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Zusammenfassung

Die Entwicklung der Quantenmechanik im frühen zwanzigsten Jahrhundert
war ein Meilenstein in der Physik und begründet das heutige Verständnis
der Struktur von Materie. Abgesehen von Max Planck’s Untersuchungen der
Schwarzkörperstrahlung war die Beobachtung von diskreten Absorptionsli-
nien im Spektrum des Sonnenlichts [7–9] ein wesentlicher Auslöser für die
Formulierung der Quantenmechanik. Diese Beobachtung führte zum Bohr-
Sommerfeld-Atommodell der quantisierten Energieniveaus von Elektronen
im Atom [10, 11], welches eine Abnahme der Bindungsenergie des Elektrons
gemäß n−2 vorhersagt. Hierbei bezeichnet n die Hauptquantenzahl des elek-
tronischen Zustandes. Bereits dieses einfache Atommodell sagte voraus, dass
Elektronen sich in sogenannten Rydberg-Zuständen, nämlich Zuständen mit
sehr hoher Hauptquantenzahl befinden können. In Rydberg-Zuständen ist
ein Elektron nur schwach an den Atomkern gebunden und der Radius des
Elektronenorbits steigt proportional zu n2. Der Orbit kann damit tausend-
fach größer sein als im elektronischen Grundzustand. Außerdem besitzt das
Rydberg-Atom eine enorme Polarisierbarkeit, welche zu starken Wechsel-
wirkungen zwischen Rydberg-Atomen führt, sowie einer Vielzahl weiterer
ungewöhnlicher und extremer Eigenschaften [12].

Diese Eigenschaften machen Rydberg-Atome, insbesondere im Bereich der
ultrakalten atomaren Gase, zum Gegenstand aktueller Forschung. In den
letzten Jahrzehnten gab es immense Fortschritte auf diesem Gebiet, auf-
bauend auf der Entwicklung der Laserkühlung [13], die die Herstellung von
ultrakalten Wolken bis hin zu Bose-Einstein Kondensaten (BEK) [14] und
entarteten Fermi-Gasen [15, 16] ermöglicht. In diesen Experimenten können
interne und externe Freiheitsgrade der Atome nahezu perfekt kontrolliert
werden. Für solche ultrakalten Wolken wurde vorhergesagt, dass die starken
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und langreichweitigen Wechselwirkungen zwischen Rydberg-Atomen [12, 17]
für Protokolle der Quanteninformationsverarbeitung genutzt werden kön-
nen [18–20]. Einzelne Quantengatteroperationen wurden bereits experimen-
tell erforscht [21–23]. Die Wechselwirkungen führen zu großen optischen
Nichtlinearitäten im Medium, welche genutzt werden können, um das Licht-
feld zu manipulieren [24], was sogar auf dem Einzelphotonenlevel möglich
ist [25]. Darüber hinaus, können Rydberg-Rydberg-Wechselwirkungen für
die Quantensimulation von Ising-Spinmodellen eingesetzt werden [26]. Deren
experimentelle Umsetzung wurde in ein und zwei Dimensionen mit Hilfe von
optischen Pinzetten realisiert [27, 28], sowie in optischen Gittern mit Hilfe
der Quantengas-Mikroskopie [29]. Atomen im elektronischen Grundzustand
kann Rydberg-Charakter beigemischt werden, wodurch sich die ungewöhnli-
chen Eigenschaften der Rydberg-Atome teilweise auf sie übertragen [30, 31],
die Experimente aber auf längeren Zeitskalen durchgeführt werden können.
Darüber hinaus können Rydberg-Atome als Quantensensor eingesetzt werden,
wie etwa als empfindliche Sonde für elektrische Felder [32]. Des Weiteren
dienen Rydberg-Atome der Untersuchung von ultrakalten Plasmen, da die
Stoßionisation von Rydberg-Atomen zur Plasmabildung führen kann [33–35].
Alle bisher aufgelisteten Experimente wurden in verdünnten atomaren

Gasen durchgeführt. In dieser Doktorarbeit wird hingegen ein System deut-
lich höherer Dichte behandelt. Genauer gesagt, behandelt sie ein Dichtere-
gime, in dem sich benachbarte Grundzustandsatome bereits innerhalb des
Rydberg-Orbits befinden. Je nach Dichte und Größe des Rydberg-Atoms
können dies einzelne Atome sein, aber auch Systeme mit zehntausenden
Atomen sind möglich. In diesem Regime wechselwirken sowohl das Rydberg-
Elektron als auch der ionische Kern mit den Atomen. Beide Aspekte wer-
den in dieser Doktorarbeit thematisiert: Zum ersten Mal konnte die Ion-
Atom-Wechselwirkung zwischen dem ionischen Kern des Rydberg-Atoms
und neutralen Atomen beobachtet werden. Dieser alternative Ansatz für
die Untersuchung von Ion-Atom-Wechselwirkung wurde in einem Tempe-
raturbereich durchgeführt, welcher Größenordnungen niedriger ist als in
gewöhnlichen Ion-Atom-Hybridexperimenten, wodurch unser Experiment
dem Temperaturlimit für Quanten-Streuexperimente vergleichsweise nahe
kommt. Die Elektron-Atom-Wechselwirkung kann zur Bildung von ultra-
langreichweitigen Rydberg-Molekülen führen und in dieser Arbeit, wurden
spezielle Rydberg-Moleküle mit großem elektrischen Dipolmoment untersucht.
Um die Resultate mit theoretischen Vorhersagen vergleichen zu können, wurde
die Elektron-Atom-Wechselwirkung in einem komplexen Modell berechnet,
wobei Spin-Kopplungen für Elektron und Atom berücksichtigt werden.

Die theoretischen Grundlagen für die experimentellen Ergebnisse, die in
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Kapitel 5 und 6 behandelt werden, beruhen auf dem Verständnis der Wech-
selwirkung eines einzelnen Atoms mit einem Rydberg-Atom. Die berechneten
Born-Oppenheimer-Potenzialkurven für diese Wechselwirkung sind abstands-
abhängig und beinhalten den Beitrag des Rydberg-Elektrons und des ionischen
Kerns. Wie in Kapitel 3 ausgeführt, kann die Ion-Atom-Wechselwirkung mit
Hilfe eines klassischen Polarisationspotenzials beschrieben werden. Im Ge-
gensatz dazu wird die Elektron-Atom-Wechselwirkung quantenmechanisch
behandelt. Es wird eine Kontaktwechselwirkung angenommen [36, 37], wobei
sowohl s- als auch p-Wellen-Streuung im Singulett- und Triplett-Streukanal
beitragen. Dafür müssen alle relevanten Spin-Freiheitsgrade für das Rydberg-
Elektron und das neutrale Atom einbezogen werden. Unter Berücksichtigung
dieser Terme können die Wechselwirkungspotenziale numerisch berechnet
werden.

Im Jahr 2000 fand C. Greene et al. [36, 37] heraus, dass Molekülzustände
in diesen Potenzialen gebunden sein können und sagte damit die Existenz
von ultra-langreichweitigen Rydberg-Molekülen im Kontext der dichten ultra-
kalten Gase voraus. Diese Moleküle sind durch die Elektron-Atom-Streuung
des quasi-freien Rydberg-Elektrons mit dem Nachbaratom schwach gebunden.
Solche ultra-langreichweitigen Rydberg-Moleküle wurden 2009 erstmal von
V. Bendkowsky et al. [38] nachgewiesen, was zahlreiche Forschungsarbeiten zu
diesen Molekülen initiierte. Es wurden Arbeiten zu mehratomigen Rydberg-
Molekülen durchgeführt [39] bis hin zum Übergang zur Vielteilchenphysik [40].
Außerdem gibt es Untersuchungen des elektrischen Dipolmoment der Rydberg-
Moleküle im S-Zustand [41] und der Bildung exotischer Rydberg-Moleküle mit
enorm großem elektrischen Dipolmoment [42, 43]. Darüber hinaus wurde die
Spin-Kopplung in Rydberg-Molekülen untersucht [44, 45], sowie die Hybridi-
sierung verschiedener Molekülzustände [46]. Mögliche Anwendungen wurden
in Form von induzierten Spin-Flips [47] und optischen Feshbach-Resonanzen
demonstriert [48].
Eine spezielle Klasse von ultra-langreichweitigen Rydberg-Molekülen, so-

genannte Trilobit-Rydberg-Moleküle, bilden sich für (fast) entartete was-
serstoffartige Energieniveaus. Sie zeichnen sich durch eine charakteristische
Verteilung der Elektronenaufenthaltswahrscheinlichkeit aus, welche durch die
konstruktive Interferenz verschiedener Rydberg-Orbitale am Ort des neutra-
len Atoms geformt wird [36]. Es wird Trilobit-Molekül genannt, da die Form
der Elektronenaufenthaltswahrscheinlichkeit der Form eines Trilobit-Fossils
ähnelt. Die erhöhte Konzentration der Elektronenaufenthaltswahrscheinlich-
keit am Ort des Atoms führt zu einem immensen elektrischen Dipolmoment.
Ein elektrisches Dipolmoment in einem homonuklearen Molekül ist höchst
ungewöhnlich, da hierfür die Symmetrie zwischen den beiden Atomen ge-
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brochen werden muss. Systeme mit einem elektrischen Dipolmoment sind
interessant, da sie stark untereinander wechselwirken und möglicherweise zur
Untersuchung dipolarer Störstellen in einem Hintergrundgas genutzt werden
können [49, 50]. Des Weiteren könnten Ketten oder Felder solcher polarer Mo-
leküle verwendet werden, um die anisotrope langreichweitige Wechselwirkung
für wenige Teilchen oder im Vielteilchensystem zu erforschen [51]. Zustände
mit noch höherem elektrischen Dipolmoment werden für den Fall vorherge-
sagt, dass sich zahlreiche Atome im in der Rydberg-Elektronenwellenfunktion
befinden [52]. Die Experimente in dieser Arbeit werden hingegen in einem Dich-
teregime durchgeführt, für welches sich nur ein (oder wenige) Nachbaratome
im Rydberg-Orbit aufhalten. Charakteristisch für Trilobit-Rydberg-Moleküle
sind elektronische Zustände mit hoher Drehimpulsquantenzahl L, weswegen
sie sich schwer photoassoziieren lassen. Aufgrund der Dipolauswahlregeln
kann mit ein- oder zwei-Photonenübergängen nicht an diese Zustände gekop-
pelt werden. Im Jahr 2015 zeigten D. Booth et al. [42], dass Photoassoziation
von Trilobit-Rydberg-Molekülen in Zäsium möglich ist, da für dieses spezielle
Element der nicht-ganzzahlige Teil des Quantendefekts so klein ist, dass dem
Trilobit-Rydberg-Molekül S-Charakter beigemischt ist.

