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and R. Löw, Coupling thermal atomic vapor to slot waveguides, Phys. Rev. X
8, 021032 (2018).

• R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau and R. Löw, Coupling
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Zusammenfassung

Mit Gas befüllte Glaszellen sind seit Beginn der experimentellen Atomphysik im Ein-
satz der Forschung und finden heutzutage in modernen Experimenten noch genauso
ihre Verwendung. Unser Wissen über die Elektronenstruktur der Atome und wie die-
se mit Licht wechselwirken resultiert zu einem großen Teil aus Untersuchungen von
Absorptions- und Emissionsspektren, welche häufig anhand von Dampfzellen aufge-
nommen wurden. Wenn es darum geht, sehr präzise Messungen unter gut kontrol-
lierten Bedingungen zu machen, sind kalte Atome das Mittel der Wahl. Jedoch sind
hierfür komplexe experimentelle Aufbauten notwendig, welche einen kompletten opti-
schen Tisch, oder sogar mehr beanspruchen. Im Gegensatz dazu sind Dampfzellen ohne
großen Aufwand herzustellen, sind kompakt, kostengünstig, einfach zu verwenden und
verbrauchen vergleichsweise wenig Energie. Dies macht sie besonders interessant für
praktische Anwendungen. Im Vergleich zu Systemen basierend auf Festkörpern haben
Atome den großen Vorteil, dass sie wohldefinierte und schmale Übergangsfrequenzen
besitzen, wodurch reproduzierbare und akkurate Messungen ermöglicht werden. Insbe-
sondere Alkalimetalle, wie zum Beispiel Rubidium (Rb), sind eine günstige Atomsorte
für solche Messungen, da diese eine recht einfache Elektronenstruktur mit einem ein-
zelnen Valenzelektron, vorteilhafte Übergangswellenlängen und langlebige Hyperfein-
Grundzustände aufweisen. Zudem bieten diese schon bei moderaten Temperaturen
(z.B. Raumtemperatur) einen brauchbaren Dampfdruck.

Tatsächlich nutzen wir in unserem Alltag bereits indirekt Technologien die auf Alka-
li Dampfzellen basieren: Rb-Atomuhren finden sich aufgrund ihrer kompakten Größe
und ihres sparsamen Energieverbrauchs an Bord der GPS-Satelliten [1] und der Eu-
ropäischen Galileo-Navigationssatelliten [2] und werden außerdem als genaue Zeit- und
Frequenzreferenz in Sendeanlagen für Mobiltelefone und Rundfunk eingesetzt [3]. Da-
bei wird die Zeitreferenz durch Messung atomarer Übergangsfrequenzen abgeleitet,
was sehr exakt bewerkstelligt werden kann. Aus diesem Grund, und weil bereits ge-
ringste Störungen die Energiestruktur der Atome beeinflussen, können Dampfzellen
als sehr empfindliche Sensoren dienen. Als Beispiele seien genannt: die Messung elek-
trischer Felder [4], von Mikrowellen [5, 6], sogar mit räumlicher Auflösung [7, 8] und
von Magnetfeldern [9, 10] mit medizinischer Anwendung im Bereich der Magnetokar-
diografie [11–13] sowie der Magnetoenzephalographie [14–17]. Neben der Messung von
elektromagnetischen Feldern können Dampfzellen ebenfalls als Gassensoren [18] und
als Gyroskope verwendet werden [19, 20]. Im Rahmen der Quanteninformationsver-
arbeitung könnte man sich Dampfzellen als mögliche Bausteine in einem skalierbaren
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Quantennetzwerk vorstellen [21]. Hierfür wurde eine auf thermischen Atomen basieren-
de Einzelphotonenquelle vorgeschlagen [22] und vor kurzem in unserem Labor erfolg-
reich demonstriert. Ein dazu kompatibler und gut funktionierender Quantenspeicher
kann ebenfalls mit Dampfzellen realisiert werden [23–25]. Die enorme Bandbreite an
möglichen Anwendungen umfasst zudem optische Bauteile, wie zum Beispiel einen op-
tischen Isolator [26], oder extrem schmale Bandpassfilter [27–29], welche von Natur aus
auf die atomaren Übergangsfrequenzen abgestimmt sind.

In den letzten Jahren wurde ein beträchtlicher Aufwand betrieben, um Dampfzellen
sowohl in ihrer Gesamtgröße [30–32] als auch deren Einschlussvolumina [33–35] zu
miniaturisieren. Insbesondere mikrostrukturierte Zellen bieten eine geringe Verlustleis-
tung, eine geringe Größe (und dadurch ein erhöhtes Auflösungsvermögen für Sensoren)
und eine Integrierung auf Waferebene, wodurch eine Massenproduktion und dadurch
Kostenersparnis möglich wird. Diese Vorgehensweise hat die Herstellung extrem kom-
pakter Atomuhren [30, 36] und Magnetometer [37–39] ermöglicht. Eventuell sind damit
auf das Internationale Einheitensystem (SI) zurückführbare Referenzen für mehrere
Basiseinheiten auf einem einzigen Chip realisierbar [40].

Ein sogar noch viel höheres Maß der Miniaturisierung und Integrierung kann durch
die Verheiratung von Dampfzellen und photonischer Schaltkreise erreicht werden. Um
dieses Thema geht es in der vorliegenden Arbeit. Ein photonischer Schaltkreis besteht
aus mehreren optischen Bauteilen auf einem winzigen Chip. Dies ist vergleichbar mit
integrierten elektronischen Schaltkreisen (ICs), allerdings werden Signale hier durch
Licht anstatt eines elektrischen Stroms übertragen und die einzelnen Komponenten
des photonischen Schaltkreises sind untereinander mit optischen Wellenleitern anstelle
von Leiterbahnen verbunden. Durch das evaneszente Feld, welches durch Totalrefle-
xion in diesen Wellenleitern entsteht, ist es möglich, Atome die sich innerhalb eines
Abstandes der Größenordnung λ/2π vom Wellenleiter befinden, an die im Wellenleiter
geführte Mode zu koppeln. Hierbei ist λ die Wellenlänge des geführten Lichts. Neben
den Untersuchungen die in dieser Doktorarbeit vorgestellt werden, wird derselbe Ansatz
auch von Prof. Uriel Levy in Jerusalem verfolgt, welcher einen ersten Machbarkeitsbe-
weis geliefert [41] und weitere Folgestudien durchgeführt hat [42–44]. Die Realisierung
eines solchen Hybridsystems birgt ein enormes Potential für praktische Anwendungen,
aber auch für grundlegende Untersuchungen der Wechselwirkung zwischen Licht und
Materie. Einige Vorzüge dieses Ansatzes werden im Folgenden besprochen.

Stellen Sie sich einen herkömmlichen Spektroskopie Aufbau vor, in dem Laserstrahlen
durch Spiegel, Linsen und elektro- oder akustooptische Modulatoren manipuliert, und
anschließend von Detektoren erfasst werden. All diese Komponenten sind üblicherweise
auf einem massiven vibrationsisolierten optischen Tisch aufgebaut und nehmen dort
recht viel Platz ein. Dieselben Komponenten können jedoch auch in einem photonischen
Schaltkreis auf viel kleinerem Raum realisiert werden [45], samt Lichtquellen, z.B. in
Form eines DFB-Lasers [46, 47] oder Oberflächenemitters (VCSEL) [48, 49] welcher
durch Flip-Chip-Montage eingebaut wird. Auch Lichtdetektoren [50, 51] und sogar
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Heizelemente für die Regelung des Dampfdrucks können integriert werden [30, 52].
Dadurch, dass das Licht in Wellenleitern geführt wird, sind diese Elemente nicht vibra-
tionsanfällig und die optische Justage ist von sich aus perfekt. Das schnell wachsende
Gebiet der Mikro- und Nanophotonik, sowie hoch entwickelte Fabrikationsprozesse in
der Halbleiterindustrie ermöglichen es, in Massenproduktion eine Vielzahl an Bautei-
len auf einem einzigen Chip unterzubringen. Optische Chips sind ohne weiteres mit
dem Glasfaser-Telekommunikationsnetzwerk kompatibel, wo eine auf Atomdampf ba-
sierende Frequenzreferenz möglicherweise dazu verwendet werden könnte, um die Ver-
mischung von unabhängigen Trägerfrequenzen beim Dichte-Wellenlängen-Multiplexing
(engl. Dense Wavelength Division Multiplexing, DWDM) zu verhindern [53]. Einige
der vorhin erwähnten auf Dampfzellen basierenden Anwendungen könnten auch mit
dem vorgeschlagenen Hybridsystem mit noch kompakteren Designs umgesetzt werden,
wodurch der Leistungsverbrauch und die Mobilität nochmals verbessert werden. Dies
ist insbesondere für Sensor- und Referenzanwendungen interessant, welche sich da-
durch in Handgeräten integrieren ließen. Da die Atome um den Wellenleiter auf einer
Sub-Mikrometer-Skala sondiert werden, wäre es vielleicht sogar möglich, die räumliche
Auflösung solcher Sensoren zu erhöhen. In dieser Hinsicht wurden im Bereich der Ma-
gnetometrie beispielsweise Untersuchungen mit dem evaneszenten Feld durch Total-
reflexion an einem Prisma unternommen [54]. Es sei darauf hingewiesen, dass die
Bewegung der Atome in einem thermischen Gas zu einer Doppler- und Durchflugs-
verbreiterung führt und die Energiestruktur der Atome in der Nähe eines Wellenlei-
ters durch Wechselwirkung mit der Oberfläche verschoben wird. Diese Effekte sollten
berücksichtigt werden, da sie die Präzision von potenziellen Sensoren und Atomuhren
einschränken. Jedoch wird die erreichbare Präzision für einige Anwendungen sicherlich
gut genug sein, wenn die Vorteile dieses Konzepts überwiegen.

Durch den Einsatz von Mikro- und Nanostrukturen ist es außerdem möglich, das an
die Atome koppelnde Lichtfeld maßzuschneidern. Die geringe Modenfläche des eva-
neszenten Felds bewirkt eine effiziente Atom-Licht-Wechselwirkung, welche nochmals
verstärkt werden kann, indem man das Licht in resonanten Kavitäten einfängt. In die-
sem Fall kann das Atom mit dem zirkulierenden Photon mehrfach wechselwirken. Aus
diesem Konzept ist das Gebiet der Cavity-Quantenelektrodynamik (QED) entstanden
[55–57]. Die Stärke der Wechselwirkung hängt außerdem von der Größe des Moden-
volumens des Resonators ab: je kleiner das Modenvolumen, desto konzentrierter ist
die Energie eines Photons innerhalb der Mode und umso stärker die Wechselwirkung.
Nanophotonische Resonatoren verfügen über ein extrem kleines Modenvolumen und
können skalierbar hergestellt werden, wodurch sie sich als Kandidaten für ein großan-
gelegtes Quantennetzwerk auszeichnen [58–60]. Deshalb wurde eine Vielzahl von Ex-
perimenten mit Mikroresonatoren durchgeführt. Auch wenn die Kopplung von ther-
mischen Cäsium-Atomen an Mikrokügelchen aus Quarzglas schon frühzeitig gezeigt
wurde [61], konnte das Regime der sogenannten starken Kopplung nur mit ultrakalten
Atomen in Verbindung mit nanophotonischen Resonatoren [62, 63], oder Wellenleitern
basierend auf photonischen Kristallen, erreicht werden [64]. Dass eine starke Kopplung
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mit thermischen Atomen bisher nicht erreicht wurde, liegt an der bereits angespro-
chenen Bewegung der Atome. Eine extrem hohe Kopplungsstärke wäre notwendig, um
die Verluste durch die Bewegung zu kompensieren. In dieser Arbeit werden wir al-
lerdings eine Abschätzung vornehmen in der wir zeigen, dass es mit einem geeigneten
Resonator-Design möglich sein könnte, die notwendigen Bedingungen zu erfüllen. Sollte
dem tatsächlich so sein, wäre dies ein wichtiger Schritt in Richtung eines skalierbaren
Quantennetzwerks, da eine Miniaturisierung eines Aufbaus für kalte Atome sicherlich
nicht weniger anspruchsvoll wäre. Ungeachtet dessen, ob das Regime der starken Kopp-
lung erreicht werden kann oder nicht, würde jede Verbesserung der Kopplungsstärke
zu einer Effizienzsteigerung führen und damit die Leistungsfähigkeit von potenziellen
Geräten erhöhen.

In einem ganz anderen Zusammenhang könnte die Fähigkeit, Licht mit Wellenlei-
tern auf kleine Volumina zu beschränken dazu genutzt werden, um die Dipol-Dipol-
Wechselwirkung zwischen thermischen Atomen zu untersuchen. Dieses Thema hat vor
kurzem wieder erhöhte Aufmerksamkeit erlangt [35, 65, 66] und scheint noch nicht voll-
kommen verstanden zu sein [67, 68]. Weitere Erkenntnisse über die zugrundeliegende
Physik könnten dadurch erlangt werden, dass man die Dimensionalität und dadurch die
Komplexität dieses Problems reduziert. Erste Schritte in diese Richtung wurden bereits
durch den Einschluss von atomaren Gasen in Nanozellen unternommen [35, 68], wel-
che ein quasi-zweidimensionales System darstellen. Die nächste Stufe könnte erreicht
werden, indem man sich die transversale Beschränkung der Wellenleitermode auf einen
Bereich der kleiner ist als die Wellenlänge zu eigen macht. Da die Lichtausbreitung ent-
lang des Wellenleiters invariant ist, stellt dies ein quasi-eindimensionales System dar.
Sogenannte Slot-Wellenleiter [69], bei denen die Mode in einen schmalen Spalt zwischen
zwei rechteckige Wellenleiter gequetscht ist, wären hierfür besonders gut geeignet. Au-
ßerdem kann in Dampfzellen die Atomdichte einfach durch Temperaturänderung über
einen großen Bereich eingestellt werden.

In dieser Arbeit wird die eben vorgestellte Zusammenführung von thermischen Ato-
men und photonischen Wellenleiterstrukturen untersucht. Dies wurde durch eine enge
Zusammenarbeit mit Prof. Wolfram Pernice am KIT und der Universität Münster
ermöglicht, wo die photonischen Strukturen entworfen und hergestellt wurden. Die
optischen Chips, auf denen sich eine Vielzahl dieser auf Siliziumnitrid basierenden
Strukturen befinden, wurden durch anodisches Bonden in Dampfzellen integriert. Die
Strukturen befinden sich dabei auf der Innenseite der Zelle, sodass sie von Rb-Atomen
umgeben sind. Um gezielt Bereiche zu definieren, in denen die Atome mit dem Feld
der Wellenleiter wechselwirken können, ist der Rest des Chips mit einer Schicht aus
Siliziumdioxid maskiert. Weiterhin sind die Strukturen mit Gitterkopplern ausgestat-
tet, worüber Licht in die Bauteile ein- und wieder ausgekoppelt wird. Im Laufe dieser
Doktorarbeit wurden unterschiedliche photonische Bauteile und deren Zusammenspiel
mit Rb-Atomen untersucht. Diese werden nun im Einzelnen vorgestellt und die jeweils
erzielten Ergebnisse zusammengefasst.
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Um ein Gefühl dafür zu bekommen, wie die Spektroskopie von thermischen Atomen mit
integrierten Strukturen funktioniert und um diese zu charakterisieren, wurden zunächst
Transmissionsmessungen mit einfachen rechteckigen Wellenleitern durchgeführt. Viele
der hierbei gemachten Beobachtungen treffen auch auf die später besprochenen Bau-
teile zu. Spektren der D2-Linie von Rb haben hierbei gezeigt, dass die geführte Mode
über das evaneszente Feld von den Atomen absorbiert werden kann. Diese weisen ge-
genüber Spektren aus herkömmlicher Spektroskopie eine zusätzliche Lininenverbreite-
rung auf. Die Ursachen hierfür liegen zum einen in der erhöhten Dopplerverbreiterung
aufgrund des größeren Wellenvektors der geführten Mode, zum anderen verursacht die
kurze Wechselwirkungszeit der Atome auf ihrem Weg durch das evaneszente Feld eine
Durchflugsverbreiterung. Das gesamte Spektrum ist außerdem aufgrund der Casimir-
Polder-Wechselwirkung der Atome mit den dielektrischen Oberflächen rotverschoben.
Dies ist eine Konsequenz davon, dass die Atome so nahe am Wellenleiter abgefragt
werden. Die Transmission durch einen von Atomdampf umgebenen Wellenleiter lässt
sich numerisch mit der effektiven Suszeptibilität-Methode berechnen, welche wir aus
der selektiven Reflexionsspektroskopie übernommen, und auf unsere Gegebenheiten
angepasst haben. Hierbei wird die Propagation durch einen Wellenleiter simuliert, wel-
cher von einem Medium mit einem komplexen Brechungsindex umgeben ist, der durch
die Eigenschaften des Rb-Dampfs und die auftretenden Effekte der atomaren Bewe-
gung bestimmt ist. Auf diese Weise konnten wir die Spektren aus dem Wellenleiter
mit ausgezeichneter Übereinstimmung reproduzieren. Nachdem der optische Chip dem
Rb-Dampf ausgesetzt war, haben wir frühzeitig eine Verschlechterung der Wellenleiter-
transmission festgestellt. Dies ist sehr wahrscheinlich auf eine Ablagerung von metalli-
schem Rb auf den Wellenleitern zurückzuführen. Eine zusätzliche dünne Schutzschicht
aus Saphir konnte bei weiteren Chips eine Verbesserung bewirken, jedoch war selbst
damit noch eine verbleibende Abschwächung feststellbar.

Neben den absorptiven Eigenschaften der Atome haben wir deren Auswirkungen auf
die Phase der geführten Mode untersucht. Um diese zu messen, verwendeten wir ein in-
tegriertes Mach-Zehnder-Interferometer (MZI), bestehend aus zwei Wellenleiterarmen,
von denen einer mit Siliziumdioxid bedeckt und der andere für die Atome zugänglich
war. Die hiermit aufgenommenen Spektren zeigen eindeutig dispersive Merkmale, wel-
che durch den Realteil der Suszeptibilität des Atomdampfs bestimmt sind. Auch diese
Daten konnten wieder mit sehr guter Übereinstimmung durch das Modell der effekti-
ven Suszeptibilität erklärt werden. Dadurch war es uns möglich, den durch die Atome
verursachten Phasenschub zu bestimmen.

Im nächsten Schritt untersuchten wir die Wechselwirkung von thermischen Rb-Atomen
mit photonischen Ring-Resonatoren im Hinblick auf mögliche skalierbare Atom-Resonator-
Systeme. Unsere ersten Versuche waren aufgrund der angesprochenen Transmissions-
verluste erfolglos, da diese so hoch waren, dass die Ringresonanzen stark verbreitert
und dadurch nicht beobachtbar waren. Erst durch die zusätzliche Saphir Schutzschicht
gelang dies. Durch Veränderung der Chiptemperatur konnten wir die Frequenz ei-
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ner Ringresonanz thermisch durchstimmen, so dass diese mit der Resonanzfrequenz
der Rb-D2-Linie in Übereinstimmung war. Die Wechselwirkung der Atome mit dem
Ringresonator wurde somit ausgiebig charakterisiert und konnte wieder hervorragend
durch das Modell der effektiven Suszeptibilität reproduziert werden. Zusätzlich wurde
das Sättigungsverhalten der Atome untersucht, wenn diese mit einem resonanten Ring
wechselwirken. Jedoch wurde hierbei festgestellt, dass die Sättigungsschwelle bei den
gleichen Eingangsleistungen erreicht wird, wie auch bei einem nicht resonanten Ring,
sprich im Zuleitungswellenleiter. Dies lässt sich zum einen durch die verbleibenden Ver-
luste aufgrund von Rb-Atomen auf der Oberfläche erklären, zum anderen durch das
relativ große Modenvolumen dieses Resonators, welcher deshalb so groß gewählt wur-
de, dass dieser mit vernünftigen Temperaturen auf die Atomresonanz gestimmt werden
kann. In diesem Zusammenhang diskutierten wir auch die Verwendbarkeit dieser Re-
sonatoren im Beriech der Cavity-QED und erörtern die Realisierbarkeit einer starken
Kopplung von thermischen Atomen an nanophotonische Resonatoren. Hierbei stellte
sich heraus, dass das extrem geringe Modenvolumen eines photonischen Kristallresona-
tors eine Kopplungsstärke bietet, welche die Verluste durch die Bewegung der Atome
übertreffen könnte.

Die Untersuchung der vorhin kurz angesprochenen Slot-Wellenleiter stelle sich als recht
komplex dar, dadurch aber auch als extrem lehrreich. Hierfür wurden Wellenleiter mit
unterschiedlicher Slotbreite entworfen, mit der Absicht, die Intensität der Mode in den
jeweiligen Slots und damit die Kopplung an die Atome zu variieren. Aus den Trans-
missionsspektren der einzelnen Bauteile wurden jeweils die Linienverschiebung, Lini-
enbreite und die optische Dicke bestimmt, welche einen anderen Verlauf aufwiesen als
ursprünglich erwartet. Um das tatsächliche Verhalten zu verstehen wurde eine Monte-
Carlo-Simulation entwickelt, welche die Bewegung der einzelnen Atome um die spezi-
fische Wellenleitergeometrie berücksichtigt. Ebenfalls wurden die Potentiale durch die
Wechselwirkung der Atome mit den Oberflächen und die veränderte Zerfallsrate der
Atome berücksichtig. Es wurden die Abmessungen der Wellenleiterquerschnitte mit-
einbezogen, welche durch Elektronenmikroskopaufnahmen bestimmt wurden, nachdem
der Chip von der Zelle entfernt und mit einem fokussierten Ionenstrahl Schnitte in die
Wellenleiter gemacht wurden. Hierbei stellten wir fest, dass die ganz schmalen Slots gar
nicht und die etwas breiteren Slots nur teilweise entwickelt waren. Ausschließlich die
Bauteile mit großer Slotbreite waren vollständig entwickelt. Für die Bauteile die keinen
Slot aufweisen und die komplett entwickelten Slots konnte eine gute Übereinstimmung
zwischen Experiment und Monte-Carlo-Simulation erreicht werden. Allerdings zeigen
die unvollständig entwickelten Slots teils erhebliche Abweichungen. Gründe hierfür wer-
den in der Arbeit ausgiebig diskutiert, aber die Ursache kann letztendlich aufgrund
vieler Unsicherheiten nicht dingfest gemacht werden. Dies liegt unter anderem daran,
dass wir nicht die vollständige Information über die Geometrie der gesamten Bauteile
und deren Oberflächenbeschaffenheit haben. Ebenso wenig ist die genaue Adsorptions-
und Desorbtionsdynamik bekannt. Es stellt sich außerdem die Frage, welche Rolle Rb-
Abscheidungen auf der Oberfläche der Wellenleiter spielen, in welcher Form diese vor-
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liegen, wie diese die Mode und die Casimir-Polder-Potentiale beeinflussen und ob diese
Dipole ausbilden, welche durch elektrische Felder die Atome stören. Mit zweien dieser
Slot-Wellenleiter untersuchten wir zudem die gegenseitige Wechselwirkung der Ato-
me bei hohen Dichten. Dabei wurden eine Linenverbreiterung und Linienverschiebung,
die linear mit der Dichte zunehmen, gemessen. Die Verbreiterung lässt sich durch den
Effekt der Selbstverbreiterung erklären. Die Größe der Verschiebung kann allerdings
mit der gängigen Theorie nicht erklärt werden und bedarf weiterer Studien. Dies ist
möglicherweise ein weiterer Hinweis auf eine nicht vollständige Theorie, wie weiter oben
bereits erwähnt wurde.

Durch eine Zweiphotonenanregung zum 5D3/2 Zustand von Rb haben wir nahezu Dopp-
lerfreie Spektren mit einem integrierten photonischen Schaltkreis gemessen. Die Verrin-
gerung der Dopplerbreite war hierbei durch die fast gleiche Wellenlänge der in gegen-
gesetzter Richtung propagierenden Moden gegeben. Somit konnte eine durch Durch-
flugsverbreiterung dominierte Linienbreite von ∼ 2π×860 MHz im Vergleich zur Dopp-
lerverbreiterten Linie mit ∼ 2π × 1300 MHz bestimmt werden. Ein weiterer Einfluss
auf die Linienbreite ist durch die Atom-Oberflächenwechselwirkung gegeben, welche
die Linie asymmetrisch verzerrt. Diese Wechselwirkung ist bei der Spektroskopie des
5D3/2 Zustands größer als beim ansonsten untersuchten 5P3/2 Zustand, was sich auch
in einer erhöhten Rotverschiebung widerspiegelt. Die asymmetrische Linienform dieser
Zweiphotonenspektren konnte durch eine Monte-Carlo-Simulation unter Einbeziehung
der Casimir-Polder-Potentiale der beteiligten Niveaus angemessen reproduziert wer-
den. Lediglich die absolute Rotverschiebung war in der Simulation höher als in der
Messung.

Für den weiteren Verlauf dieses Experiments ist es vorgesehen, die Wellenleiter künftig
aus Silizium zu fertigen, welches einige Vorteile mit sich bringt. Beispielsweise gibt es
eine Vielzahl an Bauteilen von extrem hoher Güte, da im Gebiet der Photonik schon
seit längerer Zeit mit Silizium gearbeitet wird. Um diese zusammen mit Rb verwen-
den zu können, ist ein anderes Anregungsschema als bisher notwendig, da Silizium für
die D2-Wellenlänge von Rb nicht transparent ist. Deshalb wird der 5P3/2 Zustand mit
einem Laserstrahl gepumpt, während über eine geführte Mode bei 1529 nm die Ato-
me auf dem 5P3/2 → 4D5/2 Übergang abgefragt werden. Diese Wellenlänge ist direkt
mit der vorhandenen Telekommunikations-Infrastruktur kompatibel, was für spätere
Anwendungen extrem vorteilhaft ist. Außerdem kann mit Silizium durch den größeren
Brechungsindexkontrast eine höhere Intensität der geführten Mode erreicht werden,
was in Verbindung mit dem ebenfalls größeren Dipolmatrixelement des 5P3/2 → 4D5/2

Übergangs eine erhöhte Kopplungsstärke verspricht. Weiterhin sind die Rb Anhaftun-
gen auf Silizium und die daraus resultierenden Transmissionsverluste möglicherweise
nicht so schwerwiegend wie im Falle von Siliziumnitrid. Diese Problematik sollte im All-
gemeinen besser aufgeklärt werden, insbesondere im Hinblick auf die Fertigung von Re-
sonatoren hoher Güte. Um die Wechselwirkungszeit der Atome zu verlängern könnten
möglicherweise Puffergase eingesetzt werden. Eine alternative Lösung bietet das kurz-
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zeitige Auskoppeln der geführten Mode in eine Freistrahlmode. Hierbei können größere
Volumina abgefragt werden, ohne dabei auf die Vorteile von integrierten optischen
Bauelementen zu verzichten.

Dieses Themengebiet bietet noch eine Vielzahl von interessanten und aufschlussreichen
Experimenten, die möglicherweise in der nahen Zukunft zu praktischen Anwendungen
führen. Der Grundstein ist hiermit gelegt. Nun liegt es daran, darauf aufzubauen um
diesen vielversprechenden Ansatz weiter voranzutreiben.
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Introduction

Glass cells filled with a gas at room temperature have been a reliable workhorse for
researchers in atomic physics since the inception of this field and still are in today’s
modern experiments. Our knowledge about the electronic structure of atoms and how
they interact with light results to a large extent from the investigation of absorption
and emission spectra, often obtained from atomic vapor cells. While experiments with
ultracold atoms are preferable for very precise and well controlled measurements, typi-
cally complex setups occupying an entire optical bench (or more) are required to operate
them. In contrast, vapor cells are straightforward to manufacture, small, inexpensive,
low power, and simple to use. This makes them particularly interesting for a variety
of practical applications. A major advantage of atoms compared to solid state physi-
cal systems is that they provide well defined and narrow transition frequencies, which
enables repeatable and accurate measurements. Especially alkali metal vapors, such
as rubidium (Rb), are favored candidates in this regard due to their simple electronic
structure involving a single valence electron, convenient optical transitions, long-lived
hyperfine ground states and large vapor pressure at moderate temperatures.

Indeed, we indirectly take advantage of alkali vapor cell based technology in our every-
day life: Rb atomic clocks are used on board the GPS [1] and the European Galileo
navigation satellites [2] owing to their small size and low power requirements, as fre-
quency and timing reference for audio and television broadcasting and for synchroniza-
tion tasks in mobile phone base stations [3]. Here, timekeeping is achieved by probing
atomic transition frequencies, which can be done with high accuracy. For this reason,
and because even tiny external perturbations influence the atomic energy structure,
vapor cells can be used as very precise senors, e.g., for DC electric fields [4], microwave
fields [5, 6] with spatial resolution [7, 8] and magnetic fields [9, 10] with medical ap-
plications in both magnetocardiography [11–13] and magnetoencephalography [14–17].
Besides the measurement of electromagnetic fields, their sensing capabilities might also
be utilized as gas detectors [18] and as gyroscopes [19, 20]. In the context of quantum
information processing, vapor cells are envisaged to serve as building blocks in a scal-
able quantum network [21]. For this purpose, a single photon source based on thermal
atoms has been proposed [22] and successfully demonstrated in our lab just now. A
compatible and highly efficient quantum memory can be realized with vapor cells as
well [23–25]. The wide range of applications further includes optical devices such as an
optical isolator [26] and narrow band pass filters [27–29] which are inherently matched
to the atomic transition frequency.
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In recent years, considerable effort has been put into the miniaturization of vapor
cells in terms of confinement [33–35] as well as overall size [30–32]. Especially micro-
fabricated cells offer low power dissipation, small size (thereby increasing the spatial
resolution of sensors) and wafer-level integration with the potential for mass produc-
tion and hence cost reduction. This procedure has enabled the fabrication of extremely
compact chip-scale atomic clocks [30, 36] and magnetometers [37–39] and might po-
tentially lead to SI-traceable references for multiple base units within a single chip
[40].

An even higher level of miniaturization and integration can be achieved through the
marriage of atomic vapor cells and photonic integrated circuits (PICs). This is the
subject that we are addressing in the present work. A PIC contains multiple photonic
devices on a small chip, similar to an electronic integrated circuit (IC) with the dif-
ference that the signal is carried by light instead of an electrical current and circuit
components are interconnected via optical waveguides rather than conductive traces.
The evanescent field arising from total internal reflection inside these waveguides can
be used to interface the guided mode with atomic vapor surrounding the waveguide
within a distance on the order of λ/2π, where λ is the wavelength of the guided light.
Besides the investigations presented in this thesis, the same approach is followed by
the group of Prof. Uriel Levy in Jerusalem who has demonstrated the first proof of
principle [41] and performed follow-up studies [42–44]. The implementation of such a
hybrid system offers a huge potential for both practical applications as well as funda-
mental studies of light-matter interactions. Some of the benefits will be discussed in
the following.

