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Tag der mündlichen Prüfung: 29. Juli 2019
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Zusammenfassung

Hoch angeregte Atome, sogenannte Rydberg-Atome, besitzen außergewöhnlich ausge-

prägte Eigenschaften, wie zum Beispiel eine extreme Sensitivität gegenüber elektrischen

Feldern. Aber auch die interatomare Beeinflussung, bei denen der Abstand der wechsel-

wirkenden Rydberg-Atome sogar bis in die Größenordnung von einigen Mikrometern rei-

chen kann, machen sie zu einem interessanten Gegenstand aktueller Forschung. Auch aus

technischer Sicht bieten Rydberg-Atome eine Vielzahl von Vorzügen, da, je nach Anwen-

dung, gewünschte Eigenschaften ganz einfach durch die Auswahl des jeweiligen Rydberg-

Zustands oder durch externe Magnet- oder elektrische Felder erzielt werden können. Eine

ganze Reihe kollektiver Phänomene wurde durch starke, weit reichende Wechselwirkun-

gen zwischen Rydberg-Atomen motiviert. Ebenso existieren Vorschläge für technische

Anwendungen, die auf starken Korrelationen im atomaren Dampf basieren. Wegweisende

Publikationen aus dem Forschungsgebiet der Rydberg-Atome sind Quanten-Gates [1, 2],

Quanten-Phasenübergänge [3, 4], optische Nichtlinearitäten mit Einzelphotonen [5–9],

Mehrkörperwechselwirkungen [10], Förster-Resonanzenergietransfer [11, 12], Clusterbil-

dung [13–15] und ultralangreichweitige Moleküle [16, 17].

In jüngerer Zeit haben Wissenschaftlerinnen und Wissenschaftler das Potenzial von Dampf-

zellen für sich wiederentdeckt. Es zeigte sich, dass auch die Forschung an Rydberg-Atomen

in thermischen Gasen das Themenspektrum der Atomphysik bereichert. Im Vergleich zu

den “Kalten Experimenten” können im thermischen Gas höhere Dichten und Systeme

mit einer deutlich größeren Gesamtzahl an Atomen realisiert werden. Ganz nebenbei ist

auch der technische Aufwand für die experimentelle Umsetzung entscheidend geringer, da

vorbereitende Schritte wie zum Beispiel das Laserkühlen oder Verdampfungskühlen ent-

fallen. Mit der Möglichkeit, breitbandige Anregungsschema und schnelle Zeitskalen an zu

wenden, ist die heutige Forschung einen Schritt näher an der Umsetzung von neuer Tech-

nologie. Beispiele aus dem Gebiet der Rydberg-Atome sind hierfür Sensoren für elektri-

sche Feldstärken [18, 19], oder deterministische Einzelphotonenquellen [20]. Es existieren

aber auch ausgereifte Anwendungen, die auf thermischen Dampfzellen basieren, wie zum

Beispiel für die Magnetometrie [21] oder mikroelektromechanisch produzierte (MEMS)

Miniatur-Atomuhren [22].

Einem besonderes Thema in der Atomphysik, das hier hervorgehoben werden soll, ist

der Effekt der Superradianz [23]. Hierbei handelt es sich um ein Phänomen kollektiver

spontaner Emission. Die Wellenlänge bei Übergängen zwischen verschiedenen Rydberg-

Zuständen übertrifft leicht die räumlichen Abstände zwischen den Atomen in einem Gas.

Daher wird sich hier die Zerfallsdynamik eines Ensembles von Atomen von der eines

isolierten Atoms unterscheiden.
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Zusammenfassung

Den Effekt von Superradianz auszunutzen, könnte die Grundlage für eine Quelle für

kohärente Mikrowellen-Strahlung sein. Dabei würden Frequenzbereiche abgedeckt, die

bisher noch unerschlossen sind [24, 25]. Denkbar wäre auch, dass solche Quellen dabei

helfen, die Vision eines auf Rydberg-Atomen basierenden Quanten-Netzwerks [26, 27] um-

zusetzen: Die Knoten des Netzwerks kommunizieren dann über Mikrowellen-Strahlung,

beispielsweise über Wellenleiterstrukturen. Diese Art der Strahlung nutzbar zu machen ist

daher ein erstrebenswertes Ziel in der Forschung. Die theoretischen Überlegungen hierzu

begannen bereits in den Siebzigerjahren [28]. Kontrollierte Mikrowellen-Übergänge wur-

den aber auch experimentell bereits demonstriert [29, 30]. Mit Einzug der Ultrakalten

Experimente konnte Superradianz auch in diesen Systemen nachgewiesen werden [31].

Eine kürzlich veröffentlichte Publikation, die von dem Effekt in thermischen Dampfzellen

berichtet [32], kündigte den nächsten Schritt zu einer tatsächlichen Umsetzung an.

Superradianz und optische Bistabilität

Der eigentliche Schwerpunkt des eben genannten Manuskripts [32] ist jedoch ein ande-

res Phänomen, und zwar intrinsische optische Bistabilität in thermischen Rydberg-Gasen.

Hierbei handelt es sich um einen Phasenübergang zwischen hoher und niedriger Dichte

an Rydberg-Anregungen, die laut den Autoren des Papers durch dipolare Wechselwirkun-

gen zwischen den Rydberg-Atomen induziert werden. Der Phasenübergang äußert sich

durch das Öffnen einer Hysteresekurve im Transmissionsspektrum des Anregungsschemas

mit drei Lasern. Es zeigt sich, dass das Fluoreszensspektrum signifikant unterschiedlich

ist, je nachdem, in welchem der beiden Zustände das System gerade ist: Für den Zustand

mit niedriger Dichte an Rydberg-Atomen fallen die Anregungszustände unter Aussendung

eines Photons – wie erwartet – hauptsächlich direkt in den niedrigsten erreichbaren Zu-

stand zurück. Bei hoher Dichte taucht jedoch eine Vielzahl an Linien im Spektrum auf.

Es scheint so, als zerfielen die Rydberg-Atome wie in einer Kaskade [33] über die jeweils

benachbarten Zustände nach unten, wobei eine Vielzahl von Zuständen bevölkert würde.

Wenn diese Zustände dann wiederum anschließend in den Grundzustand zerfallen, würde

dies die Vielzahl an sichtbaren Linien im Spektrum erklären können. Das Emissionsspek-

trum in der Phase mit hoher Rydberg-Dichte ist also ein Hinweis auf eine superradiante

Kaskade. Dies ist ein zentraler Grund, weshalb wir am 5. Physikalischen Instituts der

Universität Stuttgart uns dazu entschieden haben, weiter in diese Richtung zu forschen.

Der charakteristische sprunghafte Übergang zwischen den beiden Phasen, über den die

Superradianz thematisch mit der optischen Bistabilität verknüpft sind, konnte zwar expe-

rimentell auch bestätigt werden, spiegelte sich jedoch nicht in den bisherigen Simulationen

wieder [34].

Ionisation von Rydberg-Atomen

Die außergewöhlichen Eigenschaften, die Rydberg-Atome so einzigartig machen, umfassen

auch eine ausgeprägt hohe Wahrscheinlichkeit, das Elektron auf dem angeregten Orbital

2
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vollständig zu verlieren [35], da die Bindungsenergie nur sehr klein ist. Besonders in ther-

mischen Gasen passieren häufig Kollisionen mit anderen Partikeln, und dies führt zu

Ionisation der Atome. Hinweise auf einen Einfluss der dadurch auftretenden elektrischen

Störfelder waren bereits bekannt [36]. Später machte man sich die Ionisation zu Nutze:

anstelle von den üblichen optischen Methoden [37] werden die auftretenden Ströme gemes-

sen [38], um somit Rydberg-Anregungen indirekt nachzuweisen. Daraus entwickelte sich

ein vielversprechendes Konzept zur Detektion kleinster Konzentrationen eines spezifischen

Elements oder Molekühls [39, 40]. Es ist somit naheliegend zu vermuten, dass hohe Dich-

ten an Rydberg-Anregungen zu signifikanten Dichten an geladenen Teilchen, also Ionen

und Elektronen, führen könnten. Die physikalischen Grundlage, auf der die im vorheri-

gen Abschnitt angesprochenen Phänomene der Superradianz und optischen Bistabilität

basieren ist somit nicht eindeutig geklärt: zum einen könnten die weitreichenden Wechsel-

wirkungen zwischen Rydberg-Atomen zu den beobachteten Effekten führen, zum anderen

könnten aber auch geladene Teilchen und ionisation für die Phänomene verantwortlich

sein.

Diese Dissertation

Das Ziel dieser Dissertation ist es zu klären, welche der beiden konkurrierenden Hypothe-

sen die tatsächliche Erklärung für das Auftreten der optischen Bistabilität in thermischen

Rydberg-Gasen liefert. Dazu haben wir eine experimentelle Studie durchgeführt, die emp-

findlich für den zugrunde liegenden Mechanismus ist. Im ersten Experiment dieser Studie

messen wir die elektrischen Felder, die gemeinsam mit der Bistabilität in der Dampfzelle

auftreten, durch eine zweite Spektroskopie. Dafür nutzen wir aus, dass Rubidium typi-

scherweise in zwei natürlich vorkommenden Isotopen vorliegt: in 85Rb-Atomen erzeugen

wir durch die Anregungslaser eine bistabile Situation, mit den 87Rb-Atomen messen wir

unabhängig, gleichzeitig und in demselben Volumen der Zelle die auftretenden Wechsel-

wirkungen. Im zweiten Experiment addressieren wir verschiedene Rydberg-Zustände, die

mit unterschiedlichen Vorzeichen auf elektrische Felder reagieren. Wir schließen aus den

Messungen, dass in der Tat elektrische Felder, und somit Ionisation von Rydberg-Atomen,

und nicht Rydberg-Rydberg-Wechselwirkungen für das Auftreten der Bistabilität verant-

wortlich sind.

In einer auf den Ergebnissen der ersten Studie aufbauenden Untersuchung zeigen wir an-

schließend, dass die ionisierten Atome und freien Elektronen ein Plasma bilden. Die Fluo-

reszenz, die bei der Rekombination zu neutralen Atomen emittiert wird, bietet ausserdem

ein interessantes Werkzeug zur weiteren Charakterisierung des bistabilen Systems. Die ge-

wonnenen Erkenntnisse lassen wir in ein umfassendes Simulations-Modell einfließen, wel-

ches uns erlaubt, die gemessenen Fluoreszenzspektren mit erbaulicher Übereinstimmung

zu reproduzieren.
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Die Ionisation von Rydberg-Atomen könnte in einer Vielzahl von Experimenten mit ther-

mischen Dampfzellen eine wichtige Rolle spielen. Mit dieser Dissertation zeigen wir auf,

dass bei der Konzeption und Umsetzung derartiger Experimente verstärkt darauf geachtet

werden muss, in einem Parameter-Regime zu arbeiten, bei dem unerwünschte Ionisation

zweifelsfrei ausgeschlossen werden kann. Dies gilt insbesondere für Messmethoden für

Mikrowellen- und Terahertzstrahlung, die auf eine Rückführbarkeit auf SI-Basiseinheiten

abzielen. Andernfalls könnten durch die auftretenden Felder die Messungen verfälscht,

oder falsche physikalische Rückschlüsse gezogen werden. Mit einer wachsenden Zahl von

Experimenten mit Rydberg-Atomen in thermischen Dampfzellen weltweit ist dies weiter-

hin ein aktuelles Thema in der Forschung.
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Introduction

Rydberg atoms are highly excited atoms and well-known due to their extraordinary prop-

erties, such as a remarkable sensitivity to electric fields and strong Rydberg-Rydberg

interactions which are effective up to distances in the micrometer range. What makes

these atoms interesting for potential applications is the possibility to fine-tune their

properties, simply by choosing different Rydberg states, or applying electric or mag-

netic fields. A variety of studies of collective phenomena was motivated by the strong

long-range interactions between Rydberg atoms, and applications with strongly corre-

lated atomic clouds are being proposed. Among some of the most prominent milestones

in the field of Rydberg atoms ultracold systems are quantum gates [1, 2], quantum phase

transitions [3, 4], optical non-linearities on the single photon level [5–9], beyond two-

body interactions [10], excitation transfer [11, 12], aggregation of excitations [13–15] and

ultralong-range molecules [16, 17].

More recently, when scientists have realized the potential that vapor cells can provide,

the study of Rydberg atoms in thermal vapors was understood to enrich the spectrum of

research topics in atomic physics. In these vapors, much larger atom numbers and higher

densities compared to ultracold gases can be achieved. Besides this, hot vapor spec-

troscopy requires far less technical overhead, as it does not require inconvenient prepa-

ration steps such as laser and evaporative cooling. Thermal vapors also allows to work

at high bandwidths and fast timescales, which brings this technology a step closer to

real world applications. Examples of highly promising areas of research in the field of

Rydberg physics are electric field and terahertz sensing [18, 19], and deterministic single

photon sources [20]. Other applications that are already mature are magnetometry [21]

or microelectromechanically engineered atomic clocks [22].

One peculiar topic in atomic physics we want to highlight here is the effect of superradi-

ance [23], a phenomenon of collective spontaneous emission. Particularly with Rydberg

states, the transition wavelength between energetically closely lying energy levels can eas-

ily exceed the inter-particle distance in an ensemble of excited atoms. As a consequence,

the decay dynamics of each single atoms is altered by stimulated emission due to decay

processes anywhere in the ensemble.

Exploiting superradiance is thought of as a candidate for the design of coherent microwave

sources in frequency regimes which are still inaccessible for commercially available mi-

crowave radiation sources [24, 25]. It is also conceivable that in a future vision of Rydberg

based quantum networks [26, 27], nodes of such a system communicate via microwave ra-

diation, where the wavelength matches the transitions between different Rydberg states.
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Being able to control and manipulate these radiation modes is therefore a desirable goal.

Research in this field has been very active since the seventies [28], and first successful

demonstrations of controlled microwave transitions followed soon after [29, 30]. Super-

radiance was also observed in systems of ultracold atoms [31], but just with the recent

discovery in thermal vapor [32] another important step towards applicability has been

indicated.

Superradiance and optical bistability

The main subject of reference [32] is the phenomenon of intrinsic optical bistability in ther-

mal Rydberg vapor. In the often-cited manuscript, the authors describe a non-equilibrium

phase transition “between states of low and high Rydberg occupancy”, which is “induced

by resonant dipole-dipole interactions between Rydberg atoms”. In context with the emer-

gence of a hysteresis in the transmission spectrum in a three-photon excitation scheme,

the authors show that the fluorescence spectra from the vapor significantly differ for the

bistable phases of low and high Rydberg occupancy. For low occupancy, only the direct

decays of the addressed Rydberg level and its neighboring states to the lowest possible

states show up in the spectrum. For high occupancy, the picture is completely different:

here, a broad range of lines is visible, that can be identified as the manifold of the lower

lying transitions. It appears as if the addressed Rydberg state has decayed downwards in

a cascade [33], and thus populated the lower lying energy levels which then subsequently

fluoresce. The authors of [32] conclude: “The atomic emission spectrum of the phase

with high Rydberg occupancy provides evidence for a superradiant cascade”. In light of

these interesting results, further research was also commenced at our institute [34]. The

characteristic threshold behavior that connects the phenomenon of optical bistability to

the emergence of superradiance was indeed experimentally observed, however, it could

not be reproduced in simulations.

Rydberg ionization

Along with the extraordinary properties that distinguish Rydberg atoms, the probability

to separate the excited electron from its ionic core is non-negligible. Especially in ther-

mal vapors, collision events lead to ionization of Rydberg atoms [35]. Indications for the

influence of electric fields in a vapor cell Rydberg experiment can already be found in

reference [36]. Later on, an electrical readout measurement of the ionization current [38]

has been developed into a promising method to detect very low concentrations of specific

atoms or molecules [39, 40]. It is standing to reason that high densities of Rydberg atoms

contribute to significant densities of charged particles,i.e., ions and electrons. The mecha-

nism that is responsible for the emergence of bistability and superradiance as discussed in

the previous paragraph has therefore been controversial: charged particles and long-range

Rydberg atom interactions can, in principle, both lead to the observed behavior.
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This thesis

With the research conducted in this thesis, we aim to resolve the controversy of the

physics behind the observed optical bistability in thermal Rydberg vapor. We present an

experimental study that is directly sensitive to the underlying mechanism that allows us to

discriminate between charged particles on the one hand and dipolar Rydberg interactions

on the other hand. In our first experiment, we directly measure the electric field in a

bistable situation with a two-species spectroscopy, thereby exploiting the availability of

the two natural abundant isotopes of rubidium. In a second experiment, we make use

of the different signs of the polarizability for different angular momentum states. Both

these experiments allow us to rule out Rydberg-Rydberg interactions and support our

hypothesis of a charge-induced bistability.

In a second experimental study, we demonstrate that the vapor of charged particles re-

lated to the bistability shows the characteristics of a plasma. With several measurements

of the fluorescence, which apparently stems from the recombination of ions and elec-

trons, we further characterize the threshold behavior of the system. We presume that the

mechanism which contributes to this plasma formation is that inelastic, ionizing collisions

between Rydberg atoms and ground-state atoms create an initial concentration of charged

particles in the vapor. As a secondary step, the electrons produced by the ionization of

the Rydberg atoms then become an additional source for collisions with Rydberg atoms,

and so the plasma is formed.

Our experiments are completed by a numerical model of the atom-plasma-laser system,

which produces simulated fluorescence spectra that match the measured data remark-

ably.

Structure of the thesis

This thesis is organized as follows. The first part is dedicated to lay out the fundamental

framework, on which the description and insight on physical coherencies is based. Chap-

ter 1 covers the interaction between atoms and light, then chap. 2 discusses the specifics

of Rydberg atoms. Since Rydberg atoms are easily ionized, chap. 3 details properties of

a plasma. A formalized description of the bistability in the context of the thesis is given

in chap. 4.

In the second part, we show that intrinsic optical bistability can also be observed in a two-

photon excitation scheme and with both rubidium or cesium atoms. We demonstrate that

the sign of the interaction coincides with the sign of the polarizability. Two complementary

experimental setups, aimed at discerning between Rydberg-Rydberg interactions and a

charge-induced optical bistability, are laid out in chap. 6, followed by a discussion of the

results in chap. 7.

7
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The third part takes up upon the new insight: Charges being present suggests that

the vapor could reveal plasma properties. Chapter 10 explains the experiment that was

drafted to measure the plasma frequency, and to gain further insights into the interplay

between thermal Rydberg gases and plasmas. In the discussing chapter, chap. 11, our

picture of the optical bistability mechanism is explained.

Based on our understanding of the bistability in thermal Rydberg vapor, we developed a

numerical model that simulates the atom-light interaction in conjunction with the appear-

ing of a plasma. The building blocks of the simulation reflect the microscopic picture of the

underlying mechanisms. The algorithm is described in part IV, chap. 14, followed by the

discussion of results and a comparison to the experimental measurements in chap. 15.

Finally, the thesis concludes with a summarizing discussion and implications on past and

future experiments that are based on Rydberg atoms in thermal vapor cells.

8



Part I

Theoretical Concepts





1 Atom-light interaction

The interaction between atoms and light has been intensively studied for several decades

and different ways to mathematically describe the mutual influence have emerged [41–

44]. A suitable formalism is essential in order to develop a fundamental understanding

of the physical processes in an atomic physics experiment. It also provides a basis for

numerical studies that complement measurement data and analysis with a quantitative

evaluation.

In this chapter, we present the underlying framework that is necessary to comprehend the

research and numerical modeling conducted in this thesis. We rely on a semi-classical pic-

ture, in which the atom is treated quantum-mechanically, while the light field is described

by classical plane waves.

1.1 Quantum mechanical description

In general, the total Hamiltonian of an interacting atom-light system consists of the

atomic Hamiltonian Ha, the operator for the electromagnetic field Hl, and a term Hint,

which encapsulates the interaction between the two. When semi-classical treatment of

the atom-light interaction is sufficient, i.e., the quantum-nature of the light-field can be

neglected, the Hamiltonian of the interacting system simplifies to

H = Ha + Hint. (1.1)

The complicated electronic structure of an atom can often be represented by only a subset

of its energy levels, which then are coupled by near-resonant light fields. The atomic state

of an n-level system1 in this picture is given by

|Ψ(t)〉 =
n
∑

i=1

ci(t) |i〉 . (1.2)

The coefficients ci(t) determine the contribution of each energy eigenstate |i〉 to the overall

state of the system for each time t. The bare atomic Hamiltonian is hence given by

Ha =
∑

i

~ωi |i〉〈i| , (1.3)

1For the rest of the chapter, we omit the summation limits, implying that summation is carried out over
the subset of n energy levels, with restrictions as indicated.
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Chapter 1. Atom-light interaction

where the energy of the state |i〉 is given by ~ωi. For the interaction Hamiltonian Hint, we

assume that within the system, each pair of states |i〉 → |j〉 are coupled by a plane-wave,

monochromatic, near resonant light field, given by

Eij =
1

2
E0,ij ǫ̂ij

(

eiωijt + e−iωijt
)

. (1.4)

Here, E0,ij is the electric field amplitude of the electromagnetic wave, polarized in the

direction of the normalized vector ǫ̂ij . Due to the large wavelength compared to the

size of the atoms, we neglect the spatial dependence of the light-field, and apply the

dipole-approximation. The interaction Hamiltonian thus reads

Hint = −d · E, (1.5)

where d is the atomic dipole operator, and E is the total electric field. We can write

Hint =
∑

i6=j

~Ωij

2

(

eiωijt + e−iωijt
)

|i〉〈j| , (1.6)

by introducing the Rabi frequency

Ωij = −E0,ij

~
〈i|d · ǫ̂ij |j〉 (1.7)

for the coupling between the levels |i〉 and |j〉. The strength of the coupling (cf. sec. 1.5)

is determined by the electromagnetic field amplitude and the dipole matrix element

dij = 〈i|d · ǫ̂ij|j〉 , (1.8)

specific to the transition.

1.2 Density matrix formalism

A convenient way to implement the actual calculation of such atomic systems is the density

matrix approach: The atomic state of the system is expressed in terms of a matrix

ρ = |Ψ〉〈Ψ| , (1.9)

with the following properties. The population of the states, |i〉, are given by the diagonal

elements ρii, while the off-diagonal entries, ρij , represent the coherences between states

|i〉 and |j〉. The density matrix is Hermitian, ρ† = ρ, and since the overall population

is conserved and normalized, Tr ρ = 1. Overall, an n-level system is represented by

12



1.3. Dissipation and inhomogeneous effects

n (n + 1) /2− 1 independent components: n (n− 1) complex coherence values and n− 1

real valued populations.

In comparison to the state representation, eq. (1.2), using the density matrix formalism

allows us to include dissipative processes, such as spontaneous decay and dephasing.

Also, ensembles of atoms can be properly described, e.g., when modeling the thermal

distribution of atoms with different velocities, as an ensemble average of several density

matrices.

The time evolution of the density matrix (this can be directly derived from Schrödinger’s

equation [45]) is given by the master equation

∂ρ

∂t
= − i

~
[H, ρ] + L(ρ), (1.10)

known as Liouville-von Neumann equation. The details of the additional Lindblad oper-

ator L(ρ) that accounts for dissipation in the system are discussed in the next section.

1.3 Dissipation and inhomogeneous effects

In an actual experimental scenario effects that perturb the coherent evolution of an atom

can never be fully avoided. At the very least, coupling to vacuum fluctuations contributes

significantly to the decoherence, in terms of the natural life time of an excited state. Thus,

the oscillatory motion of the atomic system gets damped and the resonance linewidth is

broadened.

We distinguish between homogeneous and inhomogeneous effects. Homogeneous effects

act equally on all atoms of an ensemble, and can be described by a Lindblad operator

as follows in this section. In the inhomogeneous case, different atoms of an ensemble are

affected differently, e.g., the Doppler effect leads to different detunings within a veloc-

ity distribution. In sec. 1.8, we introduce homogeneous and inhomogeneous broadening

mechanisms that originate from the atomic motion in the vapor.

1.3.1 Lindblad operator

Homogeneous dissipative processes can be classified as one of two groups. On the one

hand, in decay processes, population is being transferred from one state to another in

a non-energy-conserving manner; the energy is lost from the atomic system, e.g., due to

radiated photons or transformed into kinetic energy in a collision. On the other hand,

dephasing mechanisms are energy conserving, but de-synchronize the atomic phase with

the driving light field.
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Chapter 1. Atom-light interaction

We can write the Lindblad operator as the sum of decay and dephasing processes,

L(ρ) = Ldecay(ρ) + Ldeph(ρ). (1.11)

The decay hereby contributes as

Ldecay(ρ) =
∑

i,j

Γij

(

CijρC†
ij −

1

2

(

C†
ijCijρ + ρC†

ijCij

)

)

, (1.12)

where Cij = |j〉〈i| is the transition operator. The decay from state |i〉 to |j〉 is given by

the rate Γij . Alternatively, we can rewrite eq. (1.12) into

Ldecay(ρ) =
∑

i,j

(Γjiρjj − Γijρii) |i〉〈i| (1.13)

− 1

2

∑

i6=j

(

∑

k

Γik + Γjk

)

ρij |i〉〈j| . (1.14)

In this form, the first sum describes the change of diagonal entries in the density matrix,

while the second term accounts for the loss of coherences due to that change (increase as

well as decrease) of population.

The dephasing operator is given by

Ldeph(ρ) = −1

2

∑

i6=j

γijCiiρCjj (1.15)

= −1

2

∑

i6=j

γijρij |i〉〈j| , (1.16)

with dephasing rates γij = γji of the coherence between the states |i〉 and |j〉.

1.3.2 Ensemble average

Inhomogeneous effects are processes that make the interaction with light distinguishable

for different atoms in an ensemble. In contrast to the homogeneous case, the underlying

processes here depend on the individual atomic characteristics (e.g., position, velocity,

distance to neighboring atoms) but do not cause intrinsic decoherence on the single atom

level. The observable properties of the whole atomic ensemble is determined by the

joined contribution of each individual atom. Due to the probabilistic distribution of

the corresponding parameter, this can cause an effective decoherence in the ensemble

average.
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Let X be the parameter of interest, following the normalized probability distribution

p(X). The density matrix ρ(t, X) is determined by solving the master equation, eq. (1.10),

independently for each value of X. The ensemble average is then calculated from

ρ (t) =
∫

dXρ (t, X) p (X) . (1.17)

1.4 Rotating wave approximation

The connection between the Hamiltonian and the laser field, eq. (1.6), leads to fast oscillat-

ing terms in the master equation, eq. (1.10). Typically, the time scales of these oscillations

are much shorter than the actual relevant time evolution of the atomic system. It is con-

venient to eliminate the fast rotating terms in the master equation, by transforming the

system to an alternative reference frame, that oscillates with a frequency depending on

the light fields. We define the unitary transformation operator

U =
∑

i

eiηit |i〉〈i| , (1.18)

which transforms each energy level individually. We assume that each energy level of the

atomic system is reached by a specific excitation path, starting from the ground state.