In dieser Arbeit wird ein allgemeiner Weg aufgezeigt, wie Trilobit-Moleküle
verschiedener chemischer Elemente photo-assoziiert werden können. In Kapi-
tel 5 dieser Arbeit, welches auf Quelle [2] basiert, wird diese neue Herangehens-
weise vorgestellt, die es erlaubt dem Trilobit-Rydberg-Molekül S-Charakter
beizumischen. Dafür werden die bereits erwähnten Spin-Kopplungseffekte des
Elektron-Atom-Streuprozesses ausgenutzt. Es werden Photoassoziationsspek-
tren präsentiert, aus denen die molekularen Bindungsenergien entnommen
werden. Diese werden mit theoretischen Vorhersagen verglichen und das
große elektrische Dipolmoment des erzeugten Trilobit-Rydberg-Moleküls von
>100 Debye wird bestimmt.

Anschließend wendet sich die Arbeit einem noch höheren Dichteregime zu,
für welches sich zahlreiche Atome innerhalb des Rydberg-Orbits befinden. Un-
tersuchungen von Rydberg-Atomen in solch hohen Dichten haben eine lange
Tradition: Bereits 1934 publizierten die Arbeitsgruppen E. Amaldi et al. [53]
und C. Füchtbauer et al. [54] unabhängig von einander Rydberg-Spektren,
die in Dampfzellen aufgenommen wurden, welche mit einem Puffergas befüllt
waren. Sie beobachteten sowohl die Verbreiterung als auch die Verschiebung
der Spektrallinien. Diese Beobachtungen motivierten E. Fermi eine quanten-
mechanische Beschreibung des Streuprozesses zu erarbeiten [55], welche auch
die Grundlage für das oben beschriebene Modell zur Elektron-Atom-Streuung
bildet. Darüberhinaus wird Fermi’s Konzept des Pseudopotenzials und der
Streulänge heutzutage oft für die Beschreibung der Wechselwirkung zwischen
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neutralen Atomen, Molekülen, geladenen Teilchen, etc. eingesetzt, solange die
Kollisionsenergie niedrig und die genaue Form des Wechselwirkungspotenzials
nicht relevant ist.
Im Gegensatz zu Experimenten in heißen Dampfzellen 1934, ermöglichen

Experimente in Bose-Einstein-Kondensaten hoher Dichte die Wechselwir-
kung viel präziser zu erforschen. So konnte etwa die Kopplung des Rydberg-
Elektrons an Phononen im Kondensat untersucht werden [56] und der Einfluss
der Elektron-Atom p-Wellen-Streuresonanz wurde aufgezeigt [6]. Zudem kann
die Wechselwirkung der Rydberg-Störstelle im BEK als ein exotisches Po-
laron interpretiert werden [49, 57] und sowohl die Lebensdauer der Störstelle
als auch durch die Störstelle auftretende ultrakalte chemische Reaktionen
untersucht werden [4].
Wird ein Rydberg-Atom in einem BEK angeregt so halten sich, je nach

Größe des Rydberg-Atoms, bis zu mehreren zehntausend Atomen im Rydberg-
Orbit auf. Üblicherweise tritt die Elektron-Atom-Wechselwirkung als domi-
nanter Prozess auf, sobald sich Atome im Rydberg-Orbit befinden. Der
ionische Kern des Rydberg-Atoms wechselwirkt ebenfalls mit den Atomen,
was erstmals in dieser Arbeit beobachtet werden konnte. Um den Einfluss
der Ion-Atom-Wechselwirkung des Rydberg-Kerns mit dem BEK aufzude-
cken, muss die typischerweise dominante Elektron-Atom-Wechselwirkung
unterdrückt werden. Dafür werden Rydberg-Zustände angeregt, deren Orbi-
talgröße die Ausdehnung des präparierten Mikro-BEKs übersteigt. Aufgrund
des reduzierten Überlapps des Elektronenorbitals mit dem BEK nimmt die
Elekton-Atom-Wechselwirkung ab. Gleichzeitig stellt die hohe Dichte im
BEK einen kleinen Abstand zum nächsten Nachbaratom sicher, wodurch
sich eine signifikante Ion-Atom-Wechselwirkung einstellt. Der Einfluss der
Ion-Atom-Wechselwirkung wird durch den Vergleich zwischen der Form der
Spektrallinie der Rydberg-Anregung und einem theoretischen Modell deutlich.
In diesem Experiment schirmt das Elektron, ähnlich einem Faraday’schen
Käfig, externe elektrische Felder effektiv ab, sodass das Ion im BEK nicht
von ihnen beschleunigt wird.

Generell ist die Erforschung der Ion-Atom-Wechselwirkung im Regime
der Quantenstreuung von großer Relevanz: Die Streueigenschaften können
wertvolle Informationen über die Molekülpotenziale liefern und Streureso-
nanzen könnten die Wechselwirkung regelbar machen [58–60]. Sowohl ultra-
kalte Quantenchemie [61–64], als auch Störstellenphysik geladener Teilchen
[65–67] und Quantensimulation [68–70] könnten erforscht werden. Aufgrund
des größeren Massenverhältnisses im Ion-Atom-System im Vergleich zum
Elektron-Atom-System werden deutlich niedrigere Temperaturen benötigt,
um das Regime der Quantenstreuung zu erreichen. Diese Anforderungen
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sind aufgrund des anderen Wechselwirkungspotenzials auch strikter als für
Atom-Atom-Wechselwirkung. Beispielsweise liegt für die Wechselwirkung
eines Rubidium-87 Ions mit einem neutralen Rubidium-87 Atom diese Grenz-
temperatur bei nur 79 nK. Es wurden bereits Experimente durchgeführt,
die einzelne kalte Ionen mit einer kalten atomaren Wolke kombinieren [61,
64, 71, 72], einschließlich Untersuchungen von einzelnen Ionen in einem
BEK [73]. In solchen Hybridsystemen wird das Ion in einer Paulfalle gefan-
gen. Diese Experimente sind durch die Mikrobewegung des Ions, verursacht
durch die angelegten Wechselfelder der Falle, jedoch typischerweise auf den
Millikelvin-Temperaturbereich limitiert [74]. Obwohl das optische Fangen
von Ionen kürzlich gezeigt wurde [75, 76], gibt es bislang kein Hybridsys-
tem mit einer optischen Ionenfalle. Somit ist die Erforschung des ionischen
Kerns eines Rydberg-Atoms vielversprechend, da das Atom zu Beginn des
Experiments auf BEK-Temperatur gekühlt wird. In unseren Experimenten,
die in Kapitel 6 (aufbauend auf Quelle [1]) presentiert werden, kann die
Ion-Atom-Wechselwirkung bei Submikrokelvin-Temperatur erforscht werden.
Dies gilt auch unter Berücksichtigung der Rückstoßenergie durch die Anre-
gung. Die Temperatur, die in diesem Experiment erreicht wird, liegt etwa
drei Größenordnung niedriger als in Experimenten mit Paulfallen und nur
noch eine Größenordnung über dem Temperaturlimit für quantenmechanische
s-Wellen-Streuung in Rubidium-87.
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1
Introduction

The rise of quantum mechanics in the beginning of the 20th century was a
milestone in physics as it forms the basis for our today’s understanding of
the structure of matter. Besides Max Planck’s research on the black-body
radiation, one of the triggers that led to its development was the detection
of discrete absorption lines in the solar spectrum [7–9]. This observation
motivated the Bohr-Sommerfeld atomic model of quantized energy levels for
electrons in an atom [10, 11], which predicts the electron binding energy to
decrease according to n−2. Here, n labels the principal quantum number of
the electronic state. Even this simple model predicts that Rydberg states,
which are electronic states of very high principal quantum number, can exist.
For Rydberg states the electron is loosely bound to the nucleus and the
electron orbit radius increases proportional to n2. It can be thousand fold
larger than for the electronic ground state. Additionally, the atom obtains
a huge polarizability leading to extraordinary mutual interactions, and a
plethora of further remarkable properties [12].

Nowadays, these properties make Rydberg atoms specifically interesting
in the context of ultracold atomic gases. In the last decades, enormous
progress has been made in this field, triggered by the developement of laser



Chapter 1. Introduction

cooling [13], allowing for the preparation of ultracold clouds or even Bose-
Einstein condensates (BEC) [14] and degenerate Fermi gases [15, 16]. This
enables unprecedented control of the internal and external degrees of freedom
of the atoms. When preparing such an environment, the strong and long-
range interactions between Rydberg atoms [12, 17] have been proposed to be
applicable for quantum information processing protocols [18, 19] (reviewed in
Ref. [20]). Single gate operations have been experimentally investigated [21–
23]. The interactions also introduce large optical non-linearities in the medium,
that can be applied to manipulate the light field [24] even on the single
photon level [25]. Moreover, Rydberg-Rydberg interactions can be employed
for quantum simulation of Ising spin models [26], which was experimentally
realized in one and two dimensions using atoms trapped in optical tweezers [27,
28] or in optical lattices with the help of quantum gas microscopy [29]. Ground
state atoms can be dressed with Rydberg-character, inheriting some of the
Rydberg state’s extraordinary properties [30, 31] and aiming for experiments
that reach motional timescales. Moreover, Rydberg atoms can serve as a
quantum sensor e.g. a sensitive electric field probe [32]. Additionally, Rydberg
atoms serve for the investigation of ultracold plasmas, due to the fact that the
collisional ionization of Rydberg atoms can lead to plasma formation [33–35].

All of the experiments listed above are performed in dilute atomic clouds.
In this thesis, a different regime of much higher atomic density is investigated.
Specifically, we consider a density regime where neighboring atoms are located
within the Rydberg orbit. Depending on the density and the size of the
Rydberg orbit, one, a few or even up to tenthousand atoms are within
the Rydberg atom. In this regime, both the Rydberg electron and the
ionic core interact with these atoms. Both aspects are addressed in this
work: For the first time, the ion-atom interaction between the Rydberg ionic
core and neutral atoms could be observed. This alternative approach to
study ion-atom interaction is performed in a temperature regime orders of
magnitude lower compared to conventional ion-atom hybrid experiments,
bringing our experiment comparatively close to the quantum scattering limit.
The electron-atom interaction can lead to the formation of ultralong-range
Rydberg molecules and in this thesis a special class of Rydberg molecules
with a huge electric dipole moment was investigated. For comparison to
theory, the electron-atom interaction was modeled in a sophisticated manner,
including spin-couplings between the electron and the atom.
The theoretical description for all conducted experiments presented in

chapter 5 and 6 depends on the understanding of the interaction of a single
atom with a Rydberg atom. These Born-Oppenheimer potential energy curves
are composed of a contribution of the Rydberg electron and a contribution
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of the ionic core, which both depend on the internuclear separation. As
detailed in chapter 3, the ion-atom interaction can be described by a classical
polarization potential. In contrast, the electron-neutral interaction is treated
quantum mechanically within a pseudopotential approach [36, 37], where
both s- and p-wave scattering contribute for the singlet and triplet scattering
channel. Therefore, for both the Rydberg electron and the neutral atom
relevant spin degrees of freedom have to be considered. Taking all these terms
into account, the interaction potentials are calculated numerically.

