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Abstract
In this thesis, we investigate macroscopic many-body quantum states of ultracold bosons
with dipolar interaction both experimentally and theoretically. We thereby focus on a
novel state of matter, the dipolar quantum droplet, that exists due to the interplay of
attractive binary interactions and repulsive quantum fluctuations.
In this context, we predict groundstates with multiple droplets. These are promising
candidates for the realization of a supersolid phase merging both superfluidity and a
density modulation, that resembles the solid phase. Furthermore, we extend our studies
on single droplets and measure its collective excitations. We also investigate the immersion
of a fermionic impurity to probe the bosonic quantum droplet and predict a novel kind
of droplet for an inverted dipolar interaction.
In addition, we study the superfluid properties of a Bose-Einstein condensate with dipolar
interactions featuring an anisotropic excitation spectrum. Based on this effect, we measure
an anisotropy of the critical velocity for the breakdown of superfluidity in the gas and
predict the deformation of vortex cores and striped vortex lattices in rotating gases for
our experimental parameters.
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• M. Schmitt, M. Wenzel, F. Böttcher, I. Ferrier-Barbut, and T. Pfau, Self-bound
droplets of a dilute magnetic quantum liquid, Nature 539, 259 (2016).

• I. Ferrier-Barbut, M. Schmitt, M. Wenzel, H. Kadau, and T. Pfau, Liquid quantum
droplets of ultracold magnetic atoms, J. Phys. B. 49, 214004 (2016).

• M. Wenzel, F. Böttcher, T. Langen, I. Ferrier-Barbut, and T. Pfau, Striped states
in a many-body system of tilted dipoles, Phys. Rev. A 96, 053630 (2017).

• I. Ferrier-Barbut, M. Wenzel, M. Schmitt, F. Böttcher, and T. Pfau, Onset of a
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• I. Ferrier-Barbut, M. Wenzel, F. Böttcher, T. Langen, M. Isoard, S. Stringari, and
T. Pfau, Scissors Mode of Dipolar Quantum Droplets of Dysprosium Atoms, Phys.
Rev. Lett. 120, 160402 (2018).
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Zusammenfassung

Die gewöhnliche Materie, die uns im täglichen Leben umgibt, besteht aus einzelnen Ato-
men. Abhängig von der Spezies und den äußeren Gegebenheiten, befinden sich diese Ato-
me typischerweise in einem gasförmigen, flüssigen oder festen Aggregatzustand. In der
Gasphase ist die kinetische Energie der Atome größer als die Wechselwirkung zwischen
den Atomen, sodass deren typischer Abstand viel größer als die Ausdehnung der Parti-
kel ist. Ein solches System ist komprimierbar und füllt einen leeren Behälter homogen
aus. In einer Flüssigkeit sind die kinetische Energie und die Wechselwirkungsstärke ver-
gleichbar, wodurch sich ein bevorzugter Abstand mit beliebiger Ausrichtung zwischen den
Atomen einstellt. Deshalb besitzt eine Flüssigkeit ein konstantes Volumen und lässt sich
kaum komprimieren, nimmt aber die Form des Behälters an. Im Gegensatz dazu ist die
kinetische Energie im Festkörper vernachlässigbar, wodurch sich die Atome durch deren
gegenseitige Wechselwirkung in kristallinen Strukturen mit Fernordnung arrangieren.

Bei sehr niedrigen Temperaturen kurz über dem absoluten Nullpunkt sollte daher die ki-
netische Energie verschwinden. Dementsprechend erwarten wir alle Spezies in fester Form
vorzufinden. Eine berühmte Ausnahme ist flüssiges Helium, das unterhalb von 2 K su-
prafluid wird. Dieser Zustand ist charakterisiert durch eine verschwindende Viskosität,
sehr ähnlich zum supraleitenden Zustand, bei dem der elektrische Widerstand verschwin-
det. Letzterer wurde bereits 1911 von K. Onnes in festem Quecksilber bei Tempera-
turen von 4 K entdeckt. In beiden Fällen ist das makroskopische Verhalten auf Quan-
tenphänomene zurückzuführen.

Seit der Erzeugung der ersten Bose-Einstein Kondensate (BEKs) im Jahre 1995 und
entarteten Fermigasen im Jahre 1999 in ultrakalten verdünnten Gasen, steht eine her-
ausragende Plattform zur Untersuchung solcher makroskopischer Quanteneffekte bereit.
Diese Materiezustände existieren bei Temperaturen unterhalb von 1µK und Dichten, die
mehrere Größenordnungen unterhalb derer von Festkörpern liegen. Der große Vorteil liegt
in der ausgezeichneten Kontrolle der internen und externen Freiheitsgrade sowie der rela-
tiven Einfachheit des Systems, die ein umfassendes theoretisches Verständnis ermöglicht.
Aus diesen Gründen haben sich ultrakalte Atome zu einem stetig wachsenden Forschungs-
gebiet mit dem Fokus auf der Untersuchung von makroskopischen Quantenphänomenen
entwickelt. Von den vielen bahnbrechenden Untersuchungen wollen wir die folgenden nen-
nen: Interferenz von Materiewellen, Quantenwirbel in einem rotierenden BEK, den Pha-
senübergang vom bosonischen Suprafluid zum Mott-Isolator, BEKs von Molekülen aus
Fermionen und Suprafluidität in stark wechselwirkenden Fermigasen. In den letzten Jah-
ren wurden Quantengasmikroskope entwickelt, die direkten Einblick und die Kontrolle
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Zusammenfassung

von einzelnen Atomen des Vielkörperzustands in optischen Gittern für Bosonen sowie
auch für Fermionen ermöglichen. All diese Experimente basieren auf Alkaliatomen mit
isotropen kurzreichweitigen Wechselwirkungen.
Die Erweiterung dieses Forschungsfelds zu neuartigen Quantengasen basierend auf an-
deren atomaren Spezies, Molekülen, oder exotischen Systemen wie Photonen im Mikro-
resonator, Magnonen oder Exziton-Polaritonen ermöglicht dabei die Beobachtung einer
Vielzahl weiterer Phänomene. Die Erzeugung eines Bose-Einstein Kondensats mit Chro-
matomen in unserem Labor im Jahre 2004 war der Startpunkt für die Erforschung von
dipolaren Quantengasen, bei denen das vergleichsweise große magnetische Moment der
Atome zu einer merklichen magnetischen Dipol-Dipol-Wechselwirkung zwischen den Ato-
men führt. Im Gegensatz zur Wechselwirkung in Alkaliatomen ist diese anisotrop und
langreichweitig. Dies führt beispielsweise zu einem Kollaps des Quantengases in Form ei-
nes kurzlebigen Kleeblatt-Musters. Die Forschung in unserer Gruppe wurde dabei durch
ähnliche Studien in Paris ergänzt.
Die Realisierung von Quantengasen aus Dysprosium- oder Erbiumatomen mit stärkerer
dipolarer Wechselwirkung führte zur Beobachtung von weiteren Effekten wie die Verfor-
mung der Fermifläche, chaotische Streuung in Lanthaniden, Wechselwirkungen zwischen
benachbarten Plätzen in optischen Gittern oder die Studien zur Thermalisierung durch
die dipolare Wechselwirkung.
Während meiner Zeit am Dysprosium-Experiment haben wir unser erstes BEK im Ju-
ni 2014 und das erste entartete Fermigas im Februar 2015 erzeugt. Unsere anfänglichen
Studien zu den Streueigenschaften dieses Elements wurden dann durch die Entdeckung
von langlebigen dipolaren Quantentröpfchen gekrönt, die, wie wir später belegen konn-
ten, durch Quantenfluktuationen stabilisiert werden. Dieser Zustand war absolut uner-
wartet und löste eine Vielzahl von theoretischen Erklärungsversuchen aus. Während das
anfängliche BEK gasförmig ist, zeigen diese Tröpfchen die Eigenschaften einer Quan-
tenflüssigkeit, wie beispielsweise verminderte Komprimierbarkeit, auf. Im Gegensatz zu
anderen Flüssigkeiten ist die Dichte allerdings mehrere Größenordnungen geringer und
das Tröpfchen nicht rund, sondern durch die dipolare Wechselwirkung gestreckt. Weite-
re Experimente zeigten außerdem, dass sich ein solches Tröpfchen nicht ausdehnt wenn
der einschließende Behälter entfernt wird, was im Gebiet der Quantengase eine absolute
Neuheit darstellte. Unsere Studien wurden dabei durch die Untersuchung von Quanten-
tröpfchen aus Erbiumatomen ergänzt. In neuerer Zeit wurde dieses wachsende Forschungs-
gebiet durch die Realisierung von Quantentröpfchen aus Mischungen von zwei BEKs mit
kurzreichweitigen Wechselwirkungen komplettiert.
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In dieser Arbeit untersuchen wir diese Quantentröpfchen in umfassenden numerischen
Simulationen und neuartigen Experimenten. Ein Teil dieser Promotion war der Entwick-
lung dieser Simulationen gewidmet, welche sich als unerlässlich für das Verständnis dieses
eigentümlichen Materiezustandes erwiesen. Diese sind außerdem wichtig um Parameter-
bereiche zu finden, für die die gewünschten Effekte unter experimentellen Bedingungen
beobachtet werden können.
Mit diesem Werkzeug finden wir neuartige “gestreifte” Grundzustände mit mehreren
Tröpfchen, welche durch Frustration entlang der Polarisationsachse der Dipole induziert
werden. Diese sind besonders interessant, weil sich eine gemeinsame Phase der beteilig-
ten Tröpfchen über das ganze System einstellen kann. Dieses Verhalten entspricht einer
möglichen Realisierung eines suprasoliden Materiezustands, welcher Suprafluidität mit
einer ortsabhängigen Modulation der Dichte in Anlehnung an einen Festkörper verbin-
det. Im Experiment können wir metastabile Streifenzustände erzeugen, finden aber in
Interferenzexperimenten keine solche globale Phasenkohärenz des suprasoliden Zustands.
Weiterführende semi-analytische und numerische Untersuchungen bestätigen dieses Ver-
halten und deuten auf einen Parameterbereich hin, bei dem sich diese Phasenkohärenz in
zukünftigen Experimenten einstellen sollte.
Mit Messungen der kollektiven Anregungen untersuchen wir auch die internen Eigen-
schaften der Quantentröpfchen. Dabei diskutieren wir die Natur der Scherenmode, und
präsentieren Messungen dieser sowie der Quadrupolmode. Basierend auf einer zeitabhän-
gigen Variationsrechnung extrahieren wir damit einen Wert von abg = 69(4) a0 für die
Stärke der kurzreichweitigen Wechselwirkung im Isotop 164Dy.
Dieser Wert weicht von früheren Messungen ab, weshalb wir außerdem Erweiterungen der
gängigen theoretischen Beschreibung für endliche Temperaturen untersuchen. Wir führen
diese Abweichung auf eine Verstärkung der dipolaren Streuung zurück, welche auch mit
Messungen in klassischen Gasen bei höheren Temperaturen kompatibel ist. Mit den aktu-
ellen Werkzeugen können wir jedoch die Temperatur eines Quantentröpfchens nicht mes-
sen. Daher untersuchen wir theoretisch, ob ein Fremdatom in das Tröpfchen eingebracht
werden kann. Für ein dipolares Fermion finden wir dabei mehrere gebundene Zustände,
was ein vielversprechender erster Schritt für die Messung der internen Eigenschaften mit
Hilfe solcher Fremdatome darstellt. Des Weiteren entdecken wir in der Theorie eine weite-
re Klasse von Quantentröpfchen für eine invertierte dipolare Wechselwirkung, welche mit
Hilfe eines schnell rotierenden Magnetfelds im zeitlichen Mittel erzeugt werden kann. Diese
Pfannküchlein genannten Zustände sind dementsprechend zweidimensionale Strukturen,
die sich senkrecht zur gemittelten Polarisationsachse anordnen.
Unsere Untersuchungen sind allerdings nicht auf Quantentröpfchen beschränkt. Die di-
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Zusammenfassung

polare Wechselwirkung im BEK führt zu einer Anisotropie des Anregungsspektrums und
dementsprechend auch zu einer anisotropen kritischen Geschwindigkeit einer Anregung,
unterhalb derer Suprafluidität auftritt. Im Experiment realisieren wir eine Situation, bei
der eine Bewegung entlang der Polarisationsachse reibungsfrei ist, während eine Bewegung
bei der selben Geschwindigkeit senkrecht dazu zu einer Anregung und dementsprechend
Reibung führt. Unsere Messungen von kritischer Geschwindigkeit und der Heizrate stim-
men exzellent mit den numerischen Simulationen überein. Mit letzteren untersuchen wir
auch die Möglichkeit dipolare Effekte von Quantenwirbeln in rotierenden dipolaren Gasen
im Experiment zu realisieren. In zukünftigen Experimenten erwarten wir deshalb einen
deformierten Kern solcher Wirbel, die sich außerdem durch die dipolare Wechselwirkung
in parallelen Streifen anordnen, zu beobachten.
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All of physics is either impossible or trivial.
It is impossible until you understand it,
and then it becomes trivial.
— Ernest Rutherford

Chapter 1
Introduction
The ordinary matter surrounding us in everyday life is made up of atoms. Depending on
the species and the ambient conditions, an amount of atoms is typically found in either
the gas, the liquid, or the solid phase. In the gas phase, the kinetic energy of particles
dominates over the interparticle forces and the typical distance is much larger than the
particle size. Such a system is compressible and, when placed inside an empty container,
will expand to homogeneously fill the latter. In a liquid kinetic energy and the interpar-
ticle forces are on the same order of magnitude, such that the latter determine a fixed
interparticle distance but atoms can still align freely. Thus liquids are almost incompress-
ible having a constant volume, but follow the shape of the surrounding container. In a
solid, the kinetic energy is negligible and atoms align due to the interparticle forces in
crystalline structures with long-range ordering.
For very low temperatures just above absolute zero, kinetic energy should vanish and we
therefore expect to find all species in the solid phase. A famous exception is liquid helium,
which does not turn into a solid, but rather becomes a superfluid below 2 K [12]. This state
is characterized by a vanishing viscosity, much like the superconducting state, for which the
electrical resistance vanishes. The latter was discovered by K. Onnes for solid mercury at
a temperature of 4 K already in 1911 [13]. In both cases, the macroscopic phenomena
observed at low temperatures cannot be explained by classical physics anymore, but
instead are due to quantum physics.
An outstanding experimental platform to study such macroscopic quantum effects was
heralded by the creation of Bose-Einstein condensates (BECs) in 1995 [14, 15] and degen-
erate Fermi gases in 1999 [16] from ultracold dilute gases of alkali atoms. These states
of matter exist at temperatures below 1µK and densities several orders of magnitude
lower compared to solids. Their enormous advantage for experimentalists is the superb
control of both the internal and external degrees of freedom. Moreover, on the theoretical
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Chapter 1. Introduction

side their relative simplicity enables a comprehensive understanding. For these reasons
they have become an ever-growing playground to study many-body quantum phenom-
ena. Amongst the vast amount of pioneering studies, we highlight the observation of
matter-wave interference [17], vortices in a rotating BEC [18], the phase transition from a
bosonic superfluid to a Mott insulator state [19], BECs of molecules paired from fermions
[20, 21], and superfluidity in strongly interacting Fermi gases [22]. Nowadays, quantum
gas microscopes also enable the direct imaging and manipulation of single atoms of the
many-body state in optical lattices for both bosons [23, 24] and fermions [25–27]. Al-
though these experiments cover a wide range of phenomena, these are all based on alkali
atoms possessing an isotropic short-range interaction.
Extending the field to new kinds of quantum degenerate gases based on different atomic
species, molecules, or even completely other systems, e.g. photons in a microcavity [28],
magnon quasiparticles [29], and exciton polaritons [30], greatly enriches the accessible
phenomena. The condensation of chromium atoms in our lab in 2004 marked the starting
point for the studies of ultracold dipolar gases [31], where the large magnetic moment of the
atom gives rise to an observable magnetic dipole-dipole interaction (DDI) [32, 33], which is
both long-range and anisotropic in distinction to the previous short-range interaction. For
a sufficiently weak short-range interaction the quantum gas collapses in a d-wave pattern
due to the predominant dipolar interaction [34, 35]. These studies in our group were
complemented by the Paris group investigating spinor chromium BECs [36–39]. With the
first quantum gases of dysprosium [40, 41] and erbium [42, 43] degenerate atoms with
even stronger dipolar interaction became available. These triggered the observation of a
series of novel effects like the deformation of the Fermi surface [44], chaotic scattering in
lanthanides [10, 45], nearest-neighbor interactions in an optical lattice [46], or the study
of thermalization near integrability [47].
During my time at the dysprosium experiment, we created our first BEC in June 2014
and our first degenerate Fermi gas in February 2015 with this apparatus1. Our initial
studies on the scattering properties of this element [10, 11] culminated in the discovery
of long-lived dipolar quantum droplets [1], which we found to be stabilized by quantum
fluctuations [2, 4, 48]. The existence of this state was not expected at all at the time and
quickly triggered a variety of theory contributions in order to understand its properties
[49–55]. While the initial BEC is a dilute gas, it turned out that the droplets rather share
many properties of liquids, including their incompressibility. However, this exotic quantum
liquid exhibits a density that is several orders of magnitude lower compared to any other
liquid and also, due to the anisotropy of the dipolar interaction, has a very elongated

1 Second in the world! Here, I want to thank my former colleagues T. Maier, H. Kadau and M. Schmitt.
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shape. Furthermore, we confirmed that the droplets do not expand once released from a
container [3]. Such a self-bound behavior is an absolute novelty in the field of quantum
gases. Our studies were complemented by the creation of quantum droplets with erbium
atoms [56], showing the universality of this phenomenon. Following the original proposal
[48], also droplets of two-component Bose-Bose mixtures based on isotropic short-range
interactions have later been created experimentally [57–59] extending this growing field
of research.

Outline

In this thesis we investigate macroscopic many-body quantum states of ultracold dipolar
bosons both experimentally and theoretically. In chapter 2 we describe their state-of-the-
art theoretical description, which gives rise to both dipolar effects in BECs and dipolar
quantum droplets. In this context we further introduce a set of numerical tools, that were
developed during this thesis to understand and predict such phenomena.
After providing insight into the recent additions to our experimental setup in chapter 3,
we present first results in chapter 4. There, we investigate ensembles of droplets in con-
fined geometries both theoretically and experimentally. This gives rise to spontaneously
formed many-droplet states, so-called “striped states”. Such behavior naturally raises the
question, whether the many-droplet state is phase-coherent, i.e. sharing a common phase
throughout the whole system. A coherent droplet crystal would be considered a super-
solid state of matter, merging superfluid behavior with a density modulation resembling
the solid phase. We therefore investigate the coherence properties of these many-droplet
states.
Furthermore, we study the properties of single droplets and present measurements of
their collective excitations in chapter 5. We are especially interested in the scissors mode,
since it is conceptually different in a dipolar system compared to previous observations.
Using a time-dependent theory model we can extract important details of the short-range
scattering properties in dysprosium.
In chapter 6, we compare this result with a previous measurement based on the critical
atom number for the stability of self-bound quantum droplets. We find a clear deviation,
which we attribute to an enhancement of dipolar scattering at finite-temperature. In addi-
tion, we evaluate the immersion of a fermionic dipolar impurity in such a bosonic quantum
droplet, which is the first step towards probing quantum droplets with impurities, and
find a new class of pancake-like droplet states for inverted dipolar interaction.
Our research is not limited to the physics of quantum droplets, and we further investi-
gate superfluidity of a dipolar BEC (dBEC) in chapter 7. Due to the anisotropy of the
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Chapter 1. Introduction

dipolar interaction, the critical velocity for the onset of dissipation is modified, which we
confirm experimentally by moving a laser beam through the condensate. Furthermore, we
numerically investigate the creation and detection of vortices in a rotating dBEC paving
the way for their future observation in our experiment.
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Chapter 2
Ultracold dipolar bosons
In this chapter, we review the theoretical description of ensembles of bosonic atoms with
a sizeable magnetic moment at ultracold temperatures. First, we introduce the concept
of Bose-Einstein condensation for the ideal non-interacting gas. Taking into account the
conceptually different contact and dipolar interactions then leads to a mean-field theory
for the interacting Bose-Einstein condensate. A first-order correction to this theory due
to quantum fluctuations gives rise to dipolar quantum liquids.
Starting with the homogeneous gas we then investigate dipolar effects of the excitation
spectrum. For a harmonically trapped gas we introduce the variational method to de-
scribe the ground state and the dynamics of both dipolar Bose-Einstein condensates and
quantum droplets. In a next step, we study the exact solutions of the eGPE numeri-
cally, which gives rise to additional effects. These tools form the basis to describe the
experiments presented in this thesis.
The chapter is based on the excellent book by L. Pitaevskii and S. Stringari [60] and a
review on dipolar condensates by T. Lahaye et.al. [61]. In addition, we describe the theory
of dipolar quantum droplets, that emerge from quantum fluctuations, as introduced by
A. Lima and A. Pelster for dipolar atoms [62, 63].

2.1. The ideal Bose gas

Based on the work by S. Bose in 1924 [64], who derived a statistical description of photons,
A. Einstein predicted a phase transition for identical massive particles in 1925 [65, 66].
At sufficiently low temperature, these noninteracting particles would accumulate in the
ground state of the system and form a macroscopic quantum state, nowadays known
as a Bose-Einstein condensate (BEC). This phase transition is exclusively dictated by
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Chapter 2. Ultracold dipolar bosons

quantum statistics, such that we can estimate the critical temperature Tc by the following
qualitative argument. Many-body quantum effects become important once the coherence
length of a particle’s wavefunction λT is on the order of the inter-particle spacing d =
n−1/3. The latter is determined by the number density n, and the former is given by the
thermal de Broglie wavelength λT =

√
2π~2

mkBT
for a given temperature T . For the critical

temperature Tc we then obtain

Tc = 2π~2

kB

n2/3

m
(2.1)

with the particle mass m, reduced Planck constant ~ and Boltzmann constant kB
1. This

way, we can estimate the critical temperature to Tc = 3.5 K for liquid 4He at a density
of 1028 m−3 [67], which is close to the λ-point Tλ = 2.2 K at which it becomes superfluid.
Experiments with cold gases of various species operate at densities 1019−21 m−3, which
yields Tc ∼ 1µK.
Such experiments are typically carried out in harmonic trapping potentials. Therefore,
we summarize the basic quantities of the ideal Bose gas in this setting based on [60, ch.
10]. For identical bosons in a state k with energy εk the mean occupation number

〈nk〉 = 1
eβ(εk−µ) − 1 (2.2)

in the grand-canonical ensemble is determined by β = 1/kBT and the chemical potential
µ is fixed by the total particle number N = ∑

k 〈nk〉. In the classical limit kBT � ~ω
we recover the Boltzmann distribution 〈nk〉 = e−β(εk−µ). We assume a spherical harmonic
potential Vext = 1

2mω
2r2, with the trap frequency ω and characteristic length aho =√

~/mω. This way, the single-particle Hamiltonian is H = p2/2m+ 1
2mω

2r2, which is the
well-known harmonic oscillator.
At zero temperature, all particles occupy its ground state φ0(r) and the many-body
wavefunction, which is symmetric under particle exchange, reads

ψ(r1, ..., rN) =
∏
k

φ0(rk) with φ0(r) = 1
(πa2

ho)3/4 exp
(
− r2

2aho

)
. (2.3)

The density distribution thus becomes n(r) = N |φ0(r)|2, and the condensate is confined
to a volume a3

ho independent of particle number. A BEC of noninteracting particles is
therefore infinitely compressible. At finite temperature T excited states are populated

1 Throughout this thesis energy units are given in units of Hz (by division of the planck constant) or
nK (by disivion of the Boltzmann constant), since these are natural when working on experiments
with ultracold atoms.
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2.2. Ultracold atoms & interactions

leaving N0 < N particles in the ground state. The fraction of condensed atoms

N0

N
= 1−

(
T

Tc

)3
with Tc = 0.94 ~ω

kB
N1/3 (2.4)

is determined by the critical temperature Tc. For a typical trap with ω = 2π × 70 Hz in
the experiment, a noninteracting 164Dy BEC with N = 104 atoms has a size of aho = 1µm
and yields a critical temperature of Tc = 70 nK.
An important property is the coherence, which can be investigated by means of the
one-body density matrix n(1)(r, r′) = 〈ψ̂†(r)ψ̂(r′)〉 given by the expectation value of
the creation and annihilation operators ψ̂† and ψ̂, respectively [60, ch. 2]. For the
diagonal components with r = r′ it reduces to the density distribution n(r) = n(1)(r, r′).
Introducing the relative coordinate s = |r − r′| we can investigate the non-diagonal
components n(1)(s) = n(1)(r, r′), which yields zero for s → ∞ in the normal phase.
Interestingly, for a BEC it converges to a finite value given by the condensate density,
n(1)(s → ∞) = n. The persistence of coherence throughout the condensate is called off-
diagonal long-range order [68]. BECs are thus coherent matter waves showing interference
[17]. While there are many similarities between BECs and superfluids, we point out, that
an ideal Bose gas is not a superfluid, see ch. 2.3.3.

2.2. Ultracold atoms & interactions
In the experiment, we realize such Bose-Einstein condensates with interacting atoms.
The addition of interactions profoundly changes some of the properties described in the
previous section and enriches the physics leading to a variety of quantum phenomena,
that can be observed with interacting BECs. We are particularly interested in the element
dysprosium with the electronic configuration [Xe] 4f 10 6s2 and the ground state 5I8. The
total angular momentum J = 8 leads to a large magnetic moment and thus gives rise
to a sizeable dipole-dipole interaction in addition to the contact interaction known from
the study of alkali atoms. In the following we introduce both interactions, pointing the
interested reader to a more thorough analysis on the scattering properties of dysprosium
atoms to ref. [69].

Contact interaction

We consider dilute gases, where the range of inter-particle interactions r0 is small compared
to the average distance between particles d = n−1/3, fixed by the number density n. Under
these conditions, we can neglect interactions between three or more particles and reduce
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Chapter 2. Ultracold dipolar bosons

our analysis to pairs of particles. Secondly, ultracold atoms are characterized by a de
Broglie wavelength λT ∼ n−1/3 � r0, which limits the momentum p = ~k = h/λT to low
collisional energies2 Ekin = ~2k2/m satisfying the condition kr0 � 1.
In this regime, collisions are elastic3 and the interatomic potential is not resolved during
the collision process. The only remainder of such a collision is a phase shift of the inter-
atomic wavefunction, which is independent of the microscopic details of the interatomic
potential. This phase shift can be expressed in terms of a single universal value, called
the s-wave scattering length as, as shown e.g. in [60, ch. 9]. This scattering length can
be positive or negative corresponding to a repulsive or attractive interaction. The elas-
tic scattering cross-sections for identical bosons and fermions are then σB = 8πa2

s and
σF = 0, respectively, and we can replace the unknown short-range interaction potential
by a pseudopotential of form

Vcon(r) = g δ(r) with g = 4π~2as

m
(2.5)

recovering the same physics.
Important tools for the study of cold gases are Feshbach resonances, that allow for arbi-
trary tuning of the scattering length. By means of a differential magnetic or light shift, a
second scattering channel can be tuned in resonance with respect to the threshold. This
gives rise to magnetic [70, 71] or optical [72, 73] Feshbach resonances. For the former, the
dependence of the scattering length

as(B) = abg

(
1− ∆

B −B0

)
(2.6)

is determined by the background scattering length abg away from resonances, as well as
the position B0 and width ∆ of the resonance. In dysprosium, the open 4f -shell gives
rise to a dense set of Feshbach resonances [10, 11].
In the vicinity of such resonances, inelastic three-body collisions lead to fast atom losses
scaling approximately with a4

s close to resonance [74]. In appendix B, we present three-
body spectra in the vicinity of broader resonances for 164Dy.

