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• dass ich diese Bachelorarbeit selbständig verfasst habe,
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1 Introduction

Laser spectroscopy is a common technique for studying the properties of atoms.

Energy levels, transition types, and their strengths can be investigated in the

absorption spectrum.

The main purpose of this thesis is to simulate the two-photon spectra of 4D5/2

in Rubidium with a home-built MATLAB program and compare the results in a

rubidium vapour cell with counter-propagating lasers, experimentally. This thesis

begins with the fundamental theory used for the simulation. The main concept, i.e.

optical Bloch equations, decay rate, line broadening are introduced. To simulate the

interaction we construct a model by solving optical Bloch equations in MATLAB.

The density matrix, which is relevant to the susceptibility calculation, is derived

from these differential equations. For 85Rb, we model a 12-level system involving

|5S1/2〉, |5P3/2〉, |4D5/2〉 hyperfine states. For 87Rb, a 10-level system is constructed.

As the input of the optical Bloch equations, all Rabi frequencies and decay rates

are calculated. To consider the Doppler effect, the density matrix elementshave

been integrated for atoms with different velocities with Normal distributions. Using

this integrated density matrix, the total induced dipole moment and susceptibility

are calculated.

We first validate the results of our calculations for D2 with Elecsus, a software

often used in atomic spectroscopy. Afterwards, we extend the study to two-photon

case. A comparison between experimental spectrum and simulation spectrum,

and a experiment with different laser polarization show the improvement space

of our simulation. Finally, in the outlook chapter we present the time-dependent

behaviour of the atom subject to two laser-beams. A two-dimensional map is

included with varying detuning for both lasers.
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2 Theory

The purpose of this chapter is to introduce a general method treating the atom-light-

interaction by deriving the optical Bloch equations. From the solution of optical

Bloch equations we get the the form of the density matrix, which plays a significant

role in obtaining the absorption spectrum. Based on the theory presented in this

chapter, we construct the model for the simulation in chapter 3 and 4.

2.1 Atom-Light-Interaction

Although a real atom is never a two-level system, it is sufficient to discuss the

mechanism for atom-light-interaction by using a two-level system for presenting

the main features. Afterwards, the principle obtaining the optical Bloch equations

is applied to a 12-level system in 85Rb and a 10-level system in 87Rb.

>|g

>|e
∆

Ω

Γ

Figure 2.1: A two-level system with the ground state |g〉 and the excited state |e〉. In the

figure Ω is the Rabi frequency and Γ is the population decay rate. The Detuning is defined as

∆ = ωL − ω0, where ωL is the Laser frequency and ω0 is the transition frequency.

A monochromatic light interacting with atom is presented as an electric field

interacting with a dipole. Since the wavelength of the light is much longer than
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2 Theory

the atomic size, it is fair to neglect the position dependent part

E(t) = E0 · cosωt = ε̂E0 ·
e−iωt + eiωt

2
(2.1)

where ε̂ is the polarization unit-vector.

The total Hamiltonian for the system has two parts: 1) the free-atom part HA

corresponding to the eigen-energy for each state. 2) HAL describing the interaction

between the atom and electric field.

H = HA +HAL = ~ω0|e〉〈e| − d̂ ·E (2.2)

= ~ω0σ
†σ − 〈g|d̂|e〉 · (σ + σ†) · ε̂ ·E0/2 · (eiωt + e−iωt) (2.3)

where d̂ is the dipole moment operator and σ = |g〉〈e| is the atomic lowering

operator with the time dependence of e−iω0t. The Hamiltonian in eq. (2.3) has two

rapidly oscillating terms e±i(ω+ω0)t. These fast oscillating dynamics are negligible

when the light frequency ω is near to the resonant frequency ω0. Therefore, a

rotating-wave approximation (RWA) can be used to eliminate the fast oscillating

terms and HAL can be simplified as

HAL = −1

2
·E0 · 〈g|ε̂ ·d|e〉 · (σeiωt + σ†e−iωt) (2.4)

=
~Ω

2
· (σeiωt + σ†e−iωt) (2.5)

where the Rabi frequency is defined as

Ω = −〈g|ε̂ · d|e〉 ·E0

~
(2.6)

The atom-light interacting Hamiltonian of eq. (2.5) is still time-dependent. A

unitary transformation in the form of U = eiωt|e〉〈e| helps to remove the explicit

time dependency and leads to a more efficient transformed Hamiltonian for the

calculation. The rotated Hamiltonian read as

H̃ = UHU † + i~
∂U

∂t
·U † (2.7)

Using the eq. (2.7) in (2.5), the total Hamiltonian is given by

H̃ = H̃A + H̃AL = −~ ·∆|e〉〈e|+ ~Ω

2
(σ + σ†) (2.8)

6
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2.1 Atom-Light-Interaction

where ∆ is the detuning ω − ω0.

A density matrix represents the state of a mixed quantum system. The trace of this

matrix is one. The diagonal entries represent the population at each energy level,

while the non-diagonal entries correspond to the coherence between two states. The

quantum mechanical expectation value of any observable, e.g. the dipole moment,

is given by the trace of the product of the density matrix and that operator, as

〈Ô〉 = tr(ρ̂ · Ô) (2.9)

where O depicts the observable. The master equations (2.10) is differential equation

that relates the density matrix and its derivatives. For an open quantum system,

the consideration of decay and phase decoherence are necessary. The Lindblad

superoperator captures all the dissipations (sum of all m decay channels) of energy

into surroundings.

∂ρ̃(t)

∂t
= − i

~

[
ˆ̃H(t), ρ̃(t)

]
+ L̃(ρ̃) (2.10)

whereas L̃(ρ̃) is given by:

L̃(ρ̃) =
∑
m

Γm · (amρ̃a†m −
1

2
· (a†mamρ̃+ ρ̃a†mam)) (2.11)

where am is an arbitrary operator and ρ̃ is the density matrix. In the matrix form

it should follow the rule that all states’ populations sum up to 1, which means∑n
i=1〈i|ρ̃|i〉 with n as the total number of states.

Based on the master equation, we could derive the optical Bloch equation for a

two-level system [1].

∂ρ̃gg
∂t

= Γ0ρ̃ee − Im(Ω∗0ρ̃ge) (2.12)

∂ρ̃ge
∂t

= − (Γ0/2 + i∆) ρ̃ge − iΩ0/2 (ρ̃ee − ρ̃gg) (2.13)

∂ρ̃eg
∂t

= (i∆− Γ0/2) ρ̃eg + iΩ0/2 (ρ̃ee − ρ̃gg) =
∂ρ̃∗ge
∂t

(2.14)

∂ρ̃ee
∂t

= −Γ0ρ̃ee + Im(Ω∗0ρ̃ge) = −∂ρ̃gg
∂t

(2.15)

The solution of the optical Bloch equations for ρ̃ is a time-dependent density matrix.

To obtain the density matrix at steady state, the left part of the optical Bloch

equations (2.12) to (2.15) should be zero.

