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Deutsche Zusammenfassung

Im Zuge dieser Masterarbeit wurde ein neuartiges Photoionisationsschema implementiert,

mit dem hochangeregte Rydbergatome in kalte Ionen umgewandelt werden können. Bei

diesem sogenannten V-Schema werden Rydbergatome in den Zwischenzustand |6P3/2〉 des

Elements Rubidium abgeregt. Dies geschieht mit einem Laser bei einer Wellenlänge von

etwa 1020 nm. Mit einem weiteren infraroten Laser werden die Atome bei einer Wellenlänge

von 1010 nm aus dem Zwischenzustand photoionisiert. Um kalte Ionen mit möglichst

geringer kinetischer Energie zu erzeugen, muss der Photoionisationslaser möglichst nah

über die Ionisationsschwelle eingestellt werden. Für kurze Ionisationszeiten sind dazu hohe

Intensitäten des Photoionisationslasers notwendig. Auf diese Art ist es möglich, mit hohen

Repetitionsraten kalte Ionen zu erzeugen.

Im Rahmen dieser Arbeit wurde das Lasersystem für die Photoionisation aufgebaut. Der

Aufbau besteht im Wesentlichen aus einem Toptica DLpro Laser mit einer optischen

Ausgangsleistung von etwa 28 mW bei einer Wellenlänge von 1010 nm. Des Weiteren

wurde ein selbstgebauter Transferresonator verwendet, der die Frequenzstabilisierung des

Photoionisationslasers mit Hilfe eines frequenzstabilisierten 780 nm Lasers ermöglicht. Ein

Halbleiterlaserverstärker wurde eingebaut, welcher die nötige optische Leistung in der

Größenordnung von 1 W liefert, die für eine schnelle und effiziente Photoionisation erforderlich

ist.

Für das Photoionisationslasersystem wurde ein neues Transferresonatordesign entworfen,

welches sich einerseits durch eine hohe Stabilität auszeichnet, andererseits durch den mod-

ularen Aufbau eine Vielzahl an Anwendungsmöglichkeiten zulässt. Der selbstgebaute

Transferresonator besteht aus zwei kommerziell erhältlichen Spiegelhaltern, die mit einem

Edelstahlrohr fest verschraubt werden. Auf beide Spiegelhalter sind Rohre geschraubt, welche

die Spiegel des Transferresonators und einen Piezokristall zur periodischen Längenänderung

des Transferresonators beinhalten. Die Charakterisierung des Transferresonators ergab einen

freien Spektralbereich von 928(65) MHz. Für die Finesse des Transferresonators wurden

143(53) für das Licht des 780 nm Lasers und 371(41) für Licht des 1010 nm Laser ermittelt.

Um die Zeitskala zu untersuchen, auf welcher der Photoionisationsprozess stattfindet, wurden

Simulationen durchgeführt. Dazu wurden die optischen Blochgleichungen des im ersten

Abschnitt beschriebenen Dreiniveausystems numerisch gelöst. In den Simulationen wird

der Übergang vom Zwischenzustand ins Kontinuum als laserinduzierter Zerfall beschrieben.

Für eine V-förmige Photoionisation aus dem |40S1/2〉 Rydbergzustand wurden beispielhaft
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Deutsche Zusammenfassung

Simulationen durchgeführt. Die Auswirkung unterschiedlicher Leistungen des Photoionisa-

tionslaser auf die Dauer des Photoionisationsprozesses wurde untersucht.

Im Experiment wurde die Photoionisationseffizienz als Funktion der Laserleistung des

Photoionisationslasers für eine Photoionisation aus dem |51S1/2〉 Rydbergzustand untersucht.

In weiteren Messungen wurden die Rabioszillationen zwischen dem Rydbergzustand und dem

angeregten |6P3/2〉 Zustand betrachtet. Die Verstimmung des angeregten Zustandes durch

den sogenannten AC Stark Effekt wurde als Funktion der Photoionisationslaserleistung

gemessen. Aus den Messwerten wurde der Wirkungsquerschnitt der Photoionisation aus

dem |6P3/2〉 Zustand bestimmt. Unter Berücksichtigung von Dephasierungsmechanismen

ergab sich ein Wert von σ = 8.9(10)× 10−22 m2.

Das im Zuge dieser Masterarbeit aufgebaute Photoionisationslasersystem wurde zudem

verwendet, um die Rydbergblockade zu vermessen, die durch ein einzelnes Ion vermittelt

wird [1].
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Abstract

In this master thesis, a V-type photoionization scheme has been implemented to produce

cold ions from rubidium Rydberg atoms. As part of the implementation, a 1010 nm laser

system has been set up. The laser system comprises a self-built transfer cavity, which is

used to frequency-stabilize the photoionization laser. The cavity is based on a novel design

presented in this work.

The V-type photoionization scheme has been analyzed in numerical simulations to gain

insight into the timescale of the photoionization process. Furthermore, the ac Stark shift

imparted onto the energy levels of the rubidium atoms by the photoionization laser has

been studied. Measurements have been performed in order to determine the photoionization

cross section of the transition from the |6P3/2〉 state in 87Rb into the continuum, yielding a

value of 8.9(10)× 10−22 m2.

The V-type photoionization process and the built laser system have been used to study the

Rydberg blockade induced by a single ion [1].
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1 Introduction

1.1 Rydberg atoms

Rydberg atoms are highly excited atoms with one electron orbiting the ionic core on a

large radius [2]. They are named after the Swedish physicist Johannes Rydberg [3].

Rydberg atoms can be excited optically using narrow linewidth lasers [4]. They exhibit some

interesting general properties that scale with the principal quantum number n. For instance,

S-state Rydberg atoms have an increased lifetime compared to lower-lying states, scaling

with n3. The lifetime of the |50S1/2〉 Rydberg state of 87Rb is around 141 µs [5] compared

to about 27 ns for the |5P1/2〉 excited state [6]. The orbital radius of Rydberg atoms scales

with n2, and their binding energy follows a n−2 dependence [2], usually resulting in a weak

binding to the ionic core.

This weak binding of the excited electron leads to a large polarizability of Rydberg atoms

that scales with n7. The van der Waals coefficient C6 scales with n11 [4]. This leads to

strong, long-range interactions of the Rydberg atoms, which shift the Rydberg energy

levels of neighboring atoms, making it impossible to excite two Rydberg atoms within a

certain blockade radius rB at the same time [7–9]. This interesting effect is known as the

dipole-induced Rydberg blockade, scaling with n11.

Another mechanism is the ion-induced Rydberg blockade dominated by the charge-induced

dipole interaction, scaling with n7. Due to the giant interactions between Rydberg atoms

and a large sensitivity to external fields, Rydberg atoms have sparked the interest of the

current research.

Along with ions [10], nitrogen-vacancy centers [11, 12] or quantum dots [13–15], Rydberg

atoms show a huge potential for a wide range of applications in the pioneering fields of

quantum information technology, quantum computing or quantum communication [16–21].

Many interesting properties of Rydberg atoms have been studied extensively in the course

of the past 80 years [22]. By exploiting the above-mentioned, basic properties of Rydberg

atoms, significant new discoveries have been made. Only some of them are mentioned in

the following. Rydberg atoms have been analyzed in ultracold quantum gases, leading to

excitations of single Rydberg atoms in a Bose-Einstein condenstate [23]. Two-qubit quantum

gates have been explored [24, 25] and Rydberg atoms have been employed to study nonlinear

quantum optics down to the single photon level [26, 27]. This progress of Rydberg physics

has been closely linked to new developments in laser cooling, atom trapping, and imaging

[28, 29].
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1 Introduction

In the course of research, homonuclear Rydberg molecules, in which a neutral ground state

atom is bound to the Rydberg atom due to the interaction with the Rydberg electron, have

become a matter of keen interest, and inspired further inquiry [30–37].

1.2 Studying ion-atom scattering in the ultracold regime

The aim of a new experiment at the 5th Institute for Physics at the University of Stuttgart

is to study ion-atom scattering in the ultracold, quantum regime [38]. So far, ion-atom

interactions have been studied in the cold regime for different combinations of species [39–49],

mainly using Paul traps in combination with a conventional magnetic or optical traps for the

neutral atoms. However, due to the micromotion of the ions in Paul traps, the interaction

could have been only studied in the essentially classical regime. Until now, the S-wave

scattering regime has not yet been reached in any experiment [38].

In the new experiment, either a 6Li?-6Li or a 7Li?-7Li Rydberg molecule will replace the

Paul trap. After the Rydberg molecule has been initialized by photoassociation out of an

ultracold atomic cloud, the single lithium Rydberg molecule will be photoionized in order

to trigger the ultracold scattering process [38]. The outcome of this process will then be

detected with high spatial and temporal resolution using a delay-line detector. To magnify

the scattering wavefunction up to a factor of 1000, an ion microscope containing three

electrostatic lenses will be used [50]. Rydberg molecules have been chosen, since they offer

well-defined starting conditions with only one single Rydberg excitation due to the Rydberg

blockade and the tight focus of the respective laser beams. Moreover, ion and atom are

already close to each other.

To photoionize the Rydberg molecule, a novel V-type photoionization process is employed.

In such a V-type scheme, the Rydberg atom gets deexcited into an intermediate state,

from where it is photoionized. In contrast to electric field ionization, the photoionization

offers high spatial control due to a tight focus of the photoionization beam, and the recoil

imparted by the photoionization laser onto the emerging ion is negligible. As the wavelength

of the photoionization laser can be tuned directly above the ionization threshold, ultra

low-energy ions can be produced, since the electron carries away most of the kinetic energy

of the system, and the photoionization allows to minimize the total energy impact onto the

ion-atom system.

For the Li+-Li ion-atom system, a photoionization laser which is blue-detuned by maximally

10 GHz from the ionization threshold yields a kinetic energy of the ion that is much smaller

than the S-wave scattering limit of the ion-atom system. In order to achieve a diabatic

photoionization process for the lithium system (which is to prevent the Rydberg molecule

wavefunction from evolving), the timescale is limited to photoionization times on the order

of a few ns [38]. The V-type photoionization process can be realized on such a timescale

and benefits further from a fast repetition rate.
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1.3 About this thesis

In the scope of this thesis, the aforementioned V-type photoionization scheme has been

implemented. However, it has been exemplified for 87Rb. In the future, the experiment will

also feature a lithium oven, and the knowledge gained with the rubidium system can be

employed to set up a new photoionization system for lithium.

1.3 About this thesis

This master thesis will be subdivided into seven chapters. This chapter has already given an

introduction into the background of Rydberg physics and the novel V-type photoionization

scheme. In chapter 2, the theoretical foundations will be outlined. The experimental and

optical setup for the V-type photoionization of 87Rb will be presented in chapter 3, and

chapter 4 will report on the self-built transfer cavity that is used to frequency-stabilize the

1010 nm photoionization laser. Results of numerical photoionization simulations will be

shown in chapter 5. The experiments that have been performed with the photoionization

laser system will be outlined and analyzed in chapter 6. Chapter 7 will summarize the content

of this thesis, and it will provide an outlook into further research directions. Supplemental

material will be attached in the appendix.
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2 Theoretical foundations

In this chapter, the theoretical foundations for the mechanisms related to the photoionization

of rubidium described in this thesis will be given. At the beginning, there will be a brief

review of the element rubidium. The second section will be dedicated to the atom-light

interaction, whereas the fundamental theory of optical resonators will be described in the

third section. At last, a short introduction into dipole matrix elements in quantum mechanics

will be given. Further information on specific topics will be provided in the respective

chapters in appropriate detail. For information that is not covered in this thesis, the reader

is referred to literature.

2.1 Physical properties of rubidium

Rubidium (derived from the latin expression rubidus, deepest red) is an alkali metal with

a silver-white apperance [51]. Naturally, the element rubidium consists of two different

bosonic isotopes. 85Rb is stable and has a natural abundance of 72.17 % compared to 87Rb

with 27.83 %. In the experiment, the weakly radioactive isotope 87Rb (with a half-life of

roughly 49 billion years [52]) is used.

As an alkali atom, rubidium has one valence electron. In its 5S1/2 ground state, the ionization

energy EI of a 87Rb atom is 4.177 127 06(10) eV [53]. The nuclear spin of a 87Rb atom is

I = 3/2. Due to its positive scattering length, 87Rb is a suitable element for Bose-Einstein

condensation [54]. Selected properties of 87Rb are presented in Tab. 2.1 along with their

numeric value and the reference.

Tab. 2.1: Physical properties of 87Rb.

Property Symbol Numeric value Reference

Atomic number Z 37 [51]

Number of nucleons A 87 [51]

Atomic mass m 1.443 160 684(72)× 10−25 kg [55]

Nuclear spin I 3/2 [51]

Ionization limit EI 4.177 127 06(10) eV [53]
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2 Theoretical foundations

2.2 Atom-light interaction

This section will introduce the most important principles of atom-light interactions that are

essential in order to fully comprehend the work presented in this thesis. It will outline the

density matrix formalism, the temporal evolution of quantum systems, the fundamentals

of a three-level system, and the ac Stark effect. However, the subjects covered in the

following subsections will provide but a quick overview and will present the notation that

is used consistenly throughout the thesis. For a more comprehensive insight in atom-light

interactions, the reader will find a comprehensive overview of the subject in standard

references such as [56–58].

2.2.1 The atom-light interaction Hamiltonian

A single non-interacting atom with i discrete energy levels |i〉 with energy eigenvalues

Ei = ~ωi is represented by the Hamiltonian

H0 =
∑
i

~ωi |i〉 〈i| . (2.1)

Commonly, the interaction of an atom with a classical light field is dominated by the electric

field component E of the light field that couples to the atomic dipole moment d. In the

dipole-approximation, this interaction is described by the interaction Hamiltonian [59]

HI = −d ·E. (2.2)

The electric dipole moment is given by d = −er, where e is the elementary charge and r

denotes the position operator. The atom-light interaction Hamiltonian is composed of both

H0 and HI and given by

HAL = H0 +HI. (2.3)

2.2.2 Density matrix formalism

Whenever a pure state in a quantum system can be described by a single wavefunction

|ψ(t)〉, it is possible to define a density operator [60] by the outer product

ρ(t) = |ψ(t)〉 〈ψ(t)| . (2.4)

Expanding the wavefunction |ψ(t)〉 into a complete set of orthonormal basis functions {|n〉}
leads to

|ψ(t)〉 =
∑
n

cn(t) |n〉 (2.5)

6



2.2 Atom-light interaction

and the density operator from Eqn. (2.4) becomes

ρ(t) =
∑
n,m

cn(t)c∗m(t) |n〉 〈m| =
∑
n,m

ρnm(t) |n〉 〈m| , (2.6)

where the elements 〈n| ρ(t) |m〉 = ρnm(t) describe the time-dependent matrix elements of

the density operator [56]. The diagonal elements n = m of the density matrix in Eqn. (2.6)

are called populations and the off-diagonal elements n 6= m are referred to as coherences

as they descibe the coherent superpositions of the states |n〉 and |m〉. Due to population

conservation, the normalization condition of the density matrix is Tr[ρ] = 1, where Tr[ρ] is

the trace of ρ.

Since the density matrix formalism is capable of describing both coherent and incoherent

evolutions of atomic ensembles, it will be used within this work in order to describe and

compute the time evolution of the quantum systems [58, 61].

2.2.3 Time evolution of quantum systems

By taking the time derivative of the density operator from Eqn. (2.4), one obtains

∂ρ(t)

∂t
=

(
∂

∂t
|ψ(t)〉

)
〈ψ(t)|+ |ψ(t)〉

(
∂

∂t
〈ψ(t)|

)
. (2.7)

Inserting the Schrödinger equation i~ ∂
∂t |ψ(t)〉 = H |ψ(t)〉 and its dual expression into

Eqn. (2.7) results in the von-Neumann equation

∂ρ

∂t
= − i

~
[H, ρ] , (2.8)

that describes the time evolution of a coherent quantum system characterized by the density

operator with respect to the Hamiltonian H [58]. However, the full quantum mechanical

description is given by the Liouville-von-Neumann equation

∂ρ

∂t
= − i

~
[H, ρ] + L(ρ), (2.9)

a master equation, which also includes incoherent processes such as decay or dephasing

mechanisms that are included in the Lindblad operator L(ρ) [62]. For example, the Lindblad

operator for a decay between two states |i〉 and |j〉 at a decay rate Γij is given by

L(ρ) = −1

2

∑
i,j

Γij

(
C†ijCijρ+ ρC†ijCij

)
+
∑
i,j

ΓijCijρC
†
ij , (2.10)

where C†ij = |i〉 〈j| = Cji is a transition operator [61, 63]. The description of dephasing can

be achieved in a similar way that is not presented here.

