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Abstract

The subject of this thesis is to characterize a UV transition in Dysprosium at

359 nm, which is an essential preliminary step for the realization of a predicted

magic wavelength for the clock transition at 1001 nm to the realize the goal of

single-site resolution using quantum gas microscope for ultracold Dy atoms in an

UV lattice.

This is achieved by performing laser spectroscopy on atomic Dysprosium in a high

vacuum chamber. The UV transition is a relatively weak transition and given that

it is predicted to involve a doubly excited state, the detection is done using shelving

spectroscopy. By obtaining a high resolution shelving spectrum, the isotopes shifts

and the excited state hyperfine constants are obtained. A King plot analysis is

performed to estimate the electronic nature of the excited state. An upper bound

for the natural linewidth of the transition is estimated from the decay of the excited

state atoms.
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1 Introduction

The curiosity to explore nature of mater around us has been an underlying driving

force for many research directions. In this quest, understanding new states of matter

has been of prime importance for not just intellectual purpose but to eventually

find possible applications as well. The experimental observation of Bose-Einstein

condensates (BECs) in 1995 [1, 2] and degenerate Fermi gases in 1999 [3] from

ultracold dilute gases of alkali atoms paved the way for exploring new states of

matter in the quantum regime. Due to a high degree of control of their internal and

external degrees of freedom offered by these quantum gases, they form an excellent

platform to study quantum effects. Some of the many fascinating phenomena

observed in these systems are matter-wave interference [4], vortices in a rotating

BEC [5] and superfluidity in strongly interacting Fermi gases [6]. Ultracold atoms

in periodic optical lattice potentials provide a platform to mimic solid state physics

and is one of the platforms to study quantum simulation [7]. Few examples are

the superfluid to Mott insulator transition [8] and the manifestation of Anderson

localization [9]. Combined with a quantum gas microscope, which allows imaging

and manipulation of single atoms, these systems form an exceptional tool to study

strongly correlated many-body physics on a single atom level [10]. Ultracold atoms

in optical lattices offer several advantages like the ability to address single-sites,

lower energy scales involved and the high degree of control. Ultracold quantum

gases are isolated sytems featuring a unique tool to extensively manipulate the

internal interactions in the system. The dominant interaction in quantum gases of

alkali atoms is short-range isotropic contact interaction, which can be tuned via

Feshbach resonances by means of an external magnetic field [11]. The ability to

control the interactions in quantum gases hold a key to explore novel quantum states.

The pioneering experiment on achieving a BEC of Chromium atoms in our lab

in 2004 [12] marked the beginning of a new field of dipolar quantum gases. The

relatively large magnetic dipole moment of Chromium gives rise to a non-vanishing

magnetic dipole dipole interaction (DDI) in the BEC [13], which is long-range and

anisotropic, in contrast to the short-range isotropic contact interaction. The DDI

in dipolar quantum gases is responsible for many novel phenomena. Some of the

manifestations of DDI that have been intially observed were magnetostriction [14],
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1 Introduction

d-wave collapse of the BEC [15] and demagnetization cooling [16]. With the arrival

of the quantum gases of Dysprosium [17] and Erbium [18], whose magnetic dipole

moment is larger, stronger manifestation of DDI became available. This resulted in

observing a long-lived novel state of matter namely, the dipolar quantum droplets,

stabilized by quantum fluctuations [19]. These droplets, as the name suggests

have properties closely related to a liquid like low compressibility and saturation

of peak density. Although the droplets posses a density which is several orders of

magnitude smaller than any liquid, it can also exhibit a self-bound behavior [20].

Another interesting manifestation of DDI in dipolar quantum gases is the existence

of a roton-maxon character of the excitation spectrum [21], which has been studied

experimentally [22]. Due to this roton-like dispersion relation, dipolar quantum

gases are a potential prospect to realize a supersolid, which is a quantum mechanical

state of matter featuring a solid-like periodic density modulation together with

dissipationless superfluid flow. Intial studies of the observed transient dipolar

supersolid properties [23–25] provided a starting point to later demonstrate the

inherent properties of density modulation and superfluid nature, which were studied

and verified by looking at interference effects and collective excitations [26–28].

The long-range anisotropic interaction offered by dipolar atoms combined with

the ability to image and manipulate single atoms in lattice potentials offered by a

quantum gas microscope is a powerful platform to study strongly correlated many-

body phenomena and exotic phases of matter. Hence a quantum gas microscope

for Dy is planned to be built, in which ultracold Dysprosium atoms will be trapped

in lattice potentials to achieve single-site addressability. In order to increase the

dipolar interaction [29], smaller lattice periods are desirable and hence a lattice in

the ultraviolet (UV) regime is chosen. A high numerical aperture (NA) microscope

objective, based on a solid-immersion lens approach is used to increase the NA of

the whole imaging system. But the estimated final optical resolution of this system

is not enough to achieve single-site resolution when imaging the atoms in the UV

lattice. Hence to achieve single-site resolution, a new super-resolution imaging

technique beyond the diffraction limit called the shelving technique, inspired by

biological imaging techniques like “Stochastic optical reconstruction microscopy”

(STORM), is planned. The idea of this shelving technique is to image the distri-

bution of the atoms in parts, after shelving the other atoms that are not being

imaged, to a long-lived excited state. Parts of the distribution of atoms that are

imaged are then reconstructed to achieve single-site resolution. For the shelving

technique, a long-lived excited clock state in Dysprosium at 1001 nm shall be

used [30]. However, for two different states of the atom, optical trapping induces

a shift in the atomic transition frequencies and introduces inhomogenity in the

2
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transition associated with the spatial profile of the trapping potential [31]. This

shift arises from the different frequency dependent ac polarizabilities of the two

different states. A solution to this problem is to find a magic wavelength at which

the ground state and the excited state have the same polarizability such that

effectively the shift can be neglected. Hence, a prerequisite to implement such an

imaging technique is a magic wavelength for the ground and excited state of the

trapped atoms. Theoretical calculations show a prospect for a magic wavelength

for the ground state and the excited state corresponding to the 1001 nm transition

in the UV regime around 360 nm. However, the first step to experimentally verify

this prediction is an extensive characterization of the ground state transition in the

UV regime near the expected magic wavelength. The next step is to then find the

optimal magic wavelength by extensive spectroscopy of the clock transition with

ultracold atoms.

In this thesis, we present the extensive characterization of the UV transition at

359 nm. The UV transition at 359 nm in Dy was reported to have a natural

linewidth of approximately 52 kHz [32] but there is no further characterization

of the transition. Theoretical estimations predict the excited state configuration

of the UV transition to be a doubly excited state [33], where transition between

the ground state and the excited state involves two electrons. This makes the

transition rather weak to detect using conventional spectroscopic techniques. Hence

we employ the so called shelving spectroscopy as an amplification scheme to detect

such a weak transition via a strong transition as the monitor [34,35]. We choose

the strong 421 nm transition in Dy, which has a natural linewidth of approximately

32 MHz [36] as the monitor to detect the UV transition. The work presented in

this thesis is organized as follows:

Chapter 2 gives an overview of the investigation system i.e. atomic Dysprosium.

Starting with the general properties of Dysprosium relevant to spectroscopy, like

vapor pressure and natural abundance, we move on to discuss the atomic energy

levels including the hyperfine structure, electronic configurations of the ground

state and the excited states corresponding to different transitions and the isotope

shifts for transitions between atomic levels for different isotopes.

Chapter 3 describes the theoretical aspects of atom light interaction necessary to

understand the results presented in this work. The discussion begins with a simple

model of two level atom and the effects of its interaction with laser light, described

using optical Bloch equations. We then describe the phenomenon of absorption,

the spectral line shape and line broadening effects. A discussion on the aspects

of laser spectroscopy including an overview of the conventional techniques used is
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1 Introduction

followed by estimating the response of shelving spectroscopy.

Chapter 4 describes the apparatus used to implement shelving spectroscopy. We

start with the characterization of the laser set-up and the calibration of the fre-

quency scan. To conclude, we discuss the spectroscopy set-up which includes a

high vacuum chamber with an atomic beam.

Chapter 5 finally focuses on characterization of the UV transition obtained by

shelving spectroscopy. Beginning with the emphasis on the need for shelving spec-

troscopy, we discuss the success of this method by obtaining a spectrum. As a part

of the characterization of the transition, we measure the isotope shifts and perform

a King plot analysis to estimate the electronic nature of the excited state. We also

extract the excited state hyperfine constants for both the fermionic isotopes and

the hyperfine trnasitions frequencies. We then discuss an estimate to the upper

bound of the natural linewidth of the transition and describe the effect of changing

control parameters on the shelving spectrum. Finally we discuss the uncertainties

in our measurements.

The thesis comes to an end by concluding the results and giving an outlook for the

improvement of the current experiment and future prospects in chapter 6.

4
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2 Dysprosium

This chapter describes relevant properties of the system under investigation i.e.

atomic Dysprosium, especially with regard to laser spectroscopy. The chapter starts

with a few general properties like the vapor pressure and isotopes of Dysprosium.

Using laser spectroscopy, we investigate transitions between atomic energy levels.

Section 2.2 starts with the description of the electronic configuration for the ground

state and the excited states corresponding to a few relevant transitions. Further,

we present the various contributions resulting in the hyperfine structure of the

energy levels. The hyperfine structure lifts the degeneracy of energy levels and

the transitions between the hyperfine states can be addressed using spectroscopy.

The chapter concludes with a discussion on the factors responsible for shifts in the

transition frequency for different isotopes and the King plot analysis. Isotope shift

contributions obtained using a King plot analysis contain information regarding

the electronic nature of the transition.

2.1 General properties

The element Dysprosium (Dy) has an atomic number of 66 and belongs to the

lanthanide series in the periodic table. Dy is solid at room temperature and a

melting point of T = 1412 ◦C [37]. The most abundant stable isotopes of Dy and

some of their properties are listed in Table 2.1.

One of the properties of interest in laser spectroscopy of atoms is the vapor pressure.

The vapor pressure P (T ) of Dy, as a function of temperature T , expressed in

millibar is given by the Antoine equation,

P (T ) = 10a−
b

c+T , (2.1)

where a,b,c are empirical constants, specific to an element [38]. For Dy, the empirical

constants are a = 6.92, b = 10169.5 and c = 36.94. The resulting vapor pressure as

a function of temperature is shown in Figure 2.1.

∣∣∣∣∣ 5



2 Dysprosium
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Figure 2.1: Vapor pressure of atomic Dy expressed as a function of temperature

Table 2.1: Properties of the most abundant stable isotopes of Dy [39].

Isotope Mass(amu) Natural abundance (%) Statistics
160Dy 159.93 2.34 boson
161Dy 160.93 18.91 fermion
162Dy 161.93 25.51 boson
166Dy 162.93 24.90 fermion
164Dy 163.93 28.18 boson

2.2 Atomic energy levels

2.2.1 Electronic configuration

From the theory of quantum mechanics, it is known that the energy levels of

an atom are quantized and the wavefunction of the electrons in an atom can be

described by appropriate quantum numbers. According to Madelung’s rule, Dy

has a ground state electronic configuration of [Xe]4f 106s2, and has an open 4f

shell. Using Hund’s rules, we can obtain the ground state configuration. The four

unpaired f shell electrons lead to an orbital angular momentum represented by

a quatum number L = 6 and the total electronic spin represented by a quantum

number S = 2. The orbital angular momentum can couple to the total spin

via magnetic interaction termed as spin-orbit coupling leading to a total angular

momentum represented by quanutm number J, responsible for the fine structure

6
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2.2 Atomic energy levels
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Figure 2.2: Level structure of Dy and a few relevant transitions. The levels with odd (even)

parity are shown in black (red). The linewidth of the transition is proportional to the thickness

of the represented lines

energy splitting of atomic levels [40]. For the ground state of Dy, the total angular

momentum is given by |J| = |L+ S| = 8. In the term symbol notation i.e. 2S+1LJ,

the electronic configuration of the ground state of Dy is written as 5I8.

Another important quantity is the parity of a state given by π = −1l, where l is the

azimuthal quantum number. Orbitals p,f,... with l = 1, 3, ... have an odd parity. An

atomic state has an odd parity if an odd number of electrons occupy these orbitals.

Ground state of Dy has an even parity. A large angular momentum of Dy results

in a high magnetic moment of µm = 9.93µB. Together with the element Terbium,

Dy has the highest magnetic moment of all stable elements. Dy exhibits a rich and

complex level structure due to the submerged shell configuration. A part of the

level structure of Dy with a few relevant transitions are shown in Figure 2.2 [41].

The characteristics of a few transition are listed below :

• The 421 nm transition is from the 4f 106s2(5I8) ground state to the 4f 10(5I8)6s6p(1Po
1)

excited state. The excited state has an odd parity and the transition is char-

∣∣∣∣∣ 7



2 Dysprosium

acterized by an outer shell transition as one 6s electron is excited to 6p

state. This is the strongest recorded cycling transition of atomic Dysprosium

with a linewidth Γ = 32.2 MHz and an upper limit to the branching ratio of

1 : 105 [42].

• The 684 nm transition is from 4f 106s2(5I8)→ 4f 9(6Ho)5d6s2(5Io
8). The excited

state has an odd parity and the transition is characterized by an inner shell

transition as one 4f electron is excited to 5d state. The linewidth was

measured as Γ = 95 kHz. The upper bound to the branching ratio was

measured to be 1 : 102. [43]

• The 1001 nm transition is from 4f 106s2(5I8) → 4f 9(6Ho)5d6s2(7Io
9). The

excited state has an odd parity and the transition is characterized by an inner

shell transition as one 4f electron is excited to 5d state. The linewidth was

theoretically predicted to be Γ = 53 Hz [30,44].

In this work, we are going to study a UV transition in Dy at λ = 358.946 nm [32]

in air. The Einstein A coefficient was measured to be 0.326 s−1 and hence the

linewidth Γ = A/2π ≈ 51.9 kHz [32].

• This is a 4f 106s2(5I8)→ 4f 9(6Ho)5d2(3P)(8Io)6s transition [45]1. The excited

state has an odd parity. This transition, unlike the two previously discussed

transitions, involves two electrons-one 4f electron and one 6s electron in the

ground state are involved in the transition to 5d2 excited state. Such an

excited state is the so-called doubly excited state and is a manifestation of the

electron-electron interaction [46–49]. A mean-field (Hartree-Fock) description

assumes that the electrons evolve independently in a central potential and

neglects the electron-electron interaction. In such a model, the independent-

particle quantum numbers prove inappropriate to characterize the doubly

excited states. Hence to treat the electron correlations, a description beyond

the mean-field is required. Doubly excited states were observed in a seminal

experiment by Madden and Codling (1963) [50] who observed a strong

asymmetric absorption profile of helium using synchrotron radiation. In the

case of helium, the energy of this doubly excited state is beyond the first

ionization limit and hence caused an ionization of the atom. Doubly excited

states in such a case are called autoionizing states. An understanding of the

origin of the celebrates asymmetric profile (known as Fano resonances) was

provided by Fano [51], who justified that it involves interference between a

discrete state and one belonging to a continuum [52]. Autoionizing states were

1NIST atomic spectra database https://www.nist.gov/pml/atomic-spectra-database

8
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2.2 Atomic energy levels

also discovered in the alkaline earth atoms by UV absorption spectroscopy,

using multi step laser excitation [53]. In the case of Dysprosium, the first

ionization potential is at 47901.7(6) cm−1 [54], which is well above the UV

transition at 27851.43 cm−1, and hence is not an autoionizing state. The

consequences on the spectral properties of such a transition to a doubly

excited state within the ionization limit is to be investigated.