∣∣∣∣∣ 7



2 Theory

2.2 Lineshape and broadening

The absorption lines of any real emitter has a finite width. In general, the line

shape is both homogeneously and inhomogeneously broadened. In this part we

introduce four main types of broadening, natural broadening, Doppler broadening,

transit-time broadening, and power broadening. The collisional broadening is

negligible in the experiment due to the low density in the vapour cell [2].

2.2.1 Natural broadening

The spontaneous emission in the exited states is responsible for the natural broad-

ening. The coupling of the atom to the electromagnetic vacuum field results in the

decay to the ground state and the photon emission. Due to this probability event,

an excited atom does not stay in the excited level but has a finite lifetime τ , which

is the inverse of the decay rate Γ. According to Heisenberg’s uncertainty principle,

the energy of each quantum state has an uncertainty

∆E ≥ ~
∆t

(2.16)

For atoms, the time uncertainty ∆t in the eq. (2.16) is equals to the lifetime τ . The

exponentially decaying behavior in time results in Lorentz shape in the frequency

spectrum [2].

2.2.2 Doppler broadening

The random thermal motion of atoms leads to a Boltzmann distribution of atomic

velocity. A moving atom sees an altered frequency of light due to the Doppler effect.

The frequency difference can be written in product of wave-vector k and velocity v

ω′ = ω − k ·v (2.17)

This frequency shift results in a shifted detuning as

∆ = ∆− k ·v (2.18)

The contribution of Doppler broadening on a Lorentz line shape leads to a Voigt

profile:

V (ω) =
a√
2πσ

∫ ∞
−∞

exp
{
− v2

2σ2

}
(ω − ω0 − k · v)2 + (ΓL/2)2dv

8
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2.2 Lineshape and broadening

where a is the amplitude involving the vapour density and Lorentz width ΓL.

For Voigt profile, the FWHM of Voigt (ΓV) is built up by FWHM of Doppler (ΓD)

and FWHM of Lorentz (ΓL). With approximation it can be written as [3]:

ΓV = 0.5346ΓL +
√

0.2166Γ2
L + Γ2

D (2.19)

2.2.3 Transit-time broadening

If the cross-section of a laser beam is small, the interaction time of atoms with

field can be smaller than the spontaneous lifetime. Hence, the time uncertainty in

eq. (2.16) is no longer the lifetime of atom but the interaction time. This leads

to the transit-time broadening of the lineshape. The transit rate is defined as

Γt = v/d, where v is the average atomic speed and d is the average path length

across the beam cross-section. We assume that the atomic velocity has a Boltzmann

distribution and the beam profile has a circular shape, therefore we get v =
√

πkBT
2m

and d = πD
4

with D as the beam diameter. The transit rate is given by [4]

Γt =

√
8kBT/πm

D
≈ 1.13 · σ

D
(2.20)

where σ =
√

2kBT/m is the two dimensional root-mean-squared velocity.

In our experiment, the beam cross-section is large enough for an atom to interact

with the light within its lifetime and before it leaves the beam area. The transit-time

effect on the line-width is negligible. However, it is necessary to introduce a transit

rate between |5S1/2, F = 2〉 and |5S1/2, F = 3〉 (the ground hyperfine states) in

order to prevent all atoms going to the dark state |5S1/2, F = 2〉 at long times.

Two ground states |5S1/2, F = 2〉 and |5S1/2, F = 3〉 are separated by 3 GHz. Since

the 780 nm laser is locked to the transition |5S1/2, F = 3〉 → |5P3/2, F
′ = 4〉, the

atoms excited from F = 3 to |5P3/2, F
′ = 2, 3〉 and then decaying to |5S1/2, F = 2〉

are not able to be excited back to the 5P3/2. Therefore, atoms staying long-enough

inside the beam would go to |5S1/2, F = 2〉 and stay there, hence pumped to the

dark state.

∣∣∣∣∣ 9



2 Theory

>|5S
1/2 

, F = 3

∆

Ω

>|5S
1/2 

, F = 2

>|5P
3/2 

, F’ = 1

>|5P
3/2 

, F’ = 2

>|5P
3/2 

, F’ = 3

>|5P
3/2 

, F’ = 4 

 7/12 Γ
t   5/12 Γ

t

Figure 2.2: The transit relation effect between two 5S1/2 states are shown in green wavy line.

The Rabi frequency is Ω and the detuning is ∆.

The transit rate for hyperfine ground state is distributed according to the degeneracy

of the levels [4]

ΓF=2→F=3 =
7

12
·Γt

ΓF=3→F=2 =
5

12
·Γt

For simulation, by introducing the transit rate into the decay rate matrix, we obtain

a pseudo steady-state model to calculate the atomic density matrix. The model

assumes that there is a cut-point before the system goes to the real steady state.

At that point all the levels are properly included.

2.2.4 Power broadening

The spectral width increases when the intensity of the laser increases. It is known

as power broadening, a homogeneous broadening in spectroscopy.

At low intensity, the commutator of lowering operator [σ, σ†] = |g〉〈g| − |e〉〈e| ≈ 1,

since there are few atoms in the excited state. Therefore, we could regard the atom

as a harmonic oscillator with this assumption the Lorentz linewidth of spectrum

approaches to the natural line width Γ at low intensity [2].

At higher intensities, more atoms are pumped to the exited state, correspondingly

more decaying towards the opposite direction happens. These two contrary processes

10
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2.2 Lineshape and broadening

lead to an increased Lorentz width, a phenomenon known as saturation.

It is sufficient to use a two-level system, as the fig. (2.1) shows. From the master

equation for two level system at steady-state, the population difference between

the ground and the excited state is given by

(ρee − ρgg)ss =
−1

1 + γ/Γ Ω2

γ2+∆2

=
−1

1 + Ω2L(∆)
γΓ

(2.21)

with a Lorentz lineshape defined as

L(∆) =
γ2

γ2 + ∆2
(2.22)

The eletric field of plane wave is E =
√

2I/ε0c. Therefore, the Rabi frequency can

be replaced by the intensity with prefactor

Ω2 =
d2E2

~2
=
d22cµ0I

~2
(2.23)

where d is the transition dipole moment. Eq. (2.21) can be written as

(ρee − ρgg)ss =
−1

1 + I
Isat
L(∆)

(2.24)

In a low density vapour the collisions between atoms are negligible. In this case

only the natural decoherence exits and the decoherence rate γ = Γ/2 and the

saturation intensity is given by

Isat =
ε0c~2Γ2

4d2
(2.25)

The master equation also gives the induced dipole moment at steady state

d = −iΩ
2

ρss − ρgg
γ + i∆

=
Ω

2

L(∆)

1 + I
Isat
L(∆)

× γ − i∆
γ2

, (2.26)

The absorption of the signal α is the imaginary part of induced dipole moment

α =
Ω

2γ

L(∆)

1 + I
Isat
L(∆)

(2.27)

For low intensity case, i.e. I � Isat, the absorption approaches Γ
2γ
L(∆) with Lorentz

lineshape and leads to ΓL = Γ.