7



2 Theoretical foundations

|1〉
∆12

|2〉

|3〉
∆23

Ω12

Ω23
Γ12

Γ32

Γ31

Fig. 2.1: V-type three-level system. The laser-driven transitions between levels |i〉 and |j〉 are

indicated with corresponding Rabi frequencies Ωij . The detuning of a laser with respect to the

atomic transition is marked with ∆ij . Possible decay paths are denoted with Γij . The transition

from |1〉 to |3〉 is forbidden by selection rules.

2.2.4 V-type three-level system

In this section, an atomic three-level system is examined. A typical representation of such a

system is the V-type configuration as shown in Fig. 2.1. In the basis of the three states

|1〉 =

1

0

0

 , |2〉 =

0

1

0

 , |3〉 =

0

0

1

 , (2.11)

the Hamiltonian is diagonal, and following Eqn. (2.1) defined as

H0 =

~ω1 0 0

0 ~ω2 0

0 0 ~ω3

 . (2.12)

The transitions from |1〉 to |2〉 and from |2〉 to |3〉 are driven with two laser beams described

by electric fields

E12 =
1

2
E0,12

(
e−iω12t + eiω12t

)
,

E23 =
1

2
E0,23

(
e−iω23t + eiω23t

)
,

(2.13)

with amplitudes E0,12 and E0,23 and angular frequencies ω12 and ω23, respectively. Both

transitions are far detuned from each other, and the influence of one laser onto the other

transition and vice versa can be neglected.

8



2.2 Atom-light interaction

Hence, the interaction Hamiltonian according to Eqn. (2.2) becomes

HI =
1

2

 0 −d12E12 0

−d21E21 0 −d23E23

0 −d32E32 0

 , (2.14)

assuming that the transition from |1〉 to |3〉 is forbidden by electric dipole selection rules

and Eij = E∗ji. To simplify the evaluation of the Hamiltonian HAL = H0 +HI, it is useful to

perform a transformation into the rotating frame of the laser frequencies, and to apply the

rotating-wave approximation to remove rapidly oscillating terms [57, 64]. In said rotating

frame, the atom-light interaction Hamiltonian reads

HAL = ~

−∆12
1
2Ω12 0

1
2Ω∗12 0 1

2Ω23

0 1
2Ω∗23 −∆23

 , (2.15)

where ∆12 = (ω1−ω2)−ω12 and ∆23 = (ω3−ω2)−ω23 are the detunings of the lasers with

respect to the atomic transitions, Ωij = −dijEij/~ are the Rabi frequencies that express the

coupling strength of the respective transition and Ωij = Ω∗ji. Furthermore, an energy offset

of −~ω2 has been applied making |2〉 the zero energy ground state of the system.

To obtain the full temporal evolution of the three-level system, one still has to add the

incoherent evolution described by the Lindblad operator. An exact evaluation of Eqn. (2.10)

results in

L(ρ) =

 Γ12ρ22 − Γ31ρ11 −1
2(Γ12 + Γ31 + Γ32)ρ12 −1

2Γ31ρ13

−1
2(Γ12 + Γ31 + Γ32)ρ21 −(Γ12 + Γ32)ρ22 −1

2(Γ12 + Γ32)ρ23

−1
2Γ31ρ31 −1

2(Γ12 + Γ32)ρ32 Γ31ρ11 + Γ32ρ22

 (2.16)

where Γij denotes the decay from |i〉 to |j〉. Using the Liouville-von-Neumann equation (2.9)

it is now possible to describe the dynamics of the considered three-level system [58].

2.2.5 The ac Stark effect

An atom placed inside a monochromatic light field oscillating at an angular frequency ωL is

described by the interaction Hamiltonian

HI = −d ·E, (2.17)

where d is again the electric dipole operator and E = 1
2E0

(
e−iωLt + eiωLt

)
is the applied

electric field [58]. In the presence of an oscillating electric field an atomic level experiences

an energy shift, which is called the ac Stark shift (or light shift). It can be calculated using

second order time-independent perturbation theory [65].
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E

~ωi

~ωj

|i〉

|j〉

|i′〉

|j′〉

unperturbed perturbed

~ωL

∆Ei

∆Ej

Fig. 2.2: Illustration of the ac Stark shift in a two-level system. On the left the unperturbed states

|i〉 and |j〉 have an energy difference of ~ωij . A far red-detuned laser beam with (ωij −ωL) > 0 shifts

the two levels by the same energy.

Since the first order shift with respect to HI vanishes in alkali atoms [66], one can analyze

the energy shift ∆Ei = Ei − E0
i of a level |i〉 using

∆Ei =
∑
i 6=j

|〈i|HI |j〉|2
(

1

E0
i − E0

j + ~ωL
+

1

E0
i − E0

j − ~ωL

)
. (2.18)

Here, E0
i and E0

j are the unpertubed eigenenergies of the states |i〉 and |j〉, and the sum

over j considers all transitions from state |i〉 that are allowed by electric dipole selection

rules. Since the frequency ωL of the light field may be detuned significantly from the

atomic resonance frequency ωij = (E0
j − E0

i )/~, the rotating-wave approximation cannot be

applied and hence both co- and counter-rotating terms need to be considered in Eqn. (2.18)

[58, 67, 68].

As an example, Fig. 2.2 shows an illustration of the ac Stark effect for only two states |i〉
and |j〉. For a red-detunded laser, that is ωij − ωL > 0, the low-lying state |i〉 experiences a

red-shift whereas the state |j〉 is shifted towards blue frequencies. The total ac Stark shift is

given by ∆Eac = ∆Ej −∆Ei.

2.3 Resonator theory

Optical resonators are used in a wide range of applications. Among them are laser resonators

surrounding the gain medium, interferometers, optical filters, spectrum analyzers or optical

frequency standards such as reference cavities [69]. This section will focus on the latter and

will give a theoretical overview on spherical resonators.

In the following, some important general formulae will be presented, the resonator stability

conditions will be outlined and the mode-matching of a laser beam and a resonator will be

illustrated. A brief discussion on the contribution of transversal modes in resonators will

conclude the section.
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2.3 Resonator theory

R1, R1 R2, R2

L

λ

Fig. 2.3: Schematic drawing of a spherical resonator. The two mirrors with curvatures R1,2 and

reflectivities R1,2 have a distance of L.

2.3.1 Free spectral range and finesse

A spherical resonator consist of two mirrors of reflectivitiesR1,2 and curvatures R1,2 separated

by a distance L. Such a resonator is schematically depicted in Fig. 2.3. Light of a laser beam

trapped between the two mirrors of this resonator is reflected back and forth. Standing

waves as eigenmodes of the resonator emerge once the condition for constructive interference

q
λ

2
= L (2.19)

is met, where q is an integer and λ the wavelength of the light inside the resonator. Using

the relation c = ν · λ with the speed of light c in the respective medium, one obtains the

frequency of the q-th mode as

νq =
qc

2L
. (2.20)

The constant spacing of two adjacent modes νq and νq+1 is called the free spectral range of

a resonator [70] and is defined as

∆νFSR = νq+1 − νq =
c

2L
. (2.21)

Due to the non-unity reflectivities of the two mirrors, light can enter and exit the cavity.

The transmitted intensity distribution of the resonator as a function of the light frequency

ν is given by

IT(ν) = I0

[
1 +

(
2F
π

)2

sin2

(
πν

∆νFSR

)]−1

. (2.22)

A detailled derivation for Eqn. (2.22) is given in Ref. [71]. The parameter F is called the

finesse of a resonator. It is defined as the ratio of the free spectral range and the full width

at half maximum (FWHM) of the transmission peaks. It is

F =
∆νFSR

νFWHM
=

π
√
R

1−R
, (2.23)
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Fig. 2.4: Normalized transmitted light intensity IT(ν)/I0 of a spherical resonator as a function of

the resonator mode for three different reflectivities R = R1,2 = {0.60, 0.80, 0.99}. With increasing

reflectivities R the finesse F becomes larger and the width νFWHM of the transmission peaks gets

smaller.

where R =
√
R1R2 is the combined reflectivity of both mirrors. The finesse is a measure for

the quality of a resonator and proportional to the Q-factor in mechanical oscillators [72]. In

Fig 2.4 the spectrum from Eqn. (2.22) is plotted for three different mirror reflectivities.

2.3.2 Resonator stability

There are various types of resonators that use different configurations of concave, convex,

planar or spherical mirrors. Not all combinations provide a stable resonator. This section

will give a quantitative overview on the criteria for the stability of resonators.

A resonator can be treated as a periodic optical system. Unwrapping the resonator presented

in Fig. 2.3 and deconstructing it into a propagation through free space, a mirror, another

propagation, and again a mirror makes it easy to describe the resonator within the ray

transfer matrix formalism.

A detailed consideration of the eigenvalues of the arising matrix in said formalism [73] yields

the stability condition

0 ≤ g1g2 ≤ 1. (2.24)

The so-called stability parameters gi in above inequality are defined by

gi = 1− L

2fi
. (2.25)
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1
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1

1
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Fig. 2.5: Stability diagram of a resonator. For values g1 and g2 in the shaded regions of the plot

a resonator fulfills Eqn. (2.25) and is stable. There are four special cases pointed out: (1) planar

resonator, (2) confocal resonator, (3) spherical resonator and (4) confocal-planar resonator.

This expression is the general solution for any mirror with focal length fi [74]. The stability

condition from Eqn. (2.24) can be transferred into a stability diagram as shown in Fig. 2.5.

In this figure, there are four special cases of resonators pointed out. Note the spherical

resonator with fi = −Ri/2 and the confocal-planar resonator with R1 = −L and R2 =∞
[74].

2.3.3 Mode matching of light beams and resonators

All considerations in previous sections have been made under the assumption of plane

waves light fields. However, laser beams are more accurately described as Gaussian beams.

Gaussian beams are the solution of the paraxial Helmholtz equation with axial symmetry.

The electric field distribution of Gaussian beams is described by

E(r, z) = E0
w0

w(z)
exp

(
r2

w2(z)

)
× exp (ikz − iψ(z))× exp

(
ik

r2

2R(z)

)
. (2.26)

The first factor in Eqn. (2.26) describes the amplitude distribution, the second one the

longitudinal phase and the third factor the radial phase of the beam [74]. The beam waist

at position z is described by

w(z) = w0

√
1 +

(
z

zR

)2

, (2.27)

where w0 is the minimum beam waist and

zR =
πw2

0

λ
(2.28)
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is the Rayleigh length. The curvature of the wavefront of the beam is given by

R(z) = z

[
1 +

(zR

z

)2
]
. (2.29)

Furthermore, k is the wavevector and ψ(z) is the so-called Gouy phase [74], which will be

examined more closely in Sec. 2.3.4.

To allow for the best mode matching of the incident laser beam and the resonator, it is

mandatory that the curvatures of the mirrors R1,2 at positions z1,2 match the curvatures of

the Gaussian beam at the same positions z1,2. Thus, the conditions

R1 = z1 +
z2

R

z1
, R2 = z2 +

z2
R

z2
with z2 = z1 + L (2.30)

need to apply [75].

2.3.4 Resonance frequencies of a resonator

Gaussian beams as described in Eqn. (2.26) are not the only solution to the paraxial

Helmholtz equation. Another solution is given by Hermite-Gaussian beams, that have a

transversal intensity profile which is described by two sets of Hermite polynomials [76].

The Hermite-Gaussian modes are labelled with TEMlm where l,m ∈ Z and l,m = 0 is the

Gaussian fundamental mode.

The contribution of Hermite-Gaussian modes as well as the previously introduced Gouy

phase ψ(z) change the resonance frequencies of a resonator. In a spherical resonator these

are

νq,l,m = q∆νFSR + (l +m+ 1)
∆ψ(z)

π
∆νFSR, (2.31)

where q represents longitudinal modes and l,m label transverse modes [69]. The expression

∆ψ(z) = ψ(z2)− ψ(z1) is the Gouy phase difference with

ψ(z) = arctan

(
z

zR

)
. (2.32)

The Gouy phase difference in Eqn. (2.31) collectively shifts the resonance frequencies of a

resonator by a significant fraction of ∆νFSR. Fundamental modes l,m = 0 hence appear at

positions

νq,0,0 =

(
q +

∆ψ(z)

π

)
∆νFSR. (2.33)

Additionally, higher order modes of a Hermite-Gaussian beam appear in the spectrum of a

resonator.
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2.4 Dipole matrix elements

2.4 Dipole matrix elements

This section will give a brief introduction into the quantum mechanical calculation of dipole

matrix elements. A transition between two atomic states |J,mJ〉 and |J ′,mJ ′〉 is coupled by

the dipole operator d = −er. The dipole matrix element µ = 〈J,mJ |d |J ′,mJ ′〉 determines

the coupling strength of said two levels and it arises due to the overlap of the wavefunctions of

levels |J,mJ〉 and |J ′,mJ ′〉. Some physical properties such as radiative lifetimes or transition

probabilities can be calculated knowing the quantity of the dipole matrix element [77].

When dealing with angular momenta, it is reasonable to perform a change of basis and

approach arising problems in a spherical basis, where the unit vectors êq are defined by

ê±1 = ∓ 1√
2

(x̂± iŷ) and ê0 = ẑ, (2.34)

where x̂, ŷ and ẑ are the Carthesian basis vectors. The expression of the q-th component of

the dipole operator in the new basis is then given by

dq = −er
√

4π

3
Y q

1 (ϑ, ϕ)êq. (2.35)

Here, Y m
l (ϑ, ϕ) are spherical harmonics and q = {−1, 0,+1} labels the three different

polarizations {σ+, π, σ−} of light [78].

The Wigner-Eckart theorem allows to factorize the dipole operator into a reduced matrix

element and an angular contribution, which can be expressed solely in terms of Clebsch-

Gordan coefficients or Wigner 3-j symbols (:::). It is

〈J,mJ |dq |J ′,mJ ′〉 = 〈J‖d‖J ′〉 × 〈J,mJ |J ′,mJ ′ ; 1 q〉

= 〈J‖d‖J ′〉 × (−1)J
′−1+mJ

√
2J + 1

(
J ′ 1 J

mJ ′ q −mJ

)
.

(2.36)

The reduced matrix element 〈J‖d‖J ′〉 contains the radial dependence of the dipole matrix

element, while its orientation is fully described by Clebsch-Gordan coefficients [58, 79, 80].

The total angular momentum J = L + S of the atom is a composition of the orbital angular

momentum L and the electron spin S. Since both L and S refer to different Hilbert spaces

and the dipole operator leaves the electron spin untouched, it is possible to further decompose

the reduced matrix element from Eqn. (2.36). Applying the Wigner-Eckart theorem and

using Wigner 6-j symbols {:::} yields

〈J‖d‖J ′〉 = 〈L‖d‖L′〉 × (−1)J
′+L+1+S

√
(2J ′ + 1)(2L+ 1)

{
L L′ 1

J ′ J S

}
. (2.37)

A further decomposition results in

〈L‖d‖L′〉 = 〈nL| er |n′L′〉 × (−1)−L
√

2L′ + 1

(
L 1 L′

0 0 0

)
, (2.38)
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where

〈nL| er |n′L′〉 = µrad =

∫
R∗nL(r)erRn′L′(r)r2 dr (2.39)

is the radial matrix element with RnL(r) being the radial wavefunctions with respect to the

quantum numbers n and L [77].
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3 Experimental setup

This chapter will provide an introduction into the Rydberg excitation scheme employed in

the experiment and the V-type photoionization scheme implemented in the scope of this

thesis. Moreover, the optical setup of the photoionization laser system (1010 nm) and a

proposed extension of the Rydberg excitation and deexcitation laser system (1020 nm) will

be presented.

