ion-induced Rydberg blockade measurement for different external electric fields

Ex and a time-of-flight of 7µs. For principal quantum numbers ranging from n = 51 (blue)

over n = 71 (red), and n = 90 (green) up to n = 100 (yellow). The mean Rydberg signal

NR is normalized to the value obtained in the absence of the ion. Solid lines represent

error-function fits to the data to extract the blockade radii. Error bars correspond to one

standard deviation obtained from averaging over typically 20 atom cloud realizations.

For better comparison between the measurements of different principal quantum

numbers, the Rydberg signal of the bare Rydberg excitation is used to normalize

the signal to a maximum equals to one. In the limit of large electric fields, the

Rydberg signal NR settles to a constant value. In this case, the ion traveled

further than the blockade radius within its time-of-flight of 7µs, as on average the

initial position of the ion is equal to the excitation volume of the probe Rydberg

excitation (cf. section 3.2). In contrast, for smaller electric fields |Ex|, an excitation

blockade is evident since in this case the Rydberg signal significantly drops. As

expected, the suppression window visible in figure 3.9 becomes broader for larger
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n, since increasing the principal quantum number increases the polarizability

and consequently the blockade radius Rb. Additionally, with increasing blockade

radius the finite size of the Rydberg excitation volume becomes more and more

like a point-like excitation, when compared to the large blockade sphere, and thus

loses on relevance, resulting in an increased suppression contrast. For example, at

Ex = 0 the measured Rydberg signal drops virtually to zero for higher principal

quantum numbers (n = 90, 100), while for n = 51 the signal reaches only down to

about 30% of the bare Rydberg signal height.

In order to determine the blockade radius Rb from the measured Rydberg

signal shown in figure 3.9, for each set of data an error-function fit of the form

∝ erf ((Ex − E?)/w) is applied to both, the positive and the negative flank. From

the fitting procedure the center position E? of the observed edge of the normalized

Rydberg signal is obtained for each principal quantum number. The resulting fit

functions are represented by the solid lines in figure 3.9, and given the accelerated

motion of the ion in the electric field E?, are directly related to the blockade

radius via Rb = eE?t2tof/(2m), where m corresponds to the mass of an 87Rb atom.

It should be noted that the ion flight time of ttof = 7µs is well conceived. On

the one hand, the time-of-flight is chosen short enough to ensure that the expected

E? for the examined principal quantum numbers is larger than the residual stray

electrical fields that are present during the experiments. On the other hand, ttof

is chosen long enough to ensure that the ion exceeds the blockade radius for the

maximum value of the applied electric fields |Ex|, while the Ex induced energy

stark shift on the nS Rydberg state is small compared to the Rydberg excitation

bandwidth, ensuring an unperturbed probe excitation in the absence of the ion.

Explicitly, for n = 100 the Rydberg line is shifted by ∼ 300 kHz for an electric

field of 10 mV/cm, which is small compared to the full excitation bandwidth

2Γ = 2.18(2) MHz.
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In order to verify the extracted blockade radii from the measurements presented

in figure 3.9, the time evolution of the state population for the system at hand

is calculated and the blockade radius is determined applying the same fitting

procedure as for the experimentally obtained data. For this, the time-dependent

Liouville-von Neumann equation (3.3), including the ion-Rydberg atom pair

interaction (see equation 3.4), is solved for different external electric fields.

∂ρ

∂t
= i

~
[ρ,H] (3.3)

H = ~

 0 Ω/2

Ω/2 ∆ + V (R)/~

 (3.4)

Here Ω is the Rabi frequency and ∆ the detuning from the interaction free Rydberg

energy level. The two level system consists of the
∣∣∣5S1/2, F = 2,mF = 2

〉
ground

state and the excited nS Rydberg state. The pair interaction introduced in

equation 3.1 is included by V (R) and acts as an additional effective detuning

from the excited state. For ∆ = 0 and large internuclear distances, for which

the ion-Rydberg atom interaction becomes negligible (V (R)� ~Ω), the ground

state is resonantly coupled to the excited state. In contrast, and as mentioned

in the previous section 3.2, for sufficiently large ion-Rydberg atom interactions

(V (R)� Ω~), the addressed nS Rydberg energy level is shifted out of resonance,

which gives rise to an ion-induced Rydberg excitation blockade. Furthermore, the

interaction potential implicitly depends on the ion motion V (R) = V (R(t, E)) and

thus on the ion flight time and the applied external electric field, which dictates

the ion trajectory during the time-of-flight.

Figure 3.10 shows the calculated 90S Rydberg state population for different

external electric fields. For each electric field the system is solved for the ion

time-of-flight ttof = 7µs used in the experiments. The excitation pulse length is set
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Fig. 3.10: Calculated 90S Rydberg state population of a probe Rydberg atom excited

in the presence of an ion for different external electric fields Ex and an ion time-of-flight

of 7µs. The excitation pulse length is set to 0.4µs to match the measured excitation

bandwidth and a two-photon Rabi frequency of Ω = 2π × 0.4 MHz is used.

to reflect the experimentally determined excitation bandwidth of Γ = 1.09(1) MHz.

A two-photon Rabi frequency of Ω = 2π×0.4 MHz is chosen to match the Rydberg

signal height NR of the experimentally obtained data. The red line corresponds

to a symmetrized error-function fit of the same type, which is used to obtain E?

from the measured data shown in figure 3.9. From the fitting of the simulated

Rydberg population, an electric field of E? = 21.31 mV/cm is extracted, yielding

a blockade radius of Rb = eE?t2tof/(2m) = 23.6µm. The theoretical blockade

radius calculated via equation 3.2, using the polarizability α90S = 0.3 MHz/(V/m)2

of the 90S Rydberg state, delivers a blockade radius of Rb,theo = 23.7µm. In

comparison, the theoretical blockade radius deviates by less than 0.5%, validating

the blockade radii extracted via the error-function fit. For the examined principal

quantum numbers, the above outlined comparison is carried out and a similar

good agreement is found between the theoretical and the extracted blockade radii
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of the simulated state population, verifying the method used for extracting the

blockade radius from the signal form of the measured data shown in figure 3.9.

The extracted blockade radii Rb from figure 3.9 are depicted as blue symbols

in figure 3.11 for different principal quantum numbers. The error bars combine

the effects of the two dominant sources of experimental uncertainties. These are,

the finite pulse length of both, photo-ionization and Rydberg excitation and the

residual stray electric fields present during the experiments. For small n, especially

for n = 51, the relatively low extraction field E? becomes comparable to the stray

electric fields present in the experiments and a seemingly smaller E? is extracted

from the Rydberg signal, which, consequently, leads to an underestimation of

the blockade radius. In fact, a blockade measurement for an electric field along

the y-direction revealed a stray field of about Ey ≤ 1.5 mV/cm. In contrast, for

increasing principal quantum number this effect rapidly abates and the finite pulse

length of photo-ionization (0.2µs) and Rydberg excitation (0.5µs) dominates,

thereby the error is mainly given by the statistical uncertainty of the ion time-of-

flight (±0.35µs).

The experimentally obtained blockade radii are compared to the theoretical

prediction of equation 3.2 (cf. solid line in figure 3.11), which depends on the

polarizability αnS and the excitation bandwidth Γ. For the calculation of the

theoretical value of Rb, the polarizability has been extracted from performed stark

map calculations (see section 2.1.2), while for Γ an experimentally determined

excitation bandwidth Γ = 1.09(1) MHz is used. For small n the measured Rb

is captured by the theory and as expected the blockade expands for increasing

principal quantum numbers. However, the measurement unveils a systematic

suppression towards smaller Rb for increasing n. On closer examination, it becomes

clear that the observed deviation can be traced back to the external electric field

Ex present during the experiments. While the Ex induced energy level shift on the
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Fig. 3.11: Theoretical and measured Blockade radii for different principal quantum

numbers. The diamonds represent the extracted blockade radius Rb from the measurements

presented in figure 3.9 for different n. The solid line and the dashed line show the theoretical

prediction of the field free and the non-field free case, respectively. The inset displays

V (R) for zero electric field (solid line) and for the applied electric field E? (dashed line)

for n = 100 (E? = 7.3 mV/cm). Dotted lines demonstrate the difference of Rb for a

bandwidth Γ = 1.09(1) MHz.

Rydberg state is negligible in the absence of the ion, the situation differs drastic

when the ion is present. In that case, the external electric fields significantly effect

the extension of the blockade sphere surrounding the ion, revealing a suppression of

the blockade radius, which is most prominent for high principal quantum numbers.

In order to understand this, first recall that the pair interaction V (R) originates

from the energy shift of a Rydberg atom in the Coulomb field of an ion Eion. In

particular, for n = 100 and an ion-Rydberg atom distance equal to the blockade

radius, the electric field of the ion at the position of the Rydberg atom reaches
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values on the order of the external electric field Ex applied (Eion(Rb) = 18 mV/cm).

Furthermore, since the ion trajectory is determined by the external electric field, the

field vectors of Ex and Eion always point in the opposite direction. Consequently,

Ex lowers the Coulomb field at the position of the probe Rydberg excitation,

and thus effectively diminishes the blockade sphere surrounding the ion. This

is illustrated in the inset of figure 3.11, where for n = 100 the modified in-field

potential Vmod(R) (dashed line) and the field free potential V (R) (solid line) is

depicted. The modified pair interaction, which includes the sum of the field of the

ion Eion(R) = e/(4πε0R2) and the external electric field Ex reads as

Vmod(R) = −αnS
(Eion(R)− |Ex|)2

2 . (3.5)

The minus sign in front of |Ex| accounts for the opposite directions of the external

and the ion-induced electric field at the position of the Rydberg atom. In analogy

to the previously introduced Rb (cf. equation 3.2), the in-field modified block-

ade radius Rmod
b is obtained by equating the pair interaction Vmod(R) with the

excitation bandwidth Γ.

Rmod
b =

(
eαnS

4πε0(|Ex|αnS +
√

2αnSΓ)

)1/2
(3.6)

The experimentally obtained in-field blockade radii displayed in figure 3.11 are

measured in an external electric field of Ex = E?. The measured E? in turn, is

related to the modified blockade radius Rmod
b via equation 3.6. Consequently, both

the in-field blockade radius Rmod
b and the corresponding electric field E? must be

determined in a consistent manner for a purely theoretical prediction. For this,

E? and Rmod
b are calculated in an iterative and self-consistent way.

In the following we acquire the theoretical in-field blockade radii step-by-step.

For a given principal quantum number n, first the blockade radius R(1)
b for the

field free case given by equation 3.2 (or by equation 3.6 with Ex = 0) is calculated.

Next, from the ion trajectory the electric field E(1) (equation 3.7) is determined
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and plugged into equation 3.8, which yields the modified blockade radius R(2)
b for

an electric field E(1).

E(i) = 2mR(i)
b /(et2tof) (3.7)

R
(i+1)
b =

(
eαnS

4πε0(|E(i)|αnS +
√

2αnSΓ)

)1/2
(3.8)

Subsequently, the resulting blockade radius is used to determine the electric field

needed to displace the ion by R(2)
b during the time-of-flight ttof . Now, the blockade

radius R(i)
b and the electric field E(i) is calculated iteratively. After a few iterations,

the procedure converges to self-consistent values for the electric field E? and the

modified blockade radius Rmod
b . In figure 3.11, the resulting Rmod

b (dashed line)

are compared with the experimentally obtained blockade radii and an overall good

agreement between theoretically and experimentally determined blockade radii

is observed. Note that this procedure is also tested against the state population

simulations presented in figure 3.10 by introducing the modified pair interactions

Vmod(R) from equation 3.5. An exemplary comparison between the measured and

the simulated Rydberg signal is presented in figure 3.12 for n = 90. The visible

deviations at the positive and negative flank of the signal are well covered by the

estimated statistical uncertainty (green shaded area) of the time-of-flight of the

ion (see also error bars in figure 3.11).
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Fig. 3.12: Calculated (solid line) and measured (symbols) 90S Rydberg state population

of a probe Rydberg atom excited in the presence of an ion as a function of the electric

field Ex and an ion time-of-flight of 7µs. The shaded region represents the statistical

uncertainty of ttof (±0.35µs). For the simulations, an excitation pulse length of 0.4µs is

used to match the measured excitation bandwidth and a two-photon Rabi frequency of

Ω = 2π × 0.45 MHz to match the signal height from the experiment. Furthermore, the

simulated data is offset by 0.02 to match the experimental data. This accounts for the

finite excitation volume.

3.4 Single atom electric field probe

In the previous sections 3.2 and 3.3, the pair interaction between a single ion and

a Rydberg atom was investigated by means of an ion-induced Rydberg excitation

blockade. External electric fields are used to precisely control the ion’s motion,

allowing for an accurate measurement of the extension of the excitation blockaded

region around the ion.

This section examines the potential of the ion-induced blockade measurement

technique as a sensitive single atom electric field probe. In contrast to the
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previous blockade radius measurements, for which the experimental sequence

was specifically tailored to minimize the effect of stray electric fields, here, the

experimental parameters are adapted to determine the direction and strength

of the stray electric field present in the experiment. For this purpose, a more

sensitive excitation blockade measurement, for different electric fields, is carried

out in all three spatial directions.

In order to increase the sensitivity of the blockade measurement, the ion time-

of-flight is extended, and consequently, smaller electric fields are required to

draw the ion out of the blockade region. Additionally, the measurements are

performed with a highly excited (n = 100) Rydberg state, to minimize finite size

effects of the excitation volume. This allows for a more accurate electric field

measurement. In figure 3.13 the electric field probe measurements for all three

spatial directions and an ion time-of-flight of ttof = 34µs are presented. The top

row shows the Rydberg signal NR for different applied electric fields Ei along

the i = {x, y, z} directions. The blockade features are quantified via a Gaussian

fit to the Rydberg signal. In comparison to the blockade radius measurements

from section 3.3, the observed blockade features reveal greatly reduced widths

(. 2 mV/cm) around the center of the zero electric field. For the prolonged ion

flight time ttof = 34µs and the theoretical blockade radius Rb = 27.8µm for the

100S Rydberg state, the expected value of the half width half maximum is given

as: E? = 2m/(et2tof)Rb = 0.43 mV/cm. While the feature width for the field scan

along the z-direction matches the predicted value of 2E?, the widths for the Ex
and Ey scan deviate significantly. The difference of the widths along the x- and

y-direction can be attributed to a residual electric field gradient in the xy-plane.

To verify this, stark spectroscopy is performed on the 133S Rydberg state for

different positions of the tightly focused 1015 nm excitation beam. The resulting

spectra for ±40µm shift in x- and y-direction each, reveal a Rydberg line shift of
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Fig. 3.13: Single ion electric field probe measurement. In the top row, the Rydberg signal

NR is shown for different applied electric fields Ei in all spatial directions i = {x, y, z}

for n = 100 and an ion flight time of ttof = 34µs. Solid lines result from Gaussian fits

to the data. The center position of the ion-induced blockade feature yields the residual

stray field along respective spatial component. Error bars indicate one standard deviation,

which results from averaging over typically four realizations. The bottom row shows the

temporal drift ∆Ei of the electric field in all three spatial directions. The drift is obtained

from the difference of the fitted centers of the data shown in the top row. The error bars

represent the 1σ confidence bound of the corresponding fit result.

the S-state corresponding to an electric field difference of about 1 mV/cm over

a distance of 10µm, which gives rise to an electric field gradient of 0.01µV/µm2

present in the experiment. As can be seen from the experimentally obtained data,

the relatively small gradient has a significant influence on the ion trajectory for

the small, homogeneous electric fields applied.
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Contrary to the previous evaluation of the blockade feature in section 3.3, instead

of the blockade width, which yields the blockade radius, the center position is

extracted in order to obtain the zero electric field present in the experiment. In

turn, the extracted zero fields allows one to precisely monitor and compensate

for temporal changes of the residual stray electric fields. In the bottom row of

figure 3.13, the relative center positions of the fitted Rydberg signals for all three

spatial directions are shown for a series of measurements taken over the course

of more than 10 hours. The error bars represent the 1σ confidence bound of the

corresponding fit results, which indicates electric stray field monitoring at the level

of . 100µV/cm. Note that, the here presented level of electric field control in

principle allows for detection of the excess energy transferred onto the ion during

the photo-ionization process (cf. section 3.1) if the residual electric field gradients

are thoroughly compensated.

In conclusion, the presented measurements demonstrate that the produced,

photo-ionized ion can be used as a sensitive electric field probe, which is read out

via a subsequent Rydberg excitation. Owing the spatially localized ion creation and

probe Rydberg excitation, electric fields are measured with high spatial resolution

on the micrometer scale. The achieved accuracy of the measured electric field

significantly exceeds the level of stray field compensation typically used on the

experimental apparatus (∼ 1− 2 mV/cm for Rydberg stark spectroscopy of 160S

state). Furthermore, the obtained data reflect the fact that in the experiment

the ion is additionally exposed to a small electric field gradient, which affects the

resulting ion trajectory. In principle, even higher sensitivities can be achieved by

the presented measurement method for longer ion flight times. Note that, the

electric field sensitivity of the measurements presented above is limited by slowly

drifting stray electric fields during the data acquisition, which takes about 20

minutes for each data set shown in the top row of figure 3.13.
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3.5 Ion-Rydberg and Rydberg-Rydberg atom blockade

So far, the strong long-range interaction between a single ion and a single Rydberg

atom is studied in the context of ultracold gases. For this, an ion-induced Rydberg

excitation blockade was introduced in section 3.2 in analogy to the Rydberg

blockade between two excited atoms, which was originally proposed in a parallel

work of D. Jaksch et al. and M. D. Lukin et al. (ref. [18] and [19]). In conclusion to

the previous sections 3.2 and 3.3, the investigated ion-induced Rydberg excitation

blockade is compared with the well known and widely used Rydberg blockade [12,

13, 18–20, 104–106], which originates from strong Rydberg-Rydberg interaction.

In the following, the excitation blockade of a Rydberg atom in the presence of

either a single ion (Rb+) or a Rydberg atom (Rb∗) is compared for the case of
87Rb. For this, the blockade radius is derived by equating the Rydberg excitation

bandwidth Γ with the interaction for both, the ion-Rydberg atom pair (Rb+ +Rb∗)

and a pair of Rydberg atoms (Rb∗ + Rb∗). First, consider that for relatively large

internuclear distances R (typically on the micrometer scale) the pair interaction for

both cases can be described by the leading term of the second-order perturbation

theory [24, 62]. In this case, the interaction between an ion in the ground state

and an atom in the nS Rydberg state is given by the asymptotic polarization

potential VC4(R) = −C4/R
4 (cf. section 2.1.2), while in turn for a pair of two nS

Rydberg atoms the van-der-Waals interaction VC6(R) = −C6/R
6 dominates [62].

Consequently, the blockade radii for the ion-Rydberg atom (see also equation 3.2)

and the Rydberg-Rydberg atom pair interaction are defined as follows.

RIon−Ryd = (C4/Γ)1/4 (3.9)

RRyd−Ryd = (C6/Γ)1/6 (3.10)

The C4 coefficient is related to the Rydberg atom polarizability via αnS =

2 (4πε0/e)2
C4, which can be extracted from stark map calculations (cf. sec-
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Fig. 3.14: Comparison of the nS Rydberg excitation blockade for ion-induced pair

interaction (Rb∗ + Rb+) and induced dipole-dipole pair interaction (Rb∗ + Rb∗). The

interaction strength is given by the C4 and C6 coefficient for the ion-induced and the dipole-

dipole induced blockade, respectively. For different n, the C4 coefficient is extracted from

stark map calculations. C6 coefficients are determined via equation 3.11. In both cases,

the excitation bandwidth is set to the experimentally obtained value of Γ = 1.09(1) MHz.

tion 2.1.2). For the C6 coefficient, a n-dependent fit of the energy shifts of two

Rydberg atoms interacting via induced dipole-dipole interaction (van-der-Waals

interaction) can be utilized. A fit-model of the C6 coefficient was derived by Singer

et al. [107]. The corresponding expression for two atoms in the nS Rydberg state

is given (in atomic units) by:

C6 = n11(11.97− 0.8486n+ 3.385× 10−3n2). (3.11)

Figure 3.14 shows the calculated excitation blockade radius for a nS Rydberg

atom interacting with an ion (blue) and with second nS Rydberg atom (red), over

a large range (40 ≤ n ≤ 160) of principal quantum numbers n.

In comparison, the calculated blockade radii presented in figure 3.14 exhibit an

overall larger excitation blockade for the ion-Rydberg atom interaction. For the
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principal quantum numbers examined, the ion-Rydberg blockade radii exceed the

Rydberg-Rydberg blockade radii by almost a factor of 2, while a similar scaling

with n is observed for both, the ion-Rydberg atom and the Rydberg-Rydberg

atom interaction. The almost identical n-scaling of the two blockade radii comes

with no surprise and can be understood easily.

For this, let us recall the scaling of the interaction strength by n for both

interacting pairs, the ion-Rydberg atom pair C4 ∝ αnS ∝ n7 and the pair of two

Rydberg atoms C6 ∝ n11. Although the n-scaling of the polarizability
(
n7
)
and

the van-der-Waals interaction strength
(
n11

)
is different, the blockade radius for

both cases (given by equation 3.9 and 3.10) finally yield a similar n-dependence.

RIon−Ryd ∝ n1.75

RRyd−Ryd ∝ n1.83

In conclusion, by comparing the here studied ion-induced Rydberg excitation

blockade with the well-known excitation blockade of two interacting Rydberg

atoms, a similar n-dependence and extension of the blockaded region is found.

Although, the polarization potential is relatively short-ranged compared to the

long-range van-der-Waals interaction, it turns out that for the energy and length

scales investigated the blockade sphere of the explored pair interactions result in

an blockade radius of similar size over a large range of principal quantum numbers.

Note that when exceeding the energy range of a few MHz, e.g. by employing an

excitation bandwidth or a Rydberg detuning on the order of several tens of MHz,

the difference between the short-range polarization potential and the long-range

van-der-Waals interaction becomes unambiguous.