Dipolar interaction

With a large magnetic moment µm ≈ 10µB in the ground state, dysprosium atoms are also
subject to the magnetic dipole-dipole interaction or dipolar interaction. In the experiment,

2 We introduced the reduced mass µ = m/2 in the center-of-mass frame.
3 Atoms are typically prepared in specific internal states to prevent inelastic collisions.
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2.2. Ultracold atoms & interactions

atoms are typically spin-polarized by an external magnetic field B ‖ µm. In this case,
the general interaction reduces to the interaction potential

Vdd(r) = µ0µ
2
m

4π
1− 3 cos2ϑ

r3 (2.7)

which is anisotropic and long-range [61]. As illustrated in fig. (2.1a), depending on
the angle ϑ, the interaction is attractive or repulsive defining the magic angle ϑm =
arccos(1/

√
3) ≈ 54.7 deg for zero interaction. Two dysprosium atoms spaced by 1µm are

subject to a dipolar interaction Vdd(r = 1µm, θ = π/2) ≈ 1.3 Hz. Although the magnetic
moment is fixed, the strength of the dipolar interaction can be tuned by a rotating mag-
netic field giving rise to a time-averaged interaction [75], which has been realized recently
[76].
For convenience, we define a characteristic length scale, called the dipolar length add, and
the relative dipolar strength εdd as

add = µ0µ
2
mm

12π~2 and εdd = add

as
. (2.8)

In fig. (2.1b) we list some isotopes of magnetic atoms used in the field along with the
corresponding dipolar and measured background scattering lengths. The homonuclear
magnetic molecules would feature an eight-fold enhancement of the dipolar length in the
ground state, but have only been realized in a weakly-bound manner close to a Feshbach
resonance.
Due to the long-range character4, the interaction energy is not extensive in the thermo-
dynamic limit and depends on the global properties of the system, e.g. absolute atom
number. In contrast, for the contact-interaction in the previous section the interaction
energy only depends on the density, a local quantity. Importantly, all partial waves l > 0
contribute to the scattering amplitude for the DDI and we cannot reduce the interac-
tion to a simple pseudo-potential. Fortunately, for low enough collisional energy5 dipolar
scattering becomes universal and only involves s-wave channels [80–82]. Within the Born
approximation and away from resonances, the scattering amplitudes of both contact and
dipolar interaction can conveniently be added and we obtain the total elastic scattering
cross-sections

σB = 8π
(1

5a
2
dd + a2

s

)
and σF = 8π

(3
5a

2
dd

)
(2.9)

4 We call a 1/rn potential long-range in d dimensions, if the integral
∫∞
rc
r−nddr with a small cut-off rc

diverges, which yields the condition n ≤ d.
5 Compared to the dipolar energy ED = Vdd(r = 3

2add, θ = π/2) ≈ 14µK for dysprosium.
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(a) (b) Dipole µm add abg εdd Ref.
(µB) (a0) (a0) (1)

87Rb 1 0.7 100.4(1) 0.01 [77]
52Cr 6 15 102.5(4) 0.15 [78]
166Er 6.98 65 67(2) 0.97 [56]
168Er 6.98 66 137(1) 0.48 [46]
162Dy 9.93 129 141(17) 0.91 [47]
164Dy 9.93 131 69(4) 1.89 [7]
168Er2 14.0 530 - - [79]
164Dy2 19.9 1050 - - [11]

Figure 2.1.: Magnetic dipole-dipole interaction. (a) Dipole-dipole interaction of two po-
larized particles with magnetic moment µm separated by r, defining the angle ϑ. For ϑ smaller
than the magic angle ϑm (dashed) the interaction is attractive (red) and above repulsive (blue).
(b) List of ultracold atoms and molecules with magnetic moment µm, dipolar length add and
measured background scattering length abg. In the respective ground state, the homonuclear
molecules would have an eight times larger dipolar length compared to the single atoms.

for identical bosons and fermions, respectively [69]. The dipolar interaction thus permits
thermalization for ultracold identical fermions, as reported for both dysprosium [41] and
later for erbium [43]. Going beyond the Born approximation, numerical calculations of
the scattering amplitude with realistic inter-atom potentials confirm this behavior and
conclude a small temperature-dependent enhancement of the DDI. For two dysprosium
atoms this effect is +10% at a relative energy corresponding to T = 100 nK [83, 84].

The dipolar interaction also couples the spin degrees of freedom and orbital angular mo-
mentum. As a consequence, dipolar collisions do not conserve magnetic quantum numbers
allowing for spin-changing collisions [85]. Based on this effect, specialized cooling schemes
were realized [86–88]. For our experimental parameters with large Zeeman splitting com-
pared to the thermal energy, such spin flips are suppressed.

Finally, the complex scattering physics of the atom reduces to the full interaction potential

Vint(r) = Vcon(r) + Vdd(r) and Ṽint(q) = g

2
[
1 + εdd

(
3 cos2 α− 1

) ]
(2.10)

for the Fourier transformation. The latter is independent of the modulus and depends on
the angle α of momentum q with respect to the dipole axis in momentum space.
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2.2. Ultracold atoms & interactions

2.2.1. Gross-Pitaevskii equation

In this section, we present the mean-field theory for a condensate of interacting bosons,
which is the basic description for the physics presented in this thesis. Starting within
second quantization [60, ch. 5] the general Hamiltonian for the field operator ψ̂ reads

Ĥ =
∫

dr ψ̂†(r)
[
− ~2

2m∇
2 + Vext(r)

]
ψ̂(r)

+ 1
2

∫
dr′

∫
dr ψ̂†(r)ψ̂†(r′)Vint(r′ − r)ψ̂(r′)ψ̂(r) (2.11)

with a two-body interaction potential Vint(r′ − r) and an external potential Vext(r). The
time-dependence of this field operator is given by

i~
∂

∂t
ψ̂(r, t) =

[
ψ̂(r, t), Ĥ

]
=
[
− ~2

2m∇
2 + Vext(r)

+
∫

dr′ ψ̂†(r′, t)Vint(r′ − r)ψ̂(r′, t)
]
ψ̂(r, t) (2.12)

in the Heisenberg picture. As we introduced for the ideal Bose gas, the field operator

ψ̂ = φ0â0 +
∑
k 6=0

φkâk (2.13)

can be expressed6 in terms of the single-particle wavefunctions φk. For a BEC with a
macroscopic occupation number 〈â†0â0〉 � 1 of the ground state we can introduce the
Bogoliubov approximation [89]. Since the operators â0 and â†0 scale as

√
N0 and their

commutator is equal to one, we neglect the latter and replace these by the complex
numbers

√
N0. This way, the field operator

ψ̂ = 〈ψ̂〉+ �
�δψ̂ ≈ ψ (2.14)

is replaced by the classical field ψ = 〈ψ̂〉 =
√
N0φ0, which is also called the order pa-

rameter. For low enough temperatures and interactions the non-condensed part δψ̂ =∑
k 6=0 φkâk vanishes, which is typically satisfied for experiments with BECs of ultracold

atoms.
Application of the approximation to eq. (2.12) then directly yields the dipolar Gross-

6 â†k and âk are the well-known bosonic creation and annihilation operators, which obey the commuta-
tion relations [âi, â†j ] = δij and [âi, âj ] = [â†i , â

†
j ] = 0.
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Pitaevskii equation (dGPE)

i~ ∂tψ =
[
− ~2∇2

2m + Vext + g|ψ|2 + Φdd

]
ψ (2.15)

with the interactions given by eq. (2.10). In addition to the well-known result for contact-
interacting particles [90, 91], we thereby introduce the dipolar interaction potential

Φdd(r) =
∫

dr′ Vdd(r − r′)|ψ(r′)|2 (2.16)

making the dGPE a non-local non-linear Schrödinger equation [61]. In other words, the
quantum many-body problem reduces to a classical mean-field theory.

2.2.2. The extended Gross-Pitaevskii equation

The dGPE derived in the previous section is well-suited to describe the experiments with
chromium condensates. In contrast, we observed stable quantum droplets with dyspro-
sium, that were not predicted by the presented theory. In this case, both the contact and
dipolar interaction are an order of magnitude higher7 and the droplets have shorter life-
time pointing to an order-of-magnitude higher density compared to the condensate phase.
For these reasons, we need to reconsider the previous assumption of weak interactions. In
particular, we calculate a contribution due to the population of excited states and thus
δψ̂ 6= 0.
In lack of a more suited microscopic theory, we outline the derivation of these effects
within Bogoliubov theory for a uniform gas. For this purpose, we assume a uniform gas in a
volume V with a density n = N/V and decompose the field operator ψ̂ = ∑

p âpV
−1/2eipr/~

in terms of plane wave single-particle states.
As elaborated in [60, ch. 4], the Bogoliubov transformation finally yields a Hamiltonian

Ĥ = E0 +
∑
q 6=0

E(q)b̂†qb̂q (2.17)

with the energy of the ground state E0 and a set of quasi-particles with their corresponding
destruction and creation operators b̂q and b̂†q. This way, the physical system of interacting
particles is described in terms of independent quasi-particles with energy E(q) and quasi-
momentum q. We study the excitations of the homogeneous dipolar gas in ch. 2.3 and turn
to the ground state, which corresponds to the vacuum of quasi-particles. The ground state

7 In order to drive 52Cr to the strongly dipolar regime add & as, the scattering length was decreased by
an order of magnitude [33], cf. fig. (2.1b).
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2.2. Ultracold atoms & interactions

features a finite population of excited single-particle states, which is due to interactions.
This quantum depletion ∆n of the ground state density n results in a shift of the ground
state energy E0, and thus a modification of the chemical potential µ = ∂E0/∂N due to
quantum fluctuations. For a contact-interacting gas we find

∆n
n

= 8
3
√
π

√
na3

s and ∆µ = 32
3
√
π
gn
√
na3

s (2.18)

known as the Lee-Huang-Yang (LHY) correction [92]. Derived within Bogoliubov theory,
this is the first-order correction, that also neglects interactions of quasi-particles. The
next-order term ∆µ ∝ (na3

s ) ln(na3
s ) was derived by considering three-particle collisions

[93] and depends on the details of the short-range interaction.

In liquid helium, which is far from the weakly-interacting regime, the fraction of con-
densed atoms is only 7% due to quantum depletion [94]. Within the context of ultracold
atoms, the quantum depletion is typically negligible and has only been recently measured
quantitatively in a homogeneous BEC of 39K [95]. In this experiment, the scattering
length was tuned to as = 3000 a0 close to a Feshbach resonance in order to increase the
gas parameter to finite values

√
na3

s . 0.04. For a typical quantum droplet with a gas
parameter

√
na3

s ∼ 0.01 the expansion is thus applicable.

The generalization of eq. (2.18) to include the dipolar interaction [62, 63] yields

∆n
n

= 8
3
√
π

√
na3

s Q3(εdd) and ∆µ = 32
3
√
π
gn
√
na3

s Q5(εdd) (2.19)

with the functions Ql = 1
2
∫ π

0 dα sin(α)[1 + εdd(3 cos2 α− 1)]l/2 averaging the angular con-
tribution of the DDI. For εdd ≤ 1 these are Q3,5 ≥ 1 and develop a negligible imaginary
part for εdd > 1, pointing towards the destabilization due to a softened excitation spec-
trum, see ch. 2.3. We use the resulting quantum fluctuations term ∆µ = ∆µ(r) within a
local-density approximation (LDA), which yields

∆µ(r) = gqf |ψ(r)|3 with gqf = 32ga3/2
s

3
√
π

(
1 + 3

2ε
2
dd

)
(2.20)

and the series expansion of Q5(εdd) ≈ 1 + 3
2ε

2
dd. Finally, we arrive at the extended Gross-

Pitaevskii equation (eGPE)

i~ ∂tψ =
[
− ~2∇2

2m + Vext + g|ψ|2 + Φdd + gqf |ψ|3
]
ψ (2.21)
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that properly describes condensates of ultracold dysprosium atoms and gives rise to the
physics of dipolar quantum liquids [48, 52–55]. Interestingly, we have introduced quantum
fluctuations to a mean-field theory, which is intrinsically free of fluctuations.
Although there are no general solutions to this equation, we can study the homogeneous
gas analytically. In ch. 2.3 we thereby derive the excitation spectrum, that gives rise to a
variety of dipolar effects. Non-uniform gases can be described by an approximate method,
the variational ansatz, which we thoroughly study in ch. 2.4. The starting point for this
analysis is the energy functional

E[ψ] =
∫

dr
[
~2

2m |∇ψ|
2 + Vext|ψ|2 + 1

2g|ψ|
4 + 1

2 |ψ|
2Φdd + 2

5gqf |ψ|5
]

(2.22)

of the eGPE. Using this method, we explore the properties of quantum droplets in
ch. 2.4.3. In ch. 2.5 we present numerical simulations for an exact solution of the eGPE,
which then yields additional insight on the density profiles and dynamics of the quantum
gas.
In lower dimensions, the Lee-Huang-Yang correction has been studied for droplets of
Bose-Bose mixtures [96] as well as in the crossover to the 3D regime [97]. For dipolar
atoms, this has been investigated in a quasi-1D setting [98], while a description for the
intermediate dimension is still lacking.

2.3. The homogeneous gas

Having developed a suitable description of ultracold dipolar atoms, we can use it to
explore effects of the dipolar interaction. The most simple, yet instructive system is a
homogeneous isotropic gas of atoms with a constant number density n = N/V . In such
a system, the mean-field dipolar interaction of eq. (2.16) averages to zero. Nevertheless,
there are various dipolar effects related to the excitation spectrum of the gas. In order
to illustrate these in general, we restrict ourselves to small densities n, such that the
fluctuation term derived in 2.2.2 is negligible.

2.3.1. Excitation spectrum

Within the famous Bogoliubov theory [89] the gas of weakly-interacting bosons is de-
scribed as a system of non-interacting quasi-particles with energy E(q) and quasi-momentum
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Figure 2.2.: Bogoliubov excitation spectrum. (a) The dispersion relation eq. (2.24) of a
dipolar homogeneous gas depends on the angle α between the dipole axis µm and an excitation
with momentum q. (b) Sketch of such an excitation q. Density modulations with q ⊥ µm

accumulate dipoles in an attractive configuration, thus “softening” the mode towards lower
energy (red). For q ‖ µm the density modulation leads to a larger energy (blue). Dashed lines
correspond to the magic angle αm, where the dipolar interaction vanishes [99].

q. The Bogoliubov excitation spectrum

E(q) =
√(~2q2

2m

)2
+ 2nṼint(q)

(~2q2

2m

)
(2.23)

of these quasi-particles is determined by the fourier-transform Ṽint(q) of a general two-
body interaction potential Vint(r). For a gas with contact and dipolar interaction, as
considered here, we obtain

E3D(q) = ~q
√( ~q

2m

)2
+ gn

m

[
1 + εdd (3 cos2 α− 1)

]
(2.24)

with the angle α between dipole axis µm and quasi-momentum q [100]. We note, that a
macroscopic approach based on the linearization of the hydrodynamic equations [61, ch.
5] around the equilibrium density and velocity yields the same result.
Similar to the contact-interacting case, that is recovered for εdd = 0, there is a transition
from the quadratic free-particle regime with energy ~2q2

2m for large momenta to the linear
phonon regime for q → 0. Additionally, the dipolar interaction introduces an anisotropy
of the excitation spectrum, as shown in fig. (2.2). For εdd > 1, the excitation spectrum
becomes imaginary8 for small momenta and is thus subject to the phonon instability,

8 In fact, the numerical factor of add in eq. (2.8) was chosen such that the gas is stable for εdd ≤ 1.
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q

μm

α

(a) (b)

Figure 2.3.: Speed of sound. (a) Variation of the speed of sound cs(α) of an excitation q
defining the angle α with respect to the polarization axis µm. (b) Anisotropic sound waves
emitted from a point-like excitation at the center. Higher and lower density compared to the
undisturbed gas are shown in blue and red, respectively [99].

which is known from condensates with attractive contact interaction g < 0.
In the long-wavelength limit we can define the speed of sound

cs(α) = lim
q→0

E3D(q)
q

=
√
gn

m

√
1 + εdd (3 cos2 α− 1) (2.25)

of the gas, which is shown in fig. (2.3a). A consequence of the excitation spectrum
of eq. (2.24) is the emission of anisotropic sound waves after a point-like perturbation9

of the homogeneous gas, as demonstrated in fig. (2.3b). Experimentally, the anisotropic
excitation spectrum has been confirmed via Bragg spectroscopy of a chromium condensate
with εdd = 0.15 [101].

2.3.2. Healing length and vortices

The transition of phonon to free-particle behavior in the excitation spectrum of eq. (2.24)
occurs at a specific momentum10 and thus introduces a characteristic length scale

ξ = 1
q

= ~√
2mcs(a)

(2.26)

9 A δ-like perturbation in real space leads to an excitation of all momenta. Higher momenta with
smaller anisotropy propagate faster and are thus further away from the center.

10 The expansion of eq. (2.24) for large momenta yields E3D ≈ ~2q2

2m + mc2
s. Setting both terms equal

leads to the definition of ξ.
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μm

(a) (b)

Figure 2.4.: Healing length. (a) Plot of the healing length ξ(α) in momentum space according
to eq. (2.26). (b) In real space a defect with size R� ξ has an anisotropic core (solid line 0.90n)
with long-range deformation of the condensate over several ξ. Along the dipole axis µm the
density is lower (red) and perpendicular to it the density is higher (blue) compared to the
unperturbed condensate [99].

for the interaction in the system, the so-called healing length. This is the characteristic
scale over which the condensate density distribution “heals” from a local defect, e.g. the
edge of a box potential [60, ch. 11.1]. The anisotropy of eq. (2.26) in momentum space
leads to a modification of this healing length in real space.

In fig. (2.4) we demonstrate this behavior with a line-like perturbation11 of the homoge-
neous condensate. The core around this defect becomes elongated along the dipole axis
µm. Compared to the unperturbed gas the long-range DDI leads to a decreased density
(red) along this axis and increased density (blue) perpendicular to it. Both features ex-
tend over several healing lengths and thus induce an anisotropic long-range interaction
between defects.

The most prominent example of such defects are quantized vortices in rotating superfluids
[60, ch. 5.3]. In the case of non-dipolar condensates the healing length and therefore the
vortex core are isotropic. While vortices [18] and vortex lattices [102] have been observed
for contact-interacting condensates, dipolar effects of vortices have not been measured
up to now. Yet, the deformation of the vortex core [103] and anisotropic long-range
interactions between vortices [104], which would lead to vortex patterns with symmetries
[103, 105] other than the triangular Abrikosov pattern [106], have been predicted. In
ch. 7.2, we investigate the feasibility to observe such effects in our experiment.

11 A repulsive cylindrical Gaussian potential with radius R� ξ perpendicular to the image plane.
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2.3.3. Superfluidity and Landau’s criterion

In an attempt to explain the superfluidity of liquid helium [12], L. Landau established
the seminal connection of the liquid’s excitation spectrum and the dissipation in the fluid
[107]. This allows us to examine how the excitation spectrum of a dBEC influences the
superfluid properties.

For this purpose, we consider an impurity with mass m moving with velocity v in a
superfluid. The onset of dissipation is caused by the creation of a single elementary
excitation with energy E(q) and quasi-momentum q in the fluid. Thus the initial energy
and momentum of the impurity

p0 = mv and E0 = p2
0

2m = 1
2mv

2 (2.27)

become

p1 = mv − q and E1 = p2
1

2m + E(q) = 1
2mv

2 − v · q + q2

2m + E(q) (2.28)

after the excitation process. With the total energy conserved by this process we obtain
the relation v · q = E(q) under the assumption of a heavy impurity with m→∞.

Assuming an isotropic fluid, for which velocity v and momentum q are collinear, we
arrive at v = E(q)/q, which is valid for all q. By minimization of the right-hand side with
respect to momentum q, we define the critical velocity vc, which is the lowest v satisfying
the equation. This leads to the famous Landau criterion

v > vc = min
q

(
E(q)
q

)
(2.29)

for the onset of dissipation in the superfluid. Thereby it becomes evident, that the
acquired critical velocity is determined by the excitation spectrum E(q) of the fluid.
In the case of a non-interacting BEC (g = εdd = 0) the spectrum of eq. (2.24) reduces
to the one of a free-particle E(q) = ~2q2

2m , which yields a critical velocity of zero. A non-
interacting BEC is therefore not superfluid, since any moving impurity causes dissipation.
In contrast, a contact-interacting BEC (g > 0, εdd = 0) features a critical velocity equal
to the speed of sound cs of eq. (2.25) and is therefore superfluid.

As shown in the previous section, the dipolar excitation spectrum is anisotropic. Conse-
quently, the direction of flow v and quasi-momentum q do not necessarily coincide [108].
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Figure 2.5.: Critical velocity. Angular dependence of critical velocity vc(αv) in eq. (2.32)
(solid) derived via the generalized Landau criterion and the speed of sound in the gas cs(αq)
in eq. (2.25) (dashed). They both coincide only for directions parallel and perpendicular to the
magnetic field with the critical velocity being lower in general. The vertical line marks the magic
angle [99].

Therefore we decompose v = v · v̂, which leads to the generalized form

v > vc = min
q

(
E(q)
v̂ · q

)
(2.30)

of the Landau criterion. Here, the minimization additionally covers all possible directions
of momentum q. Like the dipolar interaction the presented dispersion relation eq. (2.24)
has rotational symmetry. Therefore the final expression only depends on the angle αv of
v̂ with respect to the polarisation axis ẑ. Similarly, we define αq = α of q with respect to
ẑ. Since the dispersion relation of a stable condensate (εdd ≤ 1) is monotonic the problem
simplifies to the minimization of the angle-dependent part√

1 + εdd (3 cos2 αq − 1)
cos (αv − αq)

(2.31)

with respect to αq, which yields

1
vc(αv)2 = sin(αv)2

c2
⊥

+ cos(αv)2

c2
‖

(2.32)

with the speed of sound c‖ = cs(0 deg) and c⊥ = cs(90 deg) [108]. Therefore the critical
velocity only coincides with the speed of sound for flow directions v̂ parallel (αv = 0 deg)
or orthogonal (αv = 90 deg) to the polarization axis and is lower for intermediate angles.
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The angular dependence is shown in fig. (2.5), where the critical velocity is compared to
the speed of sound.
This result is analogous to the propagation of light in an uniaxial birefringent crystal [109,
ch. 6.3.]. For an extraordinary ray the direction of momentum k̂ and group velocity v̂
differ in general, which is equivalent to the case here and also leads to eq. (2.32). The
underlying mechanism is the minimization of the optical path length in an anisotropic
medium due to Fermat’s principle.

2.3.4. Roton excitations

While the previous section covers the critical velocity due to the excitation of phonons in
a homogeneous gas, the properties of excitations are profoundly changed when the gas is
confined in one direction. This leads to a distinct excitation spectrum, first discovered in
ref. [110].
In the following, we develop the excitation spectrum for a quasi-two-dimensional (quasi-
2D) gas along the lines of [111, 112]. For this purpose we add a harmonic trapping
potential Vext = 1

2mω
2
zz

2 along the polarization axis ẑ, which introduces a length scale lz =√
~/mωz, known as the harmonic oscillator length, to the system. For strong confinement

compared to the chemical potential µ = (g+2gdd)n� ~ωz the condensate is in the quasi-
2D regime and thus restricted to the harmonic oscillator ground state, where excitations
along this direction are exponentially suppressed. Unlike the case for a real 2D system,
there is still a finite extent lz along the polarization axis. Averaging the momentum-space
dipolar interaction of eq. (2.10) along this axis12 then yields the dipolar interaction

Ṽ 2D
dd (q⊥) = gdd√

2πlz
F⊥

(
q⊥lz√

2

)
(2.33)

for in-plane excitations with momentum q⊥ and we introduced

F⊥(x) = 2− 3
√
πx exp(x2) erfc(x) (2.34)

depending on the complementary error function erfc(x) = 2π−1/2 ∫∞
x dt exp(−t2). The

function F⊥(x) monotonously decreases from a value of F⊥(0) = 2 via F⊥(1/
√

2) = 0 to
12 For the density we choose an ansatz of form n(r) = n(ρ) exp(−z2/l2z)/

√
πlz with polar coordinate ρ.

We then calculate the interaction energy Eint = 1
2(2π)3

∫
d3q ñ(q)Ṽdd(q)ñ(−q) in momentum space to

make use of the convolution theorem. The separation of axial and transversal components qz and q⊥,
respectively, in the density ñ(q) = ñ(q⊥) exp(−q2

z l
2
z/4) and the interaction potential 3 cos(α)2 − 1 =

3q2
z/(q2

z + q2
⊥) − 1 then yields eq. (2.33) under the remaining transversal integral after subsequent

integration along the qz axis.
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Figure 2.6.: Excitation spectrum of a quasi-two-dimensional gas. (a) Excitation energy
E2D over in-plane quasi-momentum q⊥ of eq. (2.35) for εdd values of 0, 1, 2, 3, 3.4 and 3.5 (blue to
red) [99]. For increasing εdd the Roton-Maxon spectrum, a distinct local maximum and minimum
at finite momentum, develops. For larger dipolar interaction this mode becomes unstable. The
inset shows eq. (2.34), describing the dependence of the dipolar interaction on the reduced
momentum x = q⊥lz/

√
2. (b) Schematic of a phonon with x� 1 (top) or x� 1 (bottom), where

dipoles are accumulated in a predominantly repulsive and attractive configuration, respectively.
This effect is the reason to a hardening and softening in the excitation spectrum.

−1 for x→∞, as shown in the inset of fig. (2.6a). Consequently, the dipolar interaction
Ṽ 2D

dd depends on the modulus of the in-plane quasi-momentum q⊥ and becomes attractive
for q⊥ >

√
2/lz. In analogy to the picture in fig. (2.2b) for the homogeneous case, we can

understand this effect in terms of an accumulation of dipoles in an attractive configuration
in real space, as illustrated in fig. (2.6b). With such dipolar interaction the excitation
spectrum reads

E2D(q⊥) = ~q⊥

√√√√(~q⊥
2m

)2
+ gn0

m

[
1 + εdd F⊥

(
q⊥lz√

2

)]
. (2.35)

with the peak density n0 = n2D/
√

2πlz defined by the in-plane density n2D. Considering
the phonon instability for q⊥ → 0, we acquire the stability criterion g + 2gdd > 0. Thus,
the dipolar interaction can stabilize the gas against an attractive contact interaction and
for the case of εdd � 1 against a phonon or global collapse.