2.2.2 Hyperfine structure of energy levels

The nucleus, owing to its internal structure has an angular momentum represented

by the quantum numer I, also called the nuclear spin. For Dy, unlike the bosonic

isotopes, the fermionic isotopes posses a nuclear spin of I = 5/2. The interaction

of the electronic charge density with the nuclear spin I results in a total angular

momentum, represented by a quantum number F = |I−J |, ..., |I+J |. This leads to

a further splitting of energy levels called the hyperfine splitting. Hyperfine splitting

has its origin in the interaction of higher order electromagnetic multipoles of the

nucleus, with the electromagnetic field produced by the electron at the nucleus. By

the symmetry arguments of parity and time-reversal, and by neglecting higher order

multipole moments we can confine our discussion to the two lowest orders of this

interaction. These are the interaction of the nuclear magnetic dipole moment and

the nuclear electric quadrupole moment with the electromagnetic field produced

by the electrons [55]. These interactions can be treated using perturbation theory

and the full calculations can be found in [55]. Here, we shall follow a qualitative

overview and discuss the results.

Magnetic dipole interaction

The interaction Hamiltonian of a nuclear magnetic moment µI interacting with the

magnetic field Bel produced by electrons is given by

HMD = −µI.Bel (2.2)

This assumes that µI and Bel are independent in their nature2. For an isolated

energy level with quantum number J , it follows that µI ∝ I and can be expressed

as

µI = gIµNI, (2.3)

2Analogous to electric dipole, we assume that µI depends only on the co-ordinates of the nucleus

and Bel depends only on the electronic co-ordinates.

∣∣∣∣∣ 9



2 Dysprosium

where, gI is the nuclear g factor and µN is the nuclear magneton. As an interesting

consequence, in contrast to the magnetic moment of electron3, nuclear magnetic

moment can be parallel or anti-parallel to I meaning that gI can be positive or

negative depending on how magnetic moments of protons and neutrons couple

inside the nucleus [56]. Within our assumptions, Bel ∝ J and hence the Hamiltonian

can be written as

HMD = A I · J, (2.4)

where A is the magnetic hyperfine coupling constant, A ∝ µI/I,Bel and is deter-

mined experimentally. The energy splitting can be calculated by estimating Bel

and by calculating the expectation value of the Hamiltonian and is given by,

∆EMD =
A

2
(F (F + 1)− I(I + 1)− J(J + 1)) = A K. (2.5)

This shows us that there is a splitting of the hyperfine levels labeled by F , which

lifts the (2F + 1)-fold degeneracy. The transitions between different F levels follow

the electric dipole selection rules i.e ∆F = 0,±1 & F = 0 9 F = 0. The magnetic

hyperfine constant A gives the splitting between the levels and it follows that,

∆EMD(F )−∆EMD(F − 1) = AF. (2.6)

This is the so called interval rule which states that the energy splitting between

adjacent levels is proportional to the larger F of the two levels.

So far, we have only considered a point sized nucleus. One consequence on the

hyperfine structure due to the finite size of nucleus is the so called Bohr-Weisskopf

effect [57], leading to a hyperfine anomaly. One would expect that, for two isotopes,

the ratio of A factors is given by the ratio of their respective µI/I. However, it is

observed that A1/A2 = (µI/I)1/(µI/I)2 (1 + ∆), where ∆ is the hyperfine structure

anomaly parameter for the isotopes 1 and 2 in the same energy level. For the

isotopes of Dy, assuming that there is no hyperfine anomaly in the ground state [58],

the anomaly parameter for the excited state can be approximated as

∆ ≈ Ae(163)

Ae(161)

Ag(161)

Ag(163)
− 1, (2.7)

where Ae and Ag represent the excited state and ground state constants respectively

of the corresponding isotope. These values are to be determined experimentally.

When the measured ratio of Ae values for the isotopes is close to the ratio of Ag

values, ∆ ≈ 0 and the anomaly is suppressed.

3µJ = −gJµBJ

10
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2.2 Atomic energy levels

Electric quadrupole interaction

The electrostatic interaction between a proton at position rn and an electron at

position re is given by,

HE =
−e2

4πε0|re − rn|
(2.8)

The total electrostatic interaction between the nucleus and the electron can be

obtained by summing up over all the protons. We have so far considered that

the nucleus is a point charge (rn � re) and hence has a spherically symmetric

charge distribution. Deviations from its spherical symmetry can be introduced by

attributing multipole electric moments to the nucleus. Assuming separation of the

coordinates4, the Hamiltonian can be expanded in powers of rn/re and is written in

terms of spherical harmonics. Calculating the expectation value of the Hamiltonian

gives the electric quadrupole energy splitting as

∆EEQ = B
3
2
K(2K + 1)− I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)
, (2.9)

where B has to be determined experimentally and

K =
1

2
(F (F + 1)− J(J + 1)− I(I + 1)) (2.10)

The total hyperfine splitting is therefore obtained by summing up both the contri-

butions and is given as

∆EHFS = ∆EMD + ∆EEQ = AK +B
3
2
K(2K + 1)− I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)
(2.11)

The dependence of the electric quadrupole interaction on F is different from that of

the magnetic dipole interaction. Hence the electric quadrupole interaction results in

a departure from the interval rule. The hyperfine structure for the ground state of

the two stable abundant fermionic isotopes of Dysprosium calculated using equation

2.11 and taking the values of Ag, Bg from [59], are shown in Figure 2.3.

The hyperfine structure for 161Dy in ground state is inverted compared to 163Dy

which is due to the fact that A has a negative sign [59] and this reveals information

regarding the internal structure of the nucleus as discussed according to equation

2.3.

4Assuming that electronic and nuclear coordinates are independent of each other by considering

re > rn.
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Figure 2.3: The ground state hyperfine structure for 163Dy and 161Dy

2.2.3 Isotope shift for transitions

So far, we have discussed the energy levels and their hyperfine structure. Following

the selection rules, transitions among the energy levels can be driven with the

appropriate incident radiation. It is observed that the transition frequency between

two energy levels is different for different isotopes of the element. This difference is

called the isotope shift for a transition between two energy levels. The isotope shift

is the difference in the transition frequency with respect to the transition frequency

of a reference isotope. The nuclear contribution to the isotope shit arises from

the finite mass and extended charge density distribution of the nucleus. Like in

the previous section, we are going to present a qualitative overview and the full

calculations can be found in [55,60].

Mass shift

In the Bohr model of an atom, assuming an infinitely heavy nucleus, the energy

of atomic levels is proportional to the mass of an electron me. The effects of a

nucleus with finite mass M , are accounted for, by introducing a reduced mass for

the electron m = meM
me+M

. This treatment should be extended to the Schrödinger

equation to account for the so called normal mass shift (NMS). For two isotopes

with atomic masses A1,A2 (A2 > A1), the frequency difference due to normal mass

shift for a transition i is givenby

∆νA2,A1

iNMS = MiNMS
A2 − A1

A1A2

, (2.12)

12
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2.2 Atomic energy levels

where the NMS factor

MiNMS = meνi/mp = νi/1836.15 (2.13)

and νi is the transition frequency. There is another contribution to the mass shift

coming from the correlation between the motion between pair of electrons called

the specific mass shift (SMS) given by

∆νA2,A1

i SMS = MiSMS
A2 − A1

A1A2

, (2.14)

where MiSMS is the SMS factor. The calculation of SMS is challenging, especially for

many-electron atoms as it involves correlation between motion of pair of electrons.

The success of the calculation depends on the accuracy of the many-electron wave

function i.e. for 66 electrons in Dy.

Field shift

Isotope shift arising from a variation of the charge density distribution of the

nucleus of different isotopes is called the field shift (FS). The measurement of field

shifts gives the information about the size and shape of a nucleus as a function of

its neutron number. The electric monopole interaction between nucleus and the

electron adopted for a finite sized nucleus gives a departure from pure Coulomb

interaction. As a probe for the nuclear electric charge distribution, the s-electron

density at the nucleus is evaluated5, which requires a relativistic approach. The

field shift can be calculated as

∆νA2,A1

iFS = Eif(Z)λA2,A1 , (2.15)

where Ei is the parameter related to the non-relativistic electron charge density at

the nucleus, f(Z) is the relativistic correction factor, and λA2,A1 is the parameter

related to the change in the mean-square nuclear charge radius. The calculation of

FS depends on the accuracy of the electronic charge distribution at the nucleus and

information regarding the difference in nuclear charge distributions for the isotopes.

The observed isotope shift is to a very good approximation, the sum of NMS, SMS

and FS.

King plot

As we have discussed, different contributions to the isotope shift contain intrinsic

information regarding the nuclear structure and its effects on the transition between

5Because the charge density of s-electrons in non-vanishing at the nucleus. FS can only be

observed for transitions involving electrons with non-vanishing charge density at the nucleus
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2 Dysprosium

Table 2.2: Isotope shits ∆νIS with respect to the transition of the 164Dy and hyperfine

coefficients A,B for the ground-state (G.S.) and for the excited-states (E.S.) of the 421 nm and

684 nm transition.

State Isotope A [MHz] B [MHz] νIS [MHz] Refs.
161Dy -116.2322 1091.5748

G.S. 163Dy 162.7543 1153.8684 [59]

161Dy -86.90 1747.4 1635

E.S. (421 nm) 163Dy 121.62 1844.9 616.3 [36]

161Dy -108.84 2251 -2099

E.S. (684 nm) 163Dy 152.56 2357 -823 [43]

the electronic states. The overall isotope shifts for a transition can be measured

using spectroscopy but, to investigate the various contributions to the measured

isotope shifts, we require the isotope shifts of another transition. For two transitions

i and j, it follows that [61]

∆νA2,A1

i =
Ei
Ej

(
∆νA2,A1

j −∆νA2,A1

jMS

)
+ ∆νA2,A1

iMS , (2.16)

where ∆νA2,A1

MS = ∆νA2,A1

NMS + ∆νA2,A1

SMS . This implies that for two different transitions

i and j, the plotted isotope shifts for pairs of isotopes A1 and A2 would be linear.

The slope of this line would give the ratio of field shift parameters Ei

Ej
and the

intercept allows to calculate the SMS. This method of estimating the SMS and

FS by plotting the measured isotopes shifts was introduced by W.H. King [62]

and such a plot is called King plot. To calculate the SMS of a transition, the

SMS of a reference transition should be known and typically the SMS is difficult

to calculate as it depends on the accuracy of the many-electron wave function.

However, the SMS can be estimated using a semi-emperical relation for a pure

ns2 → nsnp transition [61] as ∆νA2,A1

i SMS ≈ (0± 0.5)∆νA2,A1

iNMS . Bauche (1969) showed

using Hartree-Fock calculations that large negative SMS arise in transition of the

type 4fn − 4fn+1 [62].

For a ∆F = 0 transition between ground state g and excited state e, the frequency

difference 6 is given by

∆ν = (Ae − Ag)K + (Be −Bg)
3
2
K(2K + 1)− I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)
+ ∆νIS, (2.17)

6All the shifts are represented with respect to the same transition
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2.2 Atomic energy levels

where ∆νIS is the isotope shift for the transition to the excited state. The isotope

shifts and the hyperfine constants for two transitions are mentioned in Table 2.2.

Deviations of the King plot from linear behavior reveal a wealth of information.

The non-linear corrections to the King plot can arise from various factors such

as relativistic effects in isotope field shifts, the nuclear polarizability and many

body effects among others [63]. These corrections are within the framework of the

Standard Model of particle physics. Interestingly, nonlinearities can also arise from

the effect of a new hypothetical scalar boson and hence was proposed as a direction

towards study of new physics beyond the Standard Model [64].
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3 Atom-light interaction

In this chapter, we are going to discuss the theoretical aspects of atom-light

interaction in the context of spectroscopy and estimate the relevant quantities with

regard to the measurements presented later in this thesis. We start with a simple

two-level atom and describe the effects of its interaction with near-resonant light,

using optical Bloch equations. We then describe the collective response of several

atoms comprising an atomic medium to arrive at the phenomenon of absorption

and describe the spectral lineshape of absorption. Section 3.3 describes various

factors that contribute to the line broadening of a spectral profile. The next section

describes the aspects of implementing spectroscopy. Starting with single beam

methods and a brief description of Doppler-free methods, we focus on electron

shelving spectroscopy, which is demonstrated in this work as a powerful tool to

detect weak transitions. Shelving spectroscopy is an amplification scheme to detect

a weak transition using a strong transition as a monitor. To conclude, we describe

the general principle of shelving spectroscopy and give an estimate of the expected

spectroscopic signal using a similar formalism as that of a two-level atom.

3.1 Two level atom

3.1.1 Atom-light interaction Hamiltonian

In understanding the atom-light interaction, a semi-classical approach is adopted.

We consider a classical quasi-monochromatic light field interacting with a quantum

mechanically described atom. A further simplification is done when we consider

an atom with two discrete energy levels which can be justified as we only consider

near resonant transitions and hence the transitions to other levels can be neglected.

Assuming the incident radiation to be a coherent laser beam of the form

E(t) = εE0 cos(ωt) = ε
(
Egee

iωt + Eege
−iωt) , (3.1)

with amplitude E0, Ege = E∗eg = E0

2
, center angular frequency ω and polarization

vector ε. The Hamiltonian of a non-interacting and unperturbed single atom with
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3 Atom-light interaction

ωω0

Γ

∆

|g〉

|e〉

Figure 3.1: Atom with ground state |g〉 and excited state |e〉, with an energy difference of ~ω0

and with a decay rate of excited state as Γ, interacting with light of frequency ω, detuned by ∆.

a ground state |g〉 and excited state |e〉, with corresponding eigenenergies Eg = ~ωg
and Ee = ~ωe, is given by

HA = Eg |g〉 〈g|+ Ee |e〉 〈e| , (3.2)

such that HA |i〉 = Ei |i〉. Assuming that the ground state energy is zero, the bare

atomic Hamiltonian can be reduced to HA = ~ω0 |e〉 〈e| and in matrix from is

represented as,

HA =

(
0 0

0 ~ω0

)
. (3.3)

The Hamiltonian describing the interaction between light and the atom, in the

dipole approximation is given by [65]

Hint = −d ·E =

(
0 dgeEge

degEeg 0

)
, (3.4)

where d = e · r is the electric dipole moment1, given by electric charge e times the

position r. The total Hamiltonian of the atom-light system is then given by,

H = HA +Hint. (3.5)

The interaction between atom and light renders the interaction Hamiltonian off-

diagonal in the atomic states basis and hence the states |i〉 are no longer the

eigenstates of the coupled system.

1Without loss of generality, it is assumed that d || ε.