Imagine a conventional spectroscopy setup with laser beams which are manipulated
with mirrors, lenses, electro- or acousto-optical modulators and finally captured by
some sort of detector. All these components are typically mounted on a vibration
isolated optical bench and are taking up quite some space. The same components
can also be realized in a PIC [45], including light sources in form of, e.g., distributed
feedback lasers [46, 47] or flip-chip bonded vertical-cavity surface-emitting lasers [48,
49], detectors [50, 51] or even heaters to control the vapor pressure [30, 52], however
on a much smaller scale, with immunity to vibration and inherently perfect optical
alignment due to waveguide interconnections. The rapidly growing field of micro- and
nanophotonics and well-established fabrication processes in the semiconductor industry
allow a dense integration of multiple devices on a single chip in batch production.
Optical chips are readily compatible with the fiber-based telecommunication network
infrastructure, where the inclusion of atomic vapors might be utilized as an integrated
frequency reference to avoid mixing of independent optical carriers in dense wavelength
division multiplexing [53]. Some of the earlier mentioned vapor cell based applications
can also be implemented using this hybrid approach allowing for ultra-compact designs
with even further improved portability and power consumption. This is in particular
interesting for sensing and referencing tasks which could be integrated into handheld
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devices. As the atoms surrounding a waveguide are probed on a sub-micron scale, it
might be possible to increase the spatial resolution of these sensors. For example, in the
realm of magnetometry, investigations were made in this direction with the evanescent
field arising from total internal reflection at a prism surface [54]. It is important to
note that the atomic motion in a thermal vapor involves Doppler- and transit time
broadening and the atom’s energy structure is affected by atom-surface interactions at
close proximity to the waveguide. These effects have to be taken into account as they
will limit the precision of potential sensing or clock devices. However, the achievable
precision might certainly be “good enough” for many applications where the benefits
of this approach predominate.

Using micro- or nanophotonic structures it is also possible to modify and tailor the
light field which couples to the atoms. The small mode area of the evanescent field
enables efficient atom-light interaction which can be boosted even more by trapping
the light field in resonant cavity structures. In this case, the atom can interact with
the circulating photon multiple times. This concept has established the field of cavity
quantum electrodynamics (QED) [55–57]. The interaction strength further depends on
the cavity mode volume: the smaller the mode volume, the larger the energy concentra-
tion of a photon in the mode, thus the larger the interaction strength. Nanophotonic
resonators provide extremely small mode volumes and, in addition, the possibility
for scalable fabrication which makes them promising candidates for the realization of
large-scale quantum networks [58–60]. Consequently, quite a number of experiments
has been performed with atoms and microresonators. While coupling thermal atoms to
a fused silica microsphere was demonstrated early-on [61], the so-called strong coupling
regime could only be explored with ultracold atoms in combination with nanophotonic
resonators [62, 63] or photonic crystal waveguides [64]. The above mentioned atomic
motion has prevented strong coupling of thermal atoms so far, as an extremely large
coupling strength would be required to overcome the motional dephasing. However,
as we will assess in this work, it might be possible to fulfill this criterion with cer-
tain resonator designs. If so, this would be a major breakthrough towards a scalable
quantum network, since miniaturization of a cold atom experiment to the same extent
is certainly not a less challenging task. Irrespective of whether strong coupling can
be accomplished or not, any enhancement in the coupling strength would increase the
efficiency and therefore the performance of potential devices.

In a different context, the ability to confine light in a small volume with optical wave-
guides might be exploited for fundamental investigations of dipole-dipole interactions
between thermal atoms. This topic has recently gained renewed interest [35, 65, 66]
and appears to be not yet fully understood [67, 68]. Further insight into the underlying
physics could be obtained by reducing the dimensionality and hence the complexity of
the problem. First steps in this direction have already been undertaken by confining
atomic vapor within nano-cells [35, 68] which constitutes a quasi two-dimensional sys-
tem. The next stage could be achieved utilizing the sub-wavelength confinement of a
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waveguide mode which restricts the atom-light interaction in the transversal direction
but remains invariant along the waveguide, which represents a one-dimensional system.
A particularly suitable waveguide design for this purpose would be slot waveguides [69],
where the mode is squeezed into a narrow gap in between two solid core waveguides.
Moreover, in thermal vapor cells a very large range of atomic densities can be covered
by simply changing the cell temperature.

This thesis

The integration of thermal atoms with photonic waveguide structures was an entirely
new topic within our institute at the start of this dissertation. A close collaboration
with Prof. Wolfram Pernice at the KIT1, who contributed his expertise in the fabrica-
tion of the photonic devices and provided the optical chips made this project possible.
In our first approach, the optical chips were mounted into a CF flange and connected
to a small vacuum chamber which was filled with cesium vapor first and with Rb later
on. As it turned out, this solution was far from being ideal. Temperature control of the
steel chamber and the chip itself was not sufficient, with the consequence that quite a
few chips quit working after a short time, probably due to Rb deposit on the structures.
Furthermore, investigating devices located at different positions on the chip required
realignment of the entire optical setup, as the chamber itself was fixed.

Things got much better when we were able to anodically bond the chips to vapor cells.
Now, temperature could be well controlled with a small oven and different devices could
be addressed by simply moving the cell with a translation stage. This setup enabled the
investigation of a variety of photonic devices coupled to thermal Rb vapor including
single waveguide transmission lines, Mach–Zehnder interferometers, slot waveguides,
devices for two-photon spectroscopy, and with the addition of a protection layer also
ring resonators.

In this thesis, we will separately discuss the characteristics and results for the individ-
ual devices and also cover the common properties and peculiarities which arise when
interfacing thermal atoms with photonic waveguides. These include enhanced Doppler
broadening and transit time broadening, Casimir–Polder interactions and modifica-
tion of the atomic decay rate at these short distances as well as alkali metal induced
transmission losses. An effective susceptibility model is presented, which allows to
predict the interaction of atoms with the guided modes of relatively simple structures.
For more complex devices, another model has been developed in this work which is
based on Monte Carlo simulations of atomic trajectories. The experimental advances
and theoretical considerations resulting from this thesis might provide a framework for
continuing work in this field, which perhaps one day leads to real world applications.

1At that time, now at the University of Münster.
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Outline

This thesis begins with a theoretical part, which covers in chapter 1 the derivation
of the optical Bloch equations for a two-level atom and the motional effects arising
with thermal atoms. The photonic devices utilized in this work are introduced in
chapter 2 to obtain a basic understanding of their operation. An overview of the
experiment including the cell- and chip-design is presented in chapter 3. Chapter 4
covers the topics which are specific to waveguide spectroscopy of alkali metal vapor.
This includes the two theoretical models, atom-surface interactions, losses due to alkali
exposure and measurement results of a ridge waveguide. Subsequently the investigated
photonic devices are treated in detail in chapters 5 to 8. Finally, a brief summary and
an outlook on future prospects is given at the end of this work.
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1 Atom-light interactions

This chapter is intended to introduce the fundamental theory required to describe the
interaction between light and atoms. It is the essential basis of the experiments in this
work and the derived concepts will be used to develop models to assist with the inter-
pretation of our results and make predictions for potential upcoming experiments.

We first derive the optical Bloch equations for a two-level atom interacting with a
classical light field. Even though the investigated alkali atoms exhibit a multi-level
electronic structure, a two-level description is sufficient in our case, as we probe the
transitions with a single near-resonant laser field. Furthermore, optical pumping plays
a negligible role as the interaction time of the atoms with the evanescent field is short
compared to the excited state lifetime and because of the low Rabi frequencies involved
for the most part. The full spectrum can be obtained by summation of individual two-
level transitions taking into account the appropriate transition strengths and energy
separations. Afterwards we deal with the consequences of atomic motion, which play
a significant role in our experiments.

1.1 The two-level atom

We consider a two-level atom which has a ground state |1〉 and an excited state |2〉.
The two states are separated by an energy ~ω0 and the atomic Hamiltonian is therefore
given by

HA = ~ω0 |2〉 〈2| . (1.1)

The atom is assumed to interact with a classical monochromatic light field with angular
frequency ω, which is valid if a large number of photons is involved:

E(r, t) =
1

2

[
E0e

i(k·r−ωt) + E∗0e−i(k·r−ωt)] , (1.2)

where k is the wave vector. Since for an optical transition the wavelength of the field
is much larger than the extent of the atom, we omit the spatial dependence of the
electric field and only consider the field at the position of the atom (r = 0). This
assumption is known as the dipole approximation which also allows us to write the
atom-light interaction Hamiltonian in the lowest order of the multipole expansion:

HAL = −d ·E , (1.3)
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with d being the atomic dipole operator. The total Hamiltonian of the system can
then be written as

H = HA +HAL . (1.4)

In our experiments we usually deal with a large number of atoms taking part in the
measurement process. The prevailing treatment for such an ensemble of atoms in-
teracting with a classical light field is the density matrix method [70]. If pn is the
(classical) probability of the ensemble being in the state |ψn〉 =

∑
i ai |i〉, with complex

coefficients ai in the orthonormal basis states |i〉, its density matrix is given by

ρ =
∑
n

pn |ψn〉 〈ψn| =
∑
nij

pna
(n)
i a

(n)∗
j |i〉 〈j| , (1.5)

with the matrix elements
ρij =

∑
n

pna
(n)
i a

(n)∗
j . (1.6)

Since the diagonal elements ρii = |ai|2 are the probabilities of finding the atom in
state |i〉, they are called populations, whereas the off-diagonal elements ρij are called
coherences due to their appearance in interference terms. The expectation value of any
operator A can be calculated by 〈A〉 = tr(ρA).

The Hamiltonian H(t) determines time evolution of the density matrix, which is de-
scribed by the von Neumann equation:

∂ρ(t)

∂t
= − i

~
[H(t), ρ(t)] . (1.7)

So far, only energy transfer between the atom and the driving field E has been consid-
ered, which is sufficient to describe absorption and stimulated emission. However, in
a real atom also dissipative processes due to its interaction with the environment are
present, for example, spontaneous emission or collisions. If a certain dissipative process
affects all atoms of an ensemble equally, it is called a homogeneous process. Within
the density matrix formalism, these processes can be conveniently included in terms
of the Lindblad operator LD(ρ) which is added to eq. (1.7). The resulting equation is
known as the Lindblad master equation and is given by

∂ρ(t)

∂t
= − i

~
[H(t), ρ(t)] + LD(ρ(t)) . (1.8)

The general form of the Lindblad operator is given by [71]

LD(ρ) = −1

2

∑
m

(C†mCmρ+ ρC†mCm) +
∑
m

CmρC
†
m , (1.9)

where the sum runs over all possible decay channels m. For the two-level atom, the
excited state decays at rate Γ0, thus we only have a single operator C1 =

√
Γ0 |1〉 〈2|

and we obtain

LD(ρ) = Γ0

(
ρ22 −ρ12/2
−ρ21/2 −ρ22

)
. (1.10)
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Rotating frame transformation

The electric field which enters the interaction Hamiltonian eq. (1.3) contains terms
oscillating at optical frequencies. These oscillations are much faster than the evolution
timescales of the atomic system. In order to get rid of the fast oscillating terms one
can make a transformation into a frame rotating at the frequency ω of the light field.
This step is performed via a unitary transformation matrix

U =

(
1 0
0 eiωt

)
. (1.11)

The transformed density matrix is then given by

ρ̃ = U †ρU =

(
ρ11 ρ12e

iωt

ρ21e
−iωt ρ22

)
, (1.12)

and by inserting eq. (1.12) into eq. (1.7), we receive for the transformation of the
Hamiltonian

H̃ = U †HU − i~U †
∂U

∂t
. (1.13)

Inserting eq. (1.4) into eq. (1.13) and using the matrix elements of the dipole operator
dij = 〈i|d |j〉 we obtain1

H̃ =

(
0 −d12

2

(
E0 + E∗0ei2ωt

)
−d21

2

(
E0e

−i2ωt + E∗0
)

~(ω0 − ω)

)
, (1.14)

where the origin of the energy was chosen to be in the atomic ground state.

The off-diagonal terms in eq. (1.14) contain terms that oscillate at twice the driving
frequency and can be neglected, if the light frequency is close to resonance and the
atom-light coupling is weak, as they average out quickly compared to atomic timescales.
This common step is known as the rotating wave approximation [72]. Applying this
approximation yields

H̃ = ~
(

0 Ω0/2
Ω∗0/2 −∆

)
, (1.15)

where we have introduced the detuning ∆ = ω−ω0 and the Rabi frequency Ω0 = −d12E0

~
which is a measure for the strength of the atom-light coupling. The transformation of
the Lindblad operator into the rotating frame is simply given by L̃D(ρ̃) = LD(ρ).

Now we can write down the time evolution of the density matrix elements for the two-
level atom in the rotating wave approximation by inserting equations (1.12), (1.15) and

1Since d has odd parity, only its off-diagonal matrix elements are non-vanishing.
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(1.10) into the master equation (1.8):

∂

∂t
ρ̃11 = Γ0ρ̃22 − Im (Ω∗0ρ̃12) , (1.16a)

∂

∂t
ρ̃12 = −

(
Γ0

2
+ i∆

)
ρ̃12 − i

Ω0

2
(ρ̃22 − ρ̃11) , (1.16b)

∂

∂t
ρ̃21 =

(
i∆− Γ0

2

)
ρ̃21 + i

Ω0

2
(ρ̃22 − ρ̃11) =

∂

∂t
ρ̃∗12 , (1.16c)

∂

∂t
ρ̃22 = −Γ0ρ̃22 + Im (Ω∗0ρ̃12) = − ∂

∂t
ρ̃11 . (1.16d)

Additionally, we have the constraint ρ̃11 + ρ̃22 = 1, since the total population is con-
served. The above equations (1.16) are the optical Bloch equations of a two-level
atom.

1.2 Motional effects

So far we only considered atoms at rest. In a thermal vapor, the atoms have a mean
velocity which is on the order of 300 m s−1 at room temperature. This motion causes
several observable effects on the spectroscopic features, two of which will be discussed
in the following. In an ordinary vapor cell experiment the line width is dominated by
the Doppler broadening, which will be introduced first. However, when spectroscopy is
performed with nanophotonic structures, transit time effects make a significant contri-
bution and will be treated in the second part. Both processes lead to an inhomogeneous
line broadening as the velocity and transit path are different for each individual atom.

1.2.1 Doppler broadening

The absorption frequency of an atom moving at velocity v in a light field with frequency
ω and phase velocity c is shifted as a consequence of the Doppler effect. For |v| � c
the frequency which is perceived by the atom is given by

ω′ = ω − k · v , (1.17)

where k is the wave vector of the light field with |k| = ω/c. This leads to a modified
detuning in the optical Bloch equations (1.16):

∆D = ∆− k · v . (1.18)

To obtain the average response of an ensemble of atoms to a light field one has to sum
over the contributions from all atomic velocities

ρ̃D(∆) = N
∫
F (v)ρ̃(δ,v) dv , (1.19)
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1.2. Motional effects

Figure 1.1: Transit time broadened line shape. a) Result for a Gaussian beam with a waist
of w0 = 2 µm. The blue dashed line is a Lorentzian profile with the same
FWHM. b) Result for a ridge waveguide. The insets illustrate the atom transits
through the electric field for each case.

where N is the atomic number density and F (v) is the probability distribution of
atomic velocities which is Maxwellian for a gas in thermodynamic equilibrium (see
section 4.3.2 for details). The distribution of atomic velocities translates to a distri-
bution of transition frequencies, which results in a Doppler broadened spectrum of the
ensemble.

1.2.2 Transit time broadening

In an atomic vapor experiment, the interaction time of a moving atom with a light field
is in general finite. If the light field is a tightly focused laser beam or an evanescent
wave, the interaction time can become shorter than the lifetime of the excited state. In
this case, the line width is dominated by the transit time rather than the spontaneous
decay rate.

The line width of a transit time broadened spectrum can be approximately calculated
for a Gaussian beam, see e.g. reference [73]. However, for a more complex geometry
of the volume in which the atom-light interaction takes place, the prediction of the
line shape is less trivial. Since the Monte Carlo method which will be introduced
later on in section 4.3 inherently accounts for transit time effects, we can simulate the
influence of the finite interaction time for the cases of a Gaussian beam with a waist
of w0 = 2 µm and the evanescent field of a ridge waveguide (width w = 900 nm and
height h = 180 nm), which is shown in Figure 1.1 a) and b), respectively.

For these simulations the Doppler effect has been ignored to highlight the consequences
of a finite transit time. In case of the Gaussian beam this results in a line shape with a
full width at half maximum (FWHM) of δω/2π ≈ 38 MHz. Also plotted in Figure 1.1
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Chapter 1. Atom-light interactions

a) is a Lorentzian with the same FWHM, showing that the transit time broadened line
shape is not exactly Lorentzian as each transversal velocity class contributes with a
different width to the total signal, which is therefore inhomogeneously broadened. In
the waveguide situation transit time effects are even more significant since the evanes-
cent field decay length is on the order of ∼ 100 nm which leads to a line width of
δω/2π ≈ 260 MHz for the above example. The non-Lorentzian line shape is obvious in
this case and will be discussed in more detail in section 4.3. Very similar line shapes
have been observed in ultrahigh-resolution molecular spectroscopy in a transit time
limited regime [74].
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2 Fundamentals of integrated optics

The interfacing of atoms with light via photonic integrated circuits is the basis of all
experiments within this thesis. This chapter is therefore intended to introduce the
fundamental properties of all components of the integrated circuits and devices used in
the course of this work. The working principle and characteristics of specific devices,
such as ring resonators, will be explained in the corresponding chapters later on.

The subsequent sections are meant to introduce the basic concepts of integrated optics
in order to obtain the required knowledge for the experiments and simulations presented
in this work. A more thorough treatment of the subject can be found for example in
[75].

2.1 Waveguides

Dielectric waveguides are the essential component of an integrated optical circuit. They
are used to interconnect photonic devices on a chip, similar to the optical fibers em-
ployed for signal transmission over long distances. Moreover, they already form devices
by themselves, such as directional couplers or, in our case, serve as an interface between
confined light and atoms.

The most common waveguide geometry in an integrated circuit is the rectangular
ridge waveguide shown in Figure 2.1. It consists of a high index dielectric material, the
core, which is truncated in the transverse directions and surrounded by lower index
material, the cladding. For all experiments in this work, the core material is silicon
nitride (Si3N4) with n2 = 2 [76], and the substrate material is silicon dioxide (SiO2)
with n3 = 1.45 at λ = 780 nm [77]. The refractive index contrast allows for light
propagation along the longitudinal direction, while propagation is prohibited in the
transversal directions. This guiding mechanism can be understood by considering the
path of a plane wave (or an optical ray) inside the core: since the refractive index of
the core material is larger than the index of the surrounding, total internal reflection
can occur at the core-cladding interfaces. As the wave repeatedly bounces back and
forth between the core boundaries it has to interfere constructively with itself in order
to propagate along the waveguide. This resonance condition leads to a discrete set of
guided modes which are characteristic of a specific waveguide structure. A mode is a
spacial field distribution in the transverse plane of a waveguide which remains constant
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Chapter 2. Fundamentals of integrated optics

along the propagation direction if the structure is translation-invariant. The electric
and magnetic fields of a mode can therefore be written as

Em(r, t) = Em(x, y) exp [i(βmz − ωt)] , (2.1a)

Hm(r, t) = Hm(x, y) exp [i(βmz − ωt)] , (2.1b)

where m is an integer mode index, Em and Hm are the mode profiles and βm is the
complex propagation constant, corresponding to the eigenvalue of the m-th mode. The
real part of βm determines the phase variation along z, whereas its imaginary part
accounts for any attenuation along the propagation direction due to absorption, scat-
tering or radiation losses. Linked to the propagation constant is the effective index neff,
which is analogous to the refractive index in homogeneous media and determines the
phase velocity of light in the waveguide. It is defined as

neff,m = βm/k = c/v , (2.2)

where k = 2π/λ is the wavenumber in vacuum and v is the phase velocity in the
waveguide. Related to the effective index is the group refractive index defined as
ng = c/vg, where vg is the group velocity. In case of small dispersion the group
refractive index can be approximated as

ng = neff − λ
∂neff

∂λ
. (2.3)

The ray optics approach used above for describing the guiding mechanism has many
limitations, especially when considering dimensions on a sub-wavelength scale. There-
fore, a rigorous analysis of the fields requires the solution of Maxwell’s wave equations.
Solving these equations analytically is (except for a few cases) either very difficult or
impossible and usually numerical methods are employed for this problem. We use the
Wave Optics Module within COMSOL Multiphysics for this task which is based on a
finite element analysis.

The electric field distribution of the fundamental mode of a rectangular waveguide
(h = 180 nm, w = 1100 nm) is shown in Figure 2.1 b). A fraction of the mode reaches
into the cladding region in terms of an evanescent field. It decays exponentially with
distance to the core. The top and side panels of Figure 2.1 b) show horizontal and
vertical cuts of the electric field through the core center. Fitting an exponential function
to the evanescent tails (red sections) yields a 1/e-decay length of γx = 81 nm for the
side wall field and γy = 92 nm for the top field. It is this part of the mode which
interacts with the atomic vapor in our experiments. Only the fraction of optical power
in the cladding region contributes to the atom-light interaction which is obtained by
integrating the intensity of the mode over the cladding region, denoted by C, and the

22



2.1. Waveguides

Figure 2.1: Waveguide structure and mode profile. a) Geometry of a ridge waveguide as used
in this work. The waveguide core of refractive index n2 is placed on a substrate
of index n3 and surrounded by a cladding of index n1. b) Simulated electric
field profile |Em(x, y)| of the fundamental TE0 mode for a Si3N4 waveguide
(h = 180 nm, w = 1100 nm) on an SiO2 substrate. The gray arrows indicate
the direction and strength of the electric field, representing the polarization
direction. The top and side panels show horizontal and vertical cuts of the
electric field through the center of the core (blue lines). Red lines are exponential
fits to the evanescent tails.

total cross section, respectively:

η =
PC
Pm

=

∫∫
C

Im(x, y)dxdy

+∞∫∫
−∞

Im(x, y)dxdy

, (2.4)

where the intensity of the mode is given by

Im = (Em ×H∗m + E∗m ×Hm) · ẑ , (2.5)

with ẑ being the unit vector along the waveguide axis. The cladding power fraction
for the waveguide shown in Figure 2.1 equals to η ≈ 8.6× 10−2. This value can be
increased for example by shrinking the core size or using special geometry designs like
slot waveguides (see chapter 7).

Depending on the structure of the waveguide it can support multiple modes. Fig-
ure 2.2 a) shows the effective indices of existing modes in a waveguide of height
h = 180 nm1 as a function of core width. For a mode to be guided in the core, its

1This is the default core height of the devices used in this work.
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Figure 2.2: Different modes of a Si3N4waveguide (h = 180 nm) on SiO2 substrate at λ =
780 nm. a) Effective mode indices of the guided modes as a function of core
width w. The black dashed line indicates the refractive index of SiO2 at λ =
780 nm and therefore the cutoff condition. The waveguide is single mode up
to w = 533 nm. b) and c) show the electric field profiles of a w = 1100 nm
waveguide for the TE1 and TM0 modes, respectively. Gray arrows show the
polarization direction of the electric field.

effective index has to be larger than the index of the surrounding media. In our case
the refractive index of the substrate determines this cutoff condition. For core widths
w < 533 nm only a singe mode exists.

The classification of the modes depends on the polarization direction of the fields: if
the electric field mostly points in the x direction, it is named TE-like2 mode, and anal-
ogously TM-like mode for magnetic fields. Additionally, the subscript index indicates
the number of nodes in the mode profile. See Figure 2.1 b) and Figure 2.2 b)-c) for
the mode profiles and polarizations of the fundamental TE0, and higher order TE1 and
TM0 modes, respectively. These higher order modes appear with increasing core size,
as shown in Figure 2.2 a). At a width of around 900 nm the polarization character
of the mode is heavily mixed between a TM0 and TE1 mode, which manifests in an
anti-crossing in the effective index.

2.2 Grating couplers

Coupling light into and out of a waveguide can be achieved in different ways. The
simplest approach is to directly focus a laser beam from free space onto the end face

2Because the modes of a ridge waveguide are confined in two transversal dimensions, the z compo-
nents of both electric and magnetic fields do not vanish completely. Therefore these modes are no
true TE or TM modes but rather hybrid modes. This is indicated by the ’-like’ suffix, which we
omit hereafter for the sake of brevity.

24



2.2. Grating couplers

Figure 2.3: Focusing grating coupler. a) Schematic of a focusing grating coupler. The
curved grating lines focus the light towards the waveguide with a short taper
to convert the size of the laser mode to the size of the waveguide mode. b) Cut
through the grating coupler. Light is incident at an angle θm with respect to
the surface normal and partially diffracted into the waveguide mode βm. The
other part is reflected or transmitted to the substrate.

of a waveguide. However, this method can only be used when the waveguide facet
is exposed at the edge of the chip. In order to address devices within the optical
chip, an out-of-plane access is required. For this purpose we use grating couplers in
our experiments, like the one illustrated in Figure 2.3. The task of the grating is to
produce phase matching between a free space laser mode and a certain waveguide mode
βm, which is required for efficient coupling. Without a grating, focusing light from the
cladding region with index n1 onto the waveguide surface at an angle θm would lead to
the phase matching condition

kn1 sin θm = βm = kneff . (2.6)

However, for the mode to be guided, neff > n1 has to be fulfilled. We now look at the
basic principle of a grating coupler to see how it assists to obtain phase matching.

In Figure 2.3 b) the schematic structure of a grating waveguide coupler is shown. The
waveguide exhibits a periodic corrugation in propagation direction with a period Λ.
This leads to a periodic perturbation of the waveguide modes and introduces spatial
harmonics with propagation constants βq = β0 + q 2π

Λ
(q = 0,±1,±2, ...) and the fun-

damental β0 ≈ βm [78]. Hence the phase matching condition for light incident at an
angle θm is given by

kn1 sin θm = βm + q
2π

Λ
, (2.7)

which can now be satisfied for negative values of q. It should be noted that in our
experiments light is focused through the substrate onto the grating coupler, which is
covered with an SiO2 layer, hence n1 ≈ n3.

Due to optical reciprocity, the grating can also act as an output coupler. Since the
amplitude of the guided mode decays exponentially in the coupler region with distance
to the waveguide end, the output beam also has an exponentially decaying transverse
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Figure 2.4: Integrated Y junction. a) Schematic of a Y junction composed of a stem wave-
guide which is connected to port 1 and branching into two waveguides which
are connected to ports 2 and 3, respectively. Port 4 represents the radiation
mode. b) - c) 2D simulations of the y component of the electric field for a Y
junction acting as a combiner. In b) two waves of the same phase are combined
to a wave of twice the power at the output. In c) two waves of opposite phase
are converted to the radiation mode and no output is obtained.

profile. From this it follows that an input beam should have the same exponential
beam profile to obtain maximum coupling efficiency3. Also, it is preferable to align the
incident beam close to the edge of the grating, as shown in Figure 2.3 b). Although
the preceding explanation provides insight into the basic functionality of a grating
coupler, coupled wave analysis and Floquet theory are required for a rigorous treatment
[75, 78].

To transform the size of a laser beam with a typical waist of 10 µm to the waveguide
width of around 1 µm a focusing coupler design is used. This is realized by elliptically
curved grating lines (see Figure 2.3 a)) which have a common focal point at the link
between grating and waveguide [79]. Additionally, a short taper is used to keep the
light confined and guided towards the waveguide [80].

The coupling efficiency for the devices used in this work is usually on the order of
a few percent. However, aperiodic grating couplers with efficiencies as high as 87 %
have been realized at telecommunication wavelengths by additionally using a backside
mirror [81].

2.3 Y junctions

In the design of photonic circuits and their corresponding devices it is often necessary to
split optical power into two or more paths, or vice versa. There are several approaches

3The maximum overlap that can be achieved between an input beam with Gaussian profile and an
exponential beam profile is 80 %.

26



2.3. Y junctions

for this task, e.g., directional couplers [82] or multi-mode interference couplers [83].
Another implementation is the Y junction [84] shown in Figure 2.4 a), which is the
type used throughout this work. The operation of a Y junction is usually described in
terms of coupled mode analysis. However, we only want to give a simple explanation
of its functionality in this section.

The Y junction is composed of a stem waveguide which splits into two arms via circular
bends. A tapered section arises during the branching, which allows for a smooth
transformation of the modes. If the two arms are identical, the junction behaves like a
50/50 beam splitter as a result of the geometrical symmetry: power inserted at port 1
is equally divided to port 2 and 3.

The other purpose of the Y junction is to combine optical power from two input ports.
The operation mechanism for this case is illustrated in Figure 2.4 b) and c) on the basis
of electric field simulations. When the two waves incident at port 2 and 3 are in phase,
the output power at port 1 is the sum of the powers in both input arms (Figure 2.4 b)).
When they are of opposite phase, the first higher order mode at the branching section
is excited. If this mode is below the cutoff frequency of the stem waveguide, the power
will be converted to the radiation mode and therefore no output power will be obtained
at port 1 (Figure 2.4 c)). Assuming the stem and arm waveguides are single mode,
the Y junction can therefore be considered as a 4-port device with the radiation mode
being connected to port 4. In this case the junction behaves analogous to a conventional
beam splitter.
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3 Experimental overview

This chapter gives an overview of the main components involved in the presented
experiments. First, the general composition of an optical chip is introduced. In our
very first experiments involving waveguide structures and thermal atoms the chip was
mounted to a vacuum chamber filled with either cesium or rubidium atoms. However,
temperature control and alignment of the input and detection optics was rather difficult
with this approach. Therefore, subsequent experiments have been performed with the
chip integrated into a vapor cell, the construction of which will be described here. In
the last section we present the relevant parts of the optical setup and tools that were
used to couple light in and out of the photonic structures.

3.1 The waveguide cell

The central part of our experiments is the waveguide cell enabling the marriage of
thermal atoms and photonic devices on an optical chip. The cell consists of a main
glass body, a reservoir tube and the chip itself which will be described in detail in this
section. The whole assembly forms a small sized device which can be conveniently
heated and easily positioned in order to select specific devices on the chip as opposed
to an earlier version of the experiment, realized with a vacuum chamber.

3.1.1 Chip design and fabrication

The optical chips have been designed and fabricated at the Institute of Nanotechnology
at the Karlsruhe Institute of Technology (KIT) by Nico Gruhler in the nanophotonics
group of Prof. Wolfram Pernice. One chip usually contains several devices of different
functionality and varying design parameters.

The substrate is formed by a 1.1 mm thick 20 × 20 mm2 borosilicate plate1, which is
compatible with the anodic bonding process described below. Figure 3.1 a) illustrates
the layer composition of a photonic chip. The guiding structures are made of silicon ni-
tride (Si3N4) which exhibits a large transmission window between 300 nm < λ < 6 µm

1For the Mach–Zehnder interferometer experiments described in chapter 5, a 4 mm thick 1.5 in di-
ameter fused silica vacuum window (Thorlabs VPW42) was used as a substrate.
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Chapter 3. Experimental overview

Figure 3.1: Chip design and waveguide cell. a) Layer composition of a photonic chip. The
coverage of the grating coupler is depicted sliced to reveal its structure. b) Cell
with an anodically bonded photonic chip and attached rubidium reservoir.

[85] and very low material absorption at a wavelength of 780 nm [86]. The devices are
patterned within a 180 nm thick Si3N4 layer via electron-beam lithography and sub-
sequent CHF3/O2-plasma based dry etching, see reference [87] for details. Focusing
grating couplers are used for in- and out-coupling of light. All devices are completely
covered with a thick (600 nm to 800 nm) silicon dioxide (SiO2) layer, except for the re-
gions where the atoms are supposed to interact with the light field. This is realized by
using hydrogen silesquioxane (HSQ) as a resist in an additional electron-beam lithog-
raphy step. Furthermore, a 100 nm thick opaque layer of aluminum (Al) is deposited
on top of the SiO2 layer above each grating coupler to avoid leakage of uncoupled
light through the coupler and the detection of fluorescence light from atoms inside the
cell volume. As described in section 4.5, exposing the structures to rubidium vapor
leads to a degradation of the waveguide transmission. Therefore, starting from chip
generation NGJ30-II 2, an additional 7 nm to 9 nm thick protection layer consisting
of sapphire (Al2O3) is deposited on the entire chip, except for a 5 mm wide frame
which remains completely uncoated for the anodic bonding. This coating is applied
via atomic layer deposition (ALD) providing a closed film which is conformal to the
waveguide structures.