In comparison to the monotonous dispersion relation eq. (2.24) of the homogeneous gas
the behavior here is conceptually different due to the dependence on the modulus of mo-
mentum q⊥. As can be seen in fig. (2.6a), for a certain range of εdd values the spectrum
develops a peculiar shape featuring a local minimum and maximum resembling the Roton-
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Maxon spectrum of liquid helium [107, 110, 113]. In particular, the quasi-particle related
to the local minimum of the excitation spectrum is called a roton. For larger εdd, the
excitation spectrum becomes imaginary, indicating an additional finite-wavelength insta-
bility, leading to a local collapse of the gas. This is a very intriguing feature of dipolar
condensates, since the roton introduces a natural length scale for self-organization of the
system. Unfortunately, such density wave states are not stable within mean-field theory
[114].
Although derived for a quasi-2D gas here, the softening of excitations due to confine-
ment is a general feature. An illustrative example are classical ferrofluids, that consist
of suspended ferromagnetic particles. When magnetized by an external magnetic field
surface excitations become soft [115], which leads to the Rosensweig instability and sub-
sequent pattern formation [116, 117]. In the realm of ultracold gases, there are extensive
numerical studies for finite-size condensates with weak three-dimensional confinement (i.
e. µ � ~ωk with k = x, y, z). Condensates with radial symmetry can have biconcave
density distributions, with softened angular roton modes featuring non-zero angular mo-
mentum [118, 119]. Such excitations lead to the spontaneous symmetry breaking during
the collapse dynamics [120, 121].
In the droplet experiments presented in [1, 2, 4, 5], this effect leads to a modulational
instability followed by fragmentation of the condensate into multiple quantum droplets.
The population of a roton mode prior to the collapse dynamics was experimentally con-
firmed by the observation of finite-momentum peaks in time-of-flight measurements of
quenched dipolar erbium condensates [122]. Both experiments are subject to highly non-
trivial dynamics, that strongly deviates from the case of weak perturbations on top of a
uniform gas, as presented in this section. Therefore a full numerical treatment including
finite-size effects and dynamics is needed to describe the actual experiments, which we
are going to introduce in section 2.5.
Recalling the Landau criterion in eq. (2.29), the critical velocity of a superfluid is deter-
mined by its excitation spectrum. In a similar way as initially predicted by Landau [107]
and later measured [113] for liquid helium, the critical velocity for the quasi-2D dipolar
gas is determined by the excitation of a roton13. In both systems the critical velocity is
thus lower compared to the speed of sound given by the phonon branch. For a dipolar gas,
the reduction of the critical velocity due to the softening of a roton mode was pointed out
in [123]. When tilting the magnetic field towards the plane of the quasi-2D condensate,
the excitation spectrum additionally becomes anisotropic, as mentioned in the previous
section, and is still influenced by the roton mode [124].
13 Given that the dipolar interaction is sufficiently strong, such that E(q)/q for the phonon (q → 0) is

larger than for the roton mode, see eq. (2.29).
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2.4. The trapped gas: Variational Method

In the previous section we have introduced the concept of confinement, that modifies the
properties of the system. Experimentally, quantum gases are typically trapped by focused
laser beams, which are well-approximated by a three-dimensional harmonic potential [125].
In the following, we develop a framework to describe both the ground state and dynamics
based on the eGPE in eq. (2.21) with an external trapping potential of the form

Vext(r, z) = 1
2m(ω2

rr
2 + ω2

zz
2) (2.36)

characterized by radial and axial trapping frequencies ωr and ωz. Owing to the radial
symmetry of the dipolar interaction with respect to the µm ‖ ẑ axis, we can restrict the
analysis to the radially-symmetric case. Since there are no exact analytical solutions of the
eGPE with a harmonic potential, we resort to an approximate analytical approach, the
variational ansatz. With this method, we exploit the physics of dipolar BECs. Introducing
quantum fluctuations then leads to the description of dipolar quantum droplets in the
subsequent section.

2.4.1. Variational Ansatz

In the interaction-dominated regime condensates become large, the density profile varies
smoothly, and kinetic energy can be neglected. This is known as the Thomas-Fermi
approximation, which leads to an inverted parabola for the density distribution, that can
be derived analytically [60, ch. 11.2]. While a typical dysprosium BEC in our experiment
is well-described by this approach, we aim for a description that suits both BEC and
quantum droplets. For the latter, the radial size is on the order of the healing length and
kinetic energy cannot be neglected.
Another possibility is a gaussian density distribution, which is the exact solution for a
non-interacting BEC in a harmonic trap [126]. This ansatz includes the kinetic energy
and is thus a good approximation for small interactions. For this method, we insert a
gaussian trial wavefunction of the form

ψg(r, z) =
√

N

π3/2σ2
rσz

exp
(
− r2

2σ2
r

− z2

2σ2
z

)
(2.37)

in the energy functional eq. (2.22) of the eGPE, such that we obtain the total energy of
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the condensate

E(σr, σz) = 1
4N

~2

m

[
2σ−2

r + σ−2
z

]
+ 1

4Nm
[
2ω2

rσ
2
r + ω2

zσ
2
z

]
+ 1

2(2π)3/2
gN2

σ2
rσz

[
1− εdd f

(
σr
σz

)]
+ 25/2

55/2π9/4
gqfN

5/2

(σ2
rσz)3/2 (2.38)

depending on the two variational parameters σr and σz [53, 55]. The contributions, in or-
der, are due to the quantum pressure, harmonic potential, contact & dipolar interactions,
and quantum fluctuations. This way, the non-local term Φdd of the dipolar interaction in
eq. (2.21) reduces to an analytical geometry-dependent function

f(κ) = 1 + 2κ2

1− κ2 −
3κ2 arctanh

(√
1− κ2

)
(1− κ2)3/2 , (2.39)

which only depends on the aspect ratio κ = σr/σz of the cloud [75, 127]. As shown
in fig. (2.7a), this function decreases monotonously from f(κ → 0) = 1 with a largely
attractive dipolar interaction to f(κ → ∞) = −2, where the interaction is repulsive.
Minimization of E(σr, σz) with respect to the variational parameters then yields an ap-
proximate solution of the ground state. With this approach the shape of the density
distribution is fixed and thus the choice of the trial function influences the deviation from
the real ground state. Nevertheless, it yields important qualitative insight, as we are going
to show in the subsequent sections.
The variational approach presented here was successfully used to describe the ground
state properties [128] and collective excitations [129, 130] of the first contact-interacting
BECs. Later, it was extended to include the dipolar interaction [80, 131, 132], and more
recently, quantum fluctuations [62, 63]. Finally, this method has proven useful to study
the ground state and excitations of quantum droplets [52, 53, 55].

2.4.2. Dipolar BECs: Magnetostriction and Instability

In this section, we demonstrate general effects of the dipolar interaction on a trapped
BEC, which were observed in seminal studies on 52Cr dBECs in our group [31–35].
The dipolar interaction leads to a dependence of the total energy in eq. (2.38) on the
function f(κ) in eq. (2.39), with κ = σr/σz being the cloud aspect ratio. In general,
states with κ < 1 have lower energy compared to a condensate with contact interactions
only, where the aspect ratio of trap λ and cloud κ are equal. With the dipolar interaction,
the minimization of eq. (2.38) to find the ground state then yields κ < λ, which is shown
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Figure 2.7.: Magnetostriction of a dBEC. (a) Structure function f of eq. (2.39) over cloud
aspect ratio κ = σr/σz. Values κ � 1 correspond to a cigar-shaped cloud, where the averaged
dipolar interaction is attractive and f → 1. For pancake-shaped condensates (κ � 1) it is
repulsive and f → −2. (b) Energy landscape E(σr, σz) of eq. (2.38) with a local minimum
(white cross) at σr = 1.7µm and σz = 2.8µm in a spherical trap [99]. With an aspect ratio
κ ≈ 0.6 the cloud is elongated along the magnetic field compared to the isotropic case (κ = 1,
dashed line). (c) Magnetostriction of a 162Dy BEC in the experiment. The trapping potential
is isotropic in the imaging plane (indicated by the dashed circle), and the cloud extends along
the magnetic field.

in fig. (2.7b). Accordingly, the dipolar interaction leads to an elongation of the condensate
along the magnetic field. This effect is called magnetostriction and can be observed in
situ in our experiment, see fig. (2.7c). The relation κ(λ) between cloud and trap aspect
ratio is non-trivial. In fig. (2.8a) we show the ratio κ/λ for N = 104 atoms (blue) and
in the limit of N → ∞ (red). The deviation from the isotropic case κ = λ is strongest
around λ = 1.

A consequence of magnetostriction is the modification of the stability criterion εdd < 1,
which we derived in ch. 2.3.1 for the homogeneous gas. In fig. (2.8b), we show the critical
scattering length acrit for the stability of the dBEC in an anisotropic trap with trap as-
pect ratio λ. For scattering lengths below this value, the minimum in eq. (2.38) vanishes
and the gas collapses, since the two-body interactions become attractive. Experimentally,
magnetostriction during the time-of-flight dynamics [32, 33] and the trap-dependent sta-
bility [34, 133] have been observed in seminal studies on 52Cr dBECs in our group. In
addition, a so-called d-wave collapse characterized by a transient cloverleaf-like density
distribution was observed after a quench to an unstable scattering length as < acrit [35].
For the stability diagram in fig. (2.8b) we restricted the calculation to the mean-field
interactions, i.e. neglected quantum fluctuations (gqf = 0), to reproduce the mentioned
chromium results. There, the dipolar interaction is weaker (add = 16 a0) compared to
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Figure 2.8.: Instability in an anisotropic trap. (a) Cloud aspect ratio κ over trap aspect
ratio λ for N = 104 atoms (blue) and in the N →∞ (red) limit. Magnetostriction is pronounced
for isotropic traps around λ = 1 and strongly depends on the atom number. (b) On the mean-
field level, the deformation leads to an instability depending on the trap aspect ratio κ. For a
scattering length as below the critical value acrit a dipolar BEC collapses [99].

dysprosium and a Feshbach resonance was used to lower the scattering length as to a
comparable value [33, 134]. Increasing with both interaction parameters, the quantum
fluctuations are far too weak and can safely be neglected for the density range probed in
these experiments.

2.4.3. Quantum Droplets

Compared to chromium, dysprosium has a larger magnetic moment and mass, which leads
to a dipolar length add, that is an order of magnitude larger. Naturally, a dysprosium
condensate is in the regime where scattering length as and dipolar length are comparable,
without the need for a Feshbach resonance to tune the former. This leads to stronger
quantum fluctuations, that become important at accessible number densities on the order
of 1021 m−3. In the following, we explore the dipolar quantum droplets that emerge from
the interplay of mean-field interactions and quantum fluctuations. The variational method
is also suited to derive some basic droplet properties and compare them to a normal dBEC
[52, 53, 55].
Figure (2.9a, c) show the energy landscapes of eq. (2.38) for various scattering lengths in
a trap with an aspect ratio λ = 1 (a) and 3 (c). Comparing the ground state solutions
(white cross) for as = 100 a0 (top), we find that the condensate aspect ratio is modified
by the trap, as explained in the previous section. When the scattering length is decreased
to 50 a0 (bottom), both solutions for the different traps have shifted to smaller radial
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Figure 2.9.: BEC and droplet solutions with the variational ansatz. (a,c) Energy
landscapes E(σr, σz) of eq. (2.38) for various scattering lengths and a trap aspect ratio λ = 1
(a) or λ = 3 (c), respectively. Local minima are marked with a white cross. (b) Peak density
n0 of the ground state solution given by these minima. For λ > λc there exists a bistable
region with two local minima (dark area). The critical point (green rectangle) is located at
λc = 1.5, ac = 93 a0. For λ < λc there is a crossover from the BEC (a > ac) to the droplet
(a < ac) regime. In the bistable region, the transition from BEC to droplet is associated with a
discontinuous peak density [99].

size σr, while having a comparable axial size σz. This is the quantum droplet state, that
has more than an order of magnitude larger density compared to a BEC. In this regime
characterized by εdd > 1 and κ = σr/σz � 1, the dipolar interaction is stronger than
the contact interaction, which results in an attractive residual two-body interaction. The
latter is compensated by the quantum fluctuation term. This behavior is in stark contrast
to a dBEC, where the residual two-body interaction is repulsive and gets compensated
by the trapping potential. This fundamental difference makes the droplets liquid-like,
which we are going to investigate later. For now, we note that the solution is almost
independent of the surrounding trapping potential. Interestingly, in the intermediate
regime (exemplified for as = 75 a0) the solutions for both trap parameters are qualitatively
different. When lowering the scattering length, the computed local minimum continuously
shifts to smaller radial size for λ = 1. In the case for λ = 3 two local minima of the energy
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functional coexist indicating a bistability. The peak density n0 for the acquired solutions is
shown in fig. (2.9b). The bistability (dark region) exists above a critical trap aspect ratio
λc = 1.5 (green rectangle, critical scattering length ac = 93 a0), with a value depending
on parameters like atom number and mean trapping frequency [99].

Experimentally, we encountered multiple droplets [1] after a quench of the scattering
length from a stable BEC with as > ac (white region) into the bistable regime as < ac

(dark region) in a λ = 3 trap. There, the quantum gas is subject to a modulational
instability, which is a dynamic effect and cannot be reproduced by an ansatz with a single
gaussian wavefunction. For the full description and dynamics, we therefore resort to
numerical studies of the eGPE, that are described in ch. 2.5. By performing such quench
experiments for various values of λ, we measured the critical aspect ratio λc = 1.87(14)
for N = 6000 dysprosium atoms in a comparable trap [6]. This value is in agreement
with simulations yielding λc = 2.0 for these parameters. By reshaping the trap to λ < λc

prior to the lowering of the scattering length, we can exploit the crossover to create single
droplets deterministically in the experiment. This was a requirement to observe self-bound
droplets [3], which we are going to describe in ch. 6. As mentioned, this discussion only
covers a single smooth wavefunction. For the description of ground states with multiple
droplets [5], we extended the variational ansatz presented here to two droplets, see ch. 4.

For now, we focus on the qualitative differences between the BEC (where we choose e.g.
as = 140 a0) and droplet (as = 70 a0) in fig. (2.10a) showing the mentioned crossover
region for λ = 1. For the droplet, the peak density n0 is an order of magnitude larger,
owing to a smaller radial size σr. The main difference lies in the energy contributions to
the total energy Etot, which we separate in single-particle contributions E1 = Ekin +Eext

of quantum pressure and external potential, the mean-field interactions E2 = Econ +Edip

given by both contact and dipolar interaction, and the beyond mean-field contribution
Eqf . As shown in fig. (2.10b), the total energy Etot/N = 22 nK of the BEC is positive and
we obtain a dominant single-particle contribution E1 = 0.63 |Etot|, a minor contribution
E2 = 0.33 |Etot| from interactions and a negligible beyond-mean-field correction Eqf =
0.04 |Etot|. A positive interaction energy E2 points to an on average repulsive interaction.
In contrast, owing to the higher density and smaller aspect ratio, the interactions in a
quantum droplet are attractive and dominant with E2 = −5.1 |Etot|. This value is almost
compensated by quantum fluctuations with Eqf = +3.2 |Etot|, while the single-particle
contribution E1 = +0.9 |Etot| has a minor role. Although argued before, here it becomes
evident, that quantum fluctuations are crucial in the description of quantum droplets.
We emphasize, that the total energy Etot/N = −40 nK is negative, which points towards
a self-bound state [53, 55], since it does not rely on any trapping potential. We observed
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Figure 2.10.: Properties of BEC and droplet in a spherical trap. We show peak density
n0 and cloud sizes σr,z (a) as well as various energy contributions (b) over the scattering length
as. For the latter we compare the total energy Etot (blue) of eq. (2.38) to the single-particle
contributions Ekin +Eext (red) of quantum pressure and external potential, the sum Econ +Edip
(green) of contact and dipolar interaction energy and the beyond-mean field contribution Eqfluc
(yellow). For large scattering length as we find the BEC solution (red) and for small scattering
length the quantum droplet solution (blue). For both solutions (assuming as = 140 a0 and
70 a0, respectively) the peak density n0 is shown for varying mean trap frequency ω0 (c) and
atom number (d) in order to depict the qualitative difference in the two regimes. We compare
numerical simulations (points) to the variational ansatz (lines). See [99] for further parameters.

self-bound dipolar quantum droplet experimentally [3] and further discuss these in ch. 6.
Studying the dependence of the peak density n0 on both mean harmonic trap frequency
ω0 and atom number N in fig. (2.10c), we find the known scaling n0 ∝ (Nω3

0)2/5 derived
in the Thomas-Fermi regime [60, ch. 11.2] for the BEC solution (as = 140 a0, red). The
droplet case (as = 70 a0, blue) is remarkably different, since the peak density is almost
independent of the confinement. Therefore it is incompressible within this parameter
range. The situation is similar for the dependence on atom number, where we find a
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plateau for N ≥ 104 atoms. In ch. 2.5, we will find that the density distribution becomes
flat due to increasing surface tension. For smaller atom numbers, the attractive residual
two-body interactions E2 compete with the quantum pressure lowering the density until
a critical atom number Nc, where the droplet solution vanishes.
Incompressible liquids are typically self-bound and characterized by a fixed peak density
and finite surface tension. The behavior presented here is analogous to a droplet of liquid
helium [67, 135, 136], which has orders of magnitude higher density. In analogy to this
quantum liquid, we call a dysprosium condensate in the droplet regime a dilute quantum
liquid. While the former are spherical in free space, dipolar quantum droplets have an
intrinsic elongation due to the anisotropic dipolar interaction. This of course also changes
the excitation spectrum, which we derive in the following section.

2.4.4. Collective excitations

The collective excitations of a quantum gas allow for precise spectroscopic measurements
of the underlying interactions. For the pioneering BEC experiments [137–139], mea-
surements of such excitations verified the applicability of mean-field theory for contact-
interacting BECs. In the case of the scissors mode, it was a strong hint towards super-
fluidity of the interacting condensate [140]. In the following, we present the lowest-lying
collective oscillations in the BEC to droplet crossover regime and point out the derivation
of the mode frequencies within the Lagrangian formalism based on [7, 80].
Figure (2.11a) illustrates the motion of the cloud for these modes. The monopole mode
M , also called the compression mode, corresponds to a simultaneous in-phase oscillation
of the sizes σx,y,z and therefore leads to an oscillation of the peak density of the gas. In
contrast, the two quadrupole modes are surface modes preserving the peak density. Q1 is
characterized by an out-of-phase oscillation of radial σx, σy and axial size σz for the dipole
axis µm ‖ ẑ. Q2 features a radial out-of-phase oscillation between σx and σy preserving the
axial size σz along the symmetry axis. For a contact-interacting condensate in a spherical
trap with mean trap frequency ω0, the two are degenerate at a frequency of

√
2ω0 derived

in the Thomas-Fermi regime [60, ch. 12.2]. In this situation, the monopole mode frequency
is
√

5ω0. For a dBEC the quadrupole degeneracy is lifted due to magnetostriction, and
thus the frequencies depend on the aspect ratio of the condensate. Lastly, the scissors
mode Sxz corresponds to an oscillation of the condensate symmetry axis about the dipole
axis, which is described by the angle θ between the two axes in the xz-plane.
In order to calculate the corresponding frequencies, we introduce additional time-dependent
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Figure 2.11.: Excitation spectrum in the BEC to droplet crossover. (a) Lowest-lying
excitations of a dBEC. The monopole mode M corresponds to a compression simultaneous
compression along all axes. The scissors mode Sxz is a rotation of the condensate around the
dipole orientation µm ‖ ẑ in the xz-plane. There are also two quadrupole modes characterized
by out-of-phase oscillations with a component along the magnetic field (Q1) and the mode Q2
where the quadrupole motion is restricted to the xy-plane. Adapted from [132, fig. 1]. (b)
Excitation frequency ω in units of the mean trap frequency ω0. By variation of the scattering
length in a spherical trap (λ = 1) the crossover from a BEC to a droplet can be analyzed.
Around as ≈ 95 a0 the crossover to the droplet occurs. Below this value the modes M , Sxz and
Q2 bend up sharply, while Q1 remains the lowest mode [99]. We compare numerical simulations
(points) to the variational ansatz (lines).

parameters to the gaussian ansatz in eq. (2.37). This ansatz reads

ψg(r, t) =
√

N

π3/2σxσyσz
exp

 ∑
k=x,y,z

(
− k

′2

2σ2
k

+ ik′
2
βk(t)

)
+ ix′z′Ω

 (2.40)

with the dynamical parameters βk along the three dimensions and Ω, which allows for a
rotation

x′ = x cos(θ) + z sin(θ) y′ = y z′ = −x sin(θ) + z cos(θ) (2.41)

of the cloud with respect to the dipole axis µm ‖ ẑ in the xz-plane. It is important to note,
that these degrees of freedom need to allow for the particular mode under investigation.
By introducing additional parameters βx,y,z along the three dimensions, we can thus study
the monopole and both quadrupole modes [55, 83] presented in fig. (2.11a). The angle
θ between the cloud symmetry axis and the dipole axis, then additionally allows for the
scissors mode oscillation [7]. In order to derive the equations of motion for the sizes and
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this angle, the ansatz eq. (2.40) is inserted in the Lagrangian density

L = i~
2
(
ψ∂tψ

∗ − ψ∗∂tψ
)

+ ~2

2m |∇ψ|
2 + Vext|ψ|2 + 1

2g|ψ|
4 + 1

2 |ψ|
2Φdd + 2

5gqf |ψ|5 (2.42)

shown in [55]. From this, we calculate the Lagrangian L =
∫
L dr and derive the Euler-

Lagrange equations for the parameters

βk = m

2~σk
dσk
dt and Ω = −m

~
σ2
x − σ2

z

σ2
x + σ2

z

dθ
dt . (2.43)

The equations of motion for the sizes σk and angle θ of the cloud then follow by replacing
for βk and Ω. The collective excitation frequencies can be obtained by linearization of the
system, which yields eq. (8) and (9) in [55] for mono- and quadrupole modes, respectively,
and eq. (1) in [7] for the scissors mode. For the former, this approach also allows to extract
the normalized mode geometry γ, i.e. the relative oscillation amplitudes along the three
axes, which we are going to analyze in the following.

In fig. (2.11b) we show the calculated collective excitation frequencies over varying scat-
tering length as in the BEC to droplet crossover. For a comparison with the static
properties in this range, see fig. (2.10). Around the transition at as ≈ 95 a0, the frequen-
cies of monopole mode M , radial quadrupole mode Q2, and scissors mode Sxz bend up
sharply owing to the larger density. The axial quadrupole Q1 shows a weaker scaling
of the mode frequency in the droplet regime, and thus remains the lowest-lying mode.
Entering the regime where the gas becomes increasingly incompressible we would naively
expect a stronger scaling of M compared to both quadrupole modes Q1,2, that should
behave similarly. The reason is the oscillation of the peak density for the monopole mode,
which is related to the compressibility of the gas.

In order to clarify this inconsistency, we analyze the mode geometry in the BEC and
droplet regime corresponding to a scattering length of as = 140 and 70 a0, respectively.
As mentioned, the radial quadrupole mode Q2 corresponds to an equal out-of-phase con-
tribution along the x and y direction, while there is no oscillation along z, resulting
in γQ2(as) = 1√

2{1,−1, 0}. The latter is constant throughout the crossover, since the
interactions and thus the cloud are radially symmetric in the spherical trap. In con-
trast, the monopole mode M is modified by the change of aspect ratio. Due to mag-
netostriction in the BEC regime the mode geometry γM = {0.47, 0.47, 0.74} is slightly
anisotropic. In the droplet regime, it becomes an approximate radial monopole mode
with γM = {0.71, 0.71, 0.04}, since the radial and axial contributions decouple due to the
large aspect ratio of the cloud. This also affects the axial quadrupole mode Q1, where
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the mode geometry γQ1 = {−0.53,−0.53, 0.67} in the BEC regime changes to an ap-
proximate axial monopole mode with γQ1 = {−0.03,−0.03, 0.99} in the droplet regime.
Finally, in the droplet regime the sizeable aspect ratio leads to a larger excitation en-
ergy of modes M and Q2 with dominant radial character compared to the mode Q1 with
dominant axial character [55]. This way, we can understand the qualitative difference of
the two quadrupole modes. The presented behavior hints towards a much higher radial
compressibility of the droplet compared to the axial one owing to the large aspect ratio
of the droplet.
In experiments, a small shift of the axial quadrupole mode frequency due to the dipolar in-
teraction was observed with chromium dBECs [36]. In the realm of quantum droplets, the
applicability of the eGPE was confirmed by measurements of the lowest-lying excitation
Q1 for a quantum droplet of erbium atoms [56]. In ch. 5, we present our measurements
of the collective excitations of a 164Dy droplet [7], which we use to extract the scattering
length as.

2.5. Numerical simulations

While we gain a lot of insight from the approximate solution of the eGPE, there are
still open questions that cannot be answered by the variational ansatz presented in the
previous section. By design this approach is limited to the density distribution given
by the trial wavefunction. Thus it cannot describe the predictions of biconcave ground
states [118], as well as transient structures in the collapse dynamics [35, 120, 121]. In
particular, the variational ansatz cannot capture the dynamics of the modulational insta-
bility and the subsequent fragmentation into multiple droplets we encountered in the first
droplet experiment [1]. Additionally, classical ferrofluids show a rich variety of phases
with selforganised patterns [141], that might prove to exist for its quantum counterpart
as well.
In order to address such effects, a numerical solver for the eGPE on a three-dimensional
grid was conceived and realized during this thesis. The numerical details, implementation,
and instructions on the usage of the program are presented in appendix A. With this tool,
we can exploit every aspect of the eGPE. In principle it offers — up to numerical errors
— exact solutions of eq. (2.21) for the ground state and the dynamics, with the only
drawback of large simulation times. Since experiments are limited to a certain parameter
space, such a tool is especially useful to test predictions within these.
We want to emphasize, that this tool has been crucial to shape our understanding of
dipolar quantum gases. As such, it contributed to various publications [3–6, 8] as well as
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PhD theses [142, 143]. In this thesis, 21 figures are based on numerical simulations. In
the following, we demonstrate effects that become accessible with this tool.

2.5.1. Ground states

The ground state for a given configuration of external potential and interactions can
conveniently be computed by imaginary time evolution [144, app. A]. This way, we obtain
the ground state wavefunction and can calculate properties like the peak density, sizes
as well as the energy contributions of eq. (2.22). In fig. (2.10) we compare the numerical
simulations (points) to the variational method with a gaussian ansatz (solid) throughout
the crossover region between BEC and droplet. While we find overall good agreement,
there are obvious deviations in the peak density due to the deviation of the exact density
distribution from the gaussian. In fig. (2.12a) we therefore show the calculated density
profiles (solid) and, as mentioned in the previous section, recover the limits of a gaussian
(N = 1 × 103 atoms, dotted) and a Thomas-Fermi parabola (64 × 103 atoms, dashed)
for small and large interactions, respectively14. The peak density increases with the atom
number as expected for a gaseous BEC.
The case of the self-bound quantum droplet in fig. (2.12b) is more interesting. Here, we
find a gaussian density distribution for N = 1× 103 atoms. For larger atom numbers the
peak density increases and then saturates for N & 104 atoms at n0 ≈ 8 × 1021 m−3. In
this saturated regime, the droplet develops a constant bulk density with a finite surface
thickness. This behavior is typical for the liquid state emerging from the interplay of
repulsive and attractive interactions. Consequently, we find it in various systems for a
wide density range. Examples are the related ultracold Bose-Bose mixtures stabilized
by quantum fluctuations [48], droplets of liquid helium [67, 136], simple Lennard-Jones
liquids [145, 146], and atomic nucleii described by the macroscopic liquid drop model [147,
ch. 1].
In addition, the long-range character of the dipolar interaction gives rise to another class
of phenomena, that are known from classical ferrofluids [141]. In ch. 4, we discuss the
influence of confinement, which leads to ground states featuring multiple droplets.

2.5.2. Dynamics

With this numerical method, we can model any time-dependence of external parameters,
e.g. the magnetic field direction or the external potential, and study the related dynamics
14 In relation to the quantum pressure. For the former this contribution is dominant compared to the

interactions, while it can be neglected in the Thomas-Fermi regime.
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Figure 2.12.: Density distribution of a dBEC and a self-bound droplet for N =
{1, 4, 16, 64} × 103 (yellow to blue) atoms. For a gaseous dipolar BEC (a) the peak density
n0 increases with atom number N . Due to the dipolar interaction, there is magnetostriction in
the spherical trap. For large interactions and atom number, the density profile is well described
by a Thomas-Fermi parabola (dashed). In the other limit for small interactions, it can be ap-
proximated by a gaussian (dotted) [99]. In contrast, for a self-bound quantum droplet (b) the
peak density saturates at n0 ≈ 8 × 1021 m−3 for N & 104 atoms and it grows axially due to
increasing surface tension, exemplifying the liquid-like behavior. Note the rescaled radial axis.
Close to the critical atom number the density profile is well described by a gaussian (dotted).
The scattering length is as = 70 a0, and there is no external potential.

by real time evolution of the eGPE. An example is the moving laser beam we use to
measure the superfluid behavior of the dBEC in ch. 7. Collective excitations can be
extracted by monitoring the condensate after a small quench of the trapping potential, as
pointed out later. For now, we focus on the dynamics of the dBEC after a quench of the
scattering length. With chromium condensates, this leads to a d-wave collapse [35], where
numerical studies have been key to understand the dynamics. In this spirit, we examine
the modulational instability causing the fragmentation of a single dBEC into multiple
droplets [1, 2, 4]. We emphasize, that the ground state is a single droplet within the
experimental parameter range, and thus the fragmentation process is purely dynamical.