∣∣∣∣∣ 11



2 Theory

When the intensity is much larger than Isat, the equation (2.27) turns to

α =
Ωγ/2

∆2 + γ2(1 + I
Isat

)
(2.28)

This leads to the function for FWHM of Lorentz lineshape

ΓL = Γ0

√
1 +

I

Isat

(2.29)

In experiments, sometimes the background offset should also be considered, e.g.

the line broadening due to the magnetic field. We put a general offset Γoff to the

eq. (2.29)

ΓL = Γ0

√
1 +

I

Isat

+ Γoff (2.30)

12
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3 D2 line in Rubidium spectrum

In this thesis, the D2 line refers to the transition |5S1/2〉 → |5P3/2〉 in Rubidium

spectroscopy. The hyperfine structure of 87Rb and 85Rb for this D2 line involves

six energy levels. In this chapter we compare the D2 line at low intensity from the

MATLAB simulation with the Elecsus software. Afterwards, the simulated spectra

as various powers are fitted to determine the Lorentz widths. The Lorentz widths

following the power broadening relation help us to get the saturation intensity and

compare it with the theoretical value calculated from transition features.

3.1 Energy levels Structure

This section involves the transition |5S1/2〉 → |5P3/2〉 (D2-line) of Rubidium. The

hyperfine structure is considered here, which includes the energy splitting due to

the coupling of total electron angular momentum J with the total nuclear angular

momentum I. The ground state |5S1/2〉 splits to 2 sub-levels and the excited state

|5P3/2〉 splits to 4 sub-levels. The 780 nm laser is scanned over this transition and

pumps the atom to the upper level. Meanwhile an atom at the excited state decays

to the ground state with the decay rate of 2π · 6.066 MHz [5].

5P3/2

5S1/2

F = 2

F = 3

F�= 1
F�= 2

F� = 3

F�= 4
Δ

ωL

ω0

Figure 3.1: Rubidium 85 energy level scheme for the excitation from the ground state |5S1/2〉
to the excited state |5P3/2〉. ωL is the laser frequency and ∆ indicates the detuning. The cyclic

transition is |5S1/2, F = 3〉 → |5P3/2, F = 4〉 The energy gap between those two levels is ~ω0
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3 D2 line in Rubidium spectrum

3.2 Calculation of Rabi frequency for hyperfine

transitions

The Rabi frequency Ωq is defined in chapter 2 as:

Ωq = −〈g|ε̂ ·d|e〉Eq
~

(3.1)

whereas ε̂ is the polarisation operator and Eq is the exciting electric field. In our

simulation, the Rabi frequency for each hyperfine transition is needed, and in this

case the ground state |g〉 is |5S1/2, F 〉 and the excited state |e〉 is |5P3/2, F
′〉. The

whole induced dipole moment including all S to P transitions is the sum of dipole

moments from all hyperfine sublevels. Considering the symmetry of dipole operator,

we use the factor SFF ′ to exhibit the relative strength of dipole moment of each

|F 〉 → |F ′〉 transition [5,6].

SFF ′ =
∑
q

(2F ′ + 1) (2J + 1)

{
J J ′ 1

F ′ F I

}2

|〈FmF |F ′ 1 (mF − q)q〉|2 (3.2)

= (2F ′ + 1) (2J + 1)

{
J J ′ 1

F ′ F I

}2

(3.3)

where F is the total atomic angular momentum quantum number, J is the quantum

number of the total electron angular momentum, I is the nuclear angular momentum

quantum number. The curly brackets denote the Wigner 6-j symbol. The primed

letters indicate excited state levels. In an isotropic pump field, the strength of each

polarisation takes up one third of SFF ′ , as only one third of the dipole moment

would be induced by the given polarization of the field. Therefore, the Rabi

frequency is given by

Ωisotropic =

√
SFF ′

3
· |〈J ||ε̂d||J ′〉| ·E

~
(3.4)

(3.5)

The reduced dipole moment magnitude 〈J ||ε̂d||J ′〉| is given by the eq (3.9).

Another way to calculate the hyperfine transition strength for the Rabi frequency

is to sum all transition strengths of Zeeman sublevels in a hyperfine manifold up. A

prefactor calculating different Rabi frequencies in hyperfine structure for a certain

transition q is defined as Cq.

Ωq =

√
Cq · |〈J ||ε̂d||J ′〉| ·E

~
(3.6)

14
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3.3 Calculation of branching ratio and decay rates of hyperfine levels

Ωq corresponds to the Rabi frequancy for certain polarisation π, σ+, σ−. Cq is

proportional to the total strength factor C2
F,F ′ , which sums all transition strengths

of each Zeeman transition C2
mF ,mF ′ up [7].

Cq =
C2
F,F ′

2F + 1
=

∑
C2
mF ,mF ′

2F + 1
(3.7)

2F + 1 denotes the degeneracy of the ground state. The transition prefac-

tor CmF ,mF ′ indicates multiples of the 〈J ||er||J ′〉 in the dipole matrix element

〈F,mF |erq|F ′,mF ′〉, which couples two Zeeman sublevels.

〈F,mF |erq|F ′,mF ′〉 = CmF ,mF ′ · 〈J ||erq||J ′〉 (3.8)

Table (3.1) gives these coefficients for each transition in hyperfine structure. As

expected, the calculation using SFF ′ and CmF ,mF ′ lead to the same results.

85Rb(5S1/2 → 5P3/2) 87Rb(5S1/2 → 5P3/2)

5S1/2, F → 5P3/2,F ′ SFF ′/3 Cq 5S1/2, F → 5P3/2,F ′ SFF ′/3 Cq
(F = 2→ F ′ = 1) 1/10 0.1 (F = 1→ F ′ = 0) 1/18 0.0556

(F = 2→ F ′ = 2) 7/54 0.1296 (F = 1→ F ′ = 1) 5/36 0.1389

(F = 2→ F ′ = 3) 14/135 0.1037 (F = 1→ F ′ = 2) 5/36 0.1389

(F = 3→ F ′ = 2) 5/189 0.0265 (F = 2→ F ′ = 1) 1/60 0.0167

(F = 3→ F ′ = 3) 5/54 0.0926 (F = 2→ F ′ = 2) 1/12 0.0833

(F = 3→ F ′ = 4) 3/14 0.2143 (F = 2→ F ′ = 3) 7/30 0.2333
Table 3.1: Dipole moment prefactor for hyperfine transitions of 5S1/2 → 5P3/2 (D2-line for

both rubidium isotopes)

3.3 Calculation of branching ratio and decay

rates of hyperfine levels

The spontaneous decay rate, i.e. the inverse of lifetime, for each J → J ′ transition,

can be calculated by reduced dipole moment and the resonant frequency [5].

Γ(J, J ′) =
1

τ
=

ω3

3πε0~c3

2J + 1

2J ′ + 1
|〈J ||er||J ′〉|2 (3.9)

where ω is the transition frequency between the fine structure.