The reference frames then oscillates with a combined frequency ηi of the photons involved

to reach each level |i〉. For ladder schemes, as relevant to this thesis, we can simplify the

general expression for ηi to

ηi =
∑

j<i

ωij. (1.19)

Under these definitions, the density matrix is transformed according to

ρ̃ = U †ρU, (1.20)

and the new Hamiltonian becomes

H̃ ′ = U †HU − i~U † ∂U

∂t
. (1.21)

The components of the interaction Hamiltonian in the rotating frame are thus given by

(

U †HintU
)

ij
= −d · ǫ̂ij

2
E0,ij

(

1 + e−2iωijt
)

, (1.22)
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The terms oscillating at twice the frequency of the light fields can now be neglected, as

they average to zero on the timescale relevant to the coherent dynamics. In this rotating

wave approximation, the Hamiltonian is finally given by

H̃int =
∑

i6=j

~Ωij

2
|i〉〈j| . (1.23)

The Liouville-von Neumann equation is also valid in the rotating frame approximation;

the Lindblad operator L(ρ) simply needs to be replaced by L(ρ̃). Typically, the energy

scale is offset to the ground state energy. The atomic Hamiltonian, eq. (1.3), becomes

H̃a =
∑

i>1

∆1i |i〉〈i| . (1.24)

1.5 Transition dipole moments

The Rabi frequency Ω, as introduced in eq. (1.7), quantifies the laser induced coupling

between two specific states of an n-level system. In reality, the atomic levels are degen-

erate, and comprise, at least, of the magnetic sub-levels, mF. In case of the Rydberg

energy levels, already the hyperfine structure due to the total angular momentum F is

not resolved anymore. Depending on the polarization q of the light field, the coupling to

the different sub-levels is different, which reflects in

Ωij = −E0,ij

~
〈F, mF|d · ǫ̂ij |F ′, m′

F〉 . (1.25)

Usually, the middle term d · ǫ̂ij is expressed in the components rq of r in the spherical

basis. This results in d · ǫ̂ij = erq ≡ dq, where q = 0,±1 for π and σ∓ polarized light,

respectively. The Wigner-Eckart theorem allows Ωij to be factored into an angular part

containing a Wigner 3-j symbol, and an angular independent term, which is the reduced

dipole matrix element [46]

〈F, mF|dq|F ′, m′
F〉 = 〈F |er|F ′〉 (−1)F ′−1+mF

√
2F + 1

(

F ′ 1 F

m′
F q −mF

)

. (1.26)

The matrix element in this equation further reduces according to

〈F |er|F ′〉 = 〈J |er|J ′〉 (−1)F ′+J+1+I
√

(2F ′ + 1)(2J + 1)

{

J J ′ 1

F ′ F I

}

, (1.27)

with the Wigner 6-j symbol and the nuclear spin I.
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Modeling multi-level atomic structures in a simplified two-level or three-level picture

makes compromises at some points inevitable. Although the hyperfine splitting of the

cesium and rubidium ground states would, in principle, be large enough to lift the F

degeneracy, we strictly calculate Rabi frequencies for all transitions in the |J, mJ〉-basis.

Because all beams are linearly polarized and propagate parallel to each other, we define

the quantization axis such that q = 0. As a consequence, only transitions with ∆m = 0

are dipole-allowed. Since the ground-state is an S-state with mJ = ±1/2, this implies that

only the Rydberg states with m′
J = ±1/2 are directly addressed—except when electric

fields are present, and dipole selection rules are suspended due to admixture of different

states.

The electric field amplitude Emax is determined by converting the total power P of a laser

with a waist w into the maximum intensity

Imax =
2P

πw2
(1.28)

at the center of the beam. The Rabi frequency is then calculated with

Emax =

√

2Imax

cǫ0
. (1.29)

Following this convention, the Rabi frequencies can conveniently be calculated using the

software provided in [47]. The input parameters for the command getRabiFrequency are

the states in question, beam diameter, and laser power; the return value is the peak Rabi

frequency in the |J, mJ〉-basis, for the transition from |J1, mJ1〉 to |J2, mJ2〉:

Ω =
|E|
~
· d0 (−1)J1−mJ1

(

J1 1 J2

mJ1 −q mJ2

)

, (1.30)

with the reduced dipole matrix element

d0 = 〈J1|r · ǫ̂|J2〉 . (1.31)

1.6 Absorption

The propagation of light through a medium is described by Maxwell’s equations. For

atomic vapors, the Liouville-von Neumann equation supplements the set of equations

describing the propagation of electromagnetic waves with the atomic response. The link

between the classical wave equation [44],

(

∂2

∂z2
− 1

c2

∂2

∂t2

)

Eij(z, t) =
1

ǫ0c2

∂2

∂t2
Pij(z, t), (1.32)
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Chapter 1. Atom-light interaction

and the quantized description of the atomic medium through which it propagates, proceeds

via the polarization:

P = N 〈d〉 = N Tr ρ (d · ǫ̂ij) . (1.33)

The dipole, as a quantity used in both classical and quantum mechanics allows us to

calculate the response of the atoms in both cases. On the one hand, the polarization P is

given by the mean dipole density 〈d〉, in a medium of (atomic) density N . On the other

hand, in the operator based formalism, the corresponding value is obtained by tracing

the density matrix times the dipole matrix element. Evaluating the latter, again in the

rotating frame, yields

Tr ρ (d · ǫ̂ij) = ρijdji + ρjidij

= ρ̃ijdjie
i(ωijt−kijz) + ρ̃jidije

−i(ωijt−kijz).
(1.34)

The oscillating nature of the polarization justifies the ansatz of a plane wave,

Pij(z, t) =
1

2

(

P0,ij(z, t)ei(ωijt−kijz) + P∗
0,ij(z, t)e−i(ωijt−kijz)

)

. (1.35)

which is substituted into eq. (1.33). It appears beneficial to recast into a co-moving refer-

ence frame (ζ, τ), defined as ζ = z and τ = t− z/c. Applying the slowly varying envelope

approximation (i.e., the envelopes of the electric field, E0,ij(ζ, τ), and the polarization,

P0,ij(ζ, τ), vary slowly with respect to the oscillating terms) reduces the second order

differential equation, eq. (1.33), to a first order equation:

∂

∂ζ
E0,ij(ζ, τ) = − iωij

2ǫ0c
P0,ij(ζ, τ). (1.36)

Summarizing eqs. (1.34), (1.35) and (1.36) yields the relation between electric field and

density matrix
∂

∂ζ
E0,ij(ζ, τ) = i

ωijNdij

ǫ0c
ρ̃ij(ζ, τ). (1.37)

The interplay between Rabi frequency and density matrix therefore follows

∂

∂ζ
Ωij(ζ, τ) = i

ωijN|dij|2
ǫ0~c

ρ̃ij(ζ, τ). (1.38)

1.6.1 Beer-Lambert law

The experimentally accessible quantity of a laser beam traveling through an ensemble of

atoms is the intensity,

Iij =
ǫ0c

2
EijE∗

ij, (1.39)

18



1.6. Absorption

for which according to eq. (1.38) holds

∂

∂ζ
Iij(ζ, τ) = −N~ωij Im(Ωij(ζ, τ)∗ρ̃ij(ζ, τ)). (1.40)

For the special case of a weak light field and steady state conditions (i.e., Ωij ≪ Γij ,

Ωij(ζ, τ) = Ωij(ζ) ∈ R), we can derive an analytic solution for the absorption. The

coherence in this case is proportional to the Rabi frequency [48],

ρ̃ij ∝ Ωij , (1.41)

and therefore eq. (1.40) becomes

∂

∂ζ
Iij(ζ) ∝ −|Ωij(ζ)|2 Im

(

ρ̃ij(ζ)

Ωij(ζ)

)

= −αIij(ζ)

, (1.42)

introducing the absorption coefficient, α, which is characteristic of the atomic system

with respect to the addressed transition. It is noteworthy that α ∝ Im (ρij(t)), meaning

that the change in intensity, the amount of absorption is reflected in the (imaginary part)

of the coherence ρ̃ij . The integration of eq. (1.42) along the path of length l gives the

well-known Beer-Lambert formula

I(l) = I(0)e−αl. (1.43)
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1.7 Excitation schemes

1.7.1 Two-level system

|1〉

|2〉

Ω12

∆12

Γ21

γ21

Figure 1.1: Diagram
of the two-level sys-
tem.

As an illustration of the rotating wave approximation, and as a

basis for further concepts discussed in this thesis, we want to con-

sider the simplified case of a two-level system which is exposed to

a single, near resonant laser field. The ground state, |1〉, and the

excited state, |2〉, are separated in energy by ~ω2. Given the laser

frequency, ω12, we can write the Hamiltonian of the system as

H = Ha +Hint = ~ω2 |2〉〈2|+
~Ω12

2

(

eiω12t + e−iω12t
)

(|2〉〈1|+ |1〉〈2|).
(1.44)

Here, the Rabi frequency is assumed to be real, and the energy of

the ground state is offset to zero. By transforming into the rotating frame according to

eq. (1.22), we obtain

H̃ ′ = ~ (ω2 − ω12) |2〉〈2|+ ~Ω12

2

[(

1 + e−2iω12t
)

|1〉〈2|+
(

1 + e+2iω12t
)

|2〉〈1|
]

. (1.45)

The terms oscillating with ±2ω21 are now neglected according to the rotating wave ap-

proximation. For convenience, we define the laser detuning with respect to the atomic

level(s) as

∆ij = ωij − ωj. (1.46)

We obtain the two-level Hamiltonian

H̃ = −~∆12 |2〉〈2|+
~Ω21

2
(|2〉〈1|+ |1〉〈2|) . (1.47)

The Lindblad operator is given accordingly by

L(ρ̃) = Γ21ρ̃22 (|1〉〈1| − |2〉〈2|)− Γ21 + γ21

2
(|2〉〈1|+ |1〉〈2|) , (1.48)

for a decay rate of the excited state |2〉 of Γ21 and a dephasing rate γ21.

Steady state solution

The time evolution of the two-level system—as well as in principle any arbitrary level

configuration—can be calculated by integrating the set of coupled equations that originate
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1.7. Excitation schemes

from the Liouville-von Neumann equation, eq. (1.10). For the two-level system, we require

only two defining equations,

∂

∂t
ρ̃12 =

(

−Γ21 + γ21

2
− i∆12

)

ρ̃12 −
i

2
(ρ̃22 − ρ̃11) Ω12, (1.49)

∂

∂t
ρ̃22 = Im(ρ̃12Ω∗

12)− Γ21ρ̃22. (1.50)

The evolution of this system is well known from introductory textbooks. In the context

of this thesis, it is noteworthy that, due to the dissipation, the oscillations between state

|1〉 and |2〉 are damped out, and the system eventually reaches an equilibrium state. In

many continuous-wave laser experiments, the actual atomic dynamics are of less interest,

but only the steady state solution to the Liouville-von Neumann equation,

0
!

=
∂ρ̃

∂t
= − i

~
[H, ρ̃] + L(ρ̃), (1.51)

is of practical relevance. The resulting system of equations with boundary condition

Tr ρ
!

= 1 can be solved analytically. Under the assumption of negligible dephasing (γ21 ≪
Γ21) we obtain

ρ̃12 =
(iΓ21+2∆12)Ω21/4

∆2
12 + Ω2

12/2 + Γ2
21/4

, (1.52)

and

ρ̃22 =
Ω2

12/4

∆2
12 + Ω2

12/2 + Γ2
21/4

. (1.53)

Absorption

The absorption coefficient of a two-level system is given by the expression [49]

αn=2 =
2Nω12

ǫ0E0,12c
d12 Im ρ̃21. (1.54)

With the steady state solution for ρ̃12, this yields

αn=2 =
2Nω12

ǫ0E0,12c
d12

Ω12Γ21

2Ω2
12 + 4∆2

12 + Γ2
21

. (1.55)

The absorptive profile as a function of the detuning ∆12 is hence given by a Lorentzian

lineshape.
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Saturation

The width of the Lorentzian absorption profile, eq. (1.55), is determined by

Γ′ = Γ21

√

√

√

√1 +
2Ω2

12

Γ2
21

. (1.56)

This motivates to define the saturation intensity for the transition such that

I

Isat
=

2Ω2
12

Γ2
21

⇒ Isat =
~c ǫ0Γ

2
21

4|d12|2
. (1.57)

It is apparent that for intensities much lower than the saturation intensity, I ≪ Isat, the

width Γ′ of the absorption profile is determined only by Γ21, and the absorption coefficient,

α, is independent of the intensity. For higher intensities, the profile is power-broadened,

and the linewidth is increased. Further, α depends on the intensity, and therefore the

Beer-Lambert law is not valid. The effective absorption decreases in comparison to the

non-saturated case.

1.7.2 Three-level ladder system

Rydberg states in alkali vapors (cf. chap. 2) can in principle be addressed in a single

excitation step. The required ultraviolet wavelengths are accessible nowadays, even in

commercially available laser systems. Using a two-photon ladder scheme, however, bears

several experimental and conceptual advantages: Due to the intermediate step, the nec-

essary wavelengths are in the visible or near-infrared, and a coupling with high Rabi

frequencies can be achieved. Also, the two independent lasers allow for monitoring the

transmission of one laser, while changing the properties of the second. Lastly, dipole-

selection rules require the additional excitation step if addressing a (Rydberg) S state is

desirable [15, 20]. It is for these reasons that the three-level ladder scheme was chosen

for the work in this thesis. The theoretical description and notations of the excitation

dynamics for a three-level system are provided in this subsection. Afterwards, the effect

of electromagnetically-induced transparency and Autler-Townes splitting is discussed.

A schematic view of the three-level system is shown in fig. 1.2. The system has a ground

state, |1〉, an intermediate state, |2〉, and an excited state, |3〉. In vector notation, we

define the basis of the three states as

|1〉 ≡









1

0

0









|2〉 ≡









0

1

0









|3〉 ≡









0

0

1









. (1.58)
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This sorts the components of the density matrix into the pattern

ρ =









ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33









, (1.59)

of which 6 entries are independent. The states are coupled pairwise by the two light

fields

E12(t) = E12(t)ǫ̂12 =
1

2

(

E0,12 eiω12t + c.c.
)

ǫ̂12 (1.60)

E23(t) = E23(t)ǫ̂23 =
1

2

(

E0,23 eiω23t + c.c.
)

ǫ̂23, (1.61)

whereas the transition from |1〉 to |2〉 is usually referred to as the probe transition, and

the passage from |2〉 to |3〉 represents the coupling transition.

|1〉

|2〉

|3〉

Ω12

Ω23

∆12

∆13

∆23

Γ31

Γ32

Γ21

Figure 1.2: Diagram of the three-level ladder system.

The full Hamiltonian reads

H = H0 + HAL

= ~









0 0 0

0 ω2 0

0 0 ω3









+









0 −d12E12(t) 0

−d21E12(t) 0 −d23E23(t)

0 −d32E23(t) 0









. (1.62)

Transforming into the rotating frame, via

U =









1 0 0

0 e−iω12t 0

0 0 e−i(ω12+ω23)t









, (1.63)
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yields

H̃ = ~









0 1
2
Ω12 0

1
2
Ω∗

12 −∆12
1
2
Ω23

0 1
2
Ω∗

23 −∆12 −∆23









, (1.64)

In analogy to the two-level system, the detunings are defined with respect to the energy

levels, eq. (1.46). The Rabi frequencies are defined in eq. (1.7).

Figure 1.2 also indicates the decay channels. According to eqs. (1.12) and (1.16), the

Lindblad operator consists of

Ldecay(ρ̃) =









Γ21ρ̃22 + Γ31ρ̃33 −1
2
Γ21ρ̃12 −1

2
Γ31ρ̃13

−1
2
Γ21ρ̃21 −Γ21ρ̃22 + Γ32ρ̃33 −1

2
(Γ21 + Γ31 + Γ32)ρ̃23

−1
2
Γ31ρ̃31 −1

2
(Γ21 + Γ32 + Γ31)ρ̃32 −(Γ31 + Γ32)ρ̃33









(1.65)

and

Ldeph(ρ̃) =









0 −1
2
γ12ρ̃12 −1

2
γ13ρ̃13

−1
2
γ21ρ̃21 0 −1

2
γ23ρ̃23

−1
2
γ31ρ̃31 −1

2
γ32ρ̃32 0









, (1.66)

respectively.

Electromagnetically-induced transparency

Electromagnetically-induced transparency (EIT) describes an effect that can occur in

atomic systems with more than two energy levels. By coupling one of the involved levels

to a third, an atomic transition between two states becomes transparent for a resonant,

and therefore otherwise absorbed light field [50].

EIT spectroscopy involving Rydberg atoms has become a versatile tool for diverse ap-

plications: due to the longevity of these states, concise measurements of broadening

mechanisms are feasible. For example, some protocols for microwave sensing [51] rely on

precise spectra resolving the Autler-Townes splitting [52] of the Rydberg state.

In relevance for this thesis, measuring the resonance position of the additional transition

allows for conclusions on energy shifting interactions. We exclusively study 3-level ladder

systems, where we tune the first laser on resonance to the transition from the ground-state

to an intermediate state, while sweeping the second laser detuning across the two-photon

resonance position with a Rydberg state. By measuring the transmission signal of the

first laser with a photo-diode, a transparency peak at an otherwise flat background is

obtained. The spectral position is then compared to a corresponding reference setup.
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1.8. Motional effects

1.8 Motional effects

The experiments in this thesis are conducted in vapor cells, with an atomic gas that is

held at room temperature or above. A typical range is T = 300 to 400 K. In contrast to

ultracold atoms experiments T . 100 µK, where the temperature of a cloud of particles is

reduced by a variety of elaborate procedures, vapor cell experiments comprise the velocity

as an integral part. In this section, the three main motional broadening effects, Doppler,

transit time and collisions, are described.

An exception to this is the so-called frozen gas [53–55], a regime where excitation band-

widths and timescales allow a treatment of the system, as if the atomic motion was

effectively suspended.

1.8.1 Doppler broadening

In a thermal ensemble, the velocity of the atoms is given by the Maxwell-Boltzmann

distribution. The obvious candidate for an inhomogeneous broadening mechanism is

therefore due to the Doppler effect: The absorption frequency for each atom moving at

different velocities v is shifted to

ω′
ij = ωij − kij · v, (1.67)

when kij is the wave vector of the light field. This affects a shift of the detunings in the

Hamiltonian, eqs. (1.47,1.64),

∆ij(v) = ∆ij − kij · v, (1.68)

with respect to the detuning of the light field in the laboratory frame. In the case of

a single laser beam, or all wave-vectors kij being oriented in parallel, only the velocity

component in beam direction is relevant. The Doppler average of such Gaussian ensemble

is then

ρ(∆) =

√

m

2πkBT

∞
∫

−∞

dv ρ(∆, v) e
− mv2

2kBT , (1.69)

where kB is the Boltzmann constant, m the mass of the particles, and

δD =

√

8 ln 2 · kBT

m
(1.70)

the full width at half maximum of the velocity distribution. As an example, the Doppler

averaged absorption profile in the two level atom, eq. (1.55), becomes the convolution of
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Chapter 1. Atom-light interaction

a Lorentzian curve and a Doppler profile. The result is a Voigt profile [56], with a width

of

δV =
√

Γ2 + δ2
D. (1.71)

For experiments applying spectroscopy in thermal vapor, this effect is typically the dom-

inant contribution to the overall line width. In multi-photon excitation schemes, the

Doppler broadening can be diminished by using a suitable geometry of the laser beams.

For two lasers, this requires co- or counter-propagating beams [57], using three or more

transitions also allows for more elaborate geometric configurations [58]. A lower boundary

for resonant excitation schemes is imposed by the residual Doppler width [59],

δD,res =
n−1
∑

i=2

ki,i+1 ·
Γ21

k12
, (1.72)

as a result of the wave vector mismatch [60]. In this simplified picture with co-linear

lasers, the transition to the first intermediate state selects a velocity band from which on

atoms further interact with the light field.

1.8.2 Transit time broadening

In a typical vapor cell experiment, the beam diameters of the interrogating laser beams

are smaller than the lateral confinement due to the cell walls. Hence, the atoms can enter

and leave the laser beam during the interaction with the light field. The timescale of the

dynamics is therefore limited to

τ ∼ D

v
, (1.73)

where D is a measure for the size of the interaction volume, and v the typical velocity of

the atoms,

v =
√

8kBT/(πm). (1.74)

Atoms that enter the laser beams are typically in the ground state, whereas particles that

leave the light field have undergone the excitation dynamics. It is therefore reasonable,

to treat the transit time effects as an effective decay rate,

ΓTT ∼
1

τ
∼ v

D
. (1.75)

As an approximation, the different velocity classes in a thermal ensemble can be repre-

sented by a single effective decay rate. In order to determine a sensible value, the actual

time scales of the excitation dynamics, and the exact geometry of the intensity profiles
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1.8. Motional effects

have to be considered. For Gaussian beams with a waist of w0, a suitable expression for

ΓTT is found [61] by

ΓTT =
1

w0

√
2 log 2

√

8kBT

πm
. (1.76)

1.8.3 Collisional broadening

The event of a collision suddenly disturbs the phase of an atomic wavefunction. As a

consequence of the uncertainty principle, the frequency of the atomic transition in the

time domain is less well defined and thus the spectral width appears broadened. In

general, we distinguish three types of collisions that contribute to the broadening of an

atomic line:

• Inelastic collisions, where the state of the atom is changed, such as n- or l-changing

and also ionizing collisions (cf. sec. 2.4),

• elastic collisions, where the collision partner impacts on the valence electron, and

• collisions with the ionic core.

The most abundant collisions are two-body processes, each occurring between an atom

and a single perturber. The corresponding collision rate, and thus the broadening rate,

is given by

Γ = NP · v · σ, (1.77)

and depends on the density of perturbers, NP, as well as the cross-section of the respective

process. The mean relative velocity between the two collisional partners A and B is given

by

v =

√

8kBT

πµ
, (1.78)

where the reduced mass reads

µ =
mAmB

mA + mB
. (1.79)
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2 Rydberg atoms

When at least one of the electrons of an atom has a large principal quantum number, the

atom is called a Rydberg atom. Although there is no specific threshold for the nomencla-

ture, and no convention what a large principal quantum number is, usually atoms with

n & 15 are labeled in this way. Nevertheless, Rydberg atoms have in common that the

outer electrons orbit the ionic core at large distances. The electrons are therefore only

weakly bound to the nucleus, giving rise to exaggerated properties of Rydberg-excited

atoms, when compared to, e.g., ground state atoms of the same species. In particular,

the energy required to ionize a Rydberg atom—separating the electron from the ionic

core—significantly decreases with higher principal quantum number. In combination with

the exceptionally high sensitivity to electromagnetic fields [62–64], this enables the phe-

nomenon of optical bistability, which is the main subject of this thesis.

In the following chapter, Rydberg atoms and their properties will be introduced. The

energy shifts due to the Stark effect in electric fields will be covered. Finally, we will

discuss the interaction between Rydberg atoms. Since the experiments in this thesis

only rely on the use of alkali vapors, the discussion is restricted to atoms with only one

(excited) valence electron.

2.1 General properties

Rydberg atoms are named in honor of the Swedish scientist Johannes Rydberg [65].

Shortly after its discovery, he generalized Balmer’s observations for hydrogen [66] to the

well known formula
1

λ
= −R∞

(

1

n2
1

− 1

n2
2

)

, (2.1)

where λ is the emitted wavelength of the transition, and n1 and n2 are the principal

quantum numbers of the involved states. Assuming the electron mass to be negligible

in comparison to the mass of the nucleus, the binding energy of a state with principal

quantum number n is simply given by

En = −meq
4
e

8ǫ2
0h2
· 1

n2
= −hc

R∞

n2
, (2.2)

with the Rydberg constant

R∞ =
meq

4
e

8c0ǫ2
0h3

. (2.3)
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The physical constants are defined in the usual notation:

h Planck constant (~ = h/2π),

c0 speed of light ,

ǫ0 vacuum permittivity ,

me mass of an electron and

qe elementary charge .

The probability distribution of the Rydberg electron is (spatially) strongly delocalized

from the inner shells of the atomic structure. The potential of the Z protons in the

nucleus attracting the valence electron is effectively shielded by the Z−1 inner electrons.

This is specially true for high angular momentum states. However, for the low angular

momentum states (l < 4, S, P, D and F states, defect states), the remnant penetration of

the valence electron into the inner shells does have a sizable influence, appearing as a shift

on the energy levels. The effect can elegantly be described by introducing the effective

principal quantum number

n⋆ = n− δnlj, (2.4)

thus maintaining the austere beauty of eq. (2.2). The quantum defect, δnlj, is usually

expressed in a series expansion [67]

δnlj = δlj,0 +
∑

k=2,4,...

δlj,k

(n− δlj,0)
k , (2.5)

and lifts the angular momentum degeneracy of the energy levels. Also considering the

finite mass m+ of the nucleus and the electron, eq. (2.2) becomes

Enlj = −hc
R∞

(1 + me/m+)
· 1

n⋆2
. (2.6)

The Rydberg-Ritz coefficients, (δlj,2k)k∈N
, are usually determined by precision measure-

ments [68–70], individually for each element and for each set of quantum numbers. The

values for the elements and states addressed in the course of this thesis are summarized in

tab. 2.1. It is noteworthy, that for cesium S states, the quantum defect has almost integer

value. Hence, the hydrogen-like high-l manifold energetically lies close to the Rydberg S

states.

state δ0 δ2

85Rb nS1/2 3.131 180 4(10) 0.1784(6)
133Cs nS1/2 4.049 356 65(38) 0.237 703 7

nD5/2 2.466 315 24(63) 0.013 577

Table 2.1: Coefficients for the quantum defects for states addressed in this thesis. Cesium
values are taken from [68], rubidium from [70].
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In a similar fashion to the energy levels, many properties of Rydberg atoms scale with an

integer number power of the effective principal quantum number. The scaling behavior is

shown in tab. 2.2.

property scaling typ. value

binding energy n⋆−2 8.2 meV
level spacing n⋆−3 2π × 102.6 GHz
orbital radius n⋆2 1653 a0

radiative lifetime n⋆3 40.8 µs

dipole moment
〈

7P3/2 |er|nD
〉

n⋆−3/2 0.063 ea0

polarizability n⋆7 2π ×−356 MHz/(V/cm)2

C3 coefficient n⋆4 2π × 2.13 GHz · µm3

C6 coefficient n⋆11 2π × 371 MHz · µm6

Table 2.2: The exaggerated properties of Rydberg atoms scale with effective principal quantum
number n⋆ [27, 71]. Typical values for the Cs 42D5/2, mJ = 1/2 are given as an example. The

pair-interaction of the C3 coefficient is for
∣

∣

∣42D5/2, 42D5/2

〉

→
∣

∣

∣40F7/2, 43P3/2

〉

.

2.2 Stark effect

Analogous to the Zeeman effect in magnetic fields [72, 73], atoms exposed to an electric

field (e.g., the field due to ionized Rydberg atoms) obtain an energy shift called the Stark

effect [74, 75]. Most often, the energy corrections are negligibly small, e.g., the shift for

the rubidium D1 transition [76] is on the order of 2π×60 kHz/(kV/cm)2. Rydberg atoms,

however, are exceptionally sensitive to electric fields. The energy correction to the 41S

state in rubidium [47] amounts to 2π × 12.6 MHz/(V/cm)2. At a distance of 1 µm to one

single ion, this results in a shift of about 2π×1.3 GHz, in this case towards lower energy.

2.2.1 Quadratic Stark effect

The Coulomb force of an electric field E = E ǫ̂, where ǫ̂ is the unit vector defining the

polarization of the field, adds an additional term to the Hamiltonian

HE = −d · E = −E d · ǫ̂, (2.7)

where d = er is the electric dipole operator and r the position operator of the electron

in the potential of the nucleus. The new, shifted states with respect to the unperturbed

energy levels are obtained by diagonalization of the full Hamiltonian

H = Ha + HE , (2.8)
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where Ha is the Hamiltonian of the unperturbed atom, with eigenenergies as given in

eq. (2.6).

For small contributions d · E, the Stark shift for an atom in sublevel k = (n, l, j, m) can

be calculated using second order perturbation theory [77],

EStark,k = −〈k|d̂ · E |k〉+
∑

i6=k

〈k|d̂ · E |i〉〈i| d̂ · E |k〉
Ek − Ei

. (2.9)

Since d·E has odd parity, and for l < 4 the degeneracy of the states is lifted by the quantum

defect, the linear term vanishes, and the energy shift is quadratic in E . Introducing the

polarizability α yields [78]

EStark = −1

2
αE2

= −1

2

(

α0 + α2

[

3m2
J − J(J + 1)

J(2J − 1)

])

E2,
(2.10)

where the total polarizability α consists of the scalar polarizability α0 and a tensor po-

larizability α2, which depends on the total angular momentum J and its projection along

the quantization axis z. For electric fields at an angle to a quantization axis, the term

reads

EStark = −1

2
α0E

2 +−1

2
α2

[

3m2
J − J(J + 1)

J(2J − 1)

]

3E2
z − E

2

2
. (2.11)

For alkali S states, the angular dependence vanishes because the second term is zero for

J = |mJ| = 1/2. The Stark shift is hence characterized by the scalar polarizability [79],

until level crossings and coupling to neighboring states perturb the quadratic trend.