C. Greene et al. [36, 37] realized in 2000 that such potential energy curves
can support bound molecular states and predicted the existence of ultralong-
range Rydberg molecules in an ultracold gas. These molecules are weakly
bound by electron-atom scattering of the quasi-free Rydberg electron with
a neutral neighboring atom residing in the Rydberg orbit. Such ultralong-
range Rydberg molecules were first experimentally observed in 2009 by
V. Bendkowsky et al. [38] triggering extensive research in this field. This
includes the study of polyatomic Rydberg molecules [39] up to the crossover
from few- to many-body physics [40], studies on the electric dipole moment
of S-type Rydberg molecules [41], the formation of exotic Rydberg molecules
with large electric dipole moment [42, 43], investigations on spin couplings
in Rydberg molecules [44, 45] as well as hybridization of Rydberg molecular
states [46] and the application of Rydberg molecules to induce remote spin
flips [47] or optical Feshbach resonances [48].
A special class of ultralong-range Rydberg molecules, so-called Trilobite

Rydberg molecules, are formed for (almost) degenerate hydrogenlike energy
levels and have a characteristic electron density distribution, which is shaped
by constructive interference of different Rydberg orbitals at the position of the
neutral atom [36]. It is named Trilobite Rydberg molecule as the shape of its
electron orbital resembles the shape of the trilobite fossil. The concentration
of the electron probability density at the position of the neutral atom leads to
a huge electric dipole moment. An electric dipole moment for a homonuclear
molecule is very exceptional, as the symmetry between the two atoms needs
to be broken. Since systems with a large electric dipole moment interact
strongly with each other they are of great interest and could possibly form
dipolar impurities in an ultracold gas [49, 50]. Moreover, chains or arrays of
such highly polar molecules could be applied to engineer anisotropic long-
range interacting few- to many-body systems [51]. States of even increased
electric dipole moment are expected if Trilobite molecules are formed with
numerous atoms within the Rydberg electron wavefunction [52]. In this work,
a density regime is chosen, where only one or few neighboring atoms are
within the Rydberg orbit. Since Trilobite Rydberg molecules are formed by
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high angular momentum states, photo-association of Trilobite molecules is
generally hindered as there is no coupling to high-L Rydberg states by one-
or two-photon excitation due to dipole selection rules. This hurdle can be
overcome for the specific case of cesium, for which the Trilobite Rydberg
molecule potential inherits some S-character due to the small non-integer part
of the quantum defect. This allows for photo-association as demonstrated by
D. Booth et al. [42] in 2015.
In this thesis, a general pathway to photo-associate Trilobite Rydberg

molecules is demonstrated, applicable to many species. Chapter 5, which is
based on Ref. [2], presents the novel approach to admix S-character to the
Trilobite Born-Oppenheimer potential energy curve. Therefore, we make use
of the aforementioned spin-couplings in the electron-atom scattering process.
Photo-association spectra are recorded, the molecular binding energies are
extracted and compared to theoretical predictions. Additionally, the dipole
moment of the created Trilobite Rydberg molecule is determined.

We then turn to a regime of even higher atomic density, for which numerous
atoms are within the Rydberg orbit. The study of Rydberg atoms in an
environment of such high density has a long history: Already in 1934 both
E. Amaldi et al. [53] and C. Füchtbauer et al. [54] independently published
Rydberg spectra recorded in a hot atomic vapor cell filled with a buffer
gas. They both observed frequency broadenings and line shifts of the Ryd-
berg spectroscopy lines. The observations of this density shift motivated
E. Fermi [55] to work out a quantum mechanical description of the scatter-
ing process, which forms the basis for the electron-atom scattering model
introduced above. Moreover, Fermi’s concept of the pseudopotential and the
scattering length is widely applied today in physics to describe the interaction
between neutral atoms, molecules, charged particles, etc. as long as the
collision energies are low and the exact shape of the interaction potential
is not relevant. In contrast to the high density experiments in hot vapor
cells in 1934, experiments in high density Bose-Einstein condensates allow
to investigate the interaction in much more detail. Coupling of the Rydberg
electron to phonons in the condensate could be observed [56] and the role of
the electron-atom p-wave scattering resonance was revealed [6]. Furthermore,
the interaction of the Rydberg impurity with the BEC can be interpreted
as an exotic polaron [49, 57] and the impurity lifetime as well as ultracold
chemical reactions can be investigated [4].
When a Rydberg atom is excited in a high density BEC, several tent-

housands of atoms can be located inside its orbit, depending on the size of
the Rydberg atom. The electron-atom interaction is typically the dominant
process as soon as neutral atoms are located inside the Rydberg orbit and is
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investigated in the aforementioned experiments. However, the ionic core of
the Rydberg atom interacts with the neutral atoms as well, which is explored
for the first time in this thesis. In order to unravel the role of the ion-atom
interaction for the Rydberg nucleus in the BEC, the typically dominant
electron-atom interaction needs to be suppressed. Therefore, Rydberg states
are excited with orbitals exceeding the size of our micro-BEC. Due to the de-
creased overlap between the electron orbital and the BEC, the electron-atom
interaction reduces. At the same time, the high density in the BEC provides
a small nearest neighbor spacing, leading to significant ion-atom interaction.
The ion-atom interaction can be revealed by comparison of the spectral line
shape of the Rydberg excitation to a theoretical model. In this experiment,
the electron intrinsically provides an effective shield against external electric
fields to prevent acceleration of the ionic core in the BEC.
Generally, the study of ion-atom interaction in the quantum scattering

regime is of great interest: The scattering properties can reveal valuable
information about the molecular potentials and scattering resonances could
make interactions tuneable [58–60]. Ultracold quantum chemistry [61–64]
could be studied as well as impurity physics with charged particles [65–67]
and quantum simulation [68–70]. Owing to the larger mass ratio in the ion-
atom system in comparison to the electron-atom system, considerably colder
temperatures are required to enter the quantum scattering regime. These
requirements are also much more stringent than for atom-atom interaction,
due to the different interaction potential. For example, the temperature limit
for the scattering of a Rubidium-87 ion with a Rubidium-87 atom amounts
to only 79 nK. Experiments of cold single ions combined with cold atomic
clouds have been performed [61, 64, 71, 72], including studies of single ions
in a BEC [73]. In such hybrid systems the ion is trapped in a Paul trap.
These experiments are typically limited to the millikelvin temperature range
owing to the micromotion of the ion in the radiofrequency field of the trap
[74]. Although optical trapping of ions has been recently presented [75, 76],
there are no hybrid systems with an optical ion trap, yet. The study of the
ionic core of a Rydberg atom with neutral atoms is hence promising, as the
atom is initially cooled to BEC temperature. In our experiments, presented
in chapter 6 of this work (based on Ref. [1]), the ionic core can be studied at
submicrokelvin temperature after Rydberg excitation. This even holds when
taking the excitation recoil into account. The temperature is about three
orders of magnitude lower in comparison to experiments with Paul traps and
only one order of magnitude above the s-wave scattering temperature limit
for Rubidium-87.
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2
Rydberg atoms

When one or several of the valence electrons of an atom are excited into
an energetically high-lying electronic state, it is called a Rydberg atom.
These Rydberg atoms show remarkable properties such as a large size and
high polarizability in comparison to ground-state atoms. In this thesis,
Rydberg atoms are studied in an environment where they form molecules
with neighboring neutral ground-state atoms or even interact with several
thousands of them. In order to understand the behavior and interaction of
Rydberg atoms in such a dense background gas, the basic properties of a bare
Rydberg atom need to be understood first.
In this chapter properties of Rydberg atoms such as the energy level

structure and the Rydberg electron wave function are introduced, forming the
basis for the discussion of the behavior in external electric and magnetic fields.
Rydberg atoms with one photo-excited Rydberg electron are discussed at the
example of Rubidium-87, which is the element studied in our experiments.



Chapter 2. Rydberg atoms

2.1 Rydberg electron energy levels

Already at the beginning of the 18th century people studied distinct absorption
lines in the spectrum of the sun using prisms. Wollaston reported the first
few of these lines in 1802 [7] and in 1814 Fraunhofer started more detailed
studies on this topic [8]. In 1868 Ångström published a set of more than 1000
precise and systematic values of absorption lines [9]. After Balmer described
the absorption lines of hydrogen [77] for the so-called Balmer-series, in 1890
Rydberg generalized the formula. He calculated the photon frequency ν for
the absorption lines according to [78]

ν = R∞

(
1
n2

1
− 1
n2

2

)
, (2.1)

with the fundamental physical constant R∞ nowadays known as the Rydberg
constant. Here, n1 and n2 are integer numbers, the interpretation of which
was unclear at that time. The value of the Rydberg constant needs to be
adapted for every element depending on its nuclear mass.
Niels Bohr invented his atomic theory in 1913, where he assumed that

the electron orbits around the core on a circle with the length of the circle
being a n-fold multiple of the de-Broglie wavelength 2πr = nλD. Assuming
this together with the hypothesis that the coulomb force and the centripetal
force acting on the electron should be equal, Bohr derived his formula for the
electronic energy levels [10]

En = −Ry
Z2

n2 , (2.2)

with Z being the charge of the ionic core. Interpreting the Rydberg formula
2.1 as the energy difference between two energy levels for Z = 1, one finds
that the Rydberg constant in energy units (labeled Ry) equals the famous
binding energy of about 13.6 eV for the electronic ground state (n = 1) of the
electron in the hydrogen atom. Changing to the system of atomic units, the
energy is given in terms of one Hartree Eh = 4.359 744 650× 10−18 J = 2Ry
and therefore Ry = 1/2 in atomic units1. The energy levels are described by
the principal quantum number n = 1, 2, 3, ... and for energetically high levels
the electrons binding energy decreases proportional to −1/n2 approaching
the ionization threshold.