If the energy level can decay to more than one level in the ground state, the

branching ratio for each possible decay path should be taken into account. For

∣∣∣∣∣ 15



3 D2 line in Rubidium spectrum

example, 85Rb atoms at |5P3/2, F
′ = 3〉 decay to the state |5S1/2, F = 2〉 with the

decay rate Γ2,3 or |5S1/2, F = 3〉 with the decay rate Γ3,3. The branching ratio

BF,F ′ for the first transition is B2,3 = Γ2,3

Γ(J= 1
2
,J ′= 3

2
)
. The ratio is the sum of C2

mF ,mF ′

divided by F ′-degeneracy of upper state and multiplied by a prefactor 2J ′+1
2J+1

[8]

BF,F ′ =
2J ′ + 1

2J + 1
·
∑
q

C2
mF ,mF ′ ·

1

2F ′ + 1
(3.10)

ΓF,F ′ = BF,F ′ ·Γ(J, J ′) (3.11)

More specifically, the decay rate can be written in the form of

ΓF,F ′ =
ω2

3πε0~c3
· (2F + 1)(2J + 1) ·

{
J J ′ 1

F ′ F I

}2

· |〈J ||er||J ′〉|2 (3.12)

Transition BFF ′ of 85Rb Transition BFF ′ of 87Rb

(F = 2→ F ′ = 1) 1 (F = 1→ F ′ = 0) 1

(F = 2→ F ′ = 2) 0.8333 (F = 1→ F ′ = 1) 0.8333

(F = 2→ F ′ = 3) 0.1667 (F = 1→ F ′ = 2) 0.1667

(F = 3→ F ′ = 2) 0.5 (F = 2→ F ′ = 1) 0.5

(F = 3→ F ′ = 3) 0.5 (F = 2→ F ′ = 2) 0.5

(F = 3→ F ′ = 4) 1 (F = 2→ F ′ = 3) 1
Table 3.2: Braching ratios for hyperfine transitions of 5S1/2 → 5P3/2 (D2-line for both

rubidium isotopes)

3.4 Comparison of MATLAB Simulation and

Elecsus results

In order to test the validity of the Simulation model, we compare the produced

results from the MATLAB simulation with Elecsus results. Elecsus is a programme

that calculates the susceptibility by adding the contributions of all transitions

modeled as Lorenzian lineshapes [9]. It is used for the weak-probe regime and has

an excellent agreement with experimental data. Hence, it is used as a reference for

our simulation. Fig. (3.2) to (3.4) show the comparison of our simulation results

with Elecsus at temperature =20◦.
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3.4 Comparison of MATLAB Simulation and Elecsus results
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Figure 3.2: Comparison between MATLAB Simulation of 85Rb at low intensity I = 10−10

mW/cm2 and Elecsus result at temperature=20◦. Zero detuning corresponds to the cyclic

transition |5S1/2F = 3〉 → |5P3/2F = 4〉. Panel a) shows the normalized induced dipole moment

spectrum. Panel b) shows the error between two spectra defined as Smatlab − SElecsus (S means

signal). The inset in panel (a) shows the difference between two signals. This difference results

from the atomic velocity sampling in MATLAB simulation. The maximum velocity used in our

calculations is 4σ. If we increase the sampling range to 5σ or more for the Matlab calculation,

where σ =
√
kBT/mRb is the standard deviation of one-dimensional velocity, the simulation

signal will be smoother and the error will decrease.
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3 D2 line in Rubidium spectrum

    -2 0    2    4    6    8

Detuning (frequency) [GHz]

0

1

R
b

8
7
: 
D

2
 l
in

e
 

Matlab Simulation

Elecsus

    -2 0    2    4    6    8

Detuning (frequency) [GHz]

      -5

0

      5

     15

re
s
id

u
a

l 
e

rr
o

r 
[1

0
-3
]

a)

b)

Figure 3.3: Comparison between MATLAB Simulation of 87Rb at low intensity I = 10−10

mW/cm2 and Elecsus result. Peak at zero Detuning indicates the cyclic transition 5S1/2, F =

2〉 → |5P3/2, F = 3〉

Fig (3.4) shows the whole Rubidium D2 spectrum, including 85Rb and 87Rb with the

natural abundance NA85 = 72.17%, NA87 = 27.83% [5]. This complete spectrum is

produced by

dtotal = NA85 · d85Rb + NA87 · d87Rb

where dtotal is the total induced dipole moment. d85Rb and d87Rb are individual

induced dipole moment of isotope, generated by 12-level and 10-level MATLAB

simulation respectively.
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Figure 3.4: Comparison between MATLAB Simulation of the whole Rb spectrum at low

intensity I = 10−10 mW/cm2 and Elecsus result at temperature=20◦. Zero detuning corresponds

to the cyclic transition |5S1/2, F = 2〉 → |5P3/2, F = 3〉.

From this comparison we can see that the simulation for low power matches well

with Elecsus result.

3.5 Saturation intensity

As mentioned in the chapter 2, by increasing the intensity of either 780 nm or 1529

nm light, we are able to see that the power broadening has an effect on strength

for different transition. In theory, the saturation intensity can be calculated by

natural linewidth(decay rate) Γ and induced dipole moment ε̂ · d.

Isat =
cε0Γ2~2

4 |ε̂ · d|
(3.13)

where ε0 is the vacuum permittivity and c is the light speed.

For 85Rb D2 line, we use the dipole moment of the cyclic transition |5S1/2, F =

3〉 → |5P3/2, F = 4〉, the largest induced dipole moment |ε̂ · d| = 1.9575 ea0 among
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3 D2 line in Rubidium spectrum

all six transitions in 5S1/2 to 5P3/2 excitation, to calculate the total saturation

intensity for 5S1/2 to 5P3/2 transition. The Isat,85 is 3.895 mW/cm2. Similarly, the

saturation intensity of 87Rb Isat,87 is 3.576 mW/cm2.

At first we set the atomic velocity at zero in MATLAB simulation to simulate a

still atom. As a result, a spectrum including 12 peaks is obtained. The sixth peak

corresponds to the cyclic transition of 85Rb (|5S1/2, F = 3〉 → |5P3/2, F
′ = 4〉).
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85Rb

 index  transition

    1          F=2 ->F’=1

    2          F=2 ->F’=2

    3          F=2 ->F’=3

    4          F=3 ->F’=2

    5          F=3 ->F’=3

    6          F=3 ->F’=4

    7          F=2 ->F’=1

    8          F=2 ->F’=2

    9          F=2 ->F’=3

 10          F=1 ->F’=0

 11          F=1 ->F’=1

 12          F=1 ->F’=2

Figure 3.5: Simulation result of Rubidium D2 line for a still atom. The peak’s index and its

corresponding transition |5S1/2, F 〉 → |5P1/2, F
′〉 are presented in the table on the right side.

According to the theory of Doppler broadening in chapter 2, if the atomic velocity

is changed to another value v, the spectrum would receive a shift kv along the

x-axis. The entire spectrum including all velocities in Gaussian distribution can

be seen as a superposition of all simple-velocity spectra. When the 780 nm laser

intensity increases, the Lorentz widths of each transition increase following the eq.