Despite the fact, that the ion-induced Rydberg and the Rydberg-Rydberg

blockade exhibit a similar spatial extension for the here investigated energy and

length scale, which is also commonly used in the context of Rydberg atoms in the

field of atomic physics, employing a system combining ions and Rydberg atoms
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is of particular interest. Such a hybrid ion-atom system enables one to bridge

the field of trapped ions and the field of (ultra-)cold neutral atoms, allowing for

utilization of the advantages of both: The versatility of neutral atoms and the

precise control of the ion preparation and measurement, which is proposed to be of

great use in the field of quantum information processing and quantum simulation

[20, 24, 108]. In particular, the hybrid system consisting of trapped ions and

ultracold fermions has been proposed to emulate solid-state physics (ref. [108]) as

it features analogies close to natural solid-state systems. Furthermore, on the one

hand, ion-Rydberg atom interactions might be used for generating entanglement

between Rydberg atoms and the ion motion or the internal state of an ion [24],

or, on the other hand, to modify ion-atom collisions (ref. [109]), control ion-atom

chemistry (ref. [110]) or influence ionic transport by hopping conductivity (ref.

[111]).

93



Chapter 3 Ion-induced Rydberg blockade

3.6 Measurements in a dense ensemble

Up to now, the binary interaction between a single ion and a Rydberg atom has

been studied on a single particle level. By means of an ion-induced Rydberg

excitation blockade, and in analogy to the Rydberg-Rydberg blockade, an ion-

Rydberg blockade radius was introduced and the ion trajectory was probed in

an external electric field (section 3.2 and 3.3). Furthermore, based on the pair

interaction, spatially resolved electric field measurements have been performed

(section 3.4).

This section discusses the potential application of the ion creation and probing

technique discussed above to study the ion motion in an ultracold and dense gas.

In particular, the excitation blockade might be used to probe the ion trajectory and

draw conclusions on the ion-neutral atom collisions during the ion time-of-flight.

For this, an ultracold ion is embedded in a Bose-Einstein condensate and the

ion-induced Rydberg excitation blockade mechanism is employed to probe the

ion’s position in time, with the ultimate goal of tracing the ion transport in a

BEC [111]. In contrast to ion-atom hybrid systems, which are commonly used to

study ion-atom interactions [112], here, no ion trap is needed and additionally,

the blockade measurement technique enables one to trace the ion motion on the

micrometer scale. At this point, it should be mentioned that yet another approach

for studying ion-atom collisions, which is initiated by photo-detaching the Rydberg

electron of an ultralong-range Rydberg molecule, has been proposed by Schmid

et al. [92, 93]. The main purpose of this section is to present the status of an

ongoing investigation, with the focus on the emerging challenges, when employing

the ion creation and probing technique in a BEC where many-body effects become

important.

The section is structured as follows. In the first part, characterization measure-

ments for the ion creation inside a BEC are presented. In particular, the results on
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the photo-ionization efficiency and the prior Rydberg deexcitation probability are

discussed. In the second part, the above defined ion-induced Rydberg blockade

is considered for many neutral atoms interacting with the probe Rydberg atom,

following that first blockade measurements in the condensate are presented, and

finally classical trajectory simulations including ion-atom collisions are performed

to model the measured probe Rydberg signal.

First of all, contrary to the previous measurements in this chapter, here a

large, elongated, cigar-shaped BEC is used for the purpose of future ion transport

measurements. For these, typically, an electric field is applied to induce an ion

motion along the field axis. As a consequence of the 20 times higher density,

frequent Langevin collisions with the neutral gas atoms are expected to cause a

diffusive drift of the ion. In order to reach a drift regime, many ion-neutral atom

collisions have to take place before the ion leaves the atom sample. Consequently,

for the experiments, the large, magnetically trapped, cigar-shaped BEC is used

rather than the smaller, pancake-like, optically trapped condensate (cf. section

A.3 and A.2). In addition, a larger condensate allows for more subsequent Rydberg

excitations per atom sample and thus provides more statistics compared to the

BEC in the optical trap.

In the experimental setup, the diameters of a BEC with typical NBEC = 1× 106

87Rb atoms condensed in the magnetic trap are: dTF = {10µm, 120µm, 10µm},

where dTF is twice the Thomas-Fermi radius along the spatial directions {x, y, z}.

This means, for the level of achieved stray electric field compensation of about

0.1 mV/cm and an ion prepared in the center of the BEC, when neglecting ion-

atom collisions, the ion stays in the atom sample for at least 30µs. With this

in mind, a rough estimate of the ion-neutral atom scattering rate Γsc = nσLv =

2πn
√

2C4/µ = 1.1µs−1 suggests that in the experiment multiple collisions might

actually occur before the ion reaches the edge of the BEC. For the here determined
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scattering rate Γsc, a BEC peak density ρ̂BEC = 4.5× 1014 atoms/cm3, the reduced

mass µ of the colliding 87Rb atom and ion, the 87Rb ground state polarizability

α0 = 318.8(14)a.u. [113], where α0 is related to C4 via α0 = 2(4πε0/e)2C4, and the

Langevin cross section σL = 2π
√
C4/Ec, with the collision energy Ec [114], are used.

Before the measurements of the photo-ionization efficiency and the ion-induced

Rydberg excitation blockade for an ion in a Bose-Einstein condensate are presented,

it is important to reflect that for the earlier introduced concept of creating (section

3.1) and probing (section 3.2) a single ion, the interaction between Rydberg and

neutral atoms is neglected due to the low density of the cold but dilute thermal

atom sample used for the experiments.

The situation changes drastically, when considering the relatively high density in

a BEC. For the peak density in the experiment (4.5× 1014 atoms/cm3), the mean

nearest neighbor distance between neutral atoms of the condensate is about 80 nm

(1500 a0), which is much smaller than the extension of the Rydberg electron for

the principal quantum numbers investigated in the context of this work. In fact, a

Rydberg atom (100S) placed in the BEC center engulfs about 2000 condensed

atoms in its spherical Rydberg electron orbit, which extends over a radius of 1µm.

3.6.1 Photo-ionization in a BEC

As introduced in the background section 2.3, for a Rydberg atom excited in a

BEC, a mean field energy shift proportional to the local density of the neutral

ground-state atoms inside the Rydberg electron orbit is apparent. It is intriguing

to utilize this density shift to initialize a scattering event of the photo-ionized ion

with the surrounding ultracold atoms in a high density region of the condensate.

For this, the V-type photo-ionization scheme presented in section 3.1 is applied

to create a single ultracold ion in the BEC. In the first step of the ionization
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scheme a Rydberg atom is excited and the positioning of the later ionized ion is

approximately equal to the initial Rydberg position. By utilizing the electron-atom

scattering, for a large red detuning from the atomic resonance, the ion can be

positioned in the center of the BEC. However, for a Rydberg atom excited in

an environment of such high densities, the probability for chemical reactions is

high. In fact, in a work of Schlagmüller et al. (ref. [S7]) state-changing collisions

induced by Rydberg electron-neutral atom scattering in the vicinity of the ionic

Rydberg core have been observed on the microsecond timescale.

For the experiments a magnetically trapped BEC (cf. section A.3) of NBEC =

900k condensed atoms and a thermal fraction of about 25% is used. In the

following, the experimentally obtained photo-ionization probability for an ion in

the BEC is shown. For the ion creation, the 71S Rydberg state is used and a

Rydberg detuning of δ = −40 MHz is applied in order to initialize the V-type

ionization process by exciting a Rydberg atom in a region with a density of

about 4× 1014 atoms/cm3, which corresponds to the center region of the BEC. In

contrast to the ionization scheme introduced in section 3.1, for the photo-ionization

efficiency measurements in the BEC, the Rydberg excitation and deexcitation

pulses are overlapped, in order to compensate for the relatively short collisional

lifetime (τ < 1µs cf. ref. [S7]) of the excited 71S Rydberg state.

In figure 3.15 the photo-ionization efficiency for an ion created close to the BEC

center is shown. The ionization probability reaches a maximum just below 10% for

an ionization laser power of about 45 mW. In comparison to the earlier reported

efficiencies in an optically trapped thermal atom cloud (cf. section 3.1.2), the here

measured maximum value is about 8-10 times lower.

However, when taking into account the offset magnetic field direction and the

laser polarization, it becomes clear that in the case of the optical trap, where

the circular polarized deexcitation laser propagates along the magnetic field axis,
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Fig. 3.15: Photo-ionization efficiency for different photo-ionization laser powers in a BEC.

The ionization scheme (cf. section 3.1) involves the 71S Rydberg state, and a Rydberg

detuning of δ = −40 MHz is used to prepare the ion in the center of the BEC. For the

photo-ionization, the Rydberg excitation and deexcitation pulses are overlapped.

only a σ− transition is driven. While in the case of the magnetic trap the linear

polarized deexcitation laser is perpendicular to the offset B-field, and thus couples

at max with 50% laser power. In fact, the measured photo-ionization probability,

when using a magnetically trapped thermal atom cloud, yields an efficiency of

30% for an ionization laser power of 100 mW, while in the optical trap about 70%

efficiency is reached for the same power.

Furthermore, the ionization probability drops for higher powers of the photo-

ionization laser. At first this seems contradictory, however, considering the

relatively high intensity (Ipeak ∼ 8 mW/µm2 for 45 mW) of the tightly focused

laser beam, it becomes obvious that the ionization laser induces an optical dipole

potential, which attracts neutral atoms inside the laser focus. Indeed, for a laser

power of e.g. 50 mW the depth Ûdip of the dipole potential (cf. ref. [115]) induced

by the ionization laser is: Ûdip = −h× 36 MHz, which leads to a time averaged
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potential depth of −h× 28 kHz for the ionization laser pulse duration 400 ns and

the repetition rate 2 kHz used in the experiment.

In comparison, the resulting laser induced average potential depth is on the

order of the chemical potential µ = h× 3.6 kHz of the BEC. The neutral atoms

move towards the laser focus position, which leads to a sizable density increase

given enough time and eventually results in three-body atom loss. In turn, the

three-body atom loss leads to a heating of the BEC. In the experiment, significant

atom loss is evident for 500 repetitions of Rydberg excitation and subsequent

photo-ionization over a time of 250 ms. In consequence, for the evaluation of the

experimentally obtained data, typically only the first 50 or 100 shots are used, for

which the atom loss is low. Nonetheless, for the aforementioned ionization pulse

duration, repetition rate and only 100 experimental realizations within one atom

cloud, the ionization probability drops by about 10-20% for ionization laser powers

& 45 mW, as is visible in figure 3.15. The reduced efficiency can be traced back to

a decrease of the Rydberg excitation probability for increasing photo-ionization

laser power, which has been experimentally confirmed by blocking the deexcitation

laser and measuring the Rydberg signal NR for different photo-ionization laser

powers.

In order to conclude the results of the experimentally obtained photo-ionization

efficiency in the BEC, a series of characterization measurements for the deexcita-

tion of the 71S Rydberg state are performed. For this the typical photo-ionization

scheme as introduced in section 3.1 is applied, but in comparison to the above

presented measurements, the photo-ionization power is set to zero and the de-

excitation laser pulse is applied after the Rydberg excitation. The deexcitation

efficiency is directly related to the Rydberg state population after the deexcitation

laser pulse. The Rydberg signal NR is normalized to the signal height in absence

of the deexcitation laser. In the following, the Rydberg state population after a
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Fig. 3.16: Density-dependent Rydberg deexcitation measurement for a 71S Rydberg state

excited in a BEC. The Rydberg signal NR is normalized to one for a deexcitation pulse

duration of zero. The different curves represent the deexcitation probability for different

Rydberg detunings δ. From bottom to top, δ = {0 MHz,−5 MHz,−32 MHz,−40 MHz}.

deexcitation attempt, for a Rydberg atom embedded in the BEC, is presented for

different Rydberg detunings δ and different interaction times of the Rydberg atom

with the surrounding neutral atoms of the condensate.

Figure 3.16 shows the results of the deexcitation measurements for a Rydberg

detuning varying between 0 MHz and −40 MHz, which corresponds to a Rydberg

excitation in a density region ranging from the dilute thermal atom cloud around

the BEC for δ ≈ 0 MHz (ρ ≈ 1.6× 1013 atoms/cm3) to the peak density for

δ ≈ −40 MHz (ρ ≈ 4× 1014 atoms/cm3) of the condensate. For small detunings,

the Rydberg population rapidly decreases already for short deexcitation pulse

durations. The Rydberg signal drops to 20% for a deexcitation duration of 50 ns for

δ = 0 MHz and to about 50% for δ = −5 MHz. In both cases, the Rydberg atom

is expected to be excited on the very edge of the condensate, where the density is
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Fig. 3.17: Fast deexcitation measurement for a Rydberg detuning of δ = −40 MHz for

the 71S Rydberg state excited in a BEC. The Rydberg signal NR is normalized to one

for a deexcitation pulse duration of zero. The blue (lower) curve represents the obtained

Rydberg signal for a fast Rydberg excitation (texc = 150 ns) and subsequent deexcitation,

while the yellow (upper) data points, which are taken from figure 3.16, correspond to a

Rydberg state population after deexcitation for a Rydberg excitation duration of 500 ns.

low. Accordingly, the efficiency is similar to the deexcitation probabilities obtained

for a thermal atom cloud in the optical trap (cf. section 3.1.1). Additionally,

when increasing the pulse duration, an oscillating Rydberg signal, corresponding

to damped Rabi oscillations for the light coupled intermediate 6P3/2 state with

the 71S Rydberg state, is evident. However, when exciting a Rydberg atom close

to the BEC center (cf. curve for δ = −32 MHz and δ = −40 MHz in figure 3.16)

where the density is relatively high and the Rydberg atom interacts with many

neutral atoms, the Rydberg state population almost stays constant, indicating

that no deexcitation takes place. The microsecond timescale of the observed

state-changing collisions (ref. [S7]) of Rydberg atoms excited in the BEC, strongly

indicate that the dynamics of the neutral atoms inside the Rydberg orbit prevent

the deexcitation process of the Rydberg atom.
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To validate this reasoning, a deexcitation measurement for a shorter Rydberg

excitation pulse and a Rydberg detuning of δ = −40 MHz is performed. Instead

of the 500 ns Rydberg excitation pulse duration, here a pulse length of 150 ns is

applied, reducing the total time from Rydberg excitation to deexcitation from

0.6µs down to 0.25µs. As is apparent from figure 3.17, the measured Rydberg

signal for a faster Rydberg excitation yields an overall lower Rydberg population.

Consequently, for an overall faster photo-ionization pulse sequence higher ion

creation efficiencies are achievable.

3.6.2 Ion-induced Rydberg blockade in a BEC

In the previous 3.6.1, the photo-ionization of a Rydberg atom immersed in a

BEC was discussed. When considering the high densities in a condensate and

accordingly a large number of atoms interacting with the Rydberg electron, it turns

out that by choosing a large Rydberg detuning δ, a Rydberg excitation in a region

of higher densities is provoked (see also section 2.3). However, the interaction of the

Rydberg electron with the neutral atoms also prevents an efficient photo-ionization.

Nonetheless, an ion creation and probing in the center of the condensate is still

desirable for studies on ion-atom interactions, even for low ionization efficiencies.

This section discusses the ion-induced Rydberg blockade in a dense ensemble,

displays the occurring complications accompanied by a probe Rydberg excitation

including the electron-atom interaction, and presents a way of treating these. In

the following, the experiments are performed in a magnetically trapped BEC (cf.

section A.3) of NBEC = 900k condensed atoms and Nthermal = 300k uncondensed

thermal atoms with a temperature of T < 200 nK.

First, consider a Rydberg excitation in the condensate. In figure 3.18 an

experimentally obtained Rydberg spectrum of the 71S state is shown, for an

excitation in the BEC (blue data) and the thermal cloud (red data) surrounding
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Fig. 3.18: 71S Rydberg spectrum for an excitation in the BEC and in the thermal part

of the condensate. For better comparison the Rydberg signal NR of both spectra are

normalized to their respective maximum value. Left panel (blue curve): Rydberg spectrum

in the BEC, the excitation laser is focused onto the BEC center. Right panel (red curve):

Rydberg spectrum in the thermal cloud around the BEC, the excitation laser focus is

displaced in x-direction by 8µm.

the condensate. In contrast to the spectrum in the condensate, for the spectrum

in the thermal part, the tightly focused excitation laser is displaced from the BEC

center by 8µm in x-direction, illuminating the thermal cloud next to the short

axis of the cigar-shaped condensate, but not the BEC. Given the high density, the

strong Rydberg electron-atom interaction leads to a large mean field energy shift

and broadening (cf. section 2.3) of several tens of MHz, while for an excitation in

the thermal part of the condensate the spectral line shape is essentially defined by

the Fourier transform of the Rydberg excitation pulse.

Next, consider the ion-Rydberg atom interaction, which is given by the asymp-

totic Rydberg atom polarization potential V (R) = −C4/R
4 (see section 3.2), and

the mean field energy shift ∆E of equation 2.34. In a classical picture (ref. [S6]),

the neutral atoms are distributed inside the Rydberg orbit according to the local
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Fig. 3.19: Schematic illustration of the ion-Rydberg atom interaction in the BEC for

the 71S Rydberg state and a Rydberg detuning of δ = −40 MHz. The Rydberg atom-ion

interaction (dotted) is shown for asymptotic energies ranging from −50 MHz to 0 MHz

for different internuclear distances R. The total excitation bandwidth of 2Γ = 2.2 MHz is

indicated by a red shaded curve.

density distribution, leading to the aforementioned Rydberg electron-neutral atom

interaction induced energy shift. This energy shift is essentially offset by the

ion-Rydberg atom interaction for a Rydberg excitation in the presence of an ion.

As a consequence, when addressing the high density region in the BEC, using a

negative Rydberg detuning, the ion-induced Rydberg energy level shift can be

compensated by the electron-atom interaction. This situation is illustrated for the

71S Rydberg state in figure 3.19, where the ion-Rydberg atom interaction over the

internuclear distance R is depicted for asymptotic energies ranging from −50 MHz

to 0 MHz emulating different mean density shifts ∆E(ρ). For a distance R . 6µm,

the ion-induced energy shift is larger than 45 MHz and thus covers already a major

fraction of the density broadened spectrum. When considering a negative Rydberg

detuning, it becomes obvious that the excitation blockade radius defined in section

3.2 is not valid for a probe Rydberg excitation in the center of the condensate.
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For a negative Rydberg detuning of e.g. δ = −40 MHz, indicated by the shaded

red curve in figure 3.19, a whole band of density shifted Rydberg energy levels

crosses the excitation bandwidth at an internuclear distance R & 6µm, allowing a

probe Rydberg excitation for an ion-Rydberg atom distance much smaller than the

measured blockade radius in the thermal atom sample (cf. section 3.3). Overall,

due to the low photo-ionization efficiency and the strongly reduced ion-Rydberg

blockade radius, an alternative approach for studying ion-atom interactions in

a condensate, using the in section 3.1 and 3.2 outlined approach of ion creation

and probing, is realized in the following. Note that in the simplified picture

illustrated in figure 3.19, by offsetting the ion-induced interaction with the mean

field energy shift ∆E, one neglects that for different density shifts different regions

in the BEC are addressed (cf. detuning to density mapping in section 2.3). This

approximation is valid since the relatively large ion-induced energy shifts exceed

the maximum mean field density shift for ion-Rydberg atom distances larger than

the radial extension of the condensate.

3.6.3 Probing ion motion inside a BEC

Instead of utilizing the density shift to place the ion and probe Rydberg atom in

the center of the BEC, the ion creation and the probe excitation are both located

in the dilute thermal atom cloud surrounding the condensate. For this, the tightly

focused photo-ionization and the infrared excitation laser focus are displaced in

x-direction by 8µm from the center of the BEC. With a dilute atom sample, the

photo-ionization efficiency reaches a value of 20-30%, which is more than twice

the efficiency reached in the condensate center. Furthermore, for the ion probe

excitation in the thermal part, the mean field energy shift is small compared to

the total excitation bandwidth 2Γ = 2.5(3) MHz. The excitation bandwidth is

determined by a Lorentz function fit to the thermal spectrum shown in figure 3.18.
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Fig. 3.20: Ion-induced Rydberg excitation blockade measurement next to the condensate

for the 100S Rydberg state. Photo-ionization and probe Rydberg excitation laser focus are

displaced from the BEC center in x-direction by 8µm. In blue (red), the probe Rydberg

excitation signal NR for Ex = +5 mV/cm (Ex = −5 mV/cm), dragging the ion through

(away from) the condensate, over the ion flight time ttof , is shown. The shaded regions

indicate the resulting ttof including a stray field of up to 1 mV/cm in the direction of Ex

and a constant average drift velocity v̄drift inside the condensate (see text).

Figure 3.20 shows the ion-induced Rydberg blockade measurement for the

ion creation and probing next to the condensate. The experimentally obtained

probe Rydberg excitation signal NR is shown for an ion guiding electric field of

Ex = +5 mV/cm (blue data) and Ex = −5 mV/cm (red data), accelerating the

ion towards the BEC and away, respectively. The in-field blockade radius for

the 100S Rydberg state is given by equation 3.6. For the applied electric field

|Ex| = 5 mV/cm, the measured Rydberg excitation bandwidth Γ = 1.25(15) MHz

and a polarizability of α100S = 0.63 MHz/(V/m)2, extracted from performed

stark map calculations (cf. section 2.1.2) yields a blockade radius of Rb =

24µm. In analogy to the evaluation of the probe Rydberg signal in section
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3.2, and given the accelerated motion of the ion, the edge center t? of the rising

Rydberg signal NR is expected at an ion time-of-flight of ttof =
√

2Rb/(|Ex|e/m) =

9.3µs. The experimentally obtained probe signal NR, however, shows a sharp

edge around ttof = 8.4µs. When considering the thermal cloud expansion and

the level of stray electric field control during the experiments, the seemingly

apparent discrepancy can be explained for the non-collisional case (red data).