18
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3.1 Two level atom

3.1.2 Density matrix formalism

A pure quantum state is described by the state vector |ψ〉 =
∑

i ci |i〉, with complex

coefficients ci. To represent an atomic ensemble which is a statistical mixture of

different states, a density matrix formalism is needed. A mixed quantum state can

be represented by a density matrix ρ given by,

ρ =
∑
i,j

ρij |i〉 〈j| . (3.6)

The diagonal terms ρii referred to as populations, form a probability distribution

and quantify the probability of atom in state |i〉. The off-diagonal terms ρij referred

to as coherences, describe the superposition between the states |i〉 and |j〉. The

density matrix is Hermitian and under the condition that population is conserved,

Tr(ρ) = 1. For the case of a two level atom, the density matrix is written as

ρ =

(
ρgg ρge
ρeg ρee

)
(3.7)

3.1.3 Dynamics of the system

The time evolution of the density operator can be obtained from the Schrödinger

equation, i~∂t |ψ(t)〉 = H |ψ(t)〉 and is given by [65]

∂tρ(t) =
−i
~

[H, ρ(t)]. (3.8)

This is referred to as the von Neumann equation and it describes the coherent

evolution of the system. However, the atoms can undergo several decoherence

processes like collisions, self broadening and Doppler broadening among others

[66,67]. Spontaneous emission by the atoms is an important decoherence process

which gives a limit to the lifetime of the population in the excited state. In the

density matrix formalism, a dechorence process of the system can be included by

introducing the Lindblad master equation [68] given by

∂tρ(t) =
−i
~

[H, ρ(t)] + L(ρ(t)), (3.9)

where L(ρ(t)) is called the Lindblad operator. The Lindblad operator for a decay

between two states |i〉 and |j〉 at a decay rate Γij is expressed as

L(ρ) = −1

2

∑
i,j

Γij

(
C†ijCijρ+ ρC†ijCij

)
+
∑
i,j

ΓijCijρC
†
ij, (3.10)
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3 Atom-light interaction

where C†ij = |i〉 〈j| = Cji is the transition operator [69, 70]. This form can be

extended in a similar way to the dephasing processes [71]. For a two level atom, a

decay from excited state |e〉 to ground state |g〉 at a rate Γeg is represented by the

Lindblad operator as

L = Γeg

(
ρee −ρge

2

−ρeg
2
−ρee

)
. (3.11)

3.1.4 Rotating frame and rotating wave approximation

To evaluate the total Hamiltonian, a transformation into the co-rotating frame of

reference, rotating at the laser frequency ω is needed. This is done using a unitary

transformation

U = e−
iHLt

~ =

(
1 0

0 e−iωt

)
, (3.12)

where HL is the Hamiltonian describing the photons in the light field. The density

matrix is transformed as

σ = U †ρU

(
σgg σge
σeg σee

)
=

(
ρgg ρgee

−iωt

ρege
+iωt ρee

)
. (3.13)

The transformation for the Hamiltonian is obtained by expressing the time evolution

of the transformed density matrix [69] and is expressed as

∂tσ(t) =
−i
~

[HRF , σ] =
−i
~

[U †HU − i~U †∂tU, σ(t)]. (3.14)

The Hamiltonian in the rotating frame is given by

HRF = U †HU − i~U †∂tU =

(
0 −dge

2
(E0 + E∗0e

−2iωt)
−deg

2
(E0e

−2iωt + E∗0) ~(ω0 − ω)

)
.

(3.15)

In the rotating wave approximation, the terms describing an oscillation at twice the

light frequency ω are neglected as they average to zero on the interaction time scale.

The Hamiltonian in the rotating frame and using the rotating wave approximation

is then expressed as

HRWA =

(
0 Ωge

2
Ω∗

ge

2
−∆

)
, (3.16)

where Ωi,j = −dij ·Eij

~ is referred to as the Rabi frequency which quantifies the

strength of the atom-light coupling and ∆ = ω−ω0 is called the detuning. Moreover,

Ωij = Ω∗ji. To express the full master equation in the rotating frame, the Lindblad

20
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3.1 Two level atom
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Figure 3.2: Population in the excited state as a function of time in the units of Rabi frequency.

operator has to be transformed into rotating frame analogously [69]. The Lindblad

operator in the rotating frame is given by

L̃(σ) = Γeg

(
σee −σge

2

−σeg
2
−σee

)
. (3.17)

In the rotating frame of reference, the master equation written in its component

form is given by,

σ̇gg = − i
2

(Ωgeσeg − Ω∗geσge) + Γegσee (3.18)

σ̇ge = − i
2

(Ωgeσee − Ωgeσgg)− (
Γeg
2

+ i∆)σge (3.19)

σ̇eg = +
i

2
(Ω∗geσee − Ω∗geσgg)− (

Γeg
2
− i∆)σeg (3.20)

σ̇ee = +
i

2
(Ωgeσeg − Ω∗geσge)− Γegσee (3.21)

This set of equations are called the optical Bloch equations which describe a

transition in the two level atom caused by near-resonant light, and the subsequent

decay due to spontaneous emission. This is a set of three independent equations as,

σ̇ge = σ̇∗eg. Assuming that the atom is initially in ground state i.e σ(t ≤ 0) =

(
1 0

0 0

)
this set of eqations can be solved [56], leading to a general solution for the excited

state population σ22 is shown in Figure 3.2

In the case of no spontaneous decay, the population in the excited state shows un-

damped oscillation with the characteristic Rabi frequency called the Rabi oscilation.

Depending on the strength of the spontaneous decay, on shorter time scale, the
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3 Atom-light interaction

Rabi oscillation is damped. However, for times t� Γ−1, called the steady-state,

σ22 shows a negligible time dependence and the population reaches a constant value.

The population in the excited state, for the steady-state condition is given by

ρee =
s/2

1 + s
, (3.22)

where s = 2Ω2/Γ2

1+2∆2/Γ2 is called the saturation parameter and a strong driving field

with Ω → ∞ tends to equalize the populations in ground and excited state i.e

ρee → 1/2. As intensity is related to the Rabi frequency as I
Isat

= 2Ω2

Γ2 [56],on

resonance, the saturation intensity given by

Isat =
πhcΓ

3λ3
, (3.23)

is the minimum intensity that tends to equalize the population.

3.2 Absorption of light

So far we have considered the interaction of a single two-level atom with light. In

order to extend the discussion to the collective response of several atoms constituting

an atomic medium, like that of an atomic beam or an atomic vapor, we consider the

dielectric response of the medium [65,72]. The polarization density of an atomic

medium is given by

P = ε0χE = εε0χ
(
Egee

iωt + Eege
−iωt) , (3.24)

where χ is called the dielectric susceptibility. In a medium where the interactions

between atoms are negligible, the polarization density can also be derived from the

total dipole moment. This can be obtained by calculating the expectation value of

the dipole operator. In the density matrix formalism this can be written as

P = NTr(d · σ) = N(dege
−iωtσeg + dgee

iωtσge), (3.25)

where N is the density of atoms. By comparing the time dependent coefficients of

equation 3.24 and equation 3.25 and considering the steady state solution of σge,

the expression for a complex dielectric susceptibility [73] can be derived to be

χ =
Ndeg
ε0Eeg

σge =
Nd2

ε0~
(

iΓ/2 + ∆

∆2 + Γ2/4 + Ω2/2
), (3.26)

The real and imaginary part of the susceptibility, which are plotted in Figure 3.3,

have distinct interpretations and are related by Kramers-Kronig relations. The
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Figure 3.3: Real and Imaginary part of the susceptibility plotted for the case of steady state

and Γ = Ω.

real part exhibits a dispersive feature while the imaginary part gives a Lorentzian

absorption profile with full width at half maximum (FWHM) ∆ω of,

∆ω = Γ

√
1 +

2Ω2

Γ2
= Γ

√
1 +

I

Isat
. (3.27)

It is to be noted that the absorption profile of the medium has a characteristic

lineshape with a finite width called the linewidth. For I � Isat the FWHM is given

by the spontaneous decay rate (also called natural line width) of the transition

between the two levels of the atom.

3.3 Line broadening

3.3.1 Homogeneous broadening

In equation 3.11, we introduced a decay coming from the spontaneous emission

which affects the populations and the coherences like spontaneous emission. This, as

we have seen has a broadening effect on the spectral lineshape. There can also exist

other decoherence mechanisms which effect only the coherences like atom-atom

collisions. These can be phenomenologically introduced by writing the off-diagonal

decay terms in the density matrix (3.11) as γ = Γ/2 + γdp, where γdp descibes

dephasing processes like collisions [73]. Decoherence processes, which affect all

atoms alike lead to a homogeneous broadening of the spectral profile for example

pressure broadening arising from the collisions of atoms.
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Figure 3.4: (left)The absorption profile plotted for different intensities as a function of

detuning. As the intensity increases, the amplitude decreases and the FWHM increases. (right)

Each absorption profile is deliberately normalized to the same value to clearly look at the FWHM.

Power broadening

Power broadening is an example of homogeneous broadening, which we have already

come across in equation 3.27. It is to be noted that the linewidth of the absorption

profile increases with intensity and is plotted in Figure 3.4. Power broadening

occurs because, on resonance, saturation leads to a decrease in absorption but away

from resonance, saturation doesn’t lead to significant change in absorption. Hence

for a fixed density of atoms, this decrease in amplitude should be compenstaed by

an increase in the FWHM [56].

3.3.2 In-homogeneous broadening

Doppler broadening

Apart from the homogeneous case, where the effect on all atoms is identical, there

also exist broadening mechanisms which affect different classes of atoms in the

ensemble differently. An example is Doppler broadening. So far we have only

considered atoms at rest but in thermal equilibrium at temperature T , atoms can

have different velocities, which are describes by the thermal velocity distribution.

In the reference frame of the atom, moving with velocity v, the atoms experience a

shifted frequency ω as compared to the rest frame frequency ω0 given by

ω = ω0 +
−→
k · −→v , (3.28)

where k is the wave vector of the incident light. It is the component of velocity

along the direction of the wave vector that leads to a Doppler shift. The atoms

with velocity v, prefer to absorb the light with the detuning

∆ = ω − ω0 =
−→
k · −→v . (3.29)
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3.3 Line broadening

In 1D, the fraction of atoms with velocity in the range v to v + dv is given by the

1D Maxwell-Boltzmann distribution

f(vα)dvα =

√
m

2πkBT
exp

(
− mv2

α

2kBT

)
dvα α = x, y, z, (3.30)

By integrating over the solid angle, one can obtain the probability distribution of

atomic speeds given by

f(v)dv =

(
m

2πkBT

)3/2

4πv2 exp

(
− mv2

2kBT

)
dv (3.31)

The most probable speed vp =
√

2kBT
M

is where the probability distribution has a

maximum and is the speed most likely to be possessed by an atom. As the velocity

is related to the frequency by the relation 3.29, the Doppler broadened intensity

profile [56] can be written as,

I(ω) = I0 exp

(
−
(
c(ω − ω0)

ω0vp

)2
)
, (3.32)

which has a Gaussian line shape. The Doppler broadened line has a FWHM of

∆ωD = 2ω0

√
ln 2vp

c
. For a laser beam passing perpendicular to an ideally collimated

atomic beam there should not be a Doppler broadening of the spectral profile.

However for all practical reasons, the atomic beam has a divergence and this causes

a residual Doppler broadening. The residual Doppler width ∆ωr is given by

∆ωr
∆ωD

= sin θ, (3.33)

where θ is the half angle divergence of the atomic beam, ∆ωD is the Doppler width

along the direction of the atomic beam [74].

The combined line shape arising from different broadening effects which can not

be neglected, can be described by a convolution of the individual line shapes. For

example, the thermal broadening along with the finite lifetime of the excited state

is described by a convolution of the Doppler and the Lorentzian profiles given by,

I(ω) = C

∫ ∞
0

exp
(
−( c(ω−ω0)

ω0vp
)2
)

(ω − ω′)2 + (Γ
2
)2
dω′. (3.34)

This is called a Voigt profile.
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Transit time broadening

The natural linewidth gives a lower limit to the linewidth of the spectral profile

and hence it usually limits the time scale on which the absorption event happens.

This is true for atoms at rest. For atoms moving with a velocity v through a

beam of light with diameter d, there is a finite interaction time called the transit

time t = d/v. When t� Γ−1, spontaneous emission process limits the linewidth.

However, if t ∼ Γ−1, the transit time limits the linewidth as it determines the

interaction time of the atom with the laser beam [75]. This can be understood as

a direct consequence of the Heisenberg uncertainty principle ∆E∆t ≥ ~ for the

energy and the lifetime of the excited state. When the transit time is comparable to

the natural lifetime, this leads to a frequency broadened spectral profile dominated

by the transit time broadening.

3.4 Laser spectroscopy of atoms

In order to detect and study transitions between energy levels in atoms, laser

spectroscopy techniques are used to obtain the spectral profile. Typically, atoms are

illuminated with a laser beam and by detecting the light after interaction, details

regarding the transition that were previously discussed, can be inferred from the

spectral profile.

3.4.1 Single-beam methods

The simplest spectroscopic techniques involve a single incident laser beam on

the atoms. Two of the single-beam methods that are going to be discussed are

absorption and fluorescence spectroscopy [76].

Absorption spectroscopy

In absorption spectroscopy, a laser beam is incident on the atoms and the beam is

detected after its transmission through the atoms. Hence any absorption of light

by the atoms results in a decrease of the intensity of the transmitted beam. By

scanning the laser frequency over resonance, the spectral profile with its linewdith

can be mapped out. In our experiments we work with an atomic beam inside a

vacuum chamber. Hence due to the low pressure, pressure broadening is negligible.

The natural linewidth is typically the lower bound to the width of the spectral

profile. With an intensity of the incident beam less than the saturation intensity,

the dominant broadening mechanism is the Doppler broadening. Recalling equation

26
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Laser

Atoms Detector

Figure 3.5: A simple absorption spectroscopy set-up and an estimated Doppler broadened

profile for atoms with a transition at 421 nm and at a temperature of 1250◦C, corresponding to a

Doppler width ≈ 1.6 GHz.

3.29, it is only the component of velocity along the direction of the incident beam

that contributes to the Doppler broadening. In our experiments, the incident

beam is perpendicular to the atomic beam hence any residual Doppler broadening

that sets in, is due to the fact that the atomic beam is diverging. Absorption

spectroscopy could be a first step in detecting a transition but is limited as the

Doppler broadened profile can reveal very little about the transition.

Fluorescence spectroscopy

Atoms after being excited by the incident light, decay back to the ground state

by emitting light. In fluorescence spectroscopy, this emitted light is detected. By

scanning the laser frequency over resonance, the fluorescence light reveals an iden-

tical spectral profile like absorption, but inverted. As the atoms emit light in space

over all possible directions, the efficiency in detecting the light at a fixed position

is much less compared to absorption spectroscopy. Fluorescence spectroscopy is

also limited by Doppler broadening. However, detection of fluorescence light offers

a possibility of the direct measurement of the excited state lifetime. This can be

achieved by fixing the laser frequency on resonance and then switching off the

incident light. Hence, the fluorescence signal would decay with the characteristic

decay time corresponding to the lifetime of the excited state. This decay of the

fluorescence signal can be detected if the time required to switch off the laser beam,

toff and and the detector response time tres both are smaller than the lifetime i.e.

toff , tres � Γ−1.
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Figure 3.6: A simple fluorescence spectroscopy set-up

A Doppler-free spectroscopy that is not limited by Doppler broadening, can reveal

many more interesting features of the atoms like the isotope shifts and hyperfine

splitting. Spectroscopic techniques like saturation absorption spectroscopy, two-

photon spectroscopy and polarization spectroscopy among others, can be used to

reach the Doppler-free regime. These techniques typically use more than one laser

beam.

Very weak transitions (small Γ) can not be detected using these conventional

spectroscopy methods. Hence to investigate isotope shifts and hyperfine splitting

corresponding to such a weak transition, we need a different detection scheme.

Therefore, we use the so-called electron shelving spectroscopy in this work which is

discussed next.

3.4.2 Electron shelving spectroscopy

History

In the context of high resolution spectroscopy of a single atomic ion, to detect

quantum jumps, a narrow line transition (small Γ) was desired [34]. However, the

signal to noise ratio of such weak transition limits the resolution. Hans Dehmelt

proposed a double resonance scheme to detect such weak trasitions [34] and called

it “electron shelvin”. The idea proposed was as an amplification scheme to detect a

weak optical fluorescence from an ion’s metastable state using a strong resonance

fluorescence as a monitor [35,77].
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Γ13
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|1〉
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Ω32

Ω31

∆31

∆32

Figure 3.7: Three level atom in a V -configuration. The transitions between states |i〉 and |j〉
with decay rate Γij are driven with Rabi frequencies Ωij and are detuned with respect to the

atomic transition by ∆ij .