2.2.2 Stark maps

For larger fields, the perturbative approach is not justified anymore, thus, the diagonal-

ization of the Hamiltonian has to be carried out. Depending on the state in question,

several hundreds of energy levels have to be included in the calculation. Powerful software

packages exist, that enable such computations with ease [47, 80]. Usually, constructing

the matrix of the Hamiltonian is followed by numerical diagonalization for a whole series

of different electric field strengths. This results in the typical representation as a Stark

map, an example of which is shown in fig. 2.1.
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Figure 2.1: Calculated Stark maps for rubidium S states, using [80]. Notice the different range
of electric fields for n = 32 (left) and n = 41 (right) due to the strong n-scaling of the
polarizability. For the 41S1/2 state, level crossings with the hydrogenic manifold (straight
lines) and neighboring P, D and F states are visible. The overlap with the unperturbed states
is displayed in the color map.

2.3 Rydberg-Rydberg interactions

Rydberg interactions are one of the most well-studied fields in physics, which has awakened

interest in the scientific community for several decades [16, 20, 51, 81–83]. Due to the

large polarizability and huge dipole moments of inter-Rydberg transitions, the energy

landscape of an atom can be heavily influenced due to presence of other Rydberg atoms

close by. For instance, the energy required to excite a rubidium atom to the 41S state

is shifted by 2π ×−1.35 GHz at 1 µm distance to a second atom that is in the same 41S

state.

The interplay between Rydberg atoms is typically handled as a binary interaction, i.e., a

pairwise interaction between two atoms at a distance R = Rr̂, each having one electron

excited to a Rydberg orbit. Further, we make use of the Born-Oppenheimer approxima-

tion [84] to write the Hamiltonian as

H(R) = Ha + Hint(R), (2.12)

again, Ha = Ha,1 ⊗ Ha,2 giving the unperturbed eigenenergies as in eq. (2.6), but for

the pair of two atoms. The operator H(R) is comprised of the interaction between the

two Rydberg electrons and the two ionic cores, in all pairwise combinations. Since the

core-electron attraction within each atom is already considered by Ha, the additional

interaction potential in Hint is given by the term

Vint =
e2

4πǫ0

(

1

R
+

1

R′
− 1

r12
− 1

r21

)

, (2.13)
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where the separations R, R′, r12 and r21 denote the distances as depicted in fig. 2.2.

atom 1 atom 2

r1 r2

R′

R

r12 r21

Figure 2.2: Two-center coordinate system of two interacting Rydberg atoms, each composed
of nucleus (black center) and electron (orange blob). The purple shaded area represents the
extend of the electron wavefunction, indicating the LeRoy radius. For valid calculations of
the interaction, there must be no significant overlap between the two atoms. This is the case
when the distance R is larger than the LeRoy radius.

For large interatomic distances, eq. (2.13) can be approximated with a multipole expan-

sion

Vint =
e2

4πǫ0

∞
∑

L1,L2=1

L<
∑

M=−L<

fL1,L2,M

RL1+L2+1
QL1,M(r1)QL2,−M(r2). (2.14)

In this equation, QL,M(r) is the multipole operator for each atom, defined with the spher-

ical harmonics YLM ,

QL,M(r) =
(

4π

2L + 1

)1/2

rL YL,M(r̂) (2.15)

and

fL1,L2,M =
(−1)L2(L1 + L2)!

[(L1 + M)!(L1 −M)!(L2 + M)!(L2 −M)!]1/2
. (2.16)

Distances are considered large, when the wavefunctions of the electrons of the two atoms

do not overlap. This is fulfilled for R > RLR, where the LeRoy radius [85] is given by

RLR = 2
(

〈k1|̂r2|k1〉1/2 + 〈k2|̂r2|k2〉1/2
)

, (2.17)

for states with quantum numbers ki = (ni, li, ji, mi). The LeRoy radius of the 41S–41S

pair state in rubidium is RLR = 0.5 µm.

The L in the multipole expansion, eq. (2.14), indicates the order of the operators: Q1,M

are dipole operators, Q2,M is the set of quadrupole operators, Q3,M for octopole, etc. The

limit for the summation in eq. (2.14) is

L< = min(L1, L2), (2.18)

accordingly. Note the absence of the monopole operator, as both atoms are neutral.
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Similar to the Stark maps (cf. sec. 2.2.2), we calculate pair-potential maps by construct-

ing the Hamiltonian, followed by numerical diagonalization for the series of inter-atomic

distances. The projection of each new, shifted eigenstate |µ〉 onto the unperturbed pair

states quantifies the admixture of the unperturbed pair states

E
|µ〉
k1,k2

= 〈k1, k2|µ〉 . (2.19)

This yields a measure for the coupling strength when exciting pair states with a defined

laser beam.

2.3.1 Dipole-dipole interaction

The pair-state energy landscape in Rydberg atoms is often of a very complex and turbid

nature. Since eq. (2.14) is the expansion of rising order multipole operators, a typical

simplification is to truncate the series at suitable degree. The dominant contribution for

large atomic distances is the coupling term between two dipoles [86],

Vdd(R) =
d̂1 · d̂2 − 3(d̂1 · r̂)(d̂2 · r̂)

4πǫ0R3
. (2.20)

For the introductory discussion, we focus on rubidium S-states. On the one hand, due to

the spherical symmetry of the S-states, the interaction lacks an angular dependency [87].

On the other hand, the neighboring states of an nS state in rubidium are the P-states

above and below, nP and (n − 1)P, respectively [88]. This makes the discussion more

straightforward, and allows us to identify the dipole operators in eq. (2.20) with d̂1 =

〈(n− 1)P |er̂|nS〉 and d̂2 = 〈nP |er̂|nS〉, as sketched in fig. 2.3. In the basis of pair

states, we now only consider the dipole couplings to |nS, nS〉 are |(n− 1)P, nP 〉 and

|nP, (n− 1)P 〉.

Under the assumption that the energy separation,

∆ = EnP + E(n−1)P − 2EnS,nS, (2.21)

is smaller than any other dipole-allowed pair state, the Hamiltonian reads

H =









0 κ κ

κ ∆ 0

κ 0 ∆









, (2.22)

where we define the coupling parameter

κ =
d1d2

4πǫ0r3
. (2.23)
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|(n− 1)P〉

|nP, (n− 1)P〉R=∞

Figure 2.3: Schematic of the van-der-Waals energy landscape for |nS〉 states in the presence
of a second atom. The neighboring levels provide an energy mismatch, ∆. The scenario on
the left assumes a higher lying |nP 〉 neighbor which is closer than the lower lying |(n− 1)P 〉,
and therefore ∆ < 0. The dashed line indicates the per atom energy in the pair basis exactly
in the center between |nP 〉 and |(n− 1)P 〉. The three new eigenstates as described in the
text are depicted by the purple lines on the right. For the opposite case, when ∆′ > 0, the
orange lines would be relevant.

By diagonalization, we get three eigenvalues:

E± =
∆

2
±
√

√

√

√

(

∆

2

)2

+ 2κ2, (2.24)

and

E× = ∆. (2.25)

The corresponding eigenstates are

|±〉 = |nP, (n− 1)P〉+ |(n− 1)P, nP〉+
E±

2κ
|nS, nS〉

|×〉 = |nP, (n− 1)P 〉 − |(n− 1)P, nP 〉 ,
(2.26)

of which only the symmetric ones (|±〉) couple to an 〈P| state via the dipolar interaction

with a light field. In a two-photon excitation scheme, the intermediate state from which

atoms are then excited to the Rydberg state is typically a P state.

For ∆ = 0, the r-dependence vanishes, which means that the states |±〉 always contain

admixtures of both S and P character. This implies a permanent electric dipole moment
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2.4. Ionization processes

of the pair state [89], and the interaction strength indeed decreases with r−3. The energy

of such a Förster resonance [90] is given by

EFörster
∆=0
=
√

2κ ≡ −C3

r3
. (2.27)

The corresponding coefficient scales with C3 ∝ n⋆4, since the dipole moments scale like

n⋆2. Resonant dipole-dipole interaction is also dominant for small distances, at which

κ≫ |∆|
2

.

For the opposite limit, in case of larger distances, the interaction energy is much smaller

than the energy mismatch ∆. The energy shift can be expanded in a Taylor-series, and

becomes [87, 91]

EvdW

κ≪ |∆|
2≈ −2κ2

∆
≡ −C6

r6
, (2.28)

which has an r−6 behavior and is called van-der-Waals shift or London dispersion interac-

tion [92], accordingly. The scaling of the coefficient goes as C6 ∝ n⋆11, due to the scaling

of the dipole moments and the n⋆−3 dependence of the level spacing, cf. tab. 2.2.

At this point, we want to emphasize on the sign of the interaction. For ∆ > 0, state

|+〉 can be identified as |nS, nS〉 at infinite separation of the atoms. For ∆ < 0, it is

|−〉, and the Taylor series in both cases results in eq. (2.28). As already indicated, the

closest pair state to any |nS, nS〉 pair of rubidium atoms with a dipole-allowed transition

is |nP, (n− 1)P 〉, which has lower energy [87], ∆ < 0. Therefore, the pair-potential is

repulsive between rubidium S states.

2.4 Ionization processes

Rydberg atoms are unusually susceptible to ionization for mainly two reasons: For one

thing, the binding energy—and thus the first ionization energy—is exceptionally small

which sets a shallow threshold for such processes. And for another thing, due to the large

geometric size of the Rydberg orbitals the probability of ionizing reactions to happen is

heavily increased compared to ground-state atoms. Ever since Rydberg atoms became the

focus of more in-depth studies, ionization has always needed proper examination [35, 53]

and careful experimental consideration [93].

2.4.1 Collisional ionization

The particles of a thermal vapor—as in the very definition of it—continually propagate

with thermal velocity. At room temperature, i.e., T ≈ 300 K, this complies to a kinetic
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Chapter 2. Rydberg atoms

energy that, on average, is on par with the binding energy of typical Rydberg principal

quantum numbers. As an example, for rubidium S-states, the 26S1/2 state has a binding

energy that is almost equal to the average kinetic energy. Note that also for states below

26S, the collision energy can exceed the binding energy, in this case a smaller fraction of

the collisions can ionize the Rydberg atoms. Hence, inelastic collisions, where the valence

electron can be disassociated from its ionic core are a relevant factor that contributes to

the properties of the gas. In the event of a collision involving a Rydberg atom, different

interaction mechanisms come to play, depending on the nature of the colliding partner.

References [94–96] represent a nice series of publications; thorough theoretical background

of the subject can be found in [97].

For collisions of an alkali atom in the Rydberg state (n, l) with other alkali atoms, the

two processes that lead to ions in the vapor are

A(n,l) + A(n′,l′) → A+
2 + e (2.29)

A(n,l) + A(n′,l′) → A+ + A(n′′,l′′) + e, (2.30)

where the first reaction is referred to as associative ionization, and the latter is denoted

as Penning-type ionization. Due to the large size of Rydberg atoms, the cross-sections for

such events are correspondingly large.

Irrespective of the exact microscopic picture and the details of the accompanying inter-

action mechanism of such collisions, relevant for the discourse of this thesis is the overall

ionization rate due to collisions. The equation for this comes from eq. (1.77). The at-

tributed cross-sections σi are on the order of the size of a Rydberg atom, which is

σi ∼ π(a0n
⋆2)2. (2.31)

From experiments with cesium atoms [35], we obtain σi ≈ 0.06π
(

a0n⋆2
)2

.

Collisions with charged particles have also been thoroughly studied, both theoretically [97,

98] and experimentally [99, 100]. Being much lighter than any alkali atom, the velocity

of the electron compared to the alkali is tremendously faster (for cesium by a factor of

about 500). Hence, the collision rate is also increased by these almost three orders of

magnitude. The reaction of this process reads

A(nl) + e(E)→ e(E −∆E) + A+e. (2.32)

The collision changes the energy E of the electron by ∆E .

Since electrons are the product of every ionization process in the vapor, significant den-

sities of electrons can accumulate, especially in continuous wave laser beam experiments.

The cross-sections for ionization due to collisions with electrons are similarly determined

by the size of the Rydberg atom. Experiments in sodium [101] provide cross-sections on
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2.4. Ionization processes

the order of 20σgeo, but note that the actual value depends on the velocity of the electron.

The maximum of the curve, however, is at very low electron energies, close to the ioniza-

tion threshold of the Rydberg atom [102]. For rubidium and cesium Rydberg atoms—to

the best of our knowledge—there are no experimentally verified publications for electron

impact ionization at low kinetic energies.

2.4.2 Photoionization

The physical process in which a valence electron is dissociated from its nucleus due to

incident photons is referred to as photoionization. The reaction formula here reads

A(nl) + ~ω → A+ + e (2.33)

If the energy of one photon is larger than the binding energy a transfer of the electron

to the continuum is possible. Cross-sections for photoionization of an atomic state with

quantum numbers n and l can be calculated using the power dependence of the form

[103]

σn,l = σthr
n,l

(

ωthr

ω

)βn,l

, (2.34)

and the empirical values (i.a., the exponent βn,l) for rubidium and cesium [104]. In this

formalism, σthr
n,l is the threshold cross-section, where the laser frequency ω matches the

binding energy ~ωthr. Values of σthr
n,l for the relevant states within this work are on the order

of 1× 10−16 cm2. Given that the Rydberg states are already very close to the ionization

threshold, it becomes apparent that the ionization probability due to the excitation lasers

is often negligible: The laser frequency addresses the transition between distinct states.

If the photon energy is actually above the ionization threshold the excess energy of the

photons is typically quite large; the cross-section is greatly reduced by the second factor

in eq. (2.34).

If the photon energy does not reach the ionization limit, the electron can be dissociated

via multiple-photon absorption [105], which has even smaller cross-sections.

Black-body radiation

Ionization can also happen due to photo-ionization by photons of the black-body radiation

spectrum. Due to the temperature of the experimental environment photons in the broad

spectrum of thermal radiation are always present. Possible ionization paths are by either

direct ionization,

A(nl) + ~ωBBR → A+ + e, (2.35)
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or via a step-wise process,

A(nl) + ~ωBBR,1 + ~ωBBR,2 → A(n′l′) + ~ωBBR,2 → A+ + e. (2.36)

Because the energy spacing between Rydberg atoms is so small, finding a matching photon

in the spectrum is not impossible, although the probability is quite low: Estimations

in [106] provide ionization rates on the order of a few kilohertz. In cold atom laboratories,

black body radiation can already significantly influence the outcome of an experiment [107,

108]. In thermal vapor experiments, the ionization rate is usually negligible in comparison

to the collisional effects.

2.5 Recombination

The reverse process to ionization is recombination. By capturing a free electron from the

environment, the alkali ion again neutralizes. In its basic form, this is

A+ + e→ A(nl). (2.37)

Typically, the ion-electron pair does not end up in the ground state of the atom but in a

Rydberg state[67]. Subsequently, the newly bound state further decays after the specific

lifetime, or is ionized again.

The recombination process is typically described as a volume effect, following the rate

equation
∂Ne

∂t
= −αNeN+, (2.38)

with a recombination coefficient that is on the order of α =0.1 to 1×10−11cm3/s [109].

On closer inspection, several mechanisms contribute to recombination e.g., in a plasma,

and the reaction in eq. (2.37) is not strictly correct. To fulfill energy conservation, the

often times existing mismatch in kinetic energy and binding energy is either radiated

A+ + e→ A(n,l) + ~ω, (2.39)

or consumed by a third collision partner,

A+ + e + e(E)→ A(n,l) + e(E + ∆E). (2.40)

An introductory study of the mechanisms of electron-ion recombination can be found for

example in [109, 110].
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3 Plasmas and electric fields

The typical definition for a plasma reads as follows: A plasma is a quasi-neutral gas

that consists of positively and negatively charged particles which are subject to electric,

magnetic and other forces, and which exhibit a collective behavior [111]. It is due to

the long-range electromagnetic fields that mediate the interactions between the charged

particles, that makes the macroscopic properties of a plasma so different from a normal

gas. In contrast to collisions between neutral atoms who only exhibit local forces, collective

phenomena can occur in this fourth state of matter.

Rydberg atoms, as introduced in the previous chapter, are highly likely to be ionized. This

holds especially true in thermal vapors, where collisions between the atoms frequently

occur. In this chapter, we discuss the relevant concepts that allow us to identify an

ionized gas to be a plasma. Since Rydberg atoms are highly sensitive to electric fields, the

electric field distribution within the plasma is also discussed. Only a few basic aspects of

the much richer field of plasma physics are introduced here. The remarks in this chapter

can be found in most introductory textbooks on the subject of plasmas [111–115].

3.1 Properties of a plasma

As a basic principle, a plasma consists of three components: ions, electrons, and a back-

ground of neutral, un-ionized atoms. Arguably for any gas, the admixture of charged

particles never vanishes completely, although the fraction of ions and electrons may be

arbitrarily low. One can estimate the degree of ionization using the Saha equation [116]

ni

nn
≈
√

mekB

2π~2

T 3/2

ni
e−Ui/kBT , (3.1)

which results from an equilibrium between ionization and recombination processes. Here,

ni is the density of ions (assumed equal to the density of electrons), nn is the neutral

gas density, T is the temperature and Ui quantifies the energy required to ionize an

atom. As an example, nitrogen at normal temperature and pressure (Ui = 14.5 eV [117],

T ≈ 300 K, n = 3× 1019 cm−3) has a fractional ionization of ni/nn ≈ 10−122. In fact, that

is fewer than one ionized atom per number of particles in the known universe [118].1

1In one particular ”field” of medicine, such homeopathic fraction would probably be considered highly

potent, denoted by 26Q.
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Chapter 3. Plasmas and electric fields

At sufficiently high temperatures, the fraction of charged particles begins to dominate

the properties of the gas. In the following sections, these properties are introduced. In

order for a partially ionized gas to be qualified as a plasma, certain criteria need to be

fulfilled.

3.1.1 Debye shielding

A fundamental property of a plasma is the ability to effectively shield electric potentials,

due to its high mobility of the free charges [119]. Even though in an ideal plasma the

number densities of electrons and ions is equal (cf. sec. 3.1.2), the density distribution

is not necessarily homogeneous: the electric potential, say, of an ion, is attractive for

electrons, but acts repulsive on other ions. As a result, the positively charged ions tend

to accumulate negatively charged electrons in their vicinity. When sufficiently close to

thermal equilibrium, the number densities of the two species in a potential, ϕ(r), fig. 3.1,

are distributed according to Boltzmann[120]

ni,e = n · exp(−qeϕ/kBTi,e), (3.2)

where n is the density for a vanishing potential, Ti,e the temperature and ±qe the electric

charge of ions and electrons, respectively. When assuming the mean potential energy

between the particles and their nearest neighbor to be small in comparison to the kinetic

energy,

qeϕ/kBTi,e ≪ 1, (3.3)

a Taylor expansion [121] to first order of the exponential is sufficient. Poisson’s equation

for the electric potential in spherical coordinates then reads

∆ϕ = ∇2ϕ =
1

r2

d

dr

(

r2 dr

dϕ

)

=
qe(ne − ni)

ǫ0

=
nq2

e ϕ

ǫ0kB

(

1

Te

+
1

Ti

)

.

(3.4)

The characteristic length scale in a plasma is given by the Debye length

λdi,e =

√

ǫ0kBTi,e

nq2
e

. (3.5)

When we define the total Debye length as the combined length scale of both electrons

and ions,

λ−2
d = λ−2

di
+ λ−2

de
, (3.6)
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the Poisson equation, eq. (3.4), can be rewritten as

1

r2

d

dr

(

r2 dr

dϕ

)

= λ−2
d ϕ, (3.7)

and is solved by the Debye-Hückel potential [119]

ϕ(r) =
q

4πǫ0

1

r
exp

(

− r

λd

)

. (3.8)

The potential of a single charge in both plasma and vacuum is plotted in fig. 3.1.

Figure 3.1: Shielding effect in plasmas. Local charge imbalance are compensated by a cloud of
electrons. As a result, the electric potential ϕ(r) is effectively shielded, and decreases faster
than in vacuum. The dashed purple potential is that of a single charge without shielding.
The Debye sphere is indicated by the dotted line.

The first criterion for an ionized gas to be considered a plasma is that the Debye length

is shorter than the geometric size of the ionized gas

λd ≪ L, (3.9)

which implies that any potential due to local charge imbalances becomes shielded on the

length scale L under consideration.

3.1.2 Plasma parameter and quasi neutrality

The picture of Debye shielding, as introduced in the previous section, can only be valid if

sufficiently many particles participate in the shielding. The plasma parameter quantifies

this number of particles within the sphere with a radius of the Debye length:

Nd = n
4π

3
λ3

d =

(

4πǫ0kB

q2
e

)3/2
1

6
√

π

T 3/2

√
n

. (3.10)
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The second criterion for collective behavior, and also for the ionized gas to qualify as an

ideal plasma, is therefore

Nd ≫ 1. (3.11)

Ideal plasma

A typical and well-known classification of an ensemble of charged particles is whether it

is an ideal plasma. If this is the case, the equation of state for each of the particle species

is that of an ideal gas. For such an ideal plasma, binary collisions are negligible in favor

of the collective electrostatic interactions. Thus, instead of pair-wise interactions, the

plasma particles seemingly only interact with a continuous background field.

Quasi-neutrality

The required large number of particles in the volume Vd of one Debye sphere leads to the

concept of quasi-neutrality. Quasi-neutrality is the result of electron screening [122, 123].

A charge, q, is efficiently shielded outside the sphere, if the plasma itself provides an

excess charge of the same quantity,

e (ni − ne) Vd ≡ e δn Vd = q. (3.12)

For the relative density, this yields

δn

n
=

q/qe

Nd
, (3.13)

which means that relative density fluctuations within the Debye sphere of 1/Nd would

impose an excess charge on the order of one elementary charge. Since Nd is large,

ne ≈ ni, (3.14)

which is known as the plasma approximation. Closely related to the plasma parameter

is the Coulomb coupling parameter, which compares the Coulomb energy to the thermal

energy,

Γe =
q2

e

4πǫ0kBT
3

√

4πNe

3
. (3.15)

3.1.3 Plasma oscillations

Displacing the electrons from the uniform background of ions creates an electric field in

such a way that it forces the electrons back to their original position, and thus restores the
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3.1. Properties of a plasma

neutrality of the plasma. Because of their inertia, the electrons will overshoot and oscillate

around their equilibrium positions. The characteristic frequency of this phenomenon,

called the plasma frequency, is so fast that—due to their much larger mass—the heavier

ions cannot follow the motion.

The equation of motion for the electrons is a Navier-Stokes equation [124] supplemented

by the electromagnetic forces. Neglecting magnetic fields and thermal motion of the

particles, we obtain

mene

[

∂ve(r, t)

∂t
+ (ve(r, t) · ∇) ve(r, t)

]

= −qeneE(r, t), (3.16)

with electric field, E(r, t), and electron velocity, ve(r, t). If we assume the number of elec-

trons to be conserved, i.e., no ionization or recombination, also the equation of continuity

holds, which is
∂ne(r, t)

∂t
+∇ · (ne(r, t)ve(r, t)) = 0. (3.17)

For simplicity, the ions are assumed to be fixed in space and are uniformly distributed.

Further, the plasma should extend infinitely, and the electron motion is only in x direction.

Poisson’s equation reads

ǫ0∇ · E(r, t) = ǫ0
∂E(r, t)

∂x
= qe(ni − ne(r, t)). (3.18)

For small amplitudes of oscillations, one can solve the system of coupled equation by

linearization. We separate the dependent variables into the equilibrium solution and a

perturbative part:

ne = n0 + n1 ve = v0 + v1 Ee = E0 + E1 (3.19)

Substituting this into eqs. (3.16, 3.17) and neglecting all terms quadratic in amplitude

yields

me
∂v1

∂t
= −qeE1 (3.20)

∂n1

∂t
+ n0∇ · v1 = 0. (3.21)

For eq. (3.18), we obtain

ǫ0∇ · E1 = −qen1, (3.22)

since ni,0 = ne,0 in equilibrium, and ni,1 = 0 because the ion positions are fixed. With an
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oscillating ansatz,

v′
1 = v1 exp(i(kx− ωt)) x̂ (3.23)

n′
1 = n1 exp(i(kx− ωt)) (3.24)

E
′
1 = E1 exp(i(kx− ωt)) x̂ (3.25)

the time derivative and the gradient can be easily evaluated. We obtain

−imeωv1 = −qeE1 (3.26)

− iωn1 = −n0ikv1 (3.27)

ikǫ0E1 = −qen1. (3.28)

which, for v1 6= 0, finally leads to the plasma frequency

ωpe
=

√

nq2
e

ǫ0me
. (3.29)

As a third criterion for the classification as a plasma, these oscillations have to be faster

than the timescale τ of collisions of the particles with the un-ionized background gas

ωpτ > 1. (3.30)

3.2 Electric field distribution

Although plasmas in general are neutral, with positive and negative charges compensating

one another, the internal imbalances due to thermal fluctuations cause an electric field

distribution. Due to the Debye shielding and possible ion correlations the calculation of

these microfield distributions is not trivial. Various approximations have surfaced [125–

128], addressing different parameter regimes. For weakly coupled plasmas, where the ions

are not correlated and electron screening is negligible, the Holtsmark distribution is apt to

model the field strength distribution of the microfield [129]. The probability distribution

for the electric field strength E is given by

P(E) = H(E/QH)/QH, (3.31)

where the normalizing field for a charge density N is given by the expression

QH =
qe

2ǫ0

(

4

15
N
)2/3

, (3.32)
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and

H(β) =
2

πβ

∞
∫

0

dx x sin (x) exp
(

−(x/β)3/2
)

. (3.33)

The mean electric field in this distribution is given by

E =

∞
∫

0

dE EH(E) ≈ 3.38QH. (3.34)

Figure 3.2: Holtsmark probability density distribution for different charge densities, as indi-
cated by the numbers in the plot. The lines are normalized to the area below the curves.

The non-analytic character of the Holtsmark distribution makes it necessary to numer-

ically approach its actual calculation. A suitable substitute is given by the rational ap-

proximation from [130]. The asymptotic behaviors are

H(β) ∼






4
3π

β2 for β → 0
3

2π
β−5/2 for β →∞.

(3.35)

Figure 3.2 exemplarily shows the probability distribution function evaluated for different

charge densities.

3.2.1 DC-Stark broadening

Inhomogeneous electric fields have an affect onto an ensemble of atoms that depends on

the field properties at the location of each individual atom; the Stark effect (cf. sec. 2.2)
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depends on the strength and direction of the electric field. In analogy to the Doppler effect,

where the optical Bloch equations of a thermal ensemble of atoms are averaged over all

possible velocities, we now have to integrate over all possible electric field configurations.

Instead of the Maxwell-Boltzmann distribution, the contributions are weighted with the

distribution of the electric fields, i.e., the Holtsmark distribution in case of a dilute plasma.

The atomic line with respect to the laser detuning ∆ (i.e., a Lorentzian function with a

full width at half maximum Γ) is given by

LΓ(∆, E) =
1

4

Γ2

(∆ + αE2

2
)2 + (Γ

2
)2

(3.36)

where α is the polarizability as introduced in eq. (2.10) and E the electric field strength.

Then the ensemble average is calculated as

LΓ(∆) =

∞
∫

0

dE LΓ(∆, E) P(E), (3.37)

where the electric field distribution follows eq. (3.31). Figure 3.3 illustrates the shift,

broadening and deformation of such an ensemble average. Assuming a scalar polarizabil-

ity, the lines are shifted towards one side of the spectrum only.
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Figure 3.3: Inhomogeneous ensemble of Stark-shifted lines. (a) Original lineshape and Stark
affected feature. The shift and broadening of the purple line is clearly visible, as well as the
deformation with a tail towards positive detunings. The ensemble average in (a) consists
of a superposition of the original line, shifted by the manifold of electric field strengths, as
displayed in (b). Example calculation for a Lorentzian line, Γ = 5 MHz, and polarizability
α = −15 MHz/(V/cm)2.
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4 Optical bistability

4.1 Introduction

Bistability refers to the peculiar property of certain systems to have two distinct, but

stable equilibrium states at otherwise identical configurations. In other words, for a given

input value (among a particular range of input values), a bistable system provides either

of two stable output values. According to the definition in [131], such system is required to

provide both a non-linearity and a feedback mechanism. Figure 4.1 shows a characteristic

curve for a bistable system. In case of optical bistability the parameter that is tuned can

be, for example, the intensity or the frequency of a light field.
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Figure 4.1: Characteristic curve for an optically bistable system. In this example, the input
intensity as a parameter is cycled. Depending on the direction and previous state of the
system, two different steady states are possible. At critical points, the system switches from
one to the other. In this illustration, reproduced from [131], the system exhibits an overshoot,
before settling to the steady state. We did not observe this in the intrinsic optical bistability
in thermal Rydberg vapor.