Modulational instability

The fragmentation into multiple droplets is triggered by a quench of the scattering length
to lower values, which in turns leads to a larger equilibrium density and dipolar strength
εdd. In steady state, both effects lead to the rotonization of the dBEC, which is the
underlying mechanism of the instability, see ch. 2.3.4. The softening of modes with finite
momenta k leads to a local collapse of the dBEC. In our system with finite size σz along
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Figure 2.13.: Modulational instability and droplet creation. (a) Evolution of condensate
density and phase after a quench of the scattering length from as = 140 to 70 a0 at t = 0 ms. We
use N ≈ 18× 103 dysprosium atoms in a trap with mean frequency ω0 = 2π× 70 Hz and aspect
ratio λ = 3. The field of view is (12µm)2 and the color code with white-gray-hue is proportional
to the logarithm of the density with a hue determined by the phase of the condensate. (b)
Isosurfaces of the density distribution in the last panel with 0.01n0 (gray) and 0.2n0 (red).

the dipole axis, the contributing modes with k σz ≈ 1 are not well-defined, and lead to
the instability we describe in the following.
For the simulation, a dBEC of N = 15 × 103 dysprosium atoms with scattering length
as = 140 a0 is prepared in its ground state. In order to model thermal fluctuations, we
add ≈ 3400 of atoms in randomly Boltzmann-weighted excited states corresponding to
T = 50 nK, see appendix A.1. At t = 0 ms we quench the scattering length instantaneously
to as = 70 a0 and compute the real time evolution of the eGPE for the subsequent 20 ms.
Figure (2.13a) shows the condensate density and phase for various times. At t = 0 ms we
acquire a stable condensate with uniform phase. The quench to lower scattering length
and thus larger equilibrium density leads to a rapid decrease in size and a radial density
modulation emerges at t = 4 ms. It leads to the formation of a single droplet surrounded
by a torus at t = 7 ms, see also [120]. Subsequently, the ring undergoes an angular collapse
[121], and splits up into multiple droplets at t = 9 ms. Unlike the mean-field approach
predicting a rapid loss of atoms in these references, the droplets are stable within the
eGPE and repulsive with respect to each other. The position of the droplets that emerge
along the transient torus is seeded by the initial fluctuations rendering the droplet creation
a stochastic effect. While the single droplets show a uniform phase, there is fast dephasing
between neighboring droplets within few ms due to a difference in atom number and thus
chemical potential. 10 ms later, the droplets arrange within their equilibrium distance,
which is illustrated in fig. (2.13b). Since the inter-droplet interaction is repulsive and
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isotropic in the plane, they arrange in triangular patterns. With a finite energy barrier for
the recombination, these states are metastable, which prevents the system from reaching
the ground state of a single droplet, see the previous section.
Such a simulation recreates both the formation time of ∼ 7 ms and the droplet patterns
we observed in the seminal experiment [1]. Introducing three-body losses, the observed
droplet lifetime can be reproduced additionally [54]. At this point, we also want to give
credit for the early computational contributions, that relied on a non-existent repulsive
three-body interaction instead of quantum fluctuations as the stabilization mechanism
[49–51]. Being a competing theory at the time, these were able to recreate the experiment
nicely and motivated the development of our own numerical simulations.
The modulational instability in an elongated geometry like a waveguide is very similar
and leads to a line of multiple droplets, as observed in [2]. In such a configuration, the
population of finite-momentum modes prior to the collapse dynamics was experimentally
confirmed by time-of-flight measurements of quenched dipolar erbium condensates [122].

Collective excitations

Other dynamic effects like collective excitations can be extracted by monitoring the size of
the cloud after a small quench of e.g. the trap [55], as shown in fig. (2.11b) for the lowest-
lying quadrupole and the scissors mode. There, the deviation in the droplet regime stems
from the fact, that the density profile is not a gaussian, as assumed with the variational
method. Such an approach is typically limited to small perturbations of the ground state
and thus only excites the lowest energy modes. In order to derive the full spectrum, the
time-dependent GPE can be linearized around the ground state solution. Within the
Bogoliubov theory, the Bogoliubov–de Gennes equations can be derived, which are then
solved numerically in order to obtain the excitation energies. This way, the full spectrum
of a cylindrical dBEC [148, 149] and a self-bound droplet [150] have been calculated. As
expected, this approach recovers the lowest-lying modes we obtained with the variational
ansatz in the last section.
Interestingly, there is a major difference in comparison to droplets of Bose-Bose mixtures
[48]. For these, the excitation energies of all modes are larger than the threshold −µ
for particle emission, in a certain atom number range above the critical atom number
Nc. In this regime, any residual excitation due to, e.g., finite temperature leads to the
evaporation of atoms and thus is expected to finally cool the droplet to zero temperature.
In contrast, for dipolar droplets the energy of the lowest modes is well below this threshold
and thus a full evaporation should not be possible.
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2.5.3. Beyond the eGPE

So far we discussed numerical solutions of the eGPE, that includes the Lee-Huang-Yang
correction to the chemical potential within a local-density approximation, see ch. 2.2.2.
Although there is good agreement with the experiment, this approach raises the question
whether higher-order terms or an approach beyond the local-density approximation need
to be included in some scenarios. While a more refined microscopic theory for the de-
scription of quantum droplets needs to be developed, we can resort to Quantum Monte
Carlo studies, where all of these effects are naturally included.
Within the path-integral ground state Monte Carlo formalism, the stabilization mecha-
nism due to quantum fluctuations has been confirmed qualitatively [151]. Further inves-
tigations using various Monte Carlo methods predict ground states of multiple droplets
with periodic boundaries [152, 153], harmonic confinement [154], and in a 2D geometry
[155] featuring off-diagonal long-range order. All of these approaches suffer from the im-
mense computational complexity of the Monte Carlo approaches and are thus limited to
a few hundred atoms, which in turn renders larger dipolar interactions necessary to have
sizeable effects. More importantly, they typically do not include a realistic atomic inter-
action potential, e.g. of van der Waals-type, and only assume a hard wall or a repulsive
r−12 term to describe the short-range physics.
Yet, with a more realistic scattering potential and densities matching the experiment,
quantitative studies could be important benchmarks for the applicability of the eGPE. In
a collaboration with the authors from [155], we plan to investigate the discrepancy of the
critical atom number for the self-bound droplet.
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Chapter 3
Experimental Apparatus

After we introduced the reader to the theory for ultracold dipolar bosons, which gives rise
to quantum droplets and a variety of interesting dipolar effects in dBECs, it is time to turn
to the experiment. With this machine we cool dysprosium atoms to quantum degeneracy,
manipulate their internal or external degrees of freedom and image the resulting density
distribution.
The whole apparatus including the laser systems has been thoroughly described in [69].
Additional theses describe our phase-contrast imaging technique [142, 156] and the dipole-
trap setup for the creation of a single droplet [143]. Basic laser cooling techniques are
covered in the book by C. Foot [157]. In the following, we briefly describe the properties
of dysprosium and its advantages for experiments with ultracold atoms, then we explain
the recent changes to the apparatus, and finally outline the preparation of a dBEC with
our setup.

3.1. Dysprosium

The element dysprosium belongs to the lanthanides series of chemical elements, char-
acterized by an open 4f -shell. The large natural abundance of two bosonic isotopes,
162Dy and 164Dy, and two fermionic ones, 161Dy and 163Dy, makes it a versatile choice for
the field of ultracold atoms [158]. As mentioned earlier, the electronic configuration is
[Xe] 4f 10 6s2 with a ground state 5I8. The bosons have a vanishing nuclear spin I = 0,
while the fermions possess a nuclear spin I = 5/2, which results in the hyperfine levels
F = 11/2, . . . ,

21/2 of the ground state. The sizeable total angular momentum J = 8 leads
to a magnetic moment µm ≈ 10µB and thus the largest magnetic dipole-dipole interaction
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Figure 3.1.: Laser cooling of dysprosium. (a) Energy levels in dysprosium. The ground
state 4f106s2 is even. We use the J = 8 → 9 transitions near 421 nm and 626 nm for laser
cooling in a Zeeman slower and a magneto-optical trap (MOT). Also shown are the dipole trap
wavelengths 532 nm and 1064 nm, that are far detuned from the dominant blue transition. (b)
Schematic of the full setup to create cold samples of dysprosium. After a Zeeman slower with
transversal cooling, atoms are trapped in the MOT and then transported to the glass cell. In
there, quantum degeneracy is reached by further laser and evaporative cooling.

amongst stable isotopes in the periodic table1.
The atomic energy spectrum is depicted in fig. (3.1a), showing a strong optical transition
at λblue = 421 nm with a linewidth of Γblue = 2π×32.2(8) MHz [159] and a weaker optical
cycling transition at λorange = 626 nm with a linewidth of Γorange = 2π× 136(4) kHz [160].
In the presented apparatus, this combination allows for fast pre-cooling to intermediate
temperatures with the former and subsequent cooling to temperatures of 10−5 K with the
latter [161]. Additionally, the strong line in the blue is beneficial for imaging of the atoms,

1 We compare the coefficient mµ2
m of the dipolar interaction in eq. (2.7). Tb has a similar magnetic

moment at slightly smaller mass compared to Dy. The actinides Bk, Cf and Es would have a 1.3−1.6
times stronger dipolar interaction, with the caveat of being radioactive [69]
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since the resolution of an optical system is proportional to the wavelength of the light
[109, ch. 4]. Both Nd:YAG wavelengths of 532 and 1064 nm, where high-power lasers are
available, are red-detuned with respect to the dominant transition at 421 nm and thus
can be used as optical dipole traps (ODTs) [125]. Finally, both BECs [40] and Fermi
gases [41] had been realized before our experiment was conceived, indicating favorable
scattering properties at low temperatures.
For these reasons, dysprosium is an optimal choice for the study of dipolar effects with
ultracold atoms.

3.2. Setup

In order to decouple the sample from the environment, experiments with ultracold atoms
are carried out in ultra-high vacuum chambers and are manipulated with external mag-
netic or electric fields and laser beams. The full setup shown in fig. (3.1b) allows for the
cooling to quantum degeneracy. It includes a high-temperature effusion cell, a Zeeman
slower directed at the MOT chamber, and a glass cell where we reach quantum degener-
acy and conduct the experiments. In the following we only list the recent changes to the
machine and the optics. For a thorough description of the apparatus see [69, 142, 143,
156].

Crossed ODT

The two optical dipole traps, which we use in a crossed configuration for forced evaporative
cooling have been rebuilt based on large-mode-area fibers2. Aiming for fiber input powers
of > 20 W, there is substantial heating of the fiber due to imperfect coupling with ∼ 70%
efficiency of the incident beam. For this reason we attached a copper heat sink to the
part of the fiber where the power is dissipated and actively stabilize its temperature with
a peltier element. Compared to the old fibers, which were prone to strong polarization
drifts and were burned on a regular basis, we achieve stable operation with a persistent
coupling efficiency and did not observe polarization drifts over the course of one year.
For ODT1, which is superimposed with the transport beam, we use a round beam with
a focused waist of 37µm to maximize mode-matching with the former. The maximum
power is P = 13.6 W measured in front of the glass cell. In contrast, ODT2 is elliptical
with waists of 38 and 120µm along ẑ and ODT1, respectively, and a measured maximum

2 ODT parts: Laser Coherent Mephisto Mopa 55W, fiber NKT aeroGUIDE-Power, collimators
Schäfter Kirchhoff 60FC-SMA-T-23-A18-03. Prior to this, we used the fibers OZ Optics
PMJ-A3HPC,A3HPC-1064-10/125-5AS-2-1-LMA with collimators from the same manufacturer
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Figure 3.2.: Schematic of glass cell and lightsheet. (a) For the manipulation and imaging
of the atoms, we employ two dipole traps ODT1 & 2 at 1064 nm for forced evaporative cooling
to quantum degeneracy. An additional lightsheet along the diagonal gives strong confinement
along ẑ and a deflection beam can be used to write time-averaged potentials. The objective with
an NA of 0.34 is used for in situ imaging. Not shown are the Doppler cooling at λorange and low-
resolution imaging with λblue along ODT2. (b) Our lightsheet setup creates a highly-elliptical
beam with two mounted prism pairs and a cylindrical telescope, which is then focused on the
atoms by a plano-convex lens. With the measured waist of 3.3(1)µm we reach trap frequencies
up to 2 kHz.

power of P = 10.5 W. With the combination of the two, we achieve a trap aspect ratio
λ ≈ 3. As shown in the previous chapter, this is necessary to prevent a strongly-dipolar
BEC, i.e. εdd > 1, from forming droplets with an order of magnitude smaller lifetime.

Lightsheet

We employ a highly elliptical beam, a so-called lightsheet, to have strong confinement
along the ẑ direction in the experiment. The setup3 is shown in fig. (3.2b), where the
beam from a large-mode-area fiber with a waist of 450µm is expanded by a factor 16
along the z direction and shrinked by a factor 4 perpendicular to it. Focussing this beam
with a single f = 100 mm plano-convex lens yields a waist of wz = 3.3(1)µm measured by
recording the transmission through a 1µm pinhole that is moved through the beam by a
piezo mirror. Mounted prism pairs have the advantage to magnify the beam by a factor

3 Lightsheet parts: Laser Coherent Verdi V10, fiber NKT aeroGUIDE-Power, collimators
Schäfter+Kirchhoff 60FC-SMA-T-23-A15-01, two mounted anamorphic prism pairs Thorlabs
PS883-A, a 4:1 telescope of Thorlabs LJ1996L1-A & LK1431L1-A, and a single f = 100 mm lens
Thorlabs LA1050-A to focus on the atoms.
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4 over a short distance of 31 mm, which should improve the mechanical stability of the
system, and the disadvantage of 85% transmission only. Indeed, compared to a first setup
relying on a design with ordinary lenses, we see a valueable improvement of the pointing
stability. In the experiment, we reach trap frequencies of fz = 2 kHz, fitting the expected
fz ∝

√
P scaling with respect to beam power P , where 100% correspond to a power of

∼ 250 mW. At the highest powers there is substantial heating lowering the lifetime of a
dBEC by an order of magnitude. With the lightsheet and the two ODTs above, we can
realize almost round traps (fx ≈ fy) with a trap aspect ratio of λ = fz/

√
fxfy up to 33

along the magnetic field axis. For such strong confinement, we realize effective tuneability
of the dipolar interaction by tilting the magnetic field in ch. 4. For future experiments, we
recommend to control the beam pointing with a piezo-driven mirror, as manual alignment
with such a small waist can be cumbersome.

Electro-optical deflector

The microscope objective4 we use for imaging is further designed to focus a tight trap
at λ = 532 nm on the atoms. In conjunction with an electro-optical deflector (EOD)
system5 the deflection beam can be used to write time-averaged potentials, as realized in
[156], where the setup is thoroughly described. For the experiment in ch. 7.1, we use it
to drag an attractive potential at constant speed through a dBEC in order to measure
its superfluid properties. For the current setup the beam waist is ≈ 1.5µm yielding a
deflection radius of almost 4µm. In order to obtain reproducible results, we trigger the
start of the beam movement with the experiment control, fixing the phase of the stirring
sequence in between runs, see [162] for the implementation. We additionally realized
a repulsive deflection beam with a λ = 405 nm laser6, that is superimposed with the
attractive beam on a dichroic mirror, and shall be used to create vortices in a dBEC, as
outlined in ch. 7.2.

Phase-Contrast Imaging

Our imaging technique based on [163] is thoroughly described in [156]. With a magnetic
field B ‖ ẑ pointing along the beam, linearly polarized light decomposes into equal parts
of σ− and σ+ light. With an atom in the stretched state mJ = −8 of the J = 8 ground

4 Microscope objective: Custom design by Special Optics with an effective focal length of f = 25 mm
and a numerical aperture of 0.34. We achieve a resolution of 0.99(3)µm at λblue = 421 nm [156].

5 Deflector parts: Both the two deflectors Conoptics M311A with 1.5 mrad deflection, and the pockels
cell Conoptics M350-50C-01 with 350:1 extinction are equipped with 200 kHz drivers and controlled
by a real-time processing system ADwin Gold II.

6 Based on a Thorlabs L405P150 laser diode with 150 mW power in a custom housing.
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state the former couples to the mJ ′ = −9 state. For the σ+ transition to the mJ ′ = −7
state, the coupling and thus the resulting phase shift of the atoms is suppressed by a factor
of ∼ 150 due to the difference in Clebsch-Gordan coefficients. This setup can be seen as
an interferometer, relying on the differential phase shift of these two polarizations. The
detuning ∆ of the imaging laser from the resonance at λblue is proportional to the inverse
phase shift and chosen such, that we operate the interferometer on the slope of the first
interference fringe. In the experiment, it is in the range ∆/Γ421 = 5 to 50 depending on the
column density of the object along the imaging beam. This way, our imaging technique
relies on a magnetic field pointing along the imaging beam with a linear polarization [156].
In order to image atoms with tilted magnetic fields7 B < 1.4 G, we ramp up the fast coils
along ẑ to ∼ 10 G within 100µs prior to imaging. This way, the density distribution
is unaffected during the imaging phase, while still having a sufficient projection of the
magnetic field along the imaging beam.

Magnetic Field

For the experiments in chapters 5 and 4 we tilted the magnetic field and modulated
the field angle with large “cage” coils around the glass cell. Designed to compensate
the surrounding magnetic field, these only reach magnetic fields below 2 G and are slow
limiting a 90◦-tilt of the magnetic field in the xy-plane to ∼ 3 ms. The amplitude of
the magnetic field is important, since there are convenient Feshbach resonances located
around 5 and 7 G for 162Dy and 164Dy, respectively. The measurements in ch. 4 were
limited by the narrow Feshbach resonance in use.
To circumvent such problems, we added two sets of coils in the xy-plane around the glass
cell [164], see fig. (3.2a). Paired with a bipolar current source8, we reach a magnetic field
of 10 G from DC up to a cut-off frequency of 500 Hz. With these, we have control of
the magnetic field on the sub-mG level. Calibration of these coils with radiofrequency
spectroscopy shows a deviation of less than 5 mG from the expected linear behavior over
the ±10 G range, which we attribute to magnetic field noise and drifts of the surrounding
electronics and magnetic fields.

3.3. Cooling to quantum degeneracy
The typical preparation cycle of an ultracold sample starts with a gaseous beam of dys-
prosium atoms, that is emitted from an effusion cell heated to T = 1250 ◦C. This beam

7 For the experiments presented here, we exploit a narrow Feshbach resonance located at 1.326(3) mG.
8 Driver: Highfinesse BCS 4A/5V with < 2.5× 10−5Imax current stability and reproducibility
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3.3. Cooling to quantum degeneracy

is then decelerated in a Zeeman slower with λblue to a final velocity of ≈ 14 m/s. Then,
atoms are slow enough to be captured in a narrow-line magneto-optical trap (MOT) op-
erated at λorange with a Doppler temperature TD = 3.3µK [161]. In order to increase
the atom number by a factor 3-4 we additionally apply Doppler cooling after the effusion
cell reducing the transversal velocity. This increases the flux of atoms, that are emitted
into the solid angle of the MOT. This way, we typically capture N = 108 atoms of either
bosonic isotope at a detuning of ∆ = −35 Γorange and a final temperature of T = 12µK
after compression of the MOT. Around 2× 107 of these are loaded into an ODT operated
at λ = 1070 nm, resulting in temperatures of T = 180µK due to recompression. With
the focussing lens mounted on an air-bearing stage, we transport the atoms in this beam
to the glass cell.
A schematic of the setup around the glass cell is depicted in fig. (3.2a). From the transport
beam we load the atoms in a crossed optical dipole trap of the two focused beams ODT1
and ODT2. The former is mode-matched with the transport beam to increase the loading
efficiency, while the latter is elliptical. We subsequently apply Doppler cooling with
λorange reaching 18µK with 2 × 106 atoms left. We then lower the power in both beams
exponentially for forced evaporative cooling of the thermal atoms. Finally, we obtain
almost pure dBECs with N164Dy = 1 × 104 or N162Dy = 3 × 104, respectively. Such a
dBEC is the starting point for the experiments conducted in this thesis.
In the experiments with the lightsheet, we ramp it up to ∼ 200 Hz during the evaporative
cooling to ensure smooth loading, since it is much smaller than the crossed ODT.
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Chapter 4
Striped states with tilted dipoles

Our initial observation of multiple stable quantum droplets [1] immediately raised the
fundamental question of supersolidity in this system. While the internal gauge symmetry
of a BEC is broken due to a common superfluid phase, the density modulation of these
states would additionally break the translational symmetry. The multi-droplet system
would thus be a density-modulated superfluid, which was coined a supersolid. In contrast
to recent claims of supersolidity, where the period of the density modulation is imprinted
by an external light field [165, 166] and superfluidity itself has not been shown, in our
system the density modulation is due to the intrinsic interaction of the atoms. This has
an important consequence, because it allows for finite-wavelength phonons with a defined
excitation spectrum, which is not the case for the mentioned systems. Other sates, where
anisotropy plays a crucial role, are stripe phases known from superconducting materials
[167], which have also been predicted for dipolar system in two dimensions [168].

In this chapter, we review our advances towards the realization of such a supersolid state,
which resulted in the publication [5]. First, we show the existence of “striped states” as the
ground state of a system of dipoles in an anisotropic trapping potential. We demonstrate
that these collectively ordered states break the symmetry along an axis perpendicular to
the confinement extending prior theoretical work predicting only single-droplet ground
states [54]. In the experiment, we study such an ensemble of dipoles in a constrained
geometry. We demonstrate the effective tuning of the mean-field dipolar interaction by
tilting the magnetic field in this geometry and additionally gain control over the number
of created droplets with the underlying trapping potential. With this tool we observe
such striped states with higher droplet numbers than theory predicts. We finally conduct
expansion measurements to investigate the coherence properties and outline a way to
establish phase coherence of the whole system.
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Chapter 4. Striped states with tilted dipoles

4.1. Ground state in an anisotropic trap

Dipolar quantum droplets share many properties of other liquids, as shown in the pre-
vious chapter. Yet, there is a peculiarity owing to the binding mechanism mediated by
the attractive dipolar interaction. If a droplet of a usual liquid is compressed along one
direction, it deforms conserving the volume and thus the density. For a dipolar droplet
that is compressed along the polarization axis, a deformation of the anisotropic density
distribution lowers the mean-field dipolar interaction and thus weakens the binding mech-
anism, which leads to strong frustration. For this reason, states with multiple droplets
might have lower energy than the single-droplet states in confined geometries.
In order to verify this idea, we perform semi-analytical calculations in a first step. For
this purpose we extend the ansatz presented in ch. 2.4 and introduce the wavefunction

ψg(x, y, z) =
√

Nd

π3/2σ̄3 exp
(
− x2

2σ2
x

− y2

2σ2
y

− z2

2σ2
z

)
(4.1)

of a single anisotropic droplet with Nd atoms and mean size σ̄ = (σxσyσz)1/3. In order to
derive the total energy E of a state with two equal droplets separated by a distance d, we
insert the wavefunction at the positions x = ±d/2 in the energy functional of eq. (2.22).
The total energy
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σ̄9/2 Iqf(u) (4.2)

for an atom number N = 2Nd is thus determined by the size of the single droplets σx,y,z
and the distance d, which define the aspect ratios κk = σk/σz and the rescaled distance
u = d/σx, respectively. While the first two terms covering the quantum pressure and
the harmonic potential are linear with respect to the number of droplets, the other terms
depend on the overlap of the two wavefunctions. For d = 0 we recover the solutions of a
single droplet [53, 55]. In this case, the integral

Idip(κx, κy, u) = exp
(
−1

2u
2
)
− 3 κxκy

(1− κ2
x)3/2

∫ √1−κ2
x
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x

(4.3)
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Figure 4.1.: Striped ground states. (a) The schematic shows a double droplet configuration
in the proposed harmonic trap. (b) Total energy per atom Etot/N for single (solid red) and
double (solid green) droplet solutions obtained from a variational ansatz. For fy & 200 Hz
the state with two droplets has lower energy than a state with a single droplet. Numerical
simulations of the extended Gross-Pitaevskii equation, see eq. (2.21), predict a higher number of
droplets for increasing fy in the ground state. Insets show the integrated column density along
ẑ for ground states with one (red dots), two (green squares) and four (blue diamonds) droplets.
(c) The ground state for fy = 800 Hz consists of several droplets. The finite density between
the droplets indicates an overlap of the single droplet wavefunctions. (d) For a similar system
with periodic boundary conditions along x̂ (fx = 0) the ground state exhibits the same density
modulation, thus breaking the continuous translational symmetry. Vertical lines represent the
edge of the box. See text for further parameters.

for the dipolar interaction reduces to the well-known geometry-dependent function

f(κx, κy) = Idip(κx, κy, 0) = 1− 3κxκy
(1− κ2

x)3/2

∫ √1−κ2
x

0
dχ χ2

√
1− χ2

√
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y

1−κ2
x

(4.4)

for zero distance [169, 170]. Additionally, we define the integral

Iqf(u) = 2√
π

exp
(
−5

8u
2
) ∫ ∞

0
dv e−v2cosh

√2
5uv

5/2

(4.5)

with Iqf(0) = 1 for the quantum fluctuations term.

With this ansatz we can compare the energy of the single droplet and double droplet
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states. For this initial consideration, we choose N = 104 atoms of 164Dy with dipolar
length add, scattering length as = 70 a0 in accordance with the measurements in the next
chapter, and a harmonic potential with frequencies fx = 70 Hz, fy = 10 − 500 Hz and
fz = 1 kHz. For this parameter range, we indeed find local minima of the energy in
eq. (4.2) at both d = 0 and d > σx > 0. These correspond to the solutions for a single
(red solid) and double droplet state (green solid), respectively, as shown in fig. (4.1b) for
varying confinement fy. For fy & 200 Hz the ground state changes from the single-droplet
to the double-droplet state. This confirms the presented idea of confinement-induced
frustration leading to a density-modulated ground state.
We therefore expect to find ground states with even higher droplet numbers for increasing
confinement. In order to confirm this behavior, we resort to exact numerical simulations
which we use to compute the ground state as presented in ch. 2.5. Within the parameter
range of fig. (4.1b), we indeed find states with a single (red dots), two (green squares) or
even four droplets (blue diamonds) represented by exemplary insets showing the column
density integrated along ẑ. In the simulations, the transition from a single to a double
droplet state occurs at a higher confinement1 of 340 Hz.
Higher confinement along the droplet axis, see fig. (4.1c) for a state with fy = 800 Hz, and
higher atom number leads to a larger number of droplets in the ground state. Increasing
the confinement further, we find a BEC phase without any density modulation.
In order to highlight that this is a general phenomenon, we eliminate the confinement
along the x̂ direction and study the system with periodic boundary conditions. As shown
in fig. (4.1d), we find the same transition to a density-modulated ground state, where
we assume a linear density nx = 800µm−1 and a harmonic potential with frequencies
fx = 0, fy = 800 Hz and fz = 1000 Hz. In the BEC phase, this system features a
continuous translational symmetry, which is broken by the transition to the density-
modulated ground state. The corresponding length-scale is determined by the interplay
of interactions and confinement along the polarization axis. In previous experiments, the
ground state was always a single droplet because of the weak confinement [1, 2], although
we observed multiple droplets.
The discovered density-modulated states are especially interesting, because they share a
common phase throughout the stripes in the framework of the eGPE. Since the latter
is free of fluctuations, which would likely break this phase link, we need to investigate
the coherence properties with a different approach. Therefore we develop a more suited
model based on the description of BECs in double-well potentials with tunable tunneling
later. We note, that the ground states in fig. (4.1c,d) have a finite density between the

1 The simple model of the variational ansatz does not take into account the exact potential landscape
of the interaction with the neighboring droplet.
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droplets, which would allow to establish the phase link, and turn to the experiment for
now.