Assuming a maximum initial distance between the ion and the probe Rydberg

atom of 10µm perpendicular to the ion trajectory (displacement along z-direction),

which corresponds to the 1/e-diameter of the thermal atom cloud along the

excitation beam axis, and an uncertainty along the ion trajectory of ±1.8µm,

taking into account the excitation laser focus, this alone results in an uncertainty

of 1.1µs. When additionally considering the Rydberg excitation (500 ns) and

photo-ionization pulse duration (200 ns) a width of about ∆ttof = 1.8µs for the

Rydberg signal edge is expected. Furthermore, as mentioned before (see section

3.2), the stray electric field compensation level of the stark spectroscopy used

in the experiment is . 1 mV/cm. Moreover, stray field drifts on the same order

are observed over the course of a few hours (cf. section 3.4). When assuming

an additional electric field of 1 mV/cm present during the experiment, the edge

center of the Rydberg signal is expected at ttof = 8.4µs (cf. red shaded region in

figure 3.20), matching the experimentally obtained data (Ex = −5 mV/cm) for

pulling the ion away from the condensate.

So far the case of an unperturbed trajectory of the prior photo-ionized ion has

been discussed. In contrast, for an ion dragged through the BEC, when collisions

between the ion and the atoms of the condensate become important, the trajectory

of the field guided ion is strongly perturbed. This, in turn, is expected to be

reflected in the probe Rydberg signal, since, in the case of many collisions the

ion is slowed down in the condensate and consequently leaves the ion-induced
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blockade volume for later times-of-flight in comparison to an ion which trajectory

is only weakly perturbed. The experimentally obtained data for dragging the ion

through the short axis of the BEC, with an electric field of Ex = +5 mV/cm (cf.

blue data set in figure 3.20), shows only a minor difference to the data for which

the ion was moved away from the condensate (Ex = −5 mV/cm).

Apparently, for the situation realized in the experiment, either only a small

amount of Langevin (spiraling) ion-atom collisions occur or the ion trajectory is

additionally affected in a so far non-contemplated manner. In order to investigate

this further, first, consider the Langevin ion-atom collisions. By definition, a

spiraling collision results in a large scattering angle (ref. [114]) in the relative

frame of the collision partners, deflecting the incoming particle by angles up to

180°. In the laboratory reference frame, due to momentum conservation, scattering

into large angles translates into a significant momentum transfer from the moving

ion onto a quasi-stationary neutral atom. In this picture, the ion motion is slowed

down inexorably when enough spiraling collisions take place.

When an external electric field is applied, the accelerated motion of the ion

is interrupted for each spiraling collision and the current ion velocity is reduced.

Considering many collisions, an average drift of the ion, whose velocity is closely

related to the scattering rate Γsc can be defined as:

~vdrift = e

m
τ ~E (3.12)

The drift velocity points in the electric field direction and is multiplied by the

elementary charge e divided by the effective mass m, which in the present system

is equal to the ion mass, and the inverse scattering rate τ = 1/Γsc. For modeling

the ion motion in the presence of an external electric field, as a first estimate, one

might try to utilize the drift velocity defined above (deduced from the well-known

Drude model), which is regularly used in solid-state physics with great success.

In a simplified model, a mean density ρ̄ is determined by averaging the condensate
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density distribution along the x- and z-direction over the extension of the BEC,

taking into account the different density regions, which the ion probes when dragged

through the condensate by the external electric field Ex, while assuming uniformly

distributed ion creation positions along the excitation beam path (z-axis).

The resulting average density of ρ̄ = 1.7× 1014 atoms/cm3, leads to a mean

scattering rate of Γ̄sc = 0.4µs−1 (cf. section introduction 3.6), which in turn

yields a mean drift velocity of v̄drift = 1.4 m/s for an external electric field of

Ex = 5 mV/cm. Considering the relatively short extension of the BEC along the

electric field axis (dTF = 10µm), one might argue that the application of a drift

velocity is not suitable, since, for the parameters mentioned above, on average only

3 spiraling collisions occur per ion trajectory. While this is certainly questionable

for a single trajectory or the average of only a few experimental realizations, in

the case of the presented data, the Rydberg signal is obtained from averaging over

several thousand experimental realizations, and thus the ion-atom collisions in the

condensate are sampled many times over. Consequently, the definition of a drift

velocity for modeling the ion motion within the BEC appears to be reasonable.

For an ion creation center 8µm displaced in x-direction from the condensate

center, as it is the case for the experimental data presented in figure 3.20, an

accelerated ion motion outside of the BEC, and a constant velocity equal to the

determined average drift velocity v̄drift = 1.4 m/s inside the condensate, on average,

the ion exceeds a flight distance equal to the in-field 100S ion-Rydberg blockade

radius Rb = 24µm for a time-of-flight of ttof = 14.2µs, and ttof = 12.8µs when

including a 1 mV/cm stray field in the direction of the applied electric field Ex (cf.

blue shaded region in figure 3.20). In comparison to the free-flight case, for which

an average time-of-flight of ttof = 9.3µs is expected, the simple model outlined

above suggests that in the presence of ion-atom collisions inside the condensate,

on average, the ion flight time is delayed by about 3µs.
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These findings seemingly contradict the experimentally obtained data shown in

figure 3.20, where a similar t? is found for both cases, for dragging the ion through

(blue data) and away (red data) from the condensate. At this point, it should

be noted that for the considerations above, the choice of the average density ρ̄

strongly influences the result of the average scattering rate and can, therefore,

change the resulting drift velocity and consequently the outcome of the above

applied simple model drastically. Nonetheless, for the system at hand, for pulling

the ion through the condensate, the theoretical contemplation suggests a stronger

probe excitation suppression for longer ion times-of-flight. On a closer examination,

when comparing the data sets shown in figure 3.20, despite the fact that the probe

signals rise at a similar time, the condensate data for Ex = +5 mV/cm (blue data)

reach a maximum for slightly later ion flight times.

So far, the theoretical treatment takes into account the presence of a stray

electric field of up to 1 mV/cm. That, however, does not explain why the probe

signal for the condensate data appears to be less affected by ion-atom scattering

than expected. One can think of two experimental parameters, which strongly

influence the obtained probe Rydberg signal in a manner that ion-atom collisions

are seemingly less influential; namely the excitation bandwidth Γ and additional

uncompensated electric field gradients. Actually, for an increased excitation band-

width the ion-induced Rydberg blockade radius is reduced and consequently, the

ion leaves the blockaded region for an earlier time-of-flight. However, in this case,

the Rydberg signal shape is mostly compressed along the ion flight time axis, but

for a large enough blockade radius, the ion-atom collisions are still expected to

be evident in the probe signal. In contrast, for a non-zero electric field gradient,

the ion experiences a different field strength for an increasing distance from the

stray field compensated Rydberg excitation region and thus is primarily either

slowed down or additionally accelerated along its trajectory. Especially for the
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latter, the ion is dragged faster through the condensate and consequently less

ion-atom scattering events occur. Furthermore, while the excitation bandwidth is

experimentally determined and basically given by the Fourier transform of the

Rydberg excitation pulse, the stray electric fields are compensated before and

after each measurement but only at the Rydberg excitation position. In a previous

measurement (see section 3.4) an electric field gradient of 1 mV/cm over a distance

of 10µm has been determined.

In order to test the influence of a stray electric field gradient on the probe

Rydberg signal, semi-classical state population simulations were performed. The

results of these calculations are presented in the following. To model the Rydberg

signal, first, classical trajectory simulations including the ion-atom scattering

by utilizing a stochastic collision approach are carried out. After that, for each

resulting ion trajectory, the time-dependent state population (for details see

section 3.3) for the probe Rydberg excitation is calculated, from which a mean

probe Rydberg state population is obtained for different ion flight times. For

the ion trajectory simulations and the state population calculations, the initial

ion position and the probe Rydberg atom location are sampled according to the

atom density distribution and the intensity profile of the tightly focused excitation

laser, respectively. In detail, spiraling ion-atom collisions, for which, in contrast to

glancing collisions, the ion trajectory is strongly affected, are included assuming

a density-dependent scattering rate for Langevin collisions. In analogy to the

approach of Zipkes et al. (ref. [114]), the density distribution of the condensate is

taken into account by applying a local density collision time sampling method.

In the following the experimentally obtained probe Rydberg signal NR from

figure 3.20 are compared with the results of the performed state population

simulation using the Monte Carlo sampled ion trajectories including the ion-atom
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collisions. As a reminder, for the blue data, the ion is dragged through the

condensate via an applied external electric field of Ex = +5 mV/cm, while the red

data serves as a reference measurement, for which the ion is pulled away from

the BEC by applying the electric field in the opposite direction Ex = −5 mV/cm.

For both data sets the ion is created and probed 8µm away from the condensate

center in x-direction. As previously discussed, for both experimental data sets, NR

systematically rises for earlier flight times, which could be caused by either a stray

electric field or an electric field gradient (or both). For a constant electric field

offset during both measurements, the sign of the stray electric field in x-direction

must be reversed between the two measurements to additionally accelerate the ion

motion along the applied field axis. In contrast, a positive constant electric field

gradient affects both data sets similar by additionally accelerating the ion for an

increasing distance from the field compensated excitation region. Furthermore, the

electric fields at the Rydberg excitation position are carefully compensated before,

and verified after each measurement, whereas determining an electric field gradient

is more involved and thus a gradient compensation is carried out less frequently. In

figure 3.21 the experimental data are compared with the simulated Rydberg signal.

For the simulations, the experimentally obtained atom number N = 1× 106, and

a BEC fraction of 0.8, an excitation laser beam waist of w0 = 1.8µm at the

focus position, an excitation bandwidth of Γ = 1.25(15) MHz, and the in the

experiment applied electric fields of Ex = ±5 mV/cm, are used. Additionally, a

stray electric field and an electric field gradient along the axis of the applied field

Ex are introduced to reproduce the measured Rydberg signal NR. For reasons of

simplicity, the electric field gradient is modeled via a constantly changing electric

field offset along the x-axis, with a zero electric field at the excitation laser focus

position. Typically, in the experiment, the zero electric field changes on the order

of a few mV/cm over a distance of a few tens of micrometers in the vicinity of the
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Fig. 3.21: Ion-induced Rydberg excitation blockade measurement next to the condensate

for the 100S Rydberg state. Photo-ionization and probe Rydberg excitation laser focus are

displaced from the BEC center in x-direction by 8µm. In blue (red), the probe Rydberg

excitation signal NR for Ex = +5 mV/cm (−5 mV/cm), dragging the ion through (away

from) the BEC, over the ion flight time ttof , is shown. Solid (dashed) lines represent

the probe Rydberg state population for the performed classical trajectory simulations,

including ion-atom collisions, with (without) an electric field gradient, while the shaded

regions show the results for the stray electric fields present in the experiment (see text).

Rydberg excitation center. For the simulations presented in figure 3.21, an increase

of the applied electric field |Ex| of 5 mV/cm over a distance of 10µm in x-direction

is used. That means, for the simulated ion trajectories, the applied electric field of

Ex = ±5 mV/cm, acting on the ion, is enhanced by an additional field caused by

a field gradient of ±0.5 mV/cm 1
µm along the x-axis. Besides that, the simulations

include a stray electric field along the x-direction of up to ±1 mV/cm, which is

represented by the shaded blue (red) region around the data (solid lines) for a

zero stray field shown in figure 3.21. The dashed lines represent the simulated

state population in absence of any additional stray or gradient electric fields.
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First, consider the modeled data including the electric field gradient. While

the free-flight data (red) are well reproduced, the simulations for pulling the ion

through the BEC deviate for the rising edge of the signal, but model NR for

ttof & 10µs accurately, when taking into account the stray field compensation

level (shaded regions). In contrast to the free-flight data, the simulated data

for Ex = +5 mV/cm show, in comparison to the data without any additional

stray or gradient electric fields (cf. dashed line in figure 3.21), not only a rising

edge position of NR for earlier ion flight times but more importantly, that the

characteristic shape is significantly changed. The slowly rising signal for longer

ion flight times, which is attributed to a long tail of ions leaving the ion-induced

blockade radius delayed as a consequence of collision-induced deceleration of the

ion motion, is overall contracted to shorter ttof . This makes it hard to deduce

ion-atom collisions in the presence of uncontrolled additional electric fields, as

for increasing gradient and stray electric fields NR more and more resembles

the shape of a non-collisional free-flight ion trajectory with a steep increasing

step-like blockade signal. Exemplarily, when regarding the Rydberg signal without

stray and gradient electric fields (see blue and red dashed lines in figure 3.21), in

comparison, the shaded regions exhibit a relatively small gap. Consequently, in

the case of the considered stray and gradient electric fields, the measurement of

ion-atom collisions is more involved but in principle feasible.

3.6.4 Conclusions on creating, probing and the ion motion in a BEC

In conclusion to the realization of the creation and probing of a single ultracold

ion in a dense and ultracold ensemble, a photo-ionization efficiency of up to 10%

has been demonstrated (section 3.6.1). The rather low efficiency could be traced

back to an inadequate slow deexcitation, resulting in a low deexcitation efficiency

(section 3.6.1). Conclusively, it has been shown that for a faster deexcitation
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process a higher efficiency is achievable and the ion preparation in a Bose-Einstein

condensate (applying the in section 3.1 introduced V-type photo-ionization scheme)

is in principle possible, despite the reduced photo-ionization efficiency. However,

for probing the ion-atom collisions in the BEC, utilizing the ion-induced Rydberg

blockade (cf. section 3.2), it turns out, as discussed in section 3.6.2, that due

to the strong Rydberg electron-neutral atom interactions, the blockade radius

is heavily diminished for a probe Rydberg excitation in a high-density region

and therefore is inappropriate for probing the ion motion inside the BEC. As an

alternative, the probe Rydberg excitation is located outside of the condensate,

making use of the trapped thermal atoms surrounding the BEC. For technical

reasons, the ion creation center is allocated to the same spatial position.

With the setting of creating and probing the ion next to the condensate,

the effect of ion-atom collisions is investigated for dragging the ion through

the BEC by applying a small external electric field (cf. section 3.6.3). The

resulting experimentally obtained probe Rydberg excitation signal revealed at

first unexpectedly only a minor dependency on the presence of ion-atom collisions,

which, when taking into account the level of electric field control, can be explained

by an additional electric field originating from an electric field gradient. For probing

the ion-atom collisions for the system at hand, the modeling of the measured

probe signal reflected the importance of well-controlled electric fields on a level of

1 mV/cm over a distance of several tens of micrometers. A possible solution for an

improved electric field compensation method was already presented in section 3.4,

where the ion-induced blockade measurement technique is utilized to determine

the zero electric field in the vicinity of the ion trajectory. Beyond that, the

width of the probe Rydberg signal for different external applied electric fields also

carries information about the electric field gradient present during the experiments.

Consequently, the presented field probe method can be extended to efficiently
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deduce not only the stray electric field but also the electric field gradient probed

by the ion along its trajectory, allowing for an improved electric field compensation

and thus might path the way for a quantitative study of ion-atom collisions using

the prior introduced (cf. section 3.2) ion probing method. In future experiments,

the enhanced field compensation allows one to drag the ion along the elongated

BEC axis for even smaller electric fields, prolonging the ion-condensate interaction

time by a substantial amount. Furthermore, the measurement technique can

be refined by initializing the ion-atom scattering in the condensate, while the

probe Rydberg excitation is allocated next to the BEC to inhibit the Rydberg

electron-neutral atom interaction. In principle, a higher photo-ionization efficiency

of a Rydberg atom prepared in the condensate can be achieved for a shorter and

stronger deexcitation and photo-ionization pulses. However, already for the photo-

ionization laser power settings used for the ionization efficiency measurements in

the BEC (cf. section 3.6.1), the atom sample is substantially heated up for 200

subsequent experimental realizations. Consequently, for higher laser intensities the

atom sample is heated up for an even lower number of experiments per atom cloud.

Alternatively, when creating the ion outside of the condensate, one can apply an

elaborate electric field pulse sequence to transport and stop the ion in the BEC

center within a few tens of nanoseconds, which is made possible by the high level of

electric field control present in the experiment. An overall different but promising

approach is to carefully electric field ionize the Rydberg atom in the BEC instead

of using the photo-ionization technique. Consequently, more experiments per atom

sample are possible and thus more statistics can be gained, as the strong laser

pulses for deexcitation and photo-ionization, which are predominantly responsible

for the sample heating, are redundant. Very recently, this technique was utilized

to study transport properties of an ion immersed in a condensate (ref. [116]).
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4
Precision spectroscopy in ultralong-range

Rydberg molecules

Ultralong-range Rydbergmolecules (ULRM) have been studied extensively in the past

decades. Among other things, beyond the studies of the first realized S-state

ULRM [32], angular confined molecules build from D-states [39], ULRMs where

not only one but several ground-state atoms are bound in the Rydberg electron

wavefunction, which shift the Rydberg energy level in an additive [38] or more

exotically non-additive [117] way, and moreover, homonuclear Rydberg molecules

build from a superposition of opposite-parity eigenstates (the trilobite or the

butterfly state), which feature an exotic shape and an exaggerated large permanent

electric dipole moment [S5, 34, 40, 44] have been realized. Furthermore, ULRMs

bound by internal quantum reflection on a steep potential drop, which originates

from a Rydberg electron-Rb p-wave shape resonance have been investigated [33].

Studies on the same shape resonance revealed spectroscopic features in a more

dense environment with many ground-state atoms inside the Rydberg electron

orbit [S6]. Additionally, the resonance partakes an essential role in ultracold

chemical reactions [S7, 43]. Beyond that, the importance of spin coupling between
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the Rydberg electron and the valence electron of the ground-state atom has been

demonstrated [37, 45]. A more detailed introduction of ultralong-range Rydberg

molecules is presented in the theory section 2.2.

Recently, the interest in the field of ULRMs has shifted from qualitative studies

towards a more quantitative and detailed description of the molecular bound states.

A renewed interest in the inclusion of spin effects, in particular the hyperfine

interaction in the ground-state atom and spin-orbit coupling effects between the

Rydberg atom and the ground-state atom, has been shown recently [75–77]. Spin-

orbit interactions between an electron and a neutral atom have been investigated

in the context of negative ions. The interactions have been shown to play an

important role when it comes to low-energy quantum scattering.

Negative ions are essentially different from neutral atoms and positively charged

ions in multiple ways and by themselves are intriguing objects, which have been

studied thoroughly throughout the past decades [118, 119]. An anion is usually

weakly bound and features only a few or merely one bound state. Apart from the

true bound states, negative ions also feature quasi-bound states lying just above

the first electron detachment limit. Those states are bound by the centrifugal

barrier. With this, anions constitute ideal model systems to investigate electron-

electron correlations since, additionally, they feature an amplified sensitivity as a

consequence of the inner-shell electrons effectively screening the nucleus [119]. A

recent experimental study on the Os− anion delivered evidence for the presence

of opposite-parity excited bound states [120], which led to a revived interest in

high-resolution negative-ion spectroscopy [121–123] with the ultimate goal of laser

cooling of trapped anions [124, 125]. The fine details of the negative-ion interaction

potential define the low-energy quantum scattering between the free electron and

the parent atom [84, 126, 127]. In particular, broad scattering resonances for the
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electron-neutral atom system can occur a few meV above the electron-detachment

threshold. Those resonances are a result of the quasi-bound states bound by the

centrifugal barrier mentioned above. The underlying details of these negative-ion

states, for instance, the effects of the relativistic fine-structure, are difficult to

access experimentally due to their short lifetime and very low binding energy

[128], or due to optical selection rules for photodetachment studies of the anion

ground-state [129].

In this work, studies on negative-ion resonances of Rb−, devising ultralong-

range Rydberg molecules as an ultrasensitive tool, are presented. For this purpose,

ULRM-spectroscopy is elevated to a so-far unequaled quantitative level of precision,

in a combined experimental and theoretical effort. The outcome of these studies,

which have been published in [S2], are presented in the following. Exemplary, the

potential of utilizing ULRMs to perform precision spectroscopy of the quasi-bound
3PJ negative-ion states, is demonstrated. Prior unobserved molecular bound states,

that are strongly influenced by resonant electron-atom p-wave scattering, are

identified and used to unravel the fine-structure triplet (J ∈ {0, 1, 2}) of the Rb−

anion, originated from spin-orbit coupling, which by other means is experimentally

challenging to resolve.

In this chapter, at first, the electron-neutral atom scattering is introduced in the

context of ULRMs and negative ions in section 4.1. Following this, section 4.2 and

4.3 address the different experimentally observed spectroscopic lines, which are

evident in a series of spectra taken for principal quantum numbers ranging from

n = 37 down to n = 31. In particular, in section 4.3, spectra for n = 31 reveal a

molecular alignment, originating from the spin-orbit interaction of the underlying
3PJ anion state [77]. Finally, section 4.4 reviews the adapted electron-Rb phase

shifts, which, in combination with state-of-the-art calculations, yield the molecular

bound-states observed in the experiment and additionally allow for extracting the

119



Chapter 4 Precision spectroscopy in ultralong-range Rydberg molecules

fine-structure splitting of the 3PJ above-threshold states of the Rb− anion on a

so-far unmatched experimental precision.

The work presented in this section is acquired in a combined theoretical and

experimental effort with the group of P. Schmelcher (Univ. Hamburg). Specifically,

I am grateful to C. Fey and F. Hummel for the calculations of phase shifts and

potential energy curves.

4.1 Electron-neutral atom scattering on an atomic scale

On an atomic scale, ultralong-range Rydberg molecules (ULRM) provide in a

natural way a sensitive and highly versatile microscopic scattering laboratory

with electron-atom collision energies in the range of meV [32, 33]. Besides the

very low scattering energy provided by the quasifree Rydberg electron, which

is inapplicable with free electrons, a high accuracy results from the resonating

electron wave bound by the Coulomb potential of the ionic Rydberg core, and

the corresponding narrow Rydberg states. With a ground-state atom inside the

Rydberg electron orbit, quantum scattering between the Rydberg electron and

the ground-state atom occurs, resulting in a phase shift conveyed on the electron

wavefunction distinguishable from the unperturbed Rydberg electron via a slightly

shifted resonance energy.