An overview of the layer composition of the individual chips used for the measurements
presented in this work is given in Appendix D.

3.1.2 Cell construction

The photonic chip is integrated into a rubidium vapor cell as shown in Figure 3.1 b).
The main body of the cell consists of a 3.5 mm thick borosilicate glass plate with a
10× 10 mm2 ultrasonically drilled bore forming the inner cell volume. A further bore

2See Appendix D.3.
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connects the cell volume to a glass tube which is attached laterally via glass blowing and
serves as a reservoir for Rb after the filling process. The chip and a similar uncoated
borosilicate substrate are connected to the glass frame via triple stack anodic bonding
[88] to close the cell volume. After the reservoir tube has been attached, both cell faces
were lapped and polished3 to obtain a surface flatness of λ/4 which is required for the
bonding process to work properly. The polished surfaces are coated with a 100 nm
thick aluminum layer acting as an anode material.

For the anodic bonding procedure the Al layer is connected to the positive terminal
of a high voltage power supply, whereas the two borosilicate substrates are in contact
with plate electrodes (cathode) which are connected to the power supply ground. The
whole stack is homogeneously heated to 300 ◦C. At this temperature the sodium ions
contained in the borosilicate become mobile and can diffuse to the cathode when ap-
plying a high voltage4. The oxygen ions remain in the glass and are bonded to the
SiO2 structure creating a strong electric field between the substrates and the Al layer.
This field pulls the substrates into intimate contact to the frame whereupon the Al
atoms can diffuse into the substrate and bind to the oxygen ions. The substrates are
now joined with the cell body via molecular bonds which leads to a vacuum tight and
outgasing free sealing of the cell. After the bonding current has dropped and remains
almost constant the cell is cooled down to room temperature.

In order to fill the cell with Rb, its reservoir tube is connected to a glass manifold
containing a Rb ampule. The manifold is attached to a vacuum pump and pumped to
a pressure of ∼ 1× 10−7 mbar. After pumping for several hours/days, the Rb ampule
is broken and a small droplet of Rb is transfered into the reservoir tube. Subsequently,
the cell is sealed and separated from the manifold with a gas flame. Details on the
fabrication and filling procedure can be found in [90].

3.2 Experimental setup

The relevant parts of the experimental setup are shown in Figure 3.2. The probe light
at 780 nm is provided by a Toptica DLX diode laser and is guided to the experiment
by an optical fiber. For the two photon measurements, this laser can be locked onto a
Doppler-free absorption signal from a Rb vapor cell. The probe beam is first magnified
with a telescope to allow for a small beam waist when coupling into the waveguide
structures. A beam splitter cube with 90 % reflection is used to send a weak probe
beam to the chip, and to direct the light collected from the output grating coupler to
the detection setup with small loss. The polarization angle of the probe light is adjusted
to the polarization of the desired waveguide mode with a half-wave plate before it is

3Lapping and polishing was performed at Photon LaserOptik GmbH [89].
4Typically a voltage of 1100 V to 1300 V was used for this type of cell.
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Figure 3.2: Schematic of the experimental setup showing the essential components and
beam paths for both one and two photon measurements.

focused with an f = 50 mm aspheric lens onto the optical chip. A 1/e2 beam waist of
w0 ≈ 6 µm is achieved.

The waveguide cell is housed in an oven with separate temperature control of the
reservoir and the chip, where the chip is kept ∼ 30 ◦C hotter than the reservoir to
minimize Rb condensation on the chip. To fulfill the Bragg condition for the grating
coupler, the cell is aligned at an angle θ ≈ 10◦ with respect to the input beam. The
cell is mounted on a three-axis translation stage to enable positioning of the chip with
respect to the optical setup. To couple into the photonic structures, the light is focused
through the substrate of the chip onto the desired grating coupler. Selection of a specific
device and initial coupling into a waveguide structure is monitored using a CMOS
camera (CAM1) when the magnetically mounted mirror M1 is removed. A 780 nm
LED behind the oven illuminates the chip for this purpose. The LED wavelength
was chosen to be identical to the probe light to avoid chromatic aberrations during
imaging.

The output grating is imaged onto a 100 µm pinhole to isolate the out coupled light
from any background light. The alignment of the pinhole is monitored with CAM2

when mirror M2 is removed. Due to the strong confinement of the waveguide mode,
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high intensities are achieved already at low input powers. Hence, when performing
measurements in the weak probe regime a low light level of the out coupled signal has
to be detected. For this purpose a photo multiplier tube (PMT) with high sensitivity
is used. The entire detection setup is placed inside a lightproof box with only a small
opening comprised of a 780 nm bandpass filter to protect the sensitive PMT from any
stray light.

For the two photon experiments, the coupling light is provided by a Toptica DL pro
diode laser at 776 nm. After expanding the diameter of the coupling beam, it is over-
lapped with the probe beam using a 70:30 beam splitter and subsequently directed to
the optical chip. To suppress detection of the relatively strong coupling light, a narrow
band pass filter at 780 nm (Semrock MaxLine LL01-780-12.5) is mounted in front of
the PMT. A conventional 10 cm Rb vapor cell is used to obtain reference signals for
both one and two photon measurements.
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4 Optical waveguide spectroscopy

The spectroscopy of atoms using integrated photonic waveguide structures involves
some peculiarities which usually do not need to be considered when performing con-
ventional laser spectroscopy. The strong confinement of the light field does not only
provide large coupling strengths but also implicates short interaction times, leading to
significant transit time broadening. Furthermore, the atoms are probed close to the
waveguide surface within a sub-wavelength range leading to considerable interactions
between the atoms and the material environment. These include collisions with the
photonic structures causing quenching of the atomic excitation, shift of the energy
levels due to Casimir–Polder potentials, as well as a modification of the atomic decay
rates.

This chapter comprises the common properties of alkali vapor spectroscopy with inte-
grated photonic structures. First, the effective susceptibility is introduced as a method
to calculate the transmission properties of a waveguide surrounded by thermal atoms.
Next, atoms-surface interactions are discussed which are also part of the subsequently
presented Monte Carlo simulations. This simulation toolbox enables modeling of the
complex atom-light interaction for arbitrary waveguide geometries. After these theory
sections, spectroscopy measurements with a simple ridge waveguide are presented. Fi-
nally, we address the transmission losses of photonic structures immersed in an alkali
atmosphere.

4.1 The effective susceptibility

In this section we will introduce the effective susceptibility concept which provides a
simple way to model the essential transmission properties of a waveguide surrounded
by a gas of thermal atoms. It allows us to treat the atomic vapor around the waveguide
as a homogeneous macroscopic medium with a complex refractive index, while taking
the non-local and transient response of the atoms in the evanescent field into account.
In order to derive a simple expression which can be conveniently plugged into numerical
calculations, we will make two approximations: a low vapor density and low probe Rabi
frequencies. This method stems from the work on selective reflection spectroscopy and
the following approach is mainly based on references [91–93]. The upcoming section
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is intended to provide a closed derivation adapted to our system and to clarify the
necessary steps sometimes omitted in the mentioned literature.

The underlying idea is to calculate the reflection coefficient of a light field incident
under an arbitrary angle on an interface between a dielectric and the atomic medium.
To do so, we first derive the electric field radiated by a general dipole polarization above
the interface which is caused by the incident light field. In the next step we will consider
the specific polarization of a medium comprised of two-level atoms, accounting for their
thermal motion. Here we explicitly assume the field to be evanescent on the atomic
side of the interface, as it is the case for our waveguide spectroscopy experiments. The
resulting reflection coefficient will be related to an effective susceptibility of the atomic
medium. The corresponding refractive index is then used to finally calculate the light
propagation in a waveguide surrounded by such a medium. This approach has also
been successfully applied in a different work on atomic cladding waveguides [41].

4.1.1 Reflection for an arbitrary dipole polarization density

For the derivation of the effective susceptibility we consider the geometry in Fig-
ure 4.1 a), which consists of a dielectric with refractive index n in the lower half
space z < 0 and an atomic vapor in the upper half space z > 0. The interface between
the two media is taken to be in the xy plane and we choose the polarization direction
of the probe field to be normal to the plane of incidence1. The probe field is described
as a plane wave which is incident at an angle θ1, given by

E1(r, t) = ŷE1 exp [i (r · k1 − ωt)] + c.c. , (4.1)

with the wave vector k1 = nk(ax̂ + bẑ), where k = ω/c, a = sin θ1 and b = cos θ1.
Part of the field is reflected back into the dielectric, whereas the transmitted field
creates a dipole polarization in the atomic medium which in turn radiates a field in
the direction of the reflected wave an therefore alters the reflection coefficient of the
interface. The boundary conditions at the interface demand that the transmitted field
and therefore the induced dipole polarization vary in the x direction with exp(iαkx),
where α = n sin θ1. Hence the dipole polarization can be written as

P (r, t) = ŷP (z) exp [i (αkx− ωt)] + c.c. . (4.2)

In the following we omit the complex conjugate (c.c.) for the sake of brevity.

A layer of atomic polarization at a certain position z′ emits a plane wave in opposite
directions. In absence of the dielectric, the wave vector of this wave in the region z < 0
is given by

k2 = k(αx̂− ξẑ) , (4.3)

1This assumption was made for the sake of brevity and does not affect the effective susceptibility.
For a polarization in the plane of incidence, the derivation is similar.
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Figure 4.1: Geometry for the derivation of χeff. a) A plane wave with wave vector in the
xz plane is incident on the interface between a dielectric with refractive index
n and vacuum, where it is partially reflected and partially refracted. b) Three-
layer planar waveguide with n2 > n3 > n1. The wave inside the core is totally
reflected at both interfaces, resulting in a guided mode with propagation con-
stant βm, which evanescently decays outside the core in both z directions with
penetration depths γ and γ′, respectively.

where ξ needs to fulfill the condition α2 + ξ2 = 1. In the case of total reflection α > 1
and we write ξ = iη.

In order to find the field due to this dipole polarization we consider the wave equation
in the Lorenz gauge condition (

∇2 + k2
)
A = iωµ0P , (4.4)

where A is the vector potential. The derivation of eq. (4.4) and relations between the
fields and the electromagnetic potentials can be found in Appendix A.

In order to solve the wave equation (4.4) we need to find a Green’s function G(z, z′)
that solves (

∇2 + k2
)
G(z, z′) = δ(z − z′) exp(iαkx) . (4.5)

The derivation of the corresponding Green’s function can be found in Appendix A.1
and we directly continue with the result:

G(z, z′) =
1

2iξk
exp(iξk|z − z′|+ iαkx) . (4.6)

The solution of the wave equation is then given by the convolution of G(z, z′) with the
source term:

A(r) =
ωµ0

2ξk
exp(ik2 · r)ŷ

∫ ∞
0

dz′P (z′) exp(iξkz′) . (4.7)
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To calculate the associated electric field we use eq. (A.9) from the Appendix and get

Ep(r) =
ik

2ξε0
exp(ik2 · r)ŷ

∫ ∞
0

dz′P (z′) exp(iξkz′) . (4.8)

This field is the radiation of the atomic dipole polarization. At the interface it is
partially reflected back into the vapor and a part of it is refracted into the dielectric
and thereby effectively alters the reflection coefficient. The total amplitude of the
reflected wave E3 is therefore a combination of the field which would be reflected if the
half space z > 0 would be vacuum and the dipole radiation which is refracted into the
dielectric. Using Fresnel’s equations this can be expressed in a reflection coefficient:

r⊥ =
E3

E1

=
nb− ξ
nb+ ξ

+
2ξ

nb+ ξ

Ep

E1

=
nb− ξ
nb+ ξ

+
4nbξ

(nb+ ξ)2

Ep

E2

, (4.9)

where the Fresnel equation for the refracted field into the vapor E2 = 2nb/(nb + ξ)E1

has been used.

We can now introduce the complex effective susceptibility χeff, which is the suscepti-
bility a medium in the half space z > 0 would have in order to reproduce the same
reflectivity as in eq. (4.9). In response to an incident probe field, this susceptibility
gives rise to a field in the medium with the wave vector ka = k(αx̂ + ζẑ), since the x
component needs to be the same on both sides of the interface. The z component in
the medium is therefore determined by

k
(
α2 + ζ2

)
= k (1 + χeff) . (4.10)

Consequently, the amplitude of the probe field reflected at an interface between a
dielectric and such a medium is specified by a reflection coefficient

r∗⊥ =
nb− ζ
nb+ ζ

=
nb−

√
1 + χeff − α2

nb+
√

1 + χeff − α2
=
nb−

√
χeff + ξ2

nb+
√
χeff + ξ2

, (4.11)

where we have used that α2 + ξ2 = 1. If we assume a low enough vapor density, such
that |χeff| � 1, we can develop eq. (4.11) to first order in χeff and get

r∗⊥ =
nb− ξ
nb+ ξ

− nbχeff

ξ(nb+ ξ)2
. (4.12)

By comparing eq. (4.9) with eq. (4.12) we see that the effective susceptibility is given
by

χeff = − 2iξk

ε0E2

∫ ∞
0

dzP (z) exp(iξkz) . (4.13)
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4.1.2 Dipole polarization of the atomic vapor

In order to evaluate eq. (4.13) we need to know the polarization density P (z) of the
atoms moving in the transmitted field. For this purpose we make the approximation,
that the field which is driving the atoms is the same as if the upper half space would
be vacuum. This means, that we neglect the field radiated by the atomic polarization
in the driving field, which is also known as the Born approximation [94] and is valid for
low vapor densities. In this case the driving field is determined by Fresnel’s equation
and is given by

E2(r) = ŷ
2nb

nb+ ξ
E1 exp[ik(αx+ ξz)] . (4.14)

For the derivation of the dipole polarization we assume the atomic vapor to consist of
two level atoms, as introduced in 1.1. The driving field induces a dipole polarization
which is determined by the expectation value of the atomic dipole moment

〈d〉 = tr(ρ · d)

= d12ρ21 + d21ρ12

= d12ρ̃21 exp(iωt) + d21ρ̃12 exp(−iωt) .

(4.15)

The positive frequency part of the dipole moment is therefore proportional to the
coherence ρ̃12 which is determined by the optical Bloch equations (1.16). The presence
of the interface and the fact that the atoms move imposes boundary conditions in the
Bloch equations: if an atom collides with the interface, we assume that it leaves the
interface in the ground state and its coherence is lost (ρ̃12 = 0). In the case of refraction
(α < 1) the Bloch equations can be solved in a closed form by the Laplace transform
of the density matrix [91]. When α > 1, the driving field is evanescent and decays
exponentially into the vapor. Hence, the Rabi frequency is a function of z:

Ω(z) = Ω0 exp(−ηkz) , (4.16)

with Ω0 = Ω(z = 0) = d12E2/~. If we assume the probe field to be weak enough such
that the response of the atoms is linear, we can write for the evolution of the coherence
to first order in the Rabi frequency

d

dt
ρ̃12(z(t), t) =

(
∂

∂t
+ vz

∂

∂z

)
ρ̃12 = −

[
Γ0

2
+ i(∆− αkvx)

]
ρ̃12 +

iΩ(z)

2
, (4.17)

where we have used that the Doppler shift only contributes in the x direction since
there is no phase variation of the driving field in y and z direction. In the steady state
eq. (4.17) reduces to a differential equation in z only and reads

vz
∂

∂z
ρ̃12(z) = −Cρ̃12(z) +

iΩ0

2
exp(−ηkz) , (4.18)
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where C = Γ0/2 + i(∆ − αkvx). The general solution of eq. (4.18) is given by (see
e.g. [95])

ρ̃12(z, vz) = e−C(z−z0)/vz

[
ρ̃12(z0) +

∫ z

z0

dz′ eC(z′−z0)/vz
iΩ0

2vz
e−ηkz

′
]

=
iΩ0

2

1

C − ηkvz

[
e−ηkz − e(C−ηkvz)

z0
vz
−Cz/vz

]
,

(4.19)

where z0 is the position at which the coherence vanishes, which depends on vz: if vz > 0,
the atom leaves the interface at z0 = 0 and ρ̃12(z0) = 0 due to the prior collision, which
leads to the solution

ρ̃12(z, vz > 0) =
iΩ0

2

e−ηkz − e−[Γ0/2+i(∆−αkvx)] z
vz

Γ0/2− ηkvz + i(∆− αkvx)
. (4.20)

If vz < 0, the atom arrives from infinity z0 = ∞ where it does not experience any
excitation, thus ρ̃12(z0) = 0 and the solution is given by

ρ̃12(z, vz < 0) =
iΩ0

2

e−ηkz

Γ0/2− ηkvz + i(∆− αkvx)
. (4.21)

The dipole polarization of the atomic vapor is then determined by an average over the
velocity distribution:

P (r) = Nd12 exp(iαkx− ηkz)ŷ

∫
dvFM(v) [Θ(vz)ρ̃12(z, vz > 0)

+Θ(−vz)ρ̃12(z, vz < 0)] ,

(4.22)

where N is the atom number density, Θ is the Heaviside step function and FM =
f(vx)f(vy)f(vz) is the Maxwell velocity distribution2 (see section 4.3.2).

Now we can evaluate the effective susceptibility (4.13) using eq. (4.22) and ξ = iη and
obtain

χeff =
2ηkNd2

12

ε0~Ω0

∫ ∞
0

dz exp(−ηkz)

∫
dvFM(v) [Θ(vz)ρ̃12(z, vz > 0)

+Θ(−vz)ρ̃12(z, vz < 0)] ,

(4.23)

After performing the integration over z in eq. (4.23), one finds that atoms moving away
from the interface give the same contribution as atoms moving towards the interface,

2Here we consider a steady state situation and integrate over the z direction. Therefore, we have to
use the Maxwell distribution instead of the flux distribution for vz (section 4.3.2).
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Figure 4.2: Effective susceptibility of a two level atom. a) Imaginary part of χeff. The blue
dashed line shows the effect of transit time broadening without Doppler broad-
ening (vx = 0), whereas the black line shows the full susceptibility, including
atoms with vx 6= 0. b) Real part of χeff.

which is a consequence of the weak probe approximation. The final result for the
complex effective susceptibility then reads:

χeff =
Nd2

12

ε0~

∫ ∞
−∞

dvx f(vx)

∫ ∞
0

dvz f(vz)
1

−(∆− αkvx)− i(Γ0/2 + ηkvz)
. (4.24)

Examining eq. (4.24) one finds that there are two broadening contributions to the line
width of χeff due to motional effects. First, the Doppler broadening is caused by the
Doppler shift in propagation direction, which is enhanced by a factor α > 1 compared
to free space propagation. In the planar waveguide picture (see Figure 4.1) the Doppler
broadening is therefore determined by the propagation constant βm = neff,mk = αk.

Furthermore, there is an additional Lorentzian broadening for each velocity class in
z direction caused by the limited transit time of the atoms traveling through the
exponentially decaying driving field. The factor ηk = γ−1 determines the inverse
1/e penetration depth of the evanescent wave.

Figure 4.2 shows the effective susceptibility of a two level atom as a function of detuning
∆. The imaginary part, shown in a), is responsible for the absorption of the evanescent
field by the atoms, as we will see later on. The blue dashed line was calculated with
vx = 0, hence no Doppler broadening, to point out the effect of transit time broadening.
The contribution of different velocity classes in z direction leads to a tapered (non-
Lorentzian) line shape. The black line shows the full susceptibility, including all velocity
classes in x and y direction. The real part, shown in b), describes the dispersive
properties of the atomic medium.
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4.1.3 Light propagation in an atomic cladding waveguide

The effective susceptibility eq. (4.24) describes a macroscopic medium which includes
the transient effects of the atom-light interaction in the case of total internal reflection.
Inside this medium, Maxwell’s equations must be extended by the material equation
D = εrε0E = (1 + χ)ε0E, where εr is the relative permitivity of the material. This
also affects the wave equation and results in a modified propagation velocity v =
c/
√

1 + χ for plane wave solutions. Therefore the (complex) refractive index of the
atomic medium can be defined as

na = c/v =
√

1 + χeff . (4.25)

This quantity can be used to describe the transmission of a waveguide immersed in
atomic vapor. Although χeff was derived for an interface which extends to infinity in
the x, y directions (analogous to a planar waveguide), the result can also be used for
rectangular waveguides to a good approximation.

In order to calculate χeff for a certain waveguide geometry, we start with a mode
analysis (COMSOL) of the waveguide in a vacuum cladding to obtain the mode profile
(and therefore the penetration depth γ, see Figure 2.1) as well as the propagation
constant β. These numbers are plugged into eq. (4.24), where αk = β and ηk = γ−1,
in order to calculate the effective susceptibility and therefore, using eq. (4.25) the
complex refractive index of the atomic medium. Next, the mode analysis is repeated,
but this time with a cladding material which has the refractive index na. The result is
a modified propagation constant βa, which determines the propagation of light in the
atomic cladding waveguide (eq. (2.1a)):

E(r, t) = Em(x, y) exp [i(βaz − ωt)]
= Em(x, y) exp [−Im(βa)z + i(Re(βa)z − ωt)] .

(4.26)

The imaginary part of βa represents damping along the z direction due to absorption
by the surrounding atoms, whereas the real part determines the phase change.

Figure 4.3 shows the propagation constant for a Si3N4 ridge waveguide with h =
180 nm and w = 1100 nm surrounded by a rubidium vapor with a density of N =
1.7× 1013 cm−3. Here, the total effective susceptibility is composed of the individual
hyperfine transitions of the Rb D2 line with the appropriate weightings. The propa-
gation constant was obtained by a frequency sweep with the detuning ∆ around the
center frequency of the D2 line.

Figure 4.3 a) shows the imaginary part of βRb, which results in an absorption spectrum
within the transmitted light. The line shape of the spectrum exhibits some distinct
deviation from the conventional Rb D2 spectrum in a vapor cell (indicated by the blue
line) due to the enhanced Doppler broadening and transit time broadening. Panel b)
shows the real part of βRb winding around the linear slope of the propagation constant
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Figure 4.3: Frequency dependent propagation constant βRb for a waveguide (h = 180 nm,
w = 1100 nm) surrounded by Rb vapor (N = 1.7× 1013 cm−3). a) The black
line shows the imaginary part of βRb, responsible for absorption. The blue line
indicates the absorption profile for the free space case (arb. amplitude). b) Real
part of βRb (black line). The blue dashed line shows Re(β) in absence of Rb.

in absence of Rb (blue dashed line). The presence of Re(βRb) becomes relevant in phase
sensitive devices, such as the Mach-Zehnder interferometer or ring resonators.

4.2 Atom-surface interactions

The spectroscopy of atoms via the evanescent part of a waveguide mode necessarily
involves substantial atom-surface interactions as the probing field amplitude decays
within ∼ λ/2π distance from the waveguide surface, where λ is the atomic transition
wavelength. These interactions give rise to a shift of the atomic energy levels. Further-
more, the presence of a nearby objects alters the photonic environment of the atom,
thus leading to a modified spontaneous emission rate. The interaction between an atom
and a macroscopic body is called Casimir–Polder (CP) interaction3 [96].

To understand the origin of the CP interaction we consider the situation depicted in
Figure 4.4. A neutral atom is located at a distance z in front of a dielectric or conduct-
ing surface. We assume the atom to be in its ground state and the electromagnetic field
to be in its zero-point energy state. Hence, the atomic polarization and the electromag-
netic field vanish on average. However, the Heisenberg uncertainty principle states that
both the atomic polarization and the electromagnetic field constantly fluctuate. The
atom’s fluctuating dipole moment induces an image dipole behind the surface. This
image dipole has an attractive interaction with the atomic dipole, thus causing a red

3We are following the naming convention of [96]. Often, the non-retarded interaction regime is called
van der Waals regime and CP is used for the retarded case, while both terms are used to describe
atom-atom interactions as well as atom-body interactions.
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Figure 4.4: Illustration of the atom-surface interaction. An induced atomic dipole at dis-
tance z in front of a surface generates an image dipole inside the medium which
in turn acts on the atomic dipole via an electromagnetic field.

shift of the atomic transition frequencies4. The CP potential is commonly described
by the power law

UCP(z) = −Cα
zα

, (4.27)

where Cα is the coupling coefficient depending on the atomic polarizability and the di-
electric permittivity of the surface which determines the strength of the CP interaction
and α is an exponent which gradually varies between approximately 3 and 4 depending
on the distance z. In the non-retarded regime (z < λ/2π) the interaction between a
fluctuating dipole and its image dipole can be calculated using classical electrostatics
and was found by Lennard-Jones to take the form of eq. (4.27) with α = 3 [98]. In
the retarded regime (z > λ/2π) the finite speed of photons leads to a reduction of the
interaction strength as was found by Casimir and Polder, such that α = 4 in eq. (4.27)
[99].

The calculation of CP potentials is commonly performed in the framework of macro-
scopic quantum electrodynamics (QED) which we will not elaborate on in this thesis.
A detailed overview of this concept and practical instructions can be found, for exam-
ple, in references [96, 100]. In short, the key is to find the classical Green’s tensor of
the electromagnetic field in the presence of dielectric bodies whose material properties
are determined by dielectric permittivities ε(ω). The CP potential of an atomic state
|j〉 with corresponding polarizability αj(ω) is then calculated via perturbation theory
as the energy shift due to the coupling between the atom and the body-assisted field.

4.2.1 Casimir–Polder potential near a waveguide

Atoms in the proximity of a waveguide are exposed to different sorts of dielectric mate-
rials. For example, an atom above the top side of a waveguide “sees” a material stack

4Note, that due to the dispersive properties of a real surface it may occur that an atom resonantly
couples to electromagnetic modes of the surface, which can lead to a repulsive interaction and
therefore cause a blue shift [97].
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composed of Al2O3, Si3N4 and SiO2. A first approach to calculate the CP potential
is to consider a planar multilayer system of infinite extension for which analytical ex-
pressions for the Green’s tensor are known [96, 101]. However, the dimensions of the
structures typically vary on a sub-wavelength scale, thus the infinite plane approach
is not suitable over the entire geometry. In such a case one has to apply numerical
techniques like the discrete dipole approximation (DDA) [102]. The basic idea is to
approximate an arbitrary geometry by a set of discrete cells, each of them acting as a
point dipole. These dipoles interact with the incident field from a fluctuating atomic
dipole and also with each other. The scattering quantities required to calculate the
atom-surface interaction then can be obtained from the individual polarizations.

In order to obtain the CP shift ∆CP of the Rb 52P3/2 → 52S1/2 transition line, the
CP potentials of the individual 52P3/2 and 52S1/2 levels are calculated and subtracted
from each other. While the CP potential of the ground state involves emission and
reabsorption of virtual photons from a continuous (non-resonant) frequency range, an
atom in an excited state can emit real photons of discrete (resonant)frequency when
going through a transition to a lower lying state. Therefore, the potential of an excited
state is the sum of a non-resonant part and a resonant part, whereas the ground
state potential is of the non-resonant form [100]. The consequence of the CP shift in
our experiment is an overall redshift of the line shape as well as an asymmetric red
tail due to atoms at different distances to the surface obtaining different line shifts.
Exemplary DDA result5 for ∆CP are shown in Figure 4.5 a) for a 75 nm Si3N4 slot
waveguide (see chapter 7 for details on the waveguide structure). In the vicinity of the
surface the transition frequency is red shifted and |∆CP| rapidly falls off with increasing
distance. The emission of real photons from the excited state gives rise to an oscillating
contribution in the resonant potential, leading to a zero crossing of the line shift at
larger distance (dark blue area and white dashed line). This can be understood as an
interference effect between the emitted photon and the photon re-emitted by the image
dipole.

Figures. 4.5 b) and c) serve to analyze the differences between the infinite plane ap-
proach and the DDA method for the calculation of ∆CP around a waveguide. Fig-
ure 4.5 b) shows a detail of the waveguide cross section as indicated by the red dashed
box in Figure 4.5 a). Here, the solid black lines are equipotential lines of ∆CP cal-
culated with the DDA method (∆DAA), whereas the dashed lines are calculated using
the infinite plane approach (∆p) with the corresponding material stacks below the re-
spective surfaces. This plot shows clearly the importance of taking into account the
real geometry in the domains around any edges. On the other hand, there are regions
with negligible deviation between the two methods above plane surfaces with larger
extent, except for atoms being in immediate proximity to the surface. This discrep-
ancy can be attributed to discretization errors due to the finite cell size of 2.5 nm in

5The DDA calculations presented in this work have been performed by Helge Dobbertin in the group
of Prof. Stefan Scheel at the Uni Rostock.
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Figure 4.5: Casimir–Polder shift in the vicinity of a 75 nm slot waveguide. a) Spatial de-
pendence of ∆CP calculated with the DDA approach. The red dashed box and
green dashed line indicate the regions of panel b) and c), respectively. b) Com-
parison between DDA (∆DAA) and infinite plane results (∆p). Equipotential
lines are shown for ∆DAA (solid) and ∆p (dashed) where the given values are
in MHz. Encoded in color is the relative difference between the two results. c)
Line shift above the top side of the waveguide (left ordinate) calculated with
the DDA and infinite plane approach. The material order in this case is 7 nm
Al2O3 (protection coating), 175 nm Si3N4 (core material) and infinitely thick
SiO2 (substrate). The gray area shows the normalized electric field of the fun-
damental waveguide mode (right ordinate). DDA calculations performed by
H. Dobbertin.
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the DDA simulation. However, at such small atom-surface distances the macroscopic
assumptions behind the presented theory become questionable anyway. To examine
the two methods more closely, Figure 4.5 c) shows the CP shift above the top side
of the waveguide along the green dashed line in Figure 4.5 a). For distances between
10 nm and 100 nm both results agree well. Atoms in this region also contribute the
largest part to the spectroscopy signal since for greater distances the evanescent probe
field is already significantly damped as indicated by the gray area, whereas for shorter
distances the CP interaction shifts the atoms way out of resonance.

Casimir–Polder force

The CP potentials do not only influence the atomic level structure but also lead to an
electromagnetic force acting on a neutral atom, which is given by

F (r) = −∇U j
CP(r) . (4.28)

Note, that an atom in its ground state experiences a different force than an atom in its
excited state determined by the particular potential U g

CP and U e
CP, respectively. Close

to the waveguide the CP force is attractive in both cases and accelerates the atom
towards the surface.

Under the conditions of our experiments the atoms already exhibit a relatively large
initial velocity (〈v〉 ≈ 350 µm µs−1 for Rb at T = 150 ◦C) such that the atomic tra-
jectories are affected by the CP force only within a few nanometers distance to the
surface. The influence of the CP force on the local atomic density can be estimated
using [103]

N (z) =
N (∞)

kBT

∫ ∞
0

e−E/kBT

√
E

E − U j
CP(z)

dE , (4.29)

where E is the energy of the atom. For T = 150 ◦C and considering the potential shown
in Figure 4.5 c), the local density at a distance of 4 nm to the surface is estimated
to be N (4 nm) > 0.99 ×N (∞). We have obtained a similar result from Monte Carlo
simulations of atom trajectories (see section 4.3). Consequently, the CP force can be
neglected in the temperature regime of the experiments presented in this work.

4.2.2 Spontaneous emission rate near a waveguide

The spontaneous emission of a photon from a quantum emitter like an excited atom
is not a property of the emitter (atom) itself, but depends on its environment, as was
first pointed out by Purcell [104]. More specifically, the emission rate is proportional
to the strength of the vacuum electric field fluctuations at the position of the atom
[105]. The presence of a dielectric body modifies the magnitude and distribution of
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these vacuum field fluctuations, which results in an altered spontaneous emission rate
relative to the free space value Γ0. This effect becomes significant if the atom is located
within a distance d ≤ λ/2π to the dielectric surface due to the presence of evanescent
waves.