Due to the feedback mechanism, a bistable system shows a hysteresis in an observable

property when sweeping some parameter back and forth a region of interest. Note that the

hysteresis alone is no unique feature to a bistable system: strictly speaking, also metastable

states can have a relaxation time that is much larger than the time scale of the parameter

sweep [132]. Especially in hypothetical considerations, such as, the thermodynamic limit,

a rigorous treatment of this matter would be appropriate. However, to simply describe our

experiment this strict distinction has no value. In this context, we only seek to explain

the following observation: the system has two different steady states that are realized

depending on the detuning scan direction.
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Optical bistability can be observed in many different systems. The first observation was

reported in a sodium vapor using a cavity for the feedback [133], and followed by semicon-

ductor solid state systems [134]. Other systems involve for example nonlinear prisms [135],

or photonic crystal cavities [136]. In principle, beside these external mechanisms via a

cavity or electronic circuits, the feedback can also be the interactions in a dense bulk of

dipoles. Such intrinsic or mirrorless optical bistability was demonstrated in a Yb3+-doped

crystal at cryogenic temperatures [137]. The feedback mechanism that leads to optical

bistability as observed in alkali Rydberg vapor experiments [32, 138, 139] is the main

subject of this thesis, and will be discussed in detail in part III.

4.2 Mean-field formalism

A picturesque model for optical bistability can be obtained by considering an atomic

two-level system as formally introduced in sec. 1.7.1, with the extension of a feedback

mechanism that adds a non-linearity [140, 141]. Following the derivation from [142], we

apply the mean-field approach, and assume an additional effective shift of the energy

level of state |2〉 that only depends on the population of this state, ρ̃22. As a consequence,

the detuning between the driving light field and the excited state becomes an effective

detuning [143, 144]

∆eff
12 = ∆12 − κρ̃22, (4.1)

with a mean-field interaction coefficient, κ. The time-evolution of the ensemble is de-

scribed by the refitted Bloch equations, cf. sec. 1.7.1,

∂

∂t
ρ̃12 =

(

−Γ21 + γ21

2
− i∆eff

12

)

ρ̃12 −
i

2
(ρ̃22 − ρ̃11) Ω12, (4.2)

∂

∂t
ρ̃22 = Im(ρ̃12Ω∗

12)− Γ21ρ̃22. (4.3)

Neglecting the dephasing term γ21, we obtain the steady state solution

ρ̃22 =
Ω2

12/4

∆eff
12

2
+ Ω2

12/2 + Γ2
21/4

. (4.4)

Substituting the effective detuning, eq. (4.1), leads to the cubic expression

ρ̃3
22κ2 − ρ̃2

222κ∆12 + ρ̃22

(

∆2
12 +

Ω2
12

2
+

Γ2
21

4

)

− Ω2
21

4
= 0. (4.5)

In general, this equation can provide up to three real valued roots for ρ̃22. The domain

in which multiple solutions are possible motivates the system to be called bistable: the

third solution is merely a mathematical possibility with no vital relevance: the solution
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4.2. Mean-field formalism

is unstable, and minute fluctuations would tilt the system towards one of the two stable

solutions.
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Figure 4.2: Steady-state solution in a three-level system with and without mean-field feedback.
Example calculation for Γ21 = Γ31 = Ω12 = Ω23 = 2π × 1 MHz. Mean-field interaction coef-
ficient κ = −8Γ31 (κ = 0 for regular three-level system). The system bears three numerical
solutions: tracing the detuning from left to right, the system would follow the orange curve.
For the opposite sweep direction, the purple curve describes the progress. The difference
between the curves manifests as hysteresis. The unstable, third solution splits the hysteresis
area, and marks the crossover line at which the system would converge to the respective other
steady state if initial ρ33 were chosen somewhere between those lines.

The extension to a three-level system is straight forward, although equations become more

elaborate. Figure 4.2 shows the numerical solution for both non-interacting (κ = 0) and

mean-field interacting three-level system with feedback in place (κ = −8Γ31). The steady-

state population ρ̃33 is shown in dependence of the laser detuning ∆23, assuming ∆12 = 0.

When dynamically sweeping this laser detuning across the resonance of an atomic line,

the bistable character of the system comes to play: while for the non-interacting system,

the feature has the same shape for both scan directions, for the mean-field shifted system

an asymmetry arises. For a detuning sweep from red to blue detunings (i.e., negative

to positive frequency values) the orange curve in fig. 4.2 describes the progress of ρ̃33.

For the opposite sweep, the purple trajectory is valid. At the two vertical lines, the

system undergoes a first-order phase transition [145], and suddenly jumps from low to

high population ρ̃33 in the excited state, or vice versa.

The mean-field model qualitatively reproduces the emergence of an intrinsic optical bista-

bility in a two- or three-level Rydberg system. It is clear that for a primal understanding

of the underlying mechanisms, a more elaborate model is necessary. Especially the ther-

mal motion of the atom is not considered in this simplified picture, and the interaction

between particles is rendered via a highly empirical parameter.
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5 Part II: Introduction

Together with the discovery of the Nonequilibrium Phase Transition in a Dilute Rydberg

Ensemble [32], the authors have published an empirical model that qualitatively explains

the observed phenomenon. The mean-field model provided in the manuscript shows qual-

itative agreement, and reproduces a bistable response of the atomic system. However,

the underlying mechanism that causes the bistability is not unveiled persuasively. In

the original manuscript, the authors speculate that interactions between Rydberg atoms

are responsible for the observed behavior of the system. Based on our own observations

of the same phenomenon, our suspicion is that ionized Rydberg atoms could play the

dominant role here, instead of Rydberg-Rydberg interactions. Here we present an exper-

imental study that is directly sensitive to the interaction mechanisms and thus allows to

discriminate between the two effects.

In this first experimental part of the thesis we investigate the phenomenon of optical

bistability in a driven ensemble of Rydberg atoms. By performing two complementary

experiments with thermal vapors of rubidium and cesium, we are able to shed light on

the underlying interaction mechanisms causing the nonlinear behavior that leads to the

phenomenon of intrinsic optical bistability in thermal Rydberg vapor. Due to the different

properties of these two atomic species, we conclude that the large polarizability of Rydberg

states in combination with electric fields of spontaneously ionized Rydberg atoms is the

relevant interaction mechanism. In the first part (the experiment involving rubidium)

we directly measure the electric field in a bistable situation via two-species spectroscopy,

exploiting the availability of the two natural abundant isotopes of the element. In the

second part (the procedure comprising a cesium vapor) we make use of the different signs

of the polarizability for different l states. The setup also provides the possibility to apply

electric fields. Both these experiments allow us to rule out dipole-dipole interactions and

support our hypothesis of a charge-induced bistability.

This part of the thesis is based on the experiments and findings that were worked into

the manuscript Charge-induced optical bistability in thermal Rydberg vapor. It has been

published as a research article in Physical Review A in 2016 [146]. The measurements

based on the cesium setup are contributed by Alban Urvoy; the setup was originally

designed and used in [147].
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6 Setup and methods

6.1 Two-species rubidium spectroscopy

Figure 6.1 shows the experimental setup for the rubidium part of the experiment. A

2-mm-thick glass cell containing the rubidium vapor is placed at the focus of two pairs of

beams. The cell is a spectroscopy cuvette (quartz glass, Hellma Analytics) connected to a

reservoir and filled with a droplet of naturally abundant rubidium mixture (i.e., 72% 85Rb

and 28% 87Rb) under vacuum. The temperature of the reservoir is stabilized to control

the vapor density, while a higher cell temperature (Tcell = 135 ◦C) prevents unwanted

condensation of the alkali. By measuring and fitting the absorption profile of the the D1

line [148], the vapor density of the two isotopes was determined as N85 = 1.8× 1012 cm−3

and N87 = 0.7× 1012 cm−3, respectively. This corresponds to a reservoir temperature of

about Tres. = 86 ◦C, which was kept constant at this setting for all rubidium measurements

presented here.

vapor cell

photo diodes

PBSC

PBSC

795 nm(OB)

780 nm(FP)

481 nm(FP)
477 nm(OB)

DM

DM

AOM

OB

FP

Figure 6.1: Setup of the rubidium experiment. Two pairs of lasers drive the two isotopes in
the same volume using an EIT-like excitation scheme, fig. 6.2. One pair drives an optical
bistability with the scheme EITOB, while the other one probes for local fields via EITFP.
The lasers are overlapped and separated with polarizing beamsplitter cubes (PBSC) and
dichroic mirrors (DM). The acousto-optic modulator (AOM) acts as a chopper, for lock-in
amplification of the EITFP scheme. All four laser beams are focused in the center of the
2-mm long vapor cell.

We drive an optical bistability in 85Rb similar to the work in reference [32]. Atoms of the

isotopic species 85Rb are addressed with an EIT-like excitation scheme [37], as depicted

in fig. 6.2(a). In the following, this scheme is referred to as EITOB.
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5S1/2 F = 3

5P1/2

F ′ = 2

32S1/2

∆OB

∆iso

5S1/2
F = 2

5P3/2 F ′ = 3

41S1/2

∆FP

Ω795

Ω477

Ω780

Ω481

EITOB
85Rb EITFP

87Rb

(a) (b)

Figure 6.2: Relevant transitions in the resonant two-photon excitation schemes. (a)EITOB

drives the optical bistability for 85Rb atoms. (b)EITFP acts as a probe for the electric fields
inside the cell, using the (less abundant) 87Rb isotope.

The vapor is probed by measuring the transmission of a frequency-stabilized 795 nm laser,

which is locked onto the 85Rb 5S1/2, F = 3→ 5P1/2, F ′ = 2 transition, with a typical Rabi

frequency of Ω795/2π = 37 MHz. The second laser in this scheme couples the atoms to

a Rydberg state. This 477 nm laser is scanned over the transition 5P1/2 → 32S1/2 with

a detuning ∆477 and Rabi frequencies up to 2π × 25 MHz, limited by the available laser

power and the given beam geometry. The two laser beams are focused down to a waist

of 40 µm and overlapped in the center of the glass cell. The transmission of the 795 nm

laser is then monitored as a function of the detuning. Since we expect bistable behavior

with a spectrum depending on the scan direction, we record both positive and negative

sweeps, i.e., scanning from red to blue wavelengths, and vice versa.

We chose the co-propagating configuration, since this results in a simple Lorentzian-like

excitation spectrum, as plotted in fig. 6.3. Due to population shelving to the long-lived

Rydberg state [149], the transmission signal of the 795 nm laser is roughly proportional

to the population of the Rydberg state. In contrast, the dependence between Rydberg

population and probe transmission in the counter-propagating configuration [37, 60, 150]

has a richer structure, which would unnecessarily complicate the analysis. In fact, the

Rydberg population in this case follows a bi-modal, M -shaped distribution, fig. 6.3, that

is symmetric to the (single-peak) transmission feature of the probe light. Any effect that

(directly or indirectly) depends on the Rydberg population would potentially reach a

certain threshold value multiple times in a single detuning sweep. If the effect leads to

hysteresis, as is the case for optical bistability as discussed in this context, the resulting

measurements might lead to a difficult interpretation [138, 151].

In order to probe into the mechanisms and the cause of the optical bistability, we simulta-

neously measure an additional EIT-like spectrum [37] on the less abundant isotope 87Rb,

hereafter named EITFP, for field probe. The advantage of using two different isotopes is
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Figure 6.3: Co- vs. counter-propagating laser beams in the three-level scheme as used for
EITOB, calculated according to the system of equations from sec. 1.7.2. The shown traces are
the result of Doppler averaging over the thermal ensemble, at a temperature of T = 135 ◦C.
Model parameter in units of Γ/2π = 6 MHz: Ω795 = 2Γ, Ω477 = 5Γ, γ = 0.1Γ.

that except for interspecies interactions, the two schemes are completely decoupled due

to the different wavelengths of the transitions. Similar to the excitation scheme EITOB

presented above, we use two lasers at 780 nm (probe, Ω780/2π = 66 MHz) and 481 nm (cou-

pling, Ω481/2π = 10 MHz) to drive the ladder scheme 5S1/2, F = 2→ 5P3/2, F ′ = 3→ 41S1/2

of 87Rb, fig. 6.2(b). Again, the 780 nm laser is locked on resonance and the 481 nm laser

has a variable detuning ∆481 with respect to the upper transition. These two additional

laser beams are overlapped with the previous pair. Differing from the EITOB arrangement,

the 780 nm and 481 nm lasers are counter-propagating and the polarizations of EITFP are

perpendicular to EITOB.

By independently scanning ∆481 and ∆477, we obtain two-dimensional transmission spec-

tra of the 780 nm probe laser, an example of which is shown in fig. 7.3(a). The laser detun-

ings are calibrated using a Fabry-Pérot interferometer (free spectral range ∆νFSR/2π =

1.5 GHz) in combination with an EIT reference signal. Since the choice of Rabi frequen-

cies compromises between a narrow linewidth and signal visibility, the signal-to-noise

ratio is improved by amplitude-modulating the 481 nm laser with an acousto-optic modu-

lator with a frequency of 30 kHz and demodulating the transmission signal using a lock-in

amplifier (Femto, LIA-MV-200).
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6.2 Cesium spectroscopy

In the experiment based on 133Cs, we excite the atomic vapor with the inverted two-photon

ladder scheme 6S1/2, F = 3→ 7P1/2, F ′ = 4→ nl as depicted in fig. 6.4.

6S1/2

F = 3

7P1/2
F ′ = 4

28S1/2

∆1058

23D3/2

∆1066

Ω459

Ω1066Ω1058

133Cs

Figure 6.4: Relevant transitions in the inverted ladder scheme. In cesium, we can address
both S and D Rydberg states as well as a broad range of principal quantum numbers, and
thus especially manipulate the sign of the interaction. We refer to the Rydberg laser as the
1060-nm laser.

Our measurements with cesium are performed using counter-propagating lasers as sketched

in fig. 6.5. Both lasers are focused into a 3 mm vapor cell, where the illuminated spot-

size has a 1/e2 radius of 50 µm. We determine the cesium density inside the cell to be

NCs = 1.2× 1013 cm−3, by recording and fitting the absorption profile of the D2 spectrum.

In the inverted level scheme, where the wavelength of the lower transition is shorter than

the one for the upper transition, additional decay channels and transit time broadening

result in a signal with enhanced absorption [60]. Regarding the shape of the Rydberg

population as a function of the detuning, the same argument holds as for the rubidium

setup; only for the inverted scheme, both co- and counter-propagating configuration pro-

vide a transmission signal that is roughly corresponding to the Rydberg population. We

chose the counter-propagating setup for a better separability of the two lasers. Since

we measure the transmission of the blue light, the residual transmission of the dichroic

mirrors would be an additional background to the actual light level of interest.

The Rabi frequency for the lower transition at 459 nm is set to Ω459/2π = 6 MHz, while for

the upper transitions at approximately 1060 nm we chose Ω1060/2π = 146 MHz. Similar to

the rubidium experiment described in the previous section, the transmission signal of the

459 nm light is measured directly on a photo-diode while varying the 1060 nm detuning

∆1060.
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cell

DMDM

459 nm 1060 nm

RF modulation

50 Ω

photo diode

Figure 6.5: Setup of the cesium experiment. Two counter-propagating laser beams are focused
in the center of a 3-mm-thick cesium vapor cell. The cell is placed between two electrodes,
where an electric field modulation can be applied on one port, while the second is 50 Ω
terminated. The lasers are polarized in parallel to the electric field between the two plates.

With the use of a fiber amplifier we can reach higher Rabi frequencies on the upper

transition with cesium than in our rubidium setup. Furthermore, we can address Rydberg

states with various principal quantum numbers in two different orbital angular momentum

states (n = 20 to 60, l = S, D). This allows us to examine the response of systems with

different properties. In the context of this part of the thesis, we will consider in particular

the Rydberg states 23D3/2 and 28S1/2, which have opposing signs of the polarizability.

The major additional feature available in the cesium setup is the ability to externally

apply an electric field across the cell. The glass cell is placed between two electrodes,

fig. 6.5, that produce an electric field roughly parallel to the polarization of the laser

beams. A specially designed strip-line [147] guides the applied microwave to an electrode

next to the spectroscopy cell. Possible frequencies range from DC to several GHz. The

electrode on the opposite side is terminated with 50 Ω. For our measurements, we inject a

sine wave with frequencies of 10 to 500 MHz, yielding an oscillating electric field between

the electrodes with an amplitude of approximately 3 V cm−1.
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7 Results and discussion

7.1 Two-species rubidium spectroscopy

7.1.1 Optical bistability

Figure 7.1 shows typical traces of the EITOB system. With increasing Rabi frequencies

of the coupling laser, the peak is visibly shifted towards the red and becomes more and

more distorted until at sufficiently large intensity the hysteresis appears and the system

becomes bistable, as in reference [32]. The analogous observation in cesium is shown in

fig. 7.8.
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Figure 7.1: Transmission signal of the EITOB system the rubidium setup. As the laser intensity
is raised, the peak amplitude and shift increases. At a sufficiently large Rabi frequency, a
hysteresis window appears: the system shows bistability. The lines are offset for better
visibility.

The phenomenon of optical bistability is the result of a competition between a nonlinear

energy shift which is indirectly dependent on the Rydberg state population, and the

decay from the Rydberg state. On the one hand, when the laser frequency is scanned in

negative direction, i.e., from the blue detuned side to the red, there is a buildup of Rydberg

population that in turn sustains the ability to excite Rydberg atoms—even further away

from resonance. When the detuning becomes too large, the decay mechanisms prevail

and the population eventually breaks down. This results in a sudden change of the
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Chapter 7. Results and discussion

transmission level, as can be observed in the purple lines in fig. 7.1. On the other hand,

when the frequency is scanned in positive direction (orange lines), the Rydberg population

stays low in the bistable region until the detuning becomes small enough to sufficiently

excite atoms. These atoms then act as a seed for subsequent excitations, as atoms close

by can be shifted closer to resonance. When a certain threshold is reached, a sudden

increase in population is triggered, switching the system to the high population state.

Overall, the expected hysteresis in the transmission spectrum can be observed. In fig. 7.1

(and also later in fig. 7.2), besides a broadening of the signal, the sign of the shifts (in

both schemes) clearly indicates attractive interactions.

7.1.2 Interspecies interaction

A complementary observation to the effects of the Rydberg population onto the driving

light field itself can be made when studying the signal of the additional Rydberg EIT

scheme EITFP. By design, this additional EIT scheme probes the inter-atomic interactions

in the same excitation volume where the optical bistability is induced. For a fixed detuning

∆477, we observe the signal in the EITFP scheme as displayed in fig. 7.2.
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Figure 7.2: Rubidium measurements, EITFP. The signal is recorded at a fixed detuning
∆477/2π = −35 MHz, but with increasing Rabi frequency Ω477. Each trace is normalized
and offset for better comparability.

The excerpt of traces shows a significantly growing shift and broadening for increasing

EITOB Rabi frequencies Ω477. For this part of the thesis, we neglect the broadening in

the discussion. In the next part, however, the broadening is considered, and turns out

to be an integral part of the bistability mechanism. Note that the EITFP peaks are not

asymmetrically deformed as is the case of the EITOB spectrum, where even a step appears
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7.1. Two-species rubidium spectroscopy

in the curve. The EITFP spectrum instead gives a momentary measure of the shift and

broadening due to the effect of EITOB, equally for the whole spectrum of this probe.

In contrast, the effect of EITOB onto itself induces a shift within the spectrum that is

also depending on the current detuning position of the lasers, and therefore results in

non-symmetric traces.

A full dataset of the interspecies interaction is captured by independently scanning both

detunings ∆477 and ∆481. We thereby obtain two-dimensional maps of the EITFP trans-

mission signal, as shown in figs. 7.3 and 7.5. In the former, we chose a wider range of

detunings ∆477, to also address a second Rydberg resonance. At ∆477/2π = 905 MHz,

resonance conditions for the two-photon transition via the second intermediate state of

the 85Rb isotope are fulfilled. This feature here is less prominent than that at zero de-

tuning. Here, fewer atoms are available that match the correct velocity to compensate

the splitting of −362 MHz between the hyperfine states F ′ = 2 and F ′ = 3 in the EITOB

scheme, fig. 6.2. As a result, the effect on the probe scheme EITFP is weaker.

-400 -300 -200 -100 0 100 200 300 400

Detuning 
481

 / 2  [MHz]

-1
0
0
0

-7
5
0

-5
0
0

-2
5
0

0
2
5
0

D
et

u
n
in

g
 

4
7
7
 /

 2
 [

M
H

z]

0

1

N
o
rm

al
iz

ed
 t

ra
n
sm

is
si

o
n
 T

7
8
0

Figure 7.3: Rubidium measurements. One example of the two-dimensional maps showing
EITFP probe transmission, obtained by independently scanning both detunings ∆477 and
∆481, The Rabi frequency is Ω477/2π = 20 MHz. At approximately ∆477/2π = −1 GHz,
a second resonance of the EITOB system is visible. We identify this feature as the second
excitation path via the 5P1/2, F ′ = 3 intermediate state, which should appear at ∆477/2π =
−905 MHz, due to the wavelength mismatch.
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7.1.3 Exclusion of Rydberg-Rydberg interactions

For the discourse of the argumentation, let us first assume that Rydberg-Rydberg interac-

tions (i.e., van-der-Waals type or dipole-dipole interactions) were the underlying mecha-

nism for the optical bistability, and in particular that the observed shift has the sign of the

interaction potential. Then, on the one hand, the interactions between 32S states should

explain the appearance of the bistability itself. On the other hand, those between 41S

and 32S are relevant for the shifts measured with EITFP. Figure 7.4(a,b) shows computed
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Figure 7.4: Rubidium Rydberg pair-states, calculated up to quadrupole-quadrupole interac-
tion terms using [47]. (a) Pair potential of the interaction 32S − 32S. The color shading
represents the projection on the unperturbed pair state. (b) Pair-states with 41S and 32S
states, around 41S energy level. Avoided crossings with neighboring pair-states perturb the
potential landscape. The Coulomb potential, C4/r4, is plotted as the red dashed lines for
the polarizability of 32S (a) and 41S (b). (c) Nearest neighbor distribution for densities from
0.02 to 0.9 µm−3, normalized to the maximum of each curve. The densities correspond to
Rydberg fractions of 1 to 50 %. On the left: Projection of the pair potentials (a,b), weighted
by the Chandrasekhar distribution (c).

pair-potentials for the interaction of the rubidium 32S state with the 32S and 41S state, re-

spectively. The potentials are calculated up to the order of quadrupole-quadrupole terms

similar to those in reference [152], using the Alkali Rydberg Calculator software [47]. It

is already noteworthy that between rubidium S states, the van-der-Waals interaction po-

tential is continually repulsive, i.e., leading to a shift towards blue wavelengths, contrary

to our observation.

A crude approximation for the pair-wise interaction in the ensemble of atoms can be

calculated as follows. The nearest-neighbor distance probability in an ideal gas is given
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7.1. Two-species rubidium spectroscopy

by the Chandrasekhar distribution [153],

PC(r) =
3

rs

(

r

rs

)2

exp
{

−(r/rs)
3
}

, (7.1)

where rs is the Wigner-Seitz radius

rs =
(

3

4πN
)1/3

(7.2)

for particle density N . This is plotted in fig. 7.4(c) for various densities of Rydberg atoms.

We weight the pair-potential map with the nearest-neighbor distribution, and thus project

it to the (vertical) detuning axis in fig. 7.4(a,b):

p(∆) =
∑

µ

∞
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0

dr PC(r)
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〈µ|H|µ〉=∆
, (7.3)

where the summation goes over all possible lines in the spectrum. Although this is a very

coarse calculation and accounts only for binary interactions between nearest neighbors, it

still gives a rough estimate of the expected tendency towards red or blue detuning. It is

clear that only blue shifts are to be expected via this mechanism for the two states, 32S and

41S. The shifts even vanish completely for such dilute vapors as given by our experimental

conditions. Solving the system of equations in sec. 1.7.2 for ρRyd and integrating over the

thermal ensemble provides an estimate for the density of Rydberg atoms in the EITOB

system. When we assume the plain three-level system, with Γ1,2/2π = 6 MHz, Γ3,1/2π =

1.5 MHz, T = 135 ◦C, Ω795/2π = 37 MHz, and Ω477/2π = 25 MHz the maximum Rydberg

density is on the order of 0.02 µm−3 (ρRyd = 0.016 ≈ 2%) for the highest Rabi frequency,

and even less for weaker excitation laser powers. Given this peak density value, the most

probable distance to the next Rydberg atom is already more than 2 µm, at which virtually

no Rydberg-Rydberg interaction takes place for the 41S state.

Apart from these direct interactions paths, it could be conceivable that a significant part

of the S state population decays to neighboring P states, e.g., by a superradiant decay [33].

Therefore, also the interaction between the states 32S and 31P, as well as between 41S

and 31P are to be considered. The spatial integration of this dipole-dipole interaction

averages to zero. In a related experiment with ultracold atoms [154], it was shown that this

configuration does not lead to a shift of the excitation spectrum, and only a broadening

was observed, Also, the 31P− 41S dipole-dipole interaction is much weaker than that of

31P−32S, because the wave function overlap is smaller. This comes in contradiction with

the experimental observations (shown in figs. 7.2 and 7.1) that the interaction shifts on

the EITFP scheme are larger than the intrinsic EITOB shifts. It is therefore unlikely to

explain the observed optical bistability by means of Rydberg-Rydberg interactions.
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Chapter 7. Results and discussion

7.1.4 Ionization-induced electric fields

As an alternative explanation for the observed interaction shift towards red detunings,

we show that the bistability is caused by charged particles that are a result of ionizing

collisions of Rydberg atoms [35, 37, 38]. The interaction potential between a single charge

and a Rydberg atom (indicated by the dashed red lines in fig. 7.4) in this picture arises

from the dc Stark-shift of the Rydberg state and has the form C4/r4, where C4 is propor-

tional to the polarizability α of the Rydberg state. Following the usual definition for the

sign of the interaction, a positive polarizability value yields a negative energy shift. For

rubidium S states, α is invariably positive [67], thus resulting in a red shift as observed.

The polarizability for the regarded states are computed as α32S/2π = 2.2 MHz/(V/cm)2

and α41S/2π = 12.6 MHz/(V/cm)2, respectively. Examining figs. 7.1 and 7.2 again given

these numbers, we find a good compatibility with both the sign and the rough magnitude

of the observed shifts. Since both isotopes are probed in the same volume of the cell, they

are exposed to the same electric field distribution. Hence, the EITFP spectrum would be

shifted more according to the larger polarizability α41S. This is exactly what we observe:

The largest shift of EITFP is approximately 2π × −150 MHz. Accordingly, the intrinsic

shift of EITOB would amount to 2π × −26 MHz. We find the edge position at about

2π × −55 MHz, which seems to be reasonable given the width of these lines of roughly

2π × 50 MHz.

To further substantiate our hypothesis, EITFP traces are systematically taken for a set

of detunings ∆477 and various Rabi frequencies Ω477 in the EITOB scheme. The resulting

data are displayed in fig. 7.5. Since this figure contains comprehensive information, let us

examine this extensive figure step by step. For an exemplary Rabi frequency Ω477/2π =

14 MHz, the resulting density plot of the transmission is shown in fig. 7.5(a), along with

a sample of EITFP traces in fig. 7.5(b). This is similar to what is shown in fig. 7.2, where

theses traces are plotted for various Rabi frequencies Ω477, but here, the detuning ∆477

is varied instead. This emphasizes the dependence of the EITFP signal on the excitation

probability of 32S Rydberg atoms. We can gain further insight on the relation between

the two systems by evaluating the shift in the EITFP system relative to the unperturbed

line. For a set of Rabi frequencies Ω477, this shift (determined by the center frequency of a

Gaussian fit to the EITFP signal) is depicted in fig. 7.5(c) against the EITOB detuning ∆477.