1From now on, all formulas will be given in atomic units.
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A second famous result of Bohr’s atomic model is the formula for the
electron orbit radius

rn = n2

Z
, (2.3)

given in terms of the atomic length scale unit, which is the Bohr radius
a0 ≈ 5× 10−11 m. Already this semi-classical theory predicts that Rydberg
atoms have orbits which increase dramatically with n2. For example, for
n = 140 the radius exceeds 1 µm!
In order to extend Bohr’s atomic model, Sommerfeld later on [11] sug-

gested to allow for elliptic electron orbits and introduced the orbital angular
momentum L̂ of the electron. Its magnitude is given by the orbital angu-
lar momentum quantum number L = 0, 1..., n. According to the naming
of the observed line spectra one still uses the names S, P,D, F, ... for the
L = 0, 1, 2, 3, ... states. Additionally, Sommerfeld introduced the magnetic
quantum number mL = −L,−(L − 1), ..., (L − 1), L corresponding to the
projection of L̂ onto a quantization axis. This results in 2L+1 possible values
of mL. It turned out that Bohr’s and Sommerfeld’s formulas are correct to
first order and the quantum numbers are meaningful in the framework of the
full quantum-mechanical description which was developed later on.
However, the simple Bohr-Sommerfeld model didn’t include the angular

momentum Ŝ of the electron, which is called its spin, with the absolute
value given by the spin quantum number S and the projection mS along a
quantization axis. This spin is connected to the magnetic moment µS of the
electron. The spin and the orbital angular momentum of the electron couple
and the coupled system is best described by the total electronic angular
momentum Ĵ = L̂+ Ŝ of the electron, resulting in quantum numbers J with
|L− S| < J < |L+ S| and the projection mJ . The energy levels for different
J are no longer degenerate, but split by the so-called fine structure splitting

∆EFS = a L̂ · Ŝ, (2.4)

which appears due to the spin-orbit coupling with the coupling constant
a. In the same way, the nuclear spin Î couples with Ĵ to the total angular
momentum F̂ = Î + Ĵ leading to an energy shift which is to first order given
by [79]

∆EHFS = AHFS Î · Ĵ = AHFS

2 [F (F + 1)− I(I + 1)− J(J + 1)], (2.5)

with the hyperfine structure constant AHFS which decreases for larger n as the
electron probability at the core decreases. For Rydberg states, the hyperfine
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interaction can be neglected, as their electron probability density close to the
nucleus is small. Therefore, the Rydberg state is well characterized by the
quantum numbers n,L, J,mJ .
For atoms other than hydrogen, once there is one electron excited to a

Rydberg state it interacts with the remaining ionic core, which in contrast to
the hydrogen core contains more than one proton. The nucleus has charge Z,
but there are Z − 1 remaining core electrons shielding its charge. Therefore,
the effective charge of the nucleus is close to unity and the hydrogen treatment
can be adapted with minor changes. In addition to the small change in the
potential, the Rydberg electron slightly polarizes the remaining core electrons
anisotropically, depending on L. The largest effect of the core being different
to hydrogen is probed by the electronic states of low L whereas the high-L
states are almost unperturbed. Therefore, the states with L < 4 split off
significantly from the hydrogen-like manifold. When atoms are excited from
the ground state into a Rydberg state, these low-L states can therefore be
addressed separately by narrow-line laser excitation due to their particular
splitting. The adapted formula for the energy levels

EnLJ = − Z2

2(n− δnLJ)2 (2.6)

includes the quantum defects δnLJ which do not only depend on n and
L but also on the total electronic angular momentum quantum number J .
Remember that Ry = 1/2 in atomic units.

One can define

n∗ = n− δnLJ , (2.7)

which is called the effective principal quantum number of the electronic state
as it inherits the role of the principal quantum number in the Bohr model. As
mentioned before, only states with L < 4 possess significant quantum defects.
The quantum defects can be quantified via tha Rydberg-Ritz formula [80–82]

δnLJ = δ0 + δ2

(n− δ0)2 + δ4

(n− δ0)4 + δ6

(n− δ0)6 + ... (2.8)

which is restricted to the first two terms for the calculations in this thesis.
Using measured quantum defects for the energy level calculation, the fine-
structure coupling is implicitly included.
Throughout this thesis, the values for the energy levels of Rubidium-

87 used in calculations are taken from Refs. [79, 83, 84] for energetically
low lying states. For the case of energetically higher levels with low L,

22



Chapter 2. Rydberg atoms

δ0 δ2

nS1/2 3.1311807 0.1787
nP1/2 2.6548849 0.29
nP3/2 2.6416737 0.295
nD3/2 1.3480948 -0.6054
nD5/2 1.3464622 -0.594
nF5/2 0.0165192 -0.085
nF7/2 0.0165437 -0.086

Table 2.1: Quantum defects for 87Rubidium [80–82]. The values for Rydberg-Ritz
formula are given for the different nLmL Rydberg states with L up to 3.

Eq. 2.6 was used, with the measured Rydberg constant Ry(87Rb) = h ×
3289.821 194 66(2)× 1012 Hz from Ref. [80] and the quantum defects given in
Tab. 2.1.

For L > 3 the solution of the hydrogenic energy levels in Dirac theory is
used, expanded in powers of the fine-structure constant α as in [85] and the
correction due to the core polarizability is added according to [86], resulting
in

EnLJ ' Ry
Z2

n2

[
1− Z2α2

n2

(
3
4 −

n

J + 1/2

)]
− 3αc

4n3L5 . (2.9)

The core polarizability of Rubidium-87 is αc = 5.9717× 1016 Hz or 9.076 a u
[87].

2.2 Rydberg electron wave functions

The Bohr-Sommerfeld model delivers the binding energies En of the electronic
levels. In order to gain knowledge and calculate further properties of Rydberg
atoms, but at the same time get a pictorial understanding of the Rydberg
states, in addition to the binding energies, the electronic wave functions Ψ(r)
are required. Therefore, the stationary Schrödinger equation

Ĥ0Ψ(r) = (Ĥkin + Ĥpot)Ψ(r)

=
(
−∇

2

2µ + V (r)
)

Ψ(r) = EΨ(r) (2.10)

needs to be solved. In addition to the eigenenergies En which equal the values
found by Bohr’s formula, also the eigenfunctions for the electron at position
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r and the ionic core at the origin have to be found. The Hamiltonian for the
bare Rydberg atom Ĥ0 consists of a kinetic energy part Ĥkin and a potential
energy part Ĥpot, which is in this case the coulomb potential V (r) = −1/r
(where r = |r|), centered at the origin, describing the interaction between
the Rydberg electron and the ionic core. Here, µ = m1m2/(m1 +m2) is the
reduced mass of the two particles of mass m1 and m2. The calculation for the
case of the hydrogen atom is presented in many textbooks on atomic physics,
for example Refs. [85, 88]. For a spherically symmetric potential V (r), it is
useful to transform the Schrödinger equation to spherical coordinates[

− 1
2µr

d2

dr2 r + L2

2µr2 + V (r)
]

Ψ(r, θ, φ) = EΨ(r, θ, φ). (2.11)

As only the angular momentum operator L acts on the angles θ and φ with
respect to the quantization axis z, but the rest of the Hamiltonian only
depends on r, the solutions for Ψ(r, θ, φ) have to be eigenfunctions for L2 and
Lz (which is the z-component of L) as well. The fact, that H,L2 and Lz have
the same eigenfunctions is also manifested by their pairwise commutators all
being zero. Laplace’s spherical harmonics

Y mL
L (θ, φ) = 1√

2π

√
(2L+ 1)

2
(L−mL)!
(L+mL)!P

mL
L (cos θ)eimLφ, (2.12)

with the associated Legendre polynomials PmL
L are in fact eigenfunctions to

the two operators L2 and Lz. Therefore, the solution for Ψ(r, θ, φ) can be
found by a separation ansatz

Ψ(r) = R(r)Y mL
L (θ, φ), (2.13)

of a radial part R(r), which only depends on the separation r between the
electron and the ionic core, and the angular part Y mL

L (θ, φ).
When adapting this method for the hydrogen atom to alkali atoms, the

angular part is unchanged and is still described by Laplace’s spherical har-
monics. In contrast, in order to find the radial part of Ψ(r) for alkali atoms
the potential needs to be modified to account for additional core electrons.
The radial part of the Schrödinger equation reads[

− 1
2r

d2

dr2 r + L(L+ 1)
2r2 + Vmod

]
R(r) = ER(r) (2.14)

and contains the centrifugal term plus the modified ion-electron interaction
potential. The reduced mass drops out as µ ≈ me which is 1 in atomic units.
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For the modified ion-electron potential

Vmod(r) = −Zeff(r)
r

+ Vpol + Vso (2.15)

is used. The effective charge Zeff(r) is described by

Zeff(r) = 1 + (z − 1)e−a1r − r(a3 + a4r)e−a2r (2.16)

according to Ref. [87] with the ai coefficients given therein. In addition to
this effective charge of the ionic core, also the polarizability of the core is
taken into account. The core gets polarizable due to the electrons in closed
shells and contribution is [87]

Vpol = − αc
2r4

(
1− e(r/rc)6

)
(2.17)

where rc is a cutoff radius as the polarizability of the inner electrons should
play no role very close to the nucleus. The third part of equation 2.15 is the
spin-orbit term which can be approximated by [89]

Vso '
α2

4r3 (J(J + 1)− L(L+ 1)− S(S + 1)) . (2.18)

The radial part R(r) of the wave function is then calculated by solving the
Schrödinger equation using the Numerov method on a quadratically scaled
grid for r. The corresponding Numerov equation can be found in [86]. As the
effective potential equation 2.15 is not very precise for small values of r, the
radial starting point is chosen to be either 3

√
αc or the classical inner turning

point of the electron (especially for large L) depending on what is larger.
An exemplary result of this numerical calculation is presented in Fig. 2.1

for n = 25, where the absolute value of the weighted radial wave function
is depicted. One can see, that the number of nodes in the wave function
decreases by one for an increase in L by one. Additionally, the radial position
of the outer most peak shifts to lower r the larger the angular momentum
of the Rydberg state. The orbit size of a Rydberg S-state is therefore about
twice (up to the non-integer part of the quantum defect) as large compared to
the Rydberg state with maximum L. The peak position of the maximum-L
orbit fits the Rydberg orbit size predicted by Bohr’s model r25 = 625 a0 (see
Eq. 2.3). Furthermore, for increasing n by one and keeping L = 0 the number
of nodes in the wave function increases by one as well.
To sum up, the electronic wave functions Ψ(r) = R(r)Y mL

L (θ, φ) for the
Rydberg electron are calculated by numerically solving the radial part of the
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Fig. 2.1: Radial Rydberg wave functions as a function of the radial position r of
the Rydberg electron. For n = 25 the absolute value of the weighted radial wave
functions are shown for L = 24, 20, 15, 10, 5 and mJ = L+ 1/2 corresponding to the
curves in purple, orange, green, red, and blue. The radial wave function marked
in black is calculated for n = 28, L = 0mL = 0.5 which is the Rydberg S-state
energetically closest to the n = 25 hydrogenic manifold. The curves are offset for
better readability.

Schrödinger equation using an adapted ion-neutral interaction potential for
alkali atoms in order to find the radial part R(r) of the wave function. The
angular part Y mL

L (θ, φ) is calculated analytically according to the Laplace
spherical harmonic functions.

2.3 Rydberg atoms in static external fields

In this chapter the response of Rydberg atoms to external electric and
magnetic fields is discussed. The Rydberg electron shows increased sensitivity
to external electric fields for increasing n, magnitudes stronger than for deeply
bound electrons. In contrast, the behavior in external magnetic fields can be
treated analogously to ground state atoms in most cases. Merely, for very
high n diamagnetic line shifts can start to play a role even at moderate field
strength.
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2.3.1 External electric fields

In contrast to deeply bound electrons, Rydberg electrons are located further
away from the ionic core and are thus much more sensitive to external electric
fields. Therefore, it is important to understand their response to electric fields
as the controlled application of electric fields on field electrodes is a powerful
tool to manipulate Rydberg atoms in a controlled fashion. Additionally,
undesired influences by detrimental stray electric fields need to be understood
in order to compensate such fields efficiently.