Regarding a rubidium anion Rb−, build from a neutral atom and an electron,

the compound of a negative ion in the context of Rydberg molecules at first seems

out of place, however from a different perspective it becomes clear that they are

closely related. In fact, when considering the quasifree Rydberg electron, which

binds the neutral atom in its wavefunction, forming an ULRM (cf. section 2.2),

from the viewpoint of the bound atom the Rydberg electron scatters off the neutral,

potentially forming a negative ion compound.
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The purpose of this section is to introduce the electron-atom scattering for

both ULRMs and negative ions and to relate them to each other. For this, first

recall that for a neutral atom interacting with a charged particle, the atoms

ground-state polarizability gives rise to an attractive short-ranged interaction

potential. Asymptotically, for large internuclear distances, the interaction is

described by the asymptotic polarization potential V (r) = −C4/r
4 (see also

section 2.1 and 2.2). In the case of a non-zero angular momentum between the

scattering partners, mathematically a repulsive centrifugal potential arises when

reducing the dimensionality of the interaction to the radial spacing of the scattering

pair. The resulting scattering potential for a charged particle with a neutral atom

including the centrifugal term reads:

VL(r) = −C4

r4 + ~2

2µ
L(L+ 1)

r2 , (4.1)

with the quantum mechanical angular momentum L for the scattering event, the

reduced mass µ, and the distance r between the scattering partners.

The situation of a free electron scattering off a neutral atom via the interaction

potential VL(r) for L = 1 is depicted in figure 4.1. Here, for the 87Rb ground state

polarizability a value of α0 = 318.8(14)a.u. [113] is used, where α0 is related to C4

via α0 = 2(4πε0/e)2C4. The orange horizontal dashed line indicates the kinetic

energy Ekin of the incoming scattering electron e−. VL shows a maximum for L = 1

of about 43 meV at a Rb-e− distance of r ≈ 18 a0. For distances smaller than the

maximum value of VL, above-threshold, transient negative-ion states bound by the

centrifugal barrier might exist. In fact, in 2000 Bahrim et al. [80, 84] predicted

the presence of such a quasi-bound state 3PJ for the heavy alkali metal anions Rb−,

Cs− and Fr−, which due to spin-orbit coupling between the valence electron spin of

the ground-state atom and the incoming electron p-wave results in a fine-structure

triplet (J ∈ {0, 1, 2}). For the Rb− negative ion, these quasi-bound fine-structure

split states are estimated at 19.21 meV, 20.42 meV and 23.22 meV [84] above the
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Fig. 4.1: Illustration of electron-atom scattering. The solid line represents the asymptotic

electron-atom polarization potential VL including the centrifugal barrier for L = 1 over

the Rb-e− distance r. The orange horizontal dashed line depicts the kinetic energy Ekin

of the incoming free electron, while the black dashed lines indicate quasi-bound states

behind the centrifugal barrier split by the spin-orbit coupling, which are labeled with 3PJ

(J ∈ {0, 1, 2}) respectively.

electron detachment limit. In figure 4.1, the energies of these states are indicated

by the black horizontal dashed lines left of the centrifugal barrier.

For kinetic energies of the incoming electron close to the binding energy of these

states, the electron couples strongly with the ground-state atom, and as a result

the electron-atom interaction is drastically enhanced, leading to a significantly

enlarged cross-section for p-wave scattering. In this case, a p-wave shape resonance

occurs as the potential well formed by VL temporarily traps the incoming electron

before it is released in a p-wave, hence the term p-wave shape resonance. For

the Rb− anion, these states are relatively high in energy compared to the p-wave

barrier maximum and thus are relatively short-lived, leading to broad resonance

features with widths larger than the fine-structure splitting of the 3PJ state [80,

84], making the experimental determination of the binding energies challenging.
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Next, let us turn to the situation where the scattering electron is hosted by the

Rydberg atom. As introduced in the theory section 2.2, the quasifree Rydberg

electron scatters off neutral atoms inside the Rydberg electron wavefunction. The

predominantly attractive scattering interaction leads to well-localized ultralong-

range Rydberg molecules (ULRM). In the following, we introduce the potential

energy curves and the resulting molecular dimer states which are of particular

interest for the measurements to follow in the next sections.

The Born-Oppenheimer potential energy curves (PECs), which are obtained

from Green’s function calculations and the truncated diagonalization method (cf.

section 2.2.2), resulting from the e−-Rb scattering are shown in figure 4.2 for

energies in the vicinity of the 35S state. Note, in the following we treat only

the experimentally relevant PECs resulting from triplet electron-atom scattering,

where the ground-state atom occupies the hyperfine state F = 2.

The truncated diagonalization calculations yield in total a set of 6 PECs, which

can be discriminated by the projection of the total angular momentum onto the

internuclear axis Ω = mF + mj for a zero magnetic field. Here, mF and mj are

the magnetic quantum numbers of the ground-state atom hyperfine level and

the Rydberg electron angular momentum. In the case of zero magnetic field the

potential energies are on top of each other for a negligible p-wave contribution.

However, when the p-wave scattering becomes relevant, the PECs split up into

three pair-wise degenerate potentials. The splitting occurs due to the presence of

the three p-wave scattering channels (quantified by the scattering lengths aTp,J(k)

see section 2.2.1) which can be associated with the 3PJ anion states. Note that

the Green’s function approach does not include the hyperfine structure splitting

of the 3P state and thus the J-averaged phase shifts (cf. section 2.2.2 or 4.4) are

used for the calculations.
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Fig. 4.2: Potential energy curves resulting from e−-Rb scattering for zero magnetic field

in the vicinity of the 35S1/2 Rydberg state obtained by Green’s function calculations

(black line) and from truncated diagonalization (gray lines). The internuclear distance

R is related to Ekin (top axis) via equation 4.2. The asymptotic zero potential energy

is set to the binding energy of the Rydberg electron. The vibrational ground-states of

the molecular dimer A (blue), B (red) and D (gray) are represented by the shaded areas.

The molecular wavefunctions are offset by their binding energies. The inset illustrates the

e−-Rb scattering for L = 1 from the viewpoint of the neutral atom.

The semi-classical kinetic energy (top axis in figure 4.2) of the Rydberg elec-

tron at the neutral atom position is related to the internuclear distance R via

equation 4.2.

Ekin = −Ry(n?)2 −
(
−e2

4πε0R

)
(4.2)

Here, Ry is the Rydberg constant and n? the effective principal quantum number,

which accounts for the quantum defect in Rb (see section 2.1). The inset of

figure 4.2 shows the scattering event from the perspective of the neutral atom.
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For each R the electron scatters with a different kinetic energy off the neutral

atom. At the outermost potential well, the electron orbit reaches its maximum size

and the kinetic energy drops to zero at the outermost turning point. In this case,

the interaction is dominated by s-wave scattering only, due to the very-low energy

scattering. For smaller distances R the scattering kinetic energy increases as the

electron gains potential energy in the Coulomb field of the ionic Rydberg core.

When Ekin becomes comparable with the binding energies of the 3PJ anion states

(cf. inset figure 4.2), the p-wave contribution increases enormously as the incoming

electron resonantly couples to the quasi-bound states (see also theory section 2.2).

As a result of the resonant p-wave contribution the potential energy curve steeply

drops, which is evident in figure 4.2 for distances R . 950 a0 (Green’s function

calculations and truncated diagonalization with |Ω| = 5/2) and R . 1000 a0

(truncated diagonalization with |Ω| = 1/2 and |Ω| = 3/2).

The deep potential wells of the resulting PECs can support discrete vibrational

dimer states (cf. 2.2.2). The lowest vibrational wavefunction of the most important

dimer states are depicted in figure 4.2, indicated by the shaded areas. The

wavefunctions are offset by their binding energy with respect to the energy of the

addressed 35S Rydberg state.

As a consequence of the R-dependent kinetic energy, for large internuclear

distances the binding energy of the dimer state D is dominated by s-wave scattering,

while for smaller distances the molecular states A and B are influenced by the

resonant p-wave scattering. In fact, as will become evident in the following sections,

the exact position of potential drop is heavily influenced by the exact p-wave

shape resonance positions, and as a result, the deeply bound dimer state A is

strongly dependent on the binding energy of the 3PJ anion states. The importance

of the exact binding energies of the Rb− (3PJ) is already indicated by the results

of the truncated diagonalization method shown in figure 4.2. While the potentials
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associated with |Ω| = 1/2 and |Ω| = 3/2 steeply drop at R ≈ 1000 a0, the PEC

for |Ω| = 5/2 (and also the results from the Green’s function calculations) exhibit

a potential well around R = 1000 a0 which can support molecular bound states.

4.2 Spectroscopy of negative-ion resonances in ULRMs

In this section, we compare the binding energies of ULRMs obtained from ex-

perimental spectra with calculated molecular binding energies, with the aim to

experimentally prove the presence of the so-far unobserved fine structure of the
3PJ state of Rb−. For this purpose, the results of an extensive spectroscopic

study of the molecular bound states D, A, and B are used to benchmark the

theoretically predicted molecular binding energies for a large range of principal

quantum numbers (n = 31, . . . , 37). Note that at first the binding energies of the

dimer states were computed using the ab initio calculated scattering length data

from [80, 84], but a rather poor agreement was found. In consequence, own phase

shift calculations were performed based on a model potential (see section 2.2.1) for

the e−-Rb interaction, which importantly allows us to include the full molecular

spin structure; especially, the spin-orbit coupling of the 3PJ anion state.

In the following, we find an overall very good agreement between theory and

experiment for the investigated range of n, when using our adapted s-wave and

p-wave scattering phase shifts for determining the molecular bound states. Equally

important, we are able to correctly predict a splitting in the molecular line of the

dimer state A, which occurs for n = 31. In particular, it is found that the observed

doublet structure of A results from the existence of the spin-orbit coupling of the

underlying (3PJ) anion state of Rb−. Moreover, in the following section 4.3, the

adapted phase shifts are further applied with remarkable success to predict the

doublet structure spacing and spectral line shape of the dimer state A.

126



Chapter 4 Precision spectroscopy in ultralong-range Rydberg molecules

Before we start with the discussion of the obtained spectroscopic data and

the molecular binding energies, it is important to emphasize that our phase shift

calculations aim to model the measured energies of the molecular bound states,

especially, the binding energy of the deeply bound state A which is expected to be

strongly affected by the Rb− fine structure. Explicitly, the inner hard wall position

of the model potential was adjusted to match the outcome of the computed binding

energies of the dimer states D, A, and B with the experimentally obtained data.

A more detailed description of the fitting procedure, and a comparison of the

measured binding energies with the computed bound state energies based on the

ab initio phase shifts (from refs. [78, 84]) and the calculated energies resulting from

our adapted phase shifts, are presented section 4.4. The adapted phase shifts are

quantified by the zero-energy s-wave scattering length aTs (0) = −15.2 a0 and the

J-averaged p-wave shape resonance position Eavg
r = 26.6 meV, which are varied

by aTs (0)± 0.5 a0 and Eavg
r ± 0.2 meV, respectively, demonstrating the sensitivity

of the determined resonance position and s-wave scattering length (cf. section 4.4).

Let us now turn to the s-wave scattering dominated dimer state D. In the

following (figure 4.3), the results of an experimentally obtained spectrum of the

shallow bound dimer and excited dimer states are presented for n = 35. The

spectroscopic data are obtained from Rydberg spectroscopy involving electric field

ionization and ion detection performed in an ultracold (1.5µK) sample of about

4.5×106 87Rb atoms. The atoms are prepared in the fully spin-stretched hyperfine

state |F = 2,mF = 2〉 and are captured in a magnetic quadrupole trap (see section

A.3) with a magnetic offset field of typically B = 2.2 G. The nS1/2 Rydberg

state is addressed via a two-photon excitation incorporating the intermediate

6P3/2 state. The intermediate laser detuning is typically set to values between

+80 MHz and +400 MHz, while the polarizations of the 420 nm (lower transition)
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Fig. 4.3: ULRM spectroscopy of excited dimer states D? bound by quantum reflection

for n = 35. The ion signal is shown as a function of δ. The spectrum spans a detuning

ranging from the atomic resonance of the
∣∣∣35S1/2,mj = 1/2

〉
Rydberg state at δ = 0 to

the dimer state D at δ = −22.6 MHz. The solid lines result from a mulitple Lorentzian fit

to the data. The peak at δ = −5.6 MHz originates from a weak residual coupling to the

atomic resonance of the
∣∣∣35S1/2,mj = −1/2

〉
state. The black circles are the molecular

states resulting from Green’s function calculations using the adapted s- and p-wave phase

shifts. The error bars correspond to a variation of the scattering lengths (see text).

and 1020 nm (upper transition) excitation lasers are set to address the mj = 1/2

Zeeman sublevel of the Rydberg state. The formation of the ULRMs is assisted by

photo-association via the Rydberg excitation lasers. Individual molecular bound

states are addressed by detuning the 1020 nm laser from the atomic Rydberg

resonance by the molecular binding energy.

Figure 4.3 shows a Rydberg spectrum in the vicinity of the 35S Rydberg

state. The blue symbols correspond to the average number of field-ionized ions

detected per experiment for a certain Rydberg detuning δ. The gray lines represent

Lorentzian fits to the signal peaks. The atomic resonance of the
∣∣∣35S1/2,mj = 1/2

〉
state is set to δ = 0. The error bars indicate one standard deviation and are
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typically smaller than the symbol size. For a detuning δ equal to the binding

energy of a molecular bound state an ULRM can form. Similar to the detection

of Rydberg atoms, the Rydberg electron that binds the ground-state atom is torn

away from the Rydberg core by an external electric field and the remaining ion is

detected, leading to an increased ion count rate on the detector. The signal peaks

for δ < 0 in figure 4.3 can be associated with molecular bound states, where the

binding energy is equal to the detuning δ for which the peak occurs.

With the calculated binding energies, we can identify the signal peak at δ =

−22.6 MHz with the dimer D (cf. figure 4.2), which is solely bound by the

outermost potential well. For detunings closer to the atomic resonance we find the

excited dimers (D?) which are bound by quantum reflection on the steep potential

drop (ref. [33]) which is caused by the 3P shape resonance. The binding energies

resulting from our adapted s- and p-wave phase shifts are represented by the black

dots in figure 4.3. The error bars result from the above mentioned variation of

the zero-energy scattering length aTs (0)± 0.5 a0 and the p-wave resonance position

Eavg
r ± 0.2 meV. When varying the s-wave scattering length and the p-wave

resonance position we find that the variation of aTs (0) almost completely defines

the error bar for the dimer D. However, for the excited dimers the variation of Eavg
r

becomes more relevant (in fact comparable with the variation of aTs (0)), which is

to be expected since the wavefunctions of the excited dimers extend to smaller

internuclear distances where the p-wave contribution increases.

The excited dimers D? and the trimer state (T), which are bound by quantum

reflection, were first observed by Bendkowsky et al. [33]. The authors of ref. [33]

applied a modified effective-range expansion based on [130] modeling the p-wave

phase shifts to match their experimental findings. Importantly, in contrast to our

method (cf. section 4.4), the modeling in [33] is based on the measured binding

energies of D? and T which are partly influenced by s-wave and p-wave scattering.
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Fig. 4.4: ULRM spectroscopy of the dimer states A, B and D (excited dimer D?). The

ion signal is shown as a function of detuning δ from the Rydberg state
∣∣∣35S1/2,mj = 1/2

〉
.

For better visibility, the data for the deeply bound molecular states are enhanced by a

factor of 7. For small detuning the spectrum from figure 4.3 is shown. The solid lines

connect the data points and serve as a guide to the eye. The identified diatomic (A, B

and D) and triatomic (T, dimer+X) molecular bound states are labeled accordingly.

Next, let us turn to the molecular states dominated by p-wave scattering.

According to the considerations of the last section, the binding energies of the

deeply bound dimer states are strongly influenced by the exact positions of the 3PJ

shape resonances. In particular, the dimer state A is heavily affected, whereas the

dimer state B is less strongly influenced since B is located further away from the

resonance position. To potentially detect the spin-orbit coupling of the 3PJ anion

state of Rb−, we spectroscopically measure the so-far unobserved deeply bound

p-wave dominated dimer states. To this end, ULRM spectroscopy is performed

over a large range of principal quantum numbers (31 ≤ n ≤ 37) and the molecular

bound states are identified. In figure 4.4 a typical ULRM spectrum is shown for

n = 35, where the signal for larger red detuning is magnified for better visibility.

As before, we identify the dimer state D (excited dimer state D?) for smaller
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Rydberg detunings with the assistance of the computed molecular bound states.

Furthermore, for larger red detuning we can assign the molecular peaks in the

spectrum to the dimer states A and B, as well as triatomic molecules assembled

from various combinations of dimer bound states which are labeled accordingly.

For example, the trimer T appears for a detuning which is equal to twice the

binding energy of the dimer D. Similarly, we can assign the triatomic peak B+D

as a combination of the dimer state D and B, et cetera.

In the following, the measured binding energies of the states D, A, and B are

compared with the computed bound state energies resulting from PECs which are

obtained from Green’s function calculus. As mentioned earlier, the calculations are

performed using the s- and p-wave phase shifts which were adapted to match the

experimental data. As expected (ref. [32]), the s-wave dominated dimer D shows

a monotonic decreasing binding energy for increasing n. For the deeply bound

states A and B, however, a qualitatively different behavior is observed. Overall,

A and B show a similar trend as D but overlaid with a strong alternation of the

binding energy with n. Note that the alternation is artificial and results from

the way we have defined the dimer states A and B. As a reminder, A and B are

associated with the molecular states bound by the innermost two potential wells in

front of the steep drop of the PECs (cf. section 4.1). It simply turns out that for

the resulting PECs these two wells are significantly deeper for each odd n. From

earlier considerations, we recall that the dimer states are more affected by the

anion spin-orbit coupling when energetically (Ekin(R)) closer to the p-wave shape

resonance position. Further, we know that the steep drop of the PEC occurs due

to the strongly increasing p-wave scattering, which means, the deeper the poten-

tial wells, the more they are influenced by the spin-orbit coupling. Consequently,

we expect that for each odd n the observed dimer states A are particularly affected.
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In figure 4.5 the experimentally obtained binding energies and the results of the

Green’s function calculations are presented. The symbols represent the measured

molecular lines, while the solid lines connect the computed binding energies. The

shaded areas result from the aforementioned variation of the s-wave scattering

length and the p-wave shape resonance position. As a reminder, the fine structure

of the 3PJ state is not included in the Green’s function calculus. Nonetheless, the

calculations match the measured data very well, including the alternating behavior

of the p-wave dominated states A and B, verifying our adapted s- and p-wave

phase shifts. Importantly, for n = 31 we observe a doublet structure which we can

associate with the spin-orbit coupling induced splitting of the PECs. The doublet

structure can be explained when including the full molecular spin structure in the

computations of the PECs. To this end, the phase shift calculations are performed

with our obtained model potential parameters (inner hard-wall position for s-wave

and p-wave scattering), where we add now the standard LS-coupling term (cf.

section 2.2.1) and with that include the fine structure of the 3PJ anion state.

With the J-dependent scattering phase shifts a diagonalization of the Hamilton

(cf. equation 2.30) including the generalized form of the Fermi pseudopotential

(ref. [75]) yields the PECs (discriminated by the projection of the total angular

momentum onto the internuclear axis |Ω| = 1/2, 3/2, 5/2). Before we discuss the

case of n = 31 in detail, let us first address the fact that for the dimer state A no

splitting is observed for n = 32, . . . , 37, not even for the more deeply bound dimer

for odd n (n = 33, 35, and 37).

From the calculated Born-Oppenheimer potential energy curves for n = 35 (cf.

figure 4.2 in previous section), we have learned that the potential well, which

supports the p-wave dominated dimer A, does not necessarily exist for all three

p-wave scattering channels (associated with aTp,J). Explicitly, we found that for

n = 35 only the PEC for |Ω| = 5/2 exhibits a potential well which can host
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Fig. 4.5: Binding energies of the deeply bound dimer states A (diamonds), and B (squares),

as well as the shallow bound state D (inset), as a function of n. The solid lines correspond

to the results of the Green’s function calculations based on our adapted s- and p-wave

scattering phase shifts (see section 4.4). The shaded areas represent the computed binding

energies including small variations of the adapted scattering lengths (see text). The error

bars of the measured binding energies result from the peak width (fwhm) of the fitted

molecular lines, and are usually smaller than the symbol size.

the deeply bound dimer state A. Now, to resolve spectroscopically the spin-orbit

coupling induced splitting between the PECs associated with |Ω| = (1/2, 3/2, 5/2),

the potential wells supporting the dimers A have to be close enough to the shape

resonance positions (3PJ), while still forming a deep enough well to potentially bind

a ground-state atom. When calculating the PECs for the investigated principal

quantum numbers, it turns out that this is only the case for n = 31, for which

the potential wells are closed for |Ω| = (1/2, 3/2, 5/2), while the well is located

close enough to the resonance positions. In contrast, for n = 32, . . . , 37 either the
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Fig. 4.6: Potential energy curves for zero magnetic field in the vicinity of the 31S Rydberg

state as a function of internuclear distance R (black line) obtained from the truncated

diagonalization method. The zero potential energy is set to the binding energy of the

Rydberg electron. The vibrational ground-states of the molecular dimers A (blue), B (red)

and D (gray) are represented by shaded areas. The molecular wavefunctions are offset by

their binding energies. The zoom-in shows the p-wave dominated potential well which

is split due to the spin-orbit coupling of the Rb− 3PJ state. In gray, the shallow mixed

singlet-triplet PEC is shown for the sake of completeness (not accessed in this work).

splitting between the PECs is too small to be resolved spectroscopically (n = 32, 34,

and 36), or the PECs for |Ω| = 1/2 and 3/2 are flipped open (n = 33, 35, and

37). Consequently, we expect only one molecular line for the dimer states A

and B except for n = 31, where a substructure should occur for A, which is the

case. With this, we fully understand the observed binding energies. The fact that

the calculations correctly predict this behavior underlines the precision of our

modeling method.
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Finally, let us turn to the situation where a doublet structure of the dimer state

A is observed (n = 31). As mentioned earlier, we now include the LS-coupling

in the p-wave scattering phase shift calculations and from them compute the

PECs via a truncated diagonalization method. The results are shown in figure 4.6.

Each PEC (associated with |Ω| = 1/2, 3/2, 5/2) can support a molecular bound

state, which in the case of the potential well associated with the dimer state A

are energetically offset to each other due to the slightly different p-wave shape

resonance position for the different total angular momenta J . The zoom-in shows

the splitting of the PECs for the potential well supporting the dimer A. For

completeness, the shallow mixed singlet-triplet PECs (ref. [37]) are shown as well.