These traces can be understood by following the vertical ridge in panel (a): There is a clear

evolution from the unshifted EITFP signal in the off-resonant region to a maximally shifted

signal, where the EITOB system is close to resonance. Noticeably, the shift trajectories

in the EITFP spectra show the same characteristic deformation and subtle asymmetry

towards red detuned frequencies as the transmission curves of EITOB in fig. 7.1. To

conclude the analysis of the fig. 7.5, both the amplitude and the center frequency (again,

Gaussian fits to each curve) of the shift trajectories from panel (c) are plotted versus

the Rabi frequency Ω477, fig. 7.5(d). The amplitude here directly reflects the shift in the
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7.1. Two-species rubidium spectroscopy

Figure 7.5: Rubidium measurements. (a) Another example of the two-dimensional maps show-
ing EITFP probe transmission, obtained by independently scanning both detunings ∆477 and
∆481, Rabi frequency Ω477/2π = 14 MHz. (b) Horizontal slices along the dotted lines in (a),
corresponding to single EITFP measurements. (c) The maximum position in each horizontal
slice in (a) as a function of the detuning ∆477, for different Rabi frequencies Ω477. (d) Center
frequency and amplitude of the curves in panel (c), as a result of Gaussian fits. The center
frequency (purple diamonds) represents the shift in the EITOB scheme, while the amplitude
(orange circles) illustrates the shift of the EITFP scheme. Offsets are chosen such that the
lines intersect at zero.

EITFP system, while the position is an indirect measure for the shift in the EITOB system.

The ratio between the slopes of the two linear fits amounts to (4± 1) : 1. A qualitatively

similar observation was made by comparing the shifts shown in figs. 7.1 and 7.2, which

again roughly reflects the ratio of polarizabilities between the states 41S and 32S which

is 5.7:1.

7.1.5 Quantitative analysis

In order to do a quantitative comparison to previous experiments, we need a suitable

measure, such as a cross-section. Hence, we first estimate the charge density present in

the cell and then extrapolate to a cross-section that would be necessary for an ionization

process to explain these densities. In a very simplified picture, neglecting the free electrons

and only considering the ions, the electric field distribution in the medium is described

by the Holtsmark distribution, cf. sec. 3.2. An estimate of the mean ion density Nion is
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now found by comparing this model with the measured data as follows. The line shape of

the measured EITFP signal S (∆481), (plotted in fig. 7.6) amounts to a convolution of the

Holtsmark probability distribution with the EIT-signal shape LΓ (∆481), as introduced in

eq. (3.37). In this integral, the EIT-line (for example a 2π × 50 MHz wide Lorentzian

profile [50]) is displaced by −αE2/2 according to the Stark shift. By fitting the exponents

and coefficients, we find that the center C of the obtained line shape—determined by a

Gaussian fit [155]—scales with the ion density and the polarizability as

C ≈ −2× 10−13 V2 cm2 · α · N 4/3
ion . (7.4)

This can be translated to a first estimate of the observed ion density in the vapor of

up to Nion ≈ 3× 1010 cm−3 for a measured shift of up to 2π × 250 MHz in the EITFP

scheme. Given the atomic ground state density of the 85Rb isotope of 1.8× 1012 cm−3

and the estimated maximum Rydberg fraction of around 2 % as before, this ion density

roughly matches the Rydberg density in quantity. This order of magnitude is conceivable,

since the natural decay of Rydberg atoms would be anyways dominated by the transit

time effect. If the ionization rate is significantly faster than that, the majority of Rydberg

atoms will be ionized before propagating out of the excitation volume. The distribution of

the nearest-neighbor distance probability for this density has a maximum at r = 1.7 µm.

The shifted signal for such reasonable range of ion densities is illustrated in fig. 7.6.

Figure 7.6: Convolution of the Holtsmark distribution function with the quadratic Stark shift.
Example calculation for a Lorentzian lineshape (Γ/2π = 50 MHz) and a polarizability α/2π =
12.6 MHz/(V/cm)2. Dashed vertical lines are the center of Gaussian fits. The colors in the left
panel indicate the charge density according to the abscissa in the right panel. The fit function
in the right panel follows eq. (7.4). Due to the very rough nature of this approximation, and
determination of the center of an asymmetric line shape, we refrain from error estimates,
which are dominantly systematic.
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7.1. Two-species rubidium spectroscopy

As a second step in the quantitative analysis, we approximate the ionization process with

a rate equation. Rydberg atoms with a number density NRyd (which is assumed to be a

constant source, unaffected by ionization) collide with ground state atoms with a relative

velocity v and a cross-section σ, contributing to the increase of the density of ions Nion.

At the same time, ions leave the excitation volume with a rate of γ = 1.5 MHz, chosen

to be the inverse of the transit time radially along the excitation volume [156]. The

corresponding rate equation is

Ṅion = NRyd × (N85 +N87) σv − γNion, (7.5)

and reaches its steady state at

Nion = NRyd
(N85 +N87) σv

γ
. (7.6)

Substituting the ion density with the value from the first estimate leads to an ionization

cross-section of up to σ = 1.15× 10−7 cm2 = 0.18 · σgeo, while the geometric cross-section

of the 32S Rydberg atom, eq. (2.31), is given by σgeo = 6.1× 10−7 cm2. Similar mea-

surements in a pulsed experiment with an atomic beam showed σ = 0.06 × σgeo [35].

Note that our result is slightly larger than the reference value. We attribute this to the

additional ionization channel due to electron collisions, as is introduced in the next part

of the thesis.

7.1.6 Experimental cross-talk

The two laser-atom systems, EITFP and EITOB, are chosen such that the spectroscopy on

each of the rubidium isotopes should be considered to be independent of the other—except

for the electric field due to ionization. Figure 7.7 however does show an unexpected exper-

imental cross-talk from EITFP to the bistable EITOB: on each resonance of the two-photon

transition, the transmission signal of the probe system, T780, shows the characteristic EIT

transmission features. Simultaneous to these narrow spikes, the EITOB system apparently

undergoes the phase transition, stimulated by the additional Rydberg atoms in the 41S

state available for ionization. When the EITFP system is out of resonance again, the tem-

porary increase in background vanishes; the system relaxes again to the low population

state.

This reverse cross-talk is in accordance with the charge-induced hypothesis: by supplying

additional Rydberg atoms of a higher lying state to the system, the phase transition of

EITOB for the lower lying state can be triggered earlier. At the short periods of resonance

of the EITFP scheme, these required additional ionization candidates are available. Of

course Rydberg atoms of both isotopes are subject to ionizing collisions.
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Chapter 7. Results and discussion

Figure 7.7: Rubidium measurements. Experimental cross talk between EITFP and EITOB.
Displayed are the transmission signals (T795 in orange, T780 in purple) for one slow sweep of
∆477 across the feature. The acquisition duration for this trace is ≈ 50 s. Simultaneously,
∆488 of the probe system is swept back and forth ≈ 25 times, as indicated by the orange and
purple background. Coincidentally with the narrow EIT features of the EITFP system, the
transmission signal of EITOB shows the same spikes. The additional Rydberg atoms in the
41S state are also ionized, and contribute to the phase jump of EITOB.

7.2 Cesium spectroscopy

7.2.1 Manipulating the sign of the interaction

Further evidence that the optical bistability is caused by electric fields is found by ana-

lyzing the position of the bistability window relative to the unperturbed resonance. This

gives the sign of the underlying interaction mechanism. Figures 7.8(a) and 7.8(b) show

our hysteresis spectra with optical bistability for the 23D and 28S state in 133Cs. For both

states, the character of the Rydberg-Rydberg interactions is essentially repulsive [15, 91].

However, the polarizability clearly changes its sign from α23D = 0.52 MHz/(V/cm)2 to

α28S = −0.76 MHz/(V/cm)2, as does the position of the bistable region. We summarize

these results as well as those from previous measurements in tab. 7.1. When comparing

the respective observation to the polarizability of each species and angular momentum

states, we find perfect agreement with our hypothesis.

7.2.2 Electric field modulation

Finally, we investigate how the optical bistability is affected by external electric fields.

Figure 7.8(c) shows a significant increase in the width of the hysteresis as the frequency
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7.2. Cesium spectroscopy

Element State EvdW EStark Bistability Source

Rb 32S1/2 + − − fig. 7.1
Rb 41S1/2 + − − fig. 7.2
Cs 23D3/2 − + + fig. 7.8(a)
Cs 28S1/2 + − − fig. 7.8(b)
Cs 18 - 37 P3/2 (+) − − [32, 139]

Table 7.1: Compiled signs of Stark shift, van-der-Waals interaction and the actually observed
position of the bistability edge. The vdW energy of the cesium P states is essentially repul-
sive [15, 91]. Interactions are calculated for |mJ| = 1/2 and for zero angle.

of the electric field is increased. The applied electric field amplitudes are small enough

that the resulting Stark-shift and the modulation frequency are negligible with regard to

the relevant energy scales of the Rydberg atoms. The interparticle interactions of neutral

particles is therefore not affected. However, charged particles are heavily influenced. In

the range of frequencies used for the electric field modulation (10 to 500 MHz), the free

electrons from the ionization process are accelerated and perform an oscillating trajectory,

thus increasing the ionization rate by additional collisions. We believe that this explains

why the width of the bistability region increases. Overall, the susceptibility to electric

field modulation contradicts a dipole-dipole interaction between Rydberg atoms and once

more designates that ionization significantly contributes to the observed bistability.
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Figure 7.8: Cesium measurements. (a,b) Comparison between the 23D and 28S state, with
opposite signs of the polarizability. (c) Effect on the signal shape for the 23D state by RF
modulation with a sine wave of 3.2 V cm−1 amplitude. The frequency of the injected RF
wave increases from top to bottom, as indicated above each curve. The traces are offset for
better comparability.
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8 Part II: Conclusion

In this part of the thesis, we have established a strong link between the phenomenon

of optical bistability in thermal Rydberg vapors and the presence of charged particles

in the gas. We have excluded that dipole-dipole and van-der-Waals interactions are the

origin of the interaction shift inherent to the bistability. With the consolidated investi-

gation of measurements with two independent atomic species and the variation of princi-

pal and azimuthal quantum numbers we are able to deter Rydberg-Rydberg interactions

as the dominant mechanism responsible for the interaction shift that causes the non-

linear behavior. At the same time, we find strong evidence that electric fields produced

by charges originating from Rydberg ionization are the leading contribution to the ob-

served effect. Our argumentation based on the results of two different experimental setups

contradicts the previously suggested explanations with dipolar interactions published in

Ref. [32, 138, 139], where the spectrum of experimental parameters overlaps with our

settings.

In the first experiment presented in this part, we have applied two independent EIT

schemes, each addressing only one of the naturally abundant isotopes in a rubidium

vapor cell. The first scheme strongly drives the transition in 85Rb, enabling the atoms to

enter the bistable regime. Simultaneously, the effect on the 87Rb atoms is monitored by

the second EIT scheme. The choice of Rydberg states allows us to exclude dipole-dipole

interactions. We find both a deformation of the EITOB line and a shift of the EITFP line to

the red. These observations are in good quantitative agreement with a Stark effect caused

by electric fields. The fields originate from ionizing collisions of the Rydberg atoms, and

the estimated ion densities and the required ionization cross-sections are within a sensible

range. In the second experiment using 133Cs vapor, we have demonstrated that externally

applying weak electric fields significantly alters the width and position of the bistability.

Only charged particles being affected by such weak fields and the distinct accordance of

the sign of the polarizability for different states finally support our conclusion.
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Part III

Characterization of the Plasma and the

Bistability





9 Part III: Introduction

In the previous part, we have successfully established a connection between charged par-

ticles and the emergence of optical bistability involving Rydberg atoms in thermal vapors.

Since the main ingredients in a plasma are also—of course—charged particles, this raises

the question, if and what plasma characteristics the vapor of electrons and ions shows.

In this part of the thesis, we demonstrate further analysis of the emergence of optical

bistability. We also directly measure the plasma frequency, and thereby show that the

origin of the bistable behavior lies in the creation of a plasma that is formed by ionized

Rydberg atoms. The recombination of ions and electrons creates a certain fluorescence

signature, which allows us to characterize the plasma properties of the vapor. Studying

the transient dynamics of the hysteresis that occurs, we also determine a scaling parameter

for the point of plasma formation.

This part of the thesis is based on the experiments and findings that were worked into

the manuscript Interplay between thermal Rydberg gases and plasmas, which has been

published as a research article in Physical Review A in 2019 [157].

79





10 Setup and methods

10.1 Experimental setup

vapor cell

fiber to PMT

RF antenna (input)

RF (output)

1064 nm

455 nm

Figure 10.1: Experimental setup for the plasma characterization. Two counter propagating
laser beams excite the Cs atoms in a vapor cell to a Rydberg state. The atomic fluorescence
is captured with a fiber, bandpass-filtered and detected on a PMT. The change in the radio-
frequency transmission through the atomic sample is measured with the dipole antennas.

Figure 10.1 shows the experimental setup for the further investigation of the bistability

and the analysis of the plasma. The setup is again straightforward, as is usual for hot

atom experiments: A vapor cell containing a macroscopic droplet of cesium is placed

in the path of two counter propagating, collimated laser beams. Each beam has a 1/e2

radius of 0.7 mm. The vapor cell has a squared cross-section with a side length of 1 cm,

and a length in the direction along the beam of 5 cm. The bulk of the cesium resides in

a reservoir attached to the bottom of the vapor cell. The temperature of the reservoir

is stabilized in order to provide a controlled atomic density of the vapor. The main

body of the vapor cell is held at higher temperatures than the reservoir to prevent alkali

condensation on the windows. We determine the cesium atomic density before and after

each measurement, by recording and fitting the absorption profile of the whole cesium

D2 spectrum. This well-established method is performed in analogy to the procedure

described in [148]. The densities used for the experiments described in this part of the

thesis are varied from 0.05 to 7×1012/cm3, which corresponds to a reservoir temperature

of 25 up to 87 ◦C. In terms of inter-particle distances, this translates to a separation of

0.3 to 1.7 µm between neighboring cesium atoms.
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We excite cesium atoms to the nD5/2 Rydberg state, again making use of the inverted

wavelength two-photon scheme [60], as is depicted in fig. 10.2. In particular, we address

the Rydberg state 30D5/2 in one part of the experiment, and work with the state 42D5/2

in another. As in the previous part of this thesis, the first laser is a frequency-stabilized,

6S1/2

F = 3

7P3/2

F ′ = 4

30D5/2

42D5/2

∆R

Plasma

Ω455

ΩR

Γi

Figure 10.2: Three-level diagram of the inverted wavelength ladder scheme applied in this part
of the thesis. The two lasers excite Cs atoms to the intermediate 7P3/2, and subsequently
up to an nD Rydberg state. For measurements with n = 30, the Rydberg laser is locked on
resonance, while for n = 42, the laser is scanned with detuning ∆R. The additional plasma
state is populated at a rate Γi due to ionizing collisions of the Rydberg atoms in the vapor.

frequency doubled diode laser, although this time tuned to the cesium 6S1/2, F = 3 →
7P3/2, F ′ = 4 transition at a wavelength of about 455 nm. This laser is referred to as the

blue laser, and is associated with variables and parameters with the subscript B. Rabi

frequencies, ΩB/2π, used for the experiments range between 1 MHz and 12 MHz. The

455 nm-laser is locked with a separate cesium reference cell via dichroic atomic vapor

spectroscopy [158]. The second laser (the fiber-amplified infrared diode laser) excites the

atoms from the 7P3/2 intermediate state to the Rydberg state. Variables and param-

eters associated with this transition are subscript with the letter R. Rabi frequencies,

ΩR/2π, are varied between 3 MHz and 90 MHz. The laser is either scanned over the ce-

sium 7P3/2 → nD5/2 transition with a detuning ∆R (measurements with n = 42, laser

wavelength λ42D = 1064.98 nm) or locked on resonance (n = 30, λ30D = 1073.50 nm).

We make use of another cesium vapor cell as reference, where we apply the conventional,

weak-probe EIT scheme [50]. For this light field, we used side-of-fringe locking to the

reference signal in order to stabilize the laser frequency [159]. The laser detunings in

case of the scanned measurements are calibrated using a Fabry-Pérot interferometer with

a free-spectral range of ∆νFSR/2π = 1.5 GHz, in combination with the EIT reference

signal.
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10.2. Fluorescence measurements

Typically, a thermal vapor cell is completely wrapped in thermally isolating material.

By allowing only the transmitting laser beams to pass through in- and output apertures

as small as possible, optimal temperature control is achieved. For the measurements

presented in this part of the thesis, we have designed the temperature stabilizing oven

with the necessary optical and electromagnetic access to the vapor cell in mind. The sides

of our structure are made of thin glass plates (spanning an area of 6 cm× 6 cm), allowing

fluorescence and RF signals to pass through.

455 nm →

← 1064 nm

RF antenna

reservoir

cell

heat cartridges

Figure 10.3: Sectional view of the design for the temperature-stabilizing oven, with optical
access perpendicular to the laser beams and the possibility to radiate RF frequency into or
through the plasma. The second antenna to receive the signal is on the back-side of the oven.
The copper parts (brown elements) are heated with resistive wire cartridges, and wrapped
by an insulating layer of a polyether ether ketone (TEKAPEEK). The side-windows are each
made of two layers of glass. The reservoir points down into a block that has a separately
controlled temperature, to define the vapor density.

10.2 Fluorescence measurements

Compared to the typical EIT spectroscopy measurement protocol, the Rabi frequencies

applied in our experiments are beyond the weak probe regime. Due to the high laser

powers involved, measured changes in the transmission of either light field would suffer

from a large background signal. Even small relative fluctuations on this background are

large compared to the signal height; an extremely high dynamic range of the oscilloscope

is required to capture the signal. As an alternative measure, we detect the fluorescence

emitted from the atomic ensemble in the direction perpendicular to the excitation lasers
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using a photo multiplier tube (PMT). This has the benefit of being a quasi background-

free measurement, and also spacial resolution along the beam axis is possible.

vapor cell

multi-mode fiber

RF antenna

imaging system

PMT filter

f2 = 8 mm

f1 = 30 mm

Figure 10.4: Schematic of the assembly collecting fluorescence from within the cell. The light
from a spot of ≈ 1.5 mm diameter is projected onto a multi-mode fiber with an imaging system
consisting of two lenses. Long and short-pass filters transmit light between 500 to 800 nm,
which is then either analyzed with a photo multiplier tube, or dispersed in a spectrometer.

A detailed scheme of the detection setup is shown in fig. 10.4. The fluorescence is collected

by an imaging system consisting of two lenses with focal lengths of f1 = 30 mm and

f2 = 8 mm. The second lens focuses the light into a multi-mode fiber, 400 µm core

diameter. The fluorescence is imaged on to the fiber facet from within the excitation laser

beam path, which is about 45 mm in front of the first lens. The diameter of the spot from

which photons are collected is approximately 1.5 mm, which roughly reflects the cross-

section of the laser beams. We filter the fluorescence with long- and short-pass filters1

so that only light between 500 to 800 nm is collected. With this interval, we exclude

the 455-nm laser light, and the strongly fluorescing decay via the D2 line at 852 nm that

can already occur with the 455-nm excitation on its own. Overall, we estimate that the

collection efficiency is on the order of the (0.1± 0.1)% level of the photons emitted into

all directions from that spot.

The setup also allows us to directly image the cell from the side using a camera in com-

bination with an objective2. We further have the option to feed the optical fiber into a

spectrometer3, to determine the spectral composition of the fluorescence.

10.3 RF-injection and transmission measurements

Complementary to the fluorescence measurements, we can not only inject but also measure

the transmission of radio-frequency fields. The RF field is coupled into the vapor cell with

1Thorlabs, FELH0500 and FESH0800
2Thorlabs DCC1545M, MVL16M1
3Andor Shamrock SR-303i-B-9FT with iDus DU401A-BR-DD
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an approximately 4 cm-long dipole antenna that is oriented parallel to the laser beam

direction through the cell. A second, identical antenna at the opposite side of the vapor

cell picks up the signal, that, due to only minute changes on both phase and amplitude

of the RF wave, requires careful processing: In order to improve the signal-to-noise ratio

to a level such that a signal is usefully measurable, we modulate the radio-frequency

amplitude as well as the laser intensity and make use of two steps of lock-in amplification.

Since the crude design of the antennas does by no means provide an impedance matched

environment for the RF field, also quadrature detection in order to eliminate the effect

of an unknown phase of the detected signals is necessary. Measuring the in-phase and

quadrature components of the transmitted RF field, I and Q, and two stages of lock-in

demodulation, a total of four lock-in amplifiers is necessary. A schematic of the electronic

circuitry is shown in fig. 10.5.

MW
generator

S

2X

LT5546

RF mod.

lock-in I

lock-in Q

RF mod.

lock-in δI

lock-in δQ

laser mod.

laser mod.
← 1064 nm455 nm →

antenna

vapor cell

Figure 10.5: Circuit for the RF transmission measurements, based on the I/Q demodulator
chip LT5546. The output of the RF-generator is split (buffered by amplifiers): one arm feeds
the 2XLO input of the detector chip, the second arm is modulated via an electronic switch
and coupled into the antenna. A second antenna feeds the received signal into the detector
chip, where it is down-converted to Q and I components. The output of the LT5546 is fed
into the two lock-in amplifier stages.

As the detector, we used a commercially available integrated quadrature demodulator

from Linear Technology, the integrated circuit LT5546. The chip is a monolithic I/Q

demodulator for signals between 40 MHz to 500 MHz. It provides the quadrature down-

conversion to I and Q baseband signals. The output of the chip is fed into the first

lock-in amplifier stage (all four lock-in amplifiers are from Femto, LIA-MV-200-H), which

demodulates the quadrature and in-phase components. Note that lock-in amplifiers could

also provide Q and I components of a single signal with respect to the modulation phase.

Here we refer to the two output channels of the LT5546 chip, and measure these with

a suitable phase delay only with the in-phase channel of the lock-ins. The RF wave
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is switched on and off at a rate of 59 742.71 Hz and integrated with a time constant of

0.3 ms, i.e., 18 periods of modulation. The output of the two separate lock-in amplifiers is

then again used at the input of the second, identical lock-in stage, that demodulates the

changes in I and Q, for which the Rydberg laser is modulated with a chopping wheel at

100 Hz. As a result, the output ports yield the two signals, δI and δQ. As an observable

that quantifies the change in transmission, which is merely a complex transfer function

than just absorption, we define

δTRF =
√

δ2
Q + δ2

I . (10.1)
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Figure 10.6: Change in the quadrature and in-phase components of the two lock-in stages.
The combined change in both phase and amplitude is reflected in the change in transmission,
δTRF, as defined in eq. (10.1).

The quantity δTRF has to be interpreted as the overall change of the transmission signal in

both phase and amplitude combined. Distinguishing between the two requires additional

knowledge and stability of the phase information, which is both difficult to obtain. Partly,

because it is buried in noise, and partly, because impedance fluctuations caused by sub-

tle changes to the experimental conditions, such as the experimenter wandering around

the room during data acquisition, already impact on the phase. With this definition,

phase drifts during averaging are (at least partially) equalized. A schematic of the RF

transmission signal as captured with our measurement protocol is shown in fig. 10.6.
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11 Results and discussion

11.1 Bistability mechanism

In previous work on optical bistability in thermal Rydberg vapor [32, 139, 160], the authors

assumed that Rydberg atom interactions give rise to the mechanism that is responsible

for the phenomenon. The effect that charges have on the system was not incorporated

into the models used to explain the observed behavior. The first experimental part in

this thesis associates the bistability with the presence of ions. There, we are able to

provide a plausible quantitative assessment of the required densities of Rydberg atoms and

charges as well as an ionization cross-sections in consent with literature values. However,

a thorough understanding remained yet to be developed. Our experiments with access to

the fluorescence emission transverse to the laser beam propagation direction allows a new

perspective onto the subject. The spatially resolved fluorescence signal gives insight on

the emergence of the bistability itself.

Figure 11.1: (a) Side-view of the cell. The lasers propagate between the dotted lines, 455 nm
laser from left to right, 1064 nm laser from right to left. (b-d) Fluorescence signal filtered
for wavelengths between 500 and 800 nm. By carefully tuning the laser parameters the
spacial position of the phase transition along the beam can be controlled. The fluorescing
ray resembles a lightsaber [161] (e) Pixel values along the center of the three beams. The
background with the Rydberg laser switched off was subtracted. The two defects on the left
and right hand side are due to quartz sublimate on the surface of the cell.
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Figure 11.1 shows an actual photograph of our cell as viewed from the side. The beams

travel horizontally through the cell, and, given suitable combination of density, laser

power, and detuning, create a fluorescing ray (fig. 11.1(c-d)), consistent with the spectra

reported in [32]. As the 1064-nm laser is scanned back and forth across the Rydberg

resonance position, fluorescence suddenly appears to streak across the whole vapor cell

for one scan direction, but then gradually retracts towards the entrance window of the blue

laser beam until it completely vanishes for the opposite scan direction. The directionality

of the phenomenon was verified to depend on the overall sign of the polarizability by

addressing different Rydberg states, as in part II. This lightsaber -like phenomenon [161]

that has a distinct transition between a light and a dark side along the beam repeats for

every cycle of the detuning scan. When filtering out the 455-nm light (e.g., with suitable

laser safety goggles), the effect is even visible by eye. This is a visual manifestation of the

optical bistability.

The probe signal of the blue light field, measured as the transmission through the vapor

with a photo-diode the same way as in the previous part of this thesis, hereby coincides

with the temporal progress of the fluorescence, fig. 11.2. The sharp kink in the plot coin-

cides with the sudden streaking of the fluorescing beam through the cell. For the reverse

scan direction, the gradual retraction of the lightsaber is correlated with the decrease

of blue laser transmission. For the remaining spectrum, the fluorescence brightness and

transmitted power evolve completely in sync. Since apparently, the lateral fluorescence

and the transmitted probe light are interchangeable, we do not record the probe trans-

mission any further. Especially varying the blue Rabi frequency and the density of the

vapor requires careful reconfiguration of this absorption measurement. Very frequently,

the signal coming from the photo-diode gets saturated, or needs stronger amplification

and vastly different offset voltage in order to obtain usable data. Recording the fluo-

rescence signal from the side using a photo multiplier tube lets us focus better on the

relevant aspects of the experiments.

Due to these observations of the fluorescence dynamics, we modify the overall concept for

the occurrence of the hysteresis as is depicted in fig. 10.2. As evidenced before, charges

play the essential role in the optical bistability that takes place in thermal Rydberg gases.

In fact, it is not Rydberg-Rydberg interactions that mediate the optical bistability, but a

plasma of ions and electrons which are created at suitable Rydberg densities. With the

new measurements presented in this part of the thesis, we demonstrate that not only in

the typical optical bistability experiments but over a much wider range of experimental

parameters, a weakly coupled plasma exists in the vapor. It is due to the sudden switching

to the plasma state via a nonlinear ionization process and the feedback due to the Stark

shift in an electric field distribution that leads to the observation of the hysteresis, and

motivates the term optical bistability.
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11.1. Bistability mechanism

Figure 11.2: Transmission signal and synchronized fluorescence images of the cell from the side.
The behavior of the probe beam, T455, coincides with the glowing beam along the laser axis.
For a negative detuning (1), the fluorescence is very dim, and even appears not to extend
across the cell due to absorption of the 455-nm laser from left to right. The transition from
light to dark is smooth. Approaching the center of the peak (2), fluorescence gets continually
stronger. It stays at high brightness until shortly before the phase transition. Within the
hysteresis window, the previous state of the system is of relevance: Coming from negative
detuning (3,4,5,6, orange curve), the beam gradually retracts until completely vanished. For
the opposite scan direction (6,5,4,3, purple), it is all dark until the beam suddenly flashes
across the cell.