(2.29). As the saturation intensities are different according to the eq. (3.13), eq.

(3.8) and table (3.1), the Lorentz widths rise differently.
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3.5 Saturation intensity
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Figure 3.6: Normalized Rubidium D2 line produced by MATLAB simulation for different 780

nm intensities.

By analysing the Voigt profile, it is able to get the Lorentz full width at half

maximum (FWHM) at different intensity and then calculate the saturation intensity.

Γ = Γ0 ·
√

1 +
I

Isat

(3.14)

3.5.1 Faddeeva function for Voigt fitting

Faddeeva function is a complex complementary error function [10]. The real part

of Voigt fitting has the form of Faddeeva function. In the profile fitting we use this

error function to separate the Doppler broadening and Lorentz linewidth of the

profile. the Voigt profile can be regard as a Doppler broadened Lorentz profile and

given by

V (f) =
a√
2πσ

∫ ∞
−∞

exp
{
− v2

2σ2

}
(f − f0 − k · v)2 + (Γ/2)2dv

where k is the wavenumber of laser, f is the frequency, σ is the standard deviation of

Gaussian distribution and Γ is the Lorentz FWHM. For the transition 5S1/2 to 5P3/2,
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3 D2 line in Rubidium spectrum

the wavenumber k = 2π/λ = With substitution r = v√
2σ
, x = f−f0√

2σk
, y = Γ

2k
√

2σ

V (x) =
a ·
√

2π

σkΓ
·
∫ ∞
−∞

y

π

exp{−r2}
(x− r)2 + y2

dr

= s · Re [Fadf(x+ i · y)]

Fadf(z) =
i

π

∫ ∞
−∞

exp{−t2}
z − t

dt, z = x+ iy is a complex number

In total, there are 14 parameter to be fitted. They are 12 peaks’ height, the Doppler

width and the Lorentz width. Therefore a proper initial guess takes an important

role in the fitting process. The Gaussian standard deviation is a constant that only

depends on the temperature and Rubidium mass. After fixing peaks positions, i.e.

resonance frequencies, an initial strength guess for Lorenz profile can be taken from

the spectroscopy of D2 line without Doppler broadening by running the simulation

with atomic velocity equals to zero as shown in Fig. (3.5).
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Figure 3.7: The figures a) b) at low intensity I = 10−10 mW/cm2 ≈ 2.8× 10−11Isat,87. The

figures c) d) shows the fitting for D2 line at I = 10Isat,87. a) c) show the normalised induced

dipole moment and b) d) show the residual error, a subtraction of the produced signal and the fit

line.

The following figure shows a fitting example at high intensity I = 10Isat,87. Com-

pared to the low intensity one, the magnitude of residual error in high intensity
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3.5 Saturation intensity

case is nearly one order of magnitude larger. Even then the fitting quality is

acceptable with the residual error less than 1%. The fitting process with Faddeeva

function provides 12 Lorentz FWHM for 12 possible transition of D2 line. At low

intensity, this Lorentz FWHM should approach the natural linewidth according to

the equation (3.14). The natural Line Width is (2π · 6.0666 MHz) for 85Rb [5] and

(2π · 6.0659 MHz) for 87Rb [6]. Since the width of two isotopes are close to each

other, it is appropriate to expect those 12 values of Lorentz FWHM only have little

differences resulting from fitting and then take the average value for the saturation

intensity calculation later.
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Figure 3.8: a) shows the lorentz FWHM at low intensity I = 10−10 mW/cm2 ≈ 2.8 ×
10−11Isat,87. and b) corresponds to higher intensity I = 10Isat,87. These indices correspond to

the indices in Fig. 3.5.

The standard deviation of all Voigt-fitting results is below 4%. The values for the

cyclic transition in 87Rb are given in the table below.

Intensity 10−10 W/m2 0.01×Isat 0.1×Isat Isat 10×Isat

FWHM of Lorentz [MHz] 6.063 6.094 6.344 8.452 20.079
Table 3.3: Lorentz FWHM for the cyclic transition in 87Rb at different intensities

The fitting to discrete points gives the saturation intensity Isat = 3.564 mW/cm2.

This value is close to the expected value Isat,87 = 3.576 mW/cm2.
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Figure 3.9: The five blue discrete stars are FWHM of transition 87Rb |5S1/2, F = 2〉 →
|5P3/2, F

′ = 3〉 at different intensities from individual Voigt-fitting result. It shows the intensity-

dependence of Lorentz FWHM. The x-axis is in logarithmic scale and a Fit (red line) gives the

saturation intensity behavior.
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4 Two-photon spectroscopy

In this chapter we use the counter-propagating 780 nm and 1529 nm (telecom)

lasers to excite rubidium atoms from |5S1/2〉 to |5P1/2〉 then to |4D5/2〉. First we

present the experimental results followed by detailed analysis to extract the effect

of the telecom power. Later, we employ our Matlab code and extend it to include

5P3/2 → 4D5/2 transitions. We compare the results of those numerical simulations

with our experimental results. At the end, we analyse the spectrum at different

polarization.

4.1 Excitation scheme and experimental Setup

Figure (4.1) shows the schematics of the setup we used for two-photon spectroscopy

of Rubidium. A 780 nm laser light passes through a dichroic mirror and excites

the atoms to the 5P3/2 state. A beam propagating in the opposite direction of

780 nm laser within the cell is the the telecom laser with wavelength at 1529

nm. It sends the excited atoms to 4D5/2 state. The transmitted light from this

laser gets reflected from the dichroic mirror and sent to a Germanium detector to

record the absorption of telecom laser. The 780 nm laser is locked to the transition

|5S1/2, F = 3〉 → |5P3/2, F = 4〉 of 85Rb and the 1529 nm laser is scanned over

4D5/2 energy levels.
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Figure 4.1: The experimental setup used for |5S5/2〉 → |5P5/2〉| → |4D5/2〉 spectroscopy of

Rubidium. The red arrow indicates the 780 nm laser with frequency ω1 and the brown arrow

indicates 1529 nm laser (telecom laser) used for transition |5P3/2〉| → |4D5/2〉 with frequency ω2.

The Doppler detuning (+k780v − k1529v) is dependent on the velocity of individual atoms. The

real energy level that an atom reaches is shown in the dashed green line. The real detuning is the

sum of ∆1 and ∆2.

Several HWP (half-wave plate) + PBS (polarizing beam splitter) and ND filters

(natural density filter) have been used to tune the intensity of 780 nm and the

telecom laser.
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4.1 Excitation scheme and experimental Setup

The Doppler effect lets atom reach every hyperfine state of 5P3/2, even though the

780 nm laser is locked at |5S1/2, F = 3〉 → |5P3/2, F
′ = 4〉 transition. The 1529 nm

telecom laser has a scanning range over several GHz to cover all hyperfine energy

levels of 4D5/2 in 85Rb. The spacing between peaks are presented in the table (4.1).