We recall that the experiments are performed in a non-zero magnetic field with

a spin-polarized (F = mF = 2) sample of Rb atoms and that the laser polarization

is set to address the mj = +1/2 Rydberg state. Consequently, we couple into

the PEC associated with Ω = 5/2, which gives rise to one peak of the doublet

structure. To understand the origin of the second peak, we have to presuppose

what is discussed in the following section. For now, let’s anticipate that much:

For a non-zero LS-coupling the PECs are mixed for angles other than 0 and π

between the internuclear axis and the magnetic field axis. As a consequence of

this mixing, we expect that not only one but several PECs are addressed in the

experiment, potentially leading to a substructure of molecular peak A. In fact,

the second peak of the doublet structure mainly originates from an admixture

of the uppermost PEC (Ω = 5/2) with the second highest PEC (cf. figure 4.7).

From this we conclude that the doublet structure is a direct result of the non-zero

LS-coupling and consequently that the experimentally observed doublet directly

proves the presence of the fine structure of the 3PJ state in Rb−.
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4.3 ULRM alignment mediated by spin-orbit coupling in

negative ions

In the previous section, the results of an extensive spectroscopic study of ultralong-

range Rydberg molecules were presented. The outcome of the experimentally

determined molecular binding energies of the dimer states D, A, and B were used

to model the s-wave scattering length and the p-wave shape resonance position of

the 3P resonance for electron-Rb scattering, and a remarkable good agreement was

found. A detailed description of the fitting procedure is outlined in the following

section 4.4. The ULRM spectroscopy (for n = 31) allowed us to draw conclusions

on the underlying near-threshold anion states. In particular, the observed doublet

substructure of the p-wave dominated dimer state A strongly indicates the presence

of the fine structure splitting of the 3PJ state of Rb−.

In this section, we discuss the substructure evident in the spectroscopic data

in more detail. In extension to the previous section, high-resolution spectroscopy

of the observed doublet structure is performed for different magnetic fields and

Rydberg electron spin orientations. In the calculations, we now include the full

molecular spin structure, which allows us to analyze the molecular line shape for

different angles between the magnetic field axis and the internuclear axis of the

molecule. For the phase shift computations, we use the same model potential

parameters, in particular the inner hard-wall position, as before which evidently

reproduces the measured molecular binding energies of the s-wave (D) and the

p-wave (A and B) dominated dimer states (cf. figure 4.5) for various principal

quantum numbers (n = 31, . . . , 37). To take into account the fine structure of the
3PJ anion state in the phase shift calculations, we add the standard spin-orbit

coupling term to the electron-atom interaction (cf. equation 2.25). As mentioned

earlier, the PECs are then obtained from truncated diagonalization calculations,
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which, in contrast to the Green’s function calculus, enable us to include all three p-

wave scattering channels (aTp,J) originating from the three p-wave shape resonances

associated with the 3PJ anion states. Importantly, for different angles between the

B-field axis and the molecular axis, the resulting PECs exhibit in addition to the

spin-orbit interaction induced splitting an angular dependence resulting from an

angular-dependent mixing of the p-wave scattering channels [77].

In the following, the resulting potential energy curves are employed to model the

molecular line shape of the dimer state A for various magnetic field strengths and

different Rydberg electron spin orientations (mj = ±1/2). For different B-fields

the resulting molecular line shape of A resembles different situations realized in

the experiment. For low magnetic fields, the spin-orbit coupling induced (angular-

dependent) splitting between the PECs for |Ω| = (1/2, 3/2, 5/2) is on the order

of the Zeeman splitting. As a result, for angles θ other than 0 and π between

the field axis and the molecular axis the potentials can cross. Actually, due to

the non-zero LS-coupling the PECs exhibit avoided crossings for 0 < θ < π [77],

mixing the spin character of the PECs associated with Ω for θ = 0. Note that

Ω only discriminates the PECs for a B-field parallel to the internuclear axis. As

a consequence of the mixing of the different PECs, we couple not only into the

uppermost potential (associated with Ω = 5/2) in the experiment, but also address

the PECs that lie energetically below, which explains the experimentally observed

doublet structure. For stronger magnetic fields, the Zeeman splitting exceeds the

LS-coupling induced energy shift, separating the otherwise mixed PECs. In this

case, only one of the six PECs (Ω = 5/2) is addressed in the experiment. However,

due to the LS-coupling induced θ-dependence, the PEC exhibits a potential

minimum when the internuclear axis is perpendicular to the magnetic field axis

(θ = π/2), which leads to a molecular alignment of the molecules. Further, it
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turns out that the angular potential well is deep enough to support a series of

discrete pendular states.

In figure 4.7 (left) a high-resolution spectrum of the dimer state A is presented

for different magnetic field strengths, ranging from the low magnetic field case

of B = 2.2 G to the strong magnetic field regime B = 15.4 G. As mentioned

above, for low magnetic fields we expect a doublet structure of the molecular

line, originating from the mixing of the spin character which is caused by the

LS-coupling. In contrast, for higher magnetic fields, the six PECs are untangled by

the large Zeeman shift, and only one PEC is addressed which potentially supports

several discrete pendular stats. The spectra for low and high magnetic field reflect

exactly this behavior (cf. spectra shown on top and bottom in figure 4.7). The

spectrum for B = 5.3 G resembles the situation of an intermediate regime, in

which the PECs are split, but still a mixing of the spin character is present.

On the right side of figure 4.7 the θ-dependent potential energy curves U(θ) at

the minimum of the potential well associated with the dimer A (R ≈ 890 a0)

are shown. As a reference, each set of the six PECs is energetically offset by

the potential energy of the uppermost PEC (Ω = 5/2). The spin character

of the potentials can be calculated by evaluating the projection of mj and mF

onto the internuclear axis of the molecule. The experimentally accessible spin

configuration (mj = +1/2 and mF = 2) is indicated by the coloring of the PECs.

Explicitly, the projection of the absolute square of the electronic molecular state

onto the |mj = 1/2;F = 2,mF = 2〉 state weighted with the solid angle sin(θ) is

calculated. When comparing the measured spectra (left in figure 4.7) with the

experimentally accessed PECs (right side), we can assign the apparent substructure

of the molecular line of the dimer state A with the angular dependent PECs. In

excellent agreement with the calculated PECs, the experimental data nicely reflect

the predicted transition from a doublet structure (B = 2.2 G), originating from
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Fig. 4.7: Spin-orbit interaction and molecular alignment for the p-wave dominated dimer

A. On the left: High-resolution spectroscopy of the molecular line A for n = 31 is

shown for various magnetic fields B. δ = 0 corresponds to the atomic resonance of the∣∣∣31S1/2,mj = +1/2
〉
Rydberg state. The solid lines result from simulated line shapes

obtained from the θ-dependent PECs (see text). On the right: Angular dependent PECs

at the minimum of the potential well associated with the dimer A (R ≈ 890 a0) for the

B-fields indicated on the left (increasing from top to bottom). The energies are referenced

to the maximum of the uppermost PEC (Ω = 5/2). The coloring of the PECs represents

the spin configuration addressed in the experiment (mj = +1/2 and mF = 2).

coupling to several PECs, to the situation of molecular alignment where we couple

only into one PEC (B = 15.4 G) that exhibits a pendular-state substructure.

For a quantitative comparison between experiment and theory, the θ-dependent

PECs U(θ) are used to model the measured spectral line shapes. Before we discuss

how the spectral line shapes are simulated, let us first compare the outcome with

the experimental data. The simulated spectral line shapes are compared with the

measured spectra in figure 4.7 (gray and colored lines). In the case of unresolved

pendular-states (B = 2.2 G and B = 5.3 G) a semiclassical sampling technique
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is employed (details below), for which the relevant PECs are used as input. For

higher magnetic fields (B = 15.4 G) we apply a rigid-rotor model as individual

pendular states are resolved in the experiment. The deviations of the line shape

for the intermediate situation (B = 5.3 G) for detunings δ > −170 MHz occur due

to a strong onset of the molecular alignment supported by the uppermost PEC.

To validate this, the line shape obtained from the rigid-rotor model using that

particular PEC is also shown (gray line), which nicely reproduces the measured

spectrum associated with the uppermost potential (δ > −170 MHz).

To describe the situation where the spectral line shape resembles a pendular-

state substructure, a rigid-rotor model is employed. For the model, we can describe

the system with the rotational Hamiltonian

Hr = N̂2

2µR2
0

+ U(θ) (4.3)

with the rotational angular momentum operator N̂ and the diatomic reduced mass

µ, where we fix the radial coordinate R to the internuclear distance R0 for which

the potential well associated with A has its minimum. The separation of the

angular part from the radial part of the total Hamiltonian is justified by the fact

that in our case the energy scale of the radial excitation largely exceeds the energy

scale of the angular excitation. Classically speaking, the radial motion is much

faster than the angular and because of this, we can use the average radial diatomic

distance for calculating the angular part, which in our case coincides with the

minimum of the potential well of A. The diagonalization of equation 4.3 in the basis

of the Legendre polynomials with χ(θ) = ∑
N cNPN (cos(θ)) yields the eigenvalues

Eν and the eigenstates χν(θ). Note that alternatively, one can employ standard

methods e.g. finite difference or discrete variable representation. The contribution

of each eigenstate to the total line shape is then determined by the Franck-Condon

overlap Γ ∼ |∫ dθ sin θχν(θ)d(R0, θ)χi(θ)|2, where χi represents the initial state,

and d(R0, θ) the electronic dipole moment. Here, the initial state is assumed to be
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isotropic, i.e. independent of θ. The dipole moment d(R0, θ) is obtained from the

projection of the eigenstates |Ψε(R, θ)〉 of the electronic Hamiltonian, employed

for calculating the PECs (cf. equation 2.30), onto the experimentally addressed

states: |d(R, θ)|2 =
〈
Ψε(R, θ)

∣∣∣P̂ ∣∣∣Ψε(R, θ)
〉
, with P̂ = |mj;F,mF 〉 〈mj;F,mF |.

While the rigid-rotor model provides a description for the situation for high

magnetic fields (B = 15.4 G in figure 4.7), where strong angular confinement is

evident, for lower magnetic fields, when the PECs mix and as a result a broad

spectral line is observed instead of the discrete molecular lines, we need to employ

a different modeling technique.

The line shapes for B = 2.2 G and B = 5.3 G are modeled employing a random

sampling technique, which treats the rotational degrees of freedom classically. To

this end, we draw a random angle θ from an isotropic distributed gas (p(θ) = sin θ),

calculate the energy for θ using the PECs U(θ), which we finally weight with

the squared electronic dipole moment |d(R, θ)|2. This procedure is repeated ten

thousand times to obtain enough statistics for the resulting histogram.

At last, to model the experimental line shapes using the above described

techniques, we further apply three fit parameters. First, we take into account

the finite lifetime of the radial quantum reflection state. For this, the energy

of each eigenstate χν(θ), or in the case of the sampling technique the obtained

histogram, is convoluted with a Lorentzian line shape reflecting the lifetime of

the corresponding radial dimer state. Secondly, we take into account the radial

binding energy. For this, the calculated line shape is energetically shifted to fit the

molecular line position to the observed binding energies. Finally, we rescale the

overall amplitude of the simulated line shape to match the experimental spectra.

Overall, we find that the theoretically obtained line shapes are in excellent

agreement with the measured spectra, which validates the extraction of the fine-

structure splitting of the 3PJ anion state from the modeled phase shifts. For the
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fitted spectral line shapes presented in figure 4.7, we obtain the p-wave resonance

positions from the applied phase shifts as: EJ=(0,1,2)
r = (24.4, 25.5, 27.7)meV.

Apart from the slightly larger value of the measured J-averaged resonance position

Eavg
r (cf. section 4.2), the acquired fine-structure splitting agrees well with the

results of the ab initio calculations in ref. [84].

Finally, we investigate the spin character of the spin-orbit coupling influenced po-

tential well of the dimer state A. For this purpose, the excitation laser polarization

is changed to address the Rydberg electron spin-down orientation (mj = −1/2),

coupling to couple the
∣∣∣31S1/2,mj = −1/2

〉
Rydberg state. The resulting spectra

for low and high magnetic fields are presented in figure 4.8. The gray data represent

the spectra from figure 4.7, where we couple to the spin-up component of the

Rydberg state (mj = +1/2). The angular-dependent PECs and the spin character

for the experimentally addressed spin configuration (mj = −1/2 and mF = 2) is

shown on the right side of figure 4.8. Similar to the above presented situation

(mj = +1/2), the angular-dependent spin-orbit coupling mixes the spin character

of the PECs in the low-field regime (B = 2.2 G), while for a high magnetic field

(B = 15.4 G) the Zeeman shift is large enough that the spin mixing is strongly

suppressed and as a consequence mainly one PEC (Ω = 3/2) is addressed in the

experiment. As a result of the strong spin mixing in the low-field case (cf. spin

character of figure 4.7 and 4.8), the spectrum for mj = −1/2 changes only slightly

compared to the mj = +1/2 case due to a small shift of the excitation strength

to smaller energies. In the high-field case, we again resolve pendular states as

a result of the spin-orbit coupling induced angular-dependence of the PECs. In

comparison to the spin-up case, the pendular states are mostly Zeeman shifted

to smaller energies. However, in contrast to the spin-up case, the molecules are

aligned along the internuclear axis. Note that we again find an excellent agreement

between the measured spectra and the simulated line shapes. Further note that,
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Fig. 4.8: ULRM spectroscopy and spin character mixing due to spin-orbit interactions.

On the left: High-resolution spectra of the p-wave dominated dimer A are shown for

various magnetic fields B as indicated. The laser polarization is set to address the

mj = −1/2 Rydberg state. For comparison, the gray data sets show the resulting spectra

for mj = +1/2 reprinted from figure 4.7. δ = 0 corresponds to the atomic resonance of

the
∣∣∣31S1/2,mj = +1/2

〉
Rydberg state. The colored solid lines result from line shape

simulations obtained from the θ-dependent PECs, which are depicted on the right. The

projection onto the mj = −1/2 and mF = 2 is represented by the coloring of the curves.

contrary to the simulated line shapes presented in figure 4.7, for the modeling

in figure 4.8 the spin-orbit interaction strength is scaled with a factor of 1.05 to

fine-tune the modeled line shapes.
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4.4 Fitting phase shifts

In the previous two sections, we have discussed the outcome of an extensive

experimental and theoretical study of ultralong-range Rydberg molecules that are

partly influenced by spin-orbit coupling of the underlying e−-Rb scattering. For

the theoretical description of the molecular bound stats and the spectral line shape

modeling, own phase shift calculations were performed based on a comparatively

simple model potential for the electron-atom interaction (cf. 2.2.1). The model

potential has been fine-tuned to match the experimental findings. In this section,

we review in more detail, in which way the experimental data was used to adapt

the phase shift calculations.

To start with, the model potential has been adjusted to match the experimental

findings of section 4.2. In particular, the inner hard-wall position r0 of the e−-

Rb interaction is fine-tuned independently for the s-wave and p-wave scattering,

modeling the close range physics. The long-range interaction is included via the

polarization potential, using the ground-state polarizability αgs from ref. [113].

Note that the functional k-dependence of the phase shifts is insensitive to the

precise value of αgs, i.e. for small variations of αgs a slightly different hard-wall

position can be found to reproduce the same phase shifts. For modeling the (triplet)

s-wave scattering length aTs (k) we can benchmark our bound state calculations

using the dimer state D, which importantly is unaffected by p-wave scattering.

For the p-wave calculations, we then use the measured binding energies of the

dimer states A and B to minimize the deviations between the computed and

the measured bound state energies. Note that we use all binding energies for

state B, while for state A a subset of states is selected. Specifically, we use the

energies obtained for n = 32, 34, and 36, for which state A is less deeply bound

and consequently less affected by spin-orbit coupling. With this, we can model the

measured binding energies using Green’s function calculations (see section 2.2.2).
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Next, to model the experimental data for the spin-orbit affected dimer state

A, the full molecular spin structure is included in the phase shift calculations.

For this, we add the standard LS-coupling term to the e−-Rb interaction model

potential (cf. equation 2.25 in section 2.2.1), while keeping the prior determined

model potential parameters (inner hard-wall position r0) for s-wave and p-wave

scattering. When adding the LS-coupling to the phase shift calculations, three

J-dependent scattering channels arise (aTp,J) for p-wave scattering. Note that in

this case, the Green’s function approach is insufficient to model the experimental

data as the method does not include spin-interaction effects. For instance, the

hyperfine structure of the ground-state atom, the fine structure of the Rydberg

atom, and most importantly their coupling by electron scattering (for more details

see supplemental material of ref. [S2]), are not included. Consequently, a truncated

diagonalization method is employed instead of the Green’s function approach (see

section 2.2.2). As mentioned earlier, the quantitative uncertainties of the resulting

PECs (arising from the choice of the basis set) can be largely reduced by comparing

the results of the truncated diagonalization with the Green’s function calculations

when switching off the LS-coupling. At this point it is important to note that

it is the combination of both methods, the Green’s function approach and the

truncated diagonalization method, that permits us to draw conclusions from the

experimental data, which then allows us to extract the scattering phase shifts

from the measured binding energies.

Let us now turn to the results of our extracted phase shift parameters and

compare them with previous estimates. First, we recall the s-wave scattering

length aTs (0) = −15.2 a0 and the (J-averaged) p-wave shape resonance position

Eavg
r = 26.6 meV extracted from the experiment. In comparison to the theoretical

estimated resonance position published in ref. [84] where electron correlations

are taken into account via a two-active electron model, our extracted value for
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Eavg
r is about 20% larger. However, a similar discrepancy has been reported for

photodetachment experiments in Cs− [84, 129]. While the extracted resonance

position deviates from the theoretical predictions, our obtained value for aTs (0) is

located between previous estimates (−13 a0 [84] and −16.9 a0 [79]).

Second, the phase shift calculations including the standard LS interaction

result in the following J-dependent shape resonance positions: EJ=(0,1,2)
r =

(24.4, 25.5, 27.7)meV. As expected for pure Russel-Saunders coupling (LS coupling

with L being the total orbital angular momentum and S the total spin, cf. section

2.2.1), the obtained J-dependent resonance positions fulfill the Landé interval rule

[84]. Note that the authors in ref. [84] report that their estimated fine structure

splitting (associated with the EJ
r splitting) deviates from the Landé interval rule

by about 10% for Rb−, indicating the importance of relativistic effects for heavy

alkali-metal atoms, which are not included in our applied model potential.

In figure 4.9 the results of our adapted phase shift calculations (solid lines) are

presented. The J-averaged p-wave scattering phase shift lies between 3P2 and
3P1 shifts. For comparison, the dotted lines represent the results of the ab initio

phase shift calculations given in refs. [78, 84]. As mentioned earlier, our extracted

J-averaged resonance position occurs for slightly larger scattering kinetic energies,

and consequently, compared to the ab initio phase shifts, our J-dependent p-wave

data are shifted towards higher scattering energies.

As stated before (in section 4.2), the binding energies calculated with the ab

initio phase shifts showed a rather poor agreement with the experimental data. In

conclusion to this chapter, let us substantiate this statement. In figure 4.10, the

measured binding energies are compared with the energies calculated using our

extracted phase shifts (reprinting the data from figure 4.5) and the ab initio phase

shifts shown in figure 4.9. For the s-wave dominated dimer state D, the ab initio

data lead to slightly lower binding energies compared to the experimental data. In
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Fig. 4.9: Triplet s- and p-wave scattering phase shifts for e−-Rb scattering. The solid

lines represent the adapted shifts δT
s and δT

p,J as a function of Ekin = ~2k2

2me
obtained from

fitting the measured molecular states. The dashed line shows the (J-averaged) p-wave

phase shift in absence of spin-orbit coupling applied for Green’s function calculations. The

dotted lines correspond to the predicted phase shifts reported in refs. [78, 84].

contrast, we observe a larger discrepancy for the p-wave dominated dimer states

A and B. It is particularly striking that the zigzag structure is poorly captured by

the calculations when using the ab initio phase shifts (cf. open and filled symbols

in figure 4.10). Typically, the ab initio data deviate from the measured binding

energies by a few tens of MHz for the dimer states A and B. For example, the

calculated binding energy of the dimer state A is off by more than 40 MHz for

n = 37. Furthermore, at n = 31 the calculations predict the doublet structure

close to binding energies of −140 MHz, but no molecular lines were found in this

region (δ = −160 · · ·−120 MHz) in the experiment. Instead, the experimental data

clearly show that the doublet of A occurs for binding energies around −170 MHz.

Overall, we find that the calculations based on the ab initio phase shifts result
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Fig. 4.10: Comparison of the binding energies of the deeply bound dimer stats A and

B (on the left), as well as D (on the right). The filled symbols represent the measured

molecular lines. The transparent data correspond to the binding energies resulting from

our adapted phase shifts, while the open symbols are calculated using the predicted phase

shifts from refs. [78, 84] for s- and p-wave scattering.

in binding energies which underestimate the bound state energy of the p-wave

dominated dimer A (except for n = 33 and 35) and B. For the dimer state D the

prediction lies below the experimentally obtained binding energies.
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5
Local atom loss in a BEC induced by

Rydberg atoms

This chapter reports on the status of an ongoing research on an experimentally and

theoretically investigated local atom loss in a Bose-Einstein condensate induced

by Rydberg atoms. The following sections show that the observed atom loss is

connected to the Rydberg excitation in the BEC. Explicitly, in the region of the

Rydberg excitation, a decreasing condensate density is observed. The measured

loss feature grows continuously over time, even long after the Rydberg atom is no

longer present. The feature is mainly limited to the position of the excited Rydberg

atom. The amount of observed loss greatly exceeds previously measured atom loss

induced by free-particle and phonon excitations (ref. [46]) in the condensate. The

experimentally observed loss feature is compared to numerical simulations, which

largely underestimate the amount of condensate density change in the excitation

region. Parts of the work presented in the following are prepared to be published

in ref. [S3].
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5.1 Initial motivation: Imaging an atomic orbital

A central element in the description of quantum mechanics is the wavefunction,

which behaves according to the time-dependent Schrödinger equation [131]. It is

the Copenhagen interpretation from the 1930s that tells us that from the wave-

function one can obtain the probability of observing the outcome of measurements

on a quantum mechanical system [132], for instance, the energy of a state or the

momenta or the position of constituents of the system. Essentially, the interpreta-

tion allows us to connect microscopic phenomena of quantum mechanical nature,

which are described by the wavefunction, with the macroscopic observations in

the laboratory, which corresponds to the observation of one of several possible

realizations that are permissible for the wavefunction.