We propose two mechanisms that contribute subsequently, and explain the transition

to a plasma. First, Rydberg atoms collide with ground state atoms, thereby creating

a background-level of ions and free electrons. Then, these electrons collide with other

Rydberg atoms, giving rise to a much higher rate of ionization Γi. Because electrons are

so lightweight, their velocity is by orders of magnitude higher than that of the heavy

alkali atoms. Thus, the collision rate is accordingly large. Only once a critical density

of charges exist via the first mechanism, the second process takes over in a much more

efficient way. Overall, this is a well known effect, and commonly described as the avalanche

process [35, 83, 162].

The plasma plays a fundamental role in the atomic dynamics, and thus the bistability

mechanism. With charges present in the gas, the Rydberg energy levels are shifted due to
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the Stark shift, ∆S. As thermal atoms move through the electric field distribution and also

ions and electrons are continuously reshuffled, the Rydberg energy levels rapidly change

during the atom-light interaction. Therefore, an additional dephasing γS on the Rydberg

coherences needs to be taken into account which changes the excitation dynamics of the

driven system. On average, this variation affects each atom of the ensemble more or less

equally, although the individual course of shifts might differ. To be able to describe it

with a Lindblad operator later, we assume this dephasing to be a homogeneous effect. In

a dilute plasma, the ion density dictates the electric field distribution, while the electron

vapor disturbs the coherences directly by collisions. This is usually referred to as the

impact approximation [128, 163].
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Figure 11.3: Exemplary recombination spectrum of the plasma, plotted as the square root of the
photon flux. The two panels show different wavelengths ranges, but the relative amplitudes
are comparable. The vertical lines show the expected wavelength series of decays up to
n = 30. Due to their larger ionization cross-section and longer lifetime, the radiative decay is
suppressed for transitions originating from higher principal quantum numbers, i.e., towards
shorter wavelengths.

Finally, the recombination in the plasma gives rise to the distinct fluorescence spec-

trum [32, 164, 165] which can be measured. The neutralization of the positively charged

ions with the negative electrons leads to a broad, discrete distribution of Rydberg prin-

cipal quantum number states which then subsequently decay. Figure 11.3 shows such

characteristic spectrum that extends over a wide range of different wavelengths. Each of

the discrete transitions itself designates a certain decay to an energetically lower lying

state. Note that only radiative decay contributes to the fluorescence spectrum. Since

the vapor is still heavily perturbed by the charges in the plasma, re-ionization within the

lifetime of such state is quite possible. As a consequence, fluorescing transitions originat-

ing from higher Rydberg states (with larger cross-sections) are suppressed, compared to

lower lying states. We could not verify a threshold behavior as in [142], such that only
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11.2. Microwave-transmission and fluorescence measurements

Rydberg decays up to the addressed state are visible. Instead, we observe a fading-out of

the decays from the higher lying states, as is shown in fig. 11.4, as also hinted to in [165].

The supposed threshold seems to be coincidental and requires further research.
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Figure 11.4: Details of the fluorescence spectra when driving to different Rydberg states. The
vertical lines indicate the transition wavelength from the nD3/2 state to 6P1/2. Note that the
nD5/2 is addressed by the lasers, so the nD3/2 state is indirectly populated. The manifold of
lines fades out for higher lying states, independent of the addressed Rydberg level. Due to
the n⋆4 scaling of the cross-section, ionization dominates the decay from 42D and 50D, but
fluorescing decay is still visible as a distinguished peak in the 30D trace. Laser intensities
are adjusted to achieve equal Rabi frequencies ΩR for all three states.

11.2 Microwave-transmission and fluorescence

measurements

We measure the change in transmission δTRF of a radio-frequency signal to demonstrate

that a plasma exists in the gas. The dispersion relation for electromagnetic waves through

a plasma is given by

ω2 = ω2
p + c2

0k
2, (11.1)

under the assumption of no magnetic fields. The wave number k is cut-off for frequencies

above the plasma frequency. Inspired by [166], we anticipate to be able to detect such

a change in either phase and/or transmission of the RF wave. The resulting traces are

plotted in fig. 11.5 and show a single peak in the regarded frequency range. The resonance

position and its shift with the Rydberg Rabi frequency already hints towards the presence

of an (electron) plasma: The effect of the radio-frequency excitation does not occur in a

neutral cesium gas at these frequencies. As the resonance position does not scale linearly
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towards zero with the Rabi frequency ΩR (see also fig. 11.6), we can exclude Autler-

Townes splitting as the origin, which would be at lower frequencies anyways. Transitions

between different Rydberg states are also highly unlikely, because the resonance frequency

becomes lower for decreasing Rabi frequencies. In sec. 11.3, we show that interpreting the

resonance position as the plasma frequency leads to electron densities that are plausible.

The data-set was taken for two different Rydberg excitation laser Rabi frequencies, ΩR,

but otherwise identical configurations. Both lasers were locked on resonance and excite

the atoms to the 30D5/2 state. The ground state cesium density was Ng = 3×1012/cm3

and the set radio-frequency power of the microwave-generator1 was PRF = −15 dBm. For

the RF transmission measurements, additional attenuation of −33 dB was placed in front

of the sending antenna.
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Figure 11.5: Fluorescence vs. radio-frequency (a) and radio-frequency transmission change (b)
for the 30D5/2 Rydberg state for the same experimental conditions, with both lasers locked.
Experimental parameters are PRF = −15 dBm, ΩB/2π = 3.6 MHz and Ng = 3× 1012 cm−3.
The dashed lines are Gaussian fits to guide the eye.

A careful look at fig. 11.5 appears puzzling at first, since the radio-frequency field does

not appear in absorption but seems to be an increased transmission. This is deceptive.

Normally, one would expect reflection of RF below the plasma frequency, and transmission

above the resonance. According to our definition of δTRF, eq. (10.1), changes in both am-

plitude and phase contribute to the positive definite spectrum. Thus, both imaginary and

real part of the electric susceptibility are probed simultaneously, and their contributions

are mixed together. Additionally, one has to consider that the two antennas in our exper-

iment are in the near-field of each other, which disputes assumptions with macroscopic

properties of a medium, such as susceptibility or refractive index. We therefore avoid

quantitative statements about the degree of phase shift or the decrease in transmission

1Anritsu, MG3694C
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The important information we excerpt from these measurements is that a distinguished

resonance frequency exists and that this frequency strongly depends on the excitation

Rabi frequency.

Figure 11.5 additionally shows the change in fluorescence measured as a function of the

modulation frequency, fRF. The overlap of the radio-frequency and fluorescence signals

show that the fluorescence can be used as a surrogate for the radio-frequency transmission

signal. Such a connection has important experimental implications, because the fluores-

cence signal has a much better signal-to-noise ratio than the radio-frequency transmission

signal, and therefore requires less averaging to obtain a clear signal. Measuring the fluo-

rescence is a much easier and faster procedure: it takes about one hour for each trace in

fig. 11.5(b), while the data for fig. 11.5(a) is captured within tens of seconds.

The change in fluorescence can be explained by considering how the radio-frequency field

accelerates the free electrons into an oscillating motion with an amplitude depending on

the frequency of the radio-frequency field. If the radio-frequency field is resonant with the

plasma frequency, the amplitude of the electron oscillation is maximal and this motion

effectively decreases the electron density within the laser beams. If the amplitude of the

electrons exceeds the radial extent of the laser beams, the recombination probability in

the center of the beam —where the ions are presumably located and most fluorescence

is collected—decreases. For large electric field amplitudes, the electrons can also collide

with the walls of the vapor cell. This also reduces the number of particles contributing

to the fluorescence signal.

11.3 Plasma properties

As we have established relations between the fluorescence signal and the probe laser

transmission, as well as between fluorescence and an effect on RF transmission properties,

it appears that we can study the plasma characteristics using the fluorescence signal.

Figure 11.6 shows a typical series of measurements with varying Rydberg excitation laser

intensities. As the Rabi frequency ΩR gradually increases, the plasma resonance clearly

shifts its position while the signal simultaneously increases in amplitude. The shift in

the plasma resonance enables us to extract the density of the electron plasma. Given the

relation between plasma frequency fp and the electron density Ne, eq. (3.29),

Ne = (2πfp)2 ǫ0me

q2
e

, (11.2)

the electron density can be calculated. The axis ticks above fig. 11.6 are computed in

exactly this way, yielding an electron density on the order of 1× 108 cm−3.

93



Chapter 11. Results and discussion

Figure 11.6: Plasma resonance peaks in the fluorescence signal, and corresponding electron
density. Error margin in (b) is the full-width at half maximum of the features in (a). Ex-
perimental parameter: radio-frequency power PRF = −16 dBm, density Ng = 3× 1012 cm−3,
ΩB/2π = 3.6 MHz. The 30D5/2 Rydberg state was used for the measurements.

Along with the plasma frequency, the Debye length, eq. (3.5), and the Coulomb coupling

parameter, eq. (3.15) characterize the plasma. We assume the plasma temperature to be

equal to the vapor temperature, T ≈ 370 K, because the ions are created in the vapor

at that temperature, and the electrons quickly thermalize with the ions via Coulomb

interaction. The Debye length is then λD ∼ 100 µm, and the Coulomb coupling parameter

is Γe ∼ 0.006. These characteristics indicate that the electron plasma is in the weakly

coupled regime. The associated plasma parameter, eq. (3.10), which measures the number

of electrons in a Debye sphere, is ND = 103. The volume of the Debye sphere hence

contains 103 ions on a background of 1.3× 107 cesium atoms. The plasma is weakly

ionized with properties comparable to the earth’s ionosphere [167].

Note that the observed plasma resonance in fig. 11.6 must be that of the electrons: cal-

culating the ion density using these resonant frequencies results in densities that are 2 to

100 times larger than the peak cesium vapor density Ng = 3× 1012 cm−3 we measured in

the cell. A prediction for the corresponding ionic plasma frequency can be drawn from

the ratio between the electron mass and the mass of a cesium ion. Assuming the same
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density, the ionic plasma would oscillate at a frequencies

fion = fe

√

me

mCs

≈ fe

500
. (11.3)

A search for the ionic plasma frequency around 1 MHz did not show any signature in

the fluorescence. For two reasons this is not surprising: on the one hand, the ions are

much heavier than the electrons, and therefore require even stronger fields to be accel-

erated significantly. On the other hand, the mismatch between the dipole antenna and

wavelength increases, and therefore less RF power reaches the atoms. It is unclear, if RF

power is brought into the cell volume at all at these low frequencies in our experimental

apparatus.

11.4 Scaling behavior of the bistability edges

11.4.1 Plasma transition and edge frequency

Figure 11.7: Fluorescence signal collected from different spatial positions along the vapor
cell, with increasing distance from the entrance window of the blue laser beam. (a) Scan
from red to blue detuning (i.e., left to right). (b) Scan from blue to red detuning. All
traces in (b) feature the same sharp edge at approx. 500 MHz. The dashed line shows the
mean of the fluorescence signal. The mean is similar to the integrated signal one would
obtain by measuring the probe transmission, cf. fig. 11.2. Experimental parameters are Ng =
3× 1012 cm−3, ΩB/2π = 2.5 MHz and ΩR/2π = 18 MHz. Data is shown for the 42D5/2

Rydberg state.
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Figure 11.7 shows a set of fluorescence signal data for both red to blue and blue to red

1064-nm laser scans at different fluorescence collection positions z along the vapor cell.

The fluorescence is associated with population in a large number of different Rydberg

states, as a result of the recombination of the plasma. By interpreting the plots only

at the blue detuned side, we note that the system stays in the state with a high Ryd-

berg density—where high Rydberg density simultaneously implies high charge density—

when scanning from red towards blue detuned wavelengths, even for larger detunings,

fig. 11.7(a). The behavior of these curves is to be contrasted with that in the second

panel, fig. 11.7(b), where a sharp transition upwards occurs at the same 1064-nm laser

detuning for all fluorescence collection positions. Because a lot of directions are involved

in the following analysis, we try to avoid confusion by clarifying: The laser detuning scan

has a positive direction which goes from the red to the blue detuned side of the resonance,

and a negative direction, from blue to red. The fluorescence signal, cf. fig. 11.7, must

be followed along the scan direction in which the data was recorded: For the positive

detuning scan, fig. 11.7(a), the signal quickly falls down to the baseline; for the negative

detuning direction, fig. 11.7(b), the signal starts from the baseline, and suddenly rises

up.

It is apparent that for larger distances from the 455-nm laser beam input window (cor-

responding to larger propagation distances of the blue light through the vapor cell), the

overall strength of the fluorescence signal decreases. The decreasing 455-nm laser inten-

sity affects the detuning at which the falling edge of the hysteresis occurs for red to blue

detuning, fig. 11.7(a). In opposition, the plots in fig. 11.7(b) all feature the same sharp

edge at a detuning ∆R/2π of approximately 500 MHz. This rising edge, fig. 11.7(b), where

the data is acquired for blue to red detuning, is unaffected by the varying 455-nm laser

absorption along the length of the vapor cell. When the system is in the bistable part of

the spectrum, but in the low Rydberg population state, the conditions for the ionization

only need to be fulfilled at any position along the laser beam. The avalanche ionization

then quickly spreads across the whole cell, cf. sec. 11.1. The transition based on a seeding

suggests that it is a first-order phase transition between two meta-stable states, although

in general, the transition from a neutral gas to a plasma is continuous (e.g., with respect to

the temperature), and typically classified as a second-order phase transition. In fig. 11.2,

the transition to the plasma state happens much faster than two consecutive frames of the

camera (frame rate 5 s−1). A more restrictive upper limit is found by looking at the rising

slope of the edge in fig. 11.7(b), which is recorded as a function of time: it takes about

0.1 ms for the signal to rise. If we assume this to be the duration it takes for the domain

boundary to pass the extend of the 1.5-mm spot from which fluorescence is collected, we

can estimate the timescale for the whole cell length of 5 cm to be on the order of 5 ms.

Typically, the conditions for the avalanche ionization are fulfilled first where the maximum

Rabi frequency ΩB exists, i.e., at the entrance window of the blue laser. One can, however,

carefully tune the system to feature two transitions, as displayed in fig. 11.8. In principle
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Figure 11.8: Two simultaneous phase transitions along the beam. The back-reflected blue light
and less dispersed red light from the right side decrease towards the left. This leads to the
additional threshold criterion from right to left. The bottom panel shows the pixel values
along the center line. Our vapor cell does not have an anti-reflective coating.

the same argument as before holds, only this time it might be caused by the additional

back reflection of the blue light, and possibly a very subtle gradient in the red light, with

stronger intensity closer to the entry window on the right hand side. Our cell does not

have an anti-reflective coating.

The abrupt jump in the Rydberg population and associated change in fluorescence is

referred to as the edge frequency. In the numerical evaluation of the data, we determine

the edge frequency as the 1064-nm laser detuning value, ∆E, where the fluorescence signal

exceeds 1/4 of the maximum value in each curve, when tracing the data from the blue

side (in this definition regardless of the detuning sweep direction for which the data was

recorded). For the positive sweep, this gives us ∆E,↓, for the negative sweep we have

∆E,↑, respectively. It is useful to look at ∆E,↓/↑ to determine how its value scales with

the laser Rabi frequencies and density, in order to learn about the dynamics of the driven

system.

11.4.2 Adjusted Rabi frequency

The laser beams are being absorbed while propagating through the atomic medium.

Therefore, the Rabi frequency in general is a function of the position, Ω = Ω (z), cf. fig. 11.1.

In our experiment, the 1064-nm laser intensity is assumed to be not considerably affected

by absorption along the cell. The blue 455-nm laser beam however is strongly absorbed,

since it couples the highly populated ground state to the intermediate state. For this

beam, the optical depth is large, and even though the intensity is above saturation, there

is still considerable absorption. As the local ΩB varies along the length of the vapor cell,

also the excitation and ionization conditions vary. The spectrum one obtains by measur-

ing the fluorescence therefore depends on the spatial position at which the fluorescence is
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collected. As a consequence, one needs to adjust ΩB according to the position where the

measurement is made, which is indicated by the asterisk, Ω⋆. We numerically propagate

the intensity through a thermal ensemble of the respective density to determine Ω⋆ at the

z-position of interest. We hereby follow the derivation in [49], and numerically integrate

eq. (1.38).

11.4.3 Scaling behavior

The plasma and its role in the appearance of the bistability can be further analyzed by

investigating the dependence on the laser Rabi frequencies and vapor density. To study

the optical bistability, the 1064-nm laser is scanned across the 7P3/2 → 42D5/2 transition.

Since the system is bistable, both positive and negative scan directions are recorded and

treated separately. We measured spectra for a wide range of experimental parameters,

varying vapor density and both excitation laser Rabi frequencies, ΩB and ΩR. We focus on

analyzing the edge, i.e., the transition from and to the plasma state, as we sweep the 1064-

nm laser detuning across the two-photon resonance. The overall shape and amplitude of

the signal is not considered further in this analysis. It turns out to be possible to combine

the experimental parameters into two scaling parameters S↓ or S↑, for the positive (red

to blue) scan and negative (red to blue) direction, respectively. These scaling parameters

are defined as

S↓/↑ =
(Ng

N0

)a

·
(

ΩB

Ω0

)b

·
(

ΩR

Ω0

)c

, (11.4)

striped of its units by arbitrary normalization factors Ω0 and N0. We have discovered

that the two sets of exponents (a, b, c)↓ and (a, b, c)↑ can be chosen in such a way that

the detuning frequencies at which the system jumps between high and low Rydberg/ion

population state scale linearly with S↑ or S↓,

∆E,↓/↑ = p · S↓/↑ + q, (11.5)

where p and q are arbitrary proportionality factors and offsets, respectively. Additionally,

we introduce the following notation for the scaling factors: The asterisk, e.g., S⋆
↑ , denotes

that for the calculation of this scaling factor, the blue Rabi frequency is compensated for

absorption up to the position where the fluorescence measurement is made, as described

in sec. 11.4.2.

The set of data points we acquired for the bistability edge position are plotted in fig. 11.9.

The plots cover ΩB/2π over a range of 1.8 to 12 MHz, ΩR/2π from 15 to 50 MHz, and Ng

within 0.05 to 7×1012/cm3. The values for the three scaling exponents, (a, b, c)↓/↑, are

obtained by non-linear least-squares fitting to the data plotted in fig. 11.9, independently

for both detuning sweep directions. The cost function that is minimized here is the

deviation of each point from the point cloud to a linear regression line. Hence, in every
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Figure 11.9: Heat map of the bistability frequency edge positions, ∆E,↓/↑, as a function of the
scaling parameters S⋆

↓ and S↑, according to eq. (11.4). (a) Red to blue detuning sweep. (b)
Blue to red sweep. For comparison, the larger spread of the distributions with the respective
raw and absorption adjusted Rabi frequencies (ΩB and Ω⋆

B, respectively) are also shown.

iteration step of the least-squares fitting routine, the scaling parameter for the current

values of the three exponents needs to be computed for each datapoint first. Then, a

linear regression line is fitted to this point cloud and the cost values can be calculated.

We calculate the scaling for both adjusted and raw Rabi frequencies, Ω
(⋆)
B . The results

are given in tab. 11.1. We find that using the blue Rabi frequencies as indicated by the

asterisk in the table leads to more narrow distributions of points, cf. fig. 11.9. Using the

other two combinations, corresponding to S⋆
↑ or S↓, leads to the broader distribution of

the point-clouds that are shown in the same figure. This again reflects on the fact that

for S↑, the maximally available Rabi frequency anywhere in the cell is relevant, while for

S⋆
↓ the conditions at the position of measurement define the behavior, cf. sec. 11.1.

Related experiments demonstrate that the frequency shift of the phase transition addi-

tionally scales with the forth power of the effective principal quantum number, n⋆4 [139].

This is in agreement and consistent with our interpretation, because the geometric cross-

section of Rydberg atoms for ionizing collisions also scales with n⋆4, eq. (2.31).

The fact that the values are different for S↑ and S⋆
↓ indicates that the dynamics are

different for the two scanning directions, which is an indication, but not required for
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(Scan) a (Ng) b (ΩB) c (ΩR)

correct adjustment
S↑ (←) 0.81± 0.01 0.95± 0.02 1.08± 0.02
S⋆

↓ (→) 0.54± 0.01 0.56± 0.01 0.97± 0.02

wrong adjustment
S⋆

↑ (←) 0.86± 0.02 0.80± 0.02 1.11± 0.03
S↓ (→) 0.47± 0.01 0.59± 0.01 0.89± 0.02

Table 11.1: Scaling exponents as in eq. (11.4) with 95% confidence intervals obtained by the
fitting routine. The systematic error is probably much larger. We therefore believe that these
values can easily be in agreement with integer or half-integer values. For completeness, we
also show the parameters one would obtain with the wrong Rabi frequency adjustments, that
lead to wider spread of the point-clouds, cf. fig. 11.9.

the bistable behavior. In the next section, we compare these numbers to a simple rate

model.

11.4.4 Assessment of the scaling behavior via rate equations

Interpreting the numerical values of the exponents for the scaling parameters reveals

interesting properties of the bistable system. An intuitive picture based on rate equations

can be developed, to explain the rough trend of the determined exponents, (a, b, c), and

also justify the distinction between the raw and adjusted Rabi frequency. The most

important parameters are the density of Rydberg atoms and ions, NRyd and Nion. The two

steady state densities can be obtained by solving the coupled system of rate equations,

Ṅion = NRydNgσgv +NRydNeσev
′

−NionNeσrv
′ −NionΓt

ṄRyd = −NRydNgσgv −NRydNeσev
′

+Rpump.

(11.6)

The parameters in the two equations are cross-sections for Rydberg-ground state collisions

σg (first term in both Ṅion and ṄRyd), Rydberg-electron collisions σe (second term, also

both eqs.), and recombination of ions with electrons σr (third term in Ṅion). For every

collision term, v is the mean relative velocity of the respective interacting species. It

is reasonable that the velocity of all the heavier particles is the same. When the much

lighter electrons are involved, this is indicated by a prime. Ions diffuse away at a rate Γt.

The effective rate at which atoms are excited to the Rydberg state is Rpump, which will

be specified for the two cases of high and low Rydberg population later. The decay of

the Rydberg population, also dominated by transit time decay, only results in an offset in

the effective pump rate, and does not play a role for the scaling behavior. Depending
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on whether the system approaches ∆E from the ground state side (Nion,Ne,NRyd ≈
0 cm−3) or the highly populated excited state side (Nion,Ne,NRyd ≫ 0 cm−3), different

approximations for eq. (11.6) are to be applied. For the analysis of the scaling behavior

in both of these two extremes in the following paragraphs, we assume the electron and

ion density to be approximately the same, Ne ≈ Nion, both given by the parameter Nc.

For blue to red detuning sweeps which are described by S↑ in tab. 11.1 and fig. 11.9(b),

∆E is approximately linear with respect to all 3 parameters, (a, b, c) ≈ 1. We also observe

that all traces in fig. 11.7(b) feature a sharp edge at the same detuning value. In order

for the system to jump to the plasma state, it seems sufficient to trigger the threshold

for the avalanche mechanism at any point along the vapor cell. Close to the entry of

the blue laser, the highest Rydberg excitation rate is available. Therefore, the raw Rabi

frequency, calculated from the intensity right in front of the cell, determines when the

system jumps to the plasma state. It is important to understand that the Stark shift

and associated spectral broadening due to the charge distribution does not play a role

before this transition has happened. The system starts from the ground state, so we can

approximate the rate equations, eq. (11.6), as

Ṅc
Nc≪Ng

= NRydNgσgv −NcΓt

ṄRyd
Nc≪Ng

= −NRydNgσgv +Ng
ΩBΩR

∼

∆
.

(11.7)

Here, the pump rate to the Rydberg state is taken to be the effective two-photon Rabi

frequency divided by an effective detuning
∼

∆, considering this a non-resonant two-photon

excitation. Due to the Doppler effect, most atoms in the ensemble are detuned with

respect to the 7P3/2 intermediate state, The detuning of the Rydberg laser with respect

to the transition is trivial. Without the plasma or a significant number of charges present,

the line width of the Rydberg transition corresponds to its natural width, and both lasers

are above saturation. Hence, both Rabi frequencies contribute linearly to the pump rate.

In steady state, the charge density in eq. (11.7) is proportional to

Nc ∝ NgΩBΩR, (11.8)

which reflects the measured scaling, that is close to being linear in all three parameters.

For the opposite scan direction, scaling parameter S⋆
↓ in tab. 11.1 and fig. 11.9(a), the

dominant terms in eq. (11.6) are

Ṅc
Nc≫0

= NRydNcσev
′ −N 2

c σrv
′

ṄRyd
Nc≫0

= −NRydNcσev
′ +Ng

Ω⋆
B

2ΓD

Ω2
R

ΓRyd
.

(11.9)
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With the plasma present, the Rydberg transition is massively broadened by the varying

Stark shifts and the 1064-nm laser intensity is effectively on resonance, and below the

saturation intensity, while the 455-nm laser transition remains saturated. The interme-

diate state population at each position along the cell is proportional to the local Rabi

frequency Ω⋆
B. More precisely, it is proportional to Ω⋆

B divided by the Doppler width ΓD,

reflecting the fact that a wider range of velocities contribute to the population as the

excitation linewidth is increased due to power broadening. From the intermediate state

population, atoms are then excited to the Rydberg state. Since the Rydberg line width

is disturbed by the plasma, this is an incoherent effect, and only the number of photons

is of importance here. As a result, the Rydberg population depends quadratically on ΩR.

Solving eq. (11.9) for the steady state charge density gives

Nc ∝
√

Ng

√

Ω⋆
BΩR, (11.10)

which is in agreement with the experimentally obtained scaling S⋆ shown in tab. 11.1.

Since bothNc from our theoretical considerations and ∆E from the measurements yield the

same scaling behavior, we can conclude that the detuning at which the system undergoes

the transition between the two meta-stable states is proportional to the charge density in

the vapor,

∆E ∝ Nc. (11.11)

It is important to note that most of the measurements are not performed in one of

the extreme cases mentioned here. The crude simplification does not hold, and a more

elaborate scaling follows. Also, only the detuning at which the transition happens is

considered here, the overall line shape of the signal has been neglected. Therefore a

detailed numerical model is developed in the next part of this thesis.
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12 Part III: Conclusion

In this part of the thesis, we have built on the previously established awareness that

charged particles are present when exciting atoms in a thermal vapor to Rydberg states.

We introduced a new experimental layout that allows both electromagnetic and optical ac-

cess to the vapor cell perpendicular to the excitation laser beams. We were able to confirm

the natural supposition that the vapor of ionized Rydberg atoms shows the characteristics

of a plasma. By measuring the change in transmission of an RF signal, although in phase

and amplitude simultaneously, we saw a resonance feature that changes its position with

the Rabi frequency. Identifying this resonance with the plasma frequency of the electron

gas, we obtained an estimate of the electron density that is within a plausible range. We

derived values for the Debye length and the Coulomb coupling parameter and thereby

characterized the plasma as a weakly ionized one.

By analyzing the fluorescence that is radiated perpendicular to the laser beam axis, we

gained a deeper understanding of the mechanism that is responsible for the optical bista-

bility in thermal Rydberg vapors. With the help of spatial resolved fluorescence measure-

ment, we shed light on the temporal progress of the phenomenon. For one detuning sweep

direction, a characteristic fluorescing ray suddenly streaks across the length of the cell.

For the opposite direction, this ray gradually retracts. Systematic measurements of the

phase transition in the fluorescence signal allowed us to quantify scaling exponents of all

our experimental parameters. We demonstrated that the point of plasma formation scales

linear in all three parameters (ΩB, ΩR,Ng), while the reverse transition is only linear in

ΩR, and scales with the square root of the remaining two. This scaling behavior agrees

very well with a simple empirical rate model for the charge density.
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13 Part IV: Introduction

Measuring the fluorescence perpendicular to the beam axis instead of the usual trans-

mission signal facilitates—literally—a new perspective on optical bistability in thermal

Rydberg vapors. In the previous part of the thesis, we developed a microscopic picture of

the phenomenon by asserting that a plasma is formed. We presume that the mechanism

which contributes to this plasma formation is that inelastic, ionizing collisions between

Rydberg atoms and ground state atoms create an initial concentration of charged particles

in the vapor. As a secondary step, the electrons produced by the ionization of the Ryd-

berg atoms then become an additional source for collisions with Rydberg atoms, leading

to even more charges in the system. Eventually, when sufficiently many Rydberg atoms

are ionized, a steady-state plasma is formed.