The fist line in table shows which transition a peak belongs to. ∆ = 0 corresponds

to the cyclic transition of 85Rb |5S1/2, F = 3〉 → |5P3/2, F
′ = 4〉. The spacing

between transition peak 3-4-5, 3-4-4, 3-4-3 is the natural energy spacing. The spacing

between F → F ′ → F ′′ and F → (F ′−1)→ F ′′ is given by (EF ′−EF ′−1)×(1− λ1
λ2

),

where λ1,2 = 2π · c/ω1,2 and E indicates the energy. For instance, the transition

3-3-4, 3-3-3, 3-3-2 are included in spectrum due to the doppler effect, and spacing

between 3-3-4 and 3-4-4 is 120.64 MHz× (1− 780.24 nm
1529.37 nm

) = 59.10 MHz [11,12].

Rubidium 85 Rubidium 87

F → F ′ → F ′′ ∆ [MHz] F → F ′ → F ′′ ∆ [MHz]

3-4-5 0 2-3-4 0

3-4-4 20.8 2-3-3 63.7

3-4-3 41.3 2-3-2 115.8

3-3-4 79.9 2-2-3 194.55

3-3-3 100.36 2-2-2 246.65

3-3-2 117.96 2-2-1 283.45

3-2-3 131.42 2-1-2 323.66

3-2-2 149.02 2-1-1 360.46

3-2-1 162.02

Table 4.1: Spacing between different transition peaks.

The signal for data analysing is prepared by the subtraction of recorded absorption

from a Ge-detector and the ramp-reference.
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Figure 4.2: a) Original experimental data, the spectroscopy detecting by Ge-detector and b)

background ramp.

The penal a) of Fig. (4.2) shows one absorption spectrum detected at a certain

power P780 ≈ 20 µW, P1529 = 8.3 µW. The penal b) shows the ramp signal, which is

taken at the same telecom laser intensity but with the 780 nm laser being blocked.

Because of the time difference between two measurement, the spectrum still has

an un-wanted offset. Hence, a polynomial is needed to exclude this background

influence.

Via Fabry-Perot Interferometer the x-axis is calibrated to frequency. We checked

the spacing between peaks 3-4-5 and 3-3-4 which should be 79.9 MHz [11].

After abstraction of the quadratic polynomial on signal and the normalization we

obtain normalized transmission data, as Fig. (4.3) shows. In experiment we did

in total 18 measurements with increasing 1529 nm laser power from 8.3 µW to

520 µW. Fig. (4.3) exhibits five of them to show the power broadening clearly.
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Figure 4.3: Normalised experimental signal with different powers. Numbers in legends indicate

the power of 1529 nm laser.

The power of two beams are determinated by power meter (Digital Optical Power

and Energy Meter, PM100D). The power sensor S121C (type: Si Photodiode) is

used for 780 nm laser, while power sensor S122C (type: Ge Photodiode) is used for

1529 nm laser. To calculate the exact intensity, two measurements are needed

• Generally, the power inside the vapour cell is less than the measured value

because of the reflection loss. A measurement with blocked 780 nm laser

shows that the 1529 nm laser power after the cell is 25% less than the power of

the coming beam. Assuming the equal reflection on two sides of the cylindrical

cell, the reflectance is 50%.

• The beam size measurement. From this measurement we know that the

beam has Gaussian distribution with the diameter 1.42 mm. The intensity is

calculated by dividing the power by the cross sectional area.

All the measurements are done at low 780 nm power to decrease the optical pumping

and power broadening due to this beam.
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4 Two-photon spectroscopy

4.1.1 Rabi frequency and saturation intensity of each

transition

In chapter 2, we described how to calculate Rabi frequencies and induced dipole

moments of transitions between hyperfine states. The saturation intensity for

individual transition F → F ′ → F ′′ is calculated using the eq. (2.25). Table (4.2)

presents the exact value that we used for those variables in simulation and gives

the saturation intensity Isat which can be compared with experimental results.

Rubidium 85

index (F → F ′ → F ′′) Cq(q = 0,±1) dFF ′ [ea0] Isat [mW/cm2]

1 (3-4-5) 0.2716 2.9239 0.16950

2 (3-4-4) 0.0556 1.3224 0.82869

3(3-4-3) 0.0062 0.4408 7.45818

4(3-3-4) 0.2143 2.5971 0.21485

5 (3-3-3) 0.100 1.7742 0.46038

6 (3-3-2) 0.0190 0.7743 2.41700

7 (3-2-3) 0.1600 2.2442 0.28774

8 (3-2-2) 0.1333 2.0486 0.34529

9 (3-2-1) 0.0400 1.1221 1.15095

10? (2-1-2) 0.1037 1.8067 0.44394

11? (2-1-1) 0.1556 2.2128 0.29596

12? (2-1-0) 0.0741 1.5270 0.62152

Table 4.2: Rabi frequency prefactor Cq, and saturation intensity. Index with star means

this transition is not seen in the experiment. As the 780 nm laser is locked for transition

|5S1/2, F = 3〉 → |5P3/2, F
′ = 4〉, the population of state |5P3/2, F

′ = 1〉 comes from the decaying

of the 4D5/2 states, resulting in weak strength compared with others.

Table (4.3) shows the calculated dipole moment and saturation intensity for 87Rb

4D5/2 excitation.

4.1.2 Calculation of branching ratio decay rates of

hyperfine levels

Similar to the calculations for D2 line, the decay rates of 4D5/2 hyperfine states

are given by the product of branching ratio BFF ′ and the spontaneous decay rate

Γ(J = 3/2, J ′ = 5/2) = 2π · 1.89 MHz [5,6]. The calculated values can be found in

the table (4.4).
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Rubidium 87

F ′ → F ′′ Cq(q = 0,±1) dFF ′ [ea0] Isat [mW/cm2]

3-4 0.2857 2.9989 0.16113

3-3 0.0444 1.1828 1.03586

3-2 0.0032 0.3161 14.5020

2-3 0.2489 2.7990 0.18497

2-2 0.0778 1.5647 0.59192

2-1 0.0067 0.4581 6.90573

1-2 0.2333 2.7101 0.19731

1-1 0.1000 1.7742 0.46038

0-1 0.3333 3.2392 0.13811

Table 4.3: Rabi frequency prefactor Cq, and saturation intensity. Actually the peaks caused

by excitation in 87Rb is not seen in the spectrum due to the off-resonance effect.