In atomic physics, a prime example of such a measurement is the direct imaging

of the spatial atom density distribution of a Bose-Einstein condensate (first direct

observation of a BEC ref. [133]), which comprises an ultracold and dense atomic

ensemble of atoms that is described by a single state of matter, namely the

Bose-Einstein condensate wavefunction. The direct optical imaging of a BEC

is made possible by two things. First, the typical size of a condensate realized

in laboratories is on the micrometer scale and thus large enough to be resolved

with light of the visible spectrum, which is also commonly used for preparation

and manipulation of the atomic states. Second, the light-matter interaction

between the imaging light and the condensed atoms is strong enough to result in

a measurable signal using state-of-the-art imaging techniques.

In solid-state physics, the scanning tunneling microscopy (STM) invented in

1982 (ref. [134]) has had outstanding success and turned out to be a powerful

tool for visualizing the electronic surface state of conductive material. STM is

often used to map out the orbital structures of complex molecules [135], which

are placed on a conductive substrate with a thin non-conductive layer, however,
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strong interactions with the substrate often obscure the resulting image data [136].

Another method for visualizing the orbital density of an electronic wavefunction

is the reconstruction from high harmonic generation of intense femtosecond laser

pulses. The reconstruction method has been applied to molecules in the solid-state,

by means of photoemission spectroscopy [137], and to molecules (ref. [138]) and

atoms (ref. [139]) in the gas phase, successfully reconstructing an image of the

orbital density of the electronic wavefunction. Another approach has been realized

by Stodolna et al. (ref. [140]). In their work, the authors were able to directly

observe the nodal structure of stark states for hydrogen by photo-ionization and

subsequent electron detection. Yet another method for mapping out the electron

wavefunction has been realized recently by Waitz et al. (ref. [141]). The method

combines photoelectron emission measurements with the coincident detection of

reaction fragments, allowing the authors to visualize the probability density of the

correlated two-electron wavefunction of a hydrogen molecule.

All imaging techniques mentioned above are essentially based on a tomographic

reconstruct of the electronic orbitals. In this work, a completely different approach

is pursued. The method is based on the electron-atom interaction for a Rydberg

atom immersed in a Bose-Einstein condensate (cf. ref. [46]), and was proposed

in 2015 by Karpiuk et al. [142]. The main idea is to exploit the imprinted

phase on the BEC-wavefunction caused by the Rydberg electron-atom interaction.

Essentially, the condensate acts as a contrast agent resembling the Rydberg electron

density distribution given enough time for the imparted phase to manifest in the

condensate density. In contrast to all above-mentioned methods this approach

potentially allows the direct optical observation of electron orbitals in a single shot

experiment. Recently, the method has been studied theoretically demonstrating

the potential use for studying ultracold quantum dynamical processes by tracing

Rydberg atoms within a BEC [143].
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As part of this work, the experimental apparatus has been extended by an

optical dipole trap (cf. section A.2) for preparing a flat pancake-like condensate,

which brings the experimental realization of the proposed orbital imaging method

within reach. In the following, we briefly discuss a parameter set that should make

the observation of an electron wavefunction feasible. A detailed discussion and

listing of the relevant parameter range for performing the imaging method is given

in the thesis of M. Schlagmüller [95] as well as in the work of Karpiuk et al. [142].

A fundamental limit of the imaging technique is the optically achievable resolu-

tion. In the experiment, the BEC is imaged in-situ via phase-contrast imaging (for

details see [102]), making use of a high-numerical aperture (NA = 0.55) aspheric

lens (Asphericon A15-12HPX-U), which sets the lateral imaging resolution just

below 1µm for the used 780 nm light. As a consequence, the radial size of the

Rydberg orbit needs to be larger than 1µm, which places the lower limit of the

principal quantum number above n = 100 for low-angular momentum states.

An upper limit of n is essentially defined by two factors, these are the interaction

strength, given by the Rydberg electron-atom scattering potential VRyd(~r) (cf.

equation 2.33 in section 2.3), and the interaction time of the Rydberg electron

with the condensed atoms of the BEC. Both factors directly determine the amount

of the imprinted phase on the BEC-wavefunction [95, 142].

For large principal quantum numbers (n ∼ 100), the collisional lifetime τ of the

initial Rydberg state excited in the BEC is on the order of ten microseconds and

increases with n3 for increasing n [S7]. However, the Rydberg orbit size scales with

n2, meaning that the Rydberg electron engulfs a larger volume and thus exhibits

a lower local electron density, which consequently leads to a smaller interaction

strength (cf. section 2.1.1 and 2.3). Additionally, the interaction strength is

needed to be at least comparable to the chemical potential of the condensate [142],
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Fig. 5.1: Visualization of the structure of a S-state and D-state orbitals. In the upper

section, the spherical harmonics Ylm(θ, φ) are shown, representing the spherical shape of

an atomic orbital. In the middle and the lower section, the integrated electron density

distribution of a n = 130 Rydberg state is presented. The lower section includes an

imaging resolution of 1µm.

which is typically on the order of a few kHz. This sets the upper limit to n ' 200

for which the depth of the outermost well of VRyd is on the order of 1 kHz. The

depth of the interaction potential scales with n−6 (cf. section 2.3), which leads to

a combined scaling of VRyd × τ ∼ n−3. From this, we can deduce that within the

limited range of n (100 < n < 200), a lower principal quantum number is more

beneficial for imaging the electron orbital.
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In figure 5.1 the orbital structure of a S-state and a D-state with ml = 0 and

ml = 2 are visualized. The quantization axis is chosen to be along the x-direction.

In the top row, the orbitals are represented in a textbook-like manner, showing

the isosurface of the corresponding spherical harmonics. On the middle and the

bottom row, the integrated electron density distribution is depicted for a n = 130

Rydberg state. The angular shape of the electron orbit is modified with the

highly oscillating radial structure of the electron distribution. In the bottom

row, the density distribution is shown for an imaging resolution achievable in

the experiment. The resolution is included by applying a convolution using a 2d

Gaussian function with 4σ = 1µm. As expected, the radial structure is blurred

out if the imaging resolution is taken into account.

Besides the Rydberg orbit size and the amount of the imprinted phase on the

condensate, the visibility of the imaged electron orbit crucially depends on the

integrated atom density along the imaging axis. For a high contrast, it is desirable

to minimize the contribution to the integrated density of atoms outside the Rydberg

orbit. Therefore, the size of the condensate is ideally on the order of magnitude

of the expansion of the Rydberg wavefunction. The condensed atom sample

in the newly implemented pancake-like crossed optical trap comprises typically

2× 105 atoms, and with that exhibits a spatial extension of dxyz = (21, 31, 5)µm,

fulfilling the aforementioned requirements.

The outcome of a numerical simulation of the Gross-Pitaevskii equation (GPE)

is shown in figure 5.2. The time-dependent evolution of the condensate wavefunc-

tion is obtained by numerical integration of the GPE using an operator split-step

method [144]. At t = 0, the electron-atom scattering interaction VRyd(~r) (130D

Rydberg state with mj = 1/2) is switched on instantaneously and switched off

after a phase imprint time of 10µs. Due to the imprinted phase gradient, the
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Fig. 5.2: Calculated BEC density distribution for a single Rydberg excitation in the

center of the condensate and an imaging resolution of 1µm. The electron-atom interaction

VRyd is switched on for 10µs. The density distribution is integrated along the imaging axis

(z). The column density ρ2d is presented in units of the resolution squared (1µm−2). On

the left, the BEC is shown before the phase imprint takes place. The density distribution

for an evolution time of 100µs is depicted in the center. On the right, the column density

distribution difference between the condensate with and without Rydberg atom is shown.

atoms of the condensate flow towards the regions of large phase imprint. After an

evolution time of about 100µs the imprinted phase is largely transformed into a

local density modulation, which mimics the Rydberg electron orbit. At this point,

the condensate exhibits a maximum density increase of about 10% of the original

peak density. Overall the density modulation nicely resembles the characteristic

shape of the D-orbital (cf. ml = 0 in figure 5.1). For longer evolution times the

density modulation abates.
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When measuring small atom numbers, one has to take into account the statistical

fluctuation (shot-to-shot noise) of the atom number ∆N imaged per resolution unit

∆r2, which possibly diminishes the contrast of the imaged orbit. The statistical

fluctuation (∆Nr2) originates from the measurement of the column density of

the condensate, essentially collapsing the BEC-wavefunction onto a state with a

defined atom number per resolution unit [145]. In this case, the fluctuation is

given by: ∆Nr2 =
√
Nr2.

For the scenario presented in figure 5.2, the column density in units of ∆r2 =

1µm−2 yields an atom number of Nr2 & 900 for the density region that overlaps

with the Rydberg atom. The statistical fluctuation in this density region is then

given by ∆Nr2 = 30, which reaches an amount of about 30% of the maximal

expected density enhancement. The expected contrast is lowered by that value.

Consequently, the achievable contrast between the background condensate and the

imaged club-like shaped orbital is expected to be 7-10% for the case demonstrated

in figure 5.2, which makes the experimental observation, in principle, possible.
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5.2 Orbital imaging attempt and local atom loss

In the previous section, we discussed a possible set of parameters for experimentally

realizing the orbital imaging of a Rydberg electron following the proposal of Karpiuk

et al. [142]. The outcome of numerical simulations of the Gross-Pitaevskii equation

showed that the imaging of an electron orbital in the 130D Rydberg state can

be achieved with the pancake-like Bose-Einstein condensate prepared with the

experimental apparatus. Importantly, the phase which is locally imparted on

the BEC as a consequence of the Rydberg electron-neutral interaction, is large

enough to result in a considerable density modulation resembling the shape of the

Rydberg electron orbit. This density modulation is expected to be well above the

estimated shot-to-shot atom number fluctuation.

In this section, the results of time-resolved measurements of the atom density

distribution of the condensate wavefunction are presented for a spatially localized

Rydberg excitation in the center of the BEC. The atom distribution is obtained

from taking in-situ images of the condensate, employing a phase-contrast imaging

technique [146]. Each image of the BEC yields an atom number per resolution unit

(the atom column density), allowing us to quantify the atomic density distribution.

The time evolution of the spatial distribution can be measured by varying the

hold time between the Rydberg excitation and the imaging of the condensate.

Exemplarily, the measurement outcome of a single Rydberg excitation is de-

picted in figure 5.3 for the case calculated in the previous section (cf. figure 5.2).

Despite the promising contrast achieved in the simulations, a clear signature fails

to appear for the collected data. To improve the signal-to-noise ratio, experiments

with multiple subsequent excitations are performed, leading to a measurable local

change of the condensate density distribution. Surprisingly, the experimentally

obtained atom distributions reveal a decreased atom number in the region of the

Rydberg excitation, which further decreases over time even after the Rydberg
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atom has been extracted. This seemingly contradicts previous theoretical studies

[142, 143], which predict an increase in the local density. The experimental results

might hint towards a so-far unexplored local atom loss induced by the Rydberg

impurity. In order to study the local loss, a series of experimental characterization

measurements are performed. The results of these are displayed in figure 5.4. The

experimental and theoretical studies outlined in this and the following section are

part of an ongoing investigation (ref. [S3]).

First, let us begin with the measurements for the 130D Rydberg state. A single

Rydberg atom is excited in the center of the BEC, which is held in a crossed optical

dipole trap (see section A.2). The condensate typically comprises 2× 105 87Rb

atoms that are prepared in the spin-polarized
∣∣∣5S1/2, F = 2,mF = 2

〉
ground-state.

The Rydberg state is addressed via two counter-propagating excitation laser beams

(420 nm and 1015 nm) along the z-axis. The two-photon excitation incorporates

the intermediate 6P3/2 state. The intermediate state population is kept low by

using a large intermediate detuning of +160 MHz. The excitation of a single atom

into the Rydberg state is ensured by the Rydberg-Rydberg excitation blockade

[147]. After a successful Rydberg excitation, a strong electric field pulse ionizes

the Rydberg atom and guides the generated ion towards a microchannel plate

detector. The position of the Rydberg atom is well-localized by the aid of the

strongly focused excitation laser beam. The 1015 nm excitation laser is focused

through the same high-NA lens that is used for the high-resolution imaging of

the atom cloud, yielding a tightly focused laser beam waist of about w0 = 1.8µm.

In addition, the excitation probability in the center of the condensate can be

further enhanced by detuning the excitation laser from the atomic resonance by

the electron-atom interaction induced density shift (cf. section 2.3).
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Fig. 5.3: First try of orbital imaging of the |130D,mj = 1/2〉 Rydberg state in the optically

trapped BEC for an imprint time of td = 10µs and an evolution time of tevo = 100µs.

(a) Rydberg spectrum taken in the BEC. The atomic resonance of the addressed Rydberg

state is set to δ = 0 MHz. The shaded region indicates the Rydberg excitation detuning

(−20 MHz) and bandwidth (∼ 1 MHz) employed for the orbital imaging measurement.

(b) Ion arrival time at the detector for a state-selective ionization of the Rydberg atom (see

text). The data in blue (red) are taken for an ionization delay of td = 0.3µs (td = 10µs).

The shaded region represents the time window taken for post-selection onto experiments

where the Rydberg atom has not undergone a state-changing collision. In (c) - (e) the

phase-contrast image of the BEC (c), the difference image of a single experiment (d) as

well as the averaged difference image (e) is presented. For comparison, (f) shows the result

for multiple subsequent excitations (Npulses = 30) for an evolution time of 150µs. The

column density ρ2d is given in units of the resolution squared (1µm−2).
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Figure 5.3(a) shows a Rydberg spectrum for the |130D,mj = 1/2〉 Rydberg

state excited in the pancake-like condensate. The Rydberg excitation duration

is set to texc = 1µs, resulting in an excitation bandwidth of about 1 MHz. The

spectrum exhibits a large energy shift and broadening due to the electron-atom

interaction between the Rydberg electron and the atoms within its wavefunction.

For the orbital imaging measurements, a large red detuning from the atomic

resonance is chosen to excite the Rydberg atom primarily in the center of the

BEC, at the highest density. The employed Rydberg detuning and the excitation

bandwidth is indicated by the shaded region.

To distinguish Rydberg atoms that have undergone a state-changing collision

(ref. [S7]) from Rydberg atoms in their initial prepared state, a state-selective

electric field ionization is performed. Figure 5.3(b) shows the outcome of such

a measurement for a Rydberg excitation in the BEC. The blue data represent a

measurement for a short ionization delay time (td = 0.3µs), while the red curve

shows the signal obtained for a delay time of td = 10µs. The Rydberg ion count

rate is shown as a function of the ion arrival time at the microchannel plate

detector. The ionization field is ramped up to 7 V/cm within 3µs. Rydberg atoms

that have undergone a l-changing collision ionize diabatically (for l > 2) for the

applied electric field slew rate and thus exhibit an up to 4 times higher ionization

threshold than the initial low-l state that ionizes adiabatically (classical) [S7, 27].

This can be seen in the ion count rate signal as a shift to later ion arrival times.

The signal for a short ionization delay (blue) shows a relatively sharp peak around

t = 13.1µs, whereas for a longer interaction time (red) between the Rydberg atom

and the many ground-state atoms within its electron orbit, a l-changing collision is

more likely, resulting in the above-mentioned signal shift towards later ion arrival

times. The separation of the ion signal enables us to distinguish the experimental

runs in which the Rydberg atom has undergone a state-changing collision from the
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events in which the Rydberg atom has not changed its angular momentum state.

The shaded region in figure 5.3(b) represents the ion arrival time window that is

used for post-selecting the experimental runs of the orbital imaging measurements.

Note that it has been experimentally verified that the collisional lifetime in the

condensate is similar for the nS and the nD Rydberg state for the investigated

principal quantum numbers.

For the orbital imaging measurements, the BEC is imaged after an evolution

time of tevo = 100µs, where tevo = 0 is set to the beginning of the Rydberg

excitation pulse. The imprint duration is defined by the Rydberg ionization delay

td = 10µs. Note that the atoms are exposed to the imaging light for 10µs, which

is fast compared to the dynamics of the condensate and thus can be neglected

to a large extent. By post-selecting for the ion signal, which corresponds to a

low-angular momentum state (cf. figure 5.3(b)), we ensure that the Rydberg atom

has remained in its initially prepared state. The bottom panel (c-f) in figure 5.3

displays the atom column density ρ2d and the difference column density ∆ρ2d

obtained from the orbital imaging measurements. The column density is calculated

from the measured phase-contrast image [102]. The difference column density is

determined by subtracting a matching reference image. Due to the shot-to-shot

fluctuation of the BEC position and phase errors caused by the imperfection of the

imaging system, an image recognition algorithm is used to reconstruct a suitable

reference image (for details see section C.1). For the difference images shown in

(d) and (e), a set of 300 reference BEC images is used. The reference images are

recorded in the absence of the Rydberg atom. For this, the same measurement

sequence including the Rydberg excitation lasers is employed, but for a different

Rydberg detuning (typically +50 MHz) that prohibits a Rydberg excitation. For

reference, (c) depicts the column density obtained from a phase-contrast image of

the BEC.
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For the measurements presented in figure 5.3(d)-(e), in total over 2300 images

were recorded. After post-selection on experiments in which the Rydberg atom

stayed in its initial state, 144 images remained. Figure 5.3(d) shows the difference

column density for a typical single-shot experiment, while in (e) the averaged

difference column density of the post-selected data is depicted. The imprint region

is indicated by the dashed white circle, the size of which is estimated as the diameter

of the Rydberg orbit and the waist of the excitation beam. Neither the single-shot

images nor the averaged difference column densities exhibit a clear signal of the

excited 130D Rydberg state. Note that the measured standard deviation of ρ2d

for the peak density of the BEC leads to a value of ∆Nr2 ≈ 50, which is larger

than estimated in the previous section (∆N tot
r2 = 30). The enhanced fluctuation

of the column density can be explained by the photon-shot noise of the imaging

light ∆Nphoton
r2 ≈ 15, which is obtained from the fluctuations outside of the BEC,

and the fluctuating total atom number of the condensate (∆NBEC ≈ 5000 atoms)

that leads to an additional fluctuation of ∆Natom
r2 ≈ 8.

In order to increase the signal strength of the phase imprint, measurements with

multiple subsequent Rydberg excitations are carried out. In the ideal case, the

Rydberg atom is continuously re-excited in the center of the condensate [95, 142],

leading to a continuous phase imprint of the Rydberg potential VRyd. To achieve

this as seamlessly as possible, the imprint duration and the subsequent Rydberg

ionization pulse is kept short. The measurement sequence is structured as follows:

The sequence is initiated with the first Rydberg excitation (texc = 1µs) followed

by an ionization delay of td = 3µs. To ionize the Rydberg atom an electric field

of Eioni = 7 V/cm is applied for 0.5µs (with a rise/fall time of 10 ns). After the

ionization pulse, an additional wait time of 0.3µs is implemented to allow the

electric fields between the electrodes to fall off before the next Rydberg excitation

takes place. The whole ionization part takes tioni = 0.8µs. With this, a single

162



Chapter 5 Local atom loss in a BEC induced by Rydberg atoms

pulse sequence out of the total measurement cycle is 4.8µs long, which yields a

repetition rate of 208 kHz for the imprint sequence. The single pulse sequence

is repeated Npulses times. When taking into account the collisional lifetime of

τ = 10µs and the Rydberg excitation duration of texc = 1µs, the phase imprint

duration per imprint sequence is on average 3µs.

The results of the re-excitation measurement for the |130D,mj = 1/2〉 Rydberg

state is presented in figure 5.3(f). The measurements are carried out forNpulses = 30

subsequent Rydberg excitation pulses and an evolution time of tevo = 150µs. The

difference column density is obtained from 180 condensate images without any

post-selection. In contrast to the single-shot experiments, the averaged column

density exhibits a significant density change in the imprint region (white circle).

Surprisingly, the atom density decreases despite the fact that the electron-atom

interaction VRyd is mostly attractive. The measured density dip contradicts the

outcome of the numerical simulations of the GPE (cf. section 5.3). Summing up

∆ρ2d in the area of the reduced density, yields a difference atom number and with

that a local atom loss of ∆N = −940(90) atoms for the multiple excitation mea-

surement. The observed atom loss feature reaches a depth of ∆ρ2d = −60µm−2.

In comparison to the single-shot data, the signal depth is similar in amplitude as

the observed density fluctuations. However, these fluctuations are largely averaged

out for the single excitation experiments, whereas a significant density dip forms

for multiple excitations.

In order to investigate the observed local atom loss, a series of characterization

measurements are carried out for the 133S Rydberg state in the cigar-shaped

condensate. In contrast to the above presented D-state measurements, that are

performed in a comparatively flat pancake-like condensate (cf. section A.2), the

atom loss for the S-state in the cigar-shaped BEC (cf. section A.3), yields a
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significantly larger signal-to-noise ratio. For the characterization, the same pulse

sequence used for the D-state measurements is employed. The results of the

133S-state characterization measurements are presented in the following.

In figure 5.4(a) the atom column density for several excitation pulses (Npulses =

10) and an evolution time of 200µs of a single experiment is depicted. The

resulting difference column density averaged over 154 experiments is shown in

(b). In comparison to the multiple excitation D-state data (figure 5.3(e)), the

signal depth of the loss feature is six times greater for a third of the excitation

pulses. The obtained local atom loss amounts ∆N = −5100(290) atoms, which is

over five times larger than for the presented D-state measurement. Figure 5.4(c-e)

summarizes the characterization measurements for the 133S state. The insets

show the resulting difference column density for the measurements as indicated.

Let us first consider the data set for different numbers of excitation pulses (c).