The magnitude of the vacuum fluctuations at the atom’s position is given by the
imaginary part of the aforementioned Green’s tensor [106], which is also a measure for
the local density of states (LDOS) [107]. An exemplary result obtained with the DDA
approach for the modified decay rate Γ of the Rb 5P3/2 state in the vicinity of a 75 nm
Si3N4 slot waveguide is shown in Figure 4.6 a). Here, the calculated total emission rate
Γ = (2/3)Γ‖ + (1/3)Γ⊥ is averaged over all dipole orientations. Close to the surface, Γ
shows a marked increase due to the presence of guided modes and substrate radiation
modes. A special feature of slot waveguides is the strong electric field confinement in
the low index region inside the slot which gives rise to an increased LDOS and hence
a particularly high spontaneous emission rate. Far from the material boundaries Γ
approaches the free space value Γ0, as expected.

Emission into guided modes

An excited atom close to a dielectric structure can decay into either radiation or guided
modes [108], where the radiation modes can be divided into substrate radiation modes
which are evanescent in the vacuum region and fully radiative modes which leave the
region as outgoing plane waves. To obtain the emission rate into a certain waveguide
mode, the Green’s tensor can be expanded into a corresponding basis [109]. In a
waveguide with low losses the emission rate of a randomly oriented dipole into mode
m takes the form [110]

Γm(x, y) =
πc3ε0|Em(x, y)|2

2ω2Pm
Γ0 , (4.30)

where Em is the electric field distribution of the mode and Pm = 1
2

∫
(Em ×Hm) dA

is the corresponding mode power, which can both be conveniently obtained from a
numerical mode solver, such as COMSOL. The sum of emission rates into guided modes
ΓM =

∑
m Γm of the 75 nm Si3N4 slot waveguide is shown in Figure 4.6 b). Inside the

slot up to 40 % of the atomic emission is channeled into guided modes, whereof the
dominant part is emitted into the fundamental mode with the rate κ = ΓTE0, as shown
in Figure 4.6 c).

The emission of a single photon into a well defined mode is an important goal in
quantum-optics experiments. The efficiency with which an emitter couples to a specific
mode is commonly described by the parameter β = κ/Γ. In the presented example
of a slot waveguide β can reach decent values, even without optical feedback from a
cavity. However, if the emitter is an atom within a thermal gas, the main dissipation
mechanism is set by the atomic motion (non-radiative decay).

48



4.2. Atom-surface interactions

Figure 4.6: Spatial dependence of the emission rate of the Rb 5P3/2 state close to a 75 nm
Si3N4 slot waveguide. a) Total spontaneous emission rate Γ normalized by the
free space value Γ0. b) Fraction of emitted energy coupled into guided modes
of the waveguide. c) Fraction of emitted energy into the fundamental TE0
mode. Note that losses due to atomic motion are not considered here. DDA
calculations performed by H. Dobbertin.
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4.3 Monte Carlo simulation

The effective susceptibility method specified in an earlier section has its limitations
and cannot account for non-trivial spatial dependencies, for example, the actual mode
profile or waveguide geometry. If these factors become important, it is preferable to
use the Monte Carlo type simulation described in the following in order to model the
interaction between an atomic vapor and a waveguide mode.

In this approach we trace individual atoms moving around the waveguide and calculate
the evolution of their density matrix. The arguments entering the optical Bloch equa-
tions are updated according to the momentary positions and velocities of the atoms.
Thus, the Rabi frequency and the environment assisted decay rate are determined by
the position of the atom. Furthermore, the detuning is given by the distance between
the atom and any surface of the geometry due to Casimir–Polder interactions, as well
as the atom’s velocity because of the Doppler shift. Transient effects are inherently
included in this simulation, since, on the one hand, the actual trajectory of an atom
through the evanescent field is considered, and on the other hand, atom-surface colli-
sions are handled with the corresponding effects on the density matrix.

4.3.1 General procedure

The simulation volume is bounded by a rectangular box around the waveguide cross-
section with dimensions wx ×wy ×wz, where in most cases wx = 2 µm and wy = wz =
1 µm. The following description refers to two-level atoms but the general procedure can
also be adapted to multi-level atoms. For each atom, the time-dependent optical Bloch
equations (1.16) are solved numerically with a fourth-order Runge–Kutta method [111]
for a set of detunings ∆. In the initialization step, N atoms are randomly placed within
the simulation box and are given random velocities sampled from a Maxwell-Boltzmann
distribution, see section 4.3.2. Then time advances gradually and in each time step the
position and the density matrix of every atom is re-calculated. The individual Rabi
frequencies Ω(r), total decay rates Γ(r), decay rates into the fundamental mode κ(r)
and effective detunings ∆eff(r, vz) = ∆−∆CP(r)− βvz which enter the optical Bloch
equations are updated with respect to the momentary position and velocity. Here, ∆CP

is a shift of the resonance frequency due to the Casimir–Polder (CP) potential Um(r),
see section 4.2, and βvz is the Doppler shift, where β is the propagation constant of the
waveguide mode. A particular waveguide geometry is implemented with the original
dimensions and the corresponding modes are used to calculate the Rabi frequencies and
decay rates into these modes. Whenever an atom collides with the waveguide surface or
hits the transversal boundary of the simulation box, we assume that it gets deexcited
and its coherences are set to zero. In the subsequent time step the atom leaves the
surface in its ground state with a new direction and speed according to Knudsen’s
cosine law [112] (see section 4.3.2). In reality, the atom might stick to the surface for a
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4.3. Monte Carlo simulation

certain time, however, adsorption and desorption rates are identical after a dynamical
equilibrium has been reached for a given temperature, so it is reasonable to assume
that the atom leaves the surface instantly after a collision. Most of the experiments in
this work have been conducted in a density regime where the mean free path is longer
than the size of the cell6 and we can therefore neglect collisions between atoms. For the
longitudinal direction we use periodic boundary conditions, such that an atom which
passes though one side of the box enters on the opposite side with the same velocity
and density matrix. This is justified as long as the length of the waveguide is much
larger than its transversal extent and the system can be assumed to be invariant along
the longitudinal direction.

We run the simulations for a certain time T = nt×∆t (usually a few hundred nanosec-
onds up to microseconds) with nt time steps and discard the first few nanoseconds
which are required to reach a steady state. It is favorable to run multiple indepen-
dent realizations for the same parameters in parallel, each with a fraction of the total
atom number, and afterwards average over these realizations to shorten the overall
computation time.

4.3.2 Velocity distributions

In thermodynamic equilibrium the instantaneous velocity distribution of non-interacting
atoms inside a given volume is determined by the Maxwell distribution [113]. The prob-
ability of finding an atom with velocity between vi and vi + dvi, (i = x, y, z) is

FM(v)dv = f(vx)f(vy)f(vz) dvx dvy dvz , (4.31)

where the probability distribution for each independent direction is given by

f(vi) =
1

σ
√

2π
exp

(
− v2

i

2σ2

)
, (4.32)

where σ =
√
kBT/m is the variance of the distribution, which depends on the mass

of the atom m and the product of Boltzmann’s constant kB and the temperature T .
Transforming eq. (4.31) into spherical coordinates, we obtain the distribution function
for atoms with speeds (v = |v|) between v and v + dv:

fs(v) = 4π

(
1

2πσ

)3/2

v2 exp

(
− v2

2σ2

)
. (4.33)

For an atom leaving a surface after a collision the situation is different. The probability
of an atom leaving (or crossing) a surface during a unit interval of time is linearly
proportional to the velocity component vn in the direction normal to the surface:

g(vn) = Cvnf(v) , (4.34)

6The only exception are the measurements described in section 7.3.
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Chapter 4. Optical waveguide spectroscopy

Figure 4.7: Distribution of velocity components vi, (i = x, y, z) inside the simulation volume
for different cases of desorption. The black line shows the calculated probability
density according to eq. (4.32). a) Atoms obeying Knudsen’s cosine law dur-
ing desorption. b) Desorption with solely Maxwellian velocity components. c)
Directed desorption ∝ cos10 θ.

where C is a proportionality constant which has to be determined such that the prob-
ability distribution is normalized:∫ ∞

0

dvn Cvnf(vn) = 1 → C =

√
2π

σ
. (4.35)

Consequently, the resulting expression for the normal velocity distribution is given by

g(vn) =
1

σ2
vn exp

(
− v2

n

2σ2

)
. (4.36)

This type of function is also known as the probability density function of the Rayleigh
distribution [114]. The relation to Knudsen’s cosine law [112] becomes clear, as vn is
proportional to the cosine of the angle between the surface normal and the velocity
vector: vn = v · n̂ = v cos^(v, n̂).

The distribution of the tangential velocity components is of the volume type eq. (4.32),
so that the distribution function for an atom leaving (or striking) a surface has the
form

FC(v) = f(vt1)f(vt2)g(vn) , (4.37)

where vt1, vt2 are the tangential velocity components. Equation (4.37) is also known as
the “flux” distribution [115].

Figure 4.7 illustrates the importance of choosing the proper velocity for an atom af-
ter a surface collision. Here we show the distribution of the velocity components of
10 000 atoms inside the simulation volume after 100 ns simulation time for different
desorption cases: one according to the flux distribution eq. (4.37) with g(vn) given
by eq. (4.36) (cos θ), another one with all three velocity components sampled from
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4.3. Monte Carlo simulation

the Maxwell distribution, and one with a more directed distribution (cos10 θ). It can
be seen, that only atoms which follow the cosine law during desorption reproduce a
Maxwellian velocity distribution inside the volume. Several experiments verified the
cosine law for atoms desorbing from a surface using evanescent wave spectroscopy in
a non-equilibrium situation [116, 117] and by scanning a probe laser beam along the
cross section of a vapor cell [118]. Moreover, the validity of the cosine law for atom-
surface reflections was mathematically proven in [119]. These findings do, however,
not exclude desorption distributions other than the cosine type. Only the sum of all
desorption contributions needs to be cosine in an equilibrium [115]. In fact, there
has been evidence for non-cosine distribution in many desorption experiments, see e.g.
[120–122]. Hence, one would have to take into account the actual microscopic mech-
anisms behind the desorption from individual surfaces for a more realistic modeling
of the experiment. For lack of knowledge about the microscopic surface structure and
due to limited computational resources, we set up the simulation such that we obtain
an equilibrium distribution within the simulation volume.

4.3.3 Retrieving spectroscopic quantities

The data obtained in an atomic cladding waveguide experiment is typically a trans-
mission spectrum. In order to compare the simulations with the experimental data,
one needs to find the fraction of the input power missing in the transmitted light for a
certain detuning. Hence we have to determine how much light is scattered by the atoms
into free space or into the waveguide mode in both forward and backward direction.
Also, we need to register the accumulated excited-state fraction of the atoms at the
instance they collide with a surface or the transversal simulation boundary7. We write
for the total scattered power inside the simulation volume

Psc(∆) = ~ω0

∑
∆t

N∑
i=1

[(
Γ(ri, t)−

κ(ri, t)

2

)
× ρ22(ri, t,∆eff)

nt
+
ρcol

22 (ri, t,∆eff)

T

]
,

(4.38)

where ρ22 denotes the population probability8 of an atom inside the simulation volume
and ρcol

22 is the population probability of an atom which undergoes a surface collision
at time step t. The inner sum runs over all atoms inside the simulation volume and
the outer sum takes care of time averaging. The first term within the square brackets
accounts for the scattered power due to the decay of the excited state which is deter-
mined by Γ. A fraction of the atoms decays into the forward propagating fundamental

7We do not have to account for collisions with the longitudinal boundaries, as we apply periodic
boundary conditions in this direction.

8Here, we omit the tilde which indicates the rotating wave approximation as introduced in section 1.1.
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Figure 4.8: Results of a Monte Carlo simulation for a ridge waveguide. a) Evolution of the
signal as a function of detuning. The dashed line indicates the point in time,
after which integration of the signal begins. b) Scattered power normalized to
the input power (black dots) with the corresponding pseudo Voigt fit (red line).

mode with a rate κ/2 and has to be subtracted from the total scattered power as this
portion is added to the observed transmission signal. Excitation losses due to surface
collisions are included via the second term.

Figure 4.8 shows the time evolution of the simulation signal as well as the final steady
state result for a ridge waveguide (w = 900 nm, h = 180 nm) with N = 2000 atoms,
171 detuning steps and an integration time of T = 300 ns. A suitable way to extract
spectroscopic quantities, such as line width, line shift and amplitude of the signal, is
to fit an asymmetric pseudo Voigt function9 to Psc(∆), indicated by the red line in
Figure 4.8 b).

4.3.4 Comparison to the effective susceptibility method

It is instructive to compare the results obtained with the Monte Carlo simulations
(MCS) to the effective susceptibility method (ESM) described in section 4.1. For this
purpose we consider a ridge waveguide (w = 1100 nm, h = 180 nm) with thermal
atoms at 150 ◦C. Since atom-surface interactions are not included in the ESM, we have
ignored them in the MCS as well for this discussion.

First, we look at transit time effects, as they should be accurately accounted for in
the MCS. The results for both methods with the Doppler effect disabled are shown
in Figure 4.9 a). The tapered line shape with a broad pedestal is obtained by either

9See Appendix B for details.
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Figure 4.9: Comparison between the Monte Carlo and the effective susceptibility methods.
The signals are Psc for the MCS and Im(χeff) for the ESM, which are both
normalized to their maximum value for better comparison. a) Transit time
broadened features (Doppler effect disabled). b) Complete signals, including
the Doppler effect.

method and is very similar, except for the absolute width of the feature, which is quite
narrow in the ESM case (2π × 50 MHz FWHM vs. 2π × 260 MHz FWHM). This can
be understood from the fact the ESM only accounts for one transit direction, namely
along the normal of the interface between dielectric and atomic vapor, whereas the MCS
includes realizations of many trajectories, some of which can intersect the evanescent
field on very short paths.

Figure 4.9 b) shows the full results, including all velocity components. The influence
of the Doppler effect is implemented in both methods via an additional detuning −βv,
with the difference that in the MCS the velocity is randomly sampled from the Maxwell
distribution, whereas in the ESM the susceptibility is integrated over all velocity classes
with a weighting according to the Maxwell distribution. An agreement in the Doppler
width is therefore expected, and as it contributes the major part of the line width, the
relative difference is not as significant as in Figure 4.9 a). Applying a Voigt fit to both
signals reveals a total line width of 2π × 1190 MHz for the ESM and 2π × 1260 MHz
for the MCS.

4.4 Waveguide transmission measurement

For a characterization of the spectroscopy with integrated structures, we investigated
the most elementary device, shown in Figure 4.10 a). It consists of a ridge waveguide
(w = 900 nm, h = 180 nm) with grating couplers at either end. The Si3N4 structures
were written into positive photoresist, which is why most of the chip area is covered by
Si3N4 and the structures are actually defined by removing material around their edges.
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Figure 4.10: Transmission through an atomic cladding waveguide. a) Microscopy image
of the waveguide structure. b) Transmission spectrum of the waveguide at a
density of N ≈ 8.5× 1013 cm−3. The trace is normalized to the off-resonant
transmission level. The red line is a fit of the model to the data (black line).
The residuals (Res.) underneath show the difference between data and fit.

The whole device is covered by a HSQ layer, except for a 260 µm long section within
which the waveguide is exposed to the atomic vapor (interaction region).

A transmission spectrum of the device is shown in Figure 4.10 b) for a frequency scan
over the Rb D2 line at a density of N ≈ 8.5× 1013 cm−3. The laser which is sent to
the chip has a power of 20 nW, which is reduced by few orders of magnitude inside the
waveguide core due to coupling losses. The corresponding intensity is therefore well
below the saturation intensity which has been determined to be reached at an input
power of ∼ 3 µW in a power dependent measurement series.

Also shown in Figure 4.10 b) is a fit of a transmission function for the Rb D2 line, based
on the asymmetric Voigt function (see Appendix B). The residuals below indicate that
this model fits the data very well. From the fit we determine the line width to be
Γtot/2π = 1302 ± 2 MHz. Assuming a Doppler width of ΓD/2π = kneffσ

√
8 ln(2) =

1025.9 MHz, we can estimate the transit time broadening to be10 ΓTT/2π ≈ 474 MHz.

The optical depth (OD) for the Rb85 5S1/2, F= 3 → 5P3/2 transition is ∼ 0.6 for the
given density and waveguide length. For comparison, a laser beam propagating through
a cell with a thickness that matches the length of the waveguide and contains Rb vapor
at the same density would experience an OD of 13.5, assuming the line widths are the
same as above. Taking into account that the fraction of optical power in the cladding
is η ≈ 8.8 %, we get an effective OD of 1.2, which is in the same order as the value

10The Lorentzian FWHM ΓL can be approximately calculated from the Voigt FWHM ΓV and the
Gaussian FWHM ΓG by [123]: ΓL = 7.7258ΓV − 2.8903

√
5.415Γ2

V + 1.731014Γ2
G. However, the

transit time broadened line shape is not exactly Lorentzian, as we have seen above and the result
should only be taken as an estimate.

56



4.4. Waveguide transmission measurement

determined from the waveguide transmission spectrum. The discrepancy is most likely
due to the deviation of the actual density from the density estimated from the reservoir
temperature11.

Comparison to the effective susceptibility model

The data from the measurement above is well suited to test the effective susceptibility
model from section 4.1, due to the comparatively simple waveguide geometry in this
experiment.

After calculating the propagation constant βRb for the corresponding experimental pa-
rameters, the transmission spectrum of the waveguide can be obtained by the following
equation:

T = exp [−2Im(βRb)l] , (4.39)

where l is the length of the interaction region. Figure 4.11 shows the result of eq. (4.39)
together with the experimental data. The agreement is remarkably good, given that the
position of the center frequency is the only free fit parameter, as frequency shifts due
to atom surface interactions are not included in this model. From this fit we determine
that the waveguide spectrum is shifted by −2π × 64 MHz against the spectrum of a
reference cell. The slight overestimation of the optical depth is in accordance with
the comparison above and suggests a lower density in the cell as expected from the
adjusted reservoir temperature.

Based on the satisfactory prediction of the OD and line width of the calculated spec-
trum, this model seems to be adequate for describing the interaction between an atomic
vapor and the evanescent field of a simple ridge waveguide.

Monte Carlo simulation results

Now we also want to use the data from this experiment to examine the quality of the
Monte Carlo simulation introduced in section 4.3. For the calculation of the atom-
surface potentials, the C3 coefficients derived for an atom in front of an infinite surface
have been used in this case. Figure 4.11 b) shows the result of a simulation run with
N = 2000 atoms, 171 detuning steps and an integration time of T = 300 ns.

From a fit to the resulting line shape, we infer a line width of Γtot/2π = 1346 ±
12 MHz and a line shift of ∆0/2π = 75 ± 4 MHz. Both values are reasonably close
to experimentally measured values, with 3 % deviation in the line width and 15.6 %
deviation in the line shift. The increased discrepancy in the line shift is expected, since
the atom-surface potentials are included under the approximation described earlier.

11In this case, the density would correspond to a temperature of 138 ◦C instead of the 150 ◦C set point
for the values to agree.
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Figure 4.11: Results of the two models for the waveguide transmission. a) Transmission
spectrum obtained with the effective susceptibility method (blue line) together
with the experimental data (black line) with no free parameters, except the
frequency center. The residuals (Res.) underneath show the difference between
data and model. b) Normalized scattered power obtained from the Monte
Carlo simulation (black line) and fit (red line).

The exaggerated atom-surface interaction also affects the line width indirectly, as the
resulting distribution of line shifts leads to a broadening of the spectrum. If we repeat
the simulation run with the atoms-surface interaction deactivated, we obtain a line
width of Γtot/2π = 1310 ± 7 MHz, which is remarkably close to the experimental
value.

4.5 Losses due to alkali metal exposure

It has become apparent that exposing the photonic structures to a saturated alkali
metal vapor leads to increased transmission losses of the devices. For a regular wave-
guide, this simply leads to a reduced output power. However, for the ring resonators
the additional losses cause a broadening of the resonances and eventually renders them
unobservable. We have witnessed this effect to happen over the course of a few min-
utes during the initial heat up of the reservoir, immediately after the cell was filled
with rubidium. In order to keep the alkali exposure to a minimum at times when no
measurement was run, we kept the cell at high temperature12 while having the reser-
voir heater switched off. Even with these “recovery cycles” the overall transmission
dropped irreversibly over time, hence the useable lifetime of the chips was limited.

To quantify the additional losses we introduce the attenuation coefficient αRb, such

12Typically, the cell temperature was set to 150 ◦C to 180 ◦C for this process, which caused the
reservoir to be at ∼ 50 ◦C due to thermal coupling.
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Chip Device Rb exposure time (days) αRb (µm−1)

NGE06 Short waveguide D3 48 3.6× 10−3

NGJ16 EIT AA4 18 3.4× 10−3

NGJ16 EIT BB4 13 1.9× 10−3

NGJ21 Short waveguide A1 11 3.5× 10−3

NGJ21 Short waveguide A2 11 8.7× 10−4

NGJ21 Short waveguide A2 27 1.81× 10−2

Table 4.1: Attenuation coefficients extracted for several devices by comparing their trans-
mission properties before and after exposing the chip to rubidium for several
days.

that the total transmission of a waveguide with an interaction length l is given by

T = T0 × e−αRbl , (4.40)

where T0 is the original transmission determined by the coupling losses and intrinsic
losses of the device. Some devices have been characterized before filling the cell with
Rb, which gives us a knowledge of T0. Therefore, we can extract αRb using eq. (4.40),
the results being listed in table 4.1. The Rb exposure time is the total time after filling
the cell including several measurement- and recovery-cycles.

The actual mechanism of the alkali atom induced losses is unknown up to now, however,
one reasonable explanation is the formation of a thin metallic layer or clusters on
the waveguide surface. It is known, and has also been observed in our experiments,
that the walls of vapor cells (usually made of SiO2) undergo a curing process after
filling with alkali metal for the first time until a saturated vapor pressure is achieved
[124, 125]. According to [126, 127], the first layer of adsorbed alkalis on oxide surfaces is
relatively strong bonded and the binding is assumed to have ionic character, whereas
in excess of one monolayer (ML), the alkalis form metallic clusters which desorb at
relatively low temperatures. To desorb the initially adsorbed atoms requires much
higher temperatures (& 600 K for Na on SiO2 [126]). Although our waveguide core
material is silicon nitride instead of an oxide, the adsorption mechanism described
before should be similar. This is due to the fact that Si3N4 is thermodynamically
unstable in air and oxidizes, such that a thin film of SiO2 forms on the waveguide
surface [128–130].

The optical properties of a metal can be explained by a plasma model13, where colli-
sions of the free electrons with the ion cores result in a damping of the electromagnet-
ically driven electron oscillation [131]. This damping gives rise to a complex dielectric

13For alkali metals, this model is valid for frequencies up to the ultraviolet [131].
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Figure 4.12: Simulated attenuation coefficient of a Rb covered waveguide. a) 2D
model with a large range of layer thicknesses. The red curve is a fit of
− log [αmax + exp(−bdRb)], where αmax and b are material dependent parame-
ters. The gray vertical line indicates the skin depth of Rb at λ = 780 nm. b)
Results of the 3D model with fit.

function of the metal, the imaginary part of which is causing absorption of the electro-
magnetic field. In order to estimate the losses caused by a thin Rb layer we performed
simulations within COMSOL, where we applied a metallic layer to the waveguide sur-
face. This layer has been implemented via a transition boundary condition with the
dielectric function of Rb taken from [125]. Because the implementation of a 3D model
with a very thin conductive layer is computationally demanding, we started with a 2D
model to obtain the relevant effects caused by adsorbed Rb. Figure 4.12 a) shows the
attenuation coefficient αRb extracted from the simulated transmission of a Si3N4 wave-
guide as a function of Rb layer thickness. After a rapid increase the losses saturate at
αRb ≈ 0.11 µm−1, since the thickness of the metal layer which is “seen” by the wave-
guide mode is limited by the skin depth14, which is ∼ 31 nm at λ = 780 nm (calculated
using the values from [125]).

For a better comparison of the experimentally observed losses to this model, we also
performed full 3D simulations based on a ridge waveguide (w = 800 nm, h = 175 nm),
where the thickness of the Rb layer was limited due to the previously mentioned com-
putational effort. The results are shown in Figure 4.12 b) and are in the same range
as the values listed in table 4.1. From this, we can very roughly estimate the average
thickness of the metallic layer to be ∼ 1 nm, corresponding to ∼ 2.3 monolayers15 of
rubidium. In [124] it has been found, that a cured vapor cell made of Pyrex glass has
about 6-7 ML of Rb on its walls, which is in the same order.

Of course, this estimation should be taken with caution, since we have assumed a

14The skin depth is the distance into the metal at which the intensity amplitude of an electromagnetic
field is reduced by 1/e.

15Assuming 1 ML = 2× rRb, where rRb = 220 pm is the covalent radius of Rb [132].
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Compound ∆Gf 0 (kJ mol−1) Compound ∆Gf 0 (kJ mol−1)

Cs2O -308.2 K2O -240.6

Al2O3 -1582.3 Si3N4 -647

SiO2 -856.4 MgO - 568.9

TiO2 -883.3

Table 4.2: Gibbs free energy of formation ∆Gf0 for a few alkali metal oxides and relevant
compounds for the fabrication of photonic structures and protection coatings.
Values taken from [135].

continuous layer of Rb (instead of clusters [133, 134]) with the same properties as the
bulk material. The roles of surface defects, edges and corners have not been taken into
account. Also, we only considered an average value of the few available attenuation
coefficients listed in table 4.1. The large variation of these values may be attributed
to different surface conditions of the samples (surface texture and purity, degree of
oxidization, defects, etc.). Nevertheless, the considerations made above support our
hypothesis of metallic rubidium on the waveguide surface being the reason for the
witnessed transmission losses. A further evidence is the sudden increase of transmission
that we observed after venting the vacuum chamber of the early experiments16. During
the venting the adsorbed alkali reacts with the oxygen and water vapor contained in
the ambient environment and therefore is no longer metallic.

4.5.1 Protection coating

Since the deterioration of the waveguide performance seems to depend on its surface
properties, it might be beneficial to coat the waveguides with an extra layer of a
different material which does not substantially affect the mode characteristics. It has
been reported that aluminum oxide (Al2O3) is a suitable candidate for a protection
coating in an alkali environment and can increase the resistance of vapor cells by two
orders of magnitude [136, 137]. There are two possible mechanisms assumed to play
a role in the interaction between SiO2 and alkali metals: the diffusion into the bulk
material [138] and the reduction of SiO2 by the alkali [136]. Both possibilities remain
valid for an Al2O3 coating, but the latter should be less likely since the absolute value
of the Gibbs free energy for the formation of Al2O3 is much higher than that of SiO2,
whereas both values are higher than for Cs2O 17 (see table 4.2).

16In one case we quantified the transmission after venting to be ∼ 120 times the transmission under
vacuum and Rb atmosphere.

17We take Cs2O as a reference instead of Rb2O since the Gibbs energy of formation for the first one
is available.
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We have tried Al2O3 protection coatings on the last two chip generations with a thick-
ness of 9 nm. According to [136], a 6 nm thick layer of Al2O3 should be sufficient for a
good protection. The layer was grown by atomic layer deposition (ALD), a technique
allowing for a conformal and pinhole-free coating of the nanostructures. A further
advantage of the ALD coating is the reduction of scattering losses due to smoothen-
ing of the waveguide surface [139]. With this coating it was possible to observe the
resonances of the ring resonators in combination with rubidium vapor, which was not
the case for the bare Si3N4 devices. However, the line width of the resonances was still
increased by a factor of around five compared to the resonances of an unexposed chip.
The ring resonances remained observable after four months, although the round trip
transmission factor seemed to be slightly decreased with respect to the freshly filled
cell (τ ≈ 0.7 as to τ ≈ 0.73).

Our findings suggest that the deposition of a 9 nm thick Al2O3 protection layer indeed
reduces the degradation of the photonic structures in an alkali vapor environment.
However, this method is still not sufficient to avoid alkali induced losses completely
and further studies are required to clarify the underlying mechanisms and to develop
a better protection strategy.
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5 Integrated Mach-Zehnder
interferometer

The Mach-Zehnder interferometer (MZI) is a simple tool to translate relative phase
changes between two light paths into intensity changes. Light entering the MZI passes
a beam splitter and is divided into two parts which are then recombined by another
beam splitter. The relative phase acquired along the two paths determines the intensity
at a particular output port. This property makes the MZI suitable for optical sensing of
refractive index changes or tiny length changes on the order of less than a wavelength.

In this chapter we investigate the waveguide version of the MZI and use it to measure
phase changes due to the presence of rubidium atoms. The entire interferometer has
a footprint of less than a square millimeter and is an example for the compactness of
integrated photonic devices. This chapter is largely based on reference [140].

5.1 Theory of operation

The schematic of an integrated MZI is shown in Figure 5.1 a). The in-coupled light
is split by means of a 50/50 Y junction into two arms consisting of curved waveguides
with a path difference of ∆l = l2 − l1. The lower arm (1) is completely covered with
HSQ, whereas the upper arm (2) is only partially covered, therefore offering a region of
length lA for the guided mode to interact with the surrounding atoms via the evanescent
field. The modes from both arms are recombined with a second Y junction where they
interfere. The output power depends on the relative phase between the modes of arm
1 and arm 2 at the combiner and is given by

TMZI = |U1 exp[i(β1l1 + φ0)] + U2 exp[i(β1(l2 − lA) + βRblA)]|2 , (5.1)

where U1, l1 and U2, l2 are the light amplitudes and lengths of arm 1 and arm 2,
respectively. The propagation constant for a waveguide covered with HSQ is denoted
as β1, whereas βRb is the complex propagation constant for a Rb cladding, as described
in section 4.1.3. The additional phase term φ0 accounts for a temperature dependent
change of the arm lengths.

The calculated transmission of an MZI in the absence of Rb is shown in Figure 5.1 b)
for two different cases. In the absence of propagation losses and for a perfect 50/50
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Figure 5.1: The integrated waveguide MZI. a) Schematic structure of an MZI composed of
two Y junctions. The waveguide core and the grating couplers (blue) are covered
with HSQ (gray) except for the interaction region lA in arm 2. b) Calculated
transmission depending on the relative phase of the light fields at the combining
Y junction for different amplitude ratios: U1 = U2 (black line), U2 = 1/5U1.

splitting ratio the fringes exhibit maximum contrast1, as shown by the black line. Any
deviation of the two amplitudes at the combining Y junction leads to a loss of contrast
(blue line).

Aside from propagation losses, some of the light in the uncovered arm gets absorbed by
the surrounding atoms, which is why the MZI transmission signal contains information
about both real and imaginary part of the effective vapor susceptibility.

5.2 Atomic phase shift measurements

The Mach-Zehnder interferometer for the phase sensitive measurements is based on
Si3N4 waveguides with a width of w = 1100 nm and a height of h = 180 nm. The length
of the covered arm 1 is l1 = 500 µm whereas arm 2 has a total length of l2 = 2.5 mm
with an uncovered length of lA = 2 mm. Figure 5.2 shows Rb D2 transmission spectra
of the MZI for different atom densities and an input power of 280 nW. The spectra have
been fitted with (5.1) based on the effective susceptibility model, where the Rb density,
the amplitudes of the individual arms, and the phase offset are free fit parameters. The
panels of Figure 5.2 a) show the MZI transmission over a larger detuning range with
and without contribution from the atoms. The transmission of the bare MZI has been
calculated using (5.1) with the parameters obtained from the fit.