Principle

An estimate of the relative strength of a transition is its natural linewidth Γ. Larger

Γ means that the atom decays back faster to the ground state. The strength of

the transition in terms of the detected spectroscopic signal is given by the rate of

emission of photons by the excited atom, also called the scattering rate, given by

Rscat = Γρ22 = Γ
I/Isat

1 + I/Isat + 4∆2/Γ2
. (3.35)

When the laser saturates the transition, ρ22 → 1/2, an atom scatters about Γ/2

photons on average per second. Hence weak transitions scatter less photons and

can be difficult to detect.

The idea of electron shelving scheme can be adopted to detect a weak transition.

The core idea behind electron shelving method is to use a double resonance scheme

involving three energy levels and two transitions with very different lifetimes. The

three level scheme involving a ground state |3〉 and two excited states |1〉 with Γ13

and |2〉 with Γ23(Γ13 � Γ23) is shown in Figure 3.7.

Both transitions |3〉 → |1〉 and |3〉 → |2〉 are driven with frequencies ω31 and

ω32, the Rabi frequencies are Ω31 and Ω32 and the detunings are ∆31 and ∆32

respectively. The broad transition |3〉 → |1〉 is the one that is detected. When

the atoms are resonant only with the broad transition, they scatter a relatively
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large number of photons and results in an absorption (fluorescence) signal that

is easily detected. This broad transition is held on resonance and simultaneously,

the other weak transition |3〉 → |2〉 is scanned over resonance. When the atoms

are now resonant with the weak |3〉 → |2〉 transition, they can also be excited to

the state |2〉, which makes them unavailable for the |3〉 → |1〉 transition and hence

the atoms are “shelved”. When the atoms are shelved, they no longer scatter the

photons of the strong |3〉 → |1〉 transition. This facilitates the detection of one

absorbed photon of the weak transition by the absence of many photons of the

broad transition. Hence this serves as an amplification scheme to detect a weak

transition, with an amplification of approximately Γ13/Γ23, as the weak transition

causes the absence of the photons for a typical time of the order of Γ−1
23 .

Estimating the spectroscopic response

To characterize and estimate the spectroscopic response of the atoms to the

shelving scheme, we should consider the optical Bloch equations for a three level

system and the dynamic evolution of the system. For a three level system in the

V -configuration, the bare atomic Hamiltonian in basis of the three levels, is given

by

H0 =

~ω1 0 0

0 ~ω2 0

0 0 0

 , (3.36)

here the ground state energy ~ω3 is chosen to be zero. The transitions are driven

with two laser beams whose electric field component is described by

E31 =
1

2
E031

(
e−iω31t + e+iω31t

)
(3.37)

E32 =
1

2
E032

(
e−iω32t + e+iω32t

)
. (3.38)

The interaction Hamiltonian in the dipole approximation is given by

Hint =
1

2

 0 0 −d13E13

0 0 −d23E23

−d31E31 −d32E32 0

 , (3.39)

where Eij = E∗ij. In the rotating frame and rotating wave approximation, the total

Hamiltonian is given by

H =

−∆31 0 1
2
Ω∗31

0 −∆32
1
2
Ω∗32

1
2
Ω31

1
2
Ω32 0

 . (3.40)
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3.4 Laser spectroscopy of atoms

The detunings are expressed as ∆31 = ω1 − ω31 and ∆32 = ω2 − ω32. The Rabi

frequencies are expressed as Ωij = −dijEij/~ and satisfy the condition Ωij = Ω∗ji.

The Lindblad operator for the system in the density matrix formalism is, given by

L =

 −Γ13ρ11 −1
2
(Γ13 + Γ23)ρ12 −1

2
Γ13ρ13

−1
2
(Γ13 + Γ23)ρ21 −Γ23ρ22 −1

2
Γ23ρ23

−1
2
Γ13ρ31 −1

2
Γ23ρ32 Γ13ρ11 + (1− κ)Γ23ρ22

 . (3.41)

This Lindblad operator is derived from equation 3.10 except for a factor of κ. This

factor κ (0 ≤ κ ≤ 1) accounts for a fraction of the population of atoms in the

excited state |2〉 to decay back to the ground state. This is to account for the

branching ratio in the decay of excited state of the weak transition to the ground

state, as there can exist decay channels to other states. The dynamics of the system

is described using the Lindblad master equation 3.9 and the master equation in

the rotating frame of reference, written in its component form (assuming κ = 1) is

given by

σ̇11 = −Γ13σ11 −
i

2
Ω31(σ31 − σ13) (3.42)

σ̇12 = +

(
−Γ23

2
− Γ13

2
− i∆31 + i∆32

)
σ12 +

i

2
(−Ω31σ32 + Ω32σ13) (3.43)

σ̇13 =

(
−Γ13

2
− i∆31

)
σ13 −

i

2
Ω31(σ33 − σ11) +

i

2
Ω32σ12 (3.44)

σ̇21 =

(
−Γ13

2
− Γ23

2
+ i∆31 − i∆32

)
σ21 +

i

2
(Ω31σ23 − Ω32σ31) (3.45)

σ̇22 = −Γ23σ22 −
i

2
Ω32(σ32 − σ23) (3.46)

σ̇23 =

(
−Γ23

2
− i∆32

)
σ23 +

i

2
Ω31σ21 −

i

2
Ω32(σ33 − σ22) (3.47)

σ̇31 =

(
−Γ13

2
+ i∆31

)
σ31 −

i

2
Ω31(σ11 − σ33)− i

2
Ω32σ21 (3.48)

σ̇32 =

(
−Γ23

2
+ i∆32

)
σ32 −

i

2
Ω32(σ22 − σ33)− i

2
Ω31σ12 (3.49)

σ̇33 = Γ1,3σ11 −
i

2
Ω31(σ13 − σ31)− i

2
Ω32(σ23 − σ32) (3.50)

The consequence of introducing κ is that the population of atoms is not conserved

and there is a loss of the atoms as they decay from state |2〉 i.e. Tr(σ̇) = −κΓ23ρ22.

If κ = 0, then all the population in the excited state |2〉 decays to the ground
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3 Atom-light interaction

state |1〉. In such a case, the population is conserved i.e. Tr(σ̇) = 0. As discussed

in section 3.2, the absorption of light by an atomic medium is described by the

imaginary part of the linear susceptibility. The polarization density of the atomic

medium is given by

P = NTr(d · σ) = N(d31e
+iω31tσ13 + d32e

+iω32tσ23 + d13e
−iω31tσ31 + d23e

−iω32tσ32),

(3.51)

where N is the density of atoms. We also have

P = ε0χE = χ(ω31)
ε0E031

2

(
e+iω31t + e−iω31t

)
+ χ(ω32)

ε0E032

2

(
e+iω32t + e−iω32t

)
,

(3.52)

for a three-level atom, χ(ωij) describes the linear susceptibility of the atomic

medium to the light with frequency ωij . The broad transition from |3〉 → |1〉 is the

transition that is detected. Hence we are interested in χ(ω31), which is obtained

by equating the corresponding terms in the equation 3.51 and equation 3.52 and

expressed as

χ(ω31) =
2Nd31

ε0E031

σ13. (3.53)

To obtain the characteristic absorption of the |3〉 → |1〉 transition in the presence of

a shelving |3〉 → |2〉 transition, we need to solve the master equation to obtain σ13.

Assuming that the population is initially in the ground state i.e. σ33(t = 0) = 1,

for interaction time t ∼ Γ23, we need to obtain a general solution i.e. σ13(t) as a

result χ(ω31)→ χ(ω31, t) and hence to obtain the observed absorption signal, we

need to integrate the imaginary part of χ(ω31, t) for all the interaction time i.e.

Im[χ(ω31)] =
2Nd31

ε0E031

∫ t

0

Im[σ13(t)]dt (3.54)

Atoms in motion

So far we have described a three level system of an atom at rest. As discussed in

3.3.2, the atoms in motion with a Maxwell velocity distribution have a Doppler

broadened spectral profile. The motion of the atoms can be accounted for by

modifying the laser detuning. For a case of two co-propagating beams (along z

axis), perpendicular to the atomic beam, the detunigs take the form

δ31 = ∆31 + k1.vz = ∆31 + ∆D1 (3.55)

δ32 = ∆32 + k2.vz = ∆32 + ∆D2, (3.56)
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Figure 3.8: Estimated absorption profile for the shelving scheme plotted as function of the

UV detuning. For the bare |3〉 → |1〉 transition, the residual Doppler width is given by δωr ≈ 1.2

GHz. The interaction time is given by t ≈ 7.8 µs and the corresponding Rabi frequencies are

given by Ω31 ≈ 5.2 MHz, Ω32 ≈ 3.6 MHz. The obtained profile has a Lorentzian lineshape with a

FWHM ≈ 145 MHz.

where, vz is the z component of the velocity of the atoms, ki is the wave vector of

light and ∆i is the Doppler shift. It is to be noted that,

∆D2 =
k2

k1

∆D1. (3.57)

This equation tell us that the Doppler shift ∆D1 corresponding to the |3〉 → |1〉
transition is related to the Doppler shift ∆D2 corresponding to the |3〉 → |2〉
transition by a factor of their wave vector ratio. To account for Doppler shifts

in the optical Bloch equations, the detunings in the master equation ∆ij should

be replaced by δij. To obtain the contribution of all the atoms with different

velocities along the transverse direction, the density matrix elements should be

integrated over the distribution of velocities along the z axis. Assuming a Maxwell

distribution for the velocity of atoms along the transverse direction, the velocity

distribution would be centered around the most probable velocity, which in the

transverse direction is zero. Hence it is convenient to integrate over the absorption

intensity profile of the bare |3〉 → |1〉 transition (without shelving) which would

directly relate to the velocity distribution of the atomic beam along the transverse

direction. The absorption profile of the bare |3〉 → |1〉 transition take the form

I(δ31) = I01 exp

(
− δ2

31

2δω2
r

)
, (3.58)
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δωr is the residual Doppler width of the obtained spectrum of |3〉 → |1〉 transition.

The normalized absorption signal can be expressed as

I(δ32) = I0

∫∞
−∞ exp

(
−∆2

D1

2δω2
r

) ∫ t
0

Im[σ13(t,∆D1)]dt d∆D1∫∞
−∞ exp

(
−∆2

D1

2δω2
r

)
dω

(3.59)

The absorption profile for the shelving scheme involving the weak UV transition at

358.9 nm and the broad blue transition at 421 nm, numerically calculated using

the corresponding parameters set in the experiment and is shown in in Figure 3.8.
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4 Experimental apparatus

In this chapter, we are going to discuss the experimental tools required to perform

shelving spectroscopy, using the broad 421 nm (blue) transition as a monitor to

detect the UV transition at 359 nm. For performing spectroscopy, a precise knowl-

edege and characterization of various properties of the laser beams is essential. The

421 nm laser set-up and its characterization can be found in [78]. Here, we will

discuss the set-up and characterization of the UV laser. We first introduce the

general properties of Gaussian beams and discuss the measurements of relevant

quantities of the beam and its pointing stability. Section 4.2 describes the spec-

troscopy set-up. We start with the discussion on the set-up for preparing the laser

beams for spectroscopy using various optical components. As we want to perform

a frequency scan around the transition frequency, it is important to calibrate the

absolute frequency as well as the frequency scan range. This is realized by the

means of a wavemeter and an ultra-low expansion cavity. We then discuss about

the vacuum chamber where the spectroscopy is performed on an atomic beam.

Finally, we conclude with a discussion on the modulation techniques used to detect

a weak signal with high sensitivity.

4.1 Laser beam characterization

Gaussian beams

The lasers in our set-up produce beams that are best described by a Gaussian beam,

which is the fundamental transverse electromagnetic mode (TEM00). Gaussian

beams are obtained as a solution to the paraxial scalar Helmholtz equation [79, 80].

For a beam propagating along the z-axis, the electric field is represented as

E(r, z) = E0
w0

w(z)
exp

(
−
(

r

w(z)

)2

− ik
(
z − r

2R(z)

)
+ iζ(z)

)
, (4.1)
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where

w(z) = w0

√
1 +

(
z

zR

)2

(4.2)

is the Gaussian beam waist at distance z, defined as the radius where the intensity

corresponding to the electric field drops to 1/e2 of the maximum. The beam has a

minimum waist of w0 and the distance zR at which the waist increases to
√

2w0 is

called the Rayleigh length given by

zR =
πw2

0

λ
. (4.3)

The radius of curvature of the beam at distance z has the form

R(z) = z

(
1 +

(zR

2

)2
)
. (4.4)

The Gouy phase, which describes the fact that the field undergoes a π phase shift

when passing through the focus is given by

ζ(z) = arctan

(
z

zR

)
. (4.5)

The half-angle divergence of the beam is given by

θ = lim
z→∞

arctan

(
w(z)

z

)
' λ

πw0

, (4.6)

which in the far-field regime i.e. z � zR, takes the form

θ =
w0

zR

. (4.7)

In the far-field regime, the beam is well described by geometric optics and the

beam waist increases linearly. The numerical aperture (NA) of the Gaussian beam

is defined to be NA = n sin θ, where n is the refractive index. The intensity profile

of a Gaussian beam is given by

I(r, z) = I0

(
w0

w(z)

)2

exp

(
−
(

2r2

w(z)2

))
, (4.8)

for a fixed laser power P , the peak intensity I0 = 2P
πw2

0
. The laser beam quality can

be quantified by the M2 parameter given by

M2 =
π

λ
θ d, (4.9)
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4.1 Laser beam characterization

where d is the beam diameter at the focus. For a Gaussian beam, d = 2w0 and

M2 = 1. Typically, laser beams have M2 > 1. For measuring the M2 parameter,

we need to focus the beam and measure the waist at different positions. For a

focused beam, by introducing a M2 parameter, the expression for the waist takes

the form

w(z)2 = w2
0 +M4

(
λ

πw0

)2

(z − z0)2 (4.10)

By fitting the above equation to the data, the M2 parameter of the beam can

be extracted. The beam waist can be measured using a beam profiler which is a

conventional silicon CCD or CMOS detector. However, imaging UV light can be

challenging as the conventional silicon detectors have relatively little response in the

UV region and the UV beam can ablate the silicon detector, leading to a persistent

damage. This can cause a significant error in the beam waist measurement. Hence

we measure the beam waist using the so-called knife-edge method [81]. For a beam

propagating along the z direction, progressively clipped by a traversing knife-edge

along the x direction, the power that is transmitted onto the detector is given by

P (x) =

∫ ∞
−∞

P (y′)dy′
∫ x

−∞
P (x′)dx′ =

P0

2

[
1± erf

(√
2(x− x0)

w

)]
+ c. (4.11)

Here, P0 is the maximum power without clipping, x0 is the distance at which the

power is reduced to half of the maximum, c is an overall offset and erf(x) is the

standard error function. The measured waist using the knife-edge method for the

UV beam is shown in Figure 4.1. The knowledge of the waist of beams is essential

to determine the intensity of the beam which in-turn is useful for determining

the Rabi frequency of the beam using equation 2.2, which gives then strength of

the atom-light coupling. The M2 parameter was measured by focusing the UV

beam using a 200 mm lens and measuring the waist at different positions using the

knife-edge method and is shown in Figure 4.2. The extracted properties from the

fit along x and y directions are given in Table 4.1.