An atom placed in a static external electric field E interacts with it according
to

ĤE = −dE, (2.19)

with the dipole operator d which is given in terms of the atomic unit electric
dipole moment ea0 ≈ 8.5× 10−30 Cm ≈ 2.54 D with the electron charge e.
The atomic unit for the electric field E is e/(4πε0a

2
0) ≈ 5.1× 1011 V/m with

the dielectric constant ε0.
In order to calculate the Stark shift caused by the static electric field, the

level coupling due to the electric field

〈ΨnLmL |dE
∣∣∣Ψn′L′m′

L

〉
(2.20)

needs to be evaluated. In practical this is done for a truncated basis set
including a state of interest and all states of a few neighboring principal
quantum numbers, as those couple the strongest. The matrix Ĥ0 + ĤE is set
up in this basis for each value of E and its full diagonalization delivers the new
eigenenergies for the Rydberg states in the presence of the external electric
field. The result of such a full diagonalization is presented in Fig. 2.2(a), where
the Rydberg levels in the vicinity of the 71S state are shown as a function of
applied external electric field. The Rydberg levels in the hydrogenic manifolds
68m and 69m show a linear Stark shift due to level mixing. However, if the
level shift caused by the electric field is small with respect to the level spacing
between neighboring levels, level mixing can be neglected and one can treat
the problem perturbatively. This is typically the case for low-L Rydberg
states of alkali atoms which are well isolated by their respective quantum
defects.
In perturbation theory one finds

∆EE = −(d0Ez + α

2 E
2
z +O(E3)) (2.21)
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Fig. 2.2: Rydberg levels in an external electric field. (a) Overview of the Rydberg
levels in the vicinity of the 71S state as a function of external electric field E. Low-L
states are explicitly labeled. The hydrogenic manifolds are referred to as m. (b)
Zoom-in on the 71S state for low electric field values. The outcome of the full
diagonalization (black solid) and the quadratic fit (red dashed) fall on top.

for an electric field along z. Here, d0 is the dipole moment of the unperturbed
Rydberg state which is zero as the dipole operator only couples states of
opposite parity. Therefore, only the second order contributes and causes a
quadratic Stark shift with the scalar polarizability α, which is

α =
∑

nL6=n′L′

| 〈ΨnL| z |Ψn′L′〉 |2

EnL − En′L′
. (2.22)

The polarizability α increases proportional to n7 as larger Rydberg states
are easier to polarize. This gets evident, considering that the relative spacing
of the energy levels decreases (EnL − En′L′) ∝ n−3 and the coupling raises
〈ΨnL| z |Ψn′L′〉 ∝ n2. The quadratic behavior with respect to E can be seen
in Fig. 2.2(b) where the energy of the 71S state is shown as a function of
the external electric field in a range, for which the line shift is small in
comparison to the spacing to neighboring energy levels. The quadratic fit
for the perturbative treatment (red dashed) perfectly follows the outcome of
the full diagonalization (black solid), which confirms that the perturbative
treatment is valid.
If strong electric fields are applied, the Rydberg atom will be ionized.

However, before ionization takes place the Rydberg state crosses many other
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states in the Stark map, coupling to some of them. Therefore, not only the
binding energy of the Rydberg state is relevant to determine the ionization
threshold voltage, but the ramp speed will influence whether Landau-Zener
crossings in the Stark map will be crossed adiabatically or diabatically. For
low-m states there are many states of the same m-value energetically closeby
and once the state crosses the neighboring hydrogenic manifold, the ionization
process is mostly adiabatic such that ionization takes place close to the semi-
classical ionization threshold E = 1/(16n4). In contrast, high-m states tend
cross the neighboring hydrogenic manifold diabatically and follow the Stark
states of the hydrogenic manifold, leading to an ionization threshold larger by
a factor of two to four [86]. This difference ionization behavior is exploited
in state-selective field-ionization experiments: Electric fields are ramped on
such that low-m states ionize earlier than high-m states and the ions can be
assigned to the two cases due to their arrival time on an ion detector.

2.3.2 External magnetic fields

The interaction of Rydberg atoms with external magnetic fields can not be
neglected in most experiments, as typically a magnetic offset field is applied
setting the quantization axis in the lab. In our experimental setup, the
atoms are even held in a magnetic trap such that Rydberg atoms will always
experience a magnetic field.
In order to calculate the level energy shift for a Rydberg electron in an

external magnetic field, one starts with the generalized momentum (p + A)
with the magnetic vector potential B = ∇×A. When choosing the symmetric
gauge A = −(r×B)/2 one can insert this term in the kinetic energy part of
the Hamiltonian in Eq. 2.10

Ĥkin = 1
2

(
p− r×B

2

)2

= p2

2 −
1
2p(r×B) + 1

8(r×B)2

= p2

2 + µzBz
2 + B2

z

8 (x2 + y2), (2.23)

where the last line is valid for B oriented along the z-axis. The first term
is the standard kinetic energy term, the second term is the linear Zeeman
term with the magnetic moment µz of the electron and the third term
describes diamagnetism. The atomic unit for the magnetic field is ~/(ea2

0) ≈
2.35× 105 T = 2.35× 109 G.
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In general the full Hamiltonian needs to be diagonalized, but for low
magnetic fields in first order only the linear Zeeman term is contributing. The
magnetic moment µz then comprises both the magnetic moment associated
with the charged electron possessing an angular momentum and the magnetic
spin moments of the electron and the nucleus. In total the energy shift is
given by

∆EZeeman = g ·m ·Bz (2.24)

where the m quantum number corresponds to the projection of the total spin
(including both angular momentum, electron spin, and nuclear spin) onto the
z-axis and g the corresponding Landé-factor weighting the spin contribution
to the magnetic moment. For Rydberg atoms m = mJ as the coupling to
the nuclear spin is weak and the state can be described in the J-basis. For
the case of low-L states, including the electronic ground state, the total spin
projection is given by m = mF . The respective Landé-factors are [79]

gJ ≈ 1 + J(J + 1) + S(S + 1)− L(L+ 1)
2J(J + 1)

gF ≈ gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1) . (2.25)

The diamagnetic term is typically much weaker than the linear Zeeman
term. For isolated states, such as S-states in Rubidium, no full diagonalization
is needed, but the diamagnetic shift is

∆Edia = B2
z

8 〈ΨnLmL | r
2 sin(θ) |ΨnLmL〉 , (2.26)

with the angle θ between the electron position r and the z-axis [86]. It scales
as n4 and therefore, the relative strength of ∆Edia compared to ∆EZeeman
gets significant, as soon as n4B > 1.
This can be seen in Fig. 2.3, where both the linear Zeeman term and the

diamagnetic term are presented for a set of
∣∣nS1/2,mJ = 1/2

〉
Rydberg states.

While for low principal quantum numbers such as n = 50 the regime where
both terms get comparable is entered for magnetic fields strength in the range
of 1000 G, in contrast, for n = 200 already magnetic fields of B = 3 G are
strong enough. Megahertz line shifts due to the diamagnetic effect can be
measured at even lower fields.
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Fig. 2.3: Line shift ∆E for nS Rydberg states due to the linear Zeeman term and
the diamagnetic term as a function of magnetic field B. The linear Zeeman shift of
a
∣∣nS1/2,mJ = 1/2

〉
state is independent of the principal quantum number n and

marked as a red line. In contrast the diamagnetic line shift for the
∣∣nS1/2,mJ = 1/2

〉
states (as labeled on the right) is getting stronger for increasing n.

2.4 Rydberg-Rydberg interaction

One main reason for the great interest in Rydberg physics during the last
years stems from the fact, that strong long-range interactions arise between
Rydberg atoms [12, 17–20, 26, 28, 90]. By exciting and deexciting atoms to a
Rydberg state, these interactions between neutral atoms can be turned on
and off. Therefore, a brief introduction to Rydberg-Rydberg interaction will
be given here, despite the fact that the work in this thesis is in the regime,
where only one Rydberg atom is excited in the whole sample.

If two Rydberg atoms approach each other they interact with each other
according to the dipole-dipole interaction potential

Vdd(R) = d1d2 − 3(R · d1)(R · d2)
R3 (2.27)

with their respective dipole moments di and the distance R between the two
atoms.

Rydberg atoms in nS states as treated in this thesis don’t possess a perma-
nent electric dipole moment. However, Rydberg atoms are very polarizable
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and an electric dipole moment can be induced. Hence, when two nS Ryd-
berg atoms approach each other they interact with each other via induced
dipole-dipole interaction given by the van-der-Waals potential

VvdW = C6

R6 (2.28)

which is characterized by the C6 coefficient that typically scales as n11 [91].
When one Rydberg atom is photo-excited, the Rydberg energy levels of a
neighboring atom are shifted due to this van-der-Waals interaction. If the
shift is larger than the laser excitation bandwidth γL (which is typically larger
than the natural linewidth of the Rydberg level), the neighboring atoms can
not be excited to a Rydberg state. This is called the Rydberg blockade effect
and is characterized by the blockade radius

rB = 6

√
C6

~γL
(2.29)

which increases proportional to n11/6. For Rydberg states with L 6= 0 the
blockade gets unisotropic. Many Rydberg experiments apply this blockade
effect, for example for quantum information processing [18–20] and quantum
simulation [26–28] or to introduce large optical non-linearities in the medium
[24, 25].

In contrast to this isolated treatment of nS Rydberg states, in general the
van-der-Waals interaction needs to be compared to the energy gap between
the Rydberg pair state under consideration and neighboring Rydberg pair
states [20, 92]. If the van-der-Waals term is large in comparison to this energy
spacing, level mixing leads to electric dipole moments and therefore resonant
dipole-dipole interactions arise. This is the case for high-L Rydberg states
due to nearly degenerate states of the hydrogenic manifold. Furthermore, this
crossover to dipole-dipole interaction also occurs for the case of Förster reso-
nances for low-L Rydberg pair states as the level spacing is small. Moreover,
it occurs for Rydberg atoms coming extremely close, as the van-der-Waals
term gets very large [20, 92].
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3
Rydberg atoms in dense media

When Rydberg atoms are immersed in a high density environment, neighbor-
ing atoms can be found within the Rydberg orbit. The Rydberg atom will
interact with these neutral atoms via electron-neutral and ion-atom interac-
tion. In most cases, the elastic electron-neutral scattering is the dominant
term and can lead to the formation of ultralong-range Rydberg molecules.
The potential energy curves supporting this molecular bound states emerge
from electron-neutral and ion-atom scattering as presented in this chapter.
The ion-atom interaction is described by a classical polarization potential.
For the electron-neutral interaction between the Rydberg electron and a
neutral atom not only quantum mechanical s- and p-wave scattering needs to
be considered, but additionally the relative spin orientation of the Rydberg
electron and the neutral atom is modifying the scattering process.
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3.1 Introduction to quantum mechanical scattering in a
spherically symmetric potential

For both the interaction of the Rydberg atom with a neutral atom the theory
of the quantum mechanical scattering of two particles has to be applied. It is
studied in many textbooks and the introduction here is based on Refs. [88, 93,
94]. For the scattering of two particles, the particles are treated as point-like
objects and the problem is formulated in the center of mass frame with the
reduced mass µ = m1m2/(m1 +m2). The scattering process is described by
the stationary Schrödinger equation for the scattering wave function Ψ(R)[

−∇
2

2µ + V (R)
]

Ψ(R) = EΨ(R) (3.1)

for one particle with reduced mass µ and the potential V (R) which is centered
around the origin. Here, R denotes the interparticle distance. The collision
energy is given by E = k2/(2µ) with k = |k| being the absolute value of the
relative wave vector between the two particles.