1The fringe contrast (or visibility) is defined as the ratio of fringe amplitude to average transmission:

C = max(T )−min(T )
max(T )+min(T ) .
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Figure 5.2: Transmission through a waveguide MZI with lA = 2 mm. a) The gray solid
lines show the calculated transmission of the MZI without any coupling to the
atoms with a free spectral range of FSR ≈ 71 GHz. The insets contain the
experimental traces (blue) for various atomic densities N = 2.4× 1013 cm−3

(i), N = 1.4× 1013 cm−3 (ii), N = 6× 1012 cm−3 (iii). The solid red line is
the theory fit while the red dashed line is the calculated transmission including
the atomic contributions outside the scan range of the laser. Far off resonance
this curve smoothly approaches the empty MZI fringe. b) Zoom in on the insets
from a) with the experimental data (blue) and the theory fit (red).

Furthermore, one can deduce that the amplitude in arm 2 is approximately ten times
smaller the amplitude in arm 1 and decreasing over the course of the experiment, thus
causing a smaller visibility than expected from a 50/50 beam splitter. This behavior
can be attributed to the larger length of arm 2 and therefore higher (intrinsic) prop-
agation losses on the one hand. On the other hand, as discussed in section 4.5, the
exposed waveguide additionally suffers from losses due to rubidium atoms adsorbed on
its surface.

The most intriguing feature of a Mach Zehnder interferometer is of course its ability
to measure phase shifts. We now can extract this phase shift ∆ϕ due to the presence
of the atoms from our data transforming equation 5.1 and subtracting the phase shift
of the bare MZI:

∆ϕ = cos−1

(
TMZI − |U1|2 − |U2|2 exp (−2 Im(βRb)lA)

2U1U2 exp (− Im(βRb)lA)

)
− [β1l1 − (β1(l2 − lA) + β0lA)] ,

(5.2)
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Chapter 5. Integrated Mach-Zehnder interferometer

Figure 5.3: Additional phase shift in the MZI. a) The bright traces show the phase shift
extracted from the data for atomic densities N = 2.4× 1013 cm−3 (blue), N =
1.4× 1013 cm−3 (green), N = 6× 1012 cm−3 (red). The dark curves are the
corresponding calculated phase shifts for the parameters obtained from the fits
in Figure 5.2. b) Calculated additional phase shift by the atoms modulo 2π
as a function of detuning and reservoir temperature. Dashed lines indicate the
positions of the data from a).

where β0 is the propagation constant in the waveguide without cladding (vacuum).
Figure 5.3 a) shows the phase shifts corresponding to the data in Figure 5.2. For the
data with the highest atomic density of N = 2.4× 1013 cm−3, the light experiences an
additional phase shift of up to 0.15× π. In Figure 5.3 b) the calculated atomic phase
shift for this particular device is shown in dependence of the reservoir temperature.
One can extrapolate from this model, that an additional phase of π is reached at
a temperature of 160 ◦C, corresponding to an atomic density of N = 1.7× 1014 cm−3.
Naturally a higher density is accompanied by strong absorption, however the imaginary
part of the susceptibility drops off quadratically with detuning whereas the real part
drops off linearly. Hence, an off-resonant phase shift can be obtained without much
attenuation. Nevertheless, we did not further increase the reservoir temperature and
hence the atomic density in this experiment, since we intended to keep the reservoir
temperature well bellow the chip temperature in order to keep the amount of Rb
condensation at a minimum. Since this experiment was performed in the old vacuum
chamber setup, we were not able to safely increase the chip temperature even further.

Eventually, the magnitude of the refractive index of an atomic vapor is fundamen-
tally limited due to resonant dipole-dipole interactions [141, 142]. The increase in the
effective susceptibility with higher density is compensated by the self broadening of
the resonance which leads for rubidium to a maximum refractive index of nRb ≈ 1.4
[143].
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6 Coupling thermal atoms to ring
resonators

The interaction between atoms and photons can be boosted by making the photon
pass the atom multiple times, which can be achieved using an optical resonator. In
integrated optics, a simple and widespread resonator design is the ring resonator con-
sisting of a circular waveguide closed to a loop and a bus waveguide to couple light
into and out of the ring. This type of resonator in combination with thermal rubidium
atoms will be investigated in this chapter. For these first experiments we chose a rather
large ring radius to tune the ring resonance with moderate temperature changes to the
atomic transition frequency. However, the resulting large mode volume and especially
the alkali induced round trip losses prevented us from observing any enhancement in
the coupling strength. This chapter is largely based on reference [144]. The interaction
of thermal atoms with ring resonators has been proposed theoretically in reference [42].
Similar experiments have been conducted by the group of Uriel Levy [43].

First, we introduce the theory of a bare ring resonator as well as a ring resonator
surrounded by atomic vapor. This is followed by a characterization of the devices be-
fore and after bringing them in contact with rubidium, which drastically alters their
performance due to rubidium atoms sticking to the waveguide surface. Then we exper-
imentally investigate the resonant interaction between rubidium and the ring mode.
Finally, an excursion into the field of cavity quantum electrodynamics will be made to
evaluate our system in this context and to estimate the potential of different resonator
designs.

6.1 Theory

The ring resonator with radius R is evanescently coupled to a bus waveguide terminated
with grating couplers as illustrated in Figure 6.1 a). To analyze the exchange of power
between the waveguide and the ring one can treat the coupling region like a beam
splitter as indicated by the dashed box [145, 146]. The relations between the complex
mode amplitudes are then given by

E2 = r E1 + it E3

E4 = r E3 + it E1 ,
(6.1)
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Chapter 6. Coupling thermal atoms to ring resonators

Figure 6.1: Waveguide ring resonator. a) Schematic of a ring resonator with radius R
coupled to a bus waveguide separated by the distance g. The gray area depicts
the HSQ cover layer. Coupling is described with a beam splitter formalism as
indicated by the dashed box. b) Bus waveguide transmission spectrum with
free spectral range (FSR) ∆λ and resonance line width δλ.

where r and t are the coupling parameters satisfying the condition r2 + t2 = 1. The
coupling is determined by the size of the gap g between ring and waveguide and is
assumed to be lossless in this analysis. Inside the ring the light circulation is described
by

E3 = τeiφE4 , (6.2)

where τ is the round-trip transmission factor and φ = 2πRβ is the phase acquired
after one round-trip, with β being the propagation constant of the ring mode. Com-
bining equations (6.1) and (6.2) the intensity transmission of the bus waveguide can
be obtained:

Tbus =

∣∣∣∣E2

E1

∣∣∣∣2 =
τ 2 − 2rτ cosφ+ r2

1− 2rτ cosφ+ r2τ 2
. (6.3)

Figure 6.1 b) shows Tbus as a function of input wavelength with r = 0.9 and τ = 0.85.
Near resonance, when φ = 2πq (q = 0,±1,±2, ...), the transmission drops due to
destructive interference. This effect is illustrated in Figure 6.2 for tau = 1 which shows
the results of a ring resonator simulation within COMSOL. It can be seen that the
field in the bus waveguide and the field returning from the ring are out-of-phase and
therefore interfere destructively. In the special case when r = τ , i.e. when the internal
resonator loss matches the transmission loss in the coupler, the bus waveguide output
becomes zero. This situation is called critical coupling.

The ring resonator is characterized by certain figures of merit which are reflected in the
transmission spectrum. The distance between two resonances is called the free spectral
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6.1. Theory

Figure 6.2: Electric field simulation of a ring resonator with τ = 1. a) Ez component for
the resonant wavelength. Part of the incoming field in the bus waveguide is
coupled over to the ring and likewise from the ring back to the bus waveguide.
The field returning from the ring (left side) is out-of-phase with the incoming
field of the bus waveguide, see close up in c) for better visibility, which is why
the transmission drops due to destructive interference. Conversely, constructive
interference leads to a amplitude build up inside the ring which is much higher
than the amplitude in the bus waveguide. b) Transmission for a wavelength
sweep around the resonance.

range (FSR) and is given by [147]

FSRλ = ∆λ =
1

R

(
∂β

∂λ

)−1

=
λ2

2πRng

≈ λ2

2πRneff

, (6.4a)

FSRω =
ω

λ
× FSRλ , (6.4b)

where ng is the group refractive index which accounts for the wavelength dependence
of the effective index, see section 2.1. The time required to accomplish one round-trip
is then given by tR = 2π/FSRω.

Another important quantity is obtained by the ratio of the FSR and the resonance
width δλ (FWHM) and is called Finesse F = FSRλ/δλ = FSRω/δω. It can be inter-
preted as the number of round trips a photon undergoes in the ring until its probability
amplitude has dropped to 1/e. A related parameter to the finesse is the quality factor
Q and is defined as

Q =
λ

δλ
=

ω

δω
≈ 2πRneff

λ
F . (6.5)
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It is a measure for the decay time of the stored energy times the frequency. Finally, we
define the extinction ratio ER which quantifies the depth of a resonance feature and is
given by

ER = 10 log10

(
Tmax

Tmin

)
, (6.6)

where Tmax and Tmin are the maximum and minimum transmission, respectively.

6.1.1 Ring resonator coupled to atomic vapor

We now want to derive the transmission behavior of the bus waveguide if the ring res-
onator is surrounded by rubidium vapor. To restrict the atom-light interaction mainly
to the ring, the remaining parts are covered with HSQ except for the short coupling
region between the bus waveguide and the ring denoted by Lbus (see Figure 6.1). The
phase acquired during a round trip in the ring is now influenced by the refractive index
of the atoms and can be expressed in terms of the altered propagation constant (see
section 4.1):

φ = LRe(βRb) , (6.7)

where L = 2πR is the circumference of the ring. Furthermore, the round trip trans-
mission factor is changed due to resonant absorption losses by the atoms:

τ ∗ = τe− Im(βRb)L . (6.8)

Using eq. (6.3), the bus waveguide transmission in presence of the atoms is then given
by

Tbus = e−2 Im(βRb)Lbus

× τ 2e−2 Im(βRb)L − 2rτe− Im(βRb)L cos [Re(βRb)L+ ϕ0] + r2

1− 2rτe− Im(βRb)L cos [Re(βRb)L+ ϕ0] + r2τ 2e−2 Im(βRb)L
,

(6.9)

where φ0 is a phase offset. The prefactor in eq. (6.9) accounts for the absorption along
the uncovered region of the bus waveguide.

6.2 Ring resonator characterization

Here we present a characterization of the ring resonator type used for the experiments
in this work and evaluate the performance of these devices. First, in section 6.2.1 the
behavior is analyzed without the presence of rubidium. In section 6.2.2 we then discuss
the effects of rubidium on the general (non-resonant) transmission properties.
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6.2. Ring resonator characterization

Figure 6.3: Bus waveguide transmission for ring resonators with different gap size g on the
NGJ21 chip (see Appendix D.2). The curves have been recorded in absence of
rubidium. Vertical gray lines indicate the scan range of the laser. The red lines
show a Lorentzian fit with extrapolation to larger detunings. a) g = 75 nm. b)
g = 100 nm. c) g = 200 nm. The inset in a) shows the change of the center
frequency position of the ring resonance over time: ∆ω = ωR(t)− ωR(t = 0).

6.2.1 Without rubidium

The discussion in this section refers to the ring resonators on the NGJ21 chip1 before
filling the cell with rubidium. The rings have a radius of R = 80 µm, corresponding to
a free spectral range of FSRω/2π ≈ 308 GHz around λ = 780 nm.

Figure 6.3 shows the bus waveguide transmission for different devices with increasing
gap size (g = 75 nm − 200 nm) versus laser detuning from the ring resonance ∆R =
ωp − ωR, where ωp is the frequency of the probe laser. As the coupling decreases with
growing gap size, the photon lifetime in the ring increases and therefore the resonance
line width reduces. An overview of the relevant parameters is presented in table 6.1.
The line width δω was obtained from a Lorentzian fit to the transmission curves and
has been used to calculate F and Q.

The device with a gap size of g = 75 nm exhibits an extinction ratio of ER ≈ 12 dB
and is therefore close to critical coupling (Figure 6.3 a)). With increasing g, a de-
crease in ER is expected as confirmed in b). However, the larger ER in c) suggests
that the propagation losses vary between different devices, perhaps due to fabrication
tolerances.

The ring resonance frequency ωR can be tuned by varying the temperature of the chip
due to the refractive index change of the involved materials and, to a lesser extent,

1The NGJ21 chip did not have an Al2O3 protective coating, see Appendix D.2.
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Chapter 6. Coupling thermal atoms to ring resonators

g (nm) δω/2π (GHz) F Q

75 39.1 7.9 9.8× 103

100 11.8 26.1 3.3× 104

200 4.1 75.3 9.4× 104

Table 6.1: Measured ring resonator parameters for devices with different gap size g on the
NGJ21 chip in absence of rubidium.

thermal expansion of the ring2. The relatively large radius of our rings allows us to tune
between individual resonances with moderate temperature changes. For an Si3N4 ring
with R = 80 µm the thermal tuning rate of the resonance frequency was found to be
∂ωR/∂T ≈ 2π×5 GHz K−1. Consequently, a reasonable temperature control is required
in order to keep the resonance at a fixed position. The inset of Figure 6.3 a) shows
the variation of ωR over time for a fixed oven temperature set point and indicates a
temperature stability of ∆T < ±0.15 K, which is within the expected performance of
the used temperature controller.

6.2.2 With rubidium

If the ring resonators are exposed to rubidium their performance changes drastically.
Due to additional propagation losses caused by alkali atoms interacting with the wave-
guide surface (see section 4.5) the round trip transmission coefficient τ for the devices on
the NGJ21 chip dropped so low that the resonances entirely disappeared. Consequently,
the subsequent chip generations have been protected by a 9 nm thick Al2O3 coating
grown by atomic layer deposition.

Figure 6.4 shows the consecutive resonances of an Al2O3 coated ring (R = 80 µm, g =
200 nm) appearing at certain temperatures during the initial heating of the chip3 after
filling the cell with Rb. The reservoir was not actively heated during this measurement
series, however thermal coupling caused the reservoir temperature to be in the range
of 50 ◦C to 74 ◦C which leads to a substantial Rb vapor pressure once thermodynamic
equilibrium is achieved. While the line width of the first two resonances remained
narrow with δω = 8.6 GHz, the resonance at 217 ◦C was broadened to δω = 16.6 GHz
due to the build up of Rb vapor pressure in the cell, which depends not only on the
reservoir temperature but also takes a certain “curing time” (see section 4.5). Although
the propagation losses and therefore the line width increased with the addition of

2 For Si3N4 the thermo-optic coefficient at 300 K and λ = 850 nm is dn/dT ≈ 2.5× 10−5 K−1 [148],
whereas the thermal expansion coefficient is αth ≈ 7.6× 10−7 K−1 [149].

3NGJ30-II, see Appendix D.3.
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6.3. Coupling thermal Rb vapor to a ring resonator

Figure 6.4: Ring resonances of one and the same device appearing at different temperatures
during the initial heat up of a rubidium filled cell with Al2O3 coating. The
broadening of the resonance in c) is attributed to alkali induced losses since the
rubidium pressure inside the cell started to build up in the meantime.

rubidium, it is crucial that the resonance remains visible owing to the Al2O3 coating.

Most of the ring resonator experiments involving rubidium were performed with a
device which had a gap of g = 100 nm in order to approach critical coupling of the
resonator. In this case a line width of δω = 50 GHz has been measured a few days
after filling the cell. Although the line width is increased by factor of five compared
to a similar device with the same parameters but without rubidium, the line width
remained nearly constant for two months, even at elevated rubidium density. Thus,
applying a thin ALD grown Al2O3 layer on the nanophotonic chip seems to be an
effective method to reduce alkali induced losses.

6.3 Coupling thermal Rb vapor to a ring resonator

The experiments in this section employ a ring resonator on the Al2O3 coated NGJ30-II
chip with radius R = 80 µm and a distance g = 100 nm to the bus waveguide. This
device is close to critical coupling such that near zero transmission on resonance is
achieved.

The inset of Figure 6.5 shows a typical transmission spectrum of the bus waveguide at
a moderate atom density (N ≈ 2× 1013 cm−3), where the ring resonance is centered
to the atomic resonance ω0 and the probe frequency ωp is scanned over the rubidium
D2 line with the detuning ∆p = ωp − ω0. The transmission of the device without
contribution of the atoms is calculated from fit parameters of the numerical model
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Chapter 6. Coupling thermal atoms to ring resonators

Figure 6.5: Coupling an integrated ring resonator to atomic vapor. The gray curve shows
the calculated bus waveguide transmission without contribution of the atoms.
The transmission is modified in presence of the atoms (blue curve), which is
shown more detailed with a fit of the model (red curve) in the inset.

described in section 6.1.1 and displayed in the background of Figure 6.5 over more than
one free spectral range (FSR/2π ≈ 308 GHz) to visualize the bandwidth proportions.

Both absorptive and dispersive properties of the atoms play a role, when they interact
with the resonator mode. The absorption of the light field lifts the critical coupling
condition, leading to an increase in transmission within the ring resonance feature for
ωR ≈ ω0, whereas the real part alters the round trip phase shift, leading to a shift of
the ring resonance to lower (higher) frequencies on the red (blue) side of the atomic
resonance. We observe a red shift of ∼ −2π × 60 MHz of the atomic resonance with
respect to a reference vapor cell which we attribute to Casimir–Polder interactions with
the waveguide surface. The size of this shift is comparable to the shifts we measured
with other types of devices during the course of this work and is reproduced by Monte
Carlo simulations (see, e.g., section 4.4 or 7.2).

Note that the total signal is always a combination of the ring signal and the absorption
signal from the 100 µm long uncovered part of the bus waveguide. The interaction of
the atoms with the ring does not only manifest itself in the transmission signal, but
is also directly visible in the fluorescence of the atoms as shown in Figure 6.6(a) and
(b) for an off-resonant and a resonant situation, respectively. In b) the attenuation
of the guided mode in the ring is clearly observable, which is not only caused by the
absorption of resonant atoms but also by non-resonant losses due to adsorbed atoms
on the waveguide surface.
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Figure 6.6: Photographs of the ring for an off-resonant situation a) and for ωR ≈ ω0 b).The
interaction of the evanescent field with the rubidium vapor is directly visible due
to the fluorescence light of the atoms, which is color coded in these pictures.

6.3.1 Ring resonance frequency scan

In order to investigate the transmission behavior at different positions within the ring
resonance, we performed a series of measurements where we thermally tune the ring
resonance frequency to several values of the atom-resonator detuning ∆AR = ω0 − ωR,
while scanning the probe laser over the rubidium D2 line. Figure 6.7 presents the
results of these measurements for an atom density of N ≈ 1014 cm−3.

In Figure 6.7 a) the bus waveguide transmission spectra are placed at the corresponding
positions of the ring resonance feature, as determined from fits to the data. Figure 6.7
b)-d) show selected transmission data for three values of ∆AR together with their re-
spective fitting curves. In the off-resonant case shown in Figure 6.7 b) the transmission
spectrum is dominated by absorption in the uncovered part of the bus waveguide, since
there is almost no coupling of the probe light into the ring, which is also clearly vis-
ible in Figure 6.6 a). At the slope of the resonance (see Figure 6.7 c)), the signal
reveals the dispersive nature of the atoms, since a small change in the real part of the
atomic susceptibility involves a shift of the ring resonance and therefore leads to a large
modulation of the bus waveguide transmission. Finally, on resonance (ωR ≈ ω0) the
additional losses induced by the atomic absorption lead to increased transmission since
destructive interference of the field in the bus waveguide and the field returning from
the ring is diminished. This situation is shown in Figure 6.7 d), where the transmission
enhancement amounts approximately 40%.

6.3.2 Saturation measurements

In this section we study the saturation behavior of the atoms in the evanescent field
of the ring mode. On resonance, the intensity in the ring can be much larger than the
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Figure 6.7: Transmission measurements for various atom-resonator detunings ∆AR. a) The
gray curve shows the bus waveguide transmission without atomic contribution,
as calculated from fit parameters. The superimposed spectra show the trans-
mission for an atomic density of N ≈ 1014 cm−3 at corresponding ∆AR. b)-d)
Individual transmission spectra for an off-resonant ring b), on the slope of the
resonance c) and close to resonance ωR ≈ ω0 d) with fits of the model (green
curves). The vertical lines indicate the positions of the center of mass frequency
of the rubidium D2 line, ω0.

intensity in the bus waveguide due to constructive interference of the circulating field
with the input field. Hence, saturation of the atoms around the ring is expected to
happen at lower input powers compared to a regular straight waveguide. The intensity
enhancement B can be calculated from equations (6.1) and (6.2) as

B =

∣∣∣∣E3

E1

∣∣∣∣2 =
τ 2(1− r2)

(1− τr)2
. (6.10)

If the resonator is lossless and very weakly coupled to the bus waveguide the intensity
enhancement is directly linked to the finesse and is given by B = F/π [147].

As the losses of the resonator investigated in this work are rather high we obtain B =
1.06, with r ≈ 0.85, τ ≈ 0.74 as inferred from theory fits, thus there is no considerable
intensity buildup in the ring. Nevertheless it is worth studying the saturation with the
device at hand since we can derive a few interesting quantities from this measurement

76



6.3. Coupling thermal Rb vapor to a ring resonator

Figure 6.8: Saturation behavior in the ring resonator. Red dots show the Lorentz width
versus input probe power (top axis) extracted from fits to the transmission data.
Error bars show 95% confidence intervals for the determined widths. The red
curve is a fit of Γtot = Γ(1+Pin/Psat)

1/2 with initial line width Γ/2π = 628 MHz
and saturation power Psat ≈ 5.7 µW. From Psat we estimate the corresponding
mean intensity of the evanescent field (bottom axis). Blue triangles show the
normalized susceptibility. The blue dotted curve is a guide to the eye.

such as the mean photon number inside the ring. Therefore, a sequence of transmission
spectra was recorded for different input powers with the ring resonance tuned to the
atomic resonance. By fitting these spectra the power dependent Lorentzian line width
and the magnitude of the susceptibility of the atoms are extracted and presented in
Figure 6.8. The line width clearly exceeds the natural line width of rubidium already
at low powers, which is mostly attributed to transit time broadening. In order to
determine the input power, at which saturation occurs, we fit the function Γtot =
Γ(1 + Pin/Psat)

1/2 to the data, with initial line width Γ/2π = 628 MHz and saturation
power Psat ≈ 5.7 µW.

The knowledge of Psat allows us to estimate a mean intensity of the evanescent field
for a given input power, by assuming I = Pin × Isat/Psat, where Isat is the saturation
intensity of the rubidium D2 line, assuming a line width of Γ. By simulating the
intensity distribution4 for our waveguide geometry we infer that Isat is reached for
an atom located at the position of maximum external electric field strength with a
mode power of Pm ≈ 100 nW, which corresponds to a mean photon number of 〈n〉 =
Pm/(~ω × FSRω) ≈ 1.3 photons being in the ring.

4The local intensity is calculated using (2.5) of section 2.1.
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6.4 Cavity QED considerations

Achieving strong coupling between light and matter in a regime where individual
quanta are involved is of highest interest for both fundamental research and tech-
nology. A promising approach is to couple an atom to a resonator mode which is the
basic principle of cavity quantum electrodynamics (cavity QED) [55–57]. To imple-
ment a whole network where many nodes are linked by single photons, nanophotonic
resonators are favored candidates because they can be scalably fabricated and intercon-
nected with waveguides and fibers [58]. Here we analyze the potential performance of
our ring resonators in this context and estimate to what extend strong coupling could
be achieved between thermal atoms and modes of integrated resonators in general.

6.4.1 Cavity QED concepts

The probability that a photon interacts with an atom is enhanced by placing the
atom inside a cavity since the circulating photon passes the atom multiple times. The
performance of a cavity QED system therefore depends on the photon lifetime τ inside
the cavity which is related to the cavity line width by τ = 1/δω = Q/ω = 1/(2κ), where
κ is the total cavity field decay rate [150]. Note that κ is composed of an intrinsic decay
rate κint due to absorption or propagation losses and an extrinsic decay rate κext which
accounts for the coupling between the cavity and the input or output ports.

The atom-photon interaction strength further depends on the energy density of a pho-
ton within the mode volume Vm of the cavity which is defined as [150]

Vm =

∫∫∫
VQ
ε(r) |E(r)|2 d3r

|Emax|2
, (6.11)

where ε is the material dielectric constant and the integration is performed over a
volume VQ

5. The mode volume determines the spatial confinement of the photon.
Hence, the smaller the mode volume the larger the interaction strength. The coupling
between an atom at position r and the cavity mode is described by the coupling rate
g(r), with [55]

g(r) = d

∣∣∣∣E(r)

Emax

∣∣∣∣√ ω0

2~ε0Vm

, (6.12)

where d is the dipole moment of the atomic transition and |E(r)/Emax| is the nor-
malized electric field strength at the atom’s position. The parameter g describes the
coherent, reversible exchange of excitation between an atom and a single mode and is
related to the single photon Rabi frequency Ω = 2g [150].

5The cross section of the integration volume for our calculations was chosen to be a rectangular
region with several µm side length such that the electric field of the mode is practically zero at the
boundaries.
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In order to achieve a controlled (coherent) coupling, the rate g has to be larger than all
involved dissipation rates in the system. This defines the strong coupling regime with
the requirement g > [Γ⊥, κ, T

−1], where Γ⊥ is the atomic dephasing rate and T is the
interaction time between the atom and the cavity field (e.g. transit time). In cavity
QED, the coupling strength relative to the geometric mean of the damping rates is
described in a dimensionless (single-atom) cooperativity parameter C which is usually
defined as [151]

C =
g2

2κΓ⊥
. (6.13)

If C > 1, the atom-cavity coupling is considered to be strong. Note that the standard
definition eq. (6.13) of the cooperativity does not account for a limited transit time
which should in case of moving atoms be incorporated into Γ⊥. Also, the condition
for strong coupling, C > 1, is less stringent than g > [Γ⊥, κ, T

−1] since C can be large
although the coupling rate is much smaller than one of the damping rates.

Two more parameters are in general used to characterize a cavity QED system [150]:

n0 =
Γ2
⊥

2g2
, N0 =

2Γ⊥κ

g2
=

1

C
, (6.14)

where n0 is the the critical photon number, which is the number of photons required to
saturate an atom in the cavity field, and N0 is the critical atom number, which is the
number of atoms required to observe critical effects in the cavity transmission, such as
the splitting of cavity resonances, known as vacuum Rabi splitting [152]. Note, that
this splitting is not an inherently quantum phenomenon but can already be described
by a classical theory based on linear atomic absorption and dispersion [153].

6.4.2 Evaluation of ring resonators

We now want to make a rough estimation of the performance of the atom-resonator
system presented in section 6.3 with regard to the concepts of cavity QED. To determine
the coupling rate g, the mode volume was calculated using COMSOL and eq. (6.11)
to be Vm = 143 µm3. The resulting position dependent coupling rate for the Rb D2

transition is shown in Figure 6.9 a). Close to the waveguide surface a maximum
coupling rate of gmax/2π = 193 MHz is obtained, but also a huge surface-induced line
shift. At a distance of 20 nm the Casimir–Polder shift is on the order of ∆CP/2π ≈
1 GHz and comparable to the linewidth Γ of the measured transmission spectra. In
this case, the coupling rate is g/2π ≥ 85 MHz across the total width of the waveguide
(see Figure 6.9 b)).

Due to the large cavity field decay rate and atomic linewidth this first realization
of a thermal atom-cavity system on a chip is far from being in the strong coupling
regime (g � κ,Γ). This is also reflected in the low single-atom cooperativity on the
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Figure 6.9: Coupling rate g for an atom near a ring resonator. a) Cross-section of the
experimentally investigated ridge waveguide ring resonator showing the coupling
rate g(x, y). b) Coupling rate along the waveguide surface (green line) and in
20 nm distance above the waveguide, where ∆CP ≈ Γ. c) Coupling rate as a
function of distance from the waveguide surface for x = 0 and y > h. d) Cross-
section of a slot ring resonator embedded in SiO2. e) Coupling rate across the
center of the slot (y = 0) and f) along the vertical center (x = 0).

order of C ≈ 10−3, and a correspondingly large critical atom number N0 = 1/C ≈
1000. To estimate the mean number of atoms interacting with the resonator under the
experimental conditions of section 6.3.1, we assume the atom density in the evanescent
field to be identical with the Rb density N ≈ 1× 1014 cm−3 inside the cell volume. An
external mode volume outside the ring waveguide of V e

m = 5.6× 10−18 m3 suggest that
N ≈ 1250 atoms are within the resonator mode, which is similar to the critical atom
number N0. Hence, the collective cooperativity is on the order NC ∼ 1, provided
that every atom interacts with the mode. However, a distinct splitting of the ring
resonance in Figure 6.7 is spoiled by averaging over coupling rates g(r) ≤ gmax, the
contributions of multiple transitions and the superimposed absorption signal from the
bus waveguide.

For the critical photon number we obtain n0 ≈ 1.3 assuming the maximum coupling
rate gmax which is in agreement with the average photon number 〈n〉 ≈ 1.3 derived
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from the saturation measurement in section 6.3.2, likewise for the position of maximum
electric field strength.

Although ring resonators are not ideal candidates to enter the strong coupling regime,
creating the ring from a slot waveguide (see section 7) instead of a ridge (solid core)
waveguide can increase the coupling rate significantly. Figures 6.9 d)-e) show the
coupling rate for a TE slot mode of a Si3N4 ring resonator with R = 80 µm, which
is the same radius as for the investigated ridge waveguide ring above. Here, the slot
width w = 35 nm, core width d = 260 nm and core height h = 190 nm are chosen, as
these parameters result in an optimal field confinement inside the slot. Furthermore,
the domains outside the slot are masked with a thick SiO2 layer to restrict atom-light
interaction mainly to the slot region.

The strong mode confinement in the slot region leads to a reduction of the mode volume
compared to the ridge waveguide ring resonator with the same radius, which results in
a coupling rate of g/2π > 500 MHz. A smaller ring radius of R = 20 µm would roughly
double the coupling rate to g/2π ≈ 1 GHz and therefore become comparable to the
atomic linewidth, though a larger transit time broadening is expected in the narrow
slot. For κ to be on the same order, a quality factor of Q ≈ 2× 105 would be required
at λ = 780 nm. An intrinsic Q of 3× 106 has been measured for a 20 µm Si3N4 ring
resonator at λ = 1540 nm [154], however, alkali induced losses are currently limiting
the quality factor in our system. If this obstacle could be overcome by, e.g., using a
different waveguide material or optimizing the protection coating, it might be possible
to reach the strong coupling regime with slot ring resonators and single atoms at room
temperature.

6.4.3 Towards strong coupling

Coherent coupling between a thermal atom and a cavity mode is mainly limited by the
short interaction time T due to the motion of the atom and the small mode volume
required to achieve an appreciable coupling rate. This implies that the bandwidth
for photons to enter and leave the cavity has to be large compared to the inverse
interaction time in order to utilize the interaction mechanism for any processing. Also,
there is no benefit to be gained from a photon circulating in the cavity while the atom
is already gone. Therefore, we can specify an upper limit for a useful quality factor
Q ≤ ωT/2π, determined by the exchange rate κext and assuming κint → 0. For a
light field at λ = 780 nm and an interaction time of 1 ns we obtain Q ≤ 3.8× 105.
Consequently, the condition for strong coupling with moving atoms is g � κ > Γ,
where Γ incorporates all atomic decoherence effects. For the coupling strength to be
large, the cavity mode volume has to be as small as possible and the electric field at
the position of the atom as large as possible. These requirements are met by photonic
crystal (PC) microcavities where the atom could interact with the field in the air hole
of the PC [155].
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To estimate achievable cavity QED numbers, we consider the Si3N4 nanobeam PC
presented in [156] with a mode volume of Vm = 0.55(λ/n)3 and measured quality factor
Q ≈ 5.5× 104 at λ = 624 nm (theoretical Q = 2.3× 105) which translates to a cavity
loss rate κ/2π = 4.4 GHz (theoretical κ/2π = 1 GHz). The nanobeam has a thickness of
200 nm and the radius of the central lattice hole is 50 nm. A rubidium atom at 100 ◦C
with mean velocity 330 m s−1 transits the cavity hole vertically (radially) in 606 ps
(150 ps), corresponding to an atom loss rate of Γ/2π = 1.6 GHz (Γ/2π = 6.6 GHz).
The extremely small mode volume of the PC results in a maximum coupling rate of
gmax/2π = 5.7 GHz for the Rb D2 transition.