Table 4.1: Beam parameters obtained by from the M2 measurement

Direction M2 w0(µm) z0(cm) zR(cm)

x 1.013± 0.053 59± 3 9.7± 0.15 3.02± 0.26

y 1.214± 0.112 50± 5 11.54± 0.21 2.24± 0.43

The obtained M2 value is well within the specifications. The beam has a focus at

different distance along each of the direction which is known as astigmatism, which

can be partly corrected using cylindrical lenses.
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Figure 4.1: Knife-edge method for measuring the waist of the beam along x and y directions.

The beam is elliptical hence the measurement is done along both the transverse directions. By

fitting the data using equation 4.11, the waist was obtained to (377± 7) µm and (447± 15) µm

along x and y directions, respectively
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Figure 4.2: M2 measurement for the beam along x and y directions and the fit for data

Pointing stability

The pointing stability of a laser beam is a measure of the drift of the position of

the beam over time. Fluctuations in the beam position can arise due to mechanical

vibrations and thermal drifts. In the far-field regime, pointing stability is usually

quantified by an angle which specifies the tip or tilt of the laser beam from being

parallel. This is done by focusing the beam using a lens with a known focal length

f and measuring the position of the beam at the geometric focus over time. As

we are interested in the UV beam position and as a matter of convenience, the

measurements were done using a CCD camera. The position obtained by fitting
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Figure 4.3: Images of the beam were obtained using a CCD camera every 9 minutes for a

period of over 15 hours and by fitting a Gaussian function to the intensity of the obtained images,

the peak position of the beam on the CCD camera was obtained

a Gaussian profile for the intensity is shown in Figure 4.3. Assuming that the

angular deviation is small, from the standard deviation of the beam position σ,

using the relation θ = σ
f

the angular deviation of the beam was estimated to be

79 µrad and 58 µrad along the x and y directions, respectively. Figure 4.4 also

shows that the pointing fluctuations along both the directions are correlated. These

fluctuations can arise from the small random tilts of the optical components like

resonator mirrors. The correlation in the beam pointing fluctuations indicate that

the fluctuations arise from tilting of the same component.
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Figure 4.4: Correlation of the beam position along both the directions
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Figure 4.5: Schematic representation of the UV beam generation and preparing the beam for

performing spectroscopy.

4.2 Spectroscopy set-up

4.2.1 UV laser set-up and characterization

The UV beam is produced in a cascade process. A diode-pumped solid state

(DPSS) laser1 produces a continuous-wave (CW) beam witha power of a 18 W at

532 nm. This is used to pump a titanium-sapphire (Ti:Sa) laser2, which produces

an output beam with a power of 6 W at 724 nm. The Ti:Sa produces a widely

tunable wavelength output at high power. The output beam from the Ti:Sa laser is

frequency doubled using an external cavity doubler3 producing a UV beam of 1.9

W at 362 nm. By changing the Ti:Sa wavelength and aligning the doubling crystal,

the wavelength in the UV can be adjusted.

The 421 nm beam is also produced in a similar cascade process [76]. The Ti:Sa,

pumped by a 532 nm laser, produces a beam at 842 nm which is frequency doubled

using a home-built monolithic ring cavity with a frequency doubling crystal.

The power of the generated UV beam coming directly out of the doubling cavity

is controlled using a half-wave plate (λ/2) and a polarization beam splitter cube

(PBS)4. To correct for astigmatism and ellipticity of the beam, we use a cylindrical

lens pair, in the vertical direction. The set-up for spectroscopy is separated from

the laser-setup and and the UV light is transferred by a optical fiber5. It was found

that the efficiency of coupling the UV beam into the fiber is highly sensitive to

1Sprout-G (Lighthouse photonics)
2SolsTis (M squared lasers)
3SolsTiS ECD-X (M squared lasers)
4Optical components like mirrors, waveplates and PBS cubes are custom made for UV wavelength

by LENS-Optics, for 350− 360 nm. Lenses used are standard Thorlabs.
5Schäfter Kirchhoff PMC-E-360Si-2.3-NA012-3-APC.EC-200-P
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Figure 4.6: Diffraction efficiency of the AOM measured as a function of the radio frequency

at fixed radio frequency power.

the angle at which the beam is entering the fiber as the beam can not be perfectly

collimated. Hence a 1:1 telescope is included to be able to tune the position of the

minimum waist of the beam and increase the coupling efficiency. The beam is then

guided on to an acousto-optic modulator (AOM), which can modulate the laser

beam intensity and frequency using an radio frequency (RF) drive signal based on

the acousto-optic effect. For all the applications of AOM6 thorough this work, a

single-pass configuration with an AOM driver board with a 2 W amplifier is used.

The first order diffraction efficiency measured at a fixed radio frequency power

of 1.89 W and different radio frequencies is shown in Figure 4.6. The diffraction

efficiency was measured to be constant for an input laser beam power of upto 400

mW. AOM offers high temporal control of the laser beam. By using the light of

the first diffraction order, the light can be switched on and off by turning on and

off the RF power. This, as we will see later, is a very important tool for measuring

the lifetime of the excited state of the atomic transition. Furthermore, frequency

and amplitude can be modulated.

Frequency calibration

As discussed previously, the frequency of the laser needs to be scanned in order to

perform spectroscopy. Recalling equation 2.2, the Doppler width, which contributes

the largest to the linewidth, is of the order of a few GHz. Hence the required

frequency scan range should be able cover the entire Doppler broadened spectrum.

This can be achieved by scanning the frequency of the Ti:Sa. Stable and automatic

6Gooch & Housego I-M110-3C10BB-3-GH27
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re-locking of the Ti:Sa frequency is achieved with a Hänsch-Couillard locking scheme

and the frequency doubled beam follows the Ti:Sa frequency scan. A web interface

controls the fine wavelength tuning, frequency scan range and locking of the laser.

To characterize the absolute wavelength tuning, we use a wavemeter7 to measure

the frequency and tune the Ti:Sa to the desired wavelength8 and then scan around it.

For the relative calibration of the frequency scan, we make use of an ultra-low

expansion (ULE) cavity made up of a planar mirror and a mirror with a curvature of

500 mm, seperated by a distance d = 100.08 mm. The mirror spacers are made out

of ULE glass, which has a zero-crossing of the linear thermal expansion coefficient

around room temperature at 33 ◦C. The light from the Ti:Sa is coupled into

the ULE cavity and the leak light from the cavity is detected using a photodiode.

Standing waves as eigenmodes of the resonator can be detected only for constructive

interference condition depending on the frequency of the light. The free spectral

range (FSR) of the cavity is defined as the distance between two consecutive cavity

peaks i and i+ 1 given by

FSR = νi+1 − νi =
c

2d
, (4.12)

where c is the speed of light. The FSR of the cavity was measured to be 1.5 GHz [78].

The finesse of the cavity is defined as the ratio of the FSR and the full width at

half maximum (FWHM) of the cavity peak and is expressed as

F =
FSR

FWHM
=

π
√
R

1−R
. (4.13)

Here, R =
√
R1R2 is the combined reflectivity of both cavity mirrors.

Using the linear ramp signal applied to obtain the desired frequency scan and the

detected cavity transmission peaks, the frequency scan can be calibrated using

the known FSR of the cavity. This is shown in Figure 4.7. The cavity does not

only have the fundamental Gaussian mode labeled as 1 but also the higher order

Hermite-Gaussian modes labeled 2 and 3. The frequency scan range read out from

the control interface of the laser was 4 GHz. Using this read out scan range would

yield a FSR of 2.02(5) GHz, as opposed to the known FSR = 1.5 GHz of the cavity.

This implies that the total scan range, is smaller by approximately 35% than given

7TQ8325 Advantest
8the wavemeter reads out the wavelength in vacuum and then conversion of wavelength

from air to vacuum and vice versa is followed from http://www.astro.uu.se/valdwiki/

Air-to-vacuum%20conversion
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1

3

2

1

3

2

Figure 4.7: Calibration of the frequency scan using the FSR of the ULE cavity transmission

peaks. The frequency axis is obtained by calibrating the ramp signal using the FSR of the cavity.

Inset: A Gaussian fit for the fundamental peak of the cavity labeled as 1.

by the internal calibration of the laser. Therefore we calibrate the ramp signal

using the FSR of the cavity and obtain the frequency axis.

Another aspect concerning the frequency scan is its linearity. The measure of the

linear behavior of the frequency scan can be verified by comparing the FSR of higher

order modes of the cavity spread across the scan. The measured FSR of the peaks

2 and 3 are 1.480(3) GHz and 1.462(6) GHz, which indicates a non-linearity of the

scan with an average deviation of approximately 2.5%. However for the error in

the frequency measurements, the extreme case of maximum observed non-linearity

of about 3.3 % is used.

By fitting a Gaussian function to the fundamental cavity peak, the FWHM can

be extracted and the finesse of the cavity can be estimated. The FWHM of the

fundamental cavity peak was determined to be 2.1(6) MHz and the finesse was

estimated to be 714±205. The non-linearity in the scan range and the FWHM of

the cavity peaks give an estimate of the uncertainty in determining the absolute

frequency, which as we shall see later, is useful to state the confidence interval for

the isotope and hyperfine shifts.
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4.2.2 Shelving spectroscopy set-up

After the previous discussion regarding the UV laser set-up and its characterization,

we now discuss the shelving spectroscopy set-up, which is shown in Figure 4.8. For
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Figure 4.8: Schematic representation of the shelving spectroscopy set-up

the shelving spectroscopy, we use a broad transition as a monitor to detect a weak

transition. In our case, this broad transition is the 421 nm transition (blue) in

Dysprosium and we are going to detect the weak UV transition at 359 . Both the

beams are fiber coupled to the spectroscopy set-up. We then use a dichroic mirror

to overlap these beams and direct them towards the atoms.

To produce the atomic beam of Dy, we fill metallic Dy granulate in a molybdenum

crucible and place it in an effusion oven which heats up the Dy. The oven is operated

at 1250 ◦C and it has a shutter that can block the atomic beam. The oven is mounted

in a vacuum chamber, in which the pressure is pumped down to p ≈ 1× 10−8 mbar.

An ion pump is used to maintain the vacuum which is placed perpendicular to

the atoms and the light. The laser beams enter the vacuum chamber through a

viewport that provides optical access. The laser beams are perpendicular to the

atomic beam and are detected using a photo diode. Fluorescence of the atoms can

also be detected by using another viewport of the chamber.

Modulation technique

Here, we are going to discuss about a technique used to detect weak signals buried

in noise. Conventional amplification to detect a weak signal results in amplification

of the noise as well. A higher sensitivity of a spectroscopic signal can be achieved

by using modulation techniques, which involves modulating the frequency or the
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4.2 Spectroscopy set-up

amplitude of the light at a fixed frequency. The detected light is evaluated at

the modulation frequency. Typically, technical noise has a main contribution

at low frequencies and depends on frequency f as 1/f . Therefore, modulation

technique suppress this noise and other noise contributions that do not fall in the

detection frequency band centered around the modulation frequency [82]. This

greatly improves the signal-to-noise ratio (SNR). Modulation techniques involve

a phase-sensitive detection which is realized using a lock-in amplifier. A lock-in

amplifier is a signal processing instrument that performs a multiplication of the

modulated input signal with a reference signal at the same modulation frequency,

and then applies an adjustable low-pass filter to obtain the desired output. This

method isolates the signal at the frequency of interest from all other frequency

components. The modulated laser beam is sent through the atomic beam and is

detected with a photodiode connected to a lock-in amplifier9. The working of a

lock-in amplifier for the case of frequency and amplitude modulation is discussed

below.

Amplitude modulation

The intensity of the laser beam can modulated by modulating the AOM driving

power. Assuming a sinusoidal intensity of the detected laser beam produced by the

modulation, using a sinusoidal reference of the form m sin (ωmt), where ωm is the

modulation frequency and m is the modulation amplitude, the detected intensity

on the photodiode takes the form

I(t) = I0 sin (ωt+ φ). (4.14)

Here, ω is the frequency of the detected beam φ is the relative phase difference

between the input and the reference signal. The product of these two signals gives

beats at the sum and difference frequencies.

Ib =
I0

2
(cos [(ω − ωm) t+ φ]− cos [(ω + ωm) t+ φ]) . (4.15)

The lock-in amplifier evaluates the detection at ωm and hence the output is

Ib =
I0

2
(cos [φ]− cos [(2ωm) t+ φ]) . (4.16)

Using the adjustable low pass filter, the lock-in amplifier extracts the DC component

and by adjusting the phase φ, we can optimize the signal to get a direct measure

9LIA-MV-200-H (FEMTO)
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of the transmitted intensity. Hence by modulating the intensity of the beam at a

modulation frequency and by using a lock-in amplifier to perform a phase sensitive

detection, any unwanted signal oscillating at different frequencies and noise at

frequency other than ωm is eliminated.

Frequency modulation

The laser frequency ω is modulated using a sinusoidal reference signal of the

form m sin (ωmt), where ωm is the modulation frequency and m is the modulation

amplitude. This leads to a modulation of the detected intensity on the photodiode

taking the form

I(t) = I(ω +m sin (ωmt)). (4.17)

We can use a Taylor series expansion around ω to write the intensity as

I(ω+m sin (ωmt)) = I(ω)+(m sin (ωmt))
dI

dω
+

(
m2 sin2 (ωmt)

2!

d2I

dω2

)
+... (4.18)

It is assumed that the phase is adjusted to optimize the signal. In the case of

frequency modulation, the lock-in amplifier picks out the fundamental Fourier

component of this signal at ωm, hence the other frequency components are ne-

glected. For m� 1, the detected intensity is proportional to the first derivative

of the transmitted intensity at ω. This property to generate derivative signals in

spectroscopy, can be used to generate error signals, which in-turn can be used as a

feedback to stabilize the laser frequency.
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5 Shelving spectroscopy of the

359 nm transition

This chapter describes the extensive experimental characterization of the UV

transition by analyzing the obtained spectrum using the shelving method. The

chapter begins with a discussion on the need for shelving method to detect the

UV transition, where the characteristics of the UV transition are emphasized.

Next, we analyze and understand the obtained spectrum. After detecting the

transition, we progressively move towards characterization of the transition. First,

the isotope shifts of the transition are measured and then a King plot analysis is

performed to estimate the electronic nature of the transition. We then analyze

the hyperfine transitions of the fermionic isotopes to estimate the excited state

hyperfine constants. The lifetime of the excited state is estimated by observing

the decay of the atoms. To conclude, we discuss the dependence of the spectral

properties on various control parameters and possible sources of uncertainty in the

measurements.

5.1 Need for shelving spectroscopy

As discussed previously, we are going to perform shelving spectroscopy of the 359 nm

UV transition using the strong 421 nm (blue) transition as a monitor. The shelving

spectroscopy is employed because the UV transition could not be detected using

conventional single beam methods like absorption and fluorescence spectroscopy

even using an amplitude modulation technique. To confirm that this not due to

a problem in the spectroscopy set-up and to ensure that the vacuum chamber

and the atomic beam are functioning intact, the set-up was tested by performing

absorption spectroscopy of the blue transition first. As discussed in section 3.4.2,

spectroscopy of the blue transition gives an estimate of the residual Doppler width

and the transversal velocity distribution and hence is a prerequisite to perform

shelving spectroscopy.
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Figure 5.1: The absorption spectrum of the blue transition obtained at an oven temperature

of 1250 ◦C, in a configuration where the laser beam and the atom beam are perpendicular to

each other. The two distinct peaks are identified and by estimating the residual Doppler width,

information on the transverse velocity distribution can be obtained

An absorption spectrum of the blue transition at an oven temperature of 1250 ◦C,

with the atomic beam perpendicular to the laser beam, was obtained and is shown

in Figure 5.1. We see two distinct peaks and we identify the left peak with the

transition frequency corresponding to 164Dy. The frequncy difference between

these two peaks is approximately 930 MHz, which is close to the isotope shift of
162Dy with respect to 164Dy [36]. However, the other peak is an envelope, which

is dominated by the transition frequency corresponding to 162Dy and consists of

transitions involving other isotopes and the hyperfine structure.