85Rb 87Rb

|5P3/2, F
′〉 → |4D5/2, F

′′〉 BFF ′ |5P3/2, F
′〉 → |4D5/2, F

′′〉 BFF ′

F ′ = 4→ F ′′ = 5 1 F ′ = 3→ F ′′ = 4 1

F ′ = 3→ F ′′ = 4 0.75 F ′ = 2→ F ′′ = 3 0.8

F ′ = 4→ F ′′ = 4 0.25 F ′ = 3→ F ′′ = 3 0.2

F ′ = 2→ F ′′ = 3 0.5143 F ′ = 1→ F ′′ = 2 0.63

F ′ = 3→ F ′′ = 3 0.45 F ′ = 2→ F ′′ = 2 0.35

F ′ = 4→ F ′′ = 3 0.0357 F ′ = 3→ F ′′ = 2 0.02

F ′ = 1→ F ′′ = 2 0.28 F ′ = 0→ F ′′ = 1 0.5

F ′ = 2→ F ′′ = 2 0.6 F ′ = 1→ F ′′ = 1 0.45

F ′ = 3→ F ′′ = 2 0.12 F ′ = 2→ F ′′ = 1 0.05

F ′ = 1→ F ′′ = 1 0.7

F ′ = 2→ F ′′ = 1 0.3

F ′ = 1→ F ′′ = 0 1

Table 4.4: Braching ratio for transitions 5P3/2to 5D5/2 in hyperfine structure

4.1.3 Fitting results

The multi-Lorentz fit, i.e. a sum of 9 Lorentz function, is used for the fitting the

two-photon spectrum. In total there are 9 peaks with 9 Lorentz FWHM. The fitting

for the cyclic transition (3-4-5) has the best quality since it has strongest strength.
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Figure 4.4: Penal a) shows the Lorentz fit result at relative low telecom Power P = 8.3 µW.

Penal b) shows the Lorentz fit result at high 1529 nm laser power P = 520 µW. Penal c) shows

the Voigt fit result at P = 8.3 µW ≈ 0.77Psat and penal d) shows the Voigt Fit result at

P = 520 µW ≈ 48.5Psat. In each penal, the upper part shows the fit curve (red) on top of

experimental data (blue) and the lower part shows the absolute error calculated as |Sfit−Sexp. data|
(S means signal).

Both fits seem to describe the data properly with a relatively low error. However,

the Lorentz fit for the third group transition (3-2-3, 3-2-2, 3-2-1) and the third

transition 3-3-2 in second group was not giving the exact value of Lorentz width

since the fit starts to have difficulties to detect the peak, which has broad width

and small height. In addition, a Voigt fit is closer to the real behavior of the data

since the Doppler effect is not negligible. The Doppler width Γd is given by the

product of the natural line-width of 5P3/2 state Γ5P = 6.066 MHz [5] and ratio
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between wave number of 780 nm and 1529 nm laser [13].

Γd =
k1529

k780

·Γ5P ≈ 3.049 MHz (4.1)

Fig. (4.5) shows the Lorentz FWHM from Lorentz Fit for transition 3-4-5, 3-4-4,

3-4-3, 3-3-4, 3-3-3. At low intensity, the Lorentz FWHM for each transition are

close to each other. Theoretically, FWHM for all transitions would approach the

sum of the natural linewidth and an offset coming from background according to

the equation (2.30). At higher Power, the FWHMs increase differently because of

different Isat values of each transition.
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Figure 4.5: FWHM of Lorentz using the pure Lorentz fit for isotope 85Rb. The excitation in
87Rb is off-resonance. Hence this fit model is a multi-Lorentz model with a superposition of 9

Lorentz function

The saturation intensity Isat obtained by the Lorentz Fit and the offset Γ0 are

presented in table (4.5).
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Figure 4.6: FWHM of Lorentz using the Voigt Fit (faddeeva function)

From the FWHM of Lorentz part in Voigt fitting, the saturation intensity could be

determined by Fitting with function (2.30) .

F − F ′ − F ′′ Isat,theo Isat, voigt Γ0,voigt Isat, lor Γ0,lor

3-4-5 0.1695 0.3363 3.032 0.3884 4.323

3-4-4 0.82869 2.97 3.862 2.592 4.379

3-4-3 7.45818 5.017 2.187 7.957 3.987

3-3-4 0.21485 0.5683 3.152 0.8568 4.828

3-3-3 0.46038 0.5271 3.428 0.86 5.349

3-3-2 2.417 3.597 4 - -

3-2-3 0.28774 0.8299 2.359 - -

3-2-2 0.34529 0.3751 1.646 - -

3-2-1 1.15095 2.173 2 - -

Table 4.5: Evaluated value for Isat calculation. The unit of Isat is mW/cm2. The minus

symbol means this result is not reasonable due to the bad fit quality when the intensity is low.
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4.2 Comparison between the experiment and the

simulation

We compare the experimental and simulation results at low intensity. As the

strength of each transition is sensitive to the intensity of both laser beams, we

simulate the spectrum with increasing 780 nm laser intensity and at fixed 1529 nm

laser intensity vice versa. Fig. (4.7) shows the power broadening effecting on the

peaks strength and widths.
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Figure 4.7: Spectra with increasing intensity of 780 nm laser. The legend includes I1 = 3.576

mW/cm2, I2 = 1.695 mW/cm2. The experimental result corresponds to the measurement at low

power: P780 ≈ 20 µW, P1529 ≈ 8.3 µW.

We find out that the experimental data can is in good agreement with simulation

when I780 = 5% I1 and I1529 = 5% I2. Fig. (4.8) shows this comparison.
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Figure 4.8: Comparison for low power case. The absorption spectrum produced by simulation

at I780 = 5% I1 and I1529 = 5% I2 is compared with the experimental data at P780 ≈ 20 µW,

P1529 = 8.3 µW.

However, some of the peaks are still not in perfect agreement with the experimental

data. A fact that can be attributed to the polarization effect as will be discussed

in the next section.

4.3 Polarization effect

It should be mentioned that the polarization of laser beam affects the spectrum.

Especially for transition 3-4-4 and 3-3-3, the strength of absorption (induced dipole

moment) turns to be different for π or σ± transitions. Fig. (4.9) shows how the

polarisation of 780 nm beam changes the spectroscopy.
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Figure 4.9: Polarisation changes the peaks height. Using a QWP in 780 nm path the

polarization of pump beam has been changed from linear to circular (blue). As one can see the

spectrum is noticeably different from the linear case (red line).

From this figure, we notice that the second peak in each group changes its height

obviously. This phenomenon is similar to what we have in the comparison between

the experiment and simulation. To capture this polarization effect one has to

develop a more detailed model including all Zeeman sub-levels with polarization-

sensitive Rabi frequencies. That leads to a density matrix of 72 × 72 (total number

of Zeeman sub-levels in 5S1/2 → 5P3/2 → 4D5/2 structure) for 85Rb and 48 × 48

for 87Rb. The Rabi frequency is given by

ΩmF ,mF ′ =

√
C2
mF ,mF ′/(2F + 1) · |〈J ||ε̂d||J ′〉| ·E

~
(4.2)

The decay rate ΓmF ,mF ′ and branching ratio BmF ,mF ′ for each transition between

two Zeeman sub-level |F,mF 〉 and |F ′,mF ′〉 can be written as

BmF ,mF ′ =
2J ′ + 1

2J + 1
·C2

mF ,mF ′ ·
1

2F ′ + 1
(4.3)

ΓmF ,mF ′ = BmF ,mF ′ ·Γ(J, J ′) (4.4)
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4 Two-photon spectroscopy

where C2
mF ,mF ′ is the specific Zeeman sub-level strength for the transition |F,mF 〉 →

|F ′,mF ′〉. The primed letters indicate excited state levels. Applying these Rabi

frequencies and decay rates into the optical Bloch equations, one can calculate the

accurate density matrix involving 72 or 48 Zeeman sub-levels.
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5 Summary and Outlook

In this thesis, we modeled a 12-level system (10-level system) for 85Rb (87Rb) hyper-

fine structure and analyse the two-photon spectroscopy with counter-propagating

lasers. By running the code we obtain the two-photon spectrum at certain intensity

and beam size. In chapter 3 we produced the D2 line with MATLAB simulation

and compared it with the Elecsus data. A new fitting method using faddeeva

function and lsqnonlin (a MATLAB built-in solver) is also introduced and tested

by the behavior of power broadening effect. An experimental setup is constituted

to investigate the two-photon spectroscopy. We compared the fit results using

Lorentz fit and Voigt fit by analysing the line broadening effect. Afterwards, the

experimental and simulation spectra at low intensity are compared with each other.