4.2. Tuning the mean-field DDI

In order to realize the necessary highly anisotropic trapping potentials experimentally
we added a lightsheet with strong confinement along ẑ, which is described in ch. 3.2.
With this setup we gain the ability to tune the mean-field dipolar interaction, as defined
in eq. (2.16). With a magnetic field along ẑ most of the atoms are in a side-by-side
configuration where the DDI is repulsive, while it becomes attractive for a magnetic field
perpendicular to ẑ in the lightsheet plane. In the first set of experiments we study this
effect in a highly oblate cylindrical trap (fx ≈ fy � fz). Starting with the experimental
cycle in ch. 3.3, we prepare a dBEC of 164Dy with ≈ 5000 atoms at a temperature
T ≈ 30 nK (30 % thermal fraction) and a magnetic field pointing along ẑ. We then ramp
up the lightsheet within 50 ms to increase the fz confinement and simultaneously reshape
the trap in the xy plane to the desired frequencies fx and fy with the infrared beams. As
sketched in fig. (4.2a), we subsequently tilt the magnetic field at a constant amplitude B
and rate β̇ = 0.33 deg/ms by an angle β with respect to the ẑ axis2.
Tilting the magnetic field, we observe magnetostriction, as explained in ch. 2.4. While the
effect has been reported in time-of-flight experiments [32] with 52Cr, this is the first in situ
observation. As shown in fig. (4.2b), we subsequently observe a sharp transition at the
angle βc to a state with a single or double droplet configuration. In order to quantitatively
define this angle, we utilize the Fourier transform of the acquired phase-contrast images.
For an image I of the integrated density distribution, we compute the spectrum |F(I)|2

and sum all values in a band of width ∆ky(x) = 4µm−1 along the x̂ or ŷ axis, respectively.
We then define the fourier anisotropy AFT as the difference of these sums normalized by
the sum over the disjunct area of both bands. This way, it only relies on the anisotropy
of the fourier transform and is independent of atom number. We plot AFT over the tilt
angle β in fig. (4.2b) along with the empirical fit function AFT(β) ∝ arctan

(
β−βc
w

)
, which

we use to extract both the critical angle βc and width w for the transition to the droplet
phase. We define the uncertainty of βc by the quadratic sum of the fit error and the
width w. With the presented approach, we have a reliable marker for the transition and
avoid to use a fit function, that would need to cover both a single and a double droplet
configuration.
For the first measurement in fig. (4.2c), we fix the magnetic field amplitudeB = 1240(5) mG

2 We verified experimentally, that the acquired results do not change for tilt rates β̇ ≤ 0.4 deg/ms.
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Figure 4.2.: Tuning the mean-field dipolar interaction. (a) Schematic of dipolar atoms
strongly confined along the ẑ direction with a magnetic field tilted under an angle β with
respect to the confinement axis. (b) Determination of the critical angle βc via the Fourier
anisotropy AFT . The gray bar marks the corresponding error, insets show a BEC elongated
by magnetostriction (left) and a double droplet state (right). (c) Critical tilt angle βc over
ẑ trap frequency for varying light sheet power and fixed magnetic field amplitude. In (d),
the dependence on the scattering length is shown by changing the magnetic field B for fz =
950(10) Hz (red) and 300(10) Hz (green). The Feshbach resonance at B0 = 1326(3) mG with
width ∆ = 8(5) mG [1] is marked.

and measure the critical angle βc for varying lightsheet confinement fz = 255(15) to
1669(43) Hz in an almost cylindrical trap with transversal frequencies fx = 46(1) −
53(2) Hz and fy = 46(1) − 60(2) Hz in this range. Thus, the trap aspect ratio is λ =
fz/

√
fxfy = 5.5(4) − 29.6(8). Within this configuration, βc saturates for fz & 900 Hz,

such that the dipolar interaction becomes independent of the confinement along ẑ.
In a second set of experiments shown in fig. (4.2d), we choose a fixed confinement
fz = 950(10) Hz (red) and 300(10) Hz (green) with fx = fy = 50(5) Hz and 48(5) Hz,
respectively. We vary the magnetic field B = 692(4) to 1294(4) mG in the vicinity of
a Feshbach resonance at B0 = 1326(3) mG with width ∆ = 8(5) mG [1]. According
to as/abg = 1 + ∆/(B0 − B) [71] we therefore tune the scattering length in the range
as/abg = 1.01 to 1.25. Approaching the Feshbach resonance, the critical angle βc in-
creases for both curves and seems to diverge close to the resonance, which is reminiscent
of the scaling of the scattering length in this region. The obvious upper limit is βc = 90 deg
with as > add, where the condensate is stable for any field direction.
With these two measurements we demonstrate the tuneability of the mean-field dipolar
interaction Φdd. Due to the strong confinement, we can prepare a stable BEC initially and
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then drive the transition to the droplet phase by this magnetic field tilt in a controlled
way.

4.3. Metastable states in the experiment

In the next set of experiments, we approach the setting of the theory section in order to
investigate the predicted states. Therefore, we use the procedure of the previous section
and additionally reshape the trapping potential in the xy plane prior to the magnetic
field tilt. We vary the transversal trap aspect ratio λxy = fx/fy = 0.19 to 2.36, such
that the mean trap frequency f̄ = (fxfyfz)1/3 is kept constant. With a fixed fz =
945(5) Hz, we adjust the transversal frequencies in the range fx = 25(1) − 75(2) Hz and
fy = 128(2)− 32(1) Hz.
Above the critical angle, we observe states with one to four droplets with a total atom
number of 1000-3000 and an additional ≈ 6000 thermal atoms. In fig. (4.3) we show
exemplary single-shot in situ images for various aspect ratios, as well as the mean number
of droplets (blue) averaged over 11 realizations in dependence of the aspect ratio λxy and
the tilt angle β. We integrate the images along the vertical direction ŷ and use a peak
detection algorithm counting the number of droplets. While the critical tilt angle βc (red
dots) is almost independent of the aspect ratio, the number of droplets increases with
decreasing λxy. For λxy > 1 the trap is elongated along the projection of the polarization
axis in the xy plane, and a single droplet forms. For λxy < 1, we frustrate the system
along this direction, which leads to the creation of multiple droplets. For β � βc, the
finite droplet lifetime lowers the mean droplet number due to three-body losses3. Unlike
in the previous droplet experiments, we hereby gain control of the number of droplets we
create with this sequence.
As expected from the theoretical investigation the number of droplets increases with
larger confinement fy, i.e. for smaller λxy, along the magnetic field component in the
plane. We confirm this scenario with numerical simulations of the experimental sequence
starting with N = 5000 atoms. Other parameters are the scattering length as = 70 a0

and the loss coefficient L3 = 1.25 × 10−41 m6/s [3], which we report in appendix B. We
thereby prepare a BEC at a magnetic field angle β � βc via imaginary-time evolution
of the eGPE. Subsequently, the angle is tilted at a constant speed of β̇ = 0.33 deg/ms in
real-time evolution. At the critical angle βc we observe the transition to one or multiple
droplets depending on the transversal trap aspect ratio λxy. A marker for this transition
is the combined two-body energy Econ+Edip that becomes negative for β ≥ βc (red dots).

3 At the given tilt rate β̇, it takes 60 ms to cover the range β = 70− 90 deg.
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Figure 4.3.: Striped states observed in an anisotropic trap. (a) Example single-shot in
situ images for varying transversal trap aspect ratio λxy = fx/fy. (b) Critical tilt angle βc (red
circles) and average number of droplets over λxy. We observe multiple droplets for λxy . 1 and
single ones for λxy & 1. Data is taken for B = 905(5) mG at a trap frequency of fz = 945(5) Hz
and averaged over 11 realizations. (c) Dynamic simulations of the eGPE confirm the creation of
multiple droplets for conditions where a single droplet is the ground state. Simulation parameters
are similar to the experiment, see main text.

The simulations, which are shown in fig. (4.3c), recreate all features of the experiment
and shows overall good agreement. The number of droplets is slightly higher, which we
attribute to the choice of the starting atom number and the loss coefficient, since the
number of droplets increases with larger atom number at the time of droplet creation, i.e.
for β = βc. Due to atom loss of the single droplets two of these can merge into a single
one, lowering the droplet atom number for β � βc.
Although we observe these striped states experimentally and recreate the behavior within
the framework of the eGPE, the ground state for the experimental parameters is still
a single droplet, which we obtain via imaginary-time evolution of the eGPE. Since the
fragmentation is a dynamic effect of the eGPE, we conclude that the BEC undergoes
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the modulational instability, which we explained in ch. 2.5.2 and observed in previous
publications [1, 2, 4]. Here, we induce the instability by the modification of the DDI rather
than the scattering length. Therefore, the observed states are likely excited metastable
states, since the strong repulsion between neighboring droplets prevents a decay to the
ground state. We emphasize, that this modulational instability prohibits the preparation
of the ground state in general. Additionally, there is no straight-forward way to determine
whether an experimental state is the ground state.

4.4. Coherence Properties

Although we cannot prepare a striped ground state experimentally, we are able to cre-
ate multi-droplet states, that might feature similar coherence properties as the predicted
states. In prior experiments [2], where we observed fringe patterns, we confirmed a coher-
ent phase relation extending throughout the droplet. In the following, we therefore focus
on the phase relation between neighboring droplets focusing on the simplest realization
of two droplets. In close analogy to the physics of condensates in double-well potentials
[171], we therefore conduct interference experiments. For two wave packets with local
phase θ1 and θ2, the interference pattern after expansion results in a fringe pattern with
a phase θ = θ2 − θ1 relative to the envelope. To ensure, that this simple behavior is
not modified by an additional long-range interaction, we conducted numerical expansion
simulations for the experimental parameters, which confirm this scenario.
With the methods described in the previous sections, we prepare a state with two droplets
and let them expand for 8 ms. For the experimental parameters, the droplet is close to
the self-bound regime [3], where the radial expansion is slow. Thus, we intentionally
“blow up” the droplets by increasing the scattering length with a magnetic field ramp
from B = 1245(5) mG to B = 1313(5) mG during the first 2 ms of the expansion. With
absorption imaging, we then obtain interference images like the ones shown in fig. (4.4a),
where the fringe spacing is well above the optical resolution. In order to analyze these,
we integrate along the polarization direction ŷ and fit the function

nint(x) ∝
[
1 + v cos(k(x− x0) + θ)

]
exp

(
−(x− x0)2

2σ2

)
(4.6)

corresponding to a cosine-modulated Gaussian. This way, we obtain the central position
x0 and width σ of the Gaussian as well as the fringe visibility v ∈ [0, 1] and relative
phase θ ∈ [0, 2π) of the modulation. By definition, θ is thus given by the phase of the
fringe pattern with respect to the distribution’s center of mass. In fig. (4.4b), we show

67



Chapter 4. Striped states with tilted dipoles

x

y

20 µm

1
v

θ

0 v 1 0 θ 2π

(a) (b)

Figure 4.4.: Interference patterns after 8 ms of expansion. (a) Two example realizations
with absorption image (top) and integrated density (bottom) showing fringes. We extract the
phase θ with respect to the center of mass of the distribution. (b) Polar plot and histograms of
relative phase θ and visibility v for 650 atom distributions. There is no preferred phase visible
indicating that there is no phase coherence between the droplets.

650 experimental realizations (v, θ) starting from a λxy = 1/4 trap with 3 or 4 droplets
initially. For a phase-coherent sample we would expect a preferred value of the phase,
which is clearly not visible in the data. A configuration with only two droplets shows the
same random distribution of relative phase θ and therefore no sign of phase coherence.
The absence of a fixed phase relation between droplets is caused by the modulational
instability, we discussed in ch. 2.5.2. Its stochastic nature leads to fluctuations in the atom
number of neighboring droplets and additional phase noise. The difference in chemical
potential then results in a random relative dephasing of the droplets.

Nevertheless, the desired phase link could be established by tunneling of atoms. In or-
der to describe this effect, we exploit the framework of bosonic Josephson junctions [171,
172]. Using the variational ansatz in eq. (4.2) for two droplets, we develop a two-state
model along the lines of [172], that was also used to study self-induced bosonic Joseph-
son junctions of dBECs in toroidal traps [173]. Within this framework, we define the
wavefunction

φ1,2 = 1
π3/4σ̄3/2 exp

(
−(x± d/2)2

2σ2
x

− y2

2σ2
y

− z2

2σ2
z

)
(4.7)
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normalized to
∫

d3r |φ1,2|2 = 1. The model yields the on-site interaction term

EC =
∫

d3r

[
g |φ1|4 + gqf

√
N

2 |φ1|5 +
(
|φ1|2 + |φ2|2

)∫
d3r′Vd |φ′1|

2
]

= g
1

(2π)3/2σ̄3 + gqf
2N1/2

53/2π9/4σ̄9/2 − gdd
f(κx, κy) + Idip(κx, κy, u)

(2π)3/2σ̄3 (4.8)

with on-site contributions for the contact and dipolar mean-field interactions as well as a
beyond-mean-field term. Being long-range, we additionally include the dipolar inter-site
interaction. In contrast, the tunneling term

EJ = N
∫

d3r φ1

(
−~2∇2

2m + Vext

)
φ2

= −~2N

4m exp
(
−u

2

4

) ∑
k=x,y,z

(
σ−2
k + m2ω2

k

~2 σ2
k

)
− u2

2σ2
x

 (4.9)

is a measure for the wavefunction overlap. Hence, it scales exponentially with the rescaled
distance u = d/σx. With these terms at hand, we can estimate the energy scales of both
quantum and thermal fluctuations in comparison to the tunneling energy. Within this
simple analysis, the phase link between two droplets should be robust against phase fluc-
tuations due to quantum noise for |EJ/EC| > 1 and EJ/kBT > 1 for thermal fluctuations
[174]. With dipolar quantum droplets, EC can be negative due to the dipolar interac-
tion and takes very low values of |EC| � 1 nK. For the experimental parameters shown
here, the hopping term EJ � 1 nK is negligible compared to the finite temperature of
T ∼ 50 nK in the experiment. This prediction matches our experimental observation of a
random distribution of relative phases.

In order to increase the tunneling, we propose to tune the trap frequency fx along the
tunneling direction, see fig. (4.5). For fx � fz, the droplet sizes are hardly affected and
the on-site term EC is almost constant. In contrast, we can control the distance between
the droplets, which allows to tune the tunneling term EJ by six orders of magnitude
well above the competing energy scales. To the far right, the corresponding frequency
is EJ/h > 1 kHz, which corresponds to tunneling times much faster than the lifetime of
∼ 300 ms for a trapped droplet.

Yet, we need to highlight the conceptual difference compared to contact-interacting BECs
in fixed double-well potentials. For the quantum droplet, the trapping potential of a
single particle is given by the interplay of interactions. As we have seen in fig. (2.12), the
wavefunction can significantly deviate from a Gaussian with a well-known scaling away
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Figure 4.5.: Tuning the coherence properties. On-site interaction EC (red) of eq. (4.8)
and hopping term EJ (green line) of eq. (4.9) for varying confinement fx perpendicular to the
magnetic field. This way the distance between droplets is varied and thus EJ can be tuned over
several orders of magnitude. The shape of the droplet wavefunction is not altered keeping EC
almost constant. The values are computed with the variational ansatz for N = 104 atoms and a
confinement fy = 300 Hz, where the double-droplet solution is the ground state. We also show
the typical temperature T = 50 nK of the experiment.

from the droplet at x > σx. With the tunneling term depending on the wavefunction
overlap, we therefore need to investigate the double-droplet system numerically.
For this purpose, we prepare a double droplet state with Nd = 2000 atoms each, which is
the ground state in a trap with frequencies fx = 100 Hz, fy = 1000 Hz, and fz = 500 Hz.
To describe the dynamics, we define the atom number imbalance z = (N1−N2)/(N1 +N2)
for the two droplets with numbers N1 and N2 as well as the relative phase θ. The time-
evolution with fixed z = 0, θ = 0 of the system in the ground state is trivial. At t = 0 ms,
we set the number imbalance to z = 0.1, which is a typical number we observe in the
experiment, in order to bring the system out of equilibrium and induce the dynamics.
With a distance of d ≈ 2.0µm, there is negligible tunneling and the number imbalance z
is preserved, see blue line in fig. (4.6a). Consequently, the difference in chemical potential
leads to dephasing, such that the relative phase θ increases linearly at a constant rate.
Residual oscillations stem from the breathing motion of the droplets. This behavior is thus
compatible with the experimental observation of an incoherent sample. In order to re-
establish phase coherence, we thus proposed to increase the trap frequency fx. Therefore,
we prepare the previously described state at fx = 100 Hz and in the time t = 0− 100 ms
linearly increase the transversal trapping to frequencies of fx = 180 (red), 210 (green)
or 230 Hz (yellow) and follow the evolution for another 100 ms. Thereby we lower the
inter-droplet spacing4, which leads to oscillations of the number imbalance z and complex

4 The equilibrium distances are 1.4, 1.3 and 1.2µm, respectively, for the described frequencies fx.
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Figure 4.6.: Coherence properties in simulations. (a) Evolution of atom number imbalance
z and relative phase θ for two droplets with N = 4000 atoms in total and an initial imbalance
z = 0.1. Within the first 100 ms, the transversal trapping fx is ramped from 100 Hz to various
final values inducing the dynamics. (b) Phase-space representation (θ, z) for the last 100 ms with
re-centered phase θ. For final frequencies of fx = 180 and 210 Hz we observe coherent Josephson
oscillations.

behavior of the relative phase θ, as shown in fig. (4.6a).
Inspired by [172], we classify the dynamics in the phase-space representation (θ, z) in
fig. (4.6b), which we extract for the time t = 100− 200 ms with a constant trapping po-
tential. For negligible tunneling, e.g. fx = 100 Hz (blue), the droplets behave classically
with a relative phase independent of the number imbalance. For 180 (red) and 210 Hz
(green), we obtain coherent Josephson oscillations between phase and number imbalance,
described by an ellipse in this representation5. In this coherent regime, we find frequencies
of up to ∼ 15 Hz for the exchange of particles and phase. As a consequence, the intrinsic
relationship dictates a small initial number imbalance z in order to realize small fluctu-
ations of the relative phase θ. A larger confinement fx gives a faster frequency due to
increased tunneling rates with a “squeezed” relative phase, but also leads to an increased
variation of the number imbalance, that finally results in self-trapping of the droplets.
In this regime, exemplified by fx = 230 Hz (yellow), a small droplet coexists next to a
larger one with little variation around z ≈ −0.4. Due to the large difference in chemical
potential, this again leads to dephasing.

5 As mentioned, residual oscillations are due to the droplets “bouncing” in the trap.
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Chapter 4. Striped states with tilted dipoles

The situation is different, when we introduce three-body losses to this process. For the
investigated parameters in the range fx = 180 to 230 Hz, phase-coherent states with a
relative phase θ ≈ π in conjunction with small oscillations on the number imbalance
z < 0.05 seem to emerge. For lower confinement of fx = 100 Hz the two droplets merge
into a single one. Although it seems to contradict our previous observations, such a
phase locking was also predicted for BECs in double-well potentials [172]. Yet, in order
to properly understand this effect, a systematic numerical study over a wider parameter
range is necessary.
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Chapter 5
Scissors mode of a droplet
Atomic nuclei exhibit giant dipole resonances, which were observed in the 1950s [175, 176].
In a semi-classical picture these correspond to an out-of-phase electric dipole oscillation of
the proton with respect to the neutron density distributions. In an attempt to generalize
this idea for deformed nuclei with anisotropic nucleon distributions, a simple rigid-rotor
model was formulated in the 1980s [177]. It predicted a magnetic dipole resonance,
that was then measured in 156Gd [178], and later coined the scissors mode. Within this
picture, it corresponds to a rotational out-of-phase oscillation of the proton with respect
to the neutron density distribution, as sketched in fig. (5.1a). The Hamiltonian features
a potential V = 1

2cθ
2 of a torsion spring at angle θ, which couples the proton and neutron

density distributions. The spring constant c is determined by the separation energy of
both constituents, which also gives rise to the asymmetry term in the semi-empirical mass
formula [179]. Typical resonance frequencies are ∼ 1021 Hz with angles of a few degrees.
In the context of ultracold atoms, an analogue of the scissors mode was predicted for
contact-interacting BECs in an anisotropic trap [180]. For this system, the rotation
under an angle θ of the anisotropic atomic density distribution with respect to the trap
symmetry axis, gives rise to a similar term ∝ θ2 within linear response. Therefore, a
sudden rotation of the latter results in an oscillation of the density distribution with
respect to the fixed trapping potential, see fig. (5.1b).
For such a rotating system1, the moment of inertia Θ determines the oscillation frequency.
Due to its irrotational character the moment of inertia of the superfluid differs from the
classical rigid-body value, which makes measurements of the scissors mode important
markers for superfluidity independent of the microscopic details of the system [60, ch.
14]. By measurements of the scissors mode frequency, the occurrence of superfluidity in

1 For simplicity, we assume a differential equation Θθ̈ = −c̃ θ with resonance frequency ω0 =
√
c̃/Θ.
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(a) (b) (c)

Figure 5.1.: Systems possessing a scissors mode along with the typical system size. (a) In
deformed nucleii, the scissors mode corresponds to an rotational out-of-phase oscillation of both
the proton (red) and neutron (white) density distributions. (b) For a contact interacting BEC,
the symmetry axis of the density distribution (green) rotates with respect to the anisotropic
trapping potential (white). (c) For a dipolar BEC or quantum droplet the density distribution
oscillates with respect to the polarization axis. Angles are exaggerated for clarity, (a) and (b)
are adapted from [179, fig. 56].

deformed heavy nucleii [181] and contact-interacting BECs [140] have been confirmed.
For dipolar condensates, the scissors mode is conceptually different from the latter, since
the dipolar interaction breaks the rotational symmetry. Thus, the density distribution
oscillates with respect to the polarization axis, as shown in fig. (5.1c). Based on our pub-
lication [7], we develop the description of the scissors mode for dipolar quantum droplets
and present its measurements in this chapter. First, we review the sum-rule approach to
derive the scissors mode frequency. Experimentally, we modulate the magnetic field angle
to drive the scissors mode of a trapped droplet. In addition, we excite the lowest-lying
collective mode of the droplet by a diabatic rotation of the magnetic field angle. By
comparison to the equations of motion derived in ch. 2.4.4, from these measurements we
finally extract a value of abg = 69(4) a0 for the background scattering length of 164Dy.

5.1. Sum-rule approach

While we introduced an analytical approach to derive the scissors mode frequency in
ch. 2.4.4, we outline a more elegant derivation based on sum rules developed by our
collaborators M. Isoard and S. Stringari.
Like in the experiment, we consider the polarization axis along ŷ breaking the rotational
invariance in the xy plane due to magnetostriction, see ch. 2.4.2. In this setting, the
scissors mode corresponds to an angular oscillation around ẑ, which is excited by the
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5.1. Sum-rule approach

angular momentum operator

L̂z =
N∑
k=1

(rx py − ry px)k (5.1)

for N particles. Employing linear response theory [60, ch. 7], we define the moments

mk = ~k+1
∫ +∞

−∞
dω ωkS(ω) (5.2)

of the dynamic structure factor S(ω) for the angular momentum operator. This approach
yields a rigorous upper bound

~ωsc =
√
m1

m−1
(5.3)

for the scissors mode frequency. In general, the moments can only be evaluated by solving
the Schrödinger equation for the corresponding Hamiltonian. Fortunately, there is a sum
rule relating the energy-weighted moment m1 to the set of commutators 1

2

〈
[L̂z, [Ĥ, L̂z]]

〉
.

For the Hamiltonian we assume a cylindrical trapping potential in the xy plane, such that
only the dipolar interaction breaks the rotational symmetry and all other terms commute
with L̂z. This way, we obtain

m1 = ~2

2
(
〈V x

dd〉 − 〈V
y

dd〉
)

with V α
dd(r) = µ0µ

2
m

4π
1− 3α2/r2

r3 (5.4)

corresponding to eq. (2.7) for dipoles oriented along the axis α = {x, y, z} and the expec-
tation value defined as 〈A〉 =

∫
dr′dr n(r)A(r − r′)n(r′). Using the gaussian ansatz of

eq. (2.37) for three dimensions, the moment finally reads

m1 = ~4N2
√

2πmσ̄3
add

[
f
(
σx
σy
,
σz
σy

)
− f

(
σy
σx
,
σz
σx

)]
(5.5)

with the geometry-dependent function f(κ1, κ2) defined in eq. (4.4). In contrast, the
inverse energy-weighted moment is determined by the static response of the system to a
perturbation of form −ωL̂z. It is therefore given by the moment of inertia

Θ = 2m−1 = 1
2mN

(
σ2
y − σ2

x

)2

σ2
y + σ2

x

(5.6)
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evaluated with the gaussian ansatz for a superfluid. Finally, we obtain

ω2
sc = 4~2Nadd√

2πm2σ̄3

σ2
y + σ2

x(
σ2
y − σ2

x

)2

[
f
(
σx
σy
,
σz
σy

)
− f

(
σy
σx
,
σz
σx

)]
(5.7)

for the frequency of the scissors mode of an anisotropic dBEC in an isotropic trap. In
contrast to the contribution

ω2
sc =

σ2
y + σ2

x

σ2
y − σ2

x

(
ω2
x − ω2

y

)
(5.8)

from an anisotropic trap breaking the symmetry [180], the former scales with both atom
number and dipolar interaction strength.
For a contact-interacting BEC, there is no dipolar interaction (add = 0), which results in
a size σk determined by the trap frequency ωk ∝ 1/σk. The scissors mode frequency in
eq. (5.8) above then reduces to ω2

sc = ω2
x+ω2

y, which was measured in [140] with a BEC of
87Rb. For a thermal gas, a damped oscillation at two frequencies |ωx ± ωy| was observed.
The lower frequency stems from the rotational character of the classical gas, as noted
in [180]. This experiment was therefore a strong hint for superfluidity of the interacting
BEC.
In the following experiments, we are interested in the dipolar contribution in eq. (5.7) and
thereby use a cylindrical trap (ωx = ωy), where the contribution from eq. (5.8) vanishes.