As discussed in section 3.3.2, in a configuration where the atomic beam and the

laser beam are perpendicular, the divergence of the atomic beam causes a residual

Doppler width which is given by equation 3.33. The residual Doppler width ∆ωr is

smaller than the Doppler width ∆ωD = 2
√

log 2ω0
vp
c

for the case when the atomic

beam is along the direction of the laser beam, by a factor of sin θ [74]. By fitting

a Gaussian function to the left peak, a residual Doppler width ∆ωr = (1685±12)

MHz was obtained, whereas it is found that ∆ωD = 1562 MHz at 1250 ◦C. In our

case, the estimated residual Doppler width is larger and hence the estimation of

an angle using the residual Doppler width is not very useful. A better estimate

of the width can be obtained if the peaks can be resolved. In an effort to resolve

the peaks, the oven temperature was decreased but even at the lowest temperature

where we could identify a signal corresponding to absorption, at 1000◦C, we could

only observe two broad peaks.

During the spectroscopy measurements, over a period of time, a visible layer of Dy
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5.1 Need for shelving spectroscopy

got deposited from the atom beam on the viewport that is perpendicular to the

atom beam. By estimating the vertical and horizontal distances of the coating on

the viewport from the atom beam, the half angle of divergence was calculated to

be approximately 76◦, which would cause a residual Doppler width of roughly 1515

MHz.

A large divergence of the atomic beam can be attributed to the various reasons

concerning the design of the oven. Any large inhomogeneity in the heating of the

crucible or a large diameter of the oven aperture would result in an inhomogeneous

density profile of the atoms which could be a possible source for a large diver-

gence of the atomic beam. Though the atomic beam shows a large divergence, by

obtaining a spectral profile corresponding to the blue transition, we can be sure

that the whole spectroscopy set-up is working intact and we have performed the

prerequisite step for shelving spectroscopy. We can now investigate as to why the

UV transition could not be detected using simple conventional single beam methods.

To estimate the relative strength of the transition, we can compare the number of

photons scattered by the blue and the UV transition. Recalling equation 3.35,on an

average the number of photons scattered by an atom per second at the saturation

intensity is given by Γ/2. The saturation intensity given by equation 3.23, is

56.4 mW
cm2 and 0.15 mW

cm2 for the blue and UV transition respectively. The atoms,

when undergoing the blue transition, scatter about 1.6× 107 photons per second

whereas while undergoing the UV transition scatter about 2.6× 104 photons per

second at their respective saturation intensities. In the experiment, we have a

transit time of about 7.8 µs which leads to roughly 126 photons scattered for

the blue transition and less than 1 photon scattered for the UV transition on an

average at their corresponding saturation intensities. This makes it challenging

to detect the UV transition using single beam methods. Moreover, the branching

ratio of the UV transition remains unknown. Hence there is a possibility that

the the excited state atom might not decay to the ground state which leads to

lesser photons scattered. Another important aspect regarding the nature of this

UV transition that we have discussed in section 2.2.1 is the electronic nature of

the excited state. The UV transition is from the ground state to a doubly excite

state i.e. 4f 106s2(5I8)→ 4f 9(6Ho)5d2(3P)(8Io)6s. As this transition involves two

electrons, the transition strength is rather weak and makes it difficult to detect

with conventional spectroscopy techniques.

For all the reasons discussed above, we need a different technique to detect such

a transition and this is done using shelving spectroscopy, which is an elegant and

powerful amplification scheme to detect weak transitions using a strong transition.

From the discussion in section 3.4.2, shelving spectroscopy provides an amplification
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(b) Fluorescence

Figure 5.2: The normalized transmission and fluorescence signals of the monitored blue

transition held on a fixed frequency, obtained by scanning the frequency of UV beam around

resonance. The spectrum obtained is averaged over about 20 shots. The peaks (dips) in the

spectra correspond to the UV transitions of different isotopes and hyperfine levels.

of the order of Γ13/Γ23 ≈ 620, where Γ13 = 32.2 MHz and Γ23 = 51.9 kHz are

the natural linewidth of the broad blue transition and the narrow UV transition

respectively.

5.2 Shelving spectrum

Now that we have discussed the need and advantages of shelving spectroscopy, we

now discuss the spectrum obtained using shelving spectroscopy. The blue beam is

held on a fixed frequency around resonance and the absorption and fluorescence of

the blue transition is monitored while the frequency of UV beam is scanned over

resonance. To monitor absorption, the detected signal is the transmitted light after

interaction with the atomic beam. For the procedure of locking the frequency of the

blue beam refer [78]. As a preliminary result, the success of shelving spectroscopy

over conventional single beam methods is demonstrated as the spectrum of the UV

transition is obtained in both absorption and fluorescence which is shown in Figure

5.2.

The transmission(fluorescence) signal of the blue transition shows a peak (dip) as

the UV beam is scanned over resonance. When the atoms are resonant with the

UV transition, they are no longer available on resonance for the blue transition

due to the long lifetime of the UV excited state, as discussed in section 3.4.2. The

frequency is not calibrated using the ULE cavity and moreover, no modulation

technique was used. Hence for further discussion on the spectrum, we calibrate

the frequency using the ULE cavity and using a modulation scheme to improve
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5.2 Shelving spectrum

Table 5.1: Parameters used in experiment: Power (P), beam waist(σ), Intensity(I), Rabi

frequency(Ω)

beam P(mW) σ(mm) I(mW/cm2) Ω(MHz)

Blue 0.1 1.49 2.9 5.2

UV 53 1.55 1405.9 3.6
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Figure 5.3: The transmission of the blue beam obtained by fixing the blue frequency on

resonance corresponding to he transition to 164Dy. The transmission signal detection is improved

compared to the previous spectrum by using amplitude modulation technique and a lock-in

amplifier to detect. The data is fit with a model consisting of nine Lorentzian functions for the

nine detected peaks. The obtained spectrum is averaged over about 30 shots

the signal-to-noise ratio (SNR). The parameters used in obtaining the shelving

spectrum are shown in Table 5.1.

UV beam of a larger waist was used to increase the interaction time with the atoms

and a smaller blue beam was overlapped with the UV beam. A large power of

the UV beam was used to increase the intensity and hence the Rabi frequency,

which should lead to a stronger atom-light coupling and hence a better signal. An

amplitude modulation technique was implemented by chopping the UV beam by

modulating the radio frequency power used to drive the AOM at 23 kHz and a

lock-in amplifier was used to improve the SNR of the detected transmission of the

blue beam. The lock-in amplifier signal for the frequency of the blue beam fixed on

resonance with the transition frequency corresponding to 164Dy is shown in Figure

5.3. The lock-in amplifier signal increases the SNR of the transmission signal, so

that new peaks at other frequencies can be identified. The frequency is calibrated

using the Gaussian modes of the ULE cavity as discussed in section 4.2.1.
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5 Shelving spectroscopy of the 359 nm transition

Each peak corresponds to a UV transition from the ground state to the excited

state corresponding to one of the bosonic isotopes or the hyperfine levels of the

fermionic isotopes. By fitting the data to a sum of nine Lorentzian functions with

same width, the full width half maximum (FWHM) was estimated to be (96± 1)

MHz. The estimation of the width of the peak as discussed in section 3.4.2, is

obtain from the contribution of all the atoms with different velocities along the

transverse direction. On the other hand, the amplitude of a peak is proportional to

the density of atoms contributing to the specific transition and this in turn depends

on two factors. One is the natural abundance of the isotopes, which is fixed. The

other factor is due to the velocity distribution of atoms. Recalling 3.29, for the

case of perpendicular atomic and laser beams, the atoms with velocity component

vz along the beam, tend to absorb the light with the detuning ∆ = ω − ω0 = k|vz|.
As we monitor the blue beam, the velocity class that is addressed is selected by

the corresponding blue detuning. When the frequency of the blue beam ω is fixed

to a blue transition frequency ω0, atoms with vz = 0 are more probable to absorb

the blue beam. Along the transverse direction, vz = 0 is the most probable speed

and the highest probability distribution for the number of atoms and hence the

largest absorption signal. As the UV transition is detected by the absence of the

scattered photons of this blue absorption, this implies that the amplitude of the

observed UV peaks depend upon the detuning of the blue beam.

In the spectrum shown in Figure 5.3, as the blue frequency is held on resonance

with the transition frequency corresponding to 164Dy and as 164Dy is the most

abundant isotope, unambiguously the dominant transition in the shelving spectrum

would be that of the UV transition corresponding to 164Dy and we can clearly

assign it. The other peaks correspond to other isotopes and their realtive amplitude

is small and hence to determine the isotope shifts and the hyperfine splitting of the

UV transition, the blue beam should be detuned to the resonance frequencies of

each of the respective transitions.

5.3 Determination of isotope shifts and

hyperfine splitting

5.3.1 Determining the resonance blue frequency for

transition corresponding to 164Dy

As discussed in the previous section, to determine the isotope shifts and the

hyperfine splitting, we need to detune the blue beam frequency to the respective

transition with respect to the 164Dy transition. The isotope shifts and the hyperfine
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Figure 5.4: (A) The transmission of the blue beam fixed approximately on resonance, in the

presence of an additional retro-reflected UV beam. The signal shows two peaks with an overlap.

(B) The difference in the position of the two peaks as function of the detuning of the blue beam.

The error in determining the position of the peak is obtained by fitting a sum of 2 Lorentzain

peaks to the data. The difference does not go to zero but shows a minimum approximately at 32

MHz

splitting of the blue transition are known accurately [36]. Hence we need to

determine the absolute position of the resonant blue transition of 164Dy. To do

this, the blue beam is fixed approximately at the resonance frequency and the UV

beam after passing through the vacuum chamber is retro-reflected back onto the

atoms while detecting the blue transition by shelving method. The spectrum thus

obtained is shown in Figure 5.4. For a fixed detuning of the blue beam, the two

UV beam propagating anti-parallel to each other, give rise to two peaks for the

same transition frequency corresponding to 164Dy. On blue resonance, ideally, there

should only be a single peak. By accurately tuning the blue beam frequency, and

by observing the transmission signal, we can identify the resonance position of the

transition corresponding to 164Dy. However as we plot the difference in the position

of the peaks obtained by fitting the data to a Lorentzian function, it is observed

that the difference doesn’t go to zero but shows a minimum at approximately at

32 MHz. There could be a possible misalignment of the retro-reflected beam but

32 MHz is very large to be explained just due to misalignment. This is reminiscent

of an avoided crossing. However, to comment any further on this feature, involves

considering posssible interference effects between various interaction and transition

pathways between the 3 atomic levels and the 3 beams and we are not going to

discuss it here. The accurate resonance position could not be determined but it

was estimated approximately.

Using the known isotope shifts and the hyperfine splitting of the blue transition [36],
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5.3 Determination of isotope shifts and hyperfine splitting

the detuning of the blue beam can be varied to obtain a peak for the corresponding

UV transition. A spectrum thus obtained by scanning UV frequency around

resonance for each blue frequency detuning is shown in Figure 5.5.

There were 15 identified peaks1. The amplitudes and the positions of each of these

peaks for different blue detuning is shown in Figure 5.6 According to equation
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Figure 5.6: (A) The position of the 15 identified peaks on the UV frequency plotted as a

function of the blue detuning. A linear model it used to fit the data and the slope as expected is

given by the wavevector ratio. (B) The amplitudes of identified peaks plotted on a logarithmic

scale as a function of blue detuning. Across the blue detuning, the peaks trace out the velocity

distribution and hence the data is fit with a Gaussian function.

3.57, detuning of blue would correspond to a frequency shift in the position of

the peak by a factor of the ratio of the wavevectors. By fitting a linear model to

the position of the peaks, a slope of 0.88(3) was obtained which is close to the

wavevector ratio 0.85. As we are changing the blue detuning, the individual peaks

would show a residual Doppler broadening as a function of the blue detuning and

hence each of the peak is fit using a Gaussian function. This is not a very accurate

determination of the residual Doppler broadening as there are only few data points

and in some cases, there is insufficient data. However within this framework, the

residual Doppler broadening was estimated to be (789± 243 MHz).

With the shelving method, the expected linewidth is given by the linewidth of the

blue transition with the factor of the ratio of the wavevectors i.e. kUV

kB
ΓB ≈ 38 MHz.

However, the FWHM of the shelving spectrum, estimated by fitting a sum of

Lorentzian functions to all the UV transition peaks for each blue detuning, is

99(4) MHz. This can be due to the contribution to the peak coming from not only

1the amplitude and the position of the peaks were identified using the MATLAB function

”findpeaks” on the condition that the minimum prominence of a peak is greater than the noise
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the zero velocity class atoms but the whole velocity distribution and possible power

broadening effects.

5.3.2 General procedure for assigning a peak

Fifteen peaks were identified across the whole spectrum, which need to be assigned

to their respective transitions. In general, to assign a peak corresponding to the

UV transition from a specific isotope or a hyperfine level, the blue beam is fixed on

resonance to address the transition with the same level. When both the beams are

resonant to the transition involving the same isotope or the hyperfine level, the

amplitude of the peak corresponding to this transition should be large. However,

as we are scanning the UV frequency across resonance, due to the factor of natural

abundance, along the UV detuning of this spectrum, this peak might not have the

highest amplitude compared to the other peaks. Hence we observe the spectrum

across the blue resonance, to identify the maximum of this peak. For the sake of

convenience, the spectrum shown in Figure 5.5 is represented as a color plot in

Figure 5.7. To track the position of a peak across the blue detuning, the linear

fits to the position of the peaks shown in Figure 5.6(A) are plotted on top of the

spectrum. The calculated blue resonance frequency for a transition is indicated as

a marker on the y axis along which we have to identify the intensity maximum of

a peak and assign to the transition involving the same isotope or hyperfine level.

If there exists an identified peak, which is indicated by of the linear fit to the

position of peaks, and this peak exhibits a maximum in intensity, which is identified

by observing the amplitudes across the blue resonance, it implies that both the

beams are addressing the same zero velocity class ground state atoms and hence

the maximum in intensity across the blue frequency. The peak is then assigned to

the UV transition of the corresponding isotope or the hyperfine level that is being

addressed by the blue beam and this is finally indicated as a marker on the x axis.

To summarize the procedure used to assign a peak,

• The calculated blue resonance frequency corresponding to an isotope or a

hyperfine level is indicated, along which identified peaks have to be spotted.

• The identified peaks within the spectrum are traced using the linear fits to the

position of the peaks, then we look at the intensity across the blue detuning

to check if it has a maximum.

• If there exists a maximum in intensity across the blue detuning around the

marked resonance position, then we assign the peak to a UV transition to
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5.3 Determination of isotope shifts and hyperfine splitting

the corresponding isotope or hyperfine level and then finally this is indicated

on the UV frequency.