Fig. 3.1: Sketch of the scat-
tering process at the potential
V (R) (red). The contributions
of an “incoming” plane wave
(blue) and a scattered “outgo-
ing” spherical wave (gray) are
illustrated.

Typically, the ansatz

lim
R→∞

Ψ(R) = eikz + f(E, θ, φ)e
ikz

R
(3.2)

is chosen, taking care of the boundary condi-
tions of an “incoming” plane wave eikz and
an “outgoing” spherical wave eikz/R scaled
by the scattering amplitude f(E, θ, φ), which
depends on the polar angles θ and φ with
respect to the z-axis. For the rotationally
symmetric potential V (R) it is sensible to
treat the Schrödinger equation in spherical
coordinates analogous to Eq. 2.11 for the cal-
culation of the wave functions in the case of the Coulomb potential. However,
the boundary condition of the incoming plane wave along the z-axis poses
the requirement, that ml = 0 due to symmetry reasons. This leads to the
situation, in which only spherical harmonics

Y
ml=0
l (θ, φ) = 1√

2π

√
2l + 1

2 P 0
l (cos θ), (3.3)
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contribute, which are proportional to the associated Legendre polynomials
P 0
l (cos θ). Therefore, the ansatz for the wave function is

Ψ(R, θ) =
∞∑
l=0

Rkl(R)Pl(cosθ). (3.4)

In order to differentiate between the angular momentum in the scattering
process, a lowercase l is used, while L is the label for the angular momentum
of the electron in the potential of the nucleus. The contributions to the
scattering problem for the different l-values are called partial waves and are
denoted by s,p,d,... for l = 0, 1, 2, ... . Their respective radial wave functions
are given by Rkl(R).
When this ansatz is used, every summand of Eq. 3.4 has to fulfill the

Schrödinger equation, resulting in radial equations[
− 1

2µR
d2

dR2R+ l(l + 1)
2µR2 + V (R)

]
Rkl(R) = ERkl(R). (3.5)

for each value of l.
For the radial problem one can interpret the second an third term together

as an effective potential

Veff = l(l + 1)
2µR2 + V (R), (3.6)

thus consisting of the centrifugal barrier l(l + 1)/(2µR2) and the interaction
potential V (R). While the centrifugal term is repulsive, in many cases the
potential V (R) of interest is attractive, such that the two terms compete
depending on the interparticle separation R. The height of the centrifugal
barrier rises for increasing l and more and more kinetic energy in the scattering
process is required to overcome the barrier. Therefore, only a limited number
of partial waves contribute for an experiment with given kinetic energy
and the series in Eq. 3.4 can be truncated. For s-wave scattering (l = 0),
the centrifugal term vanishes and we regain the potential V (R). Typically,
experiments aim to reach low temperatures to study quantum scattering,
with only the s-wave term contributing to the scattering problem.

Many interaction potentials commonly studied for example dipole-dipole
interaction, ion-atom interaction and van-der-Waals interaction follow power
laws and can be written as V (R) = Cn/R

n. For such potentials, the effective
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range R∗ and the characteristic energy E∗ of the potential are given by [95]

R∗ =(2µCn)1/(n−2)

E∗ = 1
2µR∗2 . (3.7)

At R∗, the kinetic energy equals the depth of the scattering potential. R∗ and
E∗ correspond to the position and height of the p-wave barrier, respectively.
Typically, for R < R∗ one assumes, that the Cn-potential is the dominant
term and neglects the kinetic energy, whereas for R > R∗ the scattering
potential can be neglected, leading to the Schrödinger equation for the free
particle.
Therefore, in the limit of R → ∞, where the potential can be neglected,

the radial part follows

Rkl(R) ∼ sin(kR− l π2 + δl(k)). (3.8)

with a phase shift δl(k) [88, 94]. As mentioned before, the series in Eq. 3.4
can be truncated, as only a limited number of partial waves contributes
significantly to the scattering problem. In the case, where only s-wave
scattering is relevant, the full information of the scattering process can be
condensed into the scattering phase shift δ0 for large interparticle separations
R.

For completeness, the scattering amplitude f and cross section σ are stated,
given by

f(E, θ, φ) =
∞∑
l=0

(2l + 1)fl(k)Pl(cosθ)

σ =
∞∑
l=0

4π
k2 (2l + 1) sin2(δl(k)) (3.9)

as derived in many textbooks. The scattering amplitude fl for the lth partial
wave is

fl(k) = eiδl(k) sin(δl(k))
k

, (3.10)

which again depends solely on the kinetic energy and the scattering respective
phase shift.
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3.2 Ion-atom scattering

When a neutral atom resides inside the Rydberg orbit and approaches its
ionic core it gets polarized by the ion. The interaction is described by the
polarization potential

Vi(R) = −αRb2 E
2
i . (3.11)

Here, αRb is the ground-state polarizability of the neutral 87Rb atom which is
αRb = 2 · C4 = 318.8 a.u. = 5.256× 10−39 C2m2/J [96]1. The electric field of
the ion is Ei = 1/R2 given by the Coulomb law at the internuclear distance R
between the neutral atom and the ion. Therefore, the polarization potential
is given by

Vi(R) = −C4

R4 , (3.12)

denoted from now on as the C4-potential. The effective range of this scattering
potential for the collision of a 87Rb+ ion and a 87Rb neutral atom (and
therefore µ = 0.5×m(87Rb)) is R∗ =

√
2µC4 ≈ 5025 a0 and the characteristic

energy E∗ ≈ 6.8× 10−12 eV = 78.9 nK. Inserting the C4-potential into
Eq. 3.6, we end up with the effective potential

Veff,i(R) = l(l + 1)
2µR2 −

C4

R4 (3.13)

for the set of partial waves l. The spacial dependence of the potentials for
the lowest partial waves are presented in Fig. 3.2. For l = 0 the potential
is purely attractive, whereas for higher partial waves a centrifugal barrier
appears. The height of the centrifugal barriers are listed in Table 3.1. One
can extract from this table, that temperatures below 78.9 nK have to be
reached, to be in the s-wave scattering regime. Such cold temperatures for
ion-atom scattering have not been experimentally reached up to now.

partial wave l = 1 l = 2 l = 3 l = 4
centrifugal barrier 78.9 nK 710 nK 2.84 µK 7.89 µK

Table 3.1: Centrifugal barrier heights for ion-atom scattering in 87Rb.

In order to measure a sizable effect of the ion-atom interaction in a Rydberg
experiment, an energy contribution in the MHz range should be aimed at.

1Note that often C4 = α without the factor of two [1, 65], but in general Cn type
potentials are defined as V = Cn/R

n
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Fig. 3.2: Effective ion-atom scattering potential for partial waves up to l = 4. The
behavior of the C4 potential including the centrifugal term is presented as a function
of the internuclear distance R in terms of energy (left axis) and temperature (right
axis). The extracted centrifugal barrier heights are listed in Table 3.1.

However, for typical experiments with clouds of ultracold rubidium, the
sample is dilute and the atoms only probe the outer part of the C4-potential
at kHz depth. In order to reach a regime, where the ion-atom interaction
exceeds 1 MHz, the particles have to be as close as 1000 a0. The density of
the cloud needs to be increased to at least 1× 1015 cm−3 to reach this nearest
neighbor spacing of 1000 a0. Only then, a line shift in the MHz range is
expected on the Rydberg spectrum.
For very short internuclear distances R� 100 a0 the particles repel each

other, such that the pure C4-potential is insufficiently describing the scattering
potential. If one is interested in this short-range behavior model potentials
including short-range physics have to be applied [97].

3.3 Electron-atom scattering

Not only the ionic core of the Rydberg atom, but also the Rydberg electron
interacts with neutral atoms residing within the Rydberg orbit. In fact,
the electron-atom interaction term is much more relevant in many cases,
as it starts to play a role as soon as the neutral atom enters the Rydberg
orbit, whereas the ion-atom interaction is only dominant for R << 1000 a0.
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Fig. 3.3: Size of the classical Rydberg orbit and typical nearest neighbor spacing for
comparison. (a) The classical size of an Rydberg S-orbit is presented as a function
of principal quantum number n. (b) The peak position of the nearest neighbor
distribution is shown vs the density. The density of the ultracold sample we use
for the Trilobite Rydberg molecule experiment in chapter 5 is marked by the red
symbol, while the density in the micro-BEC used for the investigation of the ionic
impurity in the BEC (chapter 6 is marked by the green symbol.

Therefore, at as soon as the sample density is so high that the interparticle
separation is on the order of the size of the Rydberg orbit, elastic electron-
atom scattering is of significant strength and can lead to the formation of
ultra long-range Rydberg molecules.
In order to compare the length scale of the Rydberg orbit to the typical

spacing of nearest neighbors in an ultracold sample, Fig. 3.3 presents both. In
Fig. 3.3(a) the classical size of the Rydberg S-orbit is presented as a function
of principal quantum number n. It ranges from 800 a0 for n = 20 to 80 000 a0
for n = 200. The densities needed to typically find one perturber at this
distance from the Rydberg nucleus can be extracted from Fig. 3.3(b). For
example, at n = 30 the classical Rydberg S-orbit is 1800 a0 in radius. To
have on average one perturber placed inside this orbit, the density has to
be at least 2× 1011 cm−3. In the experiment, the sample is illuminated by
radiation resonant with the transition to the Rydberg molecular state. Pairs
of atoms which have the right distance to form a bound molecular state can
then be excited.
First signatures of the effect of perturber atoms inside the Rydberg orbit
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were already found in 1934 [53, 54], when experiments in thermal vapor cells
revealed line shifts and broadening of Rydberg lines, when the pressure inside
the cell is increased. They observed that the amount and even the sign of
the shift changed when using different background gases. Note that the shift
and broadening were independent of the principal quantum number of the
Rydberg state. The first theoretical model was presented by Fermi [55], where
he introduced his widely known pseudopotential together with the quantum
mechanical scattering length. He derived it from the quantum scattering
theory for the limit where the range of interaction is small in comparison to
the de-Broglie wavelength of the electron.