In this part of the thesis, we provide affirmation that our assumptions are sound by

engineering a numerical model of the atom-plasma-laser system. The simulation is based

on the density matrix formalism and ensemble averaging of an inhomogeneous medium.

The key aspect of the model is to project the charge density to a distribution of Stark

shifts and dephasing. This provides a feedback mechanism, that, in combination with

the non-linearity of the avalanche ionization, is responsible for the emergence of optical

bistability in thermal Rydberg vapor.

We first describe the building blocks of the model and demonstrate the iterative algo-

rithm to calculate equilibrium states of the system. Fluorescence measurements from the

experimental setup as described in the previous part of this thesis allows us to validate

the model and refine its parameters by least squares optimization. We show that mea-

sured and simulated spectra are strikingly similar, and the obtained parameters that are

plausible.
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14 Concept and methods

14.1 Fundamental procedure

To calculate the state populations and coherences of the ensemble of thermal atoms excited

by laser beams, we evaluate the steady state solution for the Lindblad master equation

ρ̇ = − i

~
[ρ, H ] + L

!
= 0, (14.1)

as introduced in part I. Each calculation is performed for a given set of experimental

parameters; i.e., a given set of density, laser detuning and Rabi frequencies. The key

aspect of our model is to factor the effect of the electric field distribution of the plasma

in terms of a shift and broadening into the system. The mechanisms covered by our

simulation are as developed in sec. 11.1 and schematically depicted in fig. 14.1.

As is the usual approach for such calculations in a thermal ensemble of atoms, the solution

to eq. (14.1) is independently calculated for each velocity class in a discretized binning

of the velocities. Due to the Doppler effect, the actual laser detuning with respect to

the transition frequency in the atoms reference frame differs for each velocity class. Only

afterwards is the ensemble then averaged over the probability distribution of these bins,

to get the comprehensive solution for the atomic vapor. Since additionally to the Doppler

effect, we have to consider the electric fields caused by the plasma, we implement the

equivalent with the Stark shift distribution. Analogous to the method of Doppler averag-

ing, we now integrate over the combined probabilities of the electric field and velocity to

obtain the observable quantities from the density matrix. Since the electric field distribu-

tion and the density matrix (and thus also the ion density) are mutually dependend, we

calculate the two with an alternating method: for a given ion density, we first compute

the electric field destribution. For this electric field distribution, we calculate the entries

of the density matrix. From the density matrix, we get an updated value for the ion

density. This leads us to an iterative algorithm, which will be described in sec. 14.5. The

value for a density matrix element, given a specific Rydberg laser detuning and a known

ion density, is the average of the density matrix element obtained using the respective

probability distribution functions for the Stark shifts and the atomic velocities,

ρi,j =

∞
∫

−∞

dv

∞
∫

0

dE f (v)PN (E) ρi,j (v, E) . (14.2)

109



Chapter 14. Concept and methods

Figure 14.1: Key aspects of the numerical model. (a) Modified 3-level diagram of the inverted
ladder scheme, with the additional plasma state, similar to [38]. The feedback of the plasma
onto the Rydberg state imposes a shift and broadening. Also, the recombination leads to
fluorescence from a broad distribution of many different states. (b-d) Illustration of the
underlying mechanisms. (b) Rydberg-ground state collisions ionize few atoms, and lead to
fast electrons. (c) Avalanche ionization due to electron-Rydberg collisions and broadening
because of steep electric field gradients. The broadening and shifts of the Rydberg state
facilitate an increase in Rydberg population. (d) Fluorescence due to the recombination in
the plasma.
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14.1. Fundamental procedure

Hereby, f (v) is the one dimensional Maxwellian distribution function [168] for the velocity,

v, in the beam direction and PN (E) is the electric field distribution as given in eq. (3.31).

14.1.1 Density matrix formalism

Applying the density matrix formalism, we interpret the thermal gas interacting with the

lasers as a conventional 3 + 1 level system. The three lower levels represent the neutral

gas including its excitation to the Rydberg state. The additional level (+1) describes the

generation of ions, fig. 14.1(a), which gives rise to the plasma. The details of the density

matrix, Hamiltonian and the Lindblad operator are as follows.

Density matrix The density matrix is given by

ρ =













ρg ρ1,2 ρ1,3 0

ρ2,1 ρ2,2 ρ2,3 0

ρ3,1 ρ3,2 ρRyd 0

0 0 0 ρion













, (14.3)

which already reveals the character of the system. The three atomic levels are fully

described by the entries of the density matrix, with both populations and coherences.

The plasma state is an incoherent addendum to it; since no coherence can be built up

for this state, setting the appropriate entries in the density matrix to zero reduces the

computational overhead.

Hamiltonian The states are coupled by the two lasers according to the Hamiltonian

H = ~













0 ΩB

2
0 0

ΩB

2
−∆1

ΩR

2
0

0 ΩR

2
−∆1 − (∆2 + ∆S) 0

0 0 0 0













(14.4)

with Rabi frequencies ΩB and ΩR. Because the 455-nm laser is assumed to be tuned to

resonance, the detuning to the intermediate state only arises due to the Doppler shift,

∆1 = ~kB · ~v. The detuning with respect to the Rydberg state also includes the laser

detuning ∆R, which results in ∆2 = ∆R + ~kR · ~v. This allows to simulate spectra as

recorded in the experiments, where the Rydberg laser detuning is scanned. Further, ~kB

and ~kR are the wave vectors and ~v is the atom velocity. Due to the low polarizability

of the lower states, the ground state and intermediate state Stark shifts typically can be

neglected. In the case of the Rydberg state, the additional term ∆S produces the Stark

shift by reason of the electric field strengths, fig. 14.1(c). As the electric field distribution
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depends on the ion density ρion, also the distribution of Stark shifts is ρion dependent,

and gives rise to a feedback mechanism, cf. sec. 4.1. The conversion between electric field

distribution and Stark shift distribution is described in sec. 14.4.

Lindblad operator The Lindblad operator, L = L1 + L2 + L3 accounts for dephasing,

decay and ionization mechanisms. For better comprehension, it makes sense to split the

operator into three parts.

The first part, L1, covers the intermediate state decoherence and decay, which is dom-

inated by its natural lifetime. In the case of Cs 7P3/2, the rate is given by Γ2,1/2π =

1.18 MHz [169]. This term gives the contribution

L1 =













Γ2,1ρ2,2 −1
2
Γ2,1ρ1,2 0 0

−1
2
Γ2,1ρ2,1 −Γ2,1ρ2,2 −Γ2,1ρ2,3 0

0 −1
2
Γ2,1ρ3,2 0 0

0 0 0 0













. (14.5)

Second, L2 takes ionization and recombination into account,

L2 =













Γdρion 0 −1
2
Γiρ1,3 0

0 0 −1
2
Γiρ2,3 0

−1
2
Γiρ3,1 −1

2
Γiρ3,2 −ΓiρRyd 0

0 0 0 ΓiρRyd − Γdρion













. (14.6)

The ionization rates are given by Γi while the loss of charged particles due to both re-

combination and particles propagating out of the region of interest, are represented by

Γd. In our model, these two factors depend on the ion population of the ensemble, This

nonlinear feedback is one of the two key aspects that contribute to the emergence of the

optical bistability. Details are to be found in sec. 14.2. Note that recombination does not

necessarily end up in the exact Rydberg state that is addressed by the lasers. Instead,

the atoms end up in a broad distribution of several states which then subsequently decay,

cf. fig. 11.3. Therefore, this decay does not contribute to the population of the Rydberg

state. It is rather directly added to the ground state, in order to achieve atom number

conservation.

The interaction between the ensemble of Rydberg atoms and the plasma is the last part

of L and is modeled as

L3 =













ΓRydρRyd 0 −1
2
γρ1,3 0

0 0 −1
2
γρ2,3 0

−1
2
γρ3,1 −1

2
γρ3,2 −ΓRydρRyd 0

0 0 0 0













. (14.7)
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The rate ΓRyd includes the natural lifetime of the Rydberg state and transit time effects.

Due to the longevity of the highly excited states, the dominating part in thermal Rydberg

experiments is the transit time decay Γt due to the finite size of the excitation beams. For

our experimental setup and measurements, the beam sizes amount to Γt/2π = 0.2 MHz.

The dephasing factor γ accounts for all line broadening mechanisms. Similarly to the

ionization and de-ionization rates, the broadening also depends on the ion population.

This is the second key aspect of the model, and will be described in sec. 14.3.

14.2 Ionization mechanisms

The two dominant mechanisms that we identified to be responsible for the ionization pro-

cess are Rydberg-ground-state (fig. 14.1(b)) and Rydberg electron collisions (fig. 14.1(c)).

The ionization rate, which accordingly must depend on the ion population ρion, is given

by

Γi (ρion) = Ng

√

8kBT

π

(

σgρg

√

2

mCs
+ σe

ρion√
me

)

, (14.8)

in which σg and σe are the ionization cross sections for Rydberg atoms colliding with

ground state atoms and with electrons, respectively. Since the ground state density is

not significantly influenced by the excitation, we take ρg ≈ 1 in our model. We further

neglect that the electron impact ionization cross section depends on the velocity of the

electron [102]. In any case, since the relative variation of vapor temperatures is small, we

assume that the ensemble average of impact velocities provides us with roughly the same

outcome.

In a similar fashion, the rate

Γd (ρion) = Γt +Ng

√

8kBT

πme
σrρion (14.9)

quantifies the mechanisms leading to losses in the ion population. The most obvious

contribution is ions simply leaving the interaction volume due to their thermal motion

which is described by Γt. The second term describes recombination of ions with electrons

into neutral particles. It is basically the collision rate, eq. (1.77), weighted by the ion

population, where the square-rooted term is the mean velocity. The transit time losses,

Γt, are determined by the diameter of the excitation volume and the velocity of the

particles. Note that the electrons on the one hand move much faster than the ions. This

would result in a higher transit time rate. On the other hand, they are kept back by the

electric potential caused by the ion excess. Therefore, we assume all charges to have the

same transit time rates, which is that of the ions.
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14.2.1 Fluorescence signal

The fluorescence flux is proportional to the electron density, multiplied with the recom-

bination rate:

Φ ∝ ΓrNe. (14.10)

Recombined ion-electron pairs end up in a broad, discrete distribution of Rydberg states

which then subsequently emit the fluorescence photons via their decay chain. Substituting

the previous definition of the recombination rate (the second term in eq. (14.9)) and as-

suming that the electron density is approximately equal to the ion density, (cf. sec. 11.4.4)

leads to the fluorescence signal being proportional to the square of the ion density,

Φ ∝ ρ2
ion. (14.11)

The fluorescence spectrum as measured in the experiment can thus be easily compared

to simulated ion density spectrum.

14.2.2 Linearization of the recombination rate

As the distinction between a linear and quadratic component—such as in in eq. (14.9),

which is quadratic in ρion when substituted into eq. (14.6)—is not feasible for small pa-

rameter values, we reduce the complexity of the model by the following substitution. We

replace the recombination term in eq. (14.9) with

Ng

√

8kBT

πme

σrρion = Γr = const., (14.12)

and thereby assume Γd to be an effective ion-loss rate, with a constant value independent

of the ion density. We also suppose ions to leave the beam geometry at the same rate

Γt as Rydberg atoms, because their masses are equal and the Coulomb coupling in our

experiment is weak, cf. sec. 3.1.2. These simplification enabled us to fit the parameters of

the model to match simulated and measured spectra, as will be described in sec. 15.3.1.

14.3 Plasma broadening

The electric environment for the atoms during excitation by the lasers is subject to rapid

changes as the atoms move through the plasma. The ionic background redistributes

due to its own motion and therefore continuously samples different realizations of the

Holtsmark distribution. The free electrons, traveling much faster than the ions, and also

being influenced by their fields, further change the background on timescales much shorter
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than the laser excitation dynamics. Each atom sees a different sequence of local electric

fields, resulting in different accumulated phase shifts. As a result, the influence of the

plasma needs to be considered two-fold: as a distribution of average detunings as well

as an additional broadening due to the dephasing of the Rydberg transition [163]. The

overall effect of the plasma is therefore implemented as an effective shift (covered by ∆S

in eq. (14.4)) and a homogeneous broadening. We define the overall dephasing factor as

γ = γ0 + γS, (14.13)

where γ0 accounts for the laser line width and other parasitic broadening mechanisms.

We assume γ0/2π = 1 MHz. The effect of the Stark shift distribution is approximated to

be proportional to its weighted mean

γS ∝ ∆S =

∞
∫

0

dE PN (E) ∆S (E) . (14.14)

14.4 Converting electric fields into Stark shifts

Solving the Lindblad master equation requires knowledge about the detuning of the light

fields. The crucial point of our model is to include the Stark shift of the Rydberg energy

levels into the calculation. If the ionized fraction of an atomic ensemble is known, calcu-

lating the distribution of electric field strengths is uncomplicated. As discussed in sec. 3.2,

the electric field composition of randomly positioned charges follows the Holtsmark dis-

tribution. The subsequent mapping of these electric fields to energy shifts that are useful

for the calculations is a more elaborate procedure, and was implemented as follows.

Figure 14.2 shows computed Stark maps for cesium. One can see that the 42D5/2 state

starts as a degenerate manifold of magnetic sub-levels mJ, that splits up for higher electric

field values. Close by, at approximately ∆S/2π = −1 GHz, also the 42D3/2 state is located,

which will not be further considered. Since the addressed state is a D state, the electric

field direction (with respect to the laser polarization direction as the quantization axis)

becomes relevant. With this choice of the quantization axis and due to dipole selection

rules when no additional electric fields are present, driving the transition to the 42D5/2

state with a linearly polarized laser beam couples only to the mJ = ±1/2 sub-level. This

becomes also apparent in the first panel, fig. 14.2(a), where the angle between electric field

and quantization axis is set to zero. The color code here shows that only the top most

branch overlaps with the 42D5/2 mJ = 1/2 state. For increasing angles, α, the admixed

overlap is more and more biased towards the other available sub-levels. As expected for

α = 45◦, fig. 14.2(b), the unrotated1 mJ = ±3/2 branch now has dominant contribution,

1“Unrotated” refers to the basis states for α = 0◦.
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Figure 14.2: Stark map of the 42D states in cesium showing the angular dependency of the
electric field. Visible in all panels are the 42D5/2 state manifold, starting at zero field, and the
neighboring 42D3/2 at an offset of approximately −1 GHz. In the top right corner, the high-
L manifold appears. (a-c) Projection of the 42D5/2,mJ=1/2 on the Stark-shifted manifold for
different angles between laser polarization and electric field direction. The overlap (displayed
in the color map) measures the relative excitation strength by the laser. Since the electric field
direction is randomly distributed in the plasma, the mapping between electric field strength
and effective Stark shift for the simulation is calculated by integrating over all possible angles.
(d) The mapping used for the simulation, following eq. (14.16).
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14.4. Converting electric fields into Stark shifts

while for α = 90◦, fig. 14.2(c), the (unrotated) mJ = ±5/2 branch is coupled the most.

The calculation method is equivalent to rotating the atomic basis to the direction of the

electric field, and projecting the laser polarization.

Since the charges are located at random positions also the electric field direction is random.

We account for this by integrating the Stark maps for all possible angles, weighted by

the respective overlap with the initial 42D5/2, mJ = 1/2 state. Because the mJ = ±5/2

branch is well separated from the two others and also shifts towards red detunings, we

only sum over those states µ that contribute with a blue detuning Stark shift

∆S(E) =

2π
∫

0

dα
∑

µ

∣

∣

∣

〈

42D5/2, mJ = 1/2
∣

∣

∣µ
〉∣

∣

∣

2
∆S(E, α), (14.15)

where the overlap factor is assumed to be normalized to the contributing branches. The

result of eq. (14.15) is plotted in fig. 14.2(d).

The Stark shift for zero field vanishes, and is supposed to start as a quadratic function,

sec. 2.2. For higher fields, the admixture of the different mJ sub-levels, and other energy

levels start to contribute. For the simulation, we map the Stark shift as a function of the

electric field with the following semi-analytic approximation using a piece-wise defined

polynomial,

∆S(E) =







p1E
2 for E < Et

p1E
2
t + p2(E −Et) + p3(E −Et)

2 + p4(E − Et)
4 otherwise.

(14.16)

Above a certain threshold, Et, the shift continues as a linear function with quadratic and

cubic correction terms. The parameters for the angular average of the 42D5/2 state, when

only considering the positive branch of the mJ sub-levels, are obtained by least-square

fitting, and result in p1/2π = 0.1462 GHz/(V/cm)2, p2/2π = 0.849 V cm−1, p3/2π =

2.417× 10−2 GHz/(V/cm)2 and p4/2π = −3.585× 10−4 GHz/(V/cm)4. The interval of

electric field strengths with a purely quadratic Stark shift goes up to Et = 2.856 V cm−1.

As a sanity-check, the polarizability of the Cs 42D5/2 state for the sub-level mJ = 1/2

is α1/2/2π = −0.34 GHz/(V/cm)2 while that of the mJ = 3/2 sub-level amounts to

α3/2/2π = −0.26 GHz/(V/cm)2 [47]. The obtained value for p1 therefore agrees with the

average of the two, p1 ≈ −1
2

(α1/2+α3/2)

2
, considering the definition of the Stark shift’s sign

and coefficient, eq. (2.11).

For electric field strengths above Emax = 13.5 V cm−1, the Stark map appears to be too

disturbed by admixture to justify the one-to-one mapping as described in this section.

Values above Emax are cut off the mapping and are ignored in the simulation. For ion

densities of up to 0.01 µm−3, more than 98% of the electric field distribution are below
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the cut-off field. We later find that the peak ion density that appears in the simulation is

only 0.003 µm−3, sec. 15.3.2.

14.5 Iterative algorithm

Obtaining the steady state solution for the entries of the density matrix in the Lindblad

master equation, eq. (14.1), is straight forward, when all parameters in the Hamiltonian

and the Lindblad operator have a given value; it simply requires the diagonalization

of the resulting linear system of equations. Even the exact analytic solution to this

problem is quickly found with the help of modern technical computing systems, such

as Wolfram Mathematica. In this case, however, the parameters need to be considered

to be variable, but independent of each other. The computational challenge now arises

from the non-linear feedback due to the ion density, ρion, which influences the electric

field distribution—and hence the values of the detuning distribution and broadening—

and the ionization rate. In order to calculate the actual ion density as a function of the

detuning ∆R and for a given set of experimental parameters (ΩB, ΩR, atomic density,

temperature, ), an iterative approach proves beneficial: Assuming an initial ion density

defines the missing parameters required for the analytic solution to eq. (14.1). With this

set of values, a steady state solution of the master equation is then obtained. This yields

an updated ion density

N ′ = ρionNg, (14.17)

which in turn is then used again as the assumption for a subsequent calculation. The

equations are solved iteratively using the previous calculation of the ion density as an

input parameter for subsequent computation steps. This procedure is repeated until the

system has converged to an overall equilibrium solution, shown in fig. 15.1. A flow-chart

summarizing this algorithm is shown in fig. 14.3.

14.5.1 Damping overshoots and oscillations

The model calculation exhibits oscillations around the equilibrium and is subject to over-

shoots, as will later be shown in fig. 15.1. To minimize these effects, the updated ion

density after each iteration step is a modification of eq. (14.17). Instead of the direct

updated value, we use the biased weighted average of the update and the previous step,

N ′ = βρionNg + (1− β)N . (14.18)

The actual choice of the damping β is not crucial for the computations, as it mostly affects

the number of iterations required to reach equilibrium. By changing the parameter after

reaching the equilibrium to β = 1, the system does not change further.
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initial values

charge density

electric field distribution

broadening shift ionization

Lindblad master equation

steady state solution

averaging

Figure 14.3: Flow chart of the iterative algorithm leading to an overall convergence. The
current ion density determines the electric field distribution, and hence the broadening and
shift of the Rydberg energy level. The charge density also influences the ionization rate.
With these values, the ensemble of updated steady-state solutions of the master equation
is calculated. When averaged over all velocity and electric field components, an improved
estimation of the ion density at each laser detuning is achieved. The procedure is repeated
until the system converges to a steady-state solution.

14.5.2 Numerical parameter

We compute our results for the simulation with the following numerical settings : The

detuning ∆R/2π ranges from −550 to 1250 MHz in 396 steps, providing a resolution of

2π × 4.5 MHz. The velocity vector contains ±2δD (≈ ±800 m s−1) in 5001 entries, where

δD is the Doppler width, eq. (1.70). The natural line-width of the 7P3/2 state is thereby

resolved by kB · v. The electric field is separated into 501 steps, going from zero field up

to 15QH. The numerical values depend on the current ion density. In this configuration,

the steady state solution of the Lindblad master equation is evaluated 109 times per

iteration. We further set the damping to β = 2/3 and calculated for a fixed number of 200

iterations. Apart from a few very rare exceptions the relative change in the ion density

after this number of iterations is well below 1× 10−9. Such exceptions occur when one of

the discrete detuning values at which the system is evaluated lies in too close proximity

to the actual edge frequency. This is related to the retardation of the convergence, which

will be discussed in sec. 15.2.
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15 Results and discussion

15.1 Convergence and hysteresis

The obvious choice for an initial ion density to begin the iterative convergence process,

fig. 14.3, is to start from zero,

ρion(∆R) = 0, ∀∆R. (15.1)

This resembles the case of the Rydberg laser being scanned towards the resonance, in pos-

itive as well as in negative direction. Far off-resonant, the system naturally starts without

any charges present, as previously no Rydberg excitations have happened. Applying the

iterative algorithm then leads to a convergence sequence, as plotted in fig. 15.1 in purple.

Figure 15.1: Convergence behavior of the iterative algorithm. The purple family of curves
∆R,+ shows how the ion population converges upwards when initialized with zero density.
As indicated by the dashed arrow, the feature starts as a narrow peak, that increases and
broadens with each iteration step. It converges to the box-like solution plotted in dark purple.
The orange dashed curves ∆R,− are the equivalent when starting from the high population
state. Beginning with a large ion population, the feature is initially extremely smeared out.
With each iteration step, the feature becomes more narrow. while also converging to a steady
state solution. Interpreting the spectrum as if captured by a detuning scan, the difference
between the two final curves resemble the hysteresis of the optical bistability.

When the lasers are scanned away from resonance, charges are still present in the system

from the situation immediately before. Therefore, we calculate a second equilibrium, this
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Chapter 15. Results and discussion

time starting from a non-zero ion density as the initial configuration. For all detunings

of one spectrum, we use the maximum value of the previously calculated equilibrium

spectrum that was initialized with zero charges,

ρion(∆R) = max ρion,ss(∆R), ∀∆R. (15.2)

The iteration progresses as shown with the dashed orange lines in fig. 15.1.

It is apparent that for certain detuning values, the two different initial configurations

lead to two different equilibrium solutions. Interpreting the spectrum as if captured by a

detuning scan, the difference between the two curves resemble the hysteresis that occurs

for parameters where one can observe the optical bistability. In order to map the two

equilibrium solutions to the actual detuning sweep direction from the experiments, one has

to consider that the laser is swept starting from negative end of the detuning-range towards

resonance, but then continues away from the peak heading further to positive detuning

value. At the positive end of the detuning range, the sweep direction is reversed, and the

laser is again swept towards resonance, but this time in the negative direction. For the

following plots, the equilibrium solutions for negative detuning values are interchanged.

Thus, the orange traces resemble positive scan direction and the purple traces cover the

negative sweep for all detuning values, in consistency with the color coding throughout

this thesis.

15.2 Retardation of the convergence

Critical slowing down is a well-known indication for a phase transition [170, 171]. The

temporal signature for switching between plasma and non-plasma state has been studied in

detail in [32]. With our numerical approach, a corresponding signature in the convergence

behavior can be observed: At careful inspection of the purple traces, fig. 15.1 reveals that

for detuning values close to the edges of the transition significantly more iteration steps

are required before the equilibrium is reached. The delay τ , defined as the number of

steps required to reach 50% of the equilibrium value, diverges according to a power law

τ ∝ (∆R −∆E)−θ. (15.3)

Figure 15.2 shows the iterative progression of the ion density for different detunings. Fit-

ting the exponent of the power law yields a value of θ = 0.5±0.3. Our iterative approach

therefore shows consistency in the convergence behavior with the direct measurements

and matching predictions in [32, 172] of the switching time, and previous work on first-

order phase transition and optical bistability [173, 174]. Note that a later study [165] did

not confirm the algebraic divergence.
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0 10 20 30 40 50 60

Iteration Step

0

0.5

1

1.5

2

Io
n
 p

o
p
u
la

ti
o
n
 

io
n
 [

1
0

-3
]

(a)

150 200 250

Detuning 
R

/2  [MHz]

0

20

40

D
el

ay
 [

it
er

at
io

n
 s

te
p
s] (b)

R
/2  [MHz]

220
214
208
197
179
133

Figure 15.2: Critical slowing down revealed in the number of iteration steps required for the
system to reach equilibrium. (a) The legend in MHz refers to the detuning values in fig. 15.1.
The delay is indicated by the orange vertical lines, which signify when 50% of the equilibrium
value is reached. (b) The delay diverges as (∆R − ∆crit)

−θ. The black line shows the fit,
which results in a critical exponent of θ = 0.5 ± 0.3.

In [32], the critical exponent with respect to the intensity as the control parameter is

studied. The analysis in this section refers to the detuning from the edge position. These

two are, in fact, interchangeable, which has been demonstrated in sec. 11.4. The edge

position, ∆E, scales linearly with the Rabi frequency, i.e., with the square root of the laser

intensity. A sweep of the laser intensity therefore effectively sweeps ∆E, instead of ∆R.

Note that the convergence behavior of our iterative approach has no obvious relation to

the actual dynamics of the physical system. The iteration steps are nevertheless—in some

way—related to time steps of the physical system. It is a nice accompaniment that the

critical slowing down also has its appearance in the numerical model described in this

thesis.

15.3 Comparison to the measured spectra

One of the incentives for the numerical model was to provide a physically sensible descrip-

tion of the phenomena and mechanisms that are related to the observation of measure-

ments, such as shown in fig. 11.7. Many of the parameters are directly imposed by the

experimental settings (∆1, ∆2, T ) or derived from known context (ΩB, ΩR,Ng, Γt, ΓRyd).

Others are well-established literature values (me, mCs and the physical constants). The

degrees of freedom of our model are expressed in the following four parameters:

i. σe, electron impact ionization cross-section, eq. (14.8),

ii. σg, ground state collision ionization cross-section, eq. (14.8),

iii. Γd, effective de-ionization/recombination rate, eq. (14.12), and

iv. γ, dephasing rate, eq. (14.14).
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Except for γ, which is an empirical relation between the Stark shift distribution and the

effective dephasing, these parameters can, in principle, be independently verified with

suitable measurements. Note that Γd also depends on the geometry of the lasers.

Figure 15.3 shows the simulated spectra from the model overlaid with the measured

data as described in the previous part. We achieve remarkable agreement between the

calculations and the measurements, by fitting the four degrees of freedom of the model

to the measured data as described in next paragraph. The spectral broadening and the

line shape are described well, and the hysteresis feature is correctly reproduced for both

positive and negative detuning sweeps of the Rydberg laser.

15.3.1 Parameter estimation by least-square optimization

The values we obtain for our model are refined to the actual measurements via non-linear

least-squares optimization. For this, we assume suitable initial values, and optimize the

matching between simulated and measured spectra, S(∆R, p, ck) and M(∆R, pk), using

the Levenberg-Marquardt method [175, 176]. The cost function C we minimize is defined

by the vector components

Ck =
∑

∆R,±

(S(∆R, p, ck)−M(∆R, ck))2 , (15.4)

introducing p and ck, which are the array of parameters (i - iv), p = (σe, σg, Γd, γ), and

the array containing the experimental configurations, ck =
(

Ω⋆
B,k, ΩR,k,Ng,k

)

, respectively.