5.2. Measuring the scissors mode

Experimentally, we use the method developed in the previous chapter to prepare a single
dipolar quantum droplet of 164Dy in a cylindrically symmetric trap with fx = fy =
40(1) Hz and fz = 950(20) Hz. After the preparation procedure, the magnetic field points
along ŷ with a fixed magnitudeB0 = 800(5) mG. Due to the strong transverse confinement
the droplet phase with a smaller extent along ẑ compared to a gaseous condensate is
energetically favored. Thus, droplets exist for lower atom numbers compared to a spherical
trap due to the strong transverse confinement. Additionally, there are solition solutions,
which are stabilized by quantum pressure irrespective of quantum fluctuations, see the
phase diagram in [7, Supp. Mat.]. The measurements presented here are carried out in the
quantum droplet phase. After the preparation, we parametrically excite the scissors mode
by modulating the transverse magnetic field Bx(t) = Bx,0 sin(2πfmodt), with an amplitude
Bx,0 ≤ 200 mG and a frequency fmod. The magnetic field angle in the xy plane is then
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Figure 5.2.: Exciting the scissors mode. (a) Sketch of the dipolar droplet in a cylindrical
trap, where we modulate the magnetic field angle θ(t) ≈ θmod sin(2πfmodt). (b) Experimental
spectra of the area σxσy over a range of modulation frequencies for θmod = 12 deg (blue) and
7 deg (red). (c) Spectra obtained by numerically solving the equations of motion corresponding
to eq. (2.43) for the experimental procedure and a scattering length as = 68 a0, see main text.
The scissors mode frequency of eq. (5.7) (dashed line) derived in the linear regime coincides with
the small-angle response for θmod = 2 deg (yellow).

approximated by θ(t) ≈ Bx(t)/B0 = θmod sin(2πfmodt), as sketched in fig. (5.2a). In the
droplet phase the density is high and the droplet atom number decays from 750 initially
to 400 within ∼ 150 ms due to three-body losses. Therefore we restrict the modulation
time to ∆t = 20 ms, for which the atom number variations ∆N/N ≤ 0.1 are still small.
This way, the measurement resolution is fourier-limited to ∆f ∼ 1/∆t = 50 Hz. In order
to keep the energy of the “excitation pulse” fixed, we rescale the modulation amplitude
θ̃mod = θmod

√
100 Hz
fmod

with the drive frequency fmod.
After the modulation sequence, we image the density distribution via phase-contrast imag-
ing. A Gaussian fit of the form n(x, y) = N

πσxσy
exp

[
−x2/σ2

x − y2/σ2
y

]
to the central region

of the cloud then yields the atom number N as well as the sizes σx and σy in the imaging
plane. We thereby assume a constant density distribution of the remaining thermal frac-
tion in this region. A fit of the sum of two Gaussians for both the droplet and thermal
distribution typically gives a lower droplet atom number, differing by 25 % on average.
We only quote the former method here, since it is more robust, and account for this
effect with a systematic uncertainty ∆N/N = 0.25 on the number of condensed atoms
within the droplet. The finite resolution of our imaging system with 1µm according to
the Rayleigh criterion [109, ch. 4], puts a lower limit on the extracted transverse size
σx ≈ 0.6µm of the droplet with a calculated size of ≈ 0.3µm. Along the other axis, the
size is σy ∼ 1.5µm typically. The limited excitation time and optical resolution make it
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Figure 5.3.: Modulation frequency over atom number. (a) Experimental spectra of the
droplet area σxσy for various atom numbers. (b) Time-dependent theory according to eq. (2.43)
for a scattering length as = 68 a0. The dashed line shows the scissors mode frequency of eq. (5.7).

necessary to use large excitation amplitudes θmod of 7 deg or 12 deg in order to observe an
effect, which is clearest in the area σxσy of the droplet, where an excitation should lead
to a larger value. In fig. (5.2b), we show an example spectrum for a droplet atom number
N = 390(100), where multiple peaks appear with a position depending on the modulation
amplitude.
As expected, the sum rule approach resulting in eq. (5.7) is only valid in the linear
regime. Therefore we derived the equations of motion, as outlined in ch. 2.4.4, that allows
for a non-linear coupling to other collective modes. Solving the equations of motion
numerically with the experimental excitation scheme for various droplet atom numbers
yields the spectra shown in fig. (5.2c). Starting with the lowest amplitude θmod = 2 deg
(yellow), we obtain a single peak recovering the linear scissors mode frequency according
to eq. (5.7) (dashed) with a width given by the Fourier limit ∆f . With larger excitation
amplitude, this peak shifts towards smaller frequency developing additional peaks at larger
frequencies. For θmod = 12 deg (blue) we find two comparable peaks with a splitting of
∼ 100 Hz and additional smaller features at higher frequency. Comparing to the presented
experimental spectra, we find very good agreement for both the shape and peak position.
Extending our measurements to the range of accessible atom numbers N yields the spec-
trum in fig. (5.3) for the largest modulation amplitude. With increasing atom number
the two peaks merge into a broad feature and the overall frequency increases. Again,
this spectrum is well reproduced by the time-dependent theory. For comparison we again
show the scissors mode of eq. (5.7) in the linear regime (dashed), that deviates from the
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acquired spectrum especially for large atom number. According to eq. (5.7) we would
naively expect the scaling ωsc ∝

√
N for the scissors mode frequency, but there is an

implicit dependence on atom number in the sizes σx,y,z.
The presented theoretical spectra are calculated for a scattering length as = 68 a0, where
we find good agreement with the experiment. In order to extract a value for as along
with a confidence bound, we quantify the deviation of experiment and theory by defining
an error function E = ∑

k [(σxσy)k,exp − (σxσy)k,theo]2 by summing over the difference in
droplet sizes for all modulation frequencies k. In order to take systematic deviations
like the finite imaging resolution into account, the droplet sizes (σxσy) are rescaled by
their respective minimum and maximum values prior to subtraction. The derived error is
sensitive to the value of the scattering length and we define the confidence interval where
the error function takes double the value of the minimum. This way, we obtain a value
as = 68(5) a0 for the scattering length.
We also note that the magnetic field amplitude is chosen far from Feshbach resonances
[182], such that the scattering length corresponds to the background value, abg = as, and
there is no variation of the scattering length when modulating the magnetic field in the
presented way. In the experiment, we additionally confirmed, that a modulation of the
magnetic field amplitude with fixed angle yields no visible excitation in the experiment.
As mentioned before, measurements of the scissors mode were used to provide evidence
for superfluidity due to a modified moment of inertia. For the quantum droplet the large
aspect ratio leads to a well-defined scissors mode, but at the same time a moment of
inertia close to the one of a classical rigid body, although being superfluid, such that no
clear distinction is possible. Yet, we presented interference fringes of quantum droplets in
[2] and the previous chapter, confirming superfluidity of quantum droplets.

5.3. Coupling to other modes

The non-linear coupling to other modes gives rise to the complex spectrum for the scissors
mode measurements with large excitation angles. While it complicates the theoretical
description, we can also exploit this effect and excite other modes by modulation of the
magnetic field angle.
Here, we rapidly rotate the magnetic field by 90 deg in the xy plane, as sketched in
fig. (5.4a), which excites the lowest-lying collective mode. Limited by the inductance of
the coils surrounding the glass cell, the minimum time to rotate the magnetic field is 3 ms
with a constant magnitude of B0 = 800 mG. During this rotation, the droplet orientation
follows the magnetic field axis almost instantaneously. Limited by the finite resolution of
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Figure 5.4.: Excitation of a collective oscillation by a rotation quench. (a) Schematic
of the experiment. We rotate the magnetic field angle by 90 deg within 3 ms. This time is slow
enough for the droplet to follow and fast enough to excite the lower quadrupole mode. (b) The
oscillation frequency fosc of the axial droplet size for varying lightsheet confinement fz. The
uncertainty is determined by the fit (black) and finite observation time (gray). Lines correspond
to the time-dependent variational ansatz for different scattering lengths as.

the imaging system, which leads to a large uncertainty on the droplet orientation, we do
not observe an oscillation of the latter after the magnetic field rotation. Instead, we find
a strongly damped oscillation of the droplet’s size along the long axis for up to 20 ms. It
corresponds to the excitation of the lowest-lying collective mode we presented in ch. 2.4.4,
which was also observed in [56].
In fig. (5.4b) we plot the corresponding oscillation frequencies fosc for various values of
the transverse confinement fz, which is adjusted by the lightsheet, and an atom number
of 690(150) in the droplet. While the errors on the confinement are negligible, the black
error bar shows the squared sum of the standard error and the decay time extracted from
a fit to the experimental data. The larger error (gray) corresponds to a 100 Hz bound due
to the short observation time.
For the time-dependent theory (colored lines), we take the measured magnetic field angle
θ(t) into account and find qualitatively the same behavior as in the experiment. The
extracted frequencies along the long axis also increase with the confinement, yet we find
a slightly different slope. A fit to the experimental data yields the best agreement for a
scattering length as = 70.5(6.0) a0. With a similar analysis as in the previous section, we
find a frequency uncertainty of 2 a0 and an uncertainty of 5 a0 due to the systematic error
of the atom number, resulting in the squared sum of 6 a0.
Both measurements of collective excitations presented in this chapter yield compatible
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values for the background scattering length abg = as, since it was measured at a magnetic
field magnitude isolated from Feshbach resonances. Combining the two measurements we
finally obtain

abg = 69(4) a0 (5.9)

as the error-weighted mean value for 164Dy [183]. Figure (2.11) shows a sizeable difference
between the collective modes frequencies in the droplet phase acquired with the Gaussian
ansatz compared to the simulations. These stem from the difference in density distribution
and thus peak density for the large atom number of N = 104, cf. fig. (2.12). In contrast,
for the atom numbers in the experiment, the density profile is well described by a Gaussian
for N ≤ 103 atoms. Putting an upper bound, we compared the frequencies acquired by
simulations and the variational ansatz in the linear regime for N = 103 atoms. In order
to match the simulation, we need to shift the scattering length of the variational method
by −1.2 a0 for the lower quadrupole and +0.1 a0 for the scissors mode frequencies. The
systematic error of using the variational method is thus negligible for the range of atom
numbers presented in the experiment.
In comparison to other experiments, the value of the scattering length is compatible
with 70 a0, which we used for the simulation in fig. (4.3c) yielding good agreement. The
measurement of the critical atom number for self-bound droplets points towards a lower
value of 62.5(2.4) a0 [3, 143]. In contrast, measurements with thermal gases yield an
error-weighted mean of 92(7) a0 [11, 184, 185].
In conclusion, we hereby presented a novel tool to excite collective modes by modulation
of the magnetic field angle and the first measurement of the scissors mode for a dipolar
quantum droplet. The coupling with other fundamental modes of the droplet allows to
excite these in the non-linear regime, which we exploit to measure the frequency of the
low-lying quadrupole mode. Both measurements yield qualitative agreement with the
eGPE and we use the background scattering length abg as a fit parameter, that yields
good agreement for both measurements, but deviates from previous measurements. We
discuss this discrepancy in more detail in the following chapter.
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Chapter 6
Self-bound droplets
In this chapter, we give additional insight to the experimental observation of self-bound
droplets in [3]. While the experimental details have been thoroughly described in a
previous thesis [143], we focus on the theoretical side here. We point out, that this
observation was only made possible by our own numerical simulations, that were triggered
by the discussion of the self-bound state in [55].
In the first section, we explain the nature of the transition from the liquid to the gas phase,
which is driven by atom number losses in the experiment. By means of the simulations we
thereby gain additional insight in the process. In the subsequent section we analyze the
critical atom number for the stability of a quantum droplet we measured in the experiment,
which deviates from the prediction of the eGPE. We benchmark this deviation with two
theoretical approaches, that include additional finite-temperature effects.
The self-bound object opens new possibilities, but at the same time also imposes new
restrictions on the experiment. Thermometry, for example, is not possible with the stan-
dard experimental tools. That is why we theoretically exploit the feasibility to immerse
a fermionic impurity in the bosonic quantum droplet. These studies were also published
in [9], and could be used to measure the temperature of the droplet.
The chapter ends with the discovery of another class of quantum droplet solutions, which
emerge for negative dipolar interaction. Due to the anisotropy of the latter, these pan-
cakelets are very flat two-dimensional objects.

6.1. Liquid to Gas transition

The most striking property of the liquid-like state, the saturation of the peak density was
already shown in fig. (2.12). Here, we reconstruct the behavior of a quantum droplet in the
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Figure 6.1.: Self-bound droplet with losses over time. Simulation of the time-evolution
starting with N = 5000 atoms in free space. (a) Atom number N (blue) and peak density
n0 (red) over time t. The atom number in the droplet decays almost exponentially until it
reaches the critical atom number Ncrit = 931 (dashed). Since the peak density drops rapidly
and suppresses the losses, N is constant afterwards. (b) Radial and axial sizes σr (blue) and
σz (red) with the latter showing the lowest-lying mode of the droplet. (c) Energy contributions
over time with total energy Etot (blue) consisting of quantum pressure Ekin (red), quantum
fluctuations Eqfluc (green) and the two-body contributions Econ +Edip (yellow). The transition
from the liquid to the gas phase is determined where Ekin +Econ +Edip (gray dashed) becomes
positive.

experiment [3] by studying its time evolution in simulations. For this purpose we compute
the ground state for N = 5000 atoms of 164Dy with a scattering length as = 70 a0 and
add = 131 a0 without any trapping potential and subsequently study its evolution with
finite three-body losses L3 = 1.25× 10−41 m6/s, see appendix B.

As shown in fig. (6.1a), the decay of the atom number N (blue) is almost exponential up
to a point tcrit ≈ 34 ms (vert. dashed line), where the critical atom number Ncrit = 931 is
reached and the decay stops (inset). While the peak density n0 (red) only slowly decreased
for larger atom number, at this point it drops rapidly, since both the radial and axial sizes
σr and σz increase, see fig. (6.1b). Driven by the decay, we find an oscillation of the axial
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size σz (red) of the droplet. This corresponds to the lowest-lying quadrupole mode we
discussed in ch. 2.4.4, which becomes slower for lower atom number. For a system with
losses, this is an important benchmark to determine whether a system is self-bound or
actually expanding at very low velocity. If the system can carry out one oscillation of the
lowest-lying mode within its lifetime, we call it self-bound.
To understand the underlying process driving the transition to the gas phase, we further
study the energy contributions in fig. (6.1c). Initially, the total energy Etot is negative and
becomes positive around 17 ms, where the self-bound droplet is still stable [54]. Since the
transition occurs much later, we are looking for repulsive terms, that could overcome the
combined two-body interaction Econ +Edip (yellow), which is attractive for the quantum
droplet. Since there is a different scaling with density, as can be seen in the eGPE
of eq. (2.21), the contribution Eqfluc due to quantum fluctuations (green) decays faster
than Ekin governing the quantum pressure (red), which becomes the leading repulsive
term for atom numbers close to Ncrit. At the point where the density drops, the sum
Ekin +Econ +Edip (dashed gray) turns positive, since the single-particle quantum pressure
of the atoms overcomes the residual attractive two-body interactions. Thus, the droplet
solution vanishes and the atoms expand in the gas phase. Since the density drops quickly
within this “evaporation” three-body losses are suppressed and the atom number stays
almost constant afterwards. Therefore, this is where we define the critical atom number
Ncrit, which yields 931 in this example. We note that this approach matches the result
Ncrit = 932(12), that we usually quote when testing for a stable solution in imaginary time
evolution1. More importantly, this behavior verifies our experimental measurement of the
atom number. There, we took the images at variable times after the droplets evaporated,
where the atom number is almost constant [3].

6.2. Critical atom number revisited

The critical atom number for the existence of a self-bound droplet was measured in [3],
where we used the strength of the contact interaction, given by the background scattering
length abg, as a fit parameter to match these measurements with the theory of the eGPE.
Within this analysis a value abg = 62.5(2.5) a0 was found [143], which is clearly lower than
the measurements of the droplet’s collective excitations in ch. 5 yielding 69(4) a0.
Our experiments are carried out at finite temperatures of a few tens of nanokelvins,
which cannot be reproduced by the zero temperature theory of the eGPE. However,
thermal fluctuations give rise to a shift of the chemical potential [186, 187], much like the

1 The error here corresponds to the step in atom number we probe with the simulations.
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quantum fluctuations we introduced in ch. 2.2.2. In order to get a first estimate of the
effect, we extend the variational ansatz in eq. (2.38) for thermal fluctuations [188], which
reads

Ethermal = 211/2m
√
as

3~2π3/4 (kBT )2 S(εdd)
√
Nσ2

rσz (6.1)

with a function S(εdd) = −0.01029 ε4
dd + 0.02963 ε3

dd−0.05422 ε2
dd + 0.009302 εdd + 0.1698.

The latter is valid for εdd ∈ [0, 2] and suppresses thermal effects by a factor ∼ 3 for
εdd = 2 compared to zero dipolar interaction. A similar term derived in ref. [186] follows
the same scaling Ethermal ∝ T 2√Nas. In fig. (6.2a), we show the effect on the critical
atom number for temperatures of T = 50 nK and 100 nK (red) compared to the reference
for zero temperature (black)2. In our range of interest as = 60 to 75 a0, this effect is
negligible but becomes important for higher scattering length.
However, there is an additional finite-temperature effect for the scattering properties
of dysprosium atoms. Calculations of the scattering amplitude beyond the usual Born
approximation give rise to a temperature-dependent enhancement of the DDI [83, 84].
There, the dipolar length add increases by +2 % (+10 %) for T = 10 nK (100 nK) compared
to the result obtained within the Born approximation. A larger dipolar interaction leads
to a lower critical atom number (blue), which is a sizeable effect over the full range of
scattering length. In fig. (6.2b), we therefore compare our experimental data set shifted
for both background values of the scattering length (gray and green) to the critical atom
number obtained with numerical simulations. For the background value of abg = 69(4) a0

we find good agreement with the +10 % enhancement, pointing towards a systematic
enhancement of the DDI.
Obviously, such a systematic shift also influences the measurement of the collective modes
in ch. 5. Including it in the calculations shown in ch. 2.4.4, we actually find a background
value, that is 4 a0 higher compared to the evaluation based on the Born approximation
yielding abg = 69(4) a0. This would in turn lead to a larger deviation from the measure-
ment of the critical atom number for the self-bound droplet supporting our argument of
a systematic enhancement of the DDI.
For thermal gases there are three measurements for the background scattering length in
164Dy. These resulted in abg = 92(8) a0 by cross-dimensional relaxation [184], 91(16) a0

by molecular association close to a Feshbach resonance [11], and 96(22) a0 by anisotropic
dipolar expansion [185]. The error-weighted mean of these is abg = 92(7) a0. In these
experiments, the value of the total elastic cross section consisting of contact and dipolar

2 For simplicity, we use the variational ansatz and calculate the atom number, where the total energy
is zero. The critical atom number for the existence of the bound state, which we usually quote, is
slightly lower.
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Figure 6.2.: Critical atom number of a self-bound droplet. (a) Variational ansatz mark-
ing the atom number N yielding zero energy of the droplet for thermal fluctuations (red) at
temperatures T = 50 and 100 nK in comparison to an enhancement of the dipolar interaction
(blue) of add/add,ref = 1.05 and 1.10 for similar temperatures. The reference (black) is the zero
temperature theory of the eGPE for add,ref = 131 a0. (b) Comparison with the experimental
data for 164Dy [3], where the background scattering length abg = 62.5(2.5) a0 was used as a fit
parameter (gray points) to match the eGPE theory (black). Measurements of collective excita-
tions in ch. 5 yield a higher value abg = 69(4) a0 shifting the data (green), which are slightly
offset in N for better readability. Theory lines are calculated with numerical simulations. See
text for further parameters.

contributions was measured and in a second step the value of abg = 92 a0 deduced as-
suming a fixed add = 131 a0. An enhancement of the DDI would therefore cause a weaker
contact interaction for the same cross section. To estimate this effect, we consider the
low-temperature dependence of the total cross section in eq. (2.9) and fix the scattering
length to our measured value of abg = 69 a0, which yields a dipolar length add = 188 a0

recovering the same cross section as the values above. Extrapolating the dipolar enhance-
ment in [84], this value corresponds to a temperature of ∼ 1µK, which is typical for such
thermal experiments.

Based on this simple estimate, we therefore argue, that the discrepancy in measured scat-
tering length — both in the ultracold and thermal regimes — is caused by the enhancement
of the dipolar interaction for finite temperature. Obviously, there are further theoretical
studies on the scattering properties of dysprosium atoms for higher temperatures needed
to finally conclude this topic.
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Chapter 6. Self-bound droplets

6.3. Fermionic impurity in a dipolar quantum droplet

In order to examine the effect presented in the previous section, we need to measure the
temperature of the droplet. Unfortunately, the standard tool for thermometry is rendered
useless for self-bound objects, since it relies on the expansion of the atom distribution
after being released from the trap in a time-of-flight experiment. For droplets of liquid
helium the immersion of impurities permitted remarkable insights in their properties [189].
They are even used as spectroscopic environments cooling single molecules and clusters
to cryogenic temperatures. Inspired by this development, we study the immersion of a
fermionic dipolar impurity in a bosonic quantum droplet. The following considerations
have been published in [9] with greater detail.

Accordingly, we are interested in the study of a Bose-Fermi mixture with dominant DDI. In
its most general form within second quantization, the full Hamiltonian Ĥ = Ĥf +Ĥb +Ĥbf

of the system consists of the intraspecies contributions

Ĥf = ~2

2mf

∫
dr∇ψ̂†f · ∇ψ̂f + 1

2

∫
dr dr′ ψ̂†f (r′)ψ̂†f (r)Uff(r − r′) ψ̂f(r)ψ̂f(r′) (6.2)

for fermions and similarly for bosons, and the interspecies interaction

Ĥbf = 1
2

∫
dr dr′ ψ̂†f (r′)ψ̂†b(r)Ubf(r − r′) ψ̂b(r)ψ̂f(r′) . (6.3)

As shown in ch. 2, the predominant interactions for ultracold dipolar atoms are the contact
interaction of eq. (2.5) and the DDI of eq. (2.7). The cross section of the former vanishes
for fermions in identical spin states due to the Pauli principle.

We are interested in the immersion of few fermions Nf in a droplet with many bosons
Nb � Nf . In this limit, we neglect any back-action of fermions on the bosonic droplet
state. Scaling with atom number, the interspecies interaction is thus much larger than
the fermionic intraspecies DDI. Furthermore, the bosons are subject to quantum depletion
[190], which is small even for quantum droplets that are stabilized by quantum fluctuations
[53, 55]. This way, we neglect any interaction of depleted bosons with fermions and the
intraspecies DDI of fermions. We estimate the order of magnitude of these effects later.

With this simplification the bosonic quantum droplet is not modified by the fermions, and
we can describe it with our usual tool, the eGPE, to obtain the bosonic density distribution
nb(r) and ground state energy Eb. For the interspecies interaction Ĥbf we follow the
mean-field approach and thus replace the bosonic operator ψ̂b(r) by the wavefunction
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Figure 6.3.: A fermionic impurity in a quantum droplet. (a) Schematic of a dipolar fermion
in a quantum droplet (white ellipse). The long-range interaction potential is attractive (red)
axially and repulsive radially (blue). (b) Calculated mean-field trapping potentials Ubf(r, z)
according to eq. (6.5) for a interspecies scattering length abf = 70 a0, a0 being the Bohr radius,
and different atom numbers Nqd = {1, 2, 4, 8}× 103 (blue to yellow) of the droplet. The dipolar
interaction leads to deviations from a Gaussian density profile (dashed). (c) Bound states of an
impurity for Nqd = 1500 and abf = 70 a0. The axial potential Ubf(r = 0, z) is plotted (black)
along with the bound state energy Es (green). Insets show example wavefunctions ψs(r, z),
which resemble harmonic oscillator eigenstates. Having ground state character radially, these
are effectively one-dimensional systems.

ψb =
√
nb(r), which yields the Hamiltonian

Ĥ = Eb +
∫

dr
[
~2

2mf
∇ψ̂†f · ∇ψ̂f + 1

2 ψ̂
†
f ψ̂f Ubf(r)

]
(6.4)

depending on the Bose-Fermi interaction potential. The latter reads

Ubf(r) = gbf nb(r) +
∫

dr′ Vdd(r − r′)nb(r′) (6.5)

and relies on the interspecies scattering length abf defining3 gbf = 4π~2abf/mf . This way,
the problem in eq. (6.4) reduces to the stationary Schrödinger equation with a Hamiltonian

H = −~2∆2

2mf
+ Ubf(r) (6.6)

describing a single particle in a fixed external potential Ubf(r).
3 We assume equal masses mf ≈ mb and therefore use mf instead of the reduced mass.
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Figure 6.4.: Bound state properties. (a) Number of bound states Nbs over Bose-Fermi
scattering length abf for various droplet atom numbers Nqd. (b) Ground state energy E0 (solid
lines) and corresponding calculations with the eGPE (dots). Additionally, excitated states Es >
E0 are shown for Nqd = 1500 (dashed).

Since we are particularly interested in dysprosium, we now consider a single fermionic
impurity of 163Dy immersed in a droplet of Nqd bosonic 164Dy atoms with an intraspecies
scattering length abb = 70 a0 in accordance with the previous consideration. Owing to the
collisional richness of lanthanide atoms [10, 182], we expect to find a suitable Feshbach
resonance to realize an intraspecies contact interaction with abf = 70 a0.
With the eGPE simulations, we then extract the droplet density profile nb(r) and cal-
culate the interaction potential Ubf(r, z) = Ubf(r) of eq. (6.5). As shown in fig. (6.3a),
it resembles the droplet (white ellipse) with additional attractive wings axially (red) and
repulsive ones radially (blue) due to the long-range character of the interaction. Fig-
ure (6.3b) shows radial and axial cuts for various atoms number revealing a strong de-
pendence of the potential depth U0 = Ubf(0) on the atom number Nqd. In a next step,
we calculate the spectrum of eq. (6.6), which is thoroughly described in [9], and find a
couple of anharmonically spaced bound states, see fig. (6.3c). Due to the large aspect
ratio of the potential, the acquired eigenstates ψs are qualitatively similar to the solution
of a cylindrical harmonic oscillator restricted to the l = 0 radial ground state. As such,
the trapped impurities can be used as testbeds for one-dimensional physics on the few
atom level.
In fig. (6.4), we examine the properties of these bound states in the range Nqd ≤ 2000
atoms and abf = 50 − 120 a0, where the bound states are well in the one-dimensional
regime. We note, that the number of bound states Nbs is an upper limit for the number
of trapped fermions Nf . Our assumption Nf � Nqd for a negligible influence on the
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6.3. Fermionic impurity in a dipolar quantum droplet

bosonic ground state is thus intrinsically satisfied. Our approach is verified by independent
numerical calculations of the ground state (dots), see fig. (6.4b). The anharmonicity of the
trapping potential Ubf leads to a rich level scheme with a typical spacing of ∆E = Es+1−
Es ≈ h× 500 Hz, that decreases to ≈ h× 200 Hz towards the threshold. Experimentally,
the level spectrum could be probed by driving transitions between bound states through
harmonic modulation of abf at the frequency ∆E/h.

In addition, we estimate the magnitude of the DDI between fermions, which we neglected
so far. Therefore, we compute the Hartree energy

Es,s′ = 1
2

∫
dr dr′ |ψs(r)|2 Vdd(r − r′) |ψs′(r′)|2 (6.7)

of the states ψs and ψs′ . Assuming a single fermion in both states yields an energy
shift E0,1 between ground and first excited state of ≈ 20 Hz, which is small compared
to the level spacing ∆E. For other combinations of s and s′ we find lower values due
to decreasing overlap of the wavefunctions, such that the influence of the intraspecies
DDI between fermions is indeed negligible. In the case of several fermions in the droplet
full Hartree-Fock calculations would be necessary to calculate the modifications to the
orbitals. In order to estimate a second effect, the interaction with depleted bosonic atoms,
we calculate the condensate depletion ∆n/n ≈ 5 % of the bosonic droplet [62]. For a
droplet with Nqd = 1500 atoms this corresponds to Ndepl = 75 depleted atoms, which
is substantially higher than the number of bound states. Based on the prior estimate,
the associated energy shift is likely on the order of the level spacing. Expanding on this
effect, a fermionic impurity might therefore be used to probe the quantum depletion of
the droplet, which has not been measured. Yet, a more sophisticated theory is needed to
describe and understand this effect properly.

To summarize, we derived the Hamiltonian of few fermions interacting with a large num-
ber of bosons. For a low number of fermions, the bosonic state is unaffected and the
problem reduces to a Schrödinger equation of a particle in a fixed potential. For the
parameters discussed here, we find the possibility to immerse few fermionic impurities in
a bosonic dipolar quantum droplet. Consequently, this is the first step towards probing
quantum droplets with impurities. Since these thermalize with the bosonic environment,
the excitation spectrum should be subject to thermal broadening, which we plan to use in
order to measure the temperature of the quantum droplet. With negligible back-action,
measurements of the impurity should be possible non-destructively using recently devel-
oped single atom detection techniques [191]. The tools to create Bose-Fermi mixtures
with highly-magnetic atoms are readily available as well [192].
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Figure 6.5.: Pancakelets with inverted dipolar interaction. (a) Peak density n0 depending
on the dipolar length add and trap aspect rato λ = ωz/ωr calculated with the variational ansatz
of eq. (2.38). For add . −52 a0, we find droplet-like solutions with an inverted aspect ratio,
which we call pancakelets. We assume N = 104 atoms with a scattering length of as = 70 a0 in a
harmonic trap with mean frequency ω̄ = 2π× 70 Hz. We find bistable solutions (dark) areas for
both the droplet and pancakelet. Dashed lines mark the border for self-bound solutions, that
are stable without a trap. The white cross at λ = 1/3 marks the situation in (b), where the
modulational instability leads to a stack of pancakelets after a quench of the scattering length
from as = 140 a0 to 70 a0.