3.1 Rydberg excitation and V-type photoionization scheme

To excite atoms to the Rydberg state, a two-photon process is employed using a 420 nm and

a 1020 nm laser in a ladder-configuration. Both lasers have a narrow linewidth on the order

of 25 kHz [81]. The light of the 420 nm laser is σ+-polarized and drives the transition from

the |5S1/2, F = 2,mF = 2〉 ground state to the |6P3/2, F = 3,mF = 3〉 intermediate state in
87Rb. The blue laser has a detuning ∆ with respect to the atomic resonance frequency,

which is discussed later. The setup of the 420 nm laser system is described in Ref. [81].

From the |6P3/2〉 intermediate state, S- and D-Rydberg states can be adressed using the

1020 nm laser. For S-states σ−-polarized light is used, D-states can be excited with σ+

polarization. Only |nS1/2〉 states are considered in this thesis. The wavelength of the

infrared laser can be set to any desired wavelength in the range from 1000 to 1025 nm [82],

which allows to adress many different Rydberg states with principal quantum number n.

More information on the 1020 nm laser system can also be found in Ref. [81].

The excitation scheme as depicted in Fig. 3.1 is called an inverted scheme as the laser with

the smaller wavelength operates on the transition from the ground to the intermediate state

and the infrared laser drives the transition to the Rydberg state. The related normal scheme

utilizes a 780 nm laser to drive the transition |5S1/2〉 → |5P3/2〉 and a 480 nm laser to get to

the Rydberg state. The inverted scheme has two advantages. Firstly, the available lasers at

1020 nm deliver more optical output power than the 480 nm lasers in the normal scheme [82].

Secondly, the |6P3/2〉 state with τ6P3/2
= 112 ns has a much larger lifetime [83] compared to

the |5P3/2〉 state with τ5P3/2
= 27 ns [52] and the dipole matrix elements for the transitions

into the Rydberg state are larger [84].

As mentioned above, the transition |5S1/2, F = 2,mF = 2〉 → |6P3/2, F = 3,mF = 3〉 is

driven off-resonantly with the blue laser being detuned by ∆ = 2π × 80 MHz. Commonly,

this detuning is large compared to the Rabi frequencies of the 420 nm and 1020 nm laser

17



3 Experimental setup

|nS1/2〉

|6P3/2, F = 3,mF = 3〉

|5S1/2, F = 2,mF = 2〉

∆

1020 nm
1010 nm

420 nm

continuum

Rydberg state

E

0

−EI

−E6P3/2

Fig. 3.1: Inverted Rydberg excitation and V-type photoionization scheme in 87Rb. A 420 nm

and a tunable 1020 nm laser in ladder-configuration excite atoms from the |5S1/2〉 ground state

to the |nS1/2〉 Rydberg state. The blue laser is detuned by ∆ = 2π × 80 MHz with respect to

the atomic resonance frequency to adiabatically eliminate the |6P3/2〉 intermediate state. The

Rydberg deexcitation is driven on resonance with the 1020 nm laser and a high power 1010 nm laser

photoionizes the atom.

and large compared to the decay rate of the |6P3/2〉 state with Γ6P3/2
= 2π × 1.42 MHz.

Hence, the |6P3/2〉 intermediate state experiences only a weak coherent coupling to the

ground and Rydberg state and does not get populated substantially. This is called the

adiabatic elimination of an intermediate state. As a consequence the three-level system can

be treated as an effective two-level system |5S1/2〉 → |nS1/2〉 with an effective two-photon

Rabi frequency [85]

Ωeff =
Ω420Ω1020

2∆
. (3.1)

Here, Ωi are the Rabi frequencies of the respective lasers. The adiabatic elimination of the

|6P3/2〉 state allows for a fast and efficient Rydberg excitation [86, 87].

For the photoionization, a two-photon V-type scheme is used by applying the 1020 nm

and the 1010 nm laser. The 1020 nm Rydberg laser deexcites the atom in resonance with

the |6P3/2, F = 3,mF = 3〉 intermediate state using σ−-polarized light. For example, with

a waist w = 5 µm and a laser power of P = 1 mW a deexcitation Rabi frequency of

Ω = 2π × 26 MHz can readily be achieved in a transition from the |51S1/2〉 state. The
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3.2 Photoionization laser system

tuneable photoionization laser operates at a wavelength of 1010 nm. In Sec. 3.2 the setup of

the photoionization laser system is described. The photoionization rate from the |6P3/2〉
state into the continuum is given by

Γ =
σλI

hc
, (3.2)

which is determined by the photoionization cross section σ, the wavelength λ of the pho-

toionization laser and its intensity I [88]. Further information of the photoionization rate

and the treatment of the transition at hand as a decay is given in Sec. 5.1.

The binding energy of the |6P3/2〉 state is calculated as E6P3/2
= 2.949 918 69 eV, which

corresponds to a wavelength of

λth =
hc

E6P3/2

= 1010.295 nm. (3.3)

The absorption of a photon at this wavelength exactly overcomes the binding energy of

the atom and gently pushes the electron over the ionization threshold. A consideration of

energy and momentum conservation in the emerging electron-ion system yields an electron

energy of

Ee− =
mion

mion +me−
Eex (3.4)

after the photoionization, where Eex = E1010−E6P3/2
is the excess energy, E1010 is the energy

of a photon of the ionization laser, and mion and me− are the masses of the ion and electron,

respectively. Since the mass ratio me−/mion � 1, the electron carries away most of the

kinetic energy of the system leaving a low-energy ion. For instance, the kinetic energy of

the electron is Ee− = 132 µeV for a photoionization laser wavelength of λ = 1010.186 nm.

Furthermore, the excess kinetic energy of the ion can be calculated with

Eion =
me−

mion +me−
Eex = 0.84 neV, (3.5)

corresponding to a temperature of T = 9.7 µK.

3.2 Photoionization laser system

In this section, the optical setup of the photoionization laser system will be described. A

schematic drawing can be found in Fig. 3.2. The whole setup is placed on a 90 cm× 60 cm

breadboard1 that is mounted on top of the laser table with four 21 cm high stainless steel

posts. This laser table extension is mantled within a cage of opaque plexi glass for reasons

of laser safety and temperature stability.

1Nexus breadboard B6090L
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Fig. 3.2: Schematics of the optical setup of the 1010 nm photoionization laser. After the DLpro

laser the shape of the beam is adjusted with an anamorphic prism pair to gain a round beam profile.

The beam is coupled through an optical isolator. Using a λ/2-wave plate and a PBS, 2 mW of the

beam power is guided to a fiber coupler to the wavemeter. 8 mW of the input power is directed to

the cavity branch, where both the photoionization laser and a 780 nm laser are overlapped with the

help of a dichroic mirror and coupled into a polarization-maintaining fiber to the transfer cavity.

The cavity, mode-matching optics and the detection photo diodes (gray box) are set up on the laser

table to give further stability to the cavity. The third branch of the laser (approximately 18 mW)

is coupled into a tapered amplifier (TA) using a cylindrical 2:1 telescope. After the TA the laser

has a power of 2 W. Subsequently, the beam propagates through a cylindrical beam shaping lens,

an optical isolator and is focussed through an AOM and a shutter with the help of a 3:1 telescope.

Behind the third PBS, the beam is coupled into a polarization-maintaining fiber to the experiment.
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The photoionization laser is a Toptica DLpro laser with a wavelength of 1010 nm. An

injection current of 91 mA produces an optical output power of 28 mW. The beam height

of the whole setup is 75 mm. Right after the laser output, an anamorphic prism pair is

used to transform the input beam into a circular-shaped beam. The laser beam is coupled

through an optical isolator2 using two mirrors. At two polarizing beam splitters (PBS 1 and

PBS 2) the beam is divided into three branches. In the following, these three branches are

referred to as wavemeter, cavity and TA branch. The abbreviation TA stands for tapered

amplifier.

The optical power that is deflected into the wavemeter branch can be adjusted with the

λ/2-wave plate in front of PBS 1. Roughly 2 mW are coupled into the fiber connected to a

wavemeter3. With an adjustable mirror after the fiber outcoupler, the light of the 1020 nm

laser (see Sec. 3.3) from the laser table (see Ref. [81]) can be coupled into the fiber instead

of the photoionization laser in order to avoid unplugging fibers at the input ports of the

wavemeter.

The combination of the second λ/2-wave plate and the PBS 2 branches off about 8 mW into

the cavity branch. With the help of two mirros and another λ/2-wave plate, the 1010 nm

laser is coupled into a polarization-maintaining single mode fiber. In front of the fiber, a

long-pass dichroic mirror4 is placed. This is where the infrared laser is overlapped with a

780 nm laser, which allows for a co-propagation of both lasers through the fiber.

After the fiber, which is outcoupled on the laser table, both laser beams are coupled into

the transfer cavity using two mirrors and a lens with a focal length of 250 mm to fulfill the

mode-matching conditions for the cavity. The cavity is used to perform a transfer-lock from

the 780 nm laser to the photoionization laser. The light transmitted through the cavity of

both lasers is separated with a short-pass dichroic mirror5 and distributed to a photo diode

each. To prevent leakage light from the photoionization laser to reach the photo diode of

the 780 nm laser, a band pass filter6 is installed. The self-built transfer cavity is discussed

in appropriate detail in Ch. 4.

In the TA branch, an aberation-balanced [89] and cylindrical 2:1 telescope magnifies the

photoionization laser beam in one direction to maximize the overlap of the laser beam with

the input facet of the tapered amplifier (TA). The TA itself is seeded with a laser power of

18 mW. An injection current into the TA chip7 of 5.8 A creates an optical output power of

2 W at 1010 nm. After the TA, a 70 mm cylindrical lens is used to correct the beam shape

of the output mode as best as possible. A two-stage optical isolator8 with an isolation larger

than 60 dB prevents reflections into the TA chip [90].

2Linos FI-980-3SC
3Burleigh WA-10
4Thorlabs DMLP950
5Thorlabs DMSP950
6Thorlabs FB780-10
7Dilas TA-1010-2000-CM, facet size 6 × 1.2 µm2

8Linos FI-980-5TIC
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3 Experimental setup

A 3:1 telescope focuses the laser beam through an acusto-optic modulator9 (AOM) and a

shutter10. The first diffraction order of the AOM (+200 MHz) is coupled into a polarization-

maintaining fiber to the experiment. Due to the diffraction efficiency of the AOM and

the coupling efficiency of the fiber, approximately 500 mW photoionization laser power are

available after the fiber. At PBS 3, the photoionization laser can be overlapped with the

1020 nm Rydberg excitation and deexcitation laser (see Sec. 3.3).

3.3 Rydberg excitation and deexcitation laser system

In this section, an extension for the setup of the 1020 nm Rydberg excitation and deexcitation

laser will be proposed. The major part of the 1020 nm laser system already exists and is

depicted in Fig. 3.7 in Ref. [81].

The main idea of the setup presented in Fig. 3.3 in this work is to overlap three laser beams

to have all lasers for the V-type photoionization process accessing the experiment chamber

through the same viewport. The two Rydberg lasers for the excitation and deexcitation and

the photoionization laser are combined in front of the fiber to the experiment to ensure the

overlap of the beams. The proposed setup is described in the following.

AOM
shutter

10
20

n
m

+
80

M
H

z

10
20

n
m

45
3

(2) (1)

Fig. 3.3: Proposed optical setup of the 1020 nm Rydberg excitation and deexcitation laser system.

The first 1020 nm beam (1) is guided through a double-pass AOM with a total frequency modulation

of −160 MHz. It is used for the Rydberg deexcitation. The AOM double-pass consists of a lens, a

λ/4-wave plate and a mirror. The second incoming 1020 nm beam (2) is already modulated with

+80 MHz and it is directly coupled into the fiber to the experiment via the shutter and PBS 3 serving

as the Rydberg excitation laser. The zeroth order of the AOM is blocked. The overlap with the

photoionization laser setup in Fig. 3.2 is greyed out in this schematic.

9Crystal Technology AOM 3200-1117
10Uniblitz LS3ZM2
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3.3 Rydberg excitation and deexcitation laser system

At PBSC 1 in Ref. [81], the first 1020 nm laser beam is picked up11. The second 1020 nm

beam (+80 MHz) is picked up just before the fiber to the experiment using a flip mirror.

Two periscopes are used to guide the laser beams from the laser table to the setup of the

photoionization laser.

Fig. 3.3 illustrates the suggested setup of the Rydberg lasers on the aforementioned laser table

extension. Light of the 1020 nm beam (1) without frequency shift is transmitted through

PBS 4 and coupled into an AOM in double-pass configuration, leading to a frequency shift

of −160 MHz. This laser is used for the Rydberg deexcitation.

The second 1020 nm laser (+80 MHz) is used for the Rydberg excitation. At a 90:10 beam

splitter (BS 5), the beam is overlapped with the deexcitation beam and coupled into the

fiber to the experiment. A shutter is utilized to block the laser beams.

Since the 420 nm laser is detuned by +80 MHz, the combined frequency shifts of the Rydberg

excitation laser (−160 MHz) and the Rydberg deexcitation laser (+80 MHz) ensure that

the Rydberg deexcitation laser couples the Rydberg state |nS1/2〉 resonantly to the |6P3/2〉
state.

11Note the different notation PBSC for polarizing beam splitter cubic, which is used in Ref. [81]
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4 Self-built transfer cavity

In this chapter, the self-built transfer cavity will be introduced, and the specific requirements

for the cavity will be sketched out. A novel transfer cavity design will be presented and

explained. The developed theoretical mode-matching considerations will be continued and

applied to the cavity at hand. Finally, the self-built cavity will be characterized and the

frequency and length stabilization of both the involved lasers and the cavity will be presented.

A tutorial on how to easily adjust the cavity and couple light into it can be found in appendix

A.4.

4.1 Requirements

The principal purpose of the cavity is to perform a transfer lock from a laser with wavelength

780 nm to a laser with wavelength 1010 nm. Therefore, a cavity with an active length-

stabilization mechanism is needed. This is realized making use of a piezo actuator to keep

the cavity at constant length. Due to previous experiences of the institute with plano-concave

cavities, this configuration is also used for the cavity presented in this thesis.

In order to produce slow ions and impart as little energy as possible onto them during

the photoionization process, the 1010 nm photoionization laser should be tuned close to

the ionization threshold of the 87Rb atoms. Therefore, a free spectral range of around

∆νFSR ≈ 1 GHz is required. Rearranging Eqn. (2.21) would yield a desired length of the

cavity of L = c/(2∆νFSR) = 150 mm. However, the cavity length is chosen to be L = 160 mm

resulting in a free spectral range of ∆νFSR = 937.5 MHz. The reason for the slightly longer

cavity is the degeneracy of fundamental and Hermite-Gaussian modes that would appear in

a cavity of 150 mm length. This will be briefly discussed in Sec. 4.4.2.

Since a laser linewidth on the order of tens of MHz is sufficient for the photoionization

process, no high finesse cavity is needed. Therefore, this aspect is not considered in the

conception of the transfer cavity.
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4 Self-built transfer cavity

fine tuning screws

spacer

concave mirror M2

mirror mount

(body)

mounting post

plane mirror M1

piezo actuator

piezo holder

lens tube

mirror mount

(front plate)

retaining ring

Fig. 4.1: Quarter cut through a rendered image of the self-built transfer cavity. The individual

parts of the cavity are labelled within the figure.