The experiments are performed at an evolution time of 200µs and a Rydberg

detuning of −50 MHz, addressing the center region of the BEC. At first, the

observed local atom loss increases linearly with the number of excitation pulses.

For a larger number of pulses (Npulses > 20), the Rydberg excitation probability

drops as a result of local atom depletion in the excitation region, which is also

evident in the recorded ion arrival times. A linear dependence of the atom loss

induced by Rydberg excitations within a BEC has been observed previously by

Balewski et al. [46]. However, the local atom loss observed here is significantly

larger. Employing the theoretical description of ref. [46], which includes phonon

and free-particle excitations induced by the electron-atom interaction, yields an

atom loss per excitation pulse of 40 atoms/pulse, whereas the atom loss presented

in figure 5.4(c) yields: ∆N/Npulses = 440 atoms/pulse, for 0 < Npulses < 20. Note

that in contrast to the measurements presented here, the atom loss reported in ref.

[46] was determined via absorption imaging of the condensate after a hold time of
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Fig. 5.4: Local atom loss measurements of the |133S,mj = 1/2〉 Rydberg state in the

magnetically trapped BEC. The Rydberg detuning is set to δ = −50 MHz to address

the center of the condensate. (a) Phase-contrast image of the BEC for Npulses = 10 and

tevo = 200µs. (b) Averaged difference image obtained from (a). (c) Atom loss ∆N as a

function of excitation pulses. (d) and (e) Atom loss as a function of tevo and δ, respectively.

All error bars indicate one standard deviation. Insets show the column density of the

averaged difference images for selected data points.

several milliseconds and a free-flight expansion of 50 ms. At last, note that for a

single excitation pulse the determined atom loss with and without post-selection

yields: ∆N = −652(102) and ∆N = −694(105), respectively, which validates that

only a minor fraction of Rydberg atoms has undergone a l-changing collision for

the employed Rydberg ionization delay of 3µs.
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In figure 5.4(d-e) the local atom loss as a function of evolution time and Rydberg

detuning is shown for 10 excitation pulses. For the evolution time measurement, the

Rydberg detuning is set to δ = −50 MHz, while for the detuning measurement an

evolution of tevo = 200µs is used. The local atom loss for both data sets increases

approximately linearly with evolution time and Rydberg detuning, respectively.

Note that due to the density gradient, the density dip refills with the surrounding

condensate atoms as expected for larger evolution times (tevo & 1 ms, not shown),

reflecting the fluid properties of the BEC. From the theory section 2.3 we know that

the Rydberg detuning essentially corresponds to the selection of a density region in

which the Rydberg atom is excited. For a smaller detuning e.g. δ = −10 MHz, the

Rydberg atom is preferably excited close to the edge of the condensate, where the

atom density is low. When taking into account the tightly focused excitation laser

beam, which we recall propagates along the imaging axis, it turns out that Rydberg

atoms are preferably excited on the top and the bottom of the condensate. For

an intermediate Rydberg detuning e.g. −30 MHz, the excitation region is closer

to the BEC center but moderately suppressed in the middle, where the intensity

of the excitation laser is high. As a consequence, the excitation region covers a

larger surface area, which is evident in the inset of figure 5.4(e) for δ = −30 MHz.

The atom loss feature exhibits an increased size.
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5.3 Modeling the local atom loss

The previous section presented the result of an experimental study of a Bose-

Einstein condensate that interacts with a Rydberg atom impurity. The effects of

the impurity on the condensate wavefunction were investigated by probing the local

atom density of the BEC after an evolution time of typically 200 microseconds.

We recall that the interaction of the impurity atom with the BEC atoms leads to a

spatially varying phase imprint on the condensate wavefunction, which reflects the

spatial impurity-condensate interaction. Moreover, we recall that over time the

imprinted phase evolves into a density modulation of the BEC, which essentially

mirrors the phase imprint.

Surprisingly, in the experiment the Rydberg impurity leads to a significant

local atom loss, contradicting the outcome of the numerical simulations of the

Gross-Pitaevskii equation. To characterize this loss, a series of measurements for

several numbers of subsequent Rydberg excitations, different evolution times as

well as a series for different Rydberg detunings have been performed. The outcome

of these measurements is presented in figure 5.4.

In this section, we discuss the theoretical modeling of the observed local atom

loss. In order to better understand the origin of the loss feature, classical and

quantum mechanical numerical simulations were performed. By simulating the

time evolution of the local atom density distribution, the level of detail of the

interactions included can be gradually increased, whereby the origin of the effects

caused can be distinguished.

In the following, the outcome of classical trajectory simulations (CT) and the

results obtained from solving the Gross-Pitaevskii equation (GPE) numerically

are presented. The simulations are carried out applying a simple form of the

electron-atom interaction, using s-wave scattering only, and a more detailed form,
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Fig. 5.5: Potential energy curve resulting from e−-Rb scattering for s-wave scattering

only (red) and for s- and p-wave scattering (blue) in the vicinity of the 133S1/2 Rydberg

state. The asymptotic zero potential energy is set to the binding energy of the Rydberg

electron. The plot range for the internuclear separation is split into two for better visibility.

On the left, the inner part of the potential is shown including the avoided crossing between

the PEC associated with the 133S Rydberg state and the butterfly state resulting from

the p-wave shape-resonance (cf. section 2.2). On the right, the PECs are depicted in the

vicinity of the outermost potential well.

which additionally includes p-wave scattering. Both the results of CT and GPE

simulations reveal a significantly increased atom density at the center position at

which the Rydberg atom was placed initially. Therefore, additional calculations

including the three-body loss for the rubidium atoms were carried out.

In figure 5.5 the potential energy curve (PEC) for the 133S1/2 Rydberg state

is shown for s-wave scattering only (with the constant triplet scattering length

aTs (k = 0) = −15.7 a0) and for s- and p-wave scattering (with the k-dependent

triplet scattering length aTs/p(k), cf. section 2.2). While the potentials are essen-

tially equal at large internuclear distances R between the Rydberg atom and a
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neutral atom, the interaction energies U differ significantly for smaller separa-

tions. At R ∼ 1800 a0, the calculated PEC including p-wave scattering exhibits

an avoided crossing between the potential associated with the 133S Rydberg state

and the butterfly state, which results from a p-wave scattering shape-resonance.

Importantly, the potential energies show a steep drop close to the avoided crossing

position and positive energies for smaller distances.

Let us start with the simulations for which only the s-wave scattering of the

electron-atom interaction is taken into account. Figure 5.6 shows the outcome

of the CT (left) and the GPE (right) calculations for 10 subsequent Rydberg

excitations with the same pulse sequence used in the experiment (cf. section 5.2)

and an evolution time of tevo = (50, 100, 200)µs. Note that the ten-pulse sequence

ends after tevo = 48µs. The bottom row shows the results for many averages (40

for CT calculations and up to 400 for GPE calculations). The Rydberg atom

positions are randomly chosen around the origin using a normal distribution

with σx,y,z = (0.4, 1.0, 0.5)µm, modeling the spatial excitation probability for

the cigar-shaped condensate, including the excitation beam waist (1.8µm), the

atom distribution (see section A.3), and the Rydberg excitation detuning of

δ = −50 MHz (cf. section 2.3). Since the Rydberg atom is immersed in an atom

sample of approximately homogeneous density and interacts with many atoms at

the same time, it is assumed that the Rydberg atom position does not change

during the imprint process. For better comparison, the same excitation positions

are chosen for the CT and the GPE simulations.

As in the previous sections, the difference column density ∆ρ2d of the atoms is

shown. The atom density is oversampled by a factor of ten for the non-averaged

CT simulations to minimize noise originating from the positional fluctuations of

the initially prepared atom sample. The grid size for the GPE simulations is
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Fig. 5.6: Comparison of classical trajectory simulations (left) and GPE calculations (right)

for the |133S,mj = 1/2〉 Rydberg state and 10 excitation pulses, applying only s-wave

electron-atom interaction. The calculations are performed starting with a constant density

of ρ = 4× 1014 atoms/cm3. The resulting difference column density ∆ρ2d is shown for

evolution times of 50µs - 200µs. The bottom row shows the averaged difference column

density of many realizations. The averaged GPE data are kindly provided by [148].

typically just below 100 nm. The electron-atom interaction potential is cutoff for

energies |U | > 1 MHz for the GPE calculations. The cutoff has been verified by

comparing the results with more accurate simulations including a potential cutoff

of up to 10 MHz.

The GPE simulations confirm that the imprinted phase on the condensate results

in a density enhancement at the center position of the prior present Rydberg
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atoms on a timescale of several tens of microseconds, even for several subsequent

Rydberg excitations. Within the same time, the CT simulations roughly resemble

the outline of the different Rydberg excitations, while the atoms inside this region

seem to be randomly distributed. The reason for this is the highly oscillating radial

structure of the interaction potential. Over the course of the excitation pulses, the

atoms experience several momentum-kicks in different directions. On the contrary,

in the case of the GPE simulations the radial structure is largely smoothed out over

the range of the healing length of the condensate (λhealing ∼ 100 nm). Nonetheless,

free-particle excitations are triggered by the oscillating structure which is evident

in the simulations for longer evolution times. However, the fraction of free particles

moving outwards is low compared to the overall number of atoms affected by the

Rydberg excitations. The main difference between the simulation results stems

from the fact that in the treatment with GPE on the one hand the interaction

between the atoms is included and on the other hand the atomic flow results from

the phase gradient of the wavefunction. The increase in density for the GPE

simulations is counteracted by atom-atom repulsion, while the CT calculations

yield comparatively large densities.

After an evolution time of 200µs, the CT simulations reveal significant density

peaks at the center of some of the prior present Rydberg atoms. These peaks consist

of hundreds of atoms that locally reach densities greater than 1× 1016 atoms/cm3,

which is over 20 times the peak density of the BEC. On the contrary, the GPE

simulations show a comparatively moderate density increase on the order of the

condensate peak density (∼ 1× 1014 atoms/cm3). In conclusion, the GPE simula-

tions show a smaller density enhancement compared to the CT calculations with

an overall larger spatial extension. The same behavior is observed when averaging

over many realizations.
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Since a local atom loss is observed in the experiment, the question arises what

effect leads to an extrusion of atoms in the central region. We recall that the

interaction potential including s- and p-wave scattering exhibits a branch of

positive interaction energies for small internuclear distances (cf. figure 5.5). In

that case, atoms in that inner region are expelled outwards. In order to test

the influence of the repulsive interaction, simulations including the interaction

potential Us+p(R) were carried out. The results are presented in the following.

Figure 5.7 shows a comparison between the CT simulations and the GPE calcu-

lations in a similar fashion as before. Again the calculations for 10 subsequent

excitations are shown for different evolution times. Overall, the results of the sim-

ulations reveal a similar density distribution compared to the outcomes discussed

above. Nonetheless, when taking a closer look at the data, some differences to

the previous calculations are visible. In fact, the CT simulations including Us+p
show an even further increased density. This can be seen from the simulation

for tevo = 200µs. The peak density is 25% higher compared to the calculations

using Us,k=0 (compare left column of figure 5.6 with figure 5.7). This comes with

no surprise since the PEC branch for the outer region is gradually bent to lower

interaction energies for smaller distances due to the p-wave electron-atom scatter-

ing. As a result, the net atom flow towards the central area is larger compared

to the case when using only s-wave electron-atom interactions. In contrast, the

repulsive branch of the inner part of Us+p leads to a lower density increase for

the GPE calculations. The averaged GPE data reveal that, taking into account

p-wave scattering for the electron-atom interaction, the peak density is reduced

by 50%. Although the overlap between the central region of the Rydberg atom

(R . 1800 a0) and the condensate is relatively small compared to the outer area

(R & 1800 a0), the fraction of atoms moving inwards due to the enhanced attractive

interaction (when including p-wave scattering) does not outweigh the fraction of
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Fig. 5.7: Comparison of classical trajectory simulations (left) and GPE calculations (right)

for the |133S,mj = 1/2〉 Rydberg state and 10 excitation pulses, for s- and p-wave electron-

atom interaction. For the calculations a constant density of ρ = 4× 1014 atoms/cm3 is

used. The resulting difference column density ∆ρ2d is depicted for evolution times between

50µs and 200µs. On the bottom row, the averaged difference column density of many

simulations is shown. The GPE calculations are kindly provided by [148].

atoms that are expelled from the central area. Note that a different set of Rydberg

excitation positions was used for the calculations for the non-averaged GPE data.

As mentioned earlier, the classical trajectory simulations revealed relatively large

density peaks that occur at the center of the prior present Rydberg atoms. To take

into account atom loss due to three-body recombination, simulations including a

three-body loss coefficient of L = 1.8× 10−29 cm6/s for rubidium (ref. [149]) are
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Fig. 5.8: Comparison of classical trajectory simulations (left) and GPE calculations (right)

for the |133S,mj = 1/2〉 Rydberg state and 10 excitation pulses, including the three-body

loss coefficient L = 1.8× 10−29 cm6/s for rubidium (ref. [149]). The calculations are

performed starting with a constant density of ρ = 4× 1014 atoms/cm3. The resulting

difference column density ∆ρ2d is depicted for evolution times of 50µs - 200µs. The

bottom row shows the averaged difference column density of many simulations. The GPE

data including three-body decay are kindly provided by [148].

carried out. Again, the results of the GPE and CT simulations for 10 excitation

pulses are presented for comparison. Figure 5.8 shows the resulting difference

column densities exemplarily for an evolution time of 50µs, 100µs and 200µs for

a single excitation sequence (10 pulses) and the average of many realizations for

200µs. As a result of the included atom loss mechanism, the apparent density
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peaks are drastically lowered. In comparison to the data shown in figure 5.7 the

density peaks are reduced from a difference column density of ∆ρ2d ≈ 4000µm−2

to 1000µm−2, which corresponds to an atom loss of about 100 atoms for a single

density peak. However, the resulting averaged density profile shows qualitatively

the same features independent of the three-body loss. Since the resulting densities

for the GPE simulation remain comparatively moderate, the three-body loss leads

to only slight differences.

In addition to the above-presented calculations, simulations employing the

truncated Wigner method were performed exemplarily for a single and a 10 exci-

tation pulse sequence, taking into account heating effects on the condensate by

incorporating thermal atoms and quantum fluctuations [150], but no significant

difference has been found [148].

At last, let us compare the outcome of the simulations with the experimentally

observed local atom loss. For this, we extract an atom loss from the numerically

obtained column densities. This is achieved by radially integrating outwards from

the excitation center (x = 0, y = 0).

∆N(R) ≡
2π∫
0

R∫
0

∆ρ2d r drdϕ (5.1)

With this, ∆N(R) yields the atom loss ∆N = ∆N(Rmin), where Rmin is the global

minimum of the function ∆N(R). Practically, ∆ρ2d is summed up to a maximum

radius of Rmax = 12µm and the minimum of ∆N(R) defines the atom loss ∆N .

Note that the asymmetry of the loss feature, which originates from the spatial

Rydberg excitation distribution, changes the outcome of ∆N only slightly and

can therefore be neglected. Moreover, it has been verified that the experimentally

obtained local atom loss yields the same ∆N when applying equation 5.1 within

the determined error bars.
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Fig. 5.9: Simulation results and comparison with the experimental data for the 133S

Rydberg state. The local atom loss ∆N obtained from the GPE (yellow) and the CT

(red) calculations are depicted as a function of the evolution time (a) and the number of

subsequent Rydberg excitation pulses (b). For comparison the experimental results from

figure 5.4 are reprinted in blue (symbols). For the CT data the outcome of the simulations

including s- and p-wave electron-atom scattering with (dashed) and without (dotted)

three-body loss is shown. For the GPE data the results with (dashed) and without (line)

p-wave are depicted. The GPE data are kindly provided by [148].

In figure 5.9 the gathered data from the CT and GPE simulations are shown

for the pulse sequence employed in the experiment. The experimental data from

figure 5.4(c-d) are reprinted for comparison. While the experimental trend of

the data is reproduced by the numerical results, both the CT and the GPE

calculations underestimate the experimental data significantly. The fact that

the GPE calculations mainly result in an atom increase in the central region of

the excitation center leads to a comparatively low atom loss which lies orders

of magnitude below the CT calculations. Essentially, the atom loss predicted

by the GPE corresponds to the fraction of free-particle excited atoms that are

accelerated outwards from the central region. In contrast, the CT calculations
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reflect the limit of non-interacting free particles only. Interestingly, the results of

the CT simulations lie much closer to the experimental findings, but they also

underestimate the observed local atom loss.
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6
Summary and outlook

This thesis studies interactions of Rydberg atoms with neutral atoms and with

single ions. While for the studies of Rydberg atom-neutral interaction the case

of one, few, or even many atoms interacting with a single Rydberg electron was

investigated, for the ion-Rydberg atom system mostly binary interaction was stud-

ied. Beyond that, the level structure of negative ions was explored in the context

of ultralong-range Rydberg molecules. The experiments are carried out in a gas

made of rubidium-87 atoms at ultracold temperatures, where the motion of atoms

is usually frozen out on the time and length scale (micrometer per microsecond)

of typical Rydberg experiments.

Ion-induced Rydberg blockade

Over the past decade, ultracold Rydberg atoms have been proven to provide a

versatile platform for quantum simulation of long-range interacting many-body

systems [10–12], for nonclassical photonic state generation [13, 14], and for quantum

information processing [15–17]. A central aspect for many proposals in these fields
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[18–20] is the Rydberg blockade phenomenon. The Rydberg blockade results from

strong Rydberg-Rydberg interactions that suppress the simultaneous excitation

of two or more atoms into Rydberg states within a certain blockade volume.

A similar concept applies to hybrid systems that consist of ions and Rydberg

atoms. Strong interactions between a single ion and Rydberg atoms lead to

charge-induced blockade phenomena mediated over macroscopic distances, which

have been proposed as a tool for quantum information transfer between ionic

and atomic quantum systems [24]. In traditional hybrid settings, which typically

consist of a radio-frequency ion trap and Rydberg states excited in an ensemble

of trapped neutral atoms, the ion-trap induced lineshift on the Rydberg states

complicates the observation of interaction effects [25].

In the context of this thesis, an alternative approach to the realization of such

a hybrid system was demonstrated. A single ion is efficiently created from an

ensemble of ultracold rubidium atoms, employing a novel V-type photo-ionization

scheme [S1, 92, 93] specifically suited for generating a very low-energy ion. An

experimental measurement strategy was presented, including the V-type photo-

ionization scheme, a subsequent Rydberg excitation, and a tailored electric field

pulse sequence, with which interactions between a single ion and a Rydberg atom

were demonstrated by means of an ion-induced Rydberg excitation blockade [S1];

the blockade mechanism was analyzed for a large range of principal quantum

numbers.

Furthermore, the ion-induced blockade mechanism was utilized to use the

generated single ion as a sensitive probe for small electric fields. The sensitivity

of the blockade measurement method was enhanced by increasing the ion-atom

interaction strength, which allowed for a stray field compensation down to a

level of 100µV/cm over tens of micrometers, demonstrating a remarkable precise

control of electric fields on the micrometer scale.
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At last, the efficiency of the V-type photo-ionization scheme was characterized

for a single ion generated in a Bose-Einstein condensate. The photo-ionization of

the Rydberg atom in the BEC was found to be hampered by dynamics apparent for

Rydberg atoms immersed in a condensate. An alternative approach for preparing a

single low-energy ion in the BEC was demonstrated and the ion-induced Rydberg

blockade mechanism was utilized to trace the ion’s motion when pulled through

the Bose-Einstein condensate.

The presented technique of creating, controlling, and probing an ion can be

further used to study ion-atom collisions and chemistry for an ion immersed in a

Bose-Einstein condensate. A faster ionization of the Rydberg atom may lead to

an efficient generation of the ion inside the condensate. When applying the photo-

ionization scheme, the initial temperature of the created ion can be further reduced

by minimizing the ionization excess energy and the photon-recoil transferred on the

ion during the photo-ionization protocol. Moreover, the selective photo-association

of an ultralong-range Rydberg molecule before the photo-ionization process may

provide ideal starting conditions for collision studies, with promising prospects for

achieving the ion-atom quantum scattering regime [92].

Precision spectroscopy in ultralong-range Rydberg molecules

Ultralong-range Rydberg molecules have been studied extensively over the past

decades. These exotic molecules form when a neutral atom resides within the

electron orbit of a Rydberg atom. Large interaction energies arise from low-energy

electron-atom scattering between the neutral atom and the Rydberg electron.

These interactions potentially lead to molecular bound states for a negative

electron-atom s-wave scattering length. In this case, the Rydberg electron binds

the neutral atom in a well-confined location, defined by potential minima associated
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with the oscillating radial Rydberg electron wavefunction. Typically, these types

of molecules yield bond lengths of several thousand Bohr radii set by the size of

the Rydberg electron orbit.

In the past few years, the interest in this field has shifted from qualitative

studies towards a more quantitative and detailed description of the molecular

bound states. Recently, a renewed interest in the inclusion of spin effects, in

particular the hyperfine interaction in the neutral atom and spin-orbit coupling

effects between the neutral and Rydberg atom, has been shown [75–77]. The latter

plays an important role in the studies presented in the second part of this thesis,

which is based on ref. [S2].

In the presented work, precision spectroscopy has been performed on quasi-

bound negative-ion resonances of Rb−, devising ultralong-range Rydberg molecules

(ULRMs) as an ultrasensitive tool. For this purpose, ULRM-spectroscopy was

elevated to a so-far unequaled quantitative level of precision, in a combined

experimental and theoretical effort. Previously unobserved molecular bound states,

that are strongly influenced by resonant electron-atom p-wave scattering, were

identified and used to unravel the fine-structure triplet 3PJ (J ∈ {0, 1, 2}) of Rb−,

which by other means is experimentally challenging to resolve. Moreover, careful

analysis of the experimentally obtained binding energies allowed the extraction of

the s- and p-wave scattering lengths and to pinpoint the p-wave shape resonance

position associated with the fine-structure triplet of the Rb− anion. Furthermore,

a molecular alignment of the ULRM mediated by spin-orbit coupling of the

underlying electron-atom scattering process has been demonstrated for the first

time [S2, 77].