Although gmax slightly exceeds κ and for nearly vertically transiting atoms also Γ,
the presented example is on the border of being in the strong coupling regime. An
even higher interaction strength would require a further reduction of the mode volume
which in turn shortens the transit time. The influence of surface induced level shifts is
not considered in this estimation and constitutes a further critical issue when coupling
atoms to a nanophotonic resonator. However, a demonstration of strong coupling of
atoms transiting the PC hole at moderate velocities and favorable trajectories should
be possible in such a system when using real-time detection as presented in [62, 157].
To establish the feasibility of quantum information processing with thermal atoms and
on-chip cavities, a more thorough analysis is required which is beyond the scope of this
thesis.
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In this chapter we study the interaction of thermal rubidium atoms with the guided
mode of slot waveguides. A slot waveguide consist of two parallel ridge waveguides
which are separated by a distance smaller than the decay length of the evanescent
field. These devices provide strong confinement of the light field in the slot between
the two individual waveguides, which is accessible by the atomic vapor. The region of
high optical intensity inside the slot enables enhanced atom-light coupling as compared
to, e.g., nanofibers [158–160] or solid core waveguides [41, 44, 140], where the atoms
interact only with the tail of the evanescent field while the major part of the mode
resides in the core material.

We investigate the transmission of these waveguides depending on the slot width, which
determines the fraction of transmitted light power interacting with the atomic vapor.
For narrow slot widths, the mode is strongly confined inside the slot with high electric
field amplitude at the position of the atoms, while for increasing slot widths, the mode
is more and more confined to the individual cores. One would therefore expect to
observe decreasing atom-light coupling for growing slot widths. Due to limitations
in the fabrication process of the optical chip, the investigated structures exhibit a
gradual transition from a single ridge waveguide to fully opened slot waveguides. To
comprehend the complex atom-light interaction around the imperfect structures, we
compare the measured line shapes to Monte Carlo simulations including the specific
waveguide geometries and associated atom-surface interactions.

Furthermore, we examine density dependent effects on the line widths and line shifts
of the rubidium atoms in the sub-wavelength interaction region of a slot waveguide.
Optical waveguides, and in particular slot waveguides, offer the possibility to study
resonant dipole-dipole interactions in a quasi-one-dimensional system. Initial experi-
mental investigations in this direction are presented at the end of this chapter.

7.1 Slot waveguide basics

A slot waveguide is a comparatively novel light guiding structure which was first pro-
posed in 2004 [69] and subsequently demonstrated in an experiment [161]. The slot
waveguide consist of two high-index material strips of width d and height h separated
by a low-index gap of size w, see Figure. 7.1 a). At the interface between high- and
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Figure 7.1: Slot waveguide structure and mode profile. a) Geometry of a slot waveguide.
The two waveguide cores of refractive index n2 are placed on a substrate of
index n3 and surrounded by a cladding of index n1. b) Simulated electric field
profile |Em(x, y)| of the fundamental mode for a w = 50 nm Si3N4 waveguide
(h = 180 nm, d = 400 nm) on an SiO2 substrate. The gray arrows indicate
the direction and strength of the electric field, representing the polarization
direction. The top panel shows a horizontal cut of the transverse electric field
component Ex through the center of the structure.

low-index regions the electric displacement field1 has to satisfy the boundary condition
[162]

(D2 −D1) · n21 = 0 , (7.1)

where n21 is a unit vector normal to the interface. Thus, the boundary condition for
the normal component of the electric field reads

ε2E
⊥
2 = ε1E

⊥
1 , (7.2a)

n2
2E
⊥
2 = n2

1E
⊥
1 . (7.2b)

Consequently, the electric field of a TE-like mode undergoes a discontinuity at the
sidewall interface of the waveguide. Right at the interface the electric field inside the
slot is enhanced by n2

2/n
2
1 compared to the electric field at the boundary inside the

waveguide core. For a Si3N4 waveguide core and a vacuum cladding we get n2
2/n

2
1 ≈ 4.

If the separation of the two strips is smaller than the evanescent decay length of the
individual strip modes, a high electric field amplitude is maintained across the slot, as
can be seen in Figure 7.1 b). This electric field enhancement makes slot waveguides
particularly attractive for applications in nonlinear optics and as an interface for light
and quantum emitters [163].

1In absence of free surface charge.
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7.2 Slot width dependent measurements

The most fascinating feature of a slot waveguide is the sub wavelength confinement of
the light field in the low index region which offers enhanced coupling between atoms
and photons. To study the behavior of thermal atoms coupled to a slot waveguide
mode we performed various spectroscopic measurements as a function of the slot width
which determines the fraction of optical power at the positions of the atoms.

7.2.1 Waveguide design and description of the experiment

The slot waveguides consist of two Si3N4 strips with height and width designed to
be h = 175 nm and d = 400 nm, respectively. The height has been confirmed by
measuring the Si3N4 layer thickness using refractometry. The strips are separated by
a gap of width w, which is varied for the different devices, see Figure 7.2. The slot
waveguide section is on both ends transformed into 650 nm wide ridge waveguides via Y
junctions which are connected to grating couplers. Both couplers and the Y junctions
are covered with an 800 nm thick layer of HSQ (SiO2) in order to restrict the atom-
light interaction only to the slot waveguide region. The uncovered domains which are
accessible for the atoms have a length of l = 200 µm. To protect the structures from Rb
atoms sticking to the waveguide surface and potential chemical reactions, the devices
are additionally covered with a 7 nm thick Al2O3 coating via atomic layer deposition.

The chip2 used for the presented measurements contains several slot waveguides de-
signed to have slot widths in the range wd = 30 nm − 250 nm. After the experiments
have been conducted, the chip was removed from the cell and a focused ion beam (FIB)
was used to cut a trench into the structures to expose their cross-sections which have
subsequently been examined by scanning electron microscopy (SEM). Samples of the
images obtained with this method are shown in Figure 7.2 c) for the wd = 40 nm (i),
wd = 75 nm (ii) and wd = 125 nm (iii) slot waveguides. The bright rough layer covering
the surface of the sample in this micrograph is a sputtered gold layer which forms a
conducting film on the Si3N4/borosilicate sample required for the FIB/SEM treatment.
Analysis of the cross-sections revealed that the waveguides with a designed slot width
of 30 nm and 40 nm do not actually exhibit a gap but are solid ridge waveguides in-
stead. This is caused by the resolution limit of the negative tone e-beam resist used for
the lithography process. Furthermore, the plasma etching process is impeded in very
small openings and therefore the gaps of the devices with 50 nm ≤ wd ≤ 125 nm are
not etched all the way to the substrate but have a remaining base of decreasing height
hb with increasing gap size. Nevertheless, all slot waveguides with wd ≥ 150 nm turned
out to be completely developed. Figure 7.2 b) shows a top view SEM micrograph of
the wd = 125 nm device which reveals a homogeneous profile along the longitudinal

2NGJ35, see Appendix D.4.
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Figure 7.2: Waveguide structure and mode profiles. a) Schematic of the slot waveguides.
The probe light Pin is coupled into a ridge waveguide via a grating coupler and
guided to a Y junction which transforms the ridge waveguide into a slot wave-
guide. Couplers and splitters are covered with an SiO2 layer. The uncovered
region of length l is accessible to the atoms. The output Pout is detected with
a photo multiplier tube. b) Top view SEM image of the wd = 125 nm slot
waveguide. The white patches and craters are due to an “ESpacer” coating
to prevent charge buildup during imaging. c) FIB/SEM images showing the
cross-sections of the wd = 40 nm (i), wd = 75 nm (ii) and wd = 125 nm (iii)
slot waveguides [164]. The white patches are sputtered gold to prevent charge
buildup. d) Mode profiles of the fundamental TE mode corresponding to the
devices shown in b).
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Figure 7.3: Transmission spectrum of the wd = 75 nm, l = 200 µm slot waveguide with an
atom density of N ≈ 3.5× 1014 cm−3. The red curve is an asymmetric Voigt
fit. The dotted lines indicate the transition frequencies from the Rb85 S1/2 F =
2 (i), F = 3 (ii) and Rb87 S1/2 F = 1 (iii), F = 2 (iv) to the P3/2 states.

direction of the waveguide. The rough surface structure in this image is due to an
“ESpacer” which forms a conductive polymer layer on the chip to prevent charge up
during imaging.

The waveguide modes for the geometries deduced from the FIB/SEM analysis have
been calculated with a finite element method using COMSOL Multiphysics. Due to
the rectangular geometries of the waveguides all modes mentioned here are TE-like
and TM-like modes exhibiting a small fraction of the respective field also in the other
components3. The waveguides can in principle support up to three modes, however,
as discussed below, we believe that only the fundamental TE mode is guided in all
the structures. The electric field profiles of the fundamental mode are shown in Fig-
ure 7.2 d) for three different design widths wd.

For each slot width a transmission spectrum has been recorded by scanning the laser
over the Rb D2 line, an example of which is shown in Figure 7.3 for the wd = 75 nm
slot waveguide at an atom density of N ≈ 3.5× 1014 cm−3. We fit the spectra with
an asymmetric Voigt profile [165], see Appendix B, to account for the distribution of
red-shifts due to atom-surface interactions which results in an asymmetric line shape.
An excellent agreement between this model and the data is also shown in Figure 7.3.
Note that the signal obtained from a slot waveguide originates from contributions of
atoms in the slot itself but also from atoms in the evanescent field of the remaining
geometry, see Figure 7.2 c).

The expected saturation intensity for the transit time broadened linewidth is reached
for an atom located at the position of maximum intensity in the wd = 50 nm slot with

3For the sake of brevity, we hereafter label them as TE and TM modes
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Figure 7.4: Lineshape parameters of the experimental spectra and Monte Carlo simulation
results versus design slot width wd. Black squares show experimental data and
the red areas correspond to simulation results taking into account the uncer-
tainty of the CP potential calculations. The gray shaded area indicates the
interval 50 nm ≤ wd ≤ 125 nm where the slot is not yet completely developed.
a) Center frequency ω0 of the D2 spectrum relative to the center frequency ob-
tained in a reference cell. b) Voigt width γV (FWHM). c) Optical depth of the
Rb85 5S1/2, F = 3 → 5P3/2, F = 4 transition. The simulation results for the
OD are normalized to the maximum values of the measured OD and presented
as relative OD (right ordinate) for a better comparison with the experimental
data.

a mode power of ∼ 15 nW. In a power dependent measurement series we found the
atoms to saturate at an input power of ∼ 12 µW, in agreement with the estimated mode
power, taking into account coupling losses and the intensity distribution of the mode.
The input power for the experiments presented in this section was Pin ≈ 400 pW, and
therefore well below the power required to reach the saturation intensity. The atom
density was set to N ≈ 3.5× 1014 cm−3.

7.2.2 Results

The results of the slot width dependent measurements are shown as black squares in
Fig. 7.4. As the atoms are probed in close vicinity to the waveguide, Casimir–Polder
potentials lead to a red shift of the resonance on the order of 2π × 70 MHz, see panel
a). A shift of this magnitude would be experienced by an atom in ∼ 30 nm distance
to waveguide surface4. For comparison, the 1/e decay length of the evanescent field is
on the order of ∼ 80 nm. The linewidth shown in b) increases for a growing slot width

4 Calculated using the infinite plane approach (see section 4.2) for a material stack as “seen” by an
atom above the top surface of the waveguide.
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up to wd = 125 nm and drops again for larger slot widths. The rise in linewidth can
be explained by a growing slot volume and therefore more and more atoms from inside
the slot region contribute to the signal. Because these atoms have very little time to
interact with the light field, they exhibit a large transit time broadened linewidth. At
wd = 125 nm the dimensions become similar to the decay length of the evanescent field
of the remaining cladding and, therefore, the linewidth reaches its maximum. The
further trend of the linewidth is determined by the Doppler width, which is decreasing
for growing slot widths as the effective mode index declines. The OD for the Rb85

5S1/2, F = 3→ 5P3/2, F = 4 transition is shown in panel c) and is an indicator for the
strength of the atom-light interaction assuming a fixed number density and waveguide
length. For atoms at rest and in the limit of low saturation, the OD is proportional to
the percentage of power outside the waveguide η, see eq. (2.4). According to our mode
simulations, η increases for growing slot widths up to its maximum at wd = 125 nm
and then slightly decreases for higher slot widths (see Appendix C.3). This behavior is
reproduced by the measured OD only to some degree but, as we have thermal atoms
in our experiment, the OD is influenced by motional effects and a deviation from the
cold atom picture is expected.

To understand the interaction of a thermal vapor with the waveguide mode depending
on the exact slot geometry, we developed a model based on Monte Carlo simulations
of atomic trajectories to account for the various effects arising in this system, see sec-
tion 4.3 for details on the simulation method. In this model, the waveguide geometry is
implemented with the dimensions inferred from the FIB-SEM measurements described
earlier, and the corresponding modes are used to calculate position dependent Rabi
frequencies and decay rates into these modes. Casimir–Polder potentials as well as
the spontaneous emission rate, which is spatially modified due to the presence of the
dielectric, are calculated with the DDA approach5, see section 4.2.

The results of these simulations and the experimental data for the different slot widths
are shown in Figure 7.4. Since we are only interested in the relative change of the OD
as a function of slot width, we normalize the ODs of the simulations to the maximum
measured OD value for easier comparison to the experimental behavior. Here, the
trend of increasing OD with growing slot size is reproduced by the simulation, however,
the relative difference between maximum and minimum OD is slightly larger for the
simulation results. For the strip waveguides (wd ≤ 40 nm) and the completely resolved
slots (wd ≥ 150 nm) we achieve good agreement in the line shifts and Voigt widths,
even quantitatively. There are obvious discrepancies for the four slots with 50 nm ≤
wd ≤ 125 nm. This interval corresponds to the devices where the slot starts to form
but is not yet etched all the way to the substrate. Possible causes for the deviations
between experiment and simulations are discussed in the following subsection.

5DDA = Discrete Dipole Approximation.
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7.2.3 Discussion

The outliers in the line shift and line width within the gray shaded area of Figure 7.4
suggest that the atom-light interaction might be overestimated in the slot itself. This
could be caused by either a reduced atom density inside the slot in comparison to
the surrounding volume or by deviations in the mode profile. The likelihood for the
presence of higher order modes is discussed in Appendix C.1 with the outcome that the
fundamental mode should be dominant. Also, the Doppler widths extracted from fits
to the experimental spectra follow the trend of the effective indices of the fundamental
mode quite well, which is a further indication that the atoms interact with this mode
since the Doppler width is proportional to the effective mode index.

The mode profile could be altered by Rb sticking to the waveguide surface and therefore
creating a metallic layer. In order to investigate this situation, we simulated the trans-
mission properties of the slot waveguides with a thin metal layer on top using COMSOL
(see Appendix C.2). The metal layer was set up to have the optical properties of Rb
and its thickness was adjusted such that the transmission losses were corresponding to
experimentally obtained values before and after exposing the waveguides to Rb vapor
(see section 4.5). The result suggests a Rb layer thickness of ∼ 1 nm which however
does not influence the mode profile perceptibly.

Adsorbed Rb atoms on top of the Al2O3 layer can also give rise to static electric
fields due to dipole moments caused by partial charge transfer between the Rb adatom
and the surface atoms [166–168]. The interaction of the probed atoms with these
electric fields manifests itself in a Stark shift of the atomic energy levels. While the
top surface of the waveguides is generally smooth, the rough slot sidewalls6 offer a
larger effective surface which could accommodate a higher number of adatom dipoles
and therefore lead to a lower signal contribution from the slot itself by shifting the
atoms out of resonance. In Appendix C.4 we model the effects of surface dipoles
on the transmission spectrum of the wd = 75 nm device, which exhibits the largest
discrepancies between experiment and simulation in the previous section. We consider
two scenarios: the first one corresponds to a uniform distribution of dipoles on the
entire chip, whereas in the second one only the sidewalls are covered with dipoles.
In both cases the dipoles lead to an increased shift and broadening compared to the
situation without dipoles. Consequently, surface dipoles can not reduce the atomic
response within the slot region sufficiently to explain the above discussed deviations,
at least for the two studied examples and the underlying assumptions.

Another reason for less signal contribution from the slot would be a reduced atom num-
ber density within the slot as compared to the volume around the waveguide which can
arise if the adsorption rate of atoms onto the waveguide surface is much larger than
the desorption rate. In this case most of the atoms had to make it through the narrow

6 The quality of the waveguide top surface is usually determined by the layer growth process resulting
in a smooth surface, whereas the etching process creates rough sidewalls.
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slot opening to enter the slot region, which is restricted due to the geometrical ob-
structions. Simulations with different ratios of ad- and desorption rates showed indeed
much better agreement when desorption becomes negligible compared to adsorption
but it is unclear to what extent this constructed behavior reflects the real experimental
conditions.

Besides the rate also the directions of desorbing atoms influences their interaction with
the slot mode. Various experiments in surface science have reported on non-cosine
distributions for the directions of desorbing molecules (see e.g. [115] and references
therein). They find distributions which are strongly peaked around the surface normal
and can be usually described by a cosn θ function. Hence we checked the influence of
the angle distribution of atoms leaving the surface for several exponents (1 ≤ n ≤ 100)
but could not obtain a better agreement between simulation and experimental results
compared to the usual cosine distribution. The roughness of the waveguide surface
could also lead to an anomalous ad- and desorption behavior, not accounted for in our
simulations.

The determination of the slot waveguide dimensions via SEM images of their cross sec-
tions involves further uncertainties due to possible distortions caused by electrostatic
charging of the chip. Also, as one can sense from Figure 7.2 c), it is difficult to pin-
point the borders of the structure in theses images. In order to improve the quality of
this model, a better knowledge of the actual waveguide geometry would be necessary,
especially if the contours are rather complex as it is the case for the narrow slot wave-
guides. In addition, an experimental characterization of the guided modes, e.g., using
3-D near-field imaging [169], would provide valuable input data for our simulations.

Further systematic investigations are required to gain more insight into the interaction
of thermal atoms with slot waveguides. In particular, covering the top and side domains
of the waveguides, e.g., with an SiO2 mask and etching the substrate underneath
the slot, as shown in Figure 6.9 d) in section 6.4.2, would allow to obtain a signal
solely originating from atoms inside the slot. Moreover, by fabricating samples with
varying etching depth one could study the influence of the pedestal in the narrow
underdeveloped slots.

7.3 Atom-atom interactions

In the experiments described so far, atoms have been treated as independent objects.
However, if the separation R between two atoms is sufficiently small, interatomic po-
tentials have an effect on the spectral properties, namely a broadening and shift of the
resonance line (see, e.g., [170]). Generally, the interaction potential between two atoms
is expressed in a multipole expansion [171], where for neutral atoms the leading term
is the 1/R3 dipole-dipole interaction. Here, we only consider the interaction between
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two identical atoms, as it is the case for the experiment described below7. A first order
term in the interaction energy is obtained if one of them is in the ground state, while
the other one is in an excited state and both states are connected via a dipole transi-
tion (resonant dipole-dipole interaction). In this case, the interaction strength scales
linearly with the atom density N , since N ∝ R−3. However, this is only correct if
kR < 1, where k is the wavenumber corresponding to the transition wavelength, as for
larger separations retardation effects become relevant [172], though for kR � 1 also
the dipole approximation breaks down. For the D2 transition of rubidium, the con-
dition kR < 1 is fulfilled when N > 8.5× 1013 cm−3, corresponding to a temperature
T > 150 ◦C.

The role of dipole-dipole interactions in atomic systems has been studied for many
decades but still seems to be not very well understood [67, 68]. The interpretation of
experimental results with the existing theory is often unsuccessful or requires additional
parameters such as a “collisional shift” in order to find agreement [173]. Therefore,
continuing investigations in this field are required on the experimental as well as the
theoretical side. An in depth understanding of this subject is not only relevant for
a microscopic description of fundamental phenomena, such as light propagation in a
medium, but also for atom based applications like atomic clocks [174]. Spectroscopy
with integrated photonic structures could offer a valuable contribution to this subject
since the transversal dimensions of the probing region can be on a sub-wavelength scale,
therefore constituting a quasi one-dimensional system. Here, we take the first steps
in this direction by probing line shifts and line broadenings at elevated atom densities
with a slot waveguide. Before discussing the results of this measurement we briefly
review the relevant shift and broadening mechanisms in a dense atomic gas.

7.3.1 Line shift

In a dielectric medium, the electric field experienced by an atom inside the medium
is the sum of the incident electric field and the field generated by the neighboring
dipoles. Standard textbooks [162, 175] treat the surrounding dipoles as a continuous
polarization, which results in a local field correction. A consequence thereof is a density
dependent red shift of the atomic resonance, known as the Lorentz–Lorenz shift [176],
given by [35]

∆LL = −Nd
2

3ε0~
, (7.3)

where d is the dipole matrix element. The Lorentz–Lorenz shift has been identified
in a number of experiments (e.g. [35, 173, 177]), however, in each case combined with
additional contributions to the total line shift.

7 Apart from different absorption and emission wavelengths of different velocity classes due to the
Doppler effect.
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A further effect which has until recently been associated with resonant dipole-dipole
interactions is the so called “cooperative Lamb shift” (CLS) [178]. For thermal atoms
the CLS has been measured in case of a slab geometry using rubidium in a very thin
vapor cell [35]. However, it has lately been revealed that the CLS in a slab of atoms
arises from an etalon effect due to reflections at the boundary of the slab [66–68].

It has also been pointed out [65] that mean field approximations, such as the local
field correction resulting in the Lorentz–Lorenz shift, are not valid in the absence
of inhomogeneous broadening due to correlations between nearby atoms, mediated by
dipole-dipole interactions. This behavior has been observed in numerical electrodynam-
ics simulations [65, 67] and confirmed experimentally in cold atomics gases [179–181].
Within this theory it is assumed that the presence of inhomogeneous broadening, such
as in a thermal gas, leads to a suppression of these correlations and restores the mean
field effects.

7.3.2 Self broadening

Atoms in a thermal gas undergo collisions during which they can get very close to each
other, thus experiencing strong interactions for a short period of time. If the duration
of a collision is short compared with the time between collisions, such a process can be
treated in the impact approximation [170, 182]. Here, the assumption is made, that
only two atoms are involved in the collision (binary approximation8) which move in a
straight path with a distance of closest approach defined by an impact parameter ρ.
Thus, the dipole-dipole interaction between the two atoms is transient, leading to a
dephasing of the dipoles.

Within these approximations, the effect of collisions between identical atoms on the
optical response is a broadening of the spectral line shape, commonly known as self
broadening. The increase in the Lorentzian line width is predicted to be [170, 184]

Γcol = βN ≈ 2π ×

√
2Je + 1

2Jg + 1
Γ0

(
λ

2π

)3

N , (7.4)

where Jg and Je are the angular momenta of the ground state and the excited state,
respectively. In case of the Rb D2 line we obtain for the self broadening coefficient
β/2π = 1.03× 10−7 Hz cm3.

A line shift due to collisions of identical atoms in the limit of dipole-dipole interactions
is expected to vanish in the impact approximation [170, 185, 186]. However, for large
impact parameters ρ, corresponding to weaker collisions, a finite line shift remains
[182, 186].

8The binary approximation remains valid as long as Nρ3W � 1, where ρW is the Weisskopf radius
[183], which is ρW = 14 nm for the Rb D2 transition [184]. Hence, this approximation breaks down
if N ≥ 1× 1017 cm−3, which significantly exceeds the densities investigated here.
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Figure 7.5: Density dependent measurements in the 50 nm slot waveguides. a) Lorentzian
linewidth for the l = 30 µm (blue circles) and l = 200 µm (red triangles) devices.
b) Corresponding line shift. The black lines are linear fits to the data.

7.3.3 Experimental results

To study atom-atom interactions in the evanescent field of a slot waveguide we recorded
number density dependent transmission spectra with two devices which both have
a designed slot width of wd = 50 nm, but different exposed sections with lengths
l = 30 µm and l = 200 µm, respectively. Both waveguides are realized on the same
chip, where the two different lengths are defined by the spatial coverage of the SiO2

layer, see Figure 7.2 a). The shorter length allows for the investigation of higher number
densities without the vapor getting optically thick. Note that the 50 nm slot waveguide
does not exhibit a fully developed slot but has a remaining pedestal of hb ≈ 113 nm.
This was determined for the l = 200 µm device using FIB/SEM processing and is
assumed to be also the case for the l = 30 µm device.

The Rb density was varied by adjusting the reservoir temperature in the range of
150 ◦C to 250 ◦C. To extract the line center ω0 and Voigt width (FWHM) the spec-
tra are fitted with an asymmetric Voigt function as described in section 7.2.1. The
Lorentzian contribution to the Voigt width is extracted by assuming a Doppler broad-
ening corresponding to the cell temperature and the simulated effective mode index
of the waveguide. The result of these measurements is shown in Fig. 7.5. The large
horizontal error bars arise from the uncertainty in the derivation of the Rb density
from the reservoir temperature. The density dependence of the Lorentzian width is
plotted in part a) and shows a nearly linear increase with growing number density.
This behavior is attributed to a self-broadening contribution Γcol to the homogeneous
linewidth. Assuming this, the total Lorentzian width is given by

Γtot = Γ + ΓTT + βN , (7.5)
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where ΓTT is the transit time broadening9. By fitting a linear function to the data, we
find for the self-broadening coefficient β/2π = (1.5± 0.3)× 10−7 Hz cm3 which is some-
what larger than the theoretical prediction of β/2π = 1.03 × 10−7 Hz cm3 calculated
in section 7.3.2. However, the theory behind eq. (7.4) includes various approximations
and does not account for the inhomogeneous environment of an atom close to a wave-
guide. Therefore, it might be more appropriate to compare the above result to the Rb
D2 self-broadening coefficient β/2π = (1.1±0.17)×10−7 Hz cm3 obtained in an evanes-
cent wave spectroscopy experiment [187]. In this case, the experimental conditions are
rather similar to our work and the agreement is within the given uncertainties.

With increasing number density the line also shifts linearly to lower frequencies as
shown in Fig. 7.5(b). The gradient of the line shift is determined from a linear fit to be
∆tot/N = 2π×(−0.25±0.07)×10−7 Hz cm3. Two mechanisms are known to contribute
to a density dependent shift in a thermal vapor: a collision induced shift ∆col and a
shift induced by dipole-dipole interactions ∆dd between the atoms. Further, the total
line shift ∆tot contains an offset for N → 0 attributed to atom-surface interactions
∆CP, hence,

∆tot = ∆CP + ∆col + ∆dd . (7.6)

The gradient of our line shift is consistent with the collisional shift of ∆col/N = 2π ×
(−0.25 ± 0.01) × 10−7 Hz cm3 for the Rb D2 line measured by Keaveney et al. [35],
assuming that the dipole-dipole contributions are negligible. The Lorentz–Lorenz shift
(7.3) would be ∆LL/N = 2π × −0.728× 10−7 Hz cm3 for the Rb D2 line. One has
to be aware, that the local field leading to eq. (7.3) was calculated by Lorentz for
a homogeneous and isotropic crystal [176]. However, the penetration depth of the
probe field outside the waveguide is on the order λ/2π, so the local field is not fully
developed in this situation [188]. Furthermore, atom-surface interactions introduce
additional inhomogeneity in the probed region, as dipole-dipole interactions between
atom pairs normal to the waveguide surface are not resonant. This would lead to a
decreased ∆dd, like we observe in our experiments.

A detailed study of the dipole-dipole interactions would require a (DDA10-) simulation
of the scattering of the guided mode by the atomic vapor which accounts for correlations
and inhomogeneous (Doppler) broadening of the atoms [179, 180]. Further, all dipole-
dipole interactions taking place in the vicinity of the waveguide surface would have to
incorporate the macroscopic environment requiring an additional scattering simulation
for each pair of atoms. The implementation thereof is a complex task.

9 The line shape arising from transit effects is not exactly Lorentzian, as shown in section 1.2, but we
relate it here to the Lorentzian part, since we reject the Doppler part from the total Voigt profile
in order to obtain Γtot.

10Discrete dipole approximation.
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8 Two-photon waveguide
spectroscopy

The spectral linewidth of atoms in a thermal vapor is mostly dominated by Doppler
broadening, which is even enhanced in case of waveguide spectroscopy because of the
wave vector of the confined probe field being increased by the effective mode index
neff compared to free space. A common technique to determine the Doppler-free
linewidth1 is saturated absorption spectroscopy [73], where a strong pump field is
counter-propagating to the probe field at the same frequency and thus a velocity group
close to zero is addressed. This method is however not compatible with our integrated
spectroscopy setup due to interference effects, as described in more detail below.

Therefore, we perform two photon spectroscopy in a ladder-type configuration involving
the 5S1/2, 5P3/2 and 5D3/2 levels of Rb85. Two counter-propagating modes of different
wavelength allow us to investigate almost Doppler-free and mostly transit time broad-
ened line profiles in an integrated spectroscopy setup. Furthermore, this experiment
demonstrates evanescent waveguide spectroscopy of an excited state higher than the
5P level, which is more prone to atom-surface interactions.

8.1 Three-level system

We consider a three-level system in a ladder configuration as shown in Figure 8.1. A
probe field ωp with Rabi frequency Ω12 is applied to the |1〉 → |2〉 transition, separated
by ω12, with detuning ∆12 = ωp − ω12. Additionally, a coupling field ωc with Rabi
frequency Ω23 is applied to the |2〉 → |3〉 transition, separated by ω23, with detuning
∆23 = ωc − ω23. The decay rates of level |2〉 and |3〉 are given by Γ21 and Γ32, respec-
tively. Following the procedure of section 1.1 we obtain the equations of motion for

1 The residual line width is however saturation broadened depending on the intensities of both pump
and probe field.
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Figure 8.1: Three-level ladder system. a) Atomic level scheme. b) Real part (blue line)
and imaginary part (black line) of the coherence between level |1〉 and |2〉 as a
function of coupling detuning ∆23.

the density matrix elements in the rotating wave approximation:

∂

∂t
ρ̃11 = Γ21ρ̃22 − Im (Ω∗12ρ̃12) , (8.1a)

∂

∂t
ρ̃12 = −

(
Γ21

2
+ i∆12

)
ρ̃12 −

i

2
[Ω12(ρ̃22 − ρ̃11)− Ω∗23ρ̃13] , (8.1b)

∂

∂t
ρ̃13 = −

[
Γ32

2
+ i (∆12 + ∆23)

]
ρ̃13 +

i

2
(Ω12ρ̃23 − Ω23ρ̃12) , (8.1c)

∂

∂t
ρ̃22 = −Γ21ρ̃22 + Γ32ρ̃33 + Im (Ω∗12ρ̃12)− Im (Ω∗23ρ̃23) , (8.1d)

∂

∂t
ρ̃23 = −

(
Γ21 + Γ32

2
+ i∆23

)
ρ̃23 −

i

2
[Ω∗12ρ̃13 + Ω23 (ρ̃33 − ρ̃22)] , (8.1e)

∂

∂t
ρ̃33 = −Γ32ρ̃33 + Im (Ω∗23ρ̃23) . (8.1f)

Under the experimental conditions of this work equations (8.1) need to be modified
for two reasons: first, the close proximity to the waveguide surface leads to Casimir–
Polder shifts of the energy levels (see section 4.2). Second, in a thermal gas the Doppler
shift has to be incorporated into the detunings. If the probe and coupling beams are
counter-propagating, the altered detunings are

∆12 → ∆12 −∆21
CP −

ωp

c
v , ∆23 → ∆23 −∆32

CP +
ωc

c
v , (8.2)

where ∆ji
CP is the difference of the Casimir–Polder potentials of state |j〉 and state |i〉

and c is the speed of light in the given medium. The residual Doppler broadening of
the two-photon transition is determined by the frequency difference of the probe and
coupling fields. Hence, if the frequencies of the probe and pump fields are similar, the
two-photon signal is almost Doppler-free.
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8.2. Experimental realization

We now briefly discuss the spectroscopic features of a probe field propagating through
such a three-level medium. In absence of the coupling field, a weak probe field resonant
to the lower transition gets absorbed. By adding a strong coupling field resonant to
the upper transition, absorption of the probe field gets reduced. This behavior is
partially due to electromagnetically induced transparency (EIT) caused by destructive
interference in absorption - a comprehensive review on this phenomenon is presented in
[189]. Furthermore, the coupling field generates an Autler–Townes splitting [190, 191]
of states |2〉 and |3〉 which dominates the transparency feature if Ω23 is much larger than
the residual Doppler linewidth of the two-photon transition [192]. Figure 8.1 b) shows
the steady state solution of ρ̃12, eq. (8.1b), as a function of coupling field detuning ∆23

and ∆12 = 0. The imaginary part of ρ̃12 is proportional to the probe field absorption,
whereas the real part determines the dispersive properties of the medium. The effect
of the coupling field is to reduce the absorption around ∆23 = 0. This transparency
feature is associated with a steep dispersion in a region of low absorption.