4.2 Design and realization

The cavity, as depicted in Fig. 4.1, is designed in a plano-concave configuration of two

commercially available mirrors. The plane mirror M1 is a broadband laser mirror by Lens-

Optics12 with a diameter of 12.5 mm to cope with both laser wavelengths. It is made of

a BK7 glass substrate and has a nominal reflectivity R1 > 99.6 % in the range of 760 to

1064 nm due to the high reflectivity coating. The curvature of this mirror is R1 =∞. Mirror

M2 is a dielectric-coated concave mirror by Thorlabs13 with a diameter of 25.4 mm and

a focal length f2 = 100 mm. It has a curvature of R2 = −2f2 = −200 mm. The average

reflectivity over the whole coating range from 750 to 1100 nm is specified as R2 > 99.0 %.

The stability parameters of the two mirrors according to Eqn. (2.25) are g1 = 1 and g2 = 0.2,

respectively. Therefore, the cavity is considered stable, as the inequality from Eqn. (2.24)

0 ≤ g1g2 = 0.2 ≤ 1 (4.1)

is fulfilled. A cavity with one mirror of curvature R1 =∞ is considered a special case of a

spherical resonator [69]. Hence, all theoretical studies from Sec. 2.3 are applicable to the

cavity at hand.

12Lens-Optics M760-1064/12.5 with HR760-1064 nm/0-45°, s+p-Pol. coating
13Thorlabs CM254-100-E03-SP (backside polished)
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4.2 Design and realization

The concave mirror is mounted inside a lens tube14 and fastened with a retaining ring. On

the opposite side of the cavity, the plane mirror is glued onto a piezo ring actuator with

epoxy resin. The piezo actuator itself is glued to a custom-made stainless steel piezo holder

that comprises feed-throughs and a strain relief for the piezo cables. The whole assembly is

built into another lens tube15 and fixed in place with a retaining ring.

The front plates of two commercially available mirror mounts16 are provided with threads17

and the previously mentioned lens tubes are screwed into them. Both mirror mount bodies

are provided with one through bore each, matching the inner diameter of the spacer tube.

The two aluminium mirror mounts are screwed to a stainless steel tube18 with an inner

diameter of 13 mm and an outer diameter of 25 mm that serves as a spacer between the

mirrors. In its center, the spacer is screwed onto a stainless steel mounting post19. Technical

drawings of the parts are provided in appendix A.5.

The piezo actuator used in the cavity is a multilayer stack ring actuator20 with six stacks

and a nominal travel range of 11 µm. It can be operated in a voltage range from −20 to

100 V.

There are numerous advantages of this cavity design. The tilting of both mirrors with

respect to the optical axis of the laser beam inside the cavity can be adjusted using the

fine tuning screws on the mirror mounts. Moreover, by inserting additional retaining rings

into the lens tubes, the longitudinal position of both the concave and the plane mirror can

be altered and the free spectral range of the cavity can be modified. Moreover, the lens

tubes containing the mirros can easily be dismantled. This proves to be useful for a rough

adjustment of the laser beam through the cavity. More details on adjusting the cavity are

given in appendix A.4. Furthermore, as the concave mirror is not glued into the cavity as

in previous designs of the institute, it can simply be replaced by another mirror making it

possible to alter properties such as the finesse of the cavity.

The presented design proves to be quite stable and the length of the cavity can actively

be stabilized for over 24 hours. Apart from the spacer, all cavity parts are commerically

available, which cuts production costs.

Moreover, several transfer cavities of the very design explained in this thesis are already

recreated within the institute. Due to the arbitrarily adaptable components of the cavity

and the modular design, a wide range of different properties can be achieved.

14Thorlabs SM1L10
15Thorlabs SM1L15
16Radiant Dyes MDI-2G-3000
17Done by the mechanics workshop of the Physics Institutes of the University of Stuttgart
18MiSUMi PIPS25-6-500
19turned down Thorlabs P75/M
20PI ceramic P-080.341
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4 Self-built transfer cavity

L1

f1 = 4.51 mm

f0

L0

M3

M4

piezo

L = 160 mm

R2 = −200 mm

M1 M2

w0

w1

PD

Fig. 4.2: Simplified schematic depiction of the optics around the transfer cavity with mirrors

M3,4 and lenses L0,1. Inside the cavity, mirror M1 is a plane mirror. The concave mirror M2 has

a curvature R2 = −200 mm. The length of the cavity enclosed by the two mirrors is L = 160 mm.

After the collimation lens L1 with f1 = 4.51 mm the beam has a waist w0 = 430 µm, the minimum

waist on the plane mirror is w1 = 147 µm for λ = 780 nm. The focal length of lens L0 is calculated

to be f0 ≈ 250 mm. The transmission spectrum is measured with a photo diode (PD)

4.3 Mode-matching

In this section, the mode-matching of the incident laser beam and the cavity will be discussed

in appropriate detail. Fundamental aspects have already been outlined in Sec. 2.3.3. To

guarantee the best mode-matching of the cavity and incident laser beams, Eqn. (2.30) needs

to be considered. The optical setup in front of the cavity is depicted in Fig. 4.2. After the

polarization-maintaining optical fiber21 with a mode field diameter of 2wMDF ≈ 5 µm, a

lens L1 with a focal length of f1 = 4.51 mm collimates the outcoupled laser beam. For a

wavelength of λ = 780 nm, the collimated beam has a waist of w0 = 430 µm. Two mirrors

M3 and M4 are used to align the laser beam through the cavity. The position and the focal

length f0 of the second lens L0 needs to be calculated in a way that the mode-matching

conditions in Eqn. (2.30) are kept.

As a consequence of Eqn. (2.30), the curvature of the laser beam at the plane mirror needs

to be infinitely large. This is the case if the minimum waist w1 of the incident beam is at

the position of the plane mirror M1 at z1 = 0. The concave mirror M2 with a focal length

f2 = 100 mm and a curvature R2 = −f2/2 = −200 mm is at position z2 = z1 +L = 160 mm.

Therefore, it is

R2(L) = L+
z2

R

L
. (4.2)

Inserting the Rayleigh length zR from Eqn. (2.28) and solving for the waist w1, one obtains

w1 =

√
λ/π

√
LR2 − L2. (4.3)

As a result, a waist w1 = 147 µm for λ = 780 nm is necessary to fulfill the mode-matching

conditions for both mirrors simultaneously.

21Thorlabs P3-780PM-FC-1
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4.4 Characterization of the cavity

To calculate the correct focal length f0 that focusses the collimated laser beam to the

above calculated waist, it is appropriate to consider the lens L0 and the following free-space

propagation in the ray transfer matrix formalism (see Ref. [74] for a detailed derivation).

Here, the lens L0 is placed such that the mirror M1 at position z1 = 0 is in the focus of the

lens and the waist w1 of the beam is minimal at this very position. In this situation, the

complex beam parameter

1

q(z)
=

1

R(z)
+ i

1

zR
(4.4)

of the Gaussian beam is given by

1

q′
=
−1/f0 + 1/q

f0/q
. (4.5)

Since z1 = 0 and consequently R1 =∞, Eqn. (4.4) simplifies to q = −izR. Plugging q into

Eqn. (4.5) and separating real and imaginary part one obtains

1

q′
=

1

f0
+ i

zR

f2
0

. (4.6)

Reconsidering Eqn. (4.4), it is straight forward to identify

z′R =
f2

0

zR
. (4.7)

The focal length f0 is then given by

f0 =
√
zRz′R

(2.28)
= π

w0w1

λ
, (4.8)

where zR and z′R are the Rayleigh lengths in front of and after the lens L0, respectively.

With the already calculated waists w0 = 430 µm and w1 = 147 µm, the focal length of lens

L0 needs to be f0 ≈ 254 mm. Therfore, a lens with a focal legth of f0 = 250 mm is used in

the experiment.

Similar calculations can be made for the second laser. As a matter of fact, the results

for a wavelength of 1010 nm do not differ too much from the ones presented above for

780 nm. Hence, the mode-matching conditions for the photoionization laser are fulfilled with

deviations below 10 %, if the mode-matching of the 780 nm laser is good and vice versa.

4.4 Characterization of the cavity

In this section, the transfer cavity will be characterized. To measure the free spectral range

∆νFSR and the finesse F of the self-built transfer cavity, the 780 nm laser is scanned over a

range of around 10 GHz with a scan frequency of ν ≈ 1 Hz. The transmission spectrum of

the cavity is measured with a photo diode.
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4 Self-built transfer cavity

Simultaneously, the same laser is used to perform Doppler-free saturation spectroscopy of

the D2-line of 87Rb (λ = 780.241 nm) in a vapor cell to calibrate a frequency reference for

the measurements of the free spectral range of the cavity. The lamb dips of the transitions

|5S1/2, F = 1〉 → |5P3/2〉CO(F ′ = 1, 2) and |5S1/2, F = 2〉 → |5P3/2, F
′ = 3〉 are used to

calibrate the frequency axis. The exact frequencies of said transitions are taken from Ref. [52].

CO denotes the cross-over resonance of two hyperfine states. A detailed description of the

spectroscopy setup is given in Ref. [91]. Both the rubidium spectroscopy signal and the

spectrum of the cavity are depicted in Fig. 4.3.

The free spectral range is determined by extracting the frequency differences of adjacent

fundamental modes of the cavity (see Fig. 4.3). Due to non-linearities of the laser scan,

individual free spectral ranges slightly differ from each other. Thus, the free spectral range

is calculated as an average over all free spectral ranges. The measured and averaged value

is

∆νFSR = 928(65) MHz, (4.9)

where the error is given by the standard deviation. Within tolerances, the free spectral

range is quite close to the theoretical value of ∆νFSR,theo = 937.5 MHz. The deviation of

approximately 10 MHz corresponds to a 1.5 mm longer cavity and can be explained with

mechanical tolerances of the cavity parts or the two layers of glue that stick both the plane

mirror, the piezo actuator and the piezo holder together.

Pseudo-Voigt profiles

V(ν) = I0 ·


η

1 +

(
ν − ν0

1
2νFWHM

)2 + (1− η) · exp

− ln(2)

(
ν − ν0

1
2νFWHM

)2

+ Ioff (4.10)

are fitted to the transfer cavity transmission maxima in Fig. 4.3 to obtain the full width

at half maximum νFWHM of the individual transmission peaks for the 780 nm laser. A

pseudo-Voigt fit accounts for both homogeneous and inhomogeneous broadening of the lines

[82, 92]. In Eqn. (4.10) further fitting parameters are the amplitude I0 of the transmission

peaks, the center frequency ν0 of a peak and an offset Ioff . The balance of Lorentzian and

Gaussian profile contributions in Eqn. (4.10) is determined by a weighting factor η ∈ [0, 1].

The fitted values for νFWHM are averaged over all peaks and the mean value is

νFWHM = 6.5(20) MHz. (4.11)

According to Eqn. (2.23), the finesse of the cavity for 780 nm laser light is given by

F780 =
∆νFSR

νFWHM
= 143(53), (4.12)

where the error is determined with an error propagation.
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4.4 Characterization of the cavity
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Fig. 4.3: Spectrum of the D2-line of 87Rb and transmission spectrum of the transfer cavity.

The rubidium spectrum is acquired with Doppler-free saturation spectroscopy in a vapor cell.

Contributions from the different hyperfine levels and the isotope 85Rb are marked within the figure.

The lamb dips of the atomic spectrum are used to calibrate a frequency standard to precisely measure

the free spectral range of the transfer cavity. Over a scan range of 10 GHz ten transmission peaks can

be seen. Between adjacent fundamental modes, Hermite-Gaussian modes with a negligible amplitude

can be spotted. All data is taken over four averages and with a slow laser scan frequency of ν ≈ 1 Hz.

To also measure the finesse of the transfer cavity at 1010 nm, the photoionization laser is

scanned at a similar scan frequency as the 780 nm laser and the spectrum of the cavity is

measured with a photo diode. As the free spectral range of a resonator does not depend

on the wavelength, the spectrum of the photoionization laser can be calibrated knowing

∆νFSR of the 780 nm laser. Afterwards, it is possible to also fit pseudo-Voigt profiles to the

transmission peaks in the spectrum and obtain the average full width at half maximum of

the cavity peaks. Eventually, this yields a finesse of

F1010 = 371(41) (4.13)

for the 1010 nm photoionization wavelength, which is higher than the finesse at 780 nm.

This is due to the higher reflectivity of the cavity mirrors at infrared wavelengths compared

to 780 nm.

Compared to the theoretical value of Ftheo > 447 that is calculated with the minimal

reflectivities R1,2 of the cavity mirrors, the finesse at both wavelengths is much smaller.

The deviation of the measured value compared to the theoretical calculations might arise

from two different situations. In the process of gluing the plane mirror onto the piezo,

epoxy resin particles could have outgased and sedimented down on the mirror, marginally

reducing its reflectivity by roughly 1 to 1.5 %. The other reason could be an inaccurate

mode-matching of the cavity and laser beam or slight misalignments in the whole transfer

cavity setup.
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4 Self-built transfer cavity

4.4.1 Influence of the concave mirror

In a further analysis, the concave mirror of the cavity will be examined. Investigations

have shown that especially the transmission of the concave mirror at 1010 nm is quite small

compared to 780 nm. A batch of 13 concave mirrors of the same Thorlabs CM254-100-E03-SP

(backside polished) product line are measured with respect to their individual transmission.

The mean transmission is on the order of T ≈ 10−5 % at 0° incident light. Only one of

the available mirrors has a much higher transmission of T1010 = 0.02 % at 1010 nm and

T780 = 0.28 % at 780 nm and is used in the transfer cavity to allow for an applicable signal

to noise ratio of the cavity transmission peaks of the photoionization laser.

To compensate for the ten times smaller transmission signal of the photoionization laser

through the cavity compared to the 780 nm laser, the signal from the photo diode of the

1010 nm laser needs a pre-amplification by at least a factor of ten before it can be processed

further.

Furthermore, an additional custom-made concave mirror has been created. A 60 nm layer

of silver (Ag) was evaporated onto a BK7 glass sample followed by a 10 nm protective

layer of magnesium flouride (MgF2)22. The transmission of the silver mirror is measured to

T1010 = 2.8 % and T780 = 3.9 %, respectively. However, this mirror yields a much smaller

finesse of the transfer cavity with F780 = 62(5) and F1010 = 116(8). As for the small finesse,

the mirror is only used as a backup. Thanks to the modular design of the cavity, the concave

mirror can be replaced at any time if a higher transmission is needed.

4.4.2 Degenerate transfer cavity

At first, a cavity with a length of 150 mm has been set up to realize a free spectral range of

∆νFSR = 1 GHz. However, this length of the transfer cavity has led to the degeneracy of

fundamental Gaussian modes and higher order Hermite-Gaussian modes.

With the optical properties of the setup as described in Sec. 4.3, especially with a waist of

w1 = 147 µm at z1 = 0, the resonance frequencies of the cavity according to Eqn. (2.31) and

(2.32) have been

νq,l,m = q∆νFSR + (l +m+ 1)
1

π

[
arctan

(
z2

zR

)
− arctan

(
z1

zR

)]
∆νFSR

= q∆νFSR + (l +m+ 1)
1

π

[
arctan

(
λL

πw2
1

)]
∆νFSR

≈
(
q +

l +m+ 1

3

)
∆νFSR.

(4.14)

22Produced at the 1. Physics Institute at the University of Stuttgart
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4.4 Characterization of the cavity
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Fig. 4.4: Resonance frequencies of a degenerate cavity. The plot shows a section of roughly a

third of a free spectral range with the Gaussian fundamental mode at ν = 0 MHz. In the nearly

degenerate spectrum, individual modes have been pushed apart for ∆ν ≈ 6 MHz by deliberately

misaligning the cavity. Since locking the cavity has not been feasible, a 10 mm longer cavity has

been built, lifting the degeneracy.

Transmitted Hermite-Gaussian modes with l + m = 2 have been detected with a CCD

camera behind the transfer cavity. It can easily be calculated that the spacing ∆ν of two

modes in the cavity has been quite small. For instance, it has been

∆ν = 2∆νFSR − ν1,2,0 ≈ 2 MHz. (4.15)

The resonance frequency profile of this practically degenerate cavity is depicted in Fig. 4.4.