As the Rydberg electron orbits far from the nucleus, one can treat it as a
quasi-free electron and study the interaction analogous to the case of the ion.
In comparison to the ion-atom scattering, the effective mass µ ≈ me = 1 a.u.
is dramatically reduced and therefore, the kinetic term and the centrifugal
term are much larger at the same interparticle separations in comparison to
the ion-atom case. As the centrifugal term is larger, the internuclear distance,
where the C4-term compensates the centrifugal term is at much lower values
of R∗e =

√
2C4 ≈ 18 a0. The characteristic energy E∗e = 42.7 meV is nine

orders of magnitude higher than for the ion-atom interaction. Analogous to
the ionic case, the effective potential for the electron is given by

Veff,e(Re) = l(l + 1)
2R2

e
− C4

R4
e

(3.14)

and is plotted for the lowest partial waves in Fig. 3.4 as a function of the
electron-atom separation Re. As the characteristic energy is so different, the
temperature scale for the centrifugal barriers is kelvin instead of microkelvin
for the ion-atom case. The centrifugal barrier heights are listed in Table 3.2.
The energies need to be compared to the kinetic energy of the scattering

process which can be reached. It is given by the semi-classical kinetic energy
of the Rydberg electron

Ekin = − 1
2(n− δnLJ)2 + 1

r
= k2

2 , (3.15)

which is the energy, the Rydberg electron gains in the Coulomb potential
relative to its binding energy. It is shown in Fig. 3.5(a) for short separations
between the Rydberg electron and the core, as the highest kinetic energies
are reached in this regime. There, the difference in kinetic energy between a
Rydberg state of a moderate n = 40 and a high-n Rydberg state is small. As
the scattering process is considered to be elastic, the kinetic energy of the
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Fig. 3.4: Effective electron-atom scattering potential for partial waves up to l = 3.
The behavior of the C4 potential including the centrifugal term is presented as a
function of the internuclear distance Re in terms of energy (left axis) and temperature
(right axis). The extracted centrifugal barrier heights are listed in Table 3.2. In
contrast to the ion-atom scattering, the effective mass is now only me instead
of 0.5 ×m(87Rb). The dashed line indicates the energy of the p-wave scattering
resonance.

partial wave l = 1 l = 2 l = 3 l = 4
centrifugal barrier 42.7 meV 383 meV 1535 meV 4258 meV

Table 3.2: Centrifugal barrier heights for electron-atom scattering in 87Rb.

Rydberg electron is calculated for one fixed n∗ of a state of interest. This
kinetic energy is used to calculate the terms for all Rydberg states taken into
account.

The kinetic energy needs to be compared to the heights of the centrifugal
barriers (Table 3.2), in order to decide how many partial waves have to be
taken into account to adequately describe the electron-atom scattering. One
finds that even for n → ∞ the electron needs to approach the nucleus to
r = 71 a0 in order to gain enough energy to overcome the d-wave barrier.
Internuclear separations such low are not relevant in typical experiments.
Therefore, the discussion can be restricted to s- and p-wave scattering only.
Furthermore, at these low distances the covalent bonds starts to play a role
and the applicability of the Fermi model is questionable.
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Fig. 3.5: Kinetic energy and phase shift δl for e−-Rb collision. (a) The semi-classical
kinetic energy of the electron-atom scattering process is presented as a function
of the distance between the ionic core and the Rydberg electron r. (b) Scattering
phase shifts for electron-atom s- and p-wave scattering for both singlet and triplet
scattering is shown as a function of the kinetic energy of the scattering process.
The phase jump of π in the p-wave triplet scattering channel indicates a scattering
resonance.

One might think, that even p-wave scattering should not play a big role, as
r < 637 a0 to reach high enough kinetic energies to overcome the centrifugal
barrier. However, it turns out that for 87Rb there is a quasi-bound state
behind the p-wave barrier which causes a shape resonance in the scattering
cross section. If the kinetic energy matches this energy, the free particles
couple resonantly to the quasi-bound state of Rb− behind the p-wave barrier.
The corresponding energy is marked as a dashed line in Fig. 3.4.

This can also be seen by checking the scattering phase shifts δl, presented
in Fig. 3.5(b), provided by I. Fabrikant [98]. According to Ref. [99], there is a
phase jump of π at the resonance positions, which is the resonant contribution
to the phase shift. In addition, there is an offset to the total scattering phase
shift called the potential phase. At the resonance, δ should follow an arccot
behavior. Therefore, the resonance position corresponds to the inflection
point in the phase shift. This results in resonance positions at about 23 meV
for the phase shifts of Ref.[98]. Sometimes, the potential phase is neglected
and the phase shift of π/2 at attributed to the resonance. However, for
our case this results in a kinetic energy value which is significantly higher
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(32 meV).
For high n the kinetic energy of 23 meV is reached at r ≈ 1000 a0, which

is a reasonable length scale for dense ultracold clouds. Moreover, also for
larger r, away from the resonance, the phase shift is modified. Therefore,
one can not neglect the p-wave term in the calculations of the electron-atom
interaction.

In the scattering process the phase shifts also depend on the relative spin
configuration of the electron and the spin of the neutral atom. Therefore, the
phase shifts in Fig. 3.5 include curves for both triplet and singlet scattering.
Details on the spin configurations and the implications for Rydberg molecules
will be discussed in section 3.4.

As the range of interaction for the electron-atom scattering process is small
in comparison to the de-Broglie wavelength of the electron and the interparticle
spacing, one can follow the treatment of Fermi [55], who simplified the problem
by the use of a δ-potential instead of the C4-potential. Omont [100] later
on extended it, in order to include the p-wave term as well, such that the
potential for the s- and p-wave are given by

Vs =2πas(k)δ(3)(r−R)

Vp =6πap(k)δ(3)(r−R)←−∇ · −→∇ , (3.16)

where the δ function is non-zero for the case, where the Rydberg electron
at position r is at the position R of the neutral perturber atom. All the
information about the potential is condensed into the scattering lengths al(k)
depending on the phase shift as

al(k) = − tan(δl(k))
k2l+1 . (3.17)

Classically, for a hard core potential with infinite height, as corresponds to
the extent of the potential. In a quantum mechanical description it can be
interpreted as the spatial displacement the outgoing wave has in comparison
to the incoming plane wave for large Re. The calculation of the phase shifts
presented in Fig. 3.5 starts at k = 0.003. For k-values smaller than that, we
extrapolated the phase shift with a modified value for the (2l + 1) exponent
in Eq. 3.17, to meet the zero-energy scattering lengths of aT0 = −16.1 a0 for
triplet and aS0 = 0.63 a0 for singlet scattering [101].
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3.4 Born-Oppenheimer potential energy curves

Fig. 3.6: Sketch of the coordi-
nates r between Rydberg ionic
core and Rydberg electron, R
between the Rydberg ionic core
and the neutral ground-state
atom, and Re between the Ryd-
berg electron and the neutral
ground-state atom.

In order to investigate the interaction of the
Rydberg atom with a neutral atom located
inside the Rydberg orbit and the formation
of an ultralong-range Rydberg molecule, we
have to combine the interactions between the
Rydberg electron, the ionic core and the neu-
tral perturber. Due to the large difference
of the motional timescales for the electron
and the nucleus, the wave function of the mo-
lecule can be described by a product of an
electronic component and a component com-
prising vibration and rotation. This is called
the Born-Oppenheimer approximation. On
this assumption, one can evaluate the Hamil-
tonian for the electronic component for each
position R of the neutral atom with respect
to the nucleus of the Rydberg atom indepen-
dently, neglecting the motion of the two nuclei.
Then, one can combine these R-dependent
values and interpret it as the time-averaged potential the neutral atom ex-
periences. In these potential curves, which are called Born-Oppenheimer
potential curves or adiabatic potential energy curves (PECs), molecular bound
states are predicted which are the ultralong-range Rydberg molecules. These
ultralong-range Rydberg molecules were first proposed by C. Greene and
coworkers [36] in 2000.
The Hamiltonian for the interaction of the Rydberg atom with a neutral

atom can now be assembled including all three contributions

Ĥ(r,R) = Ĥ0(r) + Ĥe,n(r,R) + Ĥi,n(R) . (3.18)

As introduced in section 2.2, the interaction between the Rydberg electron
and the ionic core is given by Ĥ0(r) and its eigenvalues are the energy levels
of a bare Rydberg atom. The second part of the Hamiltonian Ĥe,n(r,R)
describes the scattering of the quasi-free Rydberg electron with the neutral
atom as introduced in section 3.3 and depends on both the position r of the
electron and R of the neutral atom. Finally, Ĥi,n(R) denotes the term for
the ion-atom interaction according to section 3.2. The relative coordinates
between the three particles are sketched in Fig. 3.6, where r denotes the
distance between Rydberg ionic core and Rydberg electron, R refers to the
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distance between the Rydberg ionic core and the neutral ground-state atom,
and Re labels the distance between the Rydberg electron and the neutral
ground-state atom.

3.4.1 PECs for electron-atom s-wave triplet scattering
We will now, step by step, include more details into the electron-atom
scattering process and discuss characteristic features in the Born-Oppenheimer
potentials related to them. For the beginning, the electron-atom scattering
is only described by the s-wave scattering term and we assume the spin of
the electron and the neutral atom to be parallel. For this simplified case the
Hamiltonian is given by

Ĥ(r, R) =Ĥ0 + 2πaTs (k(R))δ3(r−Rẑ)− C4

R4 , (3.19)

with the z-axis pointing along the internuclear axis. Here, aTs refers to the
triplet s-wave scattering length. One can then evaluate the matrix elements
〈Ψ| Ĥ(r, R) |Ψ′〉 of the Hamiltonian for a truncated basis and find the new
eigenenergies and eigenstates of the system (including the interactions) by
numerical diagonalization of this matrix. The results will be discussed later.
In Greene’s first proposal, he also restricts the discussion to the case of

s-wave triplet scattering and neglected the C4-term as it only plays a role for
small R. To get a first intuition for the shape of the molecular potential curves,
one can start with a well isolated state Ψiso, where coupling to other states
can be neglected e.g. due to a large quantum defect. Then, one can restrict
the basis to the single state of interest and evaluate 〈Ψiso| Ĥ(r, R) |Ψiso〉 to
end up with the Born-Oppenheimer potential

Uiso,T(R) = Eiso,0 + 2πaTs (k(R)) |Ψiso(R)|2 − C4

R4 . (3.20)

As the S-state is split off from the hydrogenic manifold by the quantum defect,
it can to first order be treated as such an isolated state. In Fig. 3.7(b) the
PEC for the 40S state is presented2. If the distance R is sufficiently large,
the C4-term gets small, such that the potential curve is given by the energy
of the bare isolated Rydberg state Eiso,0 and a modulation resembling the
electron probability density |Ψiso(R)|2. Pictorially, at positions R where the
electron is more likely to be, it will interact more strongly with the neutral

2Retrieved from full diagonalization. For all PECs presented in section 3.4, 40S state in
Rubidium-87 is chosen as state of interest and 36m, 39P, 38D, 40S, and 37m were
included in the diagonalization.
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Fig. 3.7: Adiabatic potential energy curves U in the vicinity of the 40S state
(U = 0) are presented as a function of internuclear distance R between the Rydberg
nucleus and the neutral atom. Only triplet s-wave scattering is included for the
electron-atom scattering process. (a) PECs in the vicinity of the 40S state. The
3S Trilobite state detaches from the hydrogenic manifold. (b) Zoom-in on the 40S
state.

atom and therefore, the potential will have dips3. For very small internuclear
separations the C4-potential dominates and the potential bends down.
The deepest bound molecular state, localized in the outer most potential

well, allows for binding energies which range from GHz for n ≈ 20 down to
a few hundreds of kHz for n ≈ 70. When the principal quantum number n
increases, the Rydberg orbit increases proportional to n2. As the probability
density for the Rydberg electron wave function is normalized to one over the
volume of the Rydberg orbit, the squared amplitude of the wave function
reduces ∝ n−6 for increasing n. Therefore, also the depth of the outer most
well of the Born-Oppenheimer potential decreases proportional to n−6 [40].
The binding energies of the ultralong-range Rydberg molecules decrease
accordingly, up to the point where the molecular wave function starts to
spread out over several valleys of the potential.