5.3.3 Assigning the bosonic isotope peaks

As a first step, it is relatively easy to assign the UV transition corresponding to the

three bosonic isotopes as they exhibit no hyperfine structure. Two of them 164Dy

and 162Dy have natural abundance more than any other isotope and hence will have

larger intensity. We have already assigned the UV transition corresponding to 164Dy

and the corresponding resonance position along the blue and UV frequency is fixed

to zero. The UV transition corresponding to 162Dy and 160Dy are assigned via the

general procedure outlined above. The blue resonance frequency corresponding to

each of the isotopes is indicated on the blue detuning. For the sake of convenience,

only linear fits to the position of three relevant peaks are shown in Figure 5.7. These

three peaks exhibit a maximum along the blue detuning around the respective

blue resonance frequency. Hence the UV transitions corresponding to 162Dy and
160Dy are assigned. The isotope shifts ∆νi−j = νi − νj, for the bosonic isotopes
162Dy and 160Dy of the UV transition are obtained as ∆ν164−162 = −414 MHz,

∆ν164−160 = −856 MHz and ∆ν162−160 = −442 MHz.

The outline of the further procedure to characterize the transition is as follows

• As three isotope shifts are measured, a King plot analysis is performed, which

is the first step from which the electronic nature of the transition is predicted

and the isotope shifts of the fermionic isotopes are calculated.

• We then identify atleast two hypefine transitions via the general procedure

outlined above, to be able to calculate the excited state hyperfine constants.

• Using the calculated hyperfine constants and the isotope shifts, the frequency

shifts for other hyperfine transitions are predicted. With the help of the

general procedure, we verify if there exists a peak that exhibits a maximum

and if it is unassigned yet.

If the predicted peak positions match a measured peak which exhibits a maximum

and which is yet unassigned, this would be a strong validation of the calculated

isotope shifts and the hyperfine constants. The success of the entire procedure can

be demonstrated if we can clearly assign a peak whose position is predicted.
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Figure 5.8: The isotope shifts for the bosonic isotopes normalized with difference in mass

number, of the UV transition plotted with a reference transition to obtain a King plot. The data

is fit with a linear model.

5.3.4 Isotope shifts and King plot analysis

As mentioned above,a King plot analysis for the measured isotope shifts for the

bosonic isotopes is performed using the isotope shifts corresponding to a reference

transition to obtain information on the electronic nature of the UV transition. As

discussed in section 2.2.3, the reference transition should correspond to a pure

(ns2 − nsnp) excite state. Hence the 456.509 nm transition is chosen and the

respective isotope shifts are shown in Table 5.3. The isotope shift is normalized

with the difference in mass numbers and a King plot is obtained and is shown

in Figure 5.8. From a linear fit to the data, the slope and the intercept were

obtained as 0.359 and −32.72 MHz respectively. The slope gives the ratio of field

shift (FS) parameters i.e. E359

E457
= 0.359. The normal mass shift (NMS) for two

isotopes ∆νA2,A1

iNMS can be analytically calculated using equation 2.13. The NMS was

calculated to be ∆ν164,162
457 NMS = 26.95 MHz and ∆ν164,162

359 NMS = 34.27 MHz for both the

transitions respectively. Using the empirical relation for the specific mass shift (SMS)

∆ν164,162
457 SMS = 7 MHz for the 457 nm transition [61] and the value of the intercept,

the SMS for the 359 nm transition was estimated to be ∆ν164,162
359 SMS = −87.52 MHz.

For the sake of comparison, the ratio of FS parameters and the SMS for two other

transitions in Dy at 421 nm and 684 nm, estimated using the same 457 nm transition

is shown in Table 5.2.

Large negative mass specific shifts (larger than the NMS) are indicative of a

transition involving a change in the f electron shell [61] and a positive ratio of
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5 Shelving spectroscopy of the 359 nm transition

Table 5.2: Comparision of the ratio of FS parameters and the SMS for i =421 nm, 684 nm

and 359 nm estimated using the j =457 nm reference transition

Transition i Ei

Ej
∆ν164,162

iSMS (MHz)

421 nm [36] 0.920 11

684 nm [43] -1.6 -534

359 nm 0.359 -88

Table 5.3: Isotope shifts for the 456.509 nm and the 358.946 nm transition expressed in MHz

Transition ∆ν164−163 ∆ν164−162 ∆ν164−161 ∆ν164−160

456.509 nm [61] -660 -971 -1744 -2020

358.946 nm -270 -414 -724 -856

the field shift parameters is indicative of a transition involving a change in the s

electron shell [36]. Conclusively, the 421 nm transition corresponds to a (4f 106s6p)

excited state and the 684 nm transition corresponds to a (4f 95d6s2) excited state.

The SMS for the 359 nm transition is large and negative whereas the ratio of the

field shift parameter is positive. Hence the excited state of this transition can not be

conclusively categorized under the know configurations. The theoretical calculations

on the prediction of the excited state configuration of the various transitions in

Dy was done by J.F. Wyart (1974) [33] in which the excited state of the 359 nm

transition was predicted to be doubly excited with the configuration 4f 95d26s. As

there do not exist any direct theoretical predictions on the trends of SMS and ratio

of FS parameters for a doubly excited state involving an f shell electron and a s

shell electron, we can not conclude but speculate that the results obtained above

are indicative of an 4f 95d26s excited state. From the King plot, using the linear fit,

the isotope shifts of the fermionic isotopes can now be determined. All the isotope

shifts for the UV transition are shown in Table 5.3.

.

5.3.5 Hyperfine structure

The fermionic isotopes exhibit a hyperfine structure, which can be addressed by

laser spectroscopy. As the UV transition is a ∆J = 0 (J = 8 → 8) transition,

the strongest transition between the hyperfine levels is expected to be that which

does not change the nuclear spin i.e. a ∆F = 0 transition. This would lead to six

hyperfine transitions for each isotope and a hence total of 12 peaks. The assignment

of all the 12 peaks, using the general procedure is not possible as these peaks are
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5.3 Determination of isotope shifts and hyperfine splitting

Table 5.4: Hyperfine coefficients A and B for the excited state of 359 nm transition

Isotope Ae (MHz) Be (MHz)
161Dy -101.608 803.224
163Dy 142.669 826.745

closely spaced and have a relatively small amplitude. The frequency shift for the

hyperfine transition is given by equation 2.17 as

∆ν = (Ae − Ag)K + (Be −Bg)
3
2
K(2K + 1)− I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)
+ ∆νIS, (5.1)

The A and B coefficients of the ground states of the isotopes are given in Table

2.2 and the isotope shifts for the UV transition are determined from the King plot

analysis. If the transition frequency corresponding to atleast two hyperfine states

of each fermionic isotopes can be assigned, then equation 2.17 can be solved for the

excited state coefficients Ae and Be, which can be used to calculate the position of

other peaks. This estimation can then be combined with the general assignment

procedure to confirm the position of the peak.

Two hyperfine transition peaks for 163Dy and 161Dy were assigned using the general

procedure similar to the bosonic isotopes and are shown in Figure 5.9 and Figure

5.12, which will be described in detail in the next section. Using the frequency

shifts of the assigned hyperfine levels, the ground state hyperfine constants and the

isotope shifts determined from the King plot analysis, the hyperfine coefficients Ae
and Be coefficients for the excited state were calculated and are shown in Table

5.4 . The ratio of ground state A and B coefficients are Ag(163)

Ag(161)
= −1.4003 and

Bg(163)

Bg(161)
= 1.0561. The calculated ratios for the excited state of the UV transition are

Ae(163)
Ae(161)

= −1.4041 and Be(163)
Be(161)

= 1.0293 are close to the ground state ratios hence

the hyperfine anomaly is negligible. Using the obtained excited state coefficients

Ae and Be, the position of the other peaks can be predicted. These calculated

positions of the peaks can be combined with the general assignment procedure

to look for the maximum of the peak across the blue detuning and confirm the

assignment of a peak.

Hyperfine structure of 163Dy

As there are transitions from the different hyperfine levels of each fermionic isotope,

the convention followed is such that a hyperfine transition peak indicated, for
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5.3 Determination of isotope shifts and hyperfine splitting

example as 163 5.5 means that the peak corresponds to a hyperfine transition of
163Dy from F = 5.5→ 5.5. The identified peaks with positions from lower to higher

higher frequency are indicated with increasing number.

As already mentioned first we need to clearly assign atleast two hyperfine transitions

as a starting point. For 163Dy, we were able to assign two hypefine transitions

corresponding to F = 7.5 and F = 8.5 via the general procedure and are shown

in Figure 5.9. The measured frequency shifts were used to calculate the excited

state hyperfine constants. The other hyperfine transitions were calculated using

equation 2.17 and marked on the spectrum to check for the maximum of a peak.

We now have a closer look at the spectrum. At the frequency corresponding to the

blue and the UV resonance, which is indicated by the intersection of horizontal

and vertical markers, both the transitions address the same ground state, where we

expect a maximum in intensity. If there is an identified peak, indicated by the fit

to the positions of the peaks, and this peak shows a maximum in intensity around

this peaks position then the hyperfine transition is identified.

The validation of this method to assign the peaks is justified as the calculated

position of the F = 5.5 peak corresponds clearly to the maximum of an observed

peak in the spectrum and hence this peak is assigned. This goes on to justify the

calculated hyperfine constants and the calculated isotope shifts

The calculated positions of other peaks corresponding to F = 6.5, 9.5, 10.5 do not

clearly indicate the maximum of a peak in the spectrum and hence we take a closer

look at the individual spectra at blue detunings around resonance. The UV peak

positions follow the ratio of wavevectors for the corresponding blue detuning. For

the sake of convenience, when refering to the 3D plots in the context of assignment

of hyperfine transitions, the UV frequency axis is adjusted accordingly with the

wavevector ratio for the peak positions across the blue detuning to be at the same

position. The peaks are numbered in the order of identification from low to high

UV frequency detuning.

For the case of F = 6.5 and F = 9.5, 10.5, this is shown in Figure 5.10 and Figure

5.11. In the case of F = 6.5, the calculated position is close the peak assigned to
160Dy, which could not be resolved within the framework of our set-up but the

possibility of existence of a peak can not be ruled out. In the case of F = 9.5, the

calculated position falls on the tail of the peak assigned to 164Dy. The asymmetry

in the spectral profile of 164Dy due to a relatively larger broadening towards the

tail, in the direction of the calculated position of the peak of the could be a possible

indication of the existence of a peak, which can not be resolved. There is an

unassigned peak close to the calculated position of F = 10.5. Although their

positions differ by about 100 MHz, this is assigned. This is justified as we will see

later in section 5.6 that this difference is within the experimental error.
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5 Shelving spectroscopy of the 359 nm transition

(a)

(b)

Figure 5.10: Shelving spectra for blue detunings around the resonance position corresponding

to F = 6.5 of 163Dy. For convince, the UV frequency positions are made to overlap using the

wave vector ratio and the corresponding blue detuning. The identified peaks are indicated with

the order of peak number idetified from low to high UV frequency detuning. Peak 4 is assigned

to F = 9.5 of 161Dy and peak 5 is assigned 160Dy. The calculated position is very close to an

assigned peak of 160Dy, which could not be resolved
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5.3 Determination of isotope shifts and hyperfine splitting

(a)

(b)

Figure 5.11: Shelving spectra for blue detunings around the resonance position corresponding

to F = 9.5, 10.5 of 163Dy. For convince, the UV frequency positions are made to overlap using the

wave vector ratio and the corresponding blue detuning. The identified peaks are indicated with

the order of peak number idetified from low to high UV frequency detuning. Peak 10 is assigned

to 164Dy but peak 11 remains unassigned and within the experimental error, discussed later, this

is assigned to F = 10.5 transition
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5.3 Determination of isotope shifts and hyperfine splitting

Hyperfine structure of 161Dy

The assignment for the hyperfine transitions of 161Dy is done using the same proce-

dure as 163Dy and is shown in Figure 5.12. As a first step, we could clearly assign

two hyperfine transitions corresponding to F = 9.5 and F = 10.5 using the outlined

general procedure, which forms a starting step. The measured frequencies shifts

were used to calculate the excited state hyperfine constants, which in turn were

used to predict the resonance frequencies of other peaks.

The calculated position of the F = 8.5 peak of 161Dy corresponds explicitly to the

maximum of an observed peak and hence this transition is now assigned. Once

again this provides additional justification to the calculated hyperfine constants

and the isotope shifts and stands as a validation of the entire procedure used to

assign the transitions.

To assign the peaks corresponding to F = 5.5, 6.5, 7.5, where there is no explicit

maximum of a peak that can be identified, as discussed previously, we have a closer

look at the individual spectra around the blue resonance. This is shown in Figure

5.13.

The peak corresponding to F = 5.5 is close to the peak assigned to F = 8.5 of
163Dy, same is the case with F = 6.5, which lies close peak assigned to 162Dy. These

peaks can not be resolved in the obtained spectrum. The peak corresponding to

F = 7.5, is at the position where no peak was identified and which shows an evident

asymmetry in the spectrum. Although an explicit maximum can not be identified,

the existence of a peak at the position can not be denied.

Apart from the hyperfine transitions that can not be resolved, there are a few

identified peaks that remain unassigned. Apart from the five most stable and

abundant isotopes, there exist two more isotopes 158Dy and 156Dy. By calculating

the isotope shift of these isotopes using the King plot, it can be verified if there are

if the unassigned transitions correspond to any of these isotopes. As we shall see

later, we can not assign any transition corresponding to 158Dy and 156Dy. Moreover,

an assumption was made that the most probable transitions are the ones that

do not change the nuclear spin i.e. ∆F = 0 transitions. Although less probable,

according to the dipole selection rules, ∆F = ±1 transitions are still possible. The

unassigned peaks also exhibit a very low amplitude compared to the other peaks

and hence there is a possibility that these peaks correspond to a transition that

changes the nuclear spin. By calculating the hyperfine splitting for ∆F = ±1

transitions for both the isotopes, we can check if these peaks can be assigned. The

most relevant transitions for both the isotopes are shown in Figure 5.14 and Figure

5.20. The convention is followed such that the respective transition is represented
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5 Shelving spectroscopy of the 359 nm transition

(a)

(b)

Figure 5.13: Shelving spectra for blue detunings around the resonance position corresponding

to F = 5.5, 6.5, 7.5 of 161Dy. For convince, the UV frequency positions are made to overlap using

the wave vector ratio and the corresponding blue detuning. The identified peaks are indicated

with the order of peak number idetified from low to high UV frequency detuning. The F = 5.5, 6.5

peaks remain unresolved. But the at the position of F = 7.5, there is a evidence for the existence

of a peak but it cannot be clearly assigned.
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5.3 Determination of isotope shifts and hyperfine splitting
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5 Shelving spectroscopy of the 359 nm transition
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5.3 Determination of isotope shifts and hyperfine splitting

by the ground state F value. For example, for 163Dy, the ∆F = −1 transitions

are shown and F = 7.5 means a transition from F = 7.5 → 6.5. Similarly, for
161Dy, the ∆F = +1 transitions are shown and F = 5.5 means a transition from

F = 5.5→ 6.5. The isotope shifts of 158Dy and 156Dy for the blue transitions are

−2868 MHz and −4300 respectively [36] and the calculated isotope shifts for the

UV transitions are indicated in the respective figures. As it can be clearly seen,

there is no identified peak around these positions.

In the case of ∆F = −1 transitions for 163Dy, the position fit of one of the identified

peaks is close to the F = 8.5 transition. For the case of ∆F = +1 transitions

for 161Dy, the position fit of one of the identified peaks is close to the F = 5.5

transition.

However, we cannot conclude anything about the assignment of these peaks as

there we cannot resolve the spectrum to find a maximum of these peaks. There

still exist two more observed peaks, that remain unassigned. As of now we cannot

speculate any other origin for the existence of these peaks.