As a consequence of the degeneracy, it has not been possible to lock the cavity and the

length of the spacer has been increased by 10 mm to lift the degeneracy. The associated

decrease in the free spectral range has no practical consequences for the use of the cavity.
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4 Self-built transfer cavity

4.5 Frequency and length stabilization of the lasers and the
cavity

To perform a transfer lock from the 780 nm laser to the 1010 nm laser, three steps are

required. Firstly, the 780 nm laser needs to be locked. Secondly the length of the transfer

cavity needs to be stabilized using the locked 780 nm laser. Thirdly, the 1010 nm laser is

locked to the cavity. In this section, the respective locking schemes of the two lasers and the

cavity will be presented and the necessary electronic devices as well as the electronic circuits

will be explained. Fig. 4.5 gives a schematic overview of the different feedback loops.

As a first step, the 780 nm Toptica DLpro laser is locked to a ULE cavity using the Pound-

Drever-Hall technique [81, 93] (see red box in Fig. 4.5). The specific procedures to perform

the frequency stabilization as well as the corresponding optical setup are described in

Ref. [91]. Here, only a short summary is given. The 780 nm laser is scanned with a Toptica

SC 110 module and the spectrum of the ULE is detected by a photo diode and fed to the

Toptica Pound-Drever-Hall module PDD 110, where an error signal is produced. The error

signal is sent to the FALC 110 module, which comprises a PID modul to produce a feedback

signal. This signal is processed by the 780 nm laser and the feedback loop is closed.

Once the 780 nm laser is locked, it is possible to stabilize the cavity at a constant length. The

key element in this stabilization circuit (blue box in Fig. 4.5) is a self-built PID controller23.

The PID controller has two input connections, one for the signal from the photo diode and

another for an external scan module. The two outputs provide a monitor signal of the

input and an error signal as processed by the PID controller. A scan module24 provides a

triangular signal at a frequency νRamp = 1.5 Hz. The voltage of the scan ramp can be guided

through the PID to scan the cavity over multiple free spectral ranges. As the output voltage

of the PID is dimensioned to a range from 0 V to 3.3 V, the signal is amplified by a piezo

controller25 that delivers a tenfold voltage gain. Right in front of the piezo actuator a 15 kHz

low-pass filter can be installed to cut off high frequency noise that would otherwise give rise

to instabilities within the feedback loop. A photo diode detects the transmission peaks of

the cavity and is connected to a grounded 1 MΩ resistor to provide the PID controller with

a sufficient photo voltage. To lock the cavity, a so-called side-lock is performed. For that,

the input signal of the photo diode is shifted with an error offset voltage at the PID such

that the slope of the transmission peak has a zero-crossing roughly at half of its maximum.

Fig. 4.6 shows a zoom into one transmission peak and the point on which the cavity is

locked. The PID adjusts the length of the cavity such that the error signal stays at the

marked zero crossing in the figure.

Having successfully locked both the 780 nm laser and the transfer cavity, the frequency

stabilization of the 1010 nm laser is next. The related schematics are depicted in the yellow

box in Fig. 4.5. The amplitude of the Toptica scan control SC110 is set to zero. The trigger

output of the SC110 module can be used as a modulation input (compare Ref. [94]). This

23The properties and the circuit of the PID can be found in appendix A.2
24Electronics Lab, Physical Insitute, University of Stuttgart: Scan control Elab 26/08
25PI E-610.00
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4.5 Frequency and length stabilization of the lasers and the cavity
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Fig. 4.5: Schematic chart of the transfer cavity and laser locking electronics. Different color boxes

indicate different locking loops. a) Frequency stabilization of the 780 nm laser (red box): A ULE

cavity is used to provide an absolute frequency reference for the 780 nm DLpro laser. The laser is

scanned with a Toptica SC 110 module and the spectrum of the cavity is detected with a photo

diode (PD). Using the Pound-Drever-Hall technique, an error signal is generated at the PDD 110

module and fed back to the laser via the FALC 110 module. b) Length stabilization of the transfer

cavity (blue box): The length of the cavity is variied periodically with a triangular ramp voltage

provided by the scan module. By the periodical enlargement and contraction of the piezo actuator,

the length of the cavity is altered. The transmission peaks of the locked 780 nm laser are detected

with a photo diode. A PID controller creates an error signal using the so-called side-lock technique.

Before the output signal of the PID is forwarded to the piezo it is amplified by a factor of ten. c)

Frequency stabilization of the 1010 nm laser (yellow box): The scan amplitude of the SC110 module

is set to zero. The laser is scanned with a triangular voltage from the scan module. The transmitted

light of the 1010 nm laser though the cavity is detected by a photo diode and pre-amplified due to

the small signal height. The pre-amplifier signal is fed to the PID where an error signal is generated

using the side-lock technique. Using an external input of the SC 110, the error signal is fed back to

the 1010 nm laser closing the feedback loop. d) The PID error signals are monitored on oscilloscopes

and a lock watch monitores the lock of the cavity and the photoionization laser.
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Fig. 4.6: Visualization of the so-called side-lock technique. The cavity transmission spectrum is

shifted with an error offset voltage such that the slope of a transmission peak has a zero-crossing.

The circle in the figure indicates the locking point at zero error signal. A PID controller regulates

the length of the cavity or the frequency of the 1010 nm laser such that the error signal remains at

its zero-crossing value.

solution is adopted to feed the error signal from the PID to the 1010 nm laser. The DLpro is

scanned via the Elab 26/08 scan module and the cavity transmission peaks are detected by

a photo diode provided with a 1 MΩ resistor. Due to the small transmission of the concave

mirror at 1010 nm, the transmission signal is quite small and an additional pre-amplifier26

is used to provide a 20 times higher signal for the PID controller. As with the cavity, a

side-lock is performed to gain an error signal for the laser. The offset of the SC110 module

can be used to chose the desired wavelength for the photoionization laser.

The monitor outputs of both PID controllers are connected to an oscilloscope to watch the

transmission through the cavity and to control the respective locking processes. The signals

are further monitored with lock watches, which provide optical feedback for the user and a

TTL signal for the computer control if the cavity or laser is out of lock.

26Stanford Research Systems model SR560 low-noise pre-amplifier
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5 Photoionization simulations

The photoionization scheme considered in this thesis is examined both in the experiment

and in numerical simulations. Within this chapter, the photoionization simulations will be

presented and some results are shown.

In the first section, the V-type photoionization scheme presented in Sec. 3.1 and the already

developed theoretical treatment of a three-level system in Sec. 2.2.4 will be adapted and

substantiated to lay a basis for the photoionization simulations. The fundamental concepts

of this simulations will be demonstrated.

After the conceptual introduction into the photoionization simulations in the first section,

the second section will present results from an exemplary simulation for the V-type pho-

toionization of the |40S1/2〉 Rydberg state. In the third section of this chapter, the inclusion

of pulse shape effects originating from the rise and fall times of the AOMs used for switching

the lasers will be discussed.

5.1 Photoionization simulation concepts

In this section, the concept of the V-type photoionization simulation of a rubidium Rydberg

atom will be presented. A reconsideration of the Rydberg excitation and photoionization

scheme from Fig. 3.1 shows that four levels in total have to be dealt with. For practical

reasons, an additional notation of the respective states is used. The |5S1/2〉 state is also

referred to as the ground state |g〉, |e〉 denotes the excited |6P3/2〉 state. The notation |r〉
will complement the |nS1/2〉 Rydberg state and |c〉 is the continuum.

To obtain the time-dependent evolution of this four-level system, the Liouville-von-Neumann

equation (2.9) needs to be solved. Since the ground state |g〉 is not adressed by any laser

being used for the photoionization, it is neglected at first. Therefore, the photoionization

process can be considered an effective V-type three-level system as presented in Sec. 2.2.4

and the Hamiltonian HAL as well as the Lindblad operator L(ρ) derived there can be used.

Still, decays into the ground state cannot be neglected completely and will be reintroduced

later.

For the following calculations, a couple of assumptions and simplifications are made and

hence both operators HAL and L(ρ) need to be modified for the simulations at hand:
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5 Photoionization simulations

1. There are no Rabi oscillations between the excited state |e〉 and the continuum |c〉.
This is comprehensible as the electron of the photoionized atom is not bound any

longer. As a consequence, the contributions from Ω
(∗)
23 = Ω

(∗)
ec in HAL vanish. As

discussed later, the transition into the continuum is treated as a decay.

2. The Rydberg state |r〉 is chosen to be the start state of the simulation and its energy

Er is set to zero for this purpose. Moreover, ∆23 = ∆ec is set to zero, too, as it is

not reasonable to define a detuning for transitions from the excited state |e〉 into the

continuum.

This yields a new atom-light interaction Hamiltonian

HAL = ~

 0 1
2Ωre 0

1
2Ω∗re −∆re 0

0 0 0

 (5.1)

for the simulations, whose only contributions arise from the coherent coupling between the

Rydberg state and the excited state as well as from the detuning of the laser that drives

said transition.

3. With the same argument as before, the continuum does not decay into any level,

leading to Γ31 = 0 as well as the elimination of all matrix elements involving ρ
(∗)
23 = ρ

(∗)
ec

in L(ρ).

4. The Rydberg state has a comperatively long lifetime [4]. On the timescale, on which the

experiment takes place, the decay of the Rydberg state can be neglected. Accordingly,

Γ12ρ22 = Γreρee is set to zero.

5. The photoionization transition |e〉 → |c〉 is treated as a laser-induced decay with

Γec =
σλecIec
hc

, (5.2)

where λec is the wavelength of the photoionization laser, σ is the photoionization cross

section of this transition and Iec the photoionization laser intensity [88, 95, 96]. For

the ionization processes studied in this thesis, the photoionization cross section is on

the order of several Mb = 10−22 m2.

Finally, the modified Lindblad operator can be identified as

L(ρ) =

 0 −1
2Γρre 0

−1
2Γρer −Γρee 0

0 0 Γρee

 , (5.3)

where all remaining decays are bundled together in Γ. At this point it is reasonable to

reconsider the so far neglected decays into the ground state by decomposing Γ = Γec + Γeg

into one contribution Γeg of decay from |e〉 to |g〉 and another Γec from |e〉 to |c〉. In the
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5.1 Photoionization simulation concepts

Lindblad operator in Eqn. (5.3), the off-diagonal elements represent the decay of coherence

between |r〉 and |e〉 and the diagonal element −Γρee describes the decay of the population

from the excited state into both the continuum and the ground state. The fraction Nc of

population that decays only into the continuum can simply be calculated with

Nc =
Γec

Γec + Γeg
. (5.4)

Analogously, the branching ratio Ng = Γeg/(Γec + Γeg) gives the population in the ground

state. The constant decay rate from the |6P3/2〉 state into the ground state is determined by

the life time τ6P3/2
= 112 ns of the excited state and is given by Γeg = 2π× 1.42 MHz [83].

The Liouville-von-Neumann equation (2.9) is solved using the Hamiltonian from Eqn. (5.1)

and the Lindblad operator from Eqn. (5.3). The results are the optical Bloch equations

∂

∂t
ρrr(t) =

iΩre

2
(ρre(t)− ρer(t)) ,

∂

∂t
ρre(t) = −

(
i∆re +

Γ

2

)
ρer(t) +

iΩre

2
(ρrr(t)− ρee(t)) ,

∂

∂t
ρrc(t) = − iΩre

2
ρec(t),

∂

∂t
ρer(t) =

(
i∆re −

Γ

2

)
ρer(t)−

iΩre

2
(ρrr(t)− ρee(t)) ,

∂

∂t
ρee(t) = −Γρee(t)−

iΩre

2
(ρre(t)− ρer(t)) ,

∂

∂t
ρec(t) = i∆reρec(t)−

iΩre

2
ρrc(t),

∂

∂t
ρcr(t) =

iΩre

2
ρce(t),

∂

∂t
ρce(t) = −i∆reρce(t) +

iΩre

2
ρcr(t),

∂

∂t
ρcc(t) = Γρee(t).

(5.5)

The Rabi frequency Ωre is given by

Ωre =
µreEre

~
, (5.6)

with the dipole matrix element µre = 〈r|d|e〉 and the electric field component

Ere =

√
2Pre

cε0πw2
re

(5.7)

of the Rydberg deexcitation laser in the direction of the dipole moment. Here, Pre is the

power of the Rydberg deexcitation laser and wre is its waist. The mean intensity Iec of the

photoionization laser is given by

Iec =
Pec

πw2
ec

. (5.8)
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5 Photoionization simulations

Tab. 5.1: Simulation parameters for the cw photoionization simulation. The parameters are chosen

such that they reflect typical experimental conditions, which leads to a photoionization time of

tPI = 17 ns. The corresponding plot is shown in Fig. 5.1.

Parameter Symbol Numeric value Comment

Rydberg state |r〉 |40S1/2〉 −
Deexcitation laser waist wre 3.0 µm −
Deexcitation laser power Pre 1.4 mW −

Photoionization laser waist wec 3.0 µm −
Photoionization laser power Pec 1000 mW −

Photoionization laser wavelength λec 1010.000 nm cw

Intermediate detuning ∆re 2π × 0 MHz resonant case

Photoionization cross section σ 15× 10−22 m2 taken from Ref. [97]

The dipole matrix element in Eqn. (5.6) depends on the overlap of the wavefunctions of the

excited and the Rydberg state. Since the hyperfine structure of the |6P3/2〉 excited state can

be resolved with the lasers used in the experiment, a suitable basis is the |F,mF 〉 basis. This

looks different for the Rydberg state, where the |J,mJ〉 basis is the most preferable basis.

For the calculation of the dipole matrix element, Eqn. (A.5) is used. A detailed derivation is

given in appendix A.1 and the radial matrix element is extracted from an institute-internal

database. As outlined in Sec. 3.1, the transition |r〉 → |e〉 is adressed with σ−-polarized

light of the 1020 nm laser. The optical Bloch equations (5.5) are solved with Matlab using

an explicit Runge-Kutta method of fourth order.

5.2 Simulations of a V-type photoionization of the |40S1/2〉
Rydberg state

The simulation parameters for an exemplary simulation starting in the |40S1/2〉 Rydberg

state are summarized in Tab. 5.1 and the simulation result is shown in Fig. 5.1. The

Rabi frequency Ωre of the Rydberg deexcitation is chosen such that the ionization time

is as short as possible for a given decay rate Γec into the continuum. For this and all

further simulations, the photoionization time tPI is defined as the period from switching on

the Rydberg deexcitation laser until 90 % of the population reaches the continuum. Any

dephasing mechanisms are neglected in all simulations if not mentioned otherwise.

The simulation result in Fig. 5.1 shows that a photoionization time of tPI = 17 ns for the

|40S1/2〉 state can be reached assuming realistic experimental conditions. Here, the Rabi

frequency of the Rydberg deexcitation laser is Ωre = 2π × 54.7 MHz and the decay rate into

the continuum is Γec = 2π × 42.9 MHz.

Since Ωre ∼ 1/wre and Iec ∼ 1/w2
ec, the rather small beam waist in the focus of the deexcita-

tion and the photoionization laser has a wide influence on the outcome of the photoionization
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5.3 Consideration of the AOM rise and fall time
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Fig. 5.1: Exemplary simulation of the V-type photoionization of a 87Rb atom starting in the

|40S1/2〉 Rydberg state. With the parameters given in Tab. 5.1 a photoionization time of tPI = 17 ns

can be achieved.

time tPI. Although the aspheric lens in front of the science chamber has a numerical aperture

of NA ≈ 0.3, which translates to a minimum waist of wmin = λ/(π ·NA) ≈ 1 µm [74] for the

infrared laser, a more conservative value of 3 µm for the waist of both beams is chosen for

the exemplary simulation.

5.3 Consideration of the AOM rise and fall time

In the previous sections, the working principle of the photoionization simulation has been

outlined and an exemplary simulation has been perfomed. Here, an extension of the

simulation will be presented, which implements the rise times of the AOMs that switch the

1010 nm and 1020 nm laser on and off. The rise times of the AOMs currently used in the

experiment are on the order of 50 ns and the correct pulse shape of the rising and falling

edge is also accounted for in the simulation.