6.4. Inverting the DDI: The Pancakelet

Finally, we point out a peculiar property of the dipolar interaction. Its anisotropy gives
rise to another class of dipolar quantum droplets, which we call pancakelets and describe
in the following.
As shown in fig. (6.5a) with the variational ansatz, we find the well-known droplet solutions
for the usual dipolar length add = 131 a0 of 164Dy. As we explained in ch. 2.4.3, these are
characterized by a cloud aspect ratio κ = σr/σz � 1 and a peak density n0 & 1021 m−3.
There is a bistable region (dark area) for λ > 1, where a modulational instability occurs
experimentally. For this calculation, we use N = 104 atoms with a scattering length as =
70 a0 in a harmonic potential with mean frequency ω̄ = 2π× 70 Hz. In the absence of this
trapping potential, there are self-bound solutions for add > 94 a0 (dashed). Lowering the
dipolar interaction we find the usual BEC solution with a lower peak density and an aspect
ratio, that follows the trap aspect ratio, but is slightly altered due to magnetostriction.
If we invert the dipolar interaction as proposed in [75] and realized in [76], we consequently
find droplet solutions for sufficiently strong interaction of add < −52 a0. Thus, the sign
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of the interaction potential in eq. (2.7) is changed, such that it becomes attractive in
a side-by-side configuration, where the interaction is a factor of two stronger. For this
reason, the density is an order of magnitude higher compared to the usual droplet solution.
More importantly, the aspect ratio κ� 1 is inverted, which is the reason why we named
these solutions pancakelets. Here, the bistability occurs for λ < 1 and we find self-bound
solutions for add < −60 a0. We further confirm this prediction of the variational ansatz
with numerical simulations. Similar to the normal droplet, we find a saturating peak
density. Such pancakelets have a thickness on the order of a healing length and can
therefore be useful in the study of two-dimensional physics. In the bistable region we can
create stacks of pancakelets by a quench of the scattering length as from 140 a0 to 70 a0

inducing a modulational instability, as presented in fig. (6.5b) for λ = 1/3.
The necessary tuneability of the dipolar interaction can be realized with a rotating mag-
netic field inducing a time-averaged dipolar interaction with an effective dipolar length
in the range −1/2 add to +1 add [75]. This scheme has been realized in [76] for expansion
measurements and has also been used for in situ measurements in our lab. By tuning of
the magnetic field angle, we observed an inversion of the aspect ratio of a stable 162Dy
condensate. Due to severe heating, which we attribute to residual field gradients, these
experiments are currently limited to lifetimes of ∼ 10 ms. In order to create and probe
such pancakelets in the experiment, this heating needs to be reduced.
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Chapter 7
Superfluid effects in a dBEC

Superfluidity, as first discovered in liquid helium [12], is a hallmark of quantum physics
on the macroscopic scale. The seminal Landau criterion [107] relates the absence of dis-
sipation to the excitation spectrum of the superfluid, as we derived in ch. 2.3.3. With
the dipolar interaction we predicted an anisotropic critical velocity for the onset of dissi-
pation. In the context of ultracold atoms, superfluidity has been studied experimentally
for trapped contact-interacting BECs [193, 194], a two-dimensional Bose gas [195] and a
Fermi gas in the BEC-BCS crossover regime [196, 197].

Based on these pioneering experiments, we present the first transport measurements on a
dBEC in the first section, which also have been published in [8]. By moving an attractive
laser beam through the condensate we observe an anisotropy in both the critical velocity
and the heating rate in the dissipative regime. In particular, we realize a situation, where
for a fixed velocity the flow is dissipationless along one direction and subject to dissipation
perpendicular to it. We find excellent agreement with dynamical simulations of the eGPE
taking into account finite-size effects of the trapped dBEC as well as the characteristics
of the moving impurity.

In the second section we numerically explore quantized vortices in rotating superfluids,
which are a consequence of their irrotational flow. The spatial extent of such defects in
the condensate is given by the healing length, which becomes anisotropic with the dipolar
interaction, as we have shown in ch. 2.3.2. This effect leads to the deformation of the
vortex core [103] and induces long-range interactions between vortices [104], which would
result in the formation of striped vortex patterns [103, 105]. Within numerical simulations,
we exploit the possibility to observe these effects in our experiment and point out ways
to create the desired states.
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Chapter 7. Superfluid effects in a dBEC

7.1. Anisotropic critical velocity

In ch. 2.3.3, we derived the generalized Landau criterion of eq. (2.30) in the context of
the dipolar interaction. Since the excitation spectrum E(k) of a homogeneous dipolar gas
is anisotropic, the critical velocity vc we derived in eq. (2.32) depends on the angle α of
momentum k with respect to the magnetic field axis B. The anisotropy of the excitation
spectrum has been confirmed experimentally with a chromium dBEC [101]. Based on a
eq. (2.32), we found a variation of the critical velocity vc(α) from 2.0 to 0.3 mm/s, which
we want to study experimentally.
As depicted in fig. (7.1a), we therefore focus an attractive laser beam on a trapped dBEC
of 162Dy atoms. This “stirring beam” with a waist of w0 ≈ 1.5µm and a potential depth
of roughly half the chemical potential is then moved transversally by an electro-optical
deflector system, which we described in ch. 3.2. In order to measure the critical velocity,
we move the beam at constant velocity v = 4 rsfs. To get a sizeable heating effect, we
repeat this process and thus vary the beam position with a triangular periodic function
determined by the amplitude rs with respect to the cloud center and the frequency fs.
This method introduces small heating for v < vc, due to the emission of sound waves at
the turning points [198]. The determination of the velocity thus depends on the amplitude
rs, which we need to calibrate for both stirring directions. In a first step, we therefore
determine the magnification Mx = My = 44.2(1) of the imaging system by moving the
objective mounted on a piezo-stage transversally. We confirm with a raytracing software
that this method is not affected by imaging aberrations in the field of view. For the second
step, we load all atoms in the stirring beam at large beam power and move it over the full
range d = 2 rmax of the deflector system along one direction taking several images. By a
linear fit to the position data we then extract the maximum amplitudes rmax,x = 2.9(2)µm
and rmax,y = 3.4(2)µm for both directions. We attribute this difference to a minor
misalignment of the stirring beam focus with respect to the cloud. When comparing
measured and theoretical Thomas-Fermi radii, we find an additional 6% difference in the
two directions, which we attribute to imaging aberrations. Since these can influence the
calibration of the velocity as well, we quadratically add this error to the one in rmax, which
then yields the error of the displayed velocity v.
For the measurements we prepare a dBEC in an almost cylindrical trap fx = 52(1) Hz ≈
fy = 49(1) Hz, fz = 168(1) Hz at a condensed fraction of 0.7 with 1 · 104 to 2 · 104 atoms
in total. Then – while moving the beam continuously – the power of the stirring beam
is ramped up within 25 ms, kept constant for a time tstir = 1 s, and ramped down within
25 ms followed by an additional 200 ms for thermalization of the sample. In order to
avoid thermal wings and to probe the high-density region of the cloud we choose a stirrer
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(a) (b)

Figure 7.1.: Probing the anisotropic critical velocity. (a) Schematic of the experiment.
We drag an attractive laser beam through a dipolar condensate perpendicular (α = 90 ◦, blue)
and parallel (α = 0 ◦, red) to the magnetic field direction, which should allow to probe the
critical velocity along both directions. (b) Reference measurement in the isotropic case B ‖ ẑ.
We plot the temperature of the sample after repeatedly moving the stirring beam along the
x- (red squares) or y- (blue circles) axis, as illustrated in the inset with an example in situ
image. Critical velocities are extracted by a linear fit (dashed) and marked with arrows. As
expected, the response is isotropic with vx = 0.20(5) mm/s and vy = 0.20(7) mm/s. Data points
with stirring frequency matching the trapping frequencies (gray) are excluded from the analysis.
Simulations of the eGPE for a single stirring cycle (solid lines) show excellent agreement with
the experiment. See text for further parameters.

amplitude rs/RTF = 0.15− 0.35, well below the Thomas-Fermi radius RTF of the dBEC.
Finally, we image the atoms via phase-contrast imaging at ∆ = 20 Γ detuning as described
in ch. 3.2. From these in situ images we extract the condensed fraction N0/N by fitting
the sum of a thermal Gaussian distribution plus a Thomas-Fermi parabola. From eq. (2.4)
we extract the temperature T of the sample based on the calculated critical temperature
Tc = 59 − 77 nK in our measurements including finite-size effects [126] and interactions
[199]. We fit the acquired temperature data with the function

T (v) = T0 + h tstir (v/vc − 1)Θ(v − vc) (7.1)

defining the critical velocity vc. In the dissipationless regime for v < vc it is constant and
increases linearly with a given rate Ṫ = h (v/vc − 1) above vc, which is determined by
the heating coefficient h. We stress, that our data is no clear proof of superfluidity due
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Chapter 7. Superfluid effects in a dBEC

to experimental noise in the dissipationless regime, but it is in excellent agreement with
superfluid flow and well-described by this model.
We compare this data to dynamic simulations of the eGPE in order to take the inho-
mogeneity and finite-size effects of the BEC as well as the finite extent and depth of
the stirring beam into account. To properly describe the experiment, we implement a
time-dependent attractive “stirrer” Gaussian potential Vstir(r, t) in addition to the static
harmonic trap Vtrap(r). After preparing the dBEC in the ground state, we move this
beam with a constant velocity v along the desired direction for a single stirring cycle1.
We then scale the gain in total energy ∆E/N of one cycle by the number of oscilla-
tions tstirfs in the experiment, thus assuming an identical increase in energy induced
by the subsequent stirring cycles. The relation between the temperature and energy is
non-linear even for the ideal Bose gas [60], and we assume a linear relation for the ob-
served change in temperature of less than 20%. Thus, we map the simulation data to a
temperature T = T0 + c tstirfs ∆E/NkB with the Boltzmann constant kB. The scaling co-
efficient c is then used as a fit parameter to match the theory with the experiment, which
yields c = 0.022, 0.0375 and 0.05 for the first, second and third data set, respectively.
This parameter also takes into account the relation between energy and temperature,
the uncertainty in the potential depth, as well as finite-temperature effects lowering the
superfluid fraction [200]. A finite-temperature theory would probably allow to include
such effects and further model the introduced coefficient properly. From the simulated
temperature, we then extract the critical velocity by the same fit function as used for
the experimental data. We stress, that the used rescaling procedure does not influence
the critical velocity and note, that preparing the ground state in the harmonic trap only
and subsequent adiabatic ramping of the stirring potential’s depth leads to similar results
with the disadvantage of longer simulation times.
With the evaluation procedure and theory at hand we now turn to the measurements. For
the reference measurement shown in fig. (7.1b), we apply a magnetic field B ‖ ẑ. Moving
the laser defect along x̂ or ŷ is expected to give the same critical velocity, since the
problem is isotropic in the xy plane. Indeed, we observe the same threshold in heating
of the dBEC for both stirring directions along x̂ (red diamonds) and ŷ (blue circles).
From the fits (dashed lines) we extract matching critical velocities vx = 0.20(5) mm/s and
vy = 0.20(7) mm/s (marked by arrows) as well as heating coefficients hx = 8(5) nK/s and
hy = 9(8) nK/s. For this measurement the stirring frequency is varied between fs = 3 and
60 Hz. Points at the transversal trap frequencies (gray) are excluded from the analysis,
since coupling to the center-of-mass mode might influence the heating. We further find

1 Thus the position varies from r = 0 to rs, then to −rs, and finally back to 0 within the time t = 1/fs.

98



7.1. Anisotropic critical velocity

(a) (b)

Figure 7.2.: Temperature of the dBEC after stirring for the anisotropic case with B ‖ x̂
in an almost cylindrical trap (a). In (b) the trap is additionally reshaped to invert the cloud
aspect ratio. The stirring beam is moved along the x- (red squares) or y- (blue circles) axis,
as illustrated in the insets with example in situ images. Critical velocities are extracted by
a linear fit (dashed) and marked with arrows. In (a) the response with v⊥ = 0.16(2) mm/s
along ŷ and v‖ = 0.36(3) mm/s is clearly anisotropic. In (b) we extract v⊥ = 0.12(3) mm/s
and v‖ = 0.26(4) mm/s proving that the observed anisotropy remains even when inverting the
anisotropy of the atomic cloud. Data points with stirring frequency matching the trapping
frequencies (gray) are excluded from the analysis. Simulations of the eGPE for a single stirring
cycle (solid lines) show excellent agreement with the experiment. See text for further parameters.

excellent agreement with the simulation data (solid lines) yielding a fitted critical velocity
vx, sim = vy, sim = 0.21(1) mm/s. This reference measurement serves as a sanity check and
verifies both the calibration of the experiment and the simulation procedure.
For the measurement of interest, we turn to the anisotropic case with the magnetic field
B ‖ x̂ along one of the stirring directions. The cloud is deformed due to magnetostriction
with an in-plane aspect ratio aspect ratio κ = Rx/Ry = 1.4 given by the Thomas-Fermi
radii Rx = 6.0µm and Ry = 4.3µm. In this configuration with a predominantly attractive
DDI, the peak density of n0 = 1.7× 1020 m−3 is higher compared to the previous case. In
this setting the excitation spectrum becomes anisotropic in the xy plane. Consequently, we
directly observe a factor of two difference in the critical velocity, as shown in fig. (7.2a).
Fitting the data, we find vx = 0.36(3) mm/s and vy = 0.16(2) mm/s with compatible
heating coefficients hx = 4.5(9) nK/s and hy = 4.2(9) nK/s. The difference in heating
rates Ṫ = h (v/vc − 1), determined by the slope in the figure, is thus fully covered by the
anisotropy in critical velocity. A comparison to the simulation with vx, sim = 0.35(2) mm/s
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and vy, sim = 0.16(1) mm/s shows excellent agreement. We note, that we use a single
fit parameter c for both curves. Therefore the anisotropy in heating rate is accurately
reproduced by the simulation. We infer, that both anisotropic effects share a common
cause in the anisotropy of the dipolar excitation spectrum.

With the presented measurement, we cannot exclude an induced anisotropy due to the
deformation of the cloud. In a third measurement, we therefore adjust the trapping po-
tential to invert the aspect ratio of the cloud κ = Rx/Ry ≈ 1.4−1. The trap frequencies
are fx = 81(2), fy = 39(1) and fz = 140(1) Hz with stronger confinement along the
magnetic field axis B ‖ x̂, which leads to measured sizes Rx = 4.3µm and Ry = 5.8µm
of the condensate. From the data presented in fig. (7.2b) we extract the critical ve-
locities vx = 0.26(4) mm/s and vy = 0.12(3) mm/s with compatible heating coefficients
hx = 7(3) nK/s and hy = 6(3) nK/s. Although the cloud aspect ratio was inverted,
the anisotropy of transport remains in the same direction. The presented measurements
therefore provide conclusive evidence that the latter arises directly from the dipolar in-
teraction.

We can also compare the measured vc to the value we derived in eq. (2.32) for the
homogeneous gas. With the given peak density, we obtain vx,hom = 2.6 mm/s and
vy,hom = 0.42 mm/s. The measured critical velocity is thereby a factor 0.1 – 0.4 lower.
This fraction is in good agreement with the pioneering experiments in [194]. The inhomo-
geneous density distribution of the gas in the trap obviously lowers the critical velocity
both along the beam and transversally [201]. Vortex formation is a dominant effect for
repulsive obstacles, but should be supressed in our experiment with an attractive beam
[202]. Yet, the macroscopic size of the beam in comparison to the healing length influences
the measured critical velocity as well [203]. In order to avoid the effective reduction of
the measured critical velocity, one needs to resort to more advanced methods employing
an optical lattice [204] or the use of microscopic impurities, which are realized by either
stimulated Raman transitions [205] or with atomic mixtures [206].

To conclude, we performed the first transport measurements on a dBEC. We study the
superfluid behavior of the gas by measuring the heating caused by moving an attractive
laser beam at constant velocity through the condensate. We find an anisotropic critical
velocity, which is in excellent agreement with numerical studies taking into account finite-
size effects. From this agreement of the zero temperature theory with our data taken
at a sizeable thermal fraction, we infer that thermal excitations do not influence the
measured critical velocity. For the present experiments with dipolar strength εdd < 1 and
weak confinement along the magnetic field, roton softening of the excitation spectrum is
negligible. As discussed in ch. 2.3.4, increasing both quantities could lead to an observable
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reduction of the critical velocity, which is an interesting perspective for future experiments.

7.2. Dipolar vortices

Another striking consequence of superfluidity is the formation of vortices, which are topo-
logical defects occuring in rotating superfluids. Here, we numerically study how the
dipolar interaction influences these defects and whether we can observe them under ex-
perimental conditions. There is a myriad of experimental studies for superfluids with
isotropic interactions in the context of ultracold atoms, starting with refs. [18, 207].
Later arrays of vortices aligning in triangular patterns have been observed in BECs [102]
and in Fermi gases across the BEC-BCS crossover [22]. Much earlier, Abrikosov lattices of
vortices carrying magnetic flux quanta had been predicted in superconductors [106] and
measured [208, 209]. In this context, vortex chains have been observed for anisotropic
superconductors [210].
An experimental study of vortices in an ultracold dipolar superfluid is lacking. Prior
attempts to observe vortices in our experiment were not successful, which we attribute
to the fast decay for finite temperatures T > 0.5Tc [211] and our limited imaging reso-
lution, see below. In ref. [162], we numerically examined the stirring mechanism based
on our electro-optical deflector system and the influence of an anisotropy in the in-plane
confinement, both rendering the experimental observation feasible.
Before presenting the numerical simulations, we quickly review rotating superfluids based
on refs. [60, ch. 14] and [213]. In a reference frame rotating at a constant angular velocity
Ω about the ẑ axis, the Hamiltonian H0 in the laboratory frame becomes

H̃ = H0 − ΩLz (7.2)

lowering the energy for states with finite angular momentum Lz. Its ensemble-averaged
value 〈Lz〉 = ΘΩ is proportional to the moment of inertia Θ, which we already introduced
in ch. 5 for the scissors mode measurements. To recap, it takes the irrotational form

Θ = δ2Θrig with δ = 〈y
2 − x2〉
〈y2 + x2〉

and Θrig = Nm〈y2 + x2〉 (7.3)

for a superfluid determined by the deformation δ of the cloud in the xy plane. Therefore
the superfluid moment of inertia vanishes for an isotropic distribution, in contrast to the
classical rigid-body value Θrig having a well-defined value.
In this rotating frame, we calculate the ground state by imaginary time evolution with
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Ω =17Hz Ɩz=0.00ℏ Ω =18Hz Ɩz=1.00ℏ Ω =32Hz Ɩz=12.70ℏ

Ω =17Hz Ɩz=0.55ℏ Ω =20Hz Ɩz=1.47ℏ Ω =34Hz Ɩz=11.60ℏ

(a) (b) (c)

(d) (e) (f)

Figure 7.3.: Ground state of a dBEC in the rotating frame for the isotropic case with
magnetic field B ‖ ẑ (top) and the anisotropic case with B ‖ ŷ (bottom) and various rotation
frequencies Ω. In both cases, we find no (a,d), one (b,e) or many (c,f) vortices. The field of view
is (31µm)2, see [212] for parameters.

a modified transversal trap frequency f̃ 2
⊥ = f 2

⊥ − Ω2 taking into account the centrifugal
force. The results are shown in fig. (7.3), where we quote the angular momentum per
atom lz = 〈Lz〉 /N .
For B ‖ ẑ, the density distribution is isotropic and the moment of inertia vanishes
according to eq. (7.3). (a) For slow rotation Ω < Ωc below a critical frequency Ωc, the
angular momentum per atom thereby yields zero and we find a uniform phase. (b) Above
Ωc the fluid features a single vortex at the center, which carries a single quantum ~ of
angular momentum. As expected, the phase varies by 2π around the vortex core. (c) In
the regime Ω � Ωc many singly-charged vortices develop forming an irregular pattern2

due to the finite size of the system. For off-axis vortices, the angular momentum is
less than ~, such that the angular momentum lz is lower than the number of vortices.
This behavior was confirmed in [214], where the lifted degeneracy of the two transverse

2 For an infinite system, we would find the typical triangular Abrikosov lattice, which was observed in
[102] with three orders of magnitude more atoms.
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Figure 7.4.: Imaging the anisotropic vortex core. In (a) we show the in situ integrated
column density ncol(r) along x (blue) and y (red) for a single anisotropic vortex of fig. (7.3e)
[212]. By definition, the visibility v of the vortex core is 1. (b) The finite resolution of the
imaging system lowers the visibility to 0.4. (c) An expansion for ttof = 8 ms enlarges the vortex
core and increases the visibility to 0.9.

quadrupole modes was exploited to measure lz of the ensemble.
In contrast, for B ‖ ŷ the cloud is anisotropic in the xy plane leading to a finite moment
of inertia. (d) With increasing rotation frequency Ω, the angular momentum lz of the
sample therefore monotonously increases3. This leads to a quadrupole-like pattern of the
phase. (e) We find the first vortex for slightly higher Ωc. Both effects combined lead to
an angular momentum of lz > 1~. As dicussed in ch. 2.3.2, the healing length of a dBEC
is anisotropic leading to a deformed vortex core [103], as we study later. (f) For fast
rotations Ω � Ωc, we find in general less vortices compared to the isotropic case. More
importantly, vortices arrange in striped patterns along the magnetic field [103, 105]. We
note, that the vortex number and position depends on the intial phase distribution we
use to seed the vortex patterns, such that the acquired states are ambigious for the set of
parameters4.
For a single anisotropic vortex in (e) we plot cuts along the x (blue) and y (red) directions
of the in situ column density, which is integrated along the imaging axis ẑ. As shown in
fig. (7.4a), the visibility v = 1− ncol(0)/max(ncol) of the vortex core yields 1 in this case.
With an extent on the order of the imaging resolution, which is r0 = 1µm according to
the Rayleigh criterion [156], we examine whether this feature can be resolved. Therefore,

3 Additonally, there is an implicit dependence Θ(Ω) due to the centrifugal term weakening the trap,
which increases the deformation δ.

4 The dependence of a vortices’ energy on the position is very weak, leading to long convergence times
for the imaginary time evolution.
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Ω =19Hz Ɩz=1.00ℏ Ω =33Hz Ɩz=5.90ℏ

Ω =19Hz Ɩz=0.94ℏ Ω =33Hz Ɩz=5.70ℏ

Ω =33Hz Ɩz=5.93ℏ

Ω =33Hz Ɩz=5.58ℏ

(a) (b)

Figure 7.5.: Dynamic creation of vortex patterns. In (a) we tilt the magnetic field B from
ẑ (top) within 100 ms to ŷ (bottom). This way, we recover the density distribution for a single
vortex in the center. For multiple vortices, in (b), we additionally rotate the magnetic field at
the rotation frequency, while tilting it towards the xy plane within 200 ms. With this method,
vortices align in a striped pattern. The field of view is (20µm)2, see ref. [212] for parameters.

we compute the convolution of the in situ column density with the experimental point
spread function, as shown in fig. (7.4b). Thus, the maximum visibility for in situ images is
v = 0.4, which is additionally decreased due to thermal atoms and subject to experimental
noise, such that vortices likely cannot be detected. Conveniently, we can increase the
visbility by a time-of-flight expansion for e.g. ttof = 8 ms. As shown in fig. (7.4c), we
recover a visibility v = 0.9 this way, which should allow to detect vortices under typical
experimental conditions. Ref. [103] predicts additional modulations on the density profile,
for a dBEC close to the stability threshold. We verified this effect for our experimental
parameters, but the density modulations are typically smaller than the imaging resolution
even after the expansion and might therefore prove hard to observe.

For the seminal experiments in [18, 22, 102], the gas is stirred with a laser beam already
during the evaporation phase, such that the transition from classical to quantum gas
and subsequent cooling occurs under constant rotation. For the states of interest with a
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fixed magnetic field B ‖ ŷ in the rotating frame, we would therefore need to continuously
rotate the magnetic field in the xy plane at the same rotation frequency Ω in the laboratory
frame. As this might prove hard to realize experimentally, we investigate other ways to
dynamically create these states in the following.
For the first method we aim to utilize a rotation of the magnetic field in the xy plane to
transfer angular momentum to the cloud. Since there is a finite moment of inertia caused
by magnetostriction of the dBEC, the density distribution rotates with the magnetic field
axis. To avoid an excitation of the scissors or other collective modes, see ch. 5, we increase
the rotation frequency from Ω = 0 to 35 Hz in 1 s. For the configuration in [212], we can
thereby transfer lz ∼ 3 ~ to the rotating sample. Unfortunately, vortices do not form with
this method due to the large aspect ratio σy/σx ∼ 2.4 of the cloud.
In fig. (7.5a), we propose a second method, where we generate vortices by stirring in an
isotropic configuration5 withB ‖ ẑ and subsequently tilt the magnetic field along ŷ within
100 ms. With this approach, the created vortices are preserved and we can reproduce the
presented density distribution around a single vortex in the center similar to the ground
state. Yet, off-center vortices rotate around the center and therefore with respect to the
fixed magnetic field, which prevents the observation of striped vortex patterns this way.
In order to realize the latter, we extend this method and therefore additionally rotate the
magnetic field about the ẑ axis while tilting it in the xy plane. This way, we obtain the
density distribution in fig. (7.5b), where a stable “striped” vortex pattern rotates with
the magnetic field axis. We note, that a tilt time of at least 200 ms is necessary to observe
this effect for this example.
Finally we conclude, that anisotropic vortex cores and striped vortex arrays, as predicted
in [103, 105], should indeed be observable with our experiment and point out experimental
techniques to probe these effects.

5 For the simulation, we compute the ground state in the rotating field, then switch off the rotation
and tilt the magnetic field in real time evolution to study the dynamics.
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Chapter 8
Conclusion
In this thesis, we have investigated macroscopic quantum states of ultracold bosonic
atoms with a dominant dipolar interaction. These investigations include both extensive
numerical simulations and novel experiments. A part of this thesis was devoted to the
development of these simulations, which were crucial to shape our present knowledge of
the quantum droplet state. Furthermore, they have proven to be an important tool to
find parameter regimes, for which the desired effects can be observed under experimental
conditions.
With this tool, we predicted striped ground states consisting of multiple droplets, which
are induced by the frustration of the droplet along the polarization axis of the dipoles.
These are especially interesting, because the droplets can share a common phase, which
makes them a possible realization of a supersolid state of matter. In the experiments, we
indeed were able to create states with multiple droplets by tilting the magnetic field in
an highly anisotropic harmonic trapping potential. In contrast to previous experiments,
where we induced the transition to the droplet state by a variation of the contact inter-
action, the new protocol provides control over the mean-field dipolar interaction. The
experimentally realized multi-droplet states are likely metastable and we did not find
the fixed phase relation between neighboring droplets, that would be a marker for su-
persolidity. Based on condensates in double-well potentials we developed a model that
confirms this behavior and also predicts a parameter range where phase-coherence could
be established, a fact that we also verified using our numerical simulations. With a better
understanding of this process, we should be able to reach the regime, where the phase
link is robust against thermal and quantum fluctuations.
Future work in this direction could be guided towards higher density, where the quantum
fluctuations are more pronounced. In this regime, we predict labyrinth and wet foam
patterns, see fig. (8.1), which are similar to the structures observed in classical ferrofluids
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Figure 8.1.: Self-organisation in a dipolar quantum gas. With increasing density, there
is a transition from single isolated droplets, via a labyrinth arrangement to a wet foam pattern.
The images show the ground state of the eGPE for 164Dy atoms in a box with in-plane periodic
boundary conditions. The density is n2D = {1.3, 4.0, 6.3} × 104 µm−2 (left to right), see [215]
for further parameters.