Both the assigned and unresovled ∆F = 0 hyperfine transitions of the isotopes are

summarized in the Table 5.5.

The hyperfine structure of the excited state corresponding to the UV transition of
163Dy and 161Dy are shown in Figure 5.16.

From 2.6, the interval rule arising purely from the magnetic dipole contribution to

the hyperfine structure is given by ∆EMD(F )−∆EMD(F − 1) = AF . The electric

quadrupole interaction leads to a departure from the interval rule as discussed in

section 2.2.2. The deviation from the interval rule for 163Dy and 161Dy is summarized

in Table 5.6 and Table 5.7 respectively. The departure from the interval rule is a

measure of the electric quadrupole interaction constant B.

909 MHz

942 MHz
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  870 MHz

  751 MHz

161Dy

11/2

13/2

15/2
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21/2
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F

F

Figure 5.16: The hyperfine structure of the excited state corresponding to the UV transition

of 163Dy and 161Dy calculated from the measured hyperfine transition frequencies.
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5 Shelving spectroscopy of the 359 nm transition

Table 5.5: Frequency shifts in MHz for the hyperfine transitions for 163Dy and 161Dy. The

notation followed is ∆ν164−i = ν164 − νi

F ∆νF,164−163 (MHz) ∆νF,164−161 (MHz)

5.5 68 -1154

6.5 38 -970

7.5 -39 -795

8.5 -182 -647

9.5 -412 -542

10.5 -750 -502

Table 5.6: The departure from the interval rule for 163Dy quantified by the difference in the

the calculated frequency shift AF , as predicted by the interval rule and the measured frequency

shift for the hyperfine structure of the excited state and expressed.

Interval Measured (MHz) Calculated AeF (MHz) Departure (MHz)

6.5− 5.5 672 927 -255

7.5− 6.5 884 1070 -186

8.5− 7.5 1142 1213 -71

9.5− 8.5 1454 1355 98

10.5− 9.5 1824 1498 326

Table 5.7: The departure from the interval rule for 161Dy quantified by the difference in the

the calculated frequency shift AF , as predicted by the interval rule and the measured frequency

shift for the hyperfine structure of the excited state and expressed.

Interval Measured (MHz) Calculated AeF (MHz) Departure (MHz)

6.5− 5.5 -909 -660 -248

7.5− 6.5 -942 -762 -180

8.5− 7.5 -932 -864 -69

9.5− 8.5 -870 -965 95

10.5− 9.5 -751 -1067 315

5.4 Characterizing the dependence of the

spectrum on various parameters

Here, we are going to discuss the dependence of the properties of observed spectrum,

especially the FWHM, on various beam parameters and temperature. It is straight

forward to expect that the peak amplitude decreases on decreasing the blue or
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Figure 5.17: Dependence of the FWHM of the peak corresponding to 164Dy on the blue

beam power, at an oven temperature of 1250 ◦C and UV beam power of 50 mW.

the UV beam power and also on decreasing the temperature. For the blue beam

parameters used in the experiment, the intensity approaches the saturation intensity

for a beam power of about 1.94 mW. To have a signal with good SNR as well as

to not power broaden it, the blue beam power is chosen less than 1.94 mW. The

dependence of the FWHM of the transition corresponding to 164Dy on reducing

blue power is shown in Figure 5.17.

It is observed that the FWHM does not show a very strong dependence and

decreases on decreasing the blue power. Hence the blue beam power is fixed at

0.1 mW so that we have a good SNR and a low FWHM. Although the shelving

method is not a true Doppler free spectroscopy, it is definitely in the sub-Doppler

broadening regime. Hence we would expect a very weak dependence of the FWHM

of the spectrum on changing oven temperature and this is shown in Figure 5.18.

To check for any saturation effects on the shelving spectrum caused due to the UV

beam power, the FWHM and the amplitude of the 164Dy peak are shown in Figure

5.19. As there are no visible saturation effects on the peak amplitude and the

FWHM does not strongly depend on the UV beam power. The UV beam power is

chosen to be the maximum. One thing that has to be mentioned about the FWHM

estimated for all the cases is by fitting a Lorentzian function to the peak. However

for these measurements, the ULE cavity transmission peaks were not used for the

frequency calibration and hence it is more useful to look at the overall trend. Any

drifts in the center position of the UV frequency, would lead to significant errors as

the scan is considerably non-linear.
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Figure 5.18: Dependence of the FWHM of the peak corresponding to 164Dy on the temperature

of the oven at blue beam power of 0.5 mW and UV beam power of 50 mW.
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Figure 5.19: The dependence of the peak amplitude and the FWHM of the 164Dy transition

peak with changing UV power at a blue beam power of 0.5 mW.

5.5 Estimating the lifetime of the excited state

As discussed in section 5.3, using shelving method, the minimum FWHM that

can be achieved is approxiamtely 38 MHz. Hence, using the shelving method, the

natural linewidth of the transition or the lifetime τ of the excited state of the

UV transition cannot be directly measured. To obtain a direct estimate of the

lifetime of the excited state, we employ a different method. Apart from the blue

beam on resonance, the UV beam frequency instead of being scanned is now held

on resonance with the 164Dy transition. When the UV beam is switched off, the

atoms from the excited state corresponding to the UV transition decay and now

exclusively scatter only the blue beam. Hence the transmission signal would decay

because of the increased absorption of the blue beam. This decay of the atoms
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5.5 Estimating the lifetime of the excited state

Figure 5.20: Decay of the transmission signal obtained by chopping the light at 2 kHz. The

data is fit to an exponential to estimate the lifetime.

should be a direct measure of the lifetime of the excited state corresponding to the

UV transition. The UV beam is chopped using an AOM and the decay signal is

averaged over 10000 shots. The signal was recorded with an photodiode2 used at a

gain of 30 dB, which corresponds to a 3 dB bandwidth of f3 dB = 260 kHz leading

to a rise time of τr = 0.35
f3 dB

= 1.3µs . To account for the rise time of the photodiode

and the AOM, the chopped UV beam is detected as a reference simultaneously with

the same photodiode and with same bandwidth. By fitting an exponential to the

detected reference signal, a time constant of (τ1 = 1.200(64))µs was determined.

The obtained decay of the atoms is fit with a exponential containing two time

constants τ1 and τ2, where τ2 gives an estimate of the lifetime of the excited state

of the atoms, which was found to be 3.182(141). An upperbound of the natural

linewidth of the excited state of the UV transition was estimated to be 50± 2 kHz,

which is close to the value measured in [32].

In our case, the transit time, the AOM switching time and the rise time of the

photodiode, all are of the same order of the lifetime. It was ensured that the transit

time is greater than the lifetime and photodiode rise time and the AOM switching

time is smaller than the lifetime. The AOM rise time is included in the model,

which is only a rough estimation and cannot be extensively justified. Also, the AOM

rise time is estimated by observing the chopped UV beam whereas we detect the

blue beam. But the photodiode has a difference response for different wavelengths

and this is not included in our estimate. A better estimate can be obtained by

increasing the transit time and by decreasing the AOM and the photodiode rise

2PDA36A2 (Thorlabs)
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5 Shelving spectroscopy of the 359 nm transition

time.

5.6 Discussion of the uncertainty in the

measurements

Table 5.8: Isotope shifts with errors for the 358.946 nm transition

∆ν164−163 (MHz) ∆ν164−162 (MHz) ∆ν164−161 (MHz) ∆ν164−160 (MHz)

−270± 90 −414± 94 −724± 102 −856± 106

.

Table 5.9: Hyperfine shifts with errors for the 358.946 nm transition

F ∆νF,164−163 (MHz) ∆νF,164−161 (MHz)

5.5 68± 82 −1154± 144

6.5 38± 83 −970± 109

7.5 −39± 84 −795± 104

8.5 −182± 88 −647± 100

9.5 −412± 94 −542± 97

10.5 −750± 103 −502± 96

Table 5.10: The ratio of FS parameters and the SMS for i = 359 nm estimated using the

j =457 nm reference transition

Transition i Ei

Ej
∆ν164,162

iSMS (MHz)

359 nm 0.359± 0.271 −88± 117

Here, we are going to discuss the different sources of error and their contribution to

the measurement of frequency which is the primary quantity measured in this work.

The linewidth of the Ti:Sa beam was specified to be 100 kHz over 100µs. Each UV

frequency scan is for about one second. The integration of the laser linewidth to

this time is not straight forward but its contribution is expected to be small as the

observed width is larger. The error in frequency measurement of the blue beam is

from the determination of the resonance frequency position of the 164Dy transition,

because for the other positions we use the measured isotope shifts. An estimate on

the error in determination of the resonance frequency position is given as 2 MHz
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5.6 Discussion of the uncertainty in the measurements

Table 5.11: Hyperfine coefficients A and B for the excited state of 359 nm transition

Isotope Ae (MHz) Be (MHz)
161Dy −101.608± 171 803.224± 178
163Dy 142.669± 152 826.745± 158

coming from the largest uncertainty in determining the peak position by fitting it.

One of the largest contributions to the uncertainty in the UV frequency mea-

surements arises from the frequency scan of the Ti:Sa laser of the UV beam. As

discussed in section 4.2.1, we use the ULE cavity transmission peaks for the cali-

bration of the frequency. The uncertainty in identifying the cavity peak positions

can be estimated by the FWHM of the peaks which was about 2 MHz. The drifts

of the center frequency position over time are compensated by ULE cavity peaks.

However the non-linearity of the scan can only be estimated but not compensated

using the ULE cavity. Across the scans a maximum non-linearity of about 3.3% was

estimated and this is so far the largest contributor to the error in frequency. Hence

fixing the error on the absolute frequency from the non-linearity of the scan, the

error for the shifts can be estimated using simple error propagation. The isotope

shifts with respect to the 164Dy transitions frequency, along with the error are

shown in Table 5.8. The the frequency shifts for hyperfine structure with respect to
164Dy with error are shown in Table 5.9. Due to the error in the determination of

isotope shifts, the King plot would have a corresponding error. The uncertainty in

the determinig the ratio of field shift parameters and the specific mass shift is shown

in Table 5.10. By simple error prorogation, the estimated error in determining the

excited state hyerfine coefficients is summarized in Table 5.11.
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6 Conclusion and Outlook

In the work presented as a part of this thesis, a powerful spectroscopic technique

to detect weak transitions by means of a strong transition was demonstrated by

extensive characterization of a UV transition at 359 nm in Dy atoms. This is an

essential preliminary step for the realization of a predicted magic wavelength for

the clock transition at 1001 nm to the realize the goal of single-site resolution using

quantum gas microscope for ultracold Dy atoms in an UV lattice.

The success of the shelving method over conventional spectroscopic techniques

to detect a weak transition was demonstrated by obtaining the UV spectrum in

absorption and fluorescence. Using a modulation technique, a high resolution

UV spectrum was obtained. By measuring the isotope shifts shown in Table

6.1, a King plot analysis was performed using a reference transition to obtain

the ratio of field shift parameters and the specific mass shift. A small positive

field shift parameter ratio of (0.359 ± 0.271) and a large negative specific mass

shift of (−88± 117) MHz were obtained, which did not conclusively indicate to a

previously know excited state configuration in Dy. This could be a hint towards

the theoretically predicted doubly excited state, well within the ionization limit, for

the UV transition from 4f 106s2 → 4f 95d26s. From the assignment of the hyperfine

transitions, the hyperfine constants for the excited state of the fermionic isotopes

were determined and are shown in Table 6.2. All the frequency measurements are

presented with a conservative error estimate coming predominantly from the non-

linearity of the frequency scan. By measuring the decay of the excited state atoms,

the upper bound of the natural linewidth of the transition was estimated to be

(50±2) kHz. To the best of our knowledge, this is the first extensive characterization

of the UV transition in Dy at 359 nm including measurements on the isotope shifts

and the excited state hyperfine constants.

Table 6.1: Isotope shifts with errors for the 358.946 nm transition

∆ν164−163 (MHz) ∆ν164−162 (MHz) ∆ν164−161 (MHz) ∆ν164−160 (MHz)

−270± 90 −414± 94 −724± 102 −856± 106
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6 Conclusion and Outlook

Table 6.2: Hyperfine coefficients A and B for the excited state of 359 nm transition

Isotope Ae (MHz) Be (MHz)
161Dy −101.608± 171 803.224± 178
163Dy 142.669± 152 826.745± 158

Further improvements can be done by correcting the non-linearity of the frequency

scan, which would decrease the error in the frequency measurements. In order

to have an atomic beam with smaller divergence, the mechanical design of the

collimation scheme using apertures can be improved upon. This would reduce the

residual Doppler broadening and should improve the assignment procedure of the

peaks.

It would be interesting to explore the theoretical aspects of such doubly excited

states, to understand its origin and the consequences on the spectral properties.

This is because the theory in the case of auto-ionization states explains the ob-

served highly asymmetric absorption profiles in terms of interference between the

autoionization state and a continuum [51] [52]. In our case, as the excited state of

the UV transition is a doubly excited state within the ionization limit, it would be

interesting to compare the spectral properties to that of an autoionization state or

to a singly excited state. A better understanding of such an excited state can be

helpful in predicting the trends in ratio of field shift parameters and specific mass

shift which are the benchmarks to describe the electronic nature of the excited

state.

As we have already seen by adding a retro-reflected UV beam, the spectrum showed

a doublet which exhibits an avoided crossing kind of a feature across the blue reso-

nance, of about 32 MHz much larger than the Rabi frequencies of the blue beams.

A further investigation on the origin of this feature by verifying the dependence of

the minimum on the Rabi frequency can be helpful in understanding the origin of

such a feature. A similar spectrum was obtained for an additional retro-reflected

UV beam and by scanning the UV frequency and is shown in Figure 6.1. Such a

feature has to be investigated in detail considering any possible interference effects.

An improved spectrum obtained by frequency modulation of such a feature, which

shows a derivative signal can be used to lock the laser.

Furthermore, there are reportedly two more UV transitions around the region at

362 nm and 370 nm [32], both of which can be addressed using our UV laser system

and hence can be investigated. The 362 nm transition is two times weaker than

the 359 nm transition but thanks to shelving method which gives an amplification

of the signal inversely proportional to the natural linewidth of the transition, the
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(a) (b)

Figure 6.1: Transition corresponding to 164Dy upon adding a retro-reflected UV beam by (A)

amplitude modulation and (B) frequency modulation

transition could well be detected. The 370 nm transition is a very broad transition

comparable to the blue transition in Dy. This is also an interesting transition to

probe because theoretical predictions disagree with existence of this transition as it

would cause significant change in the polarizability of 164Dy at 1064 nm1 and does

not appear in any neighboring lanthanide [83].

In the far future, an UV lattice is planned to be implemented for ultracold Dy

atoms at the magic wavelength. For this, the first step would be to characterize the

other ground state transitions in the UV region followed by the characterization

of the 1001 nm transition. The next step would be to find the optimal magic

wavelength by performing extensive polarizability measurements using the UV and

the 1001 nm beams which would then be used to characterize the proposed imaging

for single-site resolution using a quantum gas microscope.

1Maxence Lepers [private communication]
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and Tilman Pfau. Self-bound droplets of a dilute magnetic quantum liquid.

Nature, 539:259 EP –, Nov 2016.

84

∣∣∣∣∣



Bibliography

[21] L. Santos, G. V. Shlyapnikov, and M. Lewenstein. Roton-maxon spectrum

and stability of trapped dipolar bose-einstein condensates. Phys. Rev. Lett.,

90:250403, Jun 2003.

[22] L. Chomaz, R. M. W. van Bijnen, D. Petter, G. Faraoni, S. Baier, J. H. Becher,
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