Performing a simulation with the exact same parameters as given in Sec. 5.2 and additionally

considering the rise times of the AOMs leads to a prolonged photoionization time of

tPI = 41 ns for a photoionization starting in the |40S1/2〉 Rydberg state. The time-dependent

population of the involved atomic levels is illustrated in Fig. 5.2.

To reach a photoionization time as short as possible, the ratio Γec/Ωer of the laser-induced

decay into the continuum and the Rabi frequency of the Rydberg deexcitation transition

plays an important role. Fig. 5.3 depicts the dependence of the photoionization time as

a function of said ratio. For a value of Γec/Ωer ≈ 1.12, the photoionization time for the

specific set of parameters defined in Tab. 5.1 can be reduced to 37.6 ns. This requires a

photoionization laser power of 1.5 W.
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5 Photoionization simulations

Yet, to reach photoionization times tPI < 10 ns, which is necessary for a diabatic photoioniza-

tion process, more photoionization power and faster switching of the laser beams is required.

The latter, for example, can be achieved using a Pockels cell.
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Fig. 5.2: Results for the simulation of a V-type photoionization scheme with the |40S1/2〉 Rydberg

state as a starting state. The parameters used are the same as in the simulation depicted in Fig. 5.1,

only the rise times of the laser switching AOMs with around 50 ns are considered additionally,

leading to a longer photoionization time of tPI = 41 ns. In the simulation, the Rabi frequency is

Ωer = 2π × 54.7 MHz, and the decay rate into the continuum is given by Γce = 2π × 42.9 MHz.
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Fig. 5.3: Illustration of the photoionization time tPI as a function of the ratio Γec/Ωer of

the laser-induced decay into the continuum and the Rabi frequency of the Rydberg deexcitation

transition. For a value of Γec/Ωer ≈ 1.12 the minimum photoionization time is tPI = 37.6 ns. In the

simulation, the Rabi frequency of the Rydberg deexcitation laser is kept constant and has a value of

Ωer = 2π × 54.7 MHz.
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6 Experimental results

In this chapter, the experiments performed with the photoionization laser system will be

described and evaluated. All experiments have been performed in the lab of the Superatoms

group at the institute, and all lasers except for the photoionization laser have been provided

by them. The first section of this chapter will deal briefly with their experimental procedure

and will outline some of the physical parameters that have been used within the experiment.

Preparatory measurements of the photoionization efficiency as well as measurements of

the Rabi frequency of the Rydberg deexcitation laser will be presented. Moreover, further

simulations and measurements have been carried out to gain insight into the ac Stark shift

of both the Rydberg state and the intermediate state. The preperative deliberations and

measurements will be used to evaluate the photoionization cross section. A discussion of

the experimental results will conclude the chapter.

In addition to the experiments and results presented in this chapter, the photoionization

laser system has been used to observe the Rydberg blockade induced by a single ion [1].

6.1 Experimental procedure

The experimental setup of the Superatom experiment is described in Ref. [98]. In the

presented measurements about 1.2× 105 ground state, 87Rb atoms are prepared in a

thermal cloud within a crossed-beam optical dipole trap. The typical peak density of the

cloud is on the order of 2.5× 1013 cm−3 and the temperature of the sample is around 1 µK.

One single ground state atom is excited to the |51S1/2〉 Rydberg state using an inverted

scheme with a 420 nm and a 1015 nm laser (compare Sec. 3.1). This two-photon excitation

is realized within a 500 ns long pulse, and the two lasers counter-propagate in order to

reduce the Doppler broadening of atomic lines [82]. The intermediate detuning is set to

∆ = 160 MHz and the 1015 nm Rydberg excitation laser has a waist of around 2 µm to

control the spatial position of the Rydberg atom.

During a 200 ns long V-type photoionization pulse, the Rydberg atom gets deexcited with

the 1015 nm laser to the |6P3/2〉 intermediate state and the co-propagating photoionization

laser with a wavelength λ = 1010.186 nm, and a waist w = 2 µm produces a low-energy ion

with an excess kinetic energy Eion = 0.84 neV = 9.7 µK above the ionization threshold of
87Rb. A more detailed description of the Rydberg excitation and V-type photoionization

scheme can be found in Sec. 3.1.
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6 Experimental results

t
RE PI EF MCP

ttof

Fig. 6.1: Experimental pulse sequence for the measurement of the photoionization efficiency. A

Rydberg atom gets excited to the |51S1/2〉 state (RE) within a 500 ns pulse. Next to a short waiting

period, a 200 ns long V-type photoionization pulse is applied (PI). After a time ttof ≈ 7 µs, the

produced ion is accelerated to the detector during a 5 µs long electric field pulse (EF). The detection

of the ion takes place at the MCP. For the experiments in this thesis, this cycle is repeated 500 times

within one thermal cloud. The timeline in the figure is not to scale.

After the photoionization, the generated ion propagates in the vicinity of the ionization

region for some time of flight ttof . An electric exctraction field of E = 1.5 V/cm is applied

for 5 µs to accelerate the ion towards a microchannel plate detector (MCP).

The experimental pulse sequence including the Rydberg excitation, the V-type photoion-

ization, the electric field pulse and the detection on the MCP is summarized in Fig. 6.1.

Usually, this sequence is repeated around 500 times in one thermal cloud in order to gain

statistics.

To normalize the count rate of the MCP detector, only the Rydberg excitation pulse is

carried out and an electric field of E = 115 V/cm for the duration of 15 µs is employed to

fieldionize the Rydberg atom. The count rate on the detector is divided by the amount of

repetitions of the experimental cycle yielding a mean count rate of the MCP. This mean count

rate incorporates any decay of the Rydberg state within the pulse sequence. Moreover, the

mean count rate also includes the decay of the |6P3/2〉 state that occurs during the Rydberg

excitation. This normalization procedure allows to state a photoionization efficiency in the

next section, without having to account for the aforementioned decays and the Rydberg

excitation efficiency afterwards.

6.2 Measurement of the photoionization efficiency

In this section, the results of the photoionization efficiency measurement will be presented

and briefly discussed. To later determine the photoionization cross section σ for the

transition from the |6P3/2〉 state into the continuum with the method presented in Sec. 6.7,

a profound understanding of the laser power-dependent behavior of the photoionization rate

is essential.

Fig. 6.1 depicts the pulse sequence for the measurement, which is performed in a thermal

cloud with approximately 1.2× 105 atoms. After the Rydberg excitation to the |51S1/2〉
state, the subsequent V-type photoionization, and a time of flight ttof = 7 µs of the ion, an
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6.3 Rabi frequency measurement and waist determination
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Fig. 6.2: Photoionization efficiency as a function of the laser power of the 1010.186 nm photoion-

ization laser. For high powers the efficiency saturates at about 75 %. The error bars are given by the

standard deviation of the mean ion count.

electric field ionization pulse accelerates the produced ions to the MPC to detect them. The

described experimental cycle is repeated 500 times in each thermal cloud.

The photoionization efficiency is determined through the mean ion count on the detector

divided by the mean count rate of the MCP (see Sec. 6.1 for the normalization of the MCP)

and plotted as a function of the photoionization laser power in Fig. 6.2. The mean ion count

for each power is an average value out of 25 experimental cycles. An exponential function is

fitted to the obtained data indicating a saturation efficiency of 75.0(16) %.

The photoionization efficiency is limited by several factors such as the finite photoionization

cross section σ, the shift of the |6P3/2〉 intermediate state due to the ac Stark effect (see

Sec. 2.2.5), the photoionization pulse length and laser power of the Rydberg deexcitation

laser. Moreover, it is possible that the lasers used in the experiment couple to different

substates of the |6P3/2〉 level apart from the desired F = 3,mF = 3 hyperfine substate due

to some misalignments of the laser polarizations.

6.3 Rabi frequency measurement and waist determination

In order to determine the waist of the Rydberg deexcitation laser, the frequency Ω of the

Rabi oscillations between the |51S1/2〉 and the |6P3/2〉 state are measured.

For this purpose, Rydberg atoms are excited with the previously outlined excitation scheme

from Fig. 6.1. However, the photoionization laser is kept turned off. The pulse length of the

PI segment is variable and equals the Rydberg deexcitation duration. The Rydberg atoms

get deexcited by the 1015 nm laser with a power of P = 2.2 mW for a certain deexcitation
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Fig. 6.3: Measurement for the determination of the Rydberg deexcitation laser Rabi frequency

for the transition |51S1/2〉 → |6P3/2〉. The mean ion count is plotted as a function of the Rydberg

deexcitation duration. A fit to the data results in a Rabi frequency of Ω = 26.8(14) MHz.

duration. After that, the atoms are ionized with the electric field pulse and the produced

ions are detected on the MCP.

Fig. 6.3 shows the mean ion count on the MCP as a function of the deexcitation duration of

the Rydberg atoms. Since the AOM that switches the Rydberg deexcitation laser has a rise

time of around 40 ns, the measurement is performed for deexcitation durations larger than

50 ns.

The Rabi frequency Ω is extracted by fitting the product of an exponential function and

a cosine to the data in the figure. Although only two Rabi oscillations are visible, the fit

delivers satisfactory results and yields a Rabi frequency Ω = 26.8(14) MHz. Using Eqn. (5.7)

and (5.8) and solving for the waist, one obtains w = 7.3(3) µm. The necessary dipole matrix

elements for the calculations have been taken from an institute-internal database.

6.4 Simulation of the ac Stark shift

Since the photoionization laser is operated at high powers and the laser beam is focused to

a few microns, high intensities occur and the ac Stark effect needs to be considered in the

evaluation of the experiment.

In Sec. 2.2.5 the ac Stark shift is presented and an example for a two-level system has been

given. Here, calculations are expanded to a considerable amount of atomic levels |j〉. Before

they are carried out for atomic levels in 87Rb, the theoretical treatment from Sec. 2.2.5 is

continued and specified. Starting from Eqn. (2.18), it is convenient to choose the energy

of one state |i〉 such that E0
i = 0. Additionally, Eqn. (2.18) can be rewritten in terms of

wavelengths using the relation ω = 2πν = 2πc/λ.
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6.4 Simulation of the ac Stark shift

Making use of Eqn. (2.17), one obtains

∆Ei = −|E0|2

2π~c
∑
j

|µij |2
[(

1

λj
− 1

λL

)−1

+

(
1

λj
+

1

λL

)−1
]
, (6.1)

where µij = 〈i|d |j〉 is the dipole matrix element of the transition between atomic levels |i〉
and |j〉. Finally, the ac Stark shift can be expressed in terms of the light field intensity I

using the relation |E0|2 = I/(2ε0c) from Ref. [58]. The ac Stark shift of level |i〉 in units of

frequencies is then given by

∆νi = − I

8π2~2c2ε0

∑
j

|µij |2
[(

1

λj
− 1

λL

)−1

+

(
1

λj
+

1

λL

)−1
]
, (6.2)

emphasizing the linear intensity dependence.

In the simulations, the ac Stark shifts for the intermediate state |6P3/2, F = 3,mF = 3〉
and the Rydberg state |51S1/2,mJ ′ = 1/2〉 are calculated individually. The simulations are

performed with σ−-polarized light (which is the laser polarization used in the experiment) at

a wavelength of λL = 1010.186 nm. The mean laser intensity is I ≈ 1× 1010 W/m2, assuming

an input power of 125 mW (see Eqn. (5.8)) focused down to a waist of 2 µm. Calculations

are done in the |J,mJ ; J ′,mJ ′〉 basis, since the hyperfine splitting of many atomic levels

cannot be resolved with the lasers used in the experiment, and the photoionization laser is

far detuned to atomic resonance frequencies. Besides, by the choice of this basis and the

associated consideration of mJ(′) levels, contributions from the scalar, vector and tensor ac

Stark shift are covered in the simulations [67, 99].

To obtain the ac Stark shift of the |6P3/2,mJ = 3/2〉 state in the |J,mJ ; J ′,mJ ′〉 basis, only

the transitions allowed by dipole selection rules to the |nS1/2,mJ ′ = 1/2〉, |nD3/2,mJ ′ = 1/2〉
and |nD5/2,mJ ′ = 1/2〉 states are considered for principal quantum numbers n ∈ [5, 200]. In

the simulation, the |6P3/2〉 state is treated as the state with zero energy. The wavelengths

and dipole matrix elements necessary for the simulation have been taken from an institute-

internal database. Analogously, the shift for the |51S1/2,mJ ′ = 1/2〉 Rydberg state is

simulated. Due to the σ− laser polarization, only transitions to |nP3/2,mJ = 3/2〉 states

with n ∈ [5, 200] are taken into account.

The simulation results of the ac Stark shift are depicted in Fig. 6.4. There, the total ac

Stark shift is plotted as a function of the energetically highest state considered in the

sum of Eqn. (6.2). The plot is limited to states with high principal quantum numbers

close to the ionization threshold. The results show that only the contributions from the

|51S1/2〉 → |nP3/2〉 transitions converge for E → 0 eV to a value of 22.5 MHz. Fitting an

exponential function to the simulated total ac Stark shift values of the |51S1/2〉 → |nP3/2〉
transition, one can predict the behavior for Rydberg states with principal quantum numbers

n > 200, yielding a total ac Stark shift of the |51S1/2〉 level of ∆ν51S1/2
= 22.6 MHz. A brief

discussion of this value is carried out in Sec. 6.5.
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Fig. 6.4: Total ac Stark shift for all dipole-allowed transition from the |51S1/2〉 and |6P3/2〉 states

adressed with σ−-polarized light. The simulation is performed with a photoionization laser power

of 125 mW and a waist of 2 µm yielding an intensity of approximately 1× 1010 W/m2. The plot

shows four different contributions to the ac Stark shift. The shift of each data point in a data set

represents the sum of all shifts of lower-lying states such that one data point always indicates the

total ac Stark shift up to the respective state. The plot only shows contributions of states close

to the ionization threshold. Contributions from transitions from the |6P3/2〉 state do not seem to

converge for E → 0 eV. Contributions to the ac Stark shift of the |6P3/2〉 mostly originate from

low-lying states around n = 6. However, for energies close to the ionization threshold, the shift

increases. This might be due to contributions from the continuum and will be discussed in Sec. 6.8.

The figure also points out that the shift of the |51S1/2〉 arises mainly due to contributions from the

states |44P3/2〉 to |58P3/2〉. Close to the |51S1/2〉 Rydberg state, the ac Stark shift is particularly

high. This is due to the large overlap of the respective wavefunctions represented by high dipole

matrix elements in that region. Low-lying states do not have a significant influence to the shift. For

instance, the contribution of the |6P3/2〉 state to the ac Stark shift of the Rydberg state is only on

the order of 45 kHz.

Unfortunately, contributions from transitions starting from the intermediate |6P3/2〉 state do

not converge in this simulation. Possible reasons are contributions from the continuum [2],

as the 1010 nm laser drives transitions from said intermediate state into the continuum. As

a consequence, the simulated value of the ac Stark shift ∆ν6P3/2
= 6.8 MHz cannot provide

a reliable statement. To gain robust data on this ac Stark shift, a further experimental

analysis is necessary. The experiment and the results obtained are presented in Sec. 6.6.

All simulations contain uncertainties due to the dipole matrix elements. Since no uncertainties

of the dipole matrix elements are available, a quantitative value of the simulation uncertainty

is not specified. As mentioned above, the influence continuum is not considered in the

simulations, hence no simulation inaccuracies are given for that. However, it would be

interesting to include the continuum in the ac Stark shift simulations in a further analysis.