The index k denotes the particular configuration. We chose a subset of k = 1..12 configu-

rations in order to cover a wide range of experimental settings, with Ω⋆
B/2π ranging from

1.5 to 8.2 MHz, ΩR/2π from 15 to 50 MHz, and densities between 0.05 and 1.8 cm−3.

Summation in eq. (15.4) is performed over the discrete detunings for both detuning sweeps,

∆R,− and ∆R,+. For the negative scan direction we excluded the values close to the plasma

formation edge, ∆R,− > 0. The steep waveform has a disproportionate contribution to

the overall error measure. Also the point of plasma formation is prone to additional

uncertainties, such as, fluctuations in the electron density near the cell walls which can

trigger the formation of the plasma state. Furthermore, as previously shown in fig. 11.9,

the edge frequency for the plasma formation point depends on the raw Rabi frequency

while the line shape of the system is defined by the adjusted Rabi frequency.

Since the numerical optimization requires multiple calculations of the complete model,

we reduce the computational load by reducing the resolution of the model. We first

optimize with 3001 velocities, 312 detuning values, 301 fields and 150 iterations, for an

initial estimate of the parameters, and then refine the results with the full resolution,
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15.3. Comparison to the measured spectra

Note that in the first row, Ω⋆
B depends on the density. We count the 12 different settings

row-wise when referencing by index.

Figure 15.3: Comparison between fluorescence measured as a function of the Rydberg laser
detuning and calculations. Each row shows the variation of only one experimental parameter:
ground state atomic density (a), Ω⋆

B (b), and ΩR (c). The measurement is shown in orange
dots (scan from red towards blue wavelengths) and purple diamonds (scan from blue towards
red wavelengths). For the simulation we use orange solid and dashed purple lines, respectively.
Experimental settings are used as input parameter for the simulation. The fluorescence signal
amplitude is adjusted for each trace individually. The detuning was offset for all 12 traces with
the same value, to compensate for the side-of-fringe lock of the Rydberg laser. Experimental
settings are: (row a) ΩB/2π = 4.8 MHz, ΩR/2π = 15.4 MHz (b) ΩR/2π = 15.4 MHz, Ng =
1.3 × 1012 cm−3 (c) Ω⋆

B/2π = 4.8 MHz, Ng = 0.2 × 1012 cm−3.
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Chapter 15. Results and discussion

cf. sec. 14.5.2. The final set of parameters that we obtain by the optimization routine are

summarized in tab. 15.1.

Var. Fit result Expect. value Ref.

Γd (3.21± 1.55) Γt 2 Γt sec. 15.3.2

γS (1.69± 1.00) ∆S 1 ∆S eq. (14.14)

σg (0.04± 0.04) σgeo 0.06 σgeo [35, 177]

σe (1.10± 0.55) σgeo 1 to 10 σgeo [101]

Table 15.1: Fitted parameters with 95% confidence intervals from the non-linear least-squares
optimization, and expected values derived from other references. The large error estimation
stems from the correlation between the parameters.

15.3.2 Plausibility of the obtained values

Comparing the measured spectra to the simulated detuning traces shows compelling re-

semblance. This partly comes at the price that the model is not a true ab-initio calculation

of the underlying system, as it comprises of four fitted parameters. In the following, we

discuss the plausibility of the obtained values for these parameters.

Ground state scattering ionization

The ionization cross-section of Rydberg atoms colliding against ground state atoms, mea-

sured as a fraction of the geometric cross section, comes out as

σg = (0.04± 0.04) σgeo, (15.5)

in very good agreement with the expected figure of 0.06σgeo [35]. A coarse estimate for this

value was also obtained in the first experimental part of the thesis, sec. 7.1.5. Without

considering the electron impact ionization, we obtained 0.18σgeo, which is on a similar

order.

Electron scattering ionization

The ionization cross section of the electron-Rydberg collisions also yields a reasonable

value, with σe = (1.10± 0.55) σgeo. Since we did not find suitable reference values for

cesium, experimental reference is taken from [101]. Here, the measurements predict cross-

sections of up to 20σgeo near threshold, but with a strong dependence on the kinetic energy

of the electron impact. Our value being only slightly larger than the geometric cross

126



15.3. Comparison to the measured spectra

section is attributed to the fact that we only see the integrated ionization probability: the

average over the thermal ensemble also encloses contributions from higher energy impacts

with a smaller cross section.

Dephasing

We attribute the additional dephasing to rapid changes in the electric field distribution.

The dephasing rate was assumed to be proportional to the weighted mean of the Stark shift

distribution, eq. (14.14). Note that for a purely quadratic Stark shift, this integral does

not converge, due to the asymptotic behavior of the Holtsmark distribution, eq. (3.35).

Even for the effective mapping, ∆S(E), convergence is poor. The actual numerical value

of the dephasing rate, γS = (1.69± 1.00) ∆S, depends on the electric field range that is

considered for the calculation. This leads to a systematic error for the determination

of γS. Nevertheless, the fit error margin is larger than the deviation from the assumed

model.

Recombination

Given the range of experimental settings, cf. fig. 15.3, the photon flux emitted due to

plasma recombination can be estimated and compared to the simulated situation. For

this quantitative analysis, we assume a monochromatic fluorescence spectrum at 600 nm.

On the experimental side, the PMT at this wavelength has a sensitivity of 1.89 V nW−1

and provides signal heights between 0.1 and 0.7 V. Given the collection efficiency of the

lens system capturing the fluorescence, cf. sec. 10.2, this corresponds to an emitted power

of approximately 70 to 360 nW, or a photon flux of

Φexp = 0.2 to 1.1×1012/s. (15.6)

For the simulation side, we calculate the number of ions in a sphere with a diameter of

1.5 mm, which is approximately the volume we collect photons from. The maximum ion

densities Ng · ρion for each simulated detuning trace are between 0.25 and 2.75×109/cm3.

The fluorescence is then obtained by multiplying this number with the de-ionization rate

reduced by the transit time losses. We end up with a simulated photon flux of

Φsim =
4π

3
(0.75 mm)3Nion · (Γd − Γt)

= 0.2 to 2.1×1012/s.
(15.7)

These two ranges are in agreement, making the obtained value for Γd perfectly plausible.

Values for all 12 simulated configurations (fig. 15.3) are displayed in fig. 15.4.
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Figure 15.4: Comparison between peak photon fluxes derived from measured and simulated
data. With our final value for the parameter, the results are within the expected order of
magnitude. Γd = 2Γt would improve the matching. Error estimate for Φexp is dominated
by the uncertainty of the photon collection efficiency of the setup, which is assumed to be
(0.1 ± 0.1)% of the emitted photons.

15.4 Further discussion

15.4.1 Scaling behavior

We now apply the same analysis as performed in sec. 11.4.3 to the simulated data. Again,

the two scaling parameters, S⋆
↓ and S↑, are computed with the fitting method previously

described. The resulting exponents are summarized in tab. 15.2. For S⋆
↓ , all three expo-

(Scan) a (Ng) b (Ω
(⋆)
B ) c (ΩR)

Simulation
S⋆

↓ (→) 0.56± 0.04 0.59± 0.04 0.91± 0.06
S↑ (←) 0.47± 0.04 0.44± 0.03 0.67± 0.07

Measurement
S⋆

↓ (→) 0.54± 0.01 0.56± 0.01 0.97± 0.02
S↑ (←) 0.81± 0.01 0.95± 0.02 1.08± 0.02

Table 15.2: Scaling exponents for the simulated edge positions. For S↑, we recalculated the
spectra with ΩB instead of Ω⋆

B. Given errors are 95% confidence intervals from the fit.

nents are in agreement with the ones obtained from measurements, cf. tab. 11.1. This was

expected, because the overall line-shape of the measurements is well reproduced in all 12

simulated configurations. For S↑, we obtain different exponents. An indication for this

is that the rising edge positions are not reliably predicted by the simulation, cf. fig. 15.3:
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For the scans of density and blue Rabi frequency (row a and b) the simulated edge hap-

pens too late in the detuning sweep. One possible explanation is the linearization of the

quadratic ionization rate, cf. sec. 14.2.2. All three exponents (a, b, c)↑ are—very roughly—

off by a factor of 2. The simulation apparently does not reproduce the assumptions in

this aspect, and further research is required.

Another possible, yet unlikely, explanation is as follows. As discussed in sec. 11.1, the

condition for the phase transition needs to be fulfilled anywhere within the cell; the plasma

will then quickly spread across the full length of the beams in the vapor. Other influences,

such as electrons coming from the surfaces of the cell due to the photo-electric effect, could

trigger the plasma formation earlier in the detuning sweep. This is not covered by the

simulation.

15.4.2 Hysteresis on both sides

For an interaction that only shifts the energy levels, one could argue that one expects an

effect for laser frequencies on that side of the resonance that is towards the direction of

this shift. In fig. 4.2, where a negative interaction potential was assumed, the two curves

on the opposite, positively detuned side are, indeed, identical. For certain experimental

configurations of laser intensities and ground state density, however, a second, but weaker

hysteresis feature on the seemingly wrong side of the spectrum appears. This effect has

previously been observed [138, 146], but was only mentioned with a pending explanation.

This missing explanation turns out to be straight forward, as the measurements shown

in fig. 15.3 are—also this detail—reproduced by our model. Additionally to the shift,

the feedback mechanism involves an increase in dephasing of the excited state. Hence,

the resonance line suddenly becomes wider once a certain threshold density is reached.

Obviously, such threshold can be reached on both sides of the resonance, which leads to the

abrupt jumps in the spectra. Nonetheless, the Stark map of the 42D5/2 state, fig. 14.2,

features a red shifting branch as well, and the 42D3/2 state is also in close proximity.

However, both these aspects are disregarded in the modeled traces, but the feature is still

reproduced correctly.

15.4.3 Quantitative assessment of the simulated system

As a final discussion of the results obtained with the model, we want to inspect other

important properties of the simulated system. In analogy to the ion population ρion, also

the remaining entries of the density matrix can be calculated. Figure 15.5 shows simulated

Rydberg and ion density traces for three exemplary parameter configurations. The graphs

for the dephasing γ, and the ionization rate Γi (not shown here) follow almost the exact

same shape as the ion density.
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Figure 15.5: Simulated densities (Ng · ρ) according to the model. Settings, given in the or-
der for (a / b / c): ΩB/2π = (2.6 / 3 / 5.3) MHz, ΩR/2π = (15.4 / 15.4 / 48.8) MHz, Ng =
(0.4 / 1.3 / 0.2)×1012/cm3, corresponding to k = 2, 6 and 12 in fig. 15.3. The dephasing and
ionization rate follow the same shape as ρion, with their maxima at γ/2π = (0.4 / 0.7 / 1) GHz,
and Γi/2π = (2.8 / 4.8 / 5.8) MHz. Due to the feedback behavior of the system, Rydberg den-
sities seem to be limited by an upper boundary, while the ion density further increases with
increasing excitation rate. At large detunings, the Rydberg population is increased due to
the presence of charges. On resonance, the Rydberg population is suppressed.

Ion density

Simulated ion densities follow the spectra as shown in fig. 15.5, with the squared ion

density closely matching the shape of the measured fluorescence signals in fig. 15.3. The

peak values for all simulated configurations are given in tab. 15.3.

Property Unit 1 2 3 4 5 6 7 8 9 10 11 12

max ρionNg [109cm−3] 0.3 1.0 1.6 2.3 1.1 1.7 2.3 2.8 0.9 1.1 1.7 2.2
max ρRydNg [108cm−3] 3.0 4.0 4.3 4.4 3.4 4.1 4.6 4.9 3.8 3.7 3.5 3.4
max ρRyd,refNg [109cm−3] 0.4 2.5 5.7 12.2 2.8 6.3 11.0 14.9 1.7 1.8 1.9 1.9

Table 15.3: Densities of ions and Rydberg atoms for the different simulated experimental
configurations. ρRyd,ref is calculated for the simple three-level system without ionization and
electric fields.

Quantitatively, the ion density can be compared to the estimates based on the plasma

frequency measurements, shown in fig. 11.6. Since these measurements were taken with

the Rydberg state 30D5/2 and the laser locked on resonance, the mapping between Stark

map and effective shift, sec. 14.4, needs to be recalculated. The geometric cross-section is

re-scaled with the principle quantum number. The remaining parameters, especially the
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four model parameters from tab. 15.1, were not changed. For the experimental configura-

tions shown in fig. 11.6, we calculate a range of ion densities ρion = 0.13 to 2.2×1010/cm3,

but measure a range of electron densities ρion = 0.47 to 7.5×108/cm3. This is off by a

factor of approximately 30. One possible explanation could be that in the experiments,

the RF related measurements do not probe the electron density within the cross section

of the laser beams only, but in the whole cell volume instead. Ions and electrons certainly

diffuse outwards, which is not captured by the simulation. The ratio between the area of

the beams and the cell is 65, which would correspond to the number of electrons within

the beam profile expanded to the whole cell. Another explanation could be that the model

parameters can not simply be applied to other experimental configurations. Note that the

set of parameters was obtained for the 42D5/2 Rydberg state, here we compare to 30D5/2.

Further development of the model for reliable density estimates is necessary.

Rydberg density

The Rydberg density is qualitatively very different from the ion density. Its maximum

values lie close to the edges on the red detuned side, with a decrease of population all the

way towards the edge on the blue detuned side. As the ionization rate due to electron

collisions and the additional broadening is proportional to the ion/electron density, the

equilibrium Rydberg population is suppressed for higher ρion values. Apparently, a larger

portion of atoms ends up in the plasma phase instead of the Rydberg state.

When driving the atomic ensemble at detunings ∆R larger than the power broadened

linewidth of the transition, the additional dephasing due to the plasma has the opposite

effect: the charges lead to an increase of the excited state population, because now the

Lorentzian wings of line profile extend further towards the laser frequency. Excitation

thereby becomes possible where it would be highly unlikely without the broadening. Thus,

the presence of charges acts as a facilitating feedback.

The peak value of the Rydberg density for all 12 simulated configurations (cf. fig. 15.3),

ranges from 3 to 4.9×108/cm3, as listed in tab. 15.3. Without the ionization mechanism

(calculating the regular, Doppler averaged three-level system) the estimated peak Rydberg

density amounts to values in the range from 0.4 to 15×109/cm3 for the given experimental

parameters. We now want to bring these numbers into line with literature reference: In

the related cesium beam, pulsed laser experiment reported in [35], the authors provide a

threshold value of ≈ 1× 1011 cm−3 at which the onset of an ionized fraction of the vapor

was detected. This value is by three orders of magnitude larger than our equilibrium

result. Note that this experiment was conducted with pulsed lasers, and ionization was

measured at a fixed delay after the Rydberg excitation. Most importantly, there is no

atom light interaction anymore by the time when charges are present in the vapor. This

crucial aspect fundamentally differs for continuous laser excitation experiments, where
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atoms are continually excited with perturbing charges in close proximity. The atom light

interaction in continuous laser beam experiments (after a short initialization time) takes

place in an environment that is altered by the plasma. In steady state, this apparently

leads to a significantly decreased upper boundary of the maximally achievable Rydberg

density.

Simulation boundaries

In order for the simulation to provide meaningful results, the internal parameters need to

stay within the defined boundaries. As listed in tab. 15.4, no excessive values occurred:

The maximal Stark shift is below the maximum of the defined mapping of 2π× 8.5 GHz,

cf. sec. 14.4, and the ionization rate Γi/2π is below 8 MHz, which seems also plausible.

The maximum dephasing, γS/2π = 1.3 GHz, is comparable to the width of the Doppler

profile of the 455-nm laser, cf. eq. (1.69), which is δD,455/2π ≈ 0.8 GHz. The normalizing

field QH, eq. (3.32), which gives the order of the field strength at the mean distance to

the next ion divided by three, is only about 1 V cm−1. Compared to the electric stray

fields that are usually compensated for in cold atom experiments [178], these fields are

only 10 times larger.

Property Unit 1 2 3 4 5 6 7 8 9 10 11 12

max γS/2π [GHz] 0.1 0.4 0.7 1.1 0.4 0.7 1.0 1.3 0.3 0.4 0.7 1.0
max ∆S/2π [GHz] 0.7 3.9 5.7 7.5 3.9 5.8 7.4 8.2 3.2 4.2 5.8 7.2
max Γi/2π [MHz] 0.7 2.8 4.5 6.9 3.2 4.8 6.5 7.8 2.3 3.0 4.4 5.8
maxQH(ρionNg) [V cm−1] 0.2 0.4 0.5 0.7 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6

Table 15.4: Occurring parameter maxima in the simulation. All values are within a reasonable
range. The maximum value in each row is for k = 8.
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16 Part IV: Conclusion

In this part of the thesis, we implement a numerical model based on the new insights

into the mechanisms causing optical bistability in thermal Rydberg vapors. We model

the atom-light interaction using the density matrix formalism, and consider the plasma

as an additional, incoherently coupled addendum to a regular three level ladder system.

The ionization mechanisms incorporated into the simulation are ground state and electron

scattering. The latter depends on the charge density itself, which makes the non-linearity

of this contribution obvious. With charges present in the vapor, the associated electric

field distribution provides a feedback onto the detuning between the addressed Rydberg

level and laser frequency. In analogy to Doppler averaging for the thermal distribution

of velocities, we calculate the ensemble properties of the Stark shift distribution by inte-

grating over the Holtsmark distribution of electric field strengths. While the ions in the

plasma provide this electric field distribution, the faster electrons perturb the atom-light

interaction on a much shorter timescale. This is implemented as an additional dephasing

term.

The two stable states that the bistable system realizes for the two different detuning

sweep directions are obtained by solving the Lindblad master equation for the steady-state

solution, and iteratively approaching the equilibria. The plasma density of the previous

step is used to calculate the Stark-shift distribution, ionization rate and dephasing for

the current iteration step. By starting from two different initial conditions and the peak

value of this equilibrium as the initial ion density for the second solution) the hysteresis

in the measured fluorescence signal is reproduced. The simulation unveils even minute

details of the system: Close to the critical detuning at which the system splits into two

stable solution convergence slows down. This resembles critical slowing down related to a

first order phase transition. Furthermore, also the second hysteresis that appears in the

measurements is reproduced by the simulation.

The model is parameterized by four control variables, i.e., two cross sections for ground

state and electron collisions, effective charge loss rate and the dephasing rate. With

non-linear least square optimization, we adjust these four parameters to improve on the

matching between simulated ion density and the measured fluorescence. The resulting

values are plausible, and compare nicely to literature values and previous measurements.

We thus achieve excellent agreement between the model and experiment, and confirm that

the creation of a plasma is at the heart of optical bistability in thermal Rydberg vapor.
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Summary

In the course of this thesis, we closely investigate on intrinsic optical bistability in thermal

Rydberg vapors. The excitation of a gas of alkali atoms in a thermal vapor cell to a high

lying state leads to the interesting effect: depending on the scan direction of the laser

detuning, the spectrum one records can be significantly different. This is due to a feedback

mechanism, that, depending on the density of either ions or Rydberg atoms, affects an

energy shift and a broadening on the Rydberg state that is addressed. As a consequence,

two stable states for otherwise identical configurations emerge: the system shows bistable

behavior. Two competing interpretations of the phenomenon are available that both,

in principle, are suitable to provide an explanation of the underlying mechanisms that

lead to the bistability. On the one hand, Rydberg-Rydberg interactions could provide

the necessary non-linearity and feedback mechanism. On the other hand, we suggest that

ionized Rydberg atoms create an electric field distribution in the vapor, that is responsible

for the bistability via the Stark shift. The driving ambition for this thesis was to resolve

the ambiguity of explanations.

In the first experimental part of the thesis, we have established a strong link between the

phenomenon of optical bistability in thermal Rydberg vapors and the presence of charged

particles in the gas. At the same time, we are able to deter Rydberg-Rydberg interactions

as the dominant mechanism responsible for the interaction shift that causes the non-linear

behavior. This is possible with the two complementary experiments that we realized. In

the first experiment, we have applied two independent EIT schemes simultaneously, each

addressing one of the naturally abundant isotopes of rubidium. The first scheme strongly

drives the transition in 85Rb, enabling the atoms to enter the bistable regime. At the

same time, we monitor the effect on the 87Rb atoms by the second EIT scheme. The

observations we make are incompatible with Rydberg-Rydberg interactions, but instead

agree also quantitatively with a Stark effect caused by electric fields originating from

ionizing collisions of the Rydberg atoms. The estimated ion densities and the required

ionization cross sections are within a sensible range. With the second experiment based on

cesium vapor we are able to confirm our explanation: the bistable region in the spectrum

follows the sign of the polarizability when addressing two different Rydberg states, one

with positive and one with negative α. Also, applying weak electric field significantly

alters the observed spectrum.

In part III, we have further developed on the awareness that charged particles are present

under the experimental conditions at which one can observe optical bistability. We were

able to confirm the natural supposition that the vapor of ionized Rydberg atoms in-

deed shows the characteristics of a plasma by directly measuring the plasma frequency.
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Summary

Analyzing the fluorescence that is radiated sideways from the laser beam axis, liter-

ally enables a new perspective onto the subject. We propose that avalanche ionization

due to Rydberg-electron collisions significantly contributes to the observed phenomena.

We demonstrate that a single scaling parameter—which includes all our experimental

parameters—describes the point of plasma formation. This scaling behavior agrees very

well with an empirical rate model for the charge density.

Part IV concludes the experimental observations with a comprehensive model of the atom-

plasma-laser system. We model the atom-light interaction using the density matrix for-

malism, and consider the plasma as an additional, incoherently coupled addendum to a

regular three level ladder system. The ionization mechanisms incorporated into the sim-

ulation are ground state scattering and electron scattering. With charges present in the

vapor, the associated electric field distribution provides a feedback onto the detuning be-

tween the addressed Rydberg level and laser frequency. In analogy to Doppler averaging

for the thermal distribution of velocities, we calculate the ensemble properties of the Stark

shift distribution by integrating over the Holtsmark distribution of electric field strengths.

The model is parameterized by four control variables, i.e., two cross sections for ground

state and electron collisions, effective charge loss rate and the dephasing rate. We adjust

these four parameters to improve on the matching between simulated charge density and

the measured fluorescence. The overlap between simulated and measured spectra is per-

suasive, the resulting values are plausible and compare nicely to literature and previous

measurements. We thus demonstrate excellent agreement between the model and exper-

iment, and confirm that the creation of a plasma is at the heart of optical bistability in

thermal Rydberg vapor.
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Conclusion and Outlook

By thorough investigation into ionization in thermal Rydberg spectroscopy, we have

demonstrated an essential interplay between optical bistability and plasma formation.

Our hypothesis, which is in contradiction to previous suppositions, was thereby reliably

sustained by a series of experimental studies as well as a comprehensive numerical sim-

ulation. We established, that the threshold behavior as observed in the intrinsic optical

bistability in thermal Rydberg vapor, is based on avalanche ionization. The ensuing vapor

of charged particles shows the characteristics of a plasma, associated by a recombination

spectrum that phenomenologically resembles the signature of a superradiant cascade.

Ionization of the Rydberg state population could potentially have an impact in many

thermal vapor based experiments. Our findings emphasize that careful measures are

required to operate in a regime where unwanted ionization can be unequivocally excluded.

This is especially true for microwave and terahertz measurement schemes with an objective

of traceability to SI-units. If not accounted for in a proper way, charged particles could

pose a threat to reliable results or mislead to false conclusions. Accurate treatments

and thorough consideration of the effects that ions and electrons have in the system are

apparently inevitable. This is a very topical subject, now that Rydberg atom experiments

in thermal vapor cells have become more and more fashionable over the past few years.

A growing number of research groups all over the world is engaged in the exploration of

quantum sensing protocols and cooperative effects based on Rydberg atoms.

Experiments with continuous excitation to Rydberg states are particularly compromised

by ionization, because (after some initial time) the excitation dynamics thereby happens

in the presence of electric fields. But also pulsed experiments are subject to stricter

limitations, e.g., with respect to the pulse repetition rate. Remnant ions from previous

pulses could still be present both in the vapor phase or on vapor cell surfaces, when

the next pulse arrives. Ions acting as seeds can, in principle, facilitate the subsequent

excitation dynamics [15, 179].

In light of the new perspective gained with this thesis, it might be worthwhile to re-

evaluate measured data and conclusions from already published manuscripts. In refer-

ences [15, 138, 180–184], the described experimental conditions—in terms of atom densi-

ties and laser powers—lie within the range that was investigated here. This suggest that

ionization and thus an electric field distribution could potentially play a role. A closer

look should reveal more insight, and help to eradicate any remaining concerns.

Preventive action to minimize the influence of ionization on Rydberg atoms—besides the

obvious of reducing the laser powers to the necessary minimum—could be to extract the
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Conclusion and Outlook

appearing charges from the vapor, e.g., by means of electrically contacted field plates inside

the vapor cell or pulsed electric fields. Being far off-resonant to the Rydberg state and

pulsed laser excitation on timescales faster than the ionization collision dynamics are also

available options. Exploiting transitions between Rydberg states with long wavelengths

as a source for microwave radiation, e.g., in a pulsed six-wave mixing scheme [185], can

thus still be a viable concept.

In this thesis, we provide a numerical model for the steady state situation. Future research

could help to also simulate and understand the avalanche dynamics and the formation

of the plasma. Also the recombination process and subsequent fluorescence is worth

further inspection. Available methods from plasma physics could be beneficial tools for

this [186]. Although many aspects of the simulated physical systems are already repro-

duced or included in our simulation, further development is necessary in order to provide

more valuable insight. For example, the influence of the geometry of the vapor cell or the

diameter of the laser beams are interesting questions waiting to be answered. Extending

the simulation to different Rydberg states (S, P , . . . ), different principal quantum num-

bers and different elements (Rb, Na, Li, . . . ) would further increase the applicability of

the model to other experimental scenarios.
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ferberth, S., Calculation of Rydberg interaction potentials, J. Phys. B 50, 133001

(2017). [Pages 32 and 33]

[81] Margenau, H., Van der Waals forces, Reviews of Modern Physics 11, 1 (1939).

[Page 33]

[82] Haroche, S. and Raimond, J. Radiative properties of Rydberg states in resonant

cavities. in Advances in atomic and molecular physics, volume 20, pages 347–411.

Elsevier, 1985.

[83] Robinson, M.P., Laburthe Tolra, B., Noel, M.W., Gallagher, T.F., and Pillet, P.,

Spontaneous evolution of Rydberg atoms into an ultracold plasma, Phys. Rev. Lett.

85, 4466 (2000). [Pages 33 and 89]

[84] Born, M. and Oppenheimer, R., Zur quantentheorie der molekeln, Annalen der

physik 389, 457–484 (1927). [Page 33]

145



BIBLIOGRAPHY

[85] Le Roy, R.J., Long-Range Potential Coefficients From RKR Turning Points: C 6

and C 8 for B (3ΠOu+)-State Cl2, Br2, and I2, Canadian Journal of Physics 52,

246–256 (1974). [Page 34]

[86] Flannery, M., Vrinceanu, D., and Ostrovsky, V., Long-range interaction between

polar Rydberg atoms, Journal of Physics B: Atomic, Molecular and Optical Physics

38, S279 (2005). [Page 35]

[87] Reinhard, A., Liebisch, T.C., Knuffman, B., and Raithel, G., Level shifts of ru-

bidium Rydberg states due to binary interactions, Phys. Rev. A 75, 032712 (2007).

[Pages 35 and 37]

[88] Comparat, D. and Pillet, P., Dipole blockade in a cold Rydberg atomic sample,

JOSA B 27, A208–A232 (2010). [Page 35]

[89] Berendsen, H., Grigera, J., and Straatsma, T., The missing term in effective pair

potentials, Journal of Physical Chemistry 91, 6269–6271 (1987). [Page 37]

[90] Förster, T., Zwischenmolekulare energiewanderung und fluoreszenz, Annalen der

physik 437, 55–75 (1948). [Page 37]

[91] Singer, K., Stanojevic, J., Weidemüller, M., and Côté, R., Long-range interactions
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[156] Demtröder, W., Linienbreiten und Profile von Spektrallinien, pages 43–68, Springer

Berlin Heidelberg, Berlin, Heidelberg. [Page 71]

[157] Weller, D., Shaffer, J.P., Pfau, T., Löw, R., and Kübler, H., Interplay between
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