From this comparison, we found small difference in strengths of several transitions.

With the experiment with π and σ polarised laser light we believe that one rea-

son for this difference is the polarization of the light. The way to construct an

improved simulation model is given at the end of chapter 4. It takes the transition

strength of all Zeeman sub-levels to account and calculates the polarization-sensitive

susceptibility.

In this chapter, we will give two examples for further works using the MATLAB

simulation.

5.1 Time-dependent behaviour

As the pseudo steady-state simulation can not describe the waveguide geometry

and some other properties, we need to use the Monte-Carlo simulation to model the

atom-light interaction. In that simulation we assume that atoms are distributed

randomly in the vapour cell and consider the velocity distribution. The time-

dependence of population for each state is important for moving atoms in the

vicinity of devices [14].

To obtain the time-dependent population we need to solve the optical Bloch

equations for 12-level system in 85Rb and 10-level system in 87Rb, i.e. the extended

form of eq. (2.12) to (2.15). The figures show the time-dependence of the population

of each hyperfine level.
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Figure 5.1: Time-dependent population change with different detuning, the legends show the

Detuning of transition |5S1/2, F = 3〉 → |5P3/2, F
′ = 4〉. ρ depicts the population and the index

depicts the level. For instance, ρ11 is the population for |5S2/1, F = 2〉, and it is the (1,1)-element

in the density matrix.
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5.1 Time-dependent behaviour

The signals in Fig. (5.1) are generated by the time-dependent code, using the time

step dt = 0.05 ns and a time limit at 500 ns. The temperature is set to 20◦C. We

assume the atomic velocity to be zero to simplify this task and reduce the running

time for the MATLAB calculating process.

The curves in figure correspond to the population of each involved hyperfine energy

level. In our simulation, they are the diagonal matrix entries of the density matrix

in the multi-level scheme. At the beginning, the atoms are distributed in the two

ground states |5S1/2, F = 2〉 and |5S1/2, F = 3〉. The probabilities of occupancy of

each Zeeman sub-levels in these two states are equal. Therefore, at the beginning

the population of |5S1/2, F = 2〉 is 5/12 and of |5S1/2, F = 3〉 is 7/12. Once the

pump process starts, the population of the dark state |5S1/2, F = 2〉 increases

due to the optical pumping, while the population of |5S1/2, F = 3〉 decreases as

some atom are excited to the 5P3/2 levels. When the detuning is zero, the popu-

lation of the state |5P3/2, F
′ = 4〉 increase to around 2.5 ×10−3 after 500 ns. It

is higher than other population in 5P3/2 levels since for zero detuning, because

|5S1/2, F = 3〉 → |5P3/2, F
′ = 4〉 is the cyclic transition.

When the transition |5P3/2〉 → |4D5/2〉 is considered in the time-dependent simula-

tion, we obtain the population change of all 12 transitions for 85Rb, as Fig. (5.2) to

(5.4) show. We set intensity I780 = 0.1788 mW/cm2 and I1529 = 0.008475 mW/cm2.

The temperature is 40◦C.

Similar to the fig. (5.1), the population of the dark state (ρ11) increases over

time. In some figures, the curves are overlapped with each other, means no huge

differences between different Detuning settings. For 4D5/2 levels, the population of

4D5/2, F
′′ = 5, 4 are larger than others (especially for ∆ =0).

At zero detuning, the 780 nm laser pumps atom from |5S1/2, F = 3〉 to |5P3/2, F
′ =

4〉, and it results in the decrease in population ρ22 and correspondingly the increase

of population ρ66. The excitation of 1529 nm laser leads to the increase of population

ρ77, which depicts the population of the state |4D5/2, F
′′ = 5〉.
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Figure 5.2: Time-dependent population change of first four energy levels, the legends show

the Detuning of transition |5P3/2, F
′ = 4〉 → |4D3/2, F

′′ = 5〉
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show the Detuning of transition |5P3/2, F
′ = 4〉 → |4D3/2, F

′′ = 5〉
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Figure 5.4: Time-dependent population change of last four energy levels, the legends show

the Detuning of transition |5P3/2, F
′ = 4〉 → |4D3/2, F

′′ = 5〉
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5.2 Two-dimensional color map

5.2 Two-dimensional color map

A two-dimensional color map for two-photon spectroscopy is produced by setting

different detunings of transitions |5S1/2〉 → |5P3/2〉 and |5P3/2〉 → |4D5/2〉. The

map can be used for the determination of correct detuning in experiment. We

produce the map of the induced dipole moment. At low intensity the strength

of dipole moment is small enough to approximate the transmission map. In our

simulation, we scanned the 780 nm laser from -2 to 8 GHz and scanned the 1529

nm laser with a step of 15 MHz.
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Figure 5.5: Two-dimensional color maps. Penal a) shows the result of our simulation. In

x-axis, the detuning=0 corresponds to the transition |5S1/2, F = 3〉 → |5P3/2, F
′ = 4〉 of 85Rb,

while in y-axis the zero detuning corresponds to the transition |5P3/2, F = 4〉 → |4D5/2, F
′′ = 5〉

of 85Rb. The labels near the lines indicate that which ground state of which isotope the lines

correspond to. Penal c) shows the experimental result with a scanning range of 10 GHz for 780

nm laser and 800 MHz for 1529 nm laser. The axis tick labels are different because in experiment

the zero detuning was not chosen as the cyclic transition. Penal b) shows the experimental

results. The experimental data were offered by a group in IHFG (Institut für Halbleiteroptik und

Funktionelle Grenzflächen). In their research, the 1529 nm laser was scanned with 7 MHz steps.

Two laser lights were π-polarised.

The following figure shows the complete map from the experiment. By choosing

the detuning range appropriately, the zoom-in version, i.e. penal b) of Fig. (5.5) is

obtained.
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Figure 5.6: Complete two-dimensional color map from the experiment

Compared to our simulated color map, the slopes of simulation result and experiment

result are the same. A more quantitative comparison between our simulation and

experiment is the subject of further follow up studies.
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