Only pure light polarizations are considered in the simulations.
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6.5 The ponderomotive potential

6.5 The ponderomotive potential

In a classical picture, a free electron with mass me and charge e placed inside a high-intensity

laser beam with light frequency ωL undertakes a sinusodial motion due to the oscillating

electric field. The time-averaged kinetic energy of this process is called the ponderomotive

potential [100–102], which is given by

Epm(ωL) =
e2E2

4meω2
L

. (6.3)

The frequency shift related to the ponderomotive potential in Eqn. (6.3) is calculated and

expressed in terms of the quantities wavelength λL and mean laser intensity I. This yields

an intensity-dependent ponderomotive potential of

∆νpm =
e2λ2

LI

8π2meε0hc3
. (6.4)

For the wavelength and intensity as specified in Sec. 6.4, the ponderomotive potential of

a free electron is given by ∆νpm = 22.9 MHz, which is comparable to the numerical value

obtained in the ac Stark shift simulations for the |51S1/2〉 state. The assumption that the

ac Stark shift for high-lying Rydberg states converges to the ponderomotive potential of

a free electron is supported by the fact that ac Stark shift simulations for the |101S1/2〉,
|151S1/2〉, and |171S1/2〉 Rydberg state all deliver the result ∆νnS1/2

→ ∆νpm. Since the

|51S1/2〉 Rydberg state has an energy close to the ionization threshold, it is valid to compare

at least the order of magnitude of the ponderomotive potential to the ac Stark shift of

the Rydberg state. In the context of this consistency check, the simulation results for the

|51S1/2〉 state seem to be quite accurate.

6.6 Measurement of the intermediate state detuning

Due to the non-converging behavior of the ac Stark shift of the |6P3/2〉 state in the simulations

in Sec. 6.4, measurements are performed to gain more reliable data. In the following, the

experimental procedure of the measurement is described and the results are presented.

However, only the differential ac Stark shift containing contributions from the |5S1/2〉
ground state can be measured. The consequences are discussed later in this section.

For the measurement, a two-photon excitation scheme in ladder-configuration is used. The

lower transition from the |5S1/2〉 ground state to the |6P3/2〉 intermediate state in 87Rb is

driven by the 420 nm laser. The 1010 nm photoionization laser drives the upper transition

from the intermediate state into the continuum.

The 420 nm laser is tuned in resonance with the |5S1/2〉 → |6P3/2〉 transition by setting the

intermediate state detuning ∆ (see Sec. 3.1) to zero. This can be achieved by changing
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Fig. 6.5: Results of the intermediate state detuning measurement. Left: For a photoionization

laser power of 75 mW the spectrum of the |5S1/5〉 → |6P3/2〉 transition resonance is measured by

detuning the EOM frequency of the 420 nm laser lock. A parabola is fitted to the data to extract the

frequency of the maximum mean ion count. Right: The differential ac Stark shift of the |6P3/2〉 state

plotted as a function of the photoionization laser power. The value at zero power is determined via

the atom loss due to heating of the 420 nm laser at the resonance frequency of 565 MHz. For a total

photoionization power of 125 mW the measured differential ac Stark shift is ∆ν̃6P3/2
= 2.0(4) MHz.

The error bars in the left plot are given by the standard deviation of the mean ion count, in the

right plot they are determined by the fit error of the parabola.

the frequency of the cavity sideband in the ULE cavity, on which the laser is frequency-

stabilized27. The sideband itself is modulated by an EOM using the Pound-Drever-Hall

technique [98].

The wavelength of the photoionization laser is set to 1010.186 nm to photoionize the atoms

out of the |6P3/2〉 intermediate state. The produced ions with an excess kinetic energy

Eion = 0.84 neV above the ionization threshold of 87Rb are detected on the MCP. As in the

measurement of the photoionization efficiency in Sec. 6.2, the experiment is performed in a

thermal cloud with around 1.2× 105 atoms and a density of around 2.5× 1013 cm−3.

At first, the resonance frequency of the 420 nm laser is determined. Therefore, the atom loss

of the thermal cloud is measured as a function of the EOM frequency. During this process,

the photoionization laser is not turned on. For frequencies close to the resonance, more

atoms get heated by the 420 nm laser leading to a high atom loss. The highest atom loss

and thus the resonance occurs at an EOM frequency of 565 MHz. Once the resonance is

found, the power of the 420 nm laser is reduced to minimize heating of the thermal cloud

and photoionizations via two-photon processes of the 420 nm laser [81].

The photoionization laser is turned on and for six different laser powers the differential

27Actually, a 840 nm laser is frequency-stabilized to the ULE cavity and the light at 420 nm is generated by

second harmonic generation (SHG) only afterwards.
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6.6 Measurement of the intermediate state detuning

shift of the |5S1/2〉 → |6P3/2〉 transition resonance due to the ac Stark effect is measured

by shifting the EOM frequency. An exemplary measurement of the EOM resonance shift

for a photoionization laser power of 75 mW is shown in the left part of Fig. 6.5. The ions

detected by the MCP are plotted as a function of the EOM frequency detuning. To obtain

the mean ion count, the fraction of ions that are produced within 500 photoionization cycles

with pulse length 200 ns are counted and both the average and the standard deviation over

5-7 experimental runs are taken. By fitting a parabola to the data the differential frequency

shift of the |5S1/2〉 → |6P3/2〉 transition resonance is obtained.

To obtain the differential ac Stark shift with respect to the resonance frequency of the

|5S1/2〉 → |6P3/2〉 transition, the frequency shifts are normalized with the resonance frequency

of the EOM at 565 MHz and multiplied by a factor of 2 to account for the fact that the

light of the 420 nm laser is frequency-doubled from a 840 nm laser. The results are shown in

Fig. 6.5 (right). There, the measured differential ac Stark shift of the transition is plotted

as a function of the photoionization laser power. A linear fit to the data reveals a shift of

16.5(10) kHz/mW. For a photoionization power of 125 mW focused to 2 µm, the differential

ac Stark shift taken from the data is ∆ν̃6P3/2
= 2.0(4) MHz. The error bars are determined

by the fit errors of the parabolae in Fig. 6.5 (left).

As mentioned before, the 420 nm laser couples the |5S1/2〉 ground state and the |6P3/2〉
intermediate state resonantly, and thus the measurement result ∆ν̃6P3/2

= 2.0(4) MHz is

only a differential shift that additionally includes the ac Stark shift of the |5S1/2〉 ground

state. The ac Stark shift of the ground state can easily be determined with the simulation

presented in Sec. 6.4 yielding a fast-converging value of ∆ν5S1/2
= −37.5 MHz. This value

agrees with calculations based on Ref. [65]. With the simulated value for the ground state

and the measured differential ac Stark shift, one can calculate the shift of the |6P3/2〉 state,

which leads to a value of ∆ν6P3/2
= −35.5 MHz.

The simulation for the ground state ac Stark shift and the experimental results show that

the photoionization laser leads to a red shift of the |6P3/2〉 state. In contrast, the |51S1/2〉
state experiences a blue shift that is compliant with the results of the simulation and the

ponderomotive potential calculation.

The ac Stark shift simulations, the calculations of the ponderomotive potential and the

measurements of the intermediate state detuning draw a comprehensive picture of the

influence of the photoionization laser onto the atom, as far as the ac Stark shift is concerned.

For a photoionization laser power of 125 mW, all previous considerations result in an ac

Stark shift of

∆νac = ∆ν51S1/2
−∆ν6P3/2

≈ 58 MHz. (6.5)

Here, the simulated value of the |51S1/2〉 Rydberg state from Sec. 6.4 is used and the

experimental value of the |6P3/2〉 intermediate state, rectified by the simulated ground state

shift, is taken. In this result, the uncertainty of the experimental value of the ac Stark shift

is omitted due to the unknown uncertainties in the simulated values (see Sec. 6.4). The ac
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6 Experimental results

Stark shift from Eqn. (6.5) as a function of the photoionization laser power is then given by

∆νac(P ) = 0.464
MHz

mW
× P. (6.6)

6.7 Evaluation of the photoionization cross section

To be able to determine the timescale of the V-type photoionization, it is essential to know

precisely the photoionization cross section σ for the transition from the |6P3/2〉 state into the

continuum. There are theoretical calculations for the cross section [103] and experimental

results by different groups [97, 104, 105]. However, there are no measurements of the

photoionization cross section for energies directly over the ionization threshold. This is why

a method of determining the photoionization cross section σ for an ionization directly above

the ionization threshold will be presented in this section.

The basis for this evaluation is the measurement of the photoionization efficiency as a

function of the photoionization laser power described in Sec. 6.2. Necessary parameters

such as the waist w = 7.3(3) µm of the Rydberg deexcitation laser or the ac Stark shift

with ∆νac/P = 0.464 MHz/mW are determined in Sec. 6.3 and 6.6, respectively. Further

parameters required for the determination of σ are shown in Tab. 6.1.

To obtain the value of the photoionization cross section σ, the experimental values for

the photoionization efficiency are compared to a numerical simulation that reflects the

experimental conditions. The simulation is based on the experimental parameters given in

Tab. 6.1 and considers the measured rise times of the AOMs of the deexcitation and the

photoionization laser with 40 ns and 52 ns, respectively. In an iterative process, the value

for the photoionization cross section in the simulation is changed until the simulation result

for one value of the photoionization power matches the photoionization efficiency in Fig. 6.2.

This process is repeated for all photoionization laser powers.

The measurement uncertainties from the photoionization efficiency measurement directly

translate into uncertainties of the cross section. The latter are detemined by executing the

evaluation of the cross section again with a photoionization efficiency that also contains the

efficiency uncertainty given by the statistical deviation of the the mean ion count. This results

in inaccuracies on the order of 0.1× 10−22 m2. Moreover, measurement and fit inaccuracies

in the determination of the Rydberg deexcitation laser waist are considered in the same

fashion and also have a small influence on the cross section of approximately 0.1× 10−22 m2.

The most significant contribution in the evaluation originates from uncertainties in the

photoionization laser waist. The not exactly known waist w = 2 µm contains an estimated

uncertainty of ±0.2 µm, yielding a deviation of approximately 0.8× 10−22 m2. Variations in

the photoionization laser power over the whole measurement, electric field drifts and stray

fields during the measurement as well as broadening mechanisms are not considered in the

error analysis. Assuming uncorrelated uncertainties, it is appropriate to add the individual
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6.7 Evaluation of the photoionization cross section

Tab. 6.1: Simulation parameters for the photoionization starting in the |51S1/2〉 Rydberg state.

The parameters resemble the experimental parameters outlined in this chapter.

Parameter Symbol Numeric value Comment

Rydberg state |r〉 |51S1/2〉 −
Deexcitation laser waist wre 7.3 µm −
Deexcitation laser power Pre 3.5 mW 500 ns pulse

Photoionization laser waist wec 2.0 µm −
Photoionization laser power Pec 0− 125 mW 200 ns pulse

Photoionization laser wavelength λ 1010.186 nm −
Intermediate detuning ∆/Pec 2π × 0.464 MHz/mW ac Stark shift

contributions up to gain a conservative estimate of the total uncertainty. This results in a

value of ∆σ ≈ 1.0× 10−22 m2.

Fig. 6.6 shows the results for the photoionization cross section σ as a function of the

photoionization laser power for three different situations. The first situation reflects the

actual measurement and considers the ac Stark shift with ∆νac/P = 0.464 MHz/mW. A

least squares fit reveals a power dependence of the cross section according to

σ(P ) = 0.14(1)× 10−22 m2

mW
× P + 7.0(8)× 10−22 m2. (6.7)

This behavior is unexpected since the photoionization cross section should be independent

of the laser power. For a laser power of 125 mW the evaluated photoionization cross

section result is 23.8(10)× 10−22 m2. This value is much higher than the literature value

of σ = 15(4)× 10−22 m2 taken from Ref. [97] and smaller for low photoionization laser

powers.

Two further evaluations are shown in Fig. 6.6. The evaluations correspond to a model

neglecting the ac Stark shift and to a model including both the ac Stark shift and the

dephasing of the Rydberg deexcitation transition. The former analysis without regarding

the ac Stark shift shows the same non-constant behavior of the photoionization cross section

as before. Yet, the slope is negative and much smaller.

However, the inclusion of a dephasing rate in addition to the ac Stark shift yields a

photoionization cross section, which is independent of the photoionization laser power. As

reasoned in the following, a dephasing of the Rydberg deexcitation transition is realistic

and probably induced by the photoionization laser. In all previous considerations, a

mean value for the ac Stark shift has been presumed. The ac Stark shift, however, is

an intensity-dependent effect and the intensity profile of the lasers in the experiments is

best described by a Gaussian function. This leads to a dephasing mechanism, which is

assumed to depend linearly on the photoionization laser power. The simulation shows that

a dephasing rate of γ = 0.28 MHz/mW × P yields a constant cross section. This dephasing

value of γ is not unrealistic, since it is on the order of half the peak potential depth
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Fig. 6.6: Evaluation of the photoionization cross section σ for an ionization from the |6P3/2〉 state

for different photoionization powers at a wavelength of 1010.186 nm. The results are shown for model

including an ac Stark shift of ∆νac/P = 0.464 MHz/mW (triangles), for an evaluation without any

shifts (circles) and for the case where a dephasing of the Rydberg deexcitation transition is taken into

account with a rate of γ/P = 0.28 MHz/mW in addition to the ac Stark shift. Here, the cross section

exhibits practically no power dependence (circles). The error bars for the former two evaluations are

not shown for reasons of clarity. The dashed lines represent the linear fit functions.

created by the photoionization laser. The described model leads to an intensity-independent

photoionization cross section and to a fit value of σ = 8.9(10)× 10−22 m2 in the latter

comparison evaluation.

The aforementioned dephasing effect could be included in the simulations by averaging over

position-dependent detunings within the excitation volume. The implementation of this

effect might be subject of further research.

6.8 Discussion of the results

Recalling the evaluation results of the photoionization cross section from the previous section,

several points warrant a closer examination. Above all, the photoionization cross section

of 8.9(10)× 10−22 m2 extracted with the described model is roughly by a factor 2 smaller

than the literature value of σ = 15(4)× 10−22 m2 given in Ref. [97]. This smaller value

of the photoionization cross section cannot be explained entirely with the data taken in

measurements and with the previously outlined theory. In the following, possible explanations

will be presented.

The excitation bandwidth of both lasers involved in the V-type photoionization scheme is

not taken into account in the simulations, and therefore might play a role. Furthermore, the

density shift on the order of 1 MHz for a density of around 2.5× 1013 cm−3 is not considered

in the analysis. Still, it is presumed that those effects do not fully explain a factor of 2.
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6.8 Discussion of the results

One possible reason for photoionization cross section σ being half as large as expected might

be that the photoionization laser hits a so-called Cooper minimum in the continuum. This

needs to be briefly adressed in the following. The photoionization cross section is a function

of the oscillator strength distribution. A non-negligible amount of the oscillator strength

distribution lies in the continuum [2]. However, the oscillator strength distribution is not

constant over the whole energy spectrum of the continuum and a minimum referred to as the

Cooper minimum can occur. In all alkali metals except for lithium, the Cooper minimum

appears shortly across the ionization threshold. Its position is a function of the electronic

continuum wavefunctions and it leads to a lower value of the photoionization cross section

[106–108].

A method on how to calculate the oscillator stength distribution for transitions into the

continuum is given in Ref. [109]. To experimentally check if a Cooper minimum is hit with

the 1010 nm laser, the experimental procedures described in Ch. 6 can simply be repeated

at different wavelengths, for instance to map out the oscillator strength distribution above

the ionization limit.

It might be interesting to determine the photoionization cross section in an alternative way

compared to the ansatz presented in this work. For instance, the flourescence signal detected

from trapped atoms inside a magneto-optical trap (MOT) can be measured. By comparing

the resulting loss rates of the MOT with and without radiation by a photoionization laser

being present, the photoionization cross section can be extracted, as presented in Refs.

[88, 110–113].

In another way, the ionization cross section can be determined by using a two-step photo-

ionization process as presented in Ref. [114] for lithium or in Ref. [115] for rubidium.

With this so-called saturation technique, atoms get excited from the ground state to an

intermediate state such that the transition is saturated and the populations of both states

become nearly equal. From the intermediate state, the atoms get photoionized during a

high intensity laser pulse with reproducible shape and a well-defined pulse energy. The

number of produced ions is measured as a function of the photoionization laser energy and

an exponential fit delivers the photoionization cross section28.