The acquired scattering data may path the way for future experiments on

ULRMs that comprise few-body effects [117, 151], molecular dynamics, or even

more complex spin couplings [152]. Moreover, the presented scattering data also
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enable refined predictions for low-energy electron-neutral scattering [78, 80, 84].

Furthermore, the presented technique of utilizing ULRMs to determine the fine

details of the underlying electron-atom scattering can be further used to benchmark

other atomic systems and potentially may be transferred to molecular systems.

Local atom loss in a BEC induced by Rydberg atoms

The last part of this thesis reports on a local atom loss in a Bose-Einstein

condensate induced by a single Rydberg atom. The experiments presented were

originally intended to optically image the electron wavefunction of a Rydberg

atom. For the wavefunction imaging method, the Rydberg atom is immersed in a

Bose-Einstein condensate, where the electron-atom interaction leads to a phase

imprint on the condensate wavefunction that is to first order proportional to the

absolute square of the electron wavefunction. Due to the gradient of the imprinted

phase, the atoms of the condensate flow towards regions of high electron density,

which continues even when the Rydberg atom is no longer present.

For experimentally imaging the electron wavefunction, a developed measurement

strategy was presented. The strategy includes high spatial resolution imaging and

Rydberg atom positioning, post-selection, and image post-processing. Surprisingly,

a local density decrease of the condensate was found in the experiment that

prevails over the expected density increase in the region where the Rydberg

atom was excited. The formation of the observed local atom loss feature in the

condensate was characterized for a single Rydberg atom, and several subsequent

Rydberg excitations, as well as for different atom densities. Furthermore, the

experimentally observed loss feature was compared to numerical simulations, which

largely underestimate the amount of condensate density change in the excitation

region of the Rydberg atom.
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In order to further investigate the local atom loss, measurements can be carried

out for different principal quantum numbers, varying the interaction strength

between Rydberg and condensate atoms. The outcome of these measurements

might provide further insight into the origin of the observed decrease in condensate

density. Moreover, a continues re-excitation of a D-state Rydberg atom for a

higher principal quantum number e.g. n = 180 may result in a density feature

that resembles the orbital shape of the Rydberg wavefunction.
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Ion-induced Rydberg blockade

In the main part of this thesis (in chapter 3) we discussed the experimental

realization of an ion-induced Rydberg excitation blockade. For the experiments, a

single ion was created from an ensemble of ultracold atoms via an all-optical photo-

ionization scheme. In this part of the appendix, we review the photo-ionization

efficiency and compare the experimental data with the outcome of the simulations

for two sets of parameters. Furthermore, the trap geometries of the atomic sample

for the blockade measurements in the thermal ensemble and the condensate are

presented.

A.1 Photo-ionization efficiency

In section 3.1.2 the measured ionization efficiency of the photo-ionization scheme

was presented and compared with the results of a time-dependent four-level system

simulation. We found that the simulations match the experimentally obtained

efficiencies when taking into account a non-zero detuning from the intermediate

6P3/2 state for the deexcitation laser pulse. As was already discussed earlier

in ref. [99], the high intensities of the photo-ionization and deexcitation lasers
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Fig. A.1: Photo-ionization efficiency as a function of the photo-ionization laser power, the

experimental data (symbols) are reprinted from figure 3.3. The solid lines correspond to

the outcome of a four-level system simulation, including a detuning from the intermediate

6P3/2 of 35 MHz (blue) and 58 MHz (red).

potentially result in a differential ac stark shift of the intermediate state. In

ref. [99] the differential ac stark shift was estimated to be ∆ac = 58 MHz. As

stated in section 3.1.2, the four-level system simulations, however, match the

experimentally obtained the photo-ionization efficiency when applying an energy

shift of ∆ac = 35 MHz, not 58 MHz. To show the difference between the two

simulations, we reprint the measured ionization efficiencies in figure A.1 and

compare them with the simulated data for ∆ac = 35 MHz and ∆ac = 58 MHz.

A.2 Crossed optical dipole trap

During this work, the existing experimental setup was expanded by a crossed

optical dipole trap with the goal to strongly confine the atomic sample. Details

about the existing setup, in particular the experimental control and the atom

sample preparation, can be found in earlier works of refs. [95, 102]. The dipole
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Fig. A.2: Laser beams of the crossed optical dipole trap. The horizontal beam (in

xy-plane) is shaped to realize a sheet-like confinement for the atom sample along the

z-direction, while the horizontal beam circularly confines the sheet-trap.

trap consists of two laser beams, one of which propagates horizontally and one

vertically. For the horizontal beam, a cylindrical lens is used after beam shaping

to create a tightly confined sheet-like laser beam propagating along the y-direction.

The vertical beam ensures confinement in the xy-plane of the resulting atom

trap. Details on optical dipole traps for neutral atoms can be found in ref. [115].

In combination with the tightly focused infrared excitation laser beam (along

z-direction), this results in a strongly confined Rydberg excitation volume, which

enables us to precisely determine the ion-induced blockade radii presented in

section 3.3. Note that, in contrast to the existing Quadrupole-Ioffe configuration

trap (QUIC trap), where the offset magnetic field direction is fixed (y-direction),

the optical trap allows us to align the magnetic field in an arbitrary spatial

direction. Figure A.2 shows the dipole trap laser beams.

Before loading the atoms into the optical dipole trap, the existing QUIC trap

(see section A.3) is used to cool the atoms to just below 2µK. To transfer the cold

atoms from the magnetic trap into the optical trap, the current of the magnetic

trap is carefully ramped down (avoiding a zero-magnetic field crossing, which
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Fig. A.3: Lifetime measurement of the BEC prepared in the crossed optical dipole trap.

The atom number (blue) is shown as a function of the hold time after the evaporation.

The red curve represents an exponential fit to the experimental data. The atom number

is measured in after a time-of-flight of 23 ms.

induces losses due to Majorana spin-flips), while the intensity of the crossed dipole

trap is ramped up. The duration of the transfer sequence is mainly given by the

time it takes to switch off the QUIC trap in a controlled manner, which typically

takes a few hundred milliseconds. After the transfer, the atomic sample can be

further confined along the z-direction by increasing the laser intensity (up to a

power of 150 mW) of the light sheet beam or the atoms are cooled further down by

optical evaporation for which the intensity of the sheet is exponentially reduced.

To reach a Bose-Einstein condensate (BEC), the power of the light sheet is

ramped down to 30 mW within 1000 ms. After the evaporation, the condensate

comprises typically 2× 105 atoms. The lifetime of the condensate in this pancake-

like atom trap is measured experimentally. In figure A.3 the atom number for

different hold times t after the evaporation is shown. The lifetime τ is obtained

by an exponential fit to the data, yielding τ = 1.7 s.
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Fig. A.4: Trap frequency measurement for the strong confined z-direction of the crossed

optical dipole trap. The atom sample is displaced from its trap minimum by switching

off the light sheet for 100µs. The center of mass motion after a time-of-flight of 23 ms is

shown as function of the hold time after the displacement from the rest position.

For the blockade measurements presented in chapter 3, a light sheet power of

150 mW and power of 450 mW for the vertical confinement beam was employed.

For these power settings, the atomic ensemble contains typically 1.2× 105 atoms

with a temperature of 1µK. To determine the sample size, in particular, the

confinement along z-direction, trap frequency measurements were performed. The

trap frequency can be obtained from the periodicity of the dipole mode of a BEC,

which can be excited by displacing the condensate from the potential minimum.

For the z-direction, this is achieved by simply switching off the light sheet for a

short time in which the atoms fall in the gravitational field. The outcome of the

trap frequency measurement for the z-direction is presented in figure A.4. While

the trap frequency along the z-direction can be measured directly, for the x- and

y-direction the frequencies are obtained from measuring the beam waists in the

focal plane with a beam profiler camera. The trap frequencies in x- and y-direction
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Fig. A.5: Trapping potential and atom sample size of the spin-polarized(∣∣∣5S1/2, F = 2,mF = 2
〉)

87Rb atoms prepared in the crossed optical dipole trap. The

top row shows the thermal atom cloud, while the bottom row represents the Bose-

Einstein condensate. The trapping frequencies are ωx,y,z = 2π × (160, 110, 710)Hz and

ωx,y,z = 2π× (70, 50, 320)Hz for the thermal and the condensate atom sample, respectively.

The atom number and ensemble temperature in the thermal cloud are 1.2× 105 and 1µK.

For the BEC, the typical atom number of 2× 105 is used. The resulting peak densities are

2.5× 1013 atoms/cm3 and 3× 1014 atoms/cm3 for the thermal cloud and the condensate,

respectively.

are calculated assuming a harmonic trapping potential [115]. The measured waists

of the vertical beam and the weak axis of the light sheet are w0 = 75(5)µm and

w0 = 90(5)µm, respectively. The trapping frequencies of the combined beams

are then estimated to ωx,y,z = 2π × (160, 110, 710)Hz. With the beam parameters

obtained above, the trap frequencies can also be estimated for the condensed atom

sample (BEC) for which we recall the light sheet is ramped down to a power of

30 mW, while the vertical power is typically set to 80 mW. In this case, the trap
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frequencies are: ωx,y,z = 2π × (70, 50, 320)Hz. The resulting trapping potential

and the corresponding atom sample density profile in the optical trap are shown

in figure A.5 for typical atom numbers and temperatures (see above). Note that

the density distributions are calculated following standard textbook approaches

(for example see [153]) and that the thermal fraction of the condensate, which is

very small due to the shallow potential depth, is neglected in figure A.5.

A.3 Magnetic trap

In chapter 3 of the main part of this thesis, the blockade measurement method

was employed to trace the ion motion in the Bose-Einstein condensate (cf. section

3.6). Although the optical trap offers several advantages over the magnetic (QUIC)

trap, for instance, a freely adjustable magnetic field direction and field strength,

a relatively small excitation volume due to the tight confinement along the z-

direction, or the vanishingly small thermal fraction of the condensate, the QUIC

trap is used for the blockade measurements in the condensate. The reason for

this is that we actually utilize the comparatively large thermal fraction (typically

0.2) of the magnetically trapped BEC. Furthermore, the magnetic trap not only

provides a larger atom sample, which allows us to repeat the experiments more

often with a single atom cloud, but also the trap geometry of the magnetic trap

is more advantageous for ion transport measurements. As mentioned earlier, the

experimental setup and specifically the atom sample preparation in the magnetic

trap is outlined in ref. [102].

In the following, the trapping potential of the magnetic trap and the correspond-

ing atom density profiles are shown in figure A.6. The trap frequencies (ωx,y,z)

used for the calculations were measured by displacing the trap minimum in each

spatial direction, which is achieved by applying a comparatively fast magnetic
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Fig. A.6: Trapping potential and atom sample size of the spin-polarized(∣∣∣5S1/2, F = 2,mF = 2
〉)

87Rb atoms prepared in the magnetic trap. The top row shows

the thermal atom cloud, while the bottom row represents the Bose-Einstein condensate.

The trapping frequencies ωx,y,z = 2π × (194, 16, 194)Hz are independently obtained by

exciting and measuring the dipole mode of the condensate (cf. trap frequency measurement

figure A.7). The atom number and ensemble temperature in the thermal cloud are 6× 106

and 1µK. For the BEC, a typical atom number of 1× 106 is reached. The resulting peak

densities are 5.9× 1013 atoms/cm3 and 4.5× 1014 atoms/cm3 for the thermal cloud and

the condensate, respectively.

field ramp (typically 10 ms). For completeness, the results of the trap frequency

measurements are shown in figure A.7. Note that the thermal fraction is neglected

for the presented density profiles in figure A.6 but plays an important role in

the blockade measurements in the condensate. For the blockade measurement

simulations presented in section 3.6.3, the total density distribution consisting of

the thermal and the condensed distribution is calculated following the approach

outlined in ref. [154].

192



Appendix A Ion-induced Rydberg blockade

Fig. A.7: Trap frequency measurement of the Quadrupole-Ioffe trap using a Bose-Einstein

condensate. The BEC is displaced from its trap minimum by applying a fast magnetic

field ramp (10 ms) in each spatial direction (from left to right: x-, y-, and z-direction).

The change of the condensate position is measured as a function of the hold time t after

the sudden trap minimum displacement. For the x- and z-direction the BEC displacement

is measured after a time-of-flight of 23 ms, while for the y-direction the oscillation is

recorded in in-situ. The resulting trap frequencies are ωx,y,z = 2π × (194, 16, 194)Hz.
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Precision spectroscopy in ULRMs

In the context of this thesis (cf. chapter 4), ultralong-range Rydberg molecules

were used as an atomic-scale scattering laboratory which allowed us to obtain the

fine-structure splitting of the rubidium anion 3PJ state from the measured binding

energies. An essential step for this was the extraction of the s-wave and p-wave

scattering parameters from the experimental data. A comparatively simple e−-Rb

interaction model potential was used to match the calculated bound state energies

of the molecular states D, A, and B (cf. section 4.2) with the measured binding

energies. In the following, the applied model potential is used to reproduce the

ab initio phase shift calculations performed by Fabrikant (ref. [79]) to verify our

phase shift calculations. Following this, the spectroscopic data for n = 31, . . . , 37

are presented, from which the binding energies of the states D, A, and B were

deduced.
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Fig. B.1: Comparison of the s-wave and p-wave phase shifts for singlet and triplet e−-Rb

scattering. Data points represent the obtained phase shifts from calculations presented

in [79]. The lines correspond to the phase shifts calculated via the model potential

equation 2.24 in section 2.2.1.

B.1 Phase shifts

In figure B.1 the phase shifts obtained from the calculations presented by Fabrikant

in [79] (data points) are compared with the shifts calculated with the method

presented in section 2.2.1 (lines). The inner hard-wall position r0 is adjusted to

match the ab initio calculations of each scattering channel (1S, 3S, 1P , 3P ). For this

comparison, the LS-coupling term (equation 2.25) was set to zero. As is apparent

from figure B.1, the reproduced phase shifts match the ab initio calculations.
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B.2 Spectra

In this section the spectra used to match the outcome of the bound state cal-

culations with the experimentally obtained binding energies are presented. The

measured spectroscopic data for n = 31, . . . , 37 are shown in the following. The

used molecular states D, A, and B are assigned to the corresponding molecular

line. Additionally, the bound states of the excited dimer states D?, the trimer

state T as well as various combinations (e.g. B+D) of triatomic states are labeled.

Note that the excited dimers are collectively referred to as D? for simplicity. The

ion signal is shown as a function of the Rydberg detuning δ and the atomic line of

the investigated Rydberg state is set to δ = 0. The gray lines correspond to a fit

to the data using a sum of multiple Lorentzians. For better visibility, the data for

larger red detuning are magnified as indicated. Note that the excitation strength

was set independently for each part of the spectrum.

Fig. B.2: ULRM spectroscopy in the vicinity of the
∣∣∣31S1/2,mj = +1/2

〉
Rydberg state.
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Fig. B.3: ULRM spectroscopy in the vicinity of the
∣∣∣32S1/2,mj = +1/2

〉
Rydberg state.

Fig. B.4: ULRM spectroscopy in the vicinity of the
∣∣∣33S1/2,mj = +1/2

〉
Rydberg state.
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Fig. B.5: ULRM spectroscopy in the vicinity of the
∣∣∣34S1/2,mj = +1/2

〉
Rydberg state.

Fig. B.6: ULRM spectroscopy in the vicinity of the
∣∣∣35S1/2,mj = +1/2

〉
Rydberg state.
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Fig. B.7: ULRM spectroscopy in the vicinity of the
∣∣∣36S1/2,mj = +1/2

〉
Rydberg state.

Fig. B.8: ULRM spectroscopy in the vicinity of the
∣∣∣37S1/2,mj = +1/2

〉
Rydberg state.
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Local atom loss in a BEC

In the main part of this thesis measurements of local atom loss in a Bose-Einstein

condensate (BEC) induced by Rydberg atoms is presented (cf. chapter 5). The

loss feature was observed by imaging the condensate atom distribution in-situ,

and was quantified by integrating the column density in the region of the atom

loss. For quantifying the atom loss, a reference image was subtracted from imaged

condensate, yielding a difference image and with that the difference column density

used to determined the atom loss. The reference image for each measurement is

generated from a set of images using an image reconstruction algorithm.

C.1 Image reconstruction algorithm

In the experiment, the atom distribution is imaged in-situ using the phase-contrast

imaging technique, which relies on the dispersion of the light scattered by the atom

cloud. Details about imaging a BEC can be found in ref. [146]. Furthermore, a

detailed description of the current imaging setup can be found in ref. [102]. Briefly

summarized, a part of the imaging light scatters off the atom cloud, which results

in a phase difference between the scattered and unscattered light. The phase
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imparted on the imaging light is then used to extract the spatial atom column

density distribution. For this, a set of three pictures is recorded. The first picture

Iatoms imparts the information of the atom cloud (atom picture). For the second

picture Ibright the atom trap is switched off and only the imaging light is recorded

(bright picture). For the last picture Idark the imaging light is turned off and an

image of the background is taken (dark picture) is taken. Note that the wait time

between the images is 1 ms. From the three pictures the phase distribution is then

obtained by (ref. [146]):

φ =
 Ĩatoms

Ĩbright
− 1

 /2, (C.1)

where Ĩatoms and Ĩbright are obtained by subtracting the background Idark from Iatoms

and Ibright, respectively. The phase φ is connected with the atom column density ρ2d

via the imaginary part of the refractive index niref (ref. [146]). In the experiment,

linearly polarized light couples the ground-state
∣∣∣5S1/2, F = 2,mF = 2

〉
of the

atoms to the
∣∣∣5P3/2, F = 2,mF = 2

〉
state and the

∣∣∣5P3/2, F = 3,mF = 2
〉
state

via a π-transition. In this case, both transitions have to be taken into account.

By doing so we get the following expression:

φ = 4π
λ
niref

= 4π
λ
ρ2d

d2
red/6
ε0~Γ ·

−∆F=3/ (Γ/2)
1 + (∆F=3)2

/ (Γ/2)2 + d2
red/6
ε0~Γ ·

−∆F=2/ (Γ/2)
1 + (∆F=2)2

/ (Γ/2)2

 ,
where we used the atom polarizability for the addressed imaging transitions

[146], with the laser detuning ∆F=2 and ∆F=3 from the excited 6P3/2 state, the

natural linewidth Γ for the transition, and the reduced matrix element dred =

〈J = 1/2|er|J ′ = 3/2〉 = 4.227 ea0 multiplied with the corresponding Clebsch-

Gordan coefficient
√

1/6 and −
√

1/6 [97].

For the experiments in the magnetic trap, a typical imaging detuning of

+500 MHz from the excited F = 3, mF = 2 state is employed. For the imaging of

the optically trapped atoms a smaller detuning of +200 MHz can be used. For
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both atom sample geometries the density dependent phase shift φ imparted on

the imaging light is in the linear regime for the typical densities reached in the

experiments. Note that this has also been verified experimentally.

In section 5, the atom column density obtained from the in-situ images of the

atom distribution is used to quantify the observed local atom loss. Typically, the

change in column density is on average on the order of a few % of the peak column

density of the condensate. The extraction of a reliable atom loss is challenged by

the statistical fluctuation ∆Nr2 of the local atom number per resolution unit and

the atom number fluctuations of the condensate (cf. section 5.1 and 5.2), as well

as the photon-shot noise, the fluctuation of the atom trap position, and phase

errors imparted on the imaging light by the imperfection of the imaging system.

In order to extract the local atom loss, an image reconstruction algorithm is

employed to construct a reference image for each imaged atom distribution from

a basis set of condensate images. The algorithm is based on a post-processing

imaging cleaning method used for the detection of small atom numbers [155],

which was derived from the eigenface method presented in ref. [156]. The

algorithm is presented below and demonstrated on a typical image of the atom

loss measurements.

In figure C.1(a) the atom column density of a single image of the loss measure-

ments for the 133S state is shown. In (b) the column density of the corresponding

reconstructed reference image (Iref) is depicted. The reference image is constructed

by building a linear combination of 200 basis images.

The coefficients ci for each basis image Ib,i is determined by building the dot

product si of Ib,i with the measured image I.

si =
∑
n,m

I(n,m) · Ib,i(n,m) (C.2)

Here, (n,m) corresponds to the pixel location of the image. The coefficients ci are
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then determined by solving the linear system:

B · c = s, (C.3)

where B is the correlation matrix for the used basis, which is constructed of the

dot product of the basis images:

B(i, j) =
∑
n,m

Ib,i(n,m) · Ib,j(n,m). (C.4)

With that the reference image is given by:

Iref =
∑
i

ci · Ib,i. (C.5)

The created reference image in figure C.1(b) nicely reproduces the image shown

in (a). In (c) the corresponding difference column density ∆ρ2d is depicted, which

is obtained by subtracting the measured image from the created image. In (d)

the difference column density for a measurement with Rydberg atoms present is

shown. Since the atom loss feature is not included in the basis set, the area of

the feature is excluded (masked) from the determination of the coefficients ci in

equation C.3, but is included for the construction the reference image from the

basis set (equation C.5). The difference column density in (d) reveals a significant

dip of the local atom density for a single measurement of the condensate atom

distribution.

Note that the effects of the excitation lasers on the atom cloud and drifts of the

trap position are included in the used basis set. The basis images are recorded in

absence of the Rydberg atom by switching the Rydberg detuning to a positive

value (typically δ = +50 MHz), for which no excitation takes place. Furthermore,

the basis images are taken every second experimental run during a measurement,

and with that also include systematic positional drifts of the atom cloud.

204



Appendix C Local atom loss in a BEC

Fig. C.1: Imaging cleaning algorithm employed on single shot images of the 133S state

atom loss measurements for an evolution time of 200µs and 10 excitation pulses. (a) Shows

the atom column density obtained from the raw images (see text). The image is taken in

absence of the Rydberg atom. In (b) the column density of the corresponding reference

image, reconstructed from 200 basis images, is depicted. (c-d) Shows the difference

column density for a measurement without (c) and with (d) the Rydberg atom present

in the condensate. For (d), the area of the atom loss is masked for the reference image

reconstruction (see text). For better comparison, the same color range is used for ∆ρ2d in

(c) and (d).
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