[141]. Unlike the striped states we investigated in this thesis, for these states the problem
of missing phase links is solved. We therefore expect these states to have a robust uniform
phase, making them excellent candidates for the realization of a supersolid state of matter
and the study of self-organisation in a dipolar quantum gas.
Regarding the internal properties of the quantum droplet, we discussed the nature of
the scissors mode and presented measurements of both the scissors and the quadrupole
mode. Based on a time-dependent model of the variational ansatz, we extracted a back-
ground scattering length abg = 69(4) a0 for the isotope 164Dy. Contradicting a previous
measurement of the critical atom number for the stability of a self-bound droplet, we fur-
ther investigated effects influencing the critical atom number. We found good agreement
for a temperature-dependent enhancement of the dipolar interaction, which is within a
simple assumption compatible with higher values of abg obtained in non-degenerate ther-
mal samples. As shown in fig. (8.2), new measurements for larger self-bound droplets of
the isotope 162Dy point towards a systematic shift supporting this claim. We infer that
dipolar scattering is not universal for temperatures below 1µK and further experimental
and theoretical studies are needed to understand this effect. Cross-dimensional relaxation
measurements of non-degenerate samples should be appropriate to address this question
over a wide temperature range [184]. For lower temperatures, an optical lattice can be
used to distinguish the contact and dipolar contributions of the interactions [46].
With thermometry in mind, we also investigated the immersion of fermionic impurities in
self-bound bosonic quantum droplets. We found, that indeed a few dipolar fermions can
be trapped inside a droplet and calculated the corresponding bound states. Based on this
knowledge, we plan to use such an impurity to measure the temperature of the droplet
and other properties non-destructively. Furthermore, we predict the pancakelet, which is
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Figure 8.2.: Critical atom number of a self-bound droplet revisited. New independent
measurements with self-bound droplets of 162Dy (red), which we can produce with higher atom
number, point to a systematic shift towards lower critical atom number. Background scattering
lengths abg are given to the best of our knowledge. See fig. (6.2) for more details.

a two-dimensional variation of the droplet for an inverted dipolar interaction.
The dipolar interaction not only gives rise to the fascinating field of dipolar quantum
droplets, it also alters the excitation spectrum and thus the superfluid properties of a
dipolar condensate. In this thesis, we reported the first transport measurements of such
a dBEC, where we found an anisotropic critical velocity for the onset of dissipation in
the superfluid. The measured anisotropy of both the critical velocity and the heating
rate are in excellent agreement with our numerical studies. As an outlook we presented
simulations of dipolar vortices, where we evaluated ways to observe both the previously
predicted deformation of the vortex core and novel striped vortex lattices. Based on these
considerations, we expect to observe these predictions in future experiments.
While we investigated many-body effects of dipolar bosons in this thesis, our experiment
is also capable to produce degenerate Fermi gases. With the dipolar interaction single
component gases are particularly interesting, since they are expected to exhibit p-wave
superfluidity with anisotropic pairing [168].
Ultimately, we plan to move from studies of the bulk behavior in harmonic traps to the
investigation of atoms in optical lattices. To this end, a next-generation apparatus for site-
and energy-resolved quantum gas microscopy is currently under development. In order
to obtain a sizeable next-neighbor dipolar interaction, an UV optical lattice resulting in
a lattice spacing of 180 nm will be used, which we will combine with super-resolution
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techniques to optically resolve single lattice sites. The energy of atoms in the lattice can
further be probed by a narrow optical transition of ∼ 60 Hz linewidth. Taken together
these novel techniques will allow us to obtain unprecedented and exciting insights ranging
from the microscopic processes all the way to the macroscopic bulk behavior of dipolar
quantum systems.
Paving the way for the study of dipolar quantum matter with even stronger correlations,
the creation of quantum gases from heteronuclear molecules has long been investigated
and only very recently been achieved with the creation of the first degenerate Fermi gas of
40K87Rb [216]. In comparison to the magnetic DDI of dysprosium atoms such molecules
can have an electric dipolar interaction, that is 15 times stronger for KRb or even few
orders of magnitude stronger for others, once they are polarized by an external field [61].
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Appendix A
DyGPE: Solving the eGPE
As introduced in ch. 2.5, we implemented a C/C++ program to solve the extended Gross-
Pitaevskii equation for a wavefunction discretized on a three-dimensional grid. Here we
describe the implementation details and further show how the program is installed and
used. The structure of this program is inspired by D. Peter’s GPE solver [217], whose
diploma thesis is a good introduction to the topic [218].

A.1. Implementation
In order to cover all processes discussed in this thesis, we extend the Hamiltonian of the
eGPE in eq. (2.21) by three-body losses [35] and the contribution in the rotating frame
[213], which yields

H = −~2∇2

2m − ΩLz︸ ︷︷ ︸
H∇

+Vext + g|ψ|2 + Φdd + gqf |ψ|3 − i
~L3

2 |ψ|
4︸ ︷︷ ︸

H|ψ|

. (A.1)

Split-step method

In general, we are interested in the time evolution of the wavefunction. Therefore, we
implement the split-step Crank-Nicolson method following ref. [219] and split the Hamil-
tonian in a part with spatial derivatives, H∇, and the other contributions, H|ψ|, depending
on the modulus of the wavefunction. Making use of the Baker-Hausdorff formula1, the
time evolution can be separated as

ψ(t) = e−i(H∇+H|ψ|)t/~ ψ(0) ⇒ ψ(t+ ∆t) ≈ e−iH∇∆t/~ e−iH|ψ|∆t/~ ψ(t) (A.2)
1 The two parts of the Hamiltonian do not commute in general.
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Appendix A. DyGPE: Solving the eGPE

introducing an error ∝ (∆t)2 which in turn makes it necessary to carry out the evaluation
in many small timesteps ∆t � 1. For a single timestep we can directly apply the latter
exponential in real space. For the derivative part, one can resort to a spectral Fourier
method, see e.g. [144, ch. A.1]. Alternatively, we employ a semi-implicit scheme, that is
unconditionally stable and can handle arbitrary derivatives, as we explain in the following.

Crank-Nicolson method

To compute the spatial derivatives we employ the semi-implicit Crank-Nicolson finite
difference (CNFD) method. The derivatives for the three spatial directions are applied
sequentially such that we only need to cover a one-dimensional differential equation of
the form

γ ∂tψ(x, t) = H∂xψ(x, t) =
(
−1

2∂
2
x + c ∂x

)
ψ(x, t) (A.3)

with constants γ, c ∈ C. The discretization of the wavefunction ψ on a complex grid ψnk
with temporal index n and spacing ∆t as well as spatial index k and spacing ∆x is

γ

∆t
(
ψn+1
k − ψnk

)
= − 1

4(∆x)2

[(
ψn+1
k+1 − 2ψn+1

k + ψn+1
k−1

)
+
(
ψnk+1 − 2ψnk + ψnk−1

)]
+ c

4∆x
[(
ψn+1
k+1 − ψn+1

k−1

)
+
(
ψnk+1 − ψnk−1

)]
. (A.4)

Solving for the next timestep n+ 1 we obtain(
∆t

4γ(∆x)2 −
c∆t

4γ∆x

)
︸ ︷︷ ︸

A+

ψn+1
k+1 +

(
1− ∆t

2γ(∆x)2

)
︸ ︷︷ ︸

A0

ψn+1
k +

(
∆t

4γ(∆x)2 + c∆t
4γ∆x

)
︸ ︷︷ ︸

A−

ψn+1
k−1

= − ∆t
4γ(∆x)2

(
ψnk+1 − 2ψnk + ψnk−1

)
+ c∆t

4γ∆x
(
ψnk+1 − ψnk−1

)
+ ψnk︸ ︷︷ ︸

Bk

. (A.5)

Above equation is of tridiagonal form

A+ψ
n+1
k+1 + A0ψ

n+1
k + A−ψ

n+1
k−1 = Bk (A.6)

where the A cofficients are constants and only Bk is known for the current timestep n.
To determine ψn+1 we use a one-step forward recursion relation

ψn+1
k+1 = αkψ

n+1
k + βk (A.7)
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A.1. Implementation

which is plugged into (A.6)

A+
(
αkψ

n+1
k + βk

)
+ A0ψ

n+1
k + A−ψ

n+1
k−1 = Bk (A.8)

to finally solve for
ψn+1
k = −A−

A+αk + A0︸ ︷︷ ︸
αk−1

ψn+1
k−1 + Bk − A+βk

A+αk + A0︸ ︷︷ ︸
βk−1

. (A.9)

Thus we obtain a set of backward recursion relations for αk−1 and βk−1 which are used to
determine αk and βk for the whole grid.
For a grid with Nx points, where the index k ranges from k = 0 to Nx − 1, we first
compute these coefficients in a backward sweep from k = Nx − 2 to 0 using (A.9). The
initial values are αNx−1 = βNx−1 = 0 ensuring ψn+1

Nx−1 = 0 at the boundary. In a second
step we can then determine the wavefunction via ansatz (A.7) in a forward sweep from
k = 0 to Nx − 2 with boundary conditions ψn+1

0 = 0.

Dipolar Interaction

As detailed in [61] the dipolar interaction potential Φdd is most easily calculated in Fourier
space, since the convolution becomes a simple multiplication. For an arbitrary field di-
rection B̂ under the angles α and β with respect to ẑ in real space, we find the relation

Vdd(k) = −1 + 3
(
k̂ · B̂

)2
= −1 + 3




cosφk sin θk
sinφk sin θk

cos θk

 ·


cos β sinα
sin β sinα

cosα




2

= −1 + 3 [cos(φk − β) sin θk sinα + cos θk cosα]2 (A.10)

for the dipolar interaction in momentum space, which reduces to the well-known form
eq. (2.10) for B̂ ‖ ẑ. For the computation of the density distribution ñ(k) we use a
fast fourier transformation (FFT) [220], which assumes a periodic repetition of the input
signal and thus a periodic array of density distributions. In order to avoid a long-range
interaction with these mirror images the physical dimension of the grid must be chosen
accordingly. To avoid large unused areas of the grid, the range of the dipolar interaction
can be limited to a cut-off range R. As introduced in the appendix of [148], one possibility
is the corrected dipolar interaction

Vdd,cut(k) = Vdd(k)
[
1 + 3cos(kR)

(kR)2 − 3sin(kR)
(kR)3

]
(A.11)
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Appendix A. DyGPE: Solving the eGPE

yielding zero for r > R in real space. This choice of cut-off is isotropic and thus compatible
with any magnetic field direction.

Imaginary time evolution

For imaginary time evolution, we follow the same propagation method and replace the
timestep ∆t by its imaginary counterpart −i∆t, see e.g. [144, ch. A.3]. Upon propaga-
tion of the wavefunction, all excitations decay over time and the wavefunction ψ converges
towards the ground state of the system. We typically start with an initial Gaussian wave-
function and stop the evolution, when the relative change of all observables is below 10−3

within an imaginary millisecond. The mentioned observables are all energy contributions,
the variance in all directions of the density distributions and the peak density. The ac-
quired state is then considered the ground state, although there is no guarantee that we
reach the real ground state.

Thermal Noise

In order to model thermal fluctuations we follow the approach in [50, 221] and randomly
add atoms in the single-particle eigenstates φn with energy εn in the harmonic potential.
To resemble a thermal distribution T < Tc, the random complex coefficient αn is chosen
according to a Bose-Einstein distribution restricted to modes with εn ≤ 2kBT . The final
state then reads

ψthermal = ψ +
∑
n

αnφn with 〈|αn|2〉 = 1
eεn/kBT − 1 + 1

2 . (A.12)

Although resembling thermal noise, we emphasize that the evolution of these atoms fol-
lows the eGPE equation and is thus fully coherent. To properly take into account the
evolution at finite temperature one needs to resort to more involved calculations using
c-field techniques [221].

A.2. Instructions

The code relies on the compiler g++ and the FFTW library with OpenMP support for
parallelization. A document summarizing the simulation results is created with python3
making use of matplotlib. Under Debian Stretch, the necessary packages to compile, run
and evaluate the simulations can be installed by the command:

1 apt -get install g++ libfftw3 -dev python3 - numpy python3 - scipy python3 - matplotlib
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A.2. Instructions

In fig. (A.1), we show a simple run file name123.cc, which can be executed via the
command make name123 when placed in the same directory as the makefile.
Available commands for the simulation are listed in src/simulation.h. After instan-
tiation of the Simulation class, we typically specify the timestep and the dimensions
of the grid as well as its physical size. After the grid is specified, we can add various
external potentials and specifiy the interactions. Based on this, the grid is populated
with a certain number of atoms, where the approximate size is automatically determined
by an analytical formula for the BEC. This way, the initial wavefunction is close to the
ground state in the case of the BEC and convergence of imaginary time evolution via
the command runImagFindEquilibrium is faster. The command doStepsRealRamp for
the real time evolution periodically calls Simulation::doRampUpdate, which is used to
implement time-dependent behavior of e.g. the trapping potential. Finally, the data is
moved to a specified folder and automatically evaluated via eval.py creating a summary
document.
We further supply a real-world run file, see fig. (A.2), which was used to calculate the
simulation data in fig. (2.10a,b). There we additionally parallelize the execution of the
parallelized simulations with 32 threads each to make use of our multi-processor computers
efficiently.
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Appendix A. DyGPE: Solving the eGPE

Figure A.1.: Simple example run file to get started.
1 /* DYGPE RUN */
2 # include "src/ simulation .h"
3
4 void Simulation :: doRampUpdate (int index , double tRel /*1*/ , double tAbs /* ms */) {
5 return ;
6 }
7
8 int main ()
9 {

10 // sample variable for the trap frequency
11 int N = 1e4;
12 // create simulation instance and set a timestep of 10ˆ -3 sim. units
13 Simulation sim;
14 sim. setTimeStep (1e -3);
15 // set isotropic grid with 2ˆ6 points and physical length of 8 sim. units
16 sim. setGridLog (5,5,5, 10 ,10 ,10);
17 // add a spherical harmonic trap with omega = 2 pi * 100 Hz
18 sim. setHarmonicTrap (100) ;
19 // set interactions : a_s (a0), a_dd (a0) and quant . fluc. on or off (1)
20 sim. setInteractionsTwoBody (100 , 100 , 1);
21 // put initial gaussian wavefunction with 10ˆ4 atoms
22 sim. populateAtoms (N);
23 // do imag. time evolution until rel. change of all observables < 10ˆ -3
24 sim. runImagFindEquilibrium (1e-3, 1e23);
25 // real time evo. for 5 ms , taking 3 snapshots of the cloud
26 sim. doStepsReal (5, 3);
27 // move data to parametric folder
28 sim. moveData (" testrun_N %05d", N);
29 // simulation finished
30 return 0;
31 }
32
33 /* this is a working example aiming for fast execution .
34 * for more accurate computation the grid size should be increased
35 * and the time step decreased .
36 */
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A.2. Instructions

Figure A.2.: Parallelized run file used to calculate the points in fig. (2.10a,b).
1 /* DYGPE RUN */
2 # include "src/ simulation .h"
3
4 void Simulation :: doRampUpdate (int index , double tRel /*1*/ , double tAbs /* ms */) {
5 return ;
6 }
7
8 int main () {
9 // parent process should ignore signals

10 signal (SIGQUIT , SIG_IGN );
11 // global parameters
12 int G = 7; double L = 20;
13 int N = 10; int A = 70; int F = 70;
14
15 for (A = 65; A <= 145; A += 5) {
16 // fork & start simulation
17 if (fork ()) { sleep (1); continue ; }
18
19 Simulation sim (32);
20 sim. setDipoleCutOffMethod (1);
21 sim. setTimeStep (5e -4);
22 // determine size of ground state with starting atom number
23 sim. setGridLog (G, G, G+1, L, L, 2*L);
24 sim. setHarmonicTrap (F);
25 sim. setInteractionsTwoBody (A, 131 , 1);
26 sim. populateAtoms (1000*N, 1e-6, 1e-6, 3e -6);
27 sim. runImagFindEquilibrium (1e-3, 1e23);
28 // resize properly and find ground state again
29 printf (" LENGTH = %.3f\n", sim. stats [17]) ;
30 L = 2. * sim. stats [17];
31 sim. setGridLog (G, G, G+1, L, L, 2*L);
32 sim. setHarmonicTrap (F);
33 sim. setInteractionsTwoBody (A, 131 , 1);
34 sim. populateAtoms (1000*N, 1e-6, 1e-6, 3e -6);
35 sim. runImagFindEquilibrium (5e-4, 1e23);
36
37 sim. outPotentials ();
38
39 // save values
40 sim. moveData ("r042/ f05_gausscompare1_G %1 d_A %03d", G, A);
41
42 // end simulation , child finished
43 return 0;
44 }
45
46 // wait for children to finish
47 while (wait(NULL) > 0); return 0;
48 }
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Appendix B
Three-Body Losses in Dy-164
In an effort to extend the lifetime of quantum droplets, which is determined by the losses
due to three-body recombination, we measured the latter over a wide magnetic field range.

B.1. The thermal gas

A classical gas of atoms, called a thermal gas here, in a harmonic trapping potential Epot

follows the Maxwell-Boltzmann distribution

n(r) = n0e−Epot(r)/kBT with Epot = 1
2m

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

(B.1)

with a peak density n0 = N(2πσ̄2)−3/2 fixed by the total atom number N =
∫

dr n(r)
and the mean size σ̄ = (σxσyσz)1/3. From the resulting Gaussian density distribution,
we obtain the sizes σ2

k = kBT/mω
2
k in an anisotropic trap with mean frequency ω̄ =

(ωxωyωz)1/3. An important quantity is the phase-space density D = n0 λ
3
T = N

(
~ω̄
kBT

)3
,

which is conserved for an adiabatic change of the trapping frequencies [222].
Here, we are interested in the investigation of three-body losses in such a classical sample
of atoms. Following [223], we therefore define the local three-body loss rate as L3 n(r)3.
To derive ensemble quantities we integrate over the whole distribution, which leads to the
loss per atom

Ṅ

N
= − 1

N

∫
drL3 n(r)3 = −L3

N2
√

27 (2π)3 σ̄6︸ ︷︷ ︸
〈n2〉

= − L3√
27

(
mω̄2

2πkB

)3

︸ ︷︷ ︸
γ

N2

T 3 (B.2)

expressed by the accessible quantities N and T . Additional losses in the experiment are
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Appendix B. Three-Body Losses in Dy-164

caused e.g. by collisions with the background gas, which we include by the one-body loss
rate α. This way, we arrive at the differential equation

Ṅ = −αN − γ N3/T 3 . (B.3)

The underlying process for such three-body losses is the recombination of the three atoms,
such that two atoms form a molecule while the third one gains the binding energy of
the dimer additionally heating the sample. For a single atom lost from the trap, the
temperature gain is thus the total heating energy kB(T + Th) per average energy 3kBT of
the trapped particle. This way, we obtain

Ṫ

T
= −Ṅ

N

kB(T + Th)
3kBT

= γ
N2

T 3
T + Th

3T , (B.4)

which we use in conjunction with eq. (B.3) to simultaneously fit the experimental data to
both differential equations.
We note, that the heating energy kBTh in ref. [56] is neglected, which results in a simpler
relation

Ṅ = − γ

T 3
0︸︷︷︸
γ0

N4

N0
⇒ N(t) = N0

(1 + 3γ0N2
0 t)

1/3 (B.5)

for the atom number only, where an initial temperature T0 is assumed. There, one-body
losses are neglected since the measurement time of 1 s is short compared to the lifetime
1/α ∼ 30 s.

B.2. Measurement
In the experiment, we prepare a thermal sample of atoms at a temperature around 180 nK
by forced evaporative cooling in a magnetic field region with small losses. In order to boost
the density of the sample and thus the timescale for losses, we then increase the laser power
of the traps by a factor 1.3 within 150 ms. Subsequently, we ramp the magnetic field to
the desired value within 30 ms and hold the sample prior to imaging for a variable time
of up to 5 s. The acquired atom number and temperature are then simultaneously fitted
to eq. (B.3) and eq. (B.4). This way, we obtain the loss coefficient L3 as presented in
fig. (B.1). Losses in the BEC phase are additionally suppressed by a factor of 3! [224].
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[55] F. Wächtler and L. Santos, Ground-state properties and elementary excitations of quan-
tum droplets in dipolar Bose-Einstein condensates, Phys. Rev. A 94, 043618 (2016).
pp. 14, 26, 36, 38, 40, 43–45, 49, 60, 83, 88

[56] L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler, L. Santos, and F. Ferlaino,
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Dalibard, Superfluid behaviour of a two-dimensional Bose gas, Nat. Phys. 8, 645 (2012).
p. 95

[196] D. E. Miller, J. K. Chin, C. A. Stan, Y. Liu, W. Setiawan, C. Sanner, and W. Ketterle,
Critical Velocity for Superfluid Flow across the BEC-BCS Crossover , Phys. Rev. Lett.
99, 070402 (2007). p. 95

[197] W. Weimer, K. Morgener, V. P. Singh, J. Siegl, K. Hueck, N. Luick, L. Mathey, and
H. Moritz, Critical Velocity in the BEC-BCS Crossover , Phys. Rev. Lett. 114, 095301
(2015). p. 95

[198] B. Jackson, J. F. McCann, and C. S. Adams, Dissipation and vortex creation in Bose-
Einstein condensed gases, Phys. Rev. A 61, 051603 (2000). p. 96

[199] K. Glaum and A. Pelster, Bose-Einstein condensation temperature of dipolar gas in
anisotropic harmonic trap, Phys. Rev. A 76, 023604 (2007). p. 97

[200] M. Ghabour and A. Pelster, Bogoliubov theory of dipolar Bose gas in a weak random
potential, Phys. Rev. A 90, 063636 (2014). p. 98

[201] P. O. Fedichev and G. V. Shlyapnikov, Critical velocity in cylindrical Bose-Einstein con-
densates, Phys. Rev. A 63, 045601 (2001). p. 100

[202] V. P. Singh, W. Weimer, K. Morgener, J. Siegl, K. Hueck, N. Luick, H. Moritz, and L.
Mathey, Probing superfluidity of Bose-Einstein condensates via laser stirring, Phys. Rev.
A 93, 023634 (2016). p. 100

[203] J. S. Stießberger and W. Zwerger, Critcal velocity of superfluid flow past large obstacles
in Bose-Einstein condensates, Phys. Rev. A 62, 061601 (2000). p. 100

[204] S. Burger, F. S. Cataliotti, C. Fort, F. Minardi, M. Inguscio, M. L. Chiofalo, and M. P.
Tosi, Superfluid and dissipative dynamics of a Bose-Einstein condensate in a periodic
optical potential, Phys. Rev. Lett. 86, 4447 (2001). p. 100

[205] A. P. Chikkatur, A. Görlitz, D. M. Stamper-Kurn, S. Inouye, S. Gupta, and W. Ketterle,
Suppression and Enhancement of Impurity Scattering in a Bose-Einstein Condensate,
Phys. Rev. Lett. 85, 483 (2000). p. 100

135

http://dx.doi.org/10.1103/PhysRevA.97.063613
http://dx.doi.org/10.1103/PhysRevA.97.063613
http://dx.doi.org/10.1103/PhysRevA.97.063613
http://arxiv.org/abs/1807.07555
http://arxiv.org/abs/1807.07555
http://arxiv.org/abs/1807.07555
http://dx.doi.org/10.1103/PhysRevLett.83.2502
http://dx.doi.org/10.1103/PhysRevLett.83.2502
http://dx.doi.org/10.1103/PhysRevLett.83.2502
http://dx.doi.org/10.1103/PhysRevLett.85.2228
http://dx.doi.org/10.1103/PhysRevLett.85.2228
http://dx.doi.org/10.1103/PhysRevLett.85.2228
http://dx.doi.org/10.1038/nphys2378
http://dx.doi.org/10.1038/nphys2378
http://dx.doi.org/10.1103/PhysRevLett.99.070402
http://dx.doi.org/10.1103/PhysRevLett.99.070402
http://dx.doi.org/10.1103/PhysRevLett.99.070402
http://dx.doi.org/10.1103/PhysRevLett.114.095301
http://dx.doi.org/10.1103/PhysRevLett.114.095301
http://dx.doi.org/10.1103/PhysRevLett.114.095301
http://dx.doi.org/10.1103/PhysRevA.61.051603
http://dx.doi.org/10.1103/PhysRevA.61.051603
http://dx.doi.org/10.1103/PhysRevA.61.051603
http://dx.doi.org/10.1103/PhysRevA.76.023604
http://dx.doi.org/10.1103/PhysRevA.76.023604
http://dx.doi.org/10.1103/PhysRevA.76.023604
http://dx.doi.org/10.1103/PhysRevA.90.063636
http://dx.doi.org/10.1103/PhysRevA.90.063636
http://dx.doi.org/10.1103/PhysRevA.90.063636
http://dx.doi.org/10.1103/PhysRevA.63.045601
http://dx.doi.org/10.1103/PhysRevA.63.045601
http://dx.doi.org/10.1103/PhysRevA.63.045601
http://dx.doi.org/10.1103/PhysRevA.93.023634
http://dx.doi.org/10.1103/PhysRevA.93.023634
http://dx.doi.org/10.1103/PhysRevA.93.023634
http://dx.doi.org/10.1103/PhysRevA.62.061601
http://dx.doi.org/10.1103/PhysRevA.62.061601
http://dx.doi.org/10.1103/PhysRevA.62.061601
http://dx.doi.org/10.1103/PhysRevLett.86.4447
http://dx.doi.org/10.1103/PhysRevLett.86.4447
http://dx.doi.org/10.1103/PhysRevLett.86.4447
http://dx.doi.org/10.1103/PhysRevLett.85.483
http://dx.doi.org/10.1103/PhysRevLett.85.483


Bibliography

[206] M. Delehaye, S. Laurent, I. Ferrier-Barbut, S. Jin, F. Chevy, and C. Salomon, Critical
Velocity and Dissipation of an Ultracold Bose-Fermi Counterflow, Phys. Rev. Lett. 115,
265303 (2015). p. 100

[207] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A.
Cornell, Vortices in a Bose-Einstein Condensate, Phys. Rev. Lett. 83, 2498 (1999). p. 101

[208] Y. A. Rocher and J. C. Renard, On the existence of several-quanta flux lines in type II
superconductors, Phys. Lett. A 25, 119 (1967). p. 101

[209] H. F. Hess, R. B. Robinson, R. C. Dynes, J. M. Valles, and J. V. Waszczak, Scanning-
Tunneling-Microscope Observation of the Abrikosov Flux Lattice and the Density of States
near and inside a Fluxoid, Phys. Rev. Lett. 62, 214 (1989). p. 101

[210] C. A. Bolle, P. L. Gammel, D. G. Grier, C. A. Murray, D. J. Bishop, D. B. Mitzi, and
A. Kapitulnik, Observation of a commensurate array of flux chains in tilted flux lattices
in Bi-Sr-Ca-Cu-O single crystals, Phys. Rev. Lett. 66, 112 (1991). p. 101

[211] J. R. Abo-Shaeer, C. Raman, and W. Ketterle, Formation and decay of vortex lattices
in bose-einstein condensates at finite temperatures, Phys. Rev. Lett. 88, 070409 (2002).
p. 101

[212] For the vortex simulations, we assume a stable Bose-Einstein condensate of 162Dy and
parameters of the experiment. These are mass m = 162u, dipolar length add = 131 a0
and scattering length as = 140 a0 with a cylindrical harmonic trap fx = fy = 50 Hz and
fz = 150 Hz. We note, that the energy-dependence on vortex position is very weak, which
leads to slow convergence of the imaginary time evolution. As a consequence, the final
vortex position depends on the initial phase step, which we use to seed vortices. In the
isotropic case the magnetic field points along ẑ in the image plane and for the anisotropic
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Von experimenteller Seite gilt mein größter Dank Thomas, Holger und Matthias, die
mich zur Masterarbeit an “ihrem” Experiment aufgenommen haben. Die Zeit mit euch
war immer unterhaltsam und interessant zugleich. In diesem Jahr habe ich tausend neue
Dinge von euch gelernt und ihr habt mir letztendlich die Entscheidung leicht gemacht
für die Doktorarbeit am Experiment zu bleiben, was sich mehr als ausgezahlt hat. Ein
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benachbarten Rübli-Team, die jede Art von Werkzeug fein säuberlich aufgereiht zum Aus-
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Den größten Anteil an meiner Laufbahn haben wohl meine Eltern. Ihr habt mich von
Kindesbeinen stets unterstützt und motiviert meinen Weg zu finden. Vielen Dank.
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