If the |2〉 → |3〉 transition is not closed, population can be transfered to a hyperfine
ground state other than |1〉 via optical pumping. In this case, the coupling field can
also produce a transparency feature [193]. However, this process is only effective if the
interrogation time by the probe field is much larger than the lifetimes of the upper
states. Because this condition is not fulfilled for thermal atoms in the evanescent field
of a waveguide, we can neglect this pumping effect in our experiments.

8.2 Experimental realization

For this experiment, we use the Rb85 transitions shown in Figure 8.2 a). The 780 nm
probe light is locked to the 5S1/2, F = 3→ 5P3/2, F = 4 transition using DAVLL [194]
in a reference vapor cell, while the 776 nm coupling light is scanned over the 5P3/2,
F = 4 → 5D3/2, F = 3, 4 transitions. The hyperfine splitting between the F = 3
and 4 levels in the 5D3/2 state is 2π × 18.6 MHz [195] and the natural linewidth is
about 2π×0.66 MHz [196]. The probe and coupling fields are counter-propagating and
have similar wavelengths which results in an almost Doppler-free two-photon signal.
Nevertheless, the large transit time broadened linewidth implies a contribution of atoms
with a large range of non-zero longitudinal velocities to the two-photon signal.

8.2.1 Photonic circuit and experimental procedure

A schematic of the two-photon spectroscopy device is shown in Figure 8.2 b). The
whole device is covered with a 600 nm thick HSQ layer except for a section of length
l = 1 mm where the atoms can interact with the evanescent light fields. The circuit
consists of ridge Si3N4 waveguides of height h = 175 nm and width w = 450 nm. A
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Figure 8.2: Two-photon spectroscopy. a) Relevant transitions of Rb85. b) Schematic of the
photonic circuit which allows for counter-propagating modes of the probe and
coupling fields.

relatively narrow width was chosen in order to slightly increase the evanescent decay
length at the side walls of the core (γx = 94 nm instead of γx = 81 nm for a w = 1100 nm
waveguide). The 780 nm probe light is injected into the waveguide via grating coupler
1. After passing the uncoated section, the probe light is split into two arms via a 50:50
Y junction. Each arm is connected to an individual grating coupler, where the 776 nm
coupling light is injected into coupler 2 and the probe light is collected from coupler
3. In doing so, the probe and coupling modes are counter-propagating in the uncoated
section, whereas the probe light can be detected without being directly spatially over-
lapped with the input coupling beam. However, since the input power of the coupling
beam is much larger than the output power of the weak probe light, a fraction of the
scattered coupling light is collected together with the probe light from port 3. The
776 nm coupling light can be sufficiently suppressed using a narrow 780 nm bandpass
filter2 in front of the PMT. When performing saturated absorption spectroscopy with
this device, the pump light (which would replace the coupling light from above) can
not be suppressed via frequency filtering since it has the same wavelength as the probe
light. Therefore, potential lamb dips in the probe signal are masked by strong interfer-
ence features when scanning the laser frequency which makes this spectroscopy method
inapplicable in our setup. To improve the signal to noise ratio of the recorded spec-
tra we modulate the amplitude of the 776 nm light using an acousto-optic modulator
(AOM) and extract the probe signal using a lock-in amplifier.

2Semrock MaxLine LL01-780-12.5
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Figure 8.3: Probe transmission signal of a w = 450 nm waveguide with counter propagating
coupling field (black curve) and corresponding Monte Carlo Simulation (red
curve). For the simulated spectrum, the center frequency has been shifted by
+2π×164 MHz to the center position of the measured feature and the amplitude
is normalized for a better comparison between the experimental and simulated
line shapes.

8.2.2 Results

An exemplary two-photon spectrum obtained with the photonic circuit described above
is shown in Figure 8.3 for an atom density of N ≈ 5× 1013 cm−3. The probe and
coupling input power3 were set to 70 nW and 400 µW, respectively. Assuming input
coupling losses of ∼ 10 % these powers correspond to Rabi frequencies of Ωp/2π ≈
48 MHz and Ωc/2π ≈ 528 MHz at the position where the evanescent field drops to its
1/e value4. The probe signals shows a transmission feature with a total line width
(FWHM) of ∼ 2π × 860 MHz and is asymmetric with a tail towards lower coupling
frequency. Note, that both transitions involving the 5D3/2, F = 3 and F = 4 levels
contribute to the signal, however, the hyperfine splitting of 2π × 18.6 MHz can not be
resolved because of the large line width. The line width is smaller than in the Doppler
broadened D2 spectra (FWHM∼ 2π×1300 MHz) but still larger than the purely transit
time broadened line width of 2π × 440 MHz obtained by Monte Carlo simulations,
as described below. This additional broadening is partially due to distortion of the
line shape caused by atom-surface interactions, which we will examine in the next
paragraph. Furthermore, the large Rabi frequencies required to observe the two-photon
signal give rise to power broadening.

The peak of the feature is shifted by −2π × 90 MHz with respect to the center of

3Power of the laser focused onto the grating coupler.
4 The peak Rabi frequencies at the surface of the waveguide are Ωp/2π ≈ 132 MHz and Ωc/2π ≈

1436 MHz.
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gravity of the 5D3/2, F = 3, 4 EIT signals in the reference cell. This red shift is
attributed to Casimir–Polder (CP) interactions of the atoms with the nearby surfaces,
see section 4.2. Atoms at different positions within the evanescent field experience
different CP shifts, leading to the asymmetric line shape. The CP shifts are quite
different for the involved energy levels, since the 5D3/2 state has a larger polarizability
as the 5P3/2 state. Additionally, for the 5D3/2 a larger number of virtual transition to
nearby states exists. For atoms close to the top surface of the waveguide5 the effective
C3 coefficient6 of the 5S1/2 → 5P3/2 transition is given by C3 = 1.18 kHz µm3, whereas
for the 5P3/2 → 5D3/2 transition we have C3 = 14.3 kHz µm3. These values have been
obtained using the infinite plane approach, see section 4.2.1.

To model the 780 nm probe transmission in presence of a counter-propagating 776 nm
coupling mode, we performed Monte Carlo simulations as detailed in section 4.3 ex-
tended by the optical Bloch equations (8.1) of a three level system. This simulation
allows us to take into account the atomic motion and effects of spatial dispersion, as
well as the involved CP potentials and mode distribution for the specific waveguide
geometry. To obtain the probe field transmission, we use a different approach to the
one described in section 4.3.3 in order to account for any coherent effects involved in
EIT: the Monte Carlo simulation generates a time averaged position dependent local
susceptibility χloc(x, y, z) ∝ ρ̃12(x, y, z) for a set of detunings ∆776. Subsequently, we
calculate the complex propagation constant β of the waveguide with a cladding mate-
rial determined by χloc using COMSOL. The probe transmission signal for a waveguide
with an interaction region of length l can then be obtained via

T (∆776) = exp [−2β(∆776)l] . (8.3)

The red curve in Figure 8.3 shows a fit of the simulation result to the measured trans-
mission spectrum, where the absorption level, feature amplitude and center frequency
position are free fit parameters. A frequency shift of +2π× 160 MHz of the simulation
result is required to match the experimental data, which means that the simulation
predicts a larger red shift than experimentally observed. This discrepancy might be
caused by uncertainties in the calculation of the CP potentials for the 5D3/2 state. Due
to the larger polarizability and the increased number of relevant transitions compared
to the 5P3/2 state, this state is more sensitive to the actual condition of the waveguide
surface which is by far not well defined in this experiment. Moreover, the physical
properties of the involved materials might not exactly agree with the material data
utilized in this calculation in the relevant wavelength ranges. While the line width
of ∼ 2π × 700 MHz is slightly smaller than in the experiment, the overall line shape
including the asymmetric tail on the red side of the spectrum is well reproduced.

5 These atoms “see” a material stack of 7 nm Al2O3, 175 nm Si3N4 and 1.1 mm SiO2.
6 Recalling eq. (4.27), the CP shift of an atomic level at a distance z to the surface is given by
UCP(z) = −Cα

zα , where close to the surface (z � λ/2π) α ≈ 3. The quantity which is actually
measured in the experiment is the relative shift of the energy levels i, j involved in the transition.

Hence, the effective C3 coefficient is a constant given by C3 =
[
U j
CP(z)− U i

CP(z)
]
z3.
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Although a sub-Doppler line width could be achieved in this experiment, there are
possibilities to further decrease the line width of the spectroscopy signal. Improvement
of the modulation, filtering and detection techniques should allow to obtain a signal
at lower probe and coupling powers, thus reducing the effect of power broadening. In
principle, transit time broadening could be diminished by increasing the waveguide
width and involving additional atomic transitions. For example, using a resonant
780 nm pump beam aligned in the vertical direction perpendicular to the waveguide
populates the 5P3/2 level of atoms which do not move substantially along the beam axis.
Starting from the 5P3/2 level, V-type EIT could be performed between the 5D3/2 and
5D5/2 levels using counter-propagating 776 nm modes within the waveguide. This way,
only atoms moving horizontally across the waveguide induce a transit time broadening,
which again depends on the waveguide width. Finally, it should be noted that in
reference [41] a transit time limited line width of ∼ 2π × 300 MHz has been observed
in a 500 nm wide Si3N4 waveguide via the same excitation scheme as described above.
However, they do not report any effects due to atom-surface interactions, which is
surprising.
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Summary

In this thesis, we have presented the integration of thermal alkali atoms with chip-based
photonic waveguide structures. This hybrid approach combines the best of two worlds:
on the one hand, alkali vapor cells offering a simple and flexible framework to study and
utilize the properties of atoms, which represent a quantum system with well defined
and narrow transition frequencies. On the other hand, integrated photonic circuits
allowing for dense arrays of miniaturized optical devices on a chip, which enable the
manipulation of light on a sub-micron scale within a stable and scalable architecture.
The marriage of these two disparate technologies provides a platform for a wide variety
of practical applications but also for fundamental studies of light-matter interaction.
We have undertaken the first steps to realize this idea at our institute and developed
considerable experimental and theoretical know-how which is collected in this work.

The experiments conducted during this thesis were based on Si3N4 photonic structures
realized on a glass chip which was anodically bonded to a Rb vapor cell, except for
the measurements with the Mach–Zehnder interferometer, which were performed in a
vacuum chamber. The waveguide structures were equipped with grating couplers to
couple between the guided and the free space mode, allowing us to flexibly arrange and
address devices on the two dimensional chip surface. We could arbitrarily define vol-
umes for the evanescent atom-light interaction to take place by masking the remaining
chip with an SiO2 layer. These waveguide cells already constitute fairly small devices
which are convenient to work with and offer a huge potential for even further miniatur-
ization. Several photonic circuits realized on different chips have been investigated in
combination with Rb vapor during the course of this thesis. A summary of the results
obtained with the individual devices is presented hereafter.

Ridge waveguide transmission

As a first proof of principle and to characterize the atomic vapor spectroscopy with
integrated structures we performed transmission measurements using a simple ridge
waveguide. A frequency scan over the Rb D2 line revealed absorption of the guided light
via the evanescent tail of the mode at moderate atom densities. The spectra exhibit
additional line broadening compared to conventional free space spectroscopy. This is
due to the larger wave vector of the guided mode which leads to enhanced Doppler
broadening, and because of the short interaction time of the atoms with the evanescent
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field which reveals itself in transit time broadening. Moreover, the entire spectrum
is red shifted with respect to a reference measurement, which is a manifestation of
Casimir–Polder interactions of the atoms with the dielectric surface, a consequence of
probing the atoms in close proximity to the waveguide.

To model this system numerically, we have adapted the effective susceptibility method
known from the work on selective reflection spectroscopy. This allowed us to simu-
late the light propagation in a waveguide surrounded by a homogeneous macroscopic
medium with a complex refractive index corresponding to the properties of the Rb
vapor including quenching collisions with the waveguide surface. Using this model, we
could reproduce the ridge waveguide transmission spectra with excellent agreement.
The same method also proved to be appropriate for different devices, if the specific
waveguide geometry is not a critical aspect.

After exposing the chip to an alkali atmosphere, we witnessed transmission losses of
the structures. A discussion within this work indicates, that the propagating mode
is most likely attenuated by metallic alkali deposit on the waveguide surface. Quite
some improvement could be achieved via an Al2O3 protection layer, although a residual
attenuation remained.

Integrated Mach–Zehnder interferometer

Besides the absorptive properties of the atomic vapor, we also determined the asso-
ciated phase shift of the guided mode. To perform phase sensitive measurements, we
utilized an integrated MZI comprised of two waveguide arms, one of which is exposed
to the atoms. The obtained spectra clearly exhibit dispersive features dictated by the
real part of the atomic vapor susceptibility. Again, the experimental data could be very
well reproduced using the effective susceptibility model. With this, we were able to
extract a phase shift of up to 0.15×π caused by the surrounding atoms at low density.
Because of the mentioned losses due to Rb deposit on the waveguide surface, we did not
further increase the density to avoid condensation on the chip. This experiment was
performed in the vacuum chamber setup with relatively poor temperature control and
this chip did not have a protection coating such that we kept the reservoir temperature
well below the chamber temperature.

Coupling to ring resonators

In the next step, we investigated the interaction of thermal Rb atoms with photonic
ring resonators in view of potential scalable atom-cavity systems. Our first attempts
have been unsuccessful, since increased transmission losses after Rb exposure caused the
resonances to disappear. An additional 9 nm thick Al2O3 protection coating enabled us
to study these devices subsequently, although with residual round trip attenuation. By
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varying the chip temperature, we could thermally tune a ring resonance of a resonator
with 80 µm radius to the Rb D2 transition and observe coupling of the atoms to the
resonant mode. An entire frequency scan of the ring resonance was performed to
characterize the interaction between the atoms and the ring mode at different positions
of the ring resonance. Thereby, the influence of both real and imaginary part of the
vapor’s complex refractive index was observed in the transmission spectra, which were
again very well reproduced with the effective susceptibility method.

We further studied the saturation behavior of the atoms when coupled to the ring
mode. A power dependent measurement series revealed no substantial lowering of
the saturation threshold in case of a resonant ring, compared to an off-resonant ring
(essentially the bus waveguide). Therefore the intensity buildup in the ring and hence
the coupling strength were negligible in this device. This is explained by the remaining
losses due to Rb on the ring surface and the relatively large mode volume of this
resonator, which was chosen for a reasonable temperature tunability.

Following up on this, we discussed the performance of the ring resonator in the context
of cavity QED, where a cooperativity parameter of C ≈ 10−3 and a critical photon
number of n0 ≈ 1.3 have been determined. Clearly, this system is far from being in the
critical coupling regime. Therefore, we also discussed the feasibility to achieve strong
coupling with thermal atoms and integrated photonic structures with the outcome, that
the extremely small mode volume of photonic crystal cavities could provide a coupling
strength large enough to surpass the dephasing caused by the atomic motion.

Slot waveguides

The investigation of slot waveguides turned out to be quite complex but likewise very
educative. We designed devices with varying slot widths, with the intention to change
the intensity of the waveguide mode inside each individual slot, thereby altering the
coupling strength to the atoms. Transmission spectra of the Rb D2 line have been
recorded for each device and the line shape parameters have been extracted from the
corresponding Voigt fits. We witnessed variations in the line shifts, line widths and
amplitudes which were deviating from our original expectations.

To gain a better understanding of the actual behavior, a Monte Carlo simulation has
been developed, which accounts for the motion of the atoms around the specific wave-
guide geometry. We included the original cross sectional dimension of the devices
obtained from FIB/SEM measurements from which we also learned, that some of the
slots were not fully developed or not existing at all. Casimir–Polder potentials and
modified atomic decay rates have been calculated for the individual structures which
we incorporated into the simulation as well. For the limiting cases of a single strip
waveguide and a fully developed slot waveguide this model adequately reproduced the
line shifts and line widths of the measured transmission spectra. However, there was
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a discrepancy between experiment and simulations for the incompletely developed de-
vices. We have discussed several reasons these deviations, but could not draw definite
conclusions yet as there are still a couple of uncertainties left. These include, i.a., the
exact dimensions of the structures and their surface conditions, the ad- and desorp-
tion dynamics and the role of Rb deposits and how they affect the mode profiles, the
Casimir–Polder potentials and the surface dipole electric fields.

Furthermore, we have investigated atom-atom interaction at high densities within the
sub-wavelength confinement of these waveguides. The interaction manifests itself in a
line broadening and shift which both increase linearly with the atomic density. The
line broadening can be attributed to self broadening and its magnitude is in agreement
with the one observed in a comparable selective reflection experiment. However, the
magnitude of the line shift is not consistent with the prevailing theory on dipole-dipole
interactions and needs further clarification.

Two-photon spectroscopy

Using a two photon transition to the Rb 5D3/2 level, we performed evanescent spec-
troscopy with two counter-propagating modes in a waveguide. The similar wavelengths
of the probe and coupling fields resulted in a reduced Doppler width of the two-photon
signal. A residual line width of ∼ 2π × 860 MHz in comparison to the full Doppler
line width of ∼ 2π × 1300 MHz was determined. The width of the observed feature
is still dominated by transit time broadening and distortion of the line shape due to
atom-surface interactions. A further consequence of the atom-surface interactions is a
red shift of −2π × 90 MHz of the entire resonance. This shift is larger than the one
observed in the D2 spectra, since the excitation scheme here involves the higher lying
5D3/2 level, which is more sensitive to the presence of the dielectric surface. The asym-
metric two-photon feature could be reproduced by Monte Carlo simulations of the
three level system including the Casimir–Polder potentials for each involved energy
level, although with a discrepancy in the absolute line shift.
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After exploring the fundamental properties of this new type of atom-light interface,
there are still many challenges to be addressed in this system. Likewise, the large
potential of this approach indicates towards a multitude of exciting and revealing future
experiments.

Silicon photonics

At this time, the experiment is undergoing a change with respect to the material of the
photonic circuits. While the experiments performed in this thesis were based on Si3N4

structures, the performance of silicon (Si) photonics in combination with Rb vapor will
be investigated with the next chip generation. In the field of integrated optics, a huge
effort is put into the research on Si photonics [197], driven by the idea of monolithic
integration with the existing CMOS7 technology. Hence, a wide variety of devices with
extraordinary quality compared to other material systems is available. Since Si is not
transparent for 780 nm light, a different strategy has to be implemented to interface Rb
atoms with the guided mode. The current idea is to populate the 5P3/2 level with a free
space pump laser via the D2 line and probe the 5P3/2 → 4D5/2 transition at 1529 nm
for which Si is transparent, see Figure 8.4 a). First proof of principle experiments
based on total internal reflection inside a Si waver bonded to a vapor cell approved the
feasibility of this approach. An exemplary absorption signal of the 1529 nm probe light
transmitted through the waver from this experiment is shown in Figure 8.4 b).

Besides the benefits to be gained from the established Si photonics community, the
1529 nm transition wavelength of the probe light is also at the edge between the
telecommunication S-band and C-band8 such that potential devices would be read-
ily compatible with the existing global fiber network infrastructure.

Another advantage of this approach lies in the refractive index of Si (n ∼ 3.5) which
is larger than for Si3N4 (n ∼ 2). This enables stronger light confinement and hence
larger coupling strength. The coupling strength is even further increased by the nearly
two times larger dipole matrix element of the 5P3/2 → 4D5/2 transition (d = 10.63 a0e

7 Abbreviation for complementary metal-oxide-semiconductor, the current technology used in mi-
croprocessors and other digital electronic circuits.

8 S-band: 1460 nm to 1530 nm; C-band: 1530 nm to 1565 nm [198].
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Figure 8.4: Two-photon spectroscopy using a Si waver bonded to a Rb vapor cell. a) Level
scheme for the excitation. The 5P3/2 level is pumped with a free space 780 nm
beam, while the 1529 nm light propagates in the Si and is scanned over the
5P3/2 → 4D5/2 transitions. b) The signal shows absorption of the evanescent
infrared light. The line width is Doppler- and transit time broadened and
contains a series of hyperfine transitions.

[199]) compared to the D2 transition (d = 5.96 a0e [199]). These points are especially
interesting in view of potential cavity QED experiments.

Diminishing Rb induced transmission losses

In all experiments so far, we witnessed increased transmission losses after exposing the
waveguide structures to Rb vapor, even with an Al2O3 protection coating, albeit to
a lesser extent. This issue needs to be addressed, particularly if high quality factor
cavities are to be built.

Choosing different core materials or protection layers seem the most obvious things
to try. Potentially even different atomic or molecular species. Switching to silicon
photonics might improve this situation. However, if ionic bonding of the Rb atoms to
the oxygen atoms of the waveguide surface and the metallic properties of the adlayer
are responsible for the losses, on has to be aware that Si develops a native oxide layer
at ambient conditions [200] just as it is the case for Si3N4. Even on clean Si surfaces,
alkali adsorption leads to metalization of the surface [201], which might cause residual
ohmic losses.

Clearly, a way more thorough understanding of the underlying surface physics and
chemistry than the present one are necessary in order to identify an efficient solu-
tion. This involves systematic studies of the actual attenuation mechanism as well as
potential desorption strategies.
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Outlook

Increasing the interaction time

Probing thermal atoms on a sub-micron scale naturally implies very short interaction
times which is detrimental for high precision sensing or cavity QED applications. A
common technique to in increase the interaction time in clock or light storage experi-
ments is the use of buffer gases and anti-relaxation coating. First estimations suggest
however, that extremely high buffer gas pressures would be required in order to extend
the stay of atoms in these small volumes, which would certainly involve additional de-
coherence effects. Nevertheless, one should analyze this topic more closely and consider
various types of buffer gases. Perhaps, a balance can be found to minimize decoherence
due to motion or collisions.

A different, maybe more promising strategy is proposed in reference [40]. Here, the
small waveguide mode is converted to a larger one via a taper section and subsequently
released into the vapor as a radiating mode via a grating coupler. Applying a reflection
coating to the cell substrate opposite to the optical chip, one could couple the light
which has passed the vapor back into a guided mode using the same (or a different)
grating coupler. Thereby, one could increase the interrogation volume significantly
while still keeping most of the benefits of integrated photonic circuits. Of course,
this approach is not very useful with regards to strong coupling, however, it would
allow narrower line widths for sensing and referencing applications. In this respect,
the counter-propagating back reflected beam would also permit measurement of sub-
Doppler features. Finally, the transformation into a free space mode and back might
render possible to probe Rydberg atoms with integrated optics, which would broaden
the range of sensing applications. It has been shown, that it is feasible to excite
Rydberg atoms in a thermal vapor in less than a micron distance to a surface [34].
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A Wave equation

The wave equation determines the propagation of electromagnetic waves through a
medium or in vacuum. It is derived from Maxwell’s equations, which are given by [162]

∇ ·E =
ρ

ε0
, (A.1a)

∇ ·B = 0 , (A.1b)

∇×E = −∂B
∂t

(A.1c)

∇×B = µ0

(
J + ε0

∂E

∂t

)
, (A.1d)

where ρ is a charge density, J is a current density, ε0 is the vacuum permittivity and
µ0 is the vacuum permeability. By substituting eq. (A.1a) into the curl of eq. (A.1c)
we arrive at the inhomogeneous wave equation for the electric field(

1

c2

∂2

∂t2
−∇2

)
E = −

(
1

ε0
∇ρ+ µ0

∂J

∂t

)
, (A.2)

where c2 = (ε0µ0)−1.

Vector and scalar potentials

The wave equation (A.2) has a rather complicated form which can be simplified by the
introduction of electromagnetic potentials. The magnetic vector potential A and the
electric scalar potential Φ are defined as [162]

B = ∇×A (A.3a)

E = −∇Φ− ∂A

∂t
. (A.3b)

Using this definition, the four Maxwell equations reduce to two equations:

∇2Φ +
∂

∂t
(∇ ·A) = − ρ

ε0
(A.4a)

∇2A− 1

c2

∂2A

∂t2
−∇

(
1

c2

∂Φ

∂t
+∇ ·A

)
= −µ0J . (A.4b)
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Appendix A. Wave equation

The set of equations is now reduced, though they are still coupled and the wave term
has a complicated form. However, the definition of the potentials in eq. (A.3) is not
unique but there is gauge freedom. A common gauge condition for the calculation of
electromagnetic waves is the Lorenz condition:

∇ ·A +
1

c2

∂Φ

∂t
= 0 . (A.5)

Using eq. (A.5) with eq.s (A.4) leads to the uncoupled inhomogeneous wave equations
for the potentials: (

∇2 − 1

c2

∂2

∂t2

)
A = −µ0J , (A.6a)(

∇2 − 1

c2

∂2

∂t2

)
Φ = − ρ

ε0
. (A.6b)

We now consider a monochromatic polarization density given by P (r, t) = P (r)e−iωt.
This time varying polarization creates an effective current density J = ∂P /∂t and
eq. (A.6a) yields (

∇2 + k2
)
A = iωµ0P , (A.7)

which is the (inhomogeneous Helmholtz) wave equation used in section 4.1 to calculate
the electric field due to an arbitrary monochromatic dipole polarization.

From the Lorenz condition eq. (A.5) we get for monochromatic potentials

∇ ·A = iωµ0ε0Φ . (A.8)

Using this result together with eq. (A.3b) we can calculate the electric field, once we
know the vector potential:

E = iω

(
A +

1

k2
∇∇ ·A

)
. (A.9)

A.1 Green’s function for the wave equation

To calculate the electric field for the problem stated in section 4.1, we first need to
solve the wave equation eq. (A.7). The method of Green’s function will be used to
accomplish this task. A detailed treatment can be found for example in the book on
dyadic Green’s functions by Tai [202].

Since the geometry under consideration is translationally invariant in the xy plane and
we chose the plane of incidence to be the xz plane, the polarization can be separated
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into a scalar function P (z) and a phase factor exp(iαkx). Therefore the corresponding
Green’s function solves(

∂2

∂z2
+ k2

)
G(z, z′) = δ(z − z′) exp(iαkx) , (A.10)

and it must also satisfy the same boundary conditions as the solution A(r) does. In
eq. (A.10), the Green’s functionsG(z, z′) can be interpreted as the influence experienced
at point z caused by a point source at z′.

We can write eq. (A.10) away from the source point z′ as(
∂2

∂z2
+ k2

)
G(z, z′) = 0 , z > z′ , (A.11a)(

∂2

∂z2
+ k2

)
G(z, z′) = 0 , z < z′ . (A.11b)

The general solution of equations (A.11) is

G(z, z′) = c1 exp(ikz) + c2 exp(−ikz) . (A.12)

Taking into account the angle dependence of the x and z components of the wave
vector (determined by α and ξ, see section 4.1), we obtain for eq (A.10) the general
solution

G(z, z′) =

{
c1 exp(iξkz + iαkx) , z > z′ ,

c2 exp(−iξkz + iαkx) , z < z′ ,
(A.13)

where the Sommerfeld radiation condition [203] has been used to determine the proper
sign in the exponential function. This condition mathematically excludes unphysical
incoming waves from infinity and is given by

lim
z→±∞

(
±∂G
∂z
− ikG

)
= 0 . (A.14)

To determine the coefficients c1, c2, we want to see how G(z, z′) behaves around the
point z′. Formal integration of equations (A.11) gives in each case

∂

∂z
G(z, z′) = Θ(z − z′) + f(z) , (A.15)

where Θ(z − z′) is the Heaviside step function1 and f(z) is some continuous function.
This means that the derivative of G must have a jump discontinuity at z′, whereas

1The distributional derivative of Θ(z − z′) is δ(z − z′).
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further integration of eq. (A.15) yields that G itself must be a continuous function.
Hence we get the connection conditions at z′:

lim
z→z′+

∂G

∂z
− lim

z→z′−

∂G

∂z
= 1 , lim

z→z′+
G− lim

z→z′−
G = 0 . (A.16)

Using these conditions leads to

G(z, z′) =

{
1

2iξk
exp(iξk(z − z′) + iαkx) , z > z′ ,

1
2iξk

exp(−iξk(z − z′) + iαkx) , z < z′ ,
(A.17)

which can be combined to

G(z, z′) =
1

2iξk
exp(iξk|z − z′|+ iαkx) . (A.18)
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B Asymmetric pseudo Voigt function

In a conventional vapor cell experiment, the line shape of the absorption profile is given
by a Voigt function. However, if atom-surface interactions are relevant, the resonance
frequency of an atom at a certain distance is shifted relative to the resonance frequency
of an unperturbed atom. When we probe an ensemble of atoms close to a surface, the
signal therefore will be a sum of many individual lines which are shifted according to
the distribution of atoms-surface distances. This results in an asymmetric line shape
which can be approximated by an asymmetric pseudo Voigt function, given by [165]:

S(∆) = (1−m)

√
4 ln(2)

πγ(∆)2
exp

[
−4 ln(2)∆2

γ(∆)2

]
+
m

2π

γ(∆)

γ(∆)2/4 + ∆2
. (B.1)

Equation (B.1) constitutes a sum of a Gaussian and Lorentzian function where the
line width is replaced by a sigmoidal function γ(∆), introducing the asymmetry. The
parameter m controls the relative weight of the Gaussian and Lorentzian contribution
and γ(∆) is given by

γ(∆) =
2γ0

1 + exp[−a(∆− b)]
, (B.2)

where γ0 is the full width half maximum (FWHM) of S in the symmetric case, a is the
asymmetry parameter and b shifts the sigmoid relative to zero detuning.

In order to get an estimate for the deviation between the pseudo Voigt approximation
and the convoluted Voigt function we compare both versions in Figure B.1 and show
the residuals. The deviations get the most significant when the Lorentzian and the
Gaussian line widths become comparable, but are nevertheless in a reasonable range.
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Figure B.1: Pseudo Voigt function (red dotted line) vs. real Voigt function (black solid line)
for different ratios of Gaussian width ΓG to Lorentzian width ΓL. a) ΓG = 0.
b) ΓG = 1/2ΓL. c) ΓG = ΓL. The lower panels show the difference between the
two functions.
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C Further information on slot
waveguides

This chapter provides some additional investigations on the slot waveguides presented
in chapter 7.