These two methods could be used to obtain a comparison value for the photoionization cross

section and to double-check the accuracy of the method described in this thesis. Especially

the saturation technique can readily be implemented in the experiments at the institute

and can easily be measured.

It is suggested to perform further measurements in a similar way as presented in Sec. 6.6 to

gain full experimental knowledge of the ac Stark shift, especially of the Rydberg state. This

28At this point it is in order to mention that the Rydberg deexcitation transition used for the measurement

of the photoionization efficiency is not saturated and due to the dephasing a similar population in the

Rydberg and intermediate state can hardly be reached. Hence, it is not reasonable to determine the

photoionization cross section with the saturation method, although all necessary parameters for the

exponential fit are sufficiently known.
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knowledge is necessary, since the optical setup of the 1020 nm laser system, especially as far

as the installation of the AOMs is concerned, depends on the intensity-dependent shift of

the transitions adressed by the laser.

To conclude, the experiments performed in the scope of this thesis and the results presented

in this chapter provide a profound overview of the production of slow ions utilizing a V-type

photoionization scheme. Many effects associated with this new photoionization process

are studied and an approach how to tackle the arising problems is given. A value of the

photoionization cross section of σ = 8.9(10)× 10−22 m2 is determined.
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7 Summary and Outlook

In this thesis, the implementation of a V-type photoionization scheme to create cold ions

from rubidium Rydberg atoms has been presented. The V-type photoionization scheme

utilizes a laser with 1020 nm wavelenth, which deexcites Rydberg atoms into the |6P3/2〉
intermediate state. A second laser with a wavelength around 1010 nm, tuned close to the

ionization threshold, photoionizes the 87Rb atom producing a low-energy ion.

The optical setup that has been established comprises a Toptica DLpro laser at a wavelength

of 1010 nm, a self-built transfer cavity to stabilize the aforementioned laser and a self-built

tapered amplifier to obtain laser powers on the order of 1 W.

A novel, and modular cavity design including active length-stabilization to allow for a

transfer lock from a frequence stable 780 nm laser to the 1010 nm photoionization laser has

been presented and realized. The free spectral range of the cavity has been measured to

be 928(65) MHz and its finesse has been determined, leading to values of 143(53) for the

former wavelength and 371(41) for the latter wavelength.

Simulations of the V-type photoionization scheme have been perfomed in order to achieve

an understanding of the photoionization timescale. For a photoionization starting in the

|40S1/2〉 Rydberg state, a minimum photoionization time of 41 ns has been simulated,

regarding the rise times of the AOMs used in the setup and assuming parameters based on

the actual experiment.

Additional measurements and simulations have been performed to determine the photoion-

ization cross section of the transition from the |6P3/2〉 state into the continuum. The

measurement of the power-dependent photoionization efficiency has been combined with the

photoionization simulations resulting in a photoionization cross section of 8.9(10)× 10−22 m2

close to the ionization threshold. The ac Stark shift of the transition between the |51S1/2〉
Rydberg state and the intermediate |6P3/2〉 state imparted by the high intensity photoion-

ization laser has been calculated and included into the photoionization simulations. A total

ac Stark shift of 58 MHz has been determined for a photoionization laser intensity around

1× 1010 W/m2.

The photoionization laser system set up in the scope of this thesis has also been used to

analyze the Rydberg blockade induced by a single ion. In addition, cold ions produced via

photoionization have be applied to sense electric fields in atomic physics experiments down

to the level of µV/cm on a single-ion basis [1].

57



7 Summary and Outlook

Exciting new measurements can be performed utilizing the generation of ultracold ions with

a V-type photoionization scheme at a fast repetition rate. It will be interesting to perform

analogous measurements to the ones presented in Ref. [1] in a Bose-Einstein condensate,

and to study transport properties of cold charged particles at high atomic densities [116].

To characterize the spatial resolution of the ion microscope [50] in the experimental setup

and to calibrate the magnification, the photoionization laser will be used to create an optical

lattice with a variable lattice period. The necessary setup of this so-called accordion-type

lattice is described inRef. [117].

With the whole experimental apparatus being operative, it will be possible to initially

observe cold ion-atom interactions in the Rb+-Rb-system with high spatial and temporal

resolution. After the implementation of the lithium laser systems and the lithium oven, the

ion-atom interaction studies will be extended to the Li+-Li system, and pushed to the so

far unexplored, ultracold quantum regime [38].

The research conducted in this master thesis has proven, that the V-type photoionization

scheme is a versatile new instrument that allows for a wide range of possible applications in

the future exploration of new phenomena in the field of Rydberg physics.
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A Appendix

A.1 Derivation of the 〈F,mF |d |J ′,mJ ′〉 matrix element

In order to describe dipole transitions from a |F,mF 〉 state into a |J ′,mJ ′〉 state correctly,

one has to calculate the dipole matrix element 〈F,mF |d |J ′,mJ ′〉. In the following, a

detailled derivation is given.

The total atomic angular momentum F = J + I is a sum of the overall angular momentum

of the electron J and the nuclear spin I. By inserting the unity matrix 1 one can write

〈F,mF |d |J ′,mJ ′〉 =
∑

mI ,mJ
mI+mJ=mF

〈F,mF |J,mJ ; I,mI〉︸ ︷︷ ︸
CGC

〈J,mJ ; I,mI |d |J ′,mJ ′〉 (A.1)

identifying a Clebsch–Gordan coefficient (CGC) in the sum that is related to Wigner 3-j

symbols [58] as follows

〈F,mF |J,mJ ; I,mI〉 = (−1)J−I+mF
√

2F + 1

(
J I F

mJ mI −mF

)
. (A.2)

To further evaluate the sum, dipole selection rules and the construction of mF can be used.

It is mJ = mJ ′ + q for non-vanishing Wigner 3-j symbols and mJ +mI = mF . Combining

both terms, one yields mI = mF −mJ ′ − q. The parameter q = {−1, 0,+1} labels the three

different polarizations {σ+, π, σ−} of light [78]. Now, mI and mJ are expressed by known

quantities and are fixed. Hence, the sum over mI and mJ is obsolete and the matrix element

becomes

〈F,mF |d |J ′,mJ ′〉 = (−1)J−I+mF
√

2F + 1

×

(
J I F

mJ ′ + q mF −mJ ′ − q −mF

)
〈J,mJ |dq |J ′,mJ ′〉 .

(A.3)

As depicted in Eqn. (2.36), the matrix element 〈J,mJ |dq |J ′,mJ ′〉 decomposes into another

Clebsch-Gordan coefficient and a reduced dipole matrix element. Evaluating said Clebsch-

Gordan coefficient in the same fashion as in Eqn. (A.2) and putting it into Eqn. (A.3), one

obtains

〈F,mF |d |J ′,mJ ′〉 = (−1)J
′+J−I−1+mF +mJ′+q

√
(2F + 1)(2J + 1)

×

(
J I F

mJ ′ + q mF −mJ ′ − q −mF

)(
J ′ 1 J

mJ ′ q −mJ ′ − q

)
× 〈J‖d‖J ′〉 .

(A.4)
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The full dipole matrix can be calculated using the expressions for the reduced dipole matrix

elements 〈J‖d‖J ′〉 and 〈L‖d‖L′〉 as well as the radial matrix element µrad = 〈nL| er |n′L′〉
in Eqns. (2.37)–(2.39), respectively. The final result for the dipole matrix element

〈F,mF |d |J ′,mJ ′〉 is then given by

〈F,mF |d |J ′,mJ ′〉 = (−1)J
′+J−I−1+mF +mJ′+q

√
(2F + 1)(2J + 1)

×

(
J I F

mJ ′ + q mF −mJ ′ − q −mF

)(
J ′ 1 J

mJ ′ q −mJ ′ − q

)

× (−1)J
′+L+1+S

√
(2J ′ + 1)(2L+ 1)

{
L L′ 1

J ′ J S

}

× (−1)−L
√

2L′ + 1

(
L 1 L′

0 0 0

)
× µrad.

(A.5)

A.2 PID circuit and modifications

Fig. A.1 shows the schematic of the PID controller that is used to lock the transfer cavity to

a transmission peak of the 780 nm laser. The PID circuit is based on the institute’s standard

PID controller design and is modified such that the controller processes an input voltage

in the range of ±10 V and maps it to an output voltage of 0− 3.3 V. This is necessary to

protect the piezo actuator from negative voltages and to allow for the side-lock technique

with a positive error signal. More details on the circuit are given in the caption of the

figure.

The PID contoller used to lock the photoionization laser on the transfer cavity is also

based on the institute’s standard PID design. However, only two small changes are made.

Based on the current version V3.2, the integrator capacitance is changed to CI = 1 µF and

the slow output capacitance is changed to CCSL = 4.7 pF to allow for a sufficient control

bandwidth.

A.3 TA controller settings and protection circuit

The relevant controller settings for the TED 8020 and the LDC 8080 module inside the

Thorlabs ITC 8052 Pro8000 controller, that drive the self-built tapered amplifier (TA), are

listed in Tab. A.1.

In Fig. A.2 the schematic of the TA protection circuit is shown. The circuit prevents the TA

from being supplied with the wrong current polarity and serves as an overvoltage protection.
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Tab. A.1: Relevant parameters for the operation of the self-built TA used in the optical setup

presented in Sec. 3.2. The control unit used to drive the TA is a Thorlabs ITC 8052 Pro8000

controller.

Module Property Parameter Unit

Temperature controller TED 8020 TS 22.500 ◦C

TEC ON −
Twin OFF −
Ilim 2.000 A

Psh 57.8 %

Ish 25.0 %

Dsh 4.0 %

Ishare ON −
Temperature control Thermistor −

R0 10.00 kΩ

T0 25.00 ◦C

B 3988.0 kΩ

Laser diode controller LDC 8080 ILD 5.800 A

Ilim 5.990 A

Mode Iconst −
LDPOL AG −

V+
L

D2

D1

L

V−

CD3 TA chip

Fig. A.2: Schematic of the TA protection circuit. The two diodes D1 and D2 protect the circuit

from overvoltage, the Schottky diode D3 ensures that a wrong polarity of the input voltage V± does

not damage the TA chip and the coils with inductivity L and the bipolar capacitor with capacitance

C form a low-pass filter.
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A.4 Coupling of the transfer cavity

A.4 Coupling of the transfer cavity

This section gives a brief summary on how a laser is coupled into the cavity. Both lens

tubes of the transfer cavity are not mounted at the beginning of the coupling procedure.

Referring to the notation of the optical elements in Fig. 4.2, the lens L0 is also not in the

setup at the beginnig.

At first, two irides are mounted on the mirror mounts of the cavity and the mirrors M3

and M4 are used to adjust the incident laser beam such that the transmission through the

nearly-closed irides reaches a maximum value.

The irides are removed and the concave mirror M2 is mounted at its designated position.

The aim is to couple the reflection of the mirror back into the polarization-maintaining single

mode fiber. To find the correct position of the mirror, the set screws of the mirror mount

are adjusted to a maximum power reflection into the fiber. After the fiber, the power of the

reflected light is measured with a power meter, for instance at the second beam splitter in

the optical setup, see Fig. 3.2. Due to the curvature of the mirror, only a small amount of

light is actually coupled back into the fiber. Once the maximal power is reflected from the

mirror into the fiber, the same procedure is repeated with the plane mirror M1. The plane

mirror should be adjusted with the piezo acuator in a position with an offset voltage close

to the voltage later used to stabilize the cavity.

For the next steps it is vital that the laser is scanned over several free spectral ranges.

After both mirrors are adjusted correctly, the lens L0 is put up close to its calculated place.

Observing the transmitted signal through the cavity with a photo diode behind the cavity

and an oscilloscope, the position of the lens is altered until a position is found, in which the

transmission signal looks best (compare Fig. 2.4).

Using the photo diode and walking the mirrors M3 and M4 one can improve the transmission

signal by reducing the signal height of higher order cavity modes. Finally, using a CCD

camera behind the cavity and viewing the transversal intensity profile of the transmitted

cavity modes, one can slightly change the angle of the cavity mirrors M1 and M2 until, at

best, only the Gaussian fundamental mode is transmitted. This completes the coupling of

one laser to the cavity.

A.5 Drafts of the self-built transfer cavity

In Fig. A.3-A.6, the technical drawings of the spacer, the mirror mount body and front

plate and piezo holder are presented. The spacer is based on a custom-made stainless steel

tube (see Sec. 4.2), the mirror mount body and front plate are commercial items and the

the piezo holder is made from stainless steel.
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A.5 Drafts of the self-built transfer cavity
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[102] F. Markert, P. Würtz, A. Koglbauer, T. Gericke, A. Vogler and H. Ott:

ac-Stark shift and photoionization of Rydberg atoms in an optical dipole trap. In: New

Journal of Physics 12, 11, 113 003. 2010.

[103] M. Aymar, O. Robaux and S. Wane: Central-field calculations of photoionisation

cross sections of excited states of Rb and Sr+ and analysis of photoionisation cross

sections of excited alkali atoms using quantum defect theory. In: Journal of Physics B:

Atomic and Molecular Physics 17, 6, 993–1007. 1984.

[104] E. Courtade, M. Anderlini, D. Ciampini, J. H. Müller, O. Morsch, E. Ari-

mondo, M. Aymar and E. J. Robinson: Two-photon ionization of cold rubidium

atoms with a near resonant intermediate state. In: Journal of Physics B: Atomic,

Molecular and Optical Physics 37, 5, 967–979. 2004.

[105] M. Anderlini and E. Arimondo: Control scheme for two photon ionization of

condensate atoms. In: Optics Communications 259, 2, 676–682. 2006.

[106] J. W. Cooper: Photoionization from Outer Atomic Subshells. A Model Study. In:

Physical Review 128, 2, 681. 1962.

76



Bibliography

[107] U. Fano and J. W. Cooper: Spectral Distribution of Atomic Oscillator Strengths.

In: Reviews of Modern Physics 40, 3, 441–507. 1968.

[108] I. I. Beterov, C. W. Mansell, E. A. Yakshina, I. I. Ryabtsev, D. B.

Tretyakov, V. M. Entin, C. MacCormick, M. J. Piotrowicz, A. Kowal-

czyk and S. Bergamini: Cooper minima in the transitions from low-excited and

Rydberg states of alkali-metal atoms. Online available at http://arxiv.org/pdf/

1207.3626v1.

[109] V. A. Zilitis: Theoretical determination of oscillator strengths for the principal series

of rubidium-like ions by the Dirac-Fock method. In: Optics and Spectroscopy 107, 1,

54–57. 2009.

[110] T. P. Dinneen, C. D. Wallace, K.-Y. N. Tan and P. L. Gould: Use of trapped

atoms to measure absolute photoionization cross sections. In: Optics Letters 17, 23,

1706. 1992.

[111] C. Gabbanini, S. Gozzini and A. Lucchesini: Photoionization cross section

measurement in a Rb vapor cell trap. In: Optics Communications 141, 1-2, 25–28.

1997.

[112] H. Wei, R. Ya-Ping, J. Feng-Dong, Z. Yin-Peng, L. Long-Wei, D. Xing-

Can, X. Ping, X. Xiang-Yuan and Z. Zhi-Ping: Measurement of the Absolute

Photoionization Cross Section for the 5P3/2 State of 87Rb in a Vapor Cell Magneto-

optic Trap. In: Chinese Physics Letters 29, 1, 013 201. 2012.

[113] T. Aoki, Y. Yamanaka, M. Takeuchi, Y. Torii and Y. Sakemi: Photoionization

loss in simultaneous magneto-optical trapping of Rb and Sr. In: Physical Review A

87, 6. 2013.

[114] N. Amin, S. Mahmood, M. Anwar-ul Haq, M. Riaz and M. A. Baig: Measure-

ment of the photoionization cross-section of the 3p 2P1/2,3/2 excited levels of sodium.

In: The European Physical Journal D 37, 1, 23–28. 2006.

[115] A. Nadeem and S. U. Haq: Photoionization from the 5p 2P3/2 state of rubidium. In:

Physical Review A 83, 6, 141. 2011.
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