C.1 Likelihood of higher order modes

We begin the discussion on higher order modes at the input section of the device. Light
is coupled into a ridge waveguide (width w = 650 nm and height h = 180 nm) via a
grating coupler and guided to a Y splitter which transforms the ridge waveguide into
a slot waveguide. The coupler, ridge waveguide and splitter are covered with a 800 nm
thick layer of HSQ1. To determine which modes are guided in the ridge waveguide
section we performed a mode analysis using COMSOL, the results of which are shown
in Figure C.1 a). At a width of w = 650 nm the fundamental TE mode and the
fundamental TM mode are supported with a large difference in the effective indices.
Modes below the cutoff (determined by the refractive index of the substrate) are not
guided but scattered into the substrate. The TE1 mode is very close to the cutoff very
likely not guided. Furthermore, the effective index separation to the TE mode is quite
large, therefore the wavelengths required to fulfill the coupling condition at the grating
are well separated for a fixed grating period and angle. Since the polarization of the
input beam was set be parallel to the grating, the TM mode is highly suppressed at
the grating coupler. Additionally, the different effective index would require a different
coupling angle or wavelength. Due to the polarization control of the input light and
the separation of the waveguide modes in their effective index, it can be assumed that
light is only coupled into the fundamental TE mode of the ridge waveguide.

The ridge waveguide is continuously transformed into a slot waveguide via a Y split-
ter with a length of 10 µm within the HSQ covered section. Effective indices of the
supported modes of the uncovered slot section are shown in Figure C.1 b) where the
cross sections inferred from the FIB/SEM analysis were taken into account. The de-
vices with wd = 30 nm and wd = 40 nm which do not exhibit a slot support the
fundamental TE mode, and much closer to cutoff, also the TM and TE1 mode. For

1HSQ = Hydrogen silesquioxane.
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Appendix C. Further information on slot waveguides

Figure C.1: Higher order modes in the investigated slot waveguide devices. a) Effective
mode indices neff of supported modes in a h = 180 nm ridge Si3N4 waveguide
with HSQ cladding versus core width w . b) Effective mode indices of supported
modes in the slot region for the different design widths wd. c) Mode profiles
of supported modes in the wd = 75 nm slot: fundamental TE (i) , TE1 (ii),
and fundamental TM mode (iii). For better visibility the field strength is
individually normalized for the different modes.

50 nm ≤ wd ≤ 125 nm a slot is gradually developed until a fully opened slot is achieved
for devices with wd ≥ 150 nm. The mode profiles of the supported modes for the ex-
ample of the wd = 75 nm device are shown in Figure C.1 c). While the slot develops,
the TE0 mode is squeezed into the slot which leads to a lowering of the effective index.
With the slot width growing further, the mode is more and more bound to the individ-
ual Si3N4 strips and approaches the TE1 mode which has its field maxima within the
two strips. At further separation of the strips, corresponding to a larger slot width, the
TE1 mode merges into two separated fundamental TE modes of the independent strip
waveguides. The TM mode also gets split with increasing slot size and finally squeezed
out of the structure into the substrate since the two strips separately do not support a
TM mode.

Since we conclude from the above considerations that we most likely excite the funda-
mental TE mode in the ridge waveguide, we now consider how this mode is transformed
during the splitting into the slot section. The effective mode index of the TE0 mode
gets continuously transformed from the value in the ridge waveguide to the value of
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C.1. Likelihood of higher order modes

the TE mode in the slot section during the waveguide splitting, while there is a large
mismatch to the higher order modes. Additionally polarization conversion would be
required to transform the TE0 mode into the TM0 mode. To further analyze the mode
conversion in the splitter section, we performed 3D simulations of this segment using
COMSOL. First, it was confirmed that the mode profiles and effective indices after the
splitter agree with the ones calculated for the slot section separately (Figure C.1 b) and
c)). Additionally, the power conversion into the individual modes in the slot section
was monitored. The results for the individual devices are shown in Figure C.2 a). The
majority of the input mode power is converted into the TE0 mode in the slot, whereas
only a negligible fraction is converted into the higher order modes. The remaining
losses are caused by either back-scattering, e.g., at the point where the waveguide
splits and the end of the HSQ cover, or due to out-of-plane scattering losses. Hence,
the transformation into TE0 slot mode strengthens the argumentation above that this
is the only relevant mode in the experiment.

Experimentally, multi-mode contributions can be identified in the transmission profile
of the coupling structures of the photonic circuits. The grating period enables coupling
between light falling on the coupler and a desired waveguide mode with a certain
effective refractive index. The transmission spectrum of a particular waveguide mode
shows a Gaussian-like profile in this configuration. Thus for a waveguide that only
supports a single mode, only a single Gaussian-like peak is observed, when scanned
over a wider wavelength range. In contrast, several of such peaks can be observed
when multiple modes are supported in a waveguide. After the fabrication, transmission
spectra were recorded over a wide spectral range using a broadband white light source in
combination with a spectrometer. For the slot waveguide devices, the transmission peak
of the grating couplers was centered at a wavelength of 781 nm with a width of ∼ 30 nm.
Only a single transmission peak was observed and within this peak and no beating
between different modes was found. The transmission spectra have been compared to
reference devices with single mode waveguides without a slot. No additional features
in the spectra were found when comparing the slot devices to solid core single mode
waveguides. Furthermore, ring resonator devices with identical grating couplers and
the same width of the bus waveguide and resonator as the ridge waveguide above have
been investigated. Here, only a single set of resonances was observed , indicating that
light is coupled into a single mode only. In presence of further modes, additional sets
of resonances with different free spectral range would have been observed owing to the
difference in the effective mode indices.
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Figure C.2: Simulation of mode conversion at the Y splitter of a slot waveguide device. a)
Power of the individual modes in the slot section normalized by the input power
of the TE0 mode in the ridge waveguide for the design slot widths wd of the
experiment. The ordinate is divided into a logarithmic scale in the lower part
and a linear scale in the upper part. b) Top view of the simulation geometry
for the wd = 75 nm device showing the y-component of the electric field. At
port 1 the TE0 mode is excited in the ridge waveguide while the power of each
mode in the slot section is monitored at port 2. The dashed line indicates the
end of the region which covered with HSQ.
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C.2. Influence of a metallic Rb layer on the mode profile

Figure C.3: Simulated mode profiles of the wd = 75 nm slot waveguide covered with a
metallic Rb layer. The plots show a close-up of the slot region. a) Without
Rb. b) With a 1 nm and c) 7 nm thick Rb layer. The electric field amplitudes
in all panels are normalized to the maximum field amplitude in c).

C.2 Influence of a metallic Rb layer on the mode profile

Here we investigate how a metallic Rb layer covering a slot waveguide changes its mode
profile. As discussed in section 4.5, we have observed attenuation of the waveguide
transmission when exposing them to an alkali vapor atmosphere. This might be caused
by metallic Rb adsorbed on the waveguide surface. If this assumption is valid, a
continuous Rb layer of ∼ 1 nm thickness could give rise to the typically observed
transmission losses.

The mode profiles of the wd = 75 nm slot waveguide have been simulated for a 3D
geometry using COMSOl, were we have covered the entire waveguide surface with a
metallic layer. This layer has been implemented via transition boundary conditions
with the dielectric function of Rb at λ = 780 nm [125]. A close up of the mode profiles
in the slot region for different thicknesses of the Rb layer are shown in Figure C.3.
Panel a) shows the original mode without any Rb coating for comparison. In panel b) a
thickness of 1 nm was assumed, corresponding to the layer thickness required to explain
the average transmission losses observed in our other experiments (see section 4.5). In
this case, the mode does not significantly change compared to the uncovered waveguide.
The relative difference in the electric field amplitude is ∼ 3 % in the corners of the
waveguide and well below 1 % elsewhere. Finally, panel c) shows the mode profile for
a 7 nm thick Rb layer. Here, the local field enhancement in the corners of the slot are
obvious, however the major part of the mode profile does not change considerably.

These results suggest that a realistic Rb layer thickness of ∼ 1 nm cannot alter the
mode profile of a slot waveguide sufficiently the discrepancies between experiment and
Monte Carlo simulations reported in section 7.2 for the underdeveloped devices. A
layer thickness of ∼ 7 nm, leading to noticeable modifications of the mode profile
would involve additional transmission losses of ∼ 22 dB which was not observed in the
experiment.
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Figure C.4: Saturation in slot waveguides. a) Input power Psat required to achieve satu-
ration of the atomic transition versus design slot width wd. The inset shows
the power dependent Lorentzian line width obtained with the wd = 100 nm
slot. b) Fraction of the mode power in the atomic vapor region. The red
curve corresponds to the inside of the slot, the blue curve corresponds to the
remaining cladding and the black curve is the total power fraction outside the
waveguide (slot + remaining cladding). The inset illustrates a cross section of
the waveguide with color codes of the domains.

C.3 Slot width dependent saturation behavior

The key feature of slot waveguides is the large optical intensity inside the slot region
which overlaps with the atomic vapor. One would therefore expect saturation of the
atomic transition to occur at lower input power as compared to a conventional ridge
waveguide, where the atoms only interact with the tail of the evanescent field.

To verify this assumption we recorded transmission spectra of the Rb D2 line over a
range of input powers for each slot waveguide with different design width wd. By fitting
these spectra with the model described in section 7.2.1 and assuming a Doppler width
corresponding to the effective index we can extract the power dependent Lorentzian line
width as shown in the inset of Figure C.4 a) for the example of the wd = 100 nm device.
We obtain the input power Psat at which saturation occurs by fitting the function

ΓL = Γ
√

1 + Pin/Psat (C.1)

to the data. Here, Γ is the initial line width, mostly determined by transit time
broadening. The results of these fits for the individual devices are plotted in Figure C.4
a). The wd = 30 nm device, which is actually a ridge waveguide and does not exhibit a
slot, requires the lowest power to saturate the transition. Conversely, the wd = 100 nm
device with an almost completely developed slot requires the largest input power. This
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behavior is in contrast to the previous assumption that saturation should be achieved
with lower powers in a slot waveguide than in a ridge waveguide.

Further insight can be gained from Figure C.4 b) which shows simulation results of
how the mode power is distributed within different domains of the waveguide geometry.
Here, the quantity η is determined by

η =

∫∫
C

Im(x, y)dxdy

+∞∫∫
−∞

Im(x, y)dxdy

, (C.2)

where Im is the intensity distribution of the mode and C denotes the area of a certain
domain (see section 2.1 for details). The total power fraction in the vapor region,
i.e. in the slot and the remaining cladding, is increasing when the slot starts to develop
(wd ≥ 50 nm) and slightly decreases for larger slot widths since the mode is stronger
confined to the individual strips. Moreover, the separation into individual domains
reveals that the power fraction in the slot is always smaller than in the remaining
cladding. Therefore, the largest portion of the waveguide transmission signal, from
which ΓL is derived, originates from the outer cladding and only a small fraction from
within slot. Also the transit time broadening in the narrow slots (wd ≤ 125 nm) is
larger than in the remaining cladding, which increases the saturation intensity inside
the slot. Based on these facts, the trend of Psat roughly following the inverse power
fraction in the cladding (blue curve) appears reasonable. To separate the contributions
from atoms inside the slot from the remaining cladding one could mask the individual
strips with an SiO2 cladding, as for example shown in Figure 6.9 d).

C.4 Surface dipole layer

As we have discussed in section 4.5, the initial layer of adsorbed alkali atoms on oxide
surfaces is relatively strongly bonded. This bond is associated with a charge transfer
between the adatom and the surface atom(s) resulting in a static surface dipole, see
inset of Figure C.5 a). Atoms located in the electric field of these dipoles experience
Stark shifts of their energy levels. The presence of such stray electric fields from
polarized adsorbates has been observed in several experiments involving Rydberg atoms
[166–168, 204].

The electric field strength at a given position depends on the magnitude of the surface
dipole moment, which is determined by the nature of the chemical bond and the density
of surface dipoles. For the slot waveguides examined in section 7.2, the outermost
layer consists of Al2O3. To our knowledge, dipole moments for the Al2O3-Rb bond
are not available in the literature, however for the SiO2-Rb-bond a dipole moment
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Figure C.5: Effects of surface dipole moments. a) Stark shift of the Rb D2 levels at dis-
tance r caused by a single 10 D dipole (blue line) and an array of the same
dipoles (red line) along the axis above the center dipole. b) Simulation of a
random distribution of surface dipoles and the consequential Stark shift in a
cut plane perpendicular to the wd = 75 nm slot waveguide. c) Comparison of
the frequency shift ω0, line width γV and optical depth (OD) obtained from
the experiment (black squares) and simulations without surface dipoles (blue
circles), a uniform dipole distribution (red diamonds) and dipoles only on the
sidewalls (red triangles).

on the order of p0 ≈ 10 D2 has been determined both experimentally [166–168] and
theoretically [166] in the limit of small surface coverage. With increasing coverage,
the dipole moment of the individual bonds decreases due to the mutual interactions
between the dipoles in the layer [205, 206], where the reduction of the dipole moment
depends on the polarizability of the bond.

Atoms in the electric field of these dipoles experience a Stark shift of its energy levels.
For the Rb D2 transition the Stark shift is given by [207]

∆S = −1

2
∆α0E

2 − 1

2
α2E

2

(
m2
j −

5

4

)
, (C.3)

where ∆α0 = α0

(
5P3/2

)
−α0

(
5S1/2

)
= 0.134 Hz/(V/cm)2 is the D2 scalar polarizability

21 D = 1Debye ≈ 3.335 64× 10−30 C m.
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and α2 = −0.0406 Hz/(V/cm)2 is the tensor polarizability of the 5P3/2 state [208]. The
effect of a single dipole is shown by the blue line in Figure C.5 a), where a dipole
moment of p0 = 10 D is assumed, according to the reported values for Rb on SiO2.
Despite the comparatively small polarizability of the Rb D2 levels, the Stark shift can
get substantial for an atom-dipole distance below 10 nm. The range of the electric
field increases in case of an array of surface dipoles as shown by the red curve in
Figure C.5 a). Here, a patch of 10× 10 nm2 consisting of an array of 21× 21 dipoles,
roughly corresponding to the density of one mono layer3 (ML) with p0 = 10 D is
assumed. Interaction between the dipoles is neglected. For separations larger than
the patch size (r > 10 nm), the atom “sees” a large dipole with a dipole moment of
212 × 10 D, showing the same 1/r3 scaling of the electric field, as the single dipole.
If the distance to the surface is smaller than the extent of the patch, the situation
becomes similar to a charged plane and the field gradient flattens until the distance is
smaller than the separation of the dipoles where the total field is again dominated by
the field of a single dipole.

The study the effect of a surface dipole layer on the atom-light interaction around a
slot waveguide, we performed 3D Monte Carlo simulations for the wd = 75 nm device
with a random distribution of dipoles with a density of 0.1 ML, see Figure C.5 b). The
dipole moment of each dipole is p0 = 10 D and is oriented perpendicular to the surface.
Depolarization effects among the dipoles are not included since we do not know the
polarizability of the Al2O3-Rb bond. Since the sidewalls of the waveguide exhibit a
higher roughness than the top surfaces due to the etching process, the effective area of
the sidewalls is larger and could therefore accommodate a larger number of dipoles per
unit length of the waveguide. Hence, we simulated two scenarios to examine whether
an increased dipole density within the slot could lead to less signal contribution from
the narrow slots as we observed in section 7.2.2: In the first case, the entire chip
is covered with randomly distributed dipoles, in the second case only the sidewalls
of the waveguide are occupied. Figure C.5 b) shows the Stark shift in a cut plane
perpendicular to the waveguide corresponding to an electric field distribution of dipoles
on the entire chip. In Figure C.5 c) we show the relevant parameters of the transmission
spectrum when simulating the atom-light interaction around the wd = 75 nm slot
waveguide including surface dipoles and compare them to the experimental values
and simulations without dipoles. The dipole field leads to an increased line shift and
broadening which reduces the optical depth (OD) for both scenarios.

The outcome of these simulations implies that surface dipoles in the considered config-
urations are not able to reduce the signal contribution from the slot region. Given that
the measured shifts and line widths for the ridge waveguides and completely developed
slots agree very well with the simulations including only Casimir–Polder potentials,

3 The density of a mono layer of Rb is taken to be σ0 ≈ (1.57 × d2Rb)−1 = 3.3× 106 µm−2, where
dRb ≈ 440 pm is the covalent diameter of Rb [132] and the factor of 1.57 accounts for a hexagonal
close-packed arrangement of the atoms [209].

129



Appendix C. Further information on slot waveguides

strong electric fields do not seem to be present in the experiment. However, these
findings do not rule out the presence of adsorbed Rb on the Al2O3 surface. As men-
tioned above, for increasing coverage of the surface, electrostatic interaction between
the adatoms will result in a depolarization of the adatom which was not taken into
account in our simulation. Furthermore, in reference [127] it was reported that cesium
atoms on Al2O3 usually do not form a uniform layer but rather metallic clusters which
nucleate at defect sites. Additional adatoms on top of the initially bonded atoms are
subject to little charge transfer, thus reducing the dipole strength.
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D Chip Designs

Several photonic chips have been investigated during the course of this work. The
material compositions of the chips of which experimental result are reported in this
thesis are given in the following sections. Additionally, CAD drawings of the relevant
devices are shown.

D.1 NGE08

The substrate of the NGE08 chip consists of a 1.1 mm thick 1.5 in diameter fused silica
vacuum window which was mounted into a CF flange via a metal seal (Helicoflex) and
connected to a UHV chamber.

Figure D.1: NGE08 chip. a) Layer composition. b) Ridge waveguide. c) MZI.
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D.2 NGJ21

The substrate of the NGJ21 chip consists of a 1.1 mm borosilicate window. This chip
was mainly used for measurements on ring resonators. However, this chip did not yet
have an Al2O3 coating, such that losses due to Rb on the waveguide surface caused the
resonances to disappear.

Figure D.2: NGJ21 chip. a) Layer composition. b) Ring resonator.
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D.3. NGJ30-II

D.3 NGJ30-II

The substrate of the NGJ30-II chip consists of a 1.1 mm borosilicate window. It was
the first chip with an Al2O3 protection coating. It was therefore mainly used to perform
measurements on some ring resonators and two-photon spectroscopy.

Figure D.3: NGJ30-II chip. a) Layer composition. b) Ring resonator. c) Two-photon
spectroscopy circuit.
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Appendix D. Chip Designs

D.4 NGJ35

The substrate of the NGJ35 chip consists of a 1.1 mm borosilicate window. This chip
has been used for slot waveguide measurements.

Figure D.4: NGJ35 chip. a) Layer composition. b) Slot waveguide with long interaction
region (l = 200 µm). c) Slot waveguide with short interaction region (l =
30 µm).
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tion of Rydberg atoms in micrometre-sized atomic vapour cells”. Nat Photon 4,
112 (2010).

[35] Keaveney, J. et al. “Cooperative Lamb Shift in an Atomic Vapor Layer of
Nanometer Thickness”. Phys. Rev. Lett. 108, 173601 (2012).

[36] Kitching, J. et al. “Microfabricated atomic frequency references”. Metrologia
42, 3, S100 (2005).

[37] Knappe, S., Alem, O., Sheng, D. & Kitching, J. “Microfabricated optically-
pumped magnetometers for biomagnetic applications”. In Journal of Physics:
Conference Series. IOP Publishing (2016), vol. 723, p. 012055.

[38] Schwindt, P. D. et al. “Chip-scale atomic magnetometer”. Appl. Phys. Lett. 85,
26, 6409 (2004).

[39] Sheng, D. et al. “A microfabricated optically-pumped magnetic gradiometer”.
Appl. Phys. Lett. 110, 3, 031106 (2017).

[40] Kitching, J. et al. “NIST on a Chip: Realizing SI units with microfabricated
alkali vapour cells”. In Journal of Physics: Conference Series. IOP Publishing
(2016), vol. 723, p. 012056.

137

https://www.osapublishing.org/abstract.cfm?uri=ol-40-9-2000
https://doi.org/10.1140/epjqt/s40507-015-0033-1
https://doi.org/10.1140/epjqt/s40507-015-0033-1
https://www.nature.com/articles/ncomms13632
https://www.nature.com/articles/ncomms13632
http://scitation.aip.org/content/aip/journal/apl/85/9/10.1063/1.1787942
https://www.osapublishing.org/abstract.cfm?uri=josab-23-6-1001
https://www.osapublishing.org/abstract.cfm?uri=josab-23-6-1001
https://aip.scitation.org/doi/abs/10.1063/1.4981772
https://aip.scitation.org/doi/abs/10.1063/1.4981772
https://www.osapublishing.org/abstract.cfm?uri=ol-35-12-1950
https://www.osapublishing.org/abstract.cfm?uri=ol-35-12-1950
http://dx.doi.org/10.1038/nphoton.2009.260
http://dx.doi.org/10.1038/nphoton.2009.260
http://link.aps.org/doi/10.1103/PhysRevLett.108.173601
http://link.aps.org/doi/10.1103/PhysRevLett.108.173601
http://iopscience.iop.org/article/10.1088/0026-1394/42/3/S11/meta
http://iopscience.iop.org/article/10.1088/1742-6596/723/1/012055/meta
http://iopscience.iop.org/article/10.1088/1742-6596/723/1/012055/meta
https://aip.scitation.org/doi/abs/10.1063/1.1839274
https://aip.scitation.org/doi/abs/10.1063/1.4974349
http://iopscience.iop.org/article/10.1088/1742-6596/723/1/012056/meta
http://iopscience.iop.org/article/10.1088/1742-6596/723/1/012056/meta


Bibliography

[41] Stern, L., Desiatov, B., Goykhman, I. & Levy, U. “Nanoscale Light-Matter
Interactions in Atomic Cladding Waveguides”. Nat Commun 4, 1548 (2013).

[42] Stern, L. & Levy, U. “Transmission and time delay properties of an integrated
system consisting of atomic vapor cladding on top of a micro ring resonator”.
Opt. Express 20, 27, 28082 (2012).

[43] Stern, L., Zektzer, R., Mazurski, N. & Levy, U. “Enhanced light-vapor interac-
tions and all optical switching in a chip scale micro-ring resonator coupled with
atomic vapor”. Laser Photonics Rev. 10, 6, 1016 (2016).

[44] Stern, L., Desiatov, B., Mazurski, N. & Levy, U. “Strong coupling and high-
contrast all-optical modulation in atomic cladding waveguides”. Nat. Commun.
8, 14461 (2017).

[45] Hunsperger, R. G. “Integrated optics”, vol. 4. Springer (1995).

[46] Onishi, T. et al. “Monolithically integrated 780-nm-band high-power and 650-
nm-band laser diodes with real refractive index guided self-aligned structure”.
IEEE Photon. Technol. Lett. 13, 6, 550 (2001).

[47] Klehr, A. et al. “High-power 894 nm monolithic distributed-feedback laser”. Opt.
Express 15, 18, 11364 (2007).

[48] Krishnamoorthy, A. et al. “Vertical-cavity surface-emitting lasers flip-chip
bonded to gigabit-per-second CMOS circuits”. IEEE Photon. Technol. Lett.
11, 1, 128 (1999).

[49] Krishnamoorthy, A. V. et al. “16 x 16 vcsel array flip-chip bonded to cmos vlsi
circuit”. IEEE Photon. Technol. Lett. 12, 8, 1073 (2000).

[50] Geis, M. et al. “CMOS-compatible all-Si high-speed waveguide photodiodes with
high responsivity in near-infrared communication band”. IEEE Photon. Technol.
Lett. 19, 3, 152 (2007).

[51] Masini, G., Sahni, S., Capellini, G., Witzens, J. & Gunn, C. “High-speed near
infrared optical receivers based on Ge waveguide photodetectors integrated in a
CMOS process”. Advances in Optical Technologies 2008 (2008).

[52] Ishikura, N. et al. “Photonic crystal tunable slow light device integrated with
multi-heaters”. Appl. Phys. Lett. 100, 22, 221110 (2012).

[53] Dennis, T., Curtis, E., Oates, C. W., Hollberg, L. & Gilbert, S. L. “Wavelength
references for 1300-nm wavelength-division multiplexing”. J. Light. Technol. 20,
5, 776 (2002).

138

http://www.nature.com/ncomms/journal/v4/n3/full/ncomms2554.html#references
http://www.nature.com/ncomms/journal/v4/n3/full/ncomms2554.html#references
http://www.opticsexpress.org/abstract.cfm?URI=oe-20-27-28082
http://www.opticsexpress.org/abstract.cfm?URI=oe-20-27-28082
http://dx.doi.org/10.1002/lpor.201600176
http://dx.doi.org/10.1002/lpor.201600176
http://dx.doi.org/10.1002/lpor.201600176
https://www.nature.com/articles/ncomms14461
https://www.nature.com/articles/ncomms14461
https://ieeexplore.ieee.org/abstract/document/924016
https://ieeexplore.ieee.org/abstract/document/924016
https://www.osapublishing.org/abstract.cfm?uri=oe-15-18-11364
https://ieeexplore.ieee.org/abstract/document/736418
https://ieeexplore.ieee.org/abstract/document/736418
https://ieeexplore.ieee.org/abstract/document/868012
https://ieeexplore.ieee.org/abstract/document/868012
https://ieeexplore.ieee.org/abstract/document/4060964
https://ieeexplore.ieee.org/abstract/document/4060964
https://www.hindawi.com/journals/aot/2008/196572/abs
https://www.hindawi.com/journals/aot/2008/196572/abs
https://www.hindawi.com/journals/aot/2008/196572/abs
https://aip.scitation.org/doi/abs/10.1063/1.4724191
https://aip.scitation.org/doi/abs/10.1063/1.4724191
https://www.osapublishing.org/jlt/abstract.cfm?uri=JLT-20-5-776
https://www.osapublishing.org/jlt/abstract.cfm?uri=JLT-20-5-776


Bibliography

[54] Zhao, K. & Wu, Z. “Evanescent wave magnetometer”. Appl. Phys. Lett. 89, 26,
261113 (2006).

[55] Kimble, H. J. “Strong interactions of single atoms and photons in cavity QED”.
Phys. Scr. 1998, T76, 127 (1998).

[56] Haroche, S. & Raimond, J.-M. “Cavity quantum electrodynamics”. Sci. Am.
268, 54 (1993).

[57] Haroche, S. “Nobel Lecture: Controlling photons in a box and exploring the
quantum to classical boundary”. Rev. Mod. Phys. 85, 1083 (2013).

[58] Kimble, H. J. “The quantum internet”. Nature 453, 1023 (2008).

[59] Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. “Quantum State Transfer
and Entanglement Distribution among Distant Nodes in a Quantum Network”.
Phys. Rev. Lett. 78, 3221 (1997).

[60] Duan, L.-M. & Kimble, H. J. “Scalable Photonic Quantum Computation through
Cavity-Assisted Interactions”. Phys. Rev. Lett. 92, 127902 (2004).

[61] Vernooy, D. W., Furusawa, A., Georgiades, N. P., Ilchenko, V. S. & Kimble, H. J.
“Cavity QED with high-Q whispering gallery modes”. Phys. Rev. A 57, R2293
(1998).

[62] Aoki, T. et al. “Observation of strong coupling between one atom and a mono-
lithic microresonator”. Nature 443, 671 (2006).

[63] Tiecke, T. G. et al. “Nanophotonic quantum phase switch with a single atom”.
Nature 508, 241 (2014).

[64] Goban, A. et al. “Atom–light interactions in photonic crystals”. Nat Commun
5, 3808 (2014).

[65] Javanainen, J., Ruostekoski, J., Li, Y. & Yoo, S.-M. “Shifts of a Resonance Line
in a Dense Atomic Sample”. Phys. Rev. Lett. 112, 113603 (2014).

[66] Javanainen, J. & Ruostekoski, J. “Light propagation beyond the mean-field
theory of standard optics”. Opt. Express 24, 2, 993 (2016).

[67] Javanainen, J., Ruostekoski, J., Li, Y. & Yoo, S.-M. “Exact electrodynamics
versus standard optics for a slab of cold dense gas”. Phys. Rev. A 96, 033835
(2017).

[68] Peyrot, T. et al. “The Collective Lamb Shift of a Nanoscale Atomic Vapour Layer
within a Sapphire Cavity”. arXiv:1801.01773 (2018).

139

https://aip.scitation.org/doi/abs/10.1063/1.2424657
http://stacks.iop.org/1402-4896/1998/i=T76/a=019
http://adsabs.harvard.edu/abs/1993SciAm.268...54H
http://link.aps.org/doi/10.1103/RevModPhys.85.1083
http://link.aps.org/doi/10.1103/RevModPhys.85.1083
http://dx.doi.org/10.1038/nature07127
http://link.aps.org/doi/10.1103/PhysRevLett.78.3221
http://link.aps.org/doi/10.1103/PhysRevLett.78.3221
http://link.aps.org/doi/10.1103/PhysRevLett.92.127902
http://link.aps.org/doi/10.1103/PhysRevLett.92.127902
http://link.aps.org/doi/10.1103/PhysRevA.57.R2293
http://dx.doi.org/10.1038/nature05147
http://dx.doi.org/10.1038/nature05147
http://dx.doi.org/10.1038/nature13188
http://dx.doi.org/10.1038/ncomms4808
https://link.aps.org/doi/10.1103/PhysRevLett.112.113603
https://link.aps.org/doi/10.1103/PhysRevLett.112.113603
https://www.osapublishing.org/abstract.cfm?uri=oe-24-2-993
https://www.osapublishing.org/abstract.cfm?uri=oe-24-2-993
https://link.aps.org/doi/10.1103/PhysRevA.96.033835
https://link.aps.org/doi/10.1103/PhysRevA.96.033835
https://arxiv.org/abs/1801.01773v2
https://arxiv.org/abs/1801.01773v2


Bibliography

[69] Almeida, V. R., Xu, Q., Barrios, C. A. & Lipson, M. “Guiding and confining
light in void nanostructure”. Opt. Lett. 29, 11, 1209 (2004).

[70] Blum, K. “Density Matrix Theory and Applications”. Springer US (1996).

[71] Mølmer, K., Castin, Y. & Dalibard, J. “Monte Carlo wave-function method in
quantum optics”. J. Opt. Soc. Am. B 10, 3, 524 (1993).

[72] Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. “Atom-photon interac-
tions: basic processes and applications”. Wiley-VCH (1998).

[73] Demtröder, W. “Laser Spectroscopy: Basic Concepts and Instrumentation”.
Springer Berlin Heidelberg (2002).

[74] Chardonnet, C., Guernet, F., Charton, G. & Bordé, C. J. “Ultrahigh-resolution
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[148] Elshaari, A. W., Zadeh, I. E., Jöns, K. D. & Zwiller, V. “Thermo-Optic Charac-
terization of Silicon Nitride Resonators for Cryogenic Photonic Circuits”. IEEE
Photon. J 8, 3, 1 (2016).

[149] Burkhardt, P. J. & Marvel, R. F. “Thermal Expansion of Sputtered Silicon
Nitride Films”. J. Electrochem. Soc. 116, 6, 864 (1969).

[150] Spillane, S. M. et al. “Ultrahigh-Q toroidal microresonators for cavity quantum
electrodynamics”. Phys. Rev. A 71, 013817 (2005).

[151] Rempe, G., Thompson, R. J., Brecha, R. J., Lee, W. D. & Kimble, H. J. “Optical
bistability and photon statistics in cavity quantum electrodynamics”. Phys. Rev.
Lett. 67, 1727 (1991).

[152] Thompson, R. J., Rempe, G. & Kimble, H. J. “Observation of normal-mode
splitting for an atom in an optical cavity”. Phys. Rev. Lett. 68, 1132 (1992).

[153] Zhu, Y. et al. “Vacuum Rabi splitting as a feature of linear-dispersion theory:
Analysis and experimental observations”. Phys. Rev. Lett. 64, 2499 (1990).

[154] Gondarenko, A., Levy, J. S. & Lipson, M. “High confinement micron-scale silicon
nitride high Q ring resonator”. Opt. Express 17, 14, 11366 (2009).
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