An exemplary molecular electron probability density for the 40S ultralong-
range Rydberg molecule at a fixed distance of R = 2548 a0 is presented in
Fig. 3.8(a). The position of the nucleus of the Rydberg atom is marked
in red, while the position of the neutral atom is depicted by the green dot.

3as as(k = 0) < 0 in this case. For as(k = 0) > 0 peaks will appear.
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Fig. 3.8: Weighted electron probability density for triplet S-type and Trilobite
Rydberg molecules. The position of the Rydberg core(red) and the neutral perturber
atom (green) are marked. (a) The electron probability density is presented for the
40S ultralong-range Rydberg molecule in the R, z-plane for the neutral atom at
R = 2548 a0. (b) The electron probability density is shown for the 37m Trilobite
Rydberg molecule in the R, z-plane for the neutral atom at R = 1655 a0.

The molecular wave function is almost unperturbed in comparison to a bare
Rydberg S-state orbital.
First ultralong-range Rydberg molecules bound in potentials stemming

from such isolated Rydberg S-states in rubidium were experimentally observed
in 2009 [38] by means of photo-association. Thereto, Rydberg spectroscopy is
performed in the vicinity of an atomic Rydberg resonance, and the molecular
binding energy is extracted from the frequency difference between the atomic
and the molecular line. By now, not only rubidium S-type molecules have been
photo-associated, but also P-type and D-type molecules and investigations
have been extended to Rydberg molecules in cesium and strontium as well [44,
45, 47, 102–104]. In contrast to the photo-association of Rydberg molecules,
Bellos et. al. [105] presented the excitation of Rb2 molecules to Rydberg
molecular states. Not only molecules in the vibrational ground state, but
also vibrationally excited molcular states can be photo-associated [38].

In addition, trimer, tetramer and even pentamer molecules have been found
[39, 40]. As the electronic wave function for the S-type molecule is almost
identical to the wave function of the bare Rydberg S-state, one can assume,
that the molecular potential for a second, third, or forth neutral atom in the
orbit is to first order equal to the calculated two-body potential. Experimental
studies of poly-atomic states support this assumption, as the their binding
energies were found to be two times (trimer), three times (tetramer), and
four times (pentamer) the binding energy of the dimer molecule, as long as all
atoms are in the vibronic ground state of the outermost well of the molecular
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potential.
While the Rydberg S-states can be treated as isolated states, the case is

different for degenerate states. One can show that when diagonalizing the scat-
tering term evaluated in the truncated basis b(r) = (Ψ1(r),Ψ2(r), ...Ψn(r))T
of the Rydberg states, all eigenvalues except for one equal zero [106]. The
single remaining eigenvalue is λTrilobite(R) =

∑
i
|Ψi(R)|2 with the eigenvec-

tor equal to b(R) as discussed in Appendix A.1. The wave function for this
state is given by

ΨTrilobite(r, R) =
∑

i
Ψi(R)Ψi(r)√∑
i
|Ψi(R)|2

. (3.21)

One can see that for r = Rz, all summands in the numerator are positive,
meaning that all Rydberg wave functions interfere constructively. Note that
this is independent of the sign of the scattering length. As Rydberg wave
functions with mL > 0 are zero on the z-axis, only Rydberg states with
mJ ∈ {− 1

2 ,
1
2} contribute to this molecular wave function.

Therefore, when performing the full diagonalization for the hydrogen-
like states which are almost degenerate, all but one potential energy curve
are (almost) unperturbed. The one PEC corresponding to the single non-
zero eigenenergy splits off as can be seen in Fig. 3.7(a). The potential is
labeled “Trilobite”, as its electron orbital resembles a Trilobite fossil. This
can be seen in Fig. 3.8(b), where the weighted electron probability density
R sin(θ)|Ψ(R, z)|2 is presented. At the neutral atom position, marked in
green, the electron probability density is maximized by the constructive
interference mentioned before. Due to the strong asymmetry in the electronic
wave function, Trilobite Rydberg molecules can possess extraordinarily high
electric dipole moments in the range of thousands Debye. A large electric
dipole for a homonuclear molecule is very uncommon, as the symmetry
between the atoms needs to be broken.

Trilobite Rydberg molecules were already predicted in Greene’s first theory
work on Rydberg molecules [36] and were experimentally confirmed in 2015
[42]. A fraction of the large electric dipole moment of the Trilobite is admixed
to low-L Rydberg molecules as presented in Ref. [41].

3.4.2 PECs for electron-atom s- and p-wave triplet scattering
The closer the Rydberg electron approaches the ionic core, the more kinetic
energy it gains in the Coulomb potential in a semi-classical treatment. At
some point, the kinetic energy in the electron-atom scattering process matches
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Fig. 3.9: Adiabatic potential energy curves U in the vicinity of the 40S state
(U = 0) are presented as a function of internuclear distance R between the Rydberg
nucleus and the neutral atom. Triplet s- and p-wave scattering is included for the
electron-atom scattering process. (a) PECs in the vicinity of the 40S state. The 3P
Butterfly states detach from the hydrogenic manifold. (b) Zoom-in on the 40S state.

the energy of the quasi-bound Rb− state behind the p-wave centrifugal barrier,
as discussed in section 3.3. This scattering resonance modifies the molecular
potential energy curves. Therefore, the p-wave scattering term, needs to be
included in the Hamiltonian [37, 100]

Ĥ(r, R) =Ĥ0 + 2πaTs (k(R))δ3(r−Rẑ)

+ 6πaTp (k(R))δ3(r−Rẑ)←−∇ · −→∇ − C4

R4 , (3.22)

where aTp is the triplet p-wave scattering length.
The full diagonalization of this Hamiltonian delivers the PECs presented in

Fig. 3.9(a). One can see, that single states detach from the hydrogenic mani-
fold and cross all quantum defect states. This is in analogy to the behavior
of the (almost) degenerate states for the s-wave scattering term: Evaluating
the p-wave term in the truncated basis b(r) = (Ψ1(r),Ψ2(r), ...Ψn(r))T of
degenerate Rydberg states yields eigenvalues equal to zero except for three
eigenvalues given by λξ(R) =

∑
i
|∇ξΨi(R)|2. Splitting the p-wave term into

three spatial contributions for the gradients ∇ξ with ξ ∈ {r, θ, φ} leads to
three single PECs splitting off from the manifold states. Their corresponding
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Fig. 3.10: Weighted electron probability density for triplet R-Butterfly and θ-
Butterfly Rydberg molecules. The position of the Rydberg core (red) and the
neutral perturber atom (green) are marked. (a) The electron probability density for
the 37m R-Butterfly Rydberg molecule in the R, z-plane for the neutral atom at
R = 232 a0. (b) The electron probability density for the 37m θ-Butterfly Rydberg
molecule in the R, z-plane for the neutral atom at R = 277 a0.

wave function is given by

Ψξ−Butterfly(r, R) =
∑

i
(∇ξΨi(R))Ψi(r)√∑

i
|∇ξΨi(R)|2

. (3.23)

The PEC, where the gradient along R is evaluated exhibits oscillatory behavior
delivering the curve labeled R-Butterfly in Fig. 3.9. In Fig. 3.10(a) the
corresponding electronic orbital is presented, where the radial gradient of the
wave function is maximum at the position of the neutral atom (green). The
term “Butterfly” was already introduced in [37], as the electron orbit has two
“wings” of high electron probability density. The two states for ξ ∈ {θ, φ} have
the same eigenvalues, leading to the PEC referred to as θ-Butterfly or angular
Butterfly, which shows no oscillation along R. A maximum angular gradient
in the electronic wave function at the position of the neutral atom, can be
seen in the weighted electron probability density Fig. 3.10(b). Calculating
the gradients of the wave functions, one obtains that only states with mL = 0
contribute to the R-Butterfly, while states with mL = ±1 contribute to the
angular Butterfly states.
Butterfly states are composed of high-L Rydberg levels, such that photo-

excitation starting from a ground state atom does not provide enough angular
momentum to couple to these PECs. Niederprüm et. al. [43] managed to
photo-associate Butterfly molecules close to the level crossing with a Rydberg
P-state, where sufficient P-character is admixed to the Butterfly states.
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Coming back to the low-L states which are more common in experiments,
one can study the 40S ultralong-range Rydberg molecular state, presented in
Fig. 3.9(b). The R-Butterfly crosses at about 1000 a0 and couples strongly to
the S-state. This reduces the energy for R greater than the resonance position
and increases the energy for smaller internuclear distance. In contrast, the
angular Butterfly state crosses without coupling. As long as only Rydberg
molecular states bound in the outermost well are considered, the binding
energy of the S-type Rydberg molecule is not changed dramatically by the
p-wave term.

3.4.3 PECs for electron-atom s- and p-wave singlet and triplet
scattering

As long as the electronic spins Ŝ1 of the Rydberg electron and the spin Ŝ2
of the neutral atom are parallel, the above treatment taking only triplet
scattering into account is valid. In general, however, both triplet and singlet
scattering has to be considered.
For the discussion of the angular momenta involved, the index 1 will

label the Rydberg electron state, whereas the index 2 refers to the valence
electron of the neutral atom. The orientation of electron spin Ŝ1 of the
Rydberg electron relative to the orientation of the electron spin Ŝ2 of the
neutral atom can be either parallel or antiparallel. For the configurations ↑↑,
(↑↓+↓↑)/

√
2, and ↓↓ the total angular momentum in the scattering process

is one, corresponding to triplet scattering. In contrast, for (↑↓ − ↓↑)/
√

2
it is zero corresponding to singlet scattering. If the spin configuration in
the experiment is for example ↑↓ both, the singlet and the triplet scattering
channel contribute. To include this qualitative arguments in the Hamiltonian,
one defines the two projectors

P̂T =3
4 + Ŝ1 · Ŝ2,

P̂S =1
4 − Ŝ1 · Ŝ2, (3.24)

which project the spin-part of the state onto the the triplet (T) and singlet
(S) subspace. The part of the Hamiltonian describing the scattering process
is then extended to

Ĥsc(r, R) =
[
2πaTs (k(R))P̂T + 2πaSs (k(R))P̂S

]
δ3(r−Rẑ)

+
[
6πaTp (k(R))P̂T + 6πaSp(k(R))P̂S

]
δ3(r−Rẑ)←−∇ · −→∇,

(3.25)
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to take care of s-wave singlet and triplet scattering as well as p-wave singlet
and triplet scattering. The corresponding singlet phase shifts are included in
Fig. 3.5. The singlet p-wave scattering does not show a resonance, as there is
no phase jump of π in the phase shift.

When this scattering Hamiltonian is applied, there will be a singlet Trilobite
molecular state emerging in addition to the triplet Trilobite splitting off from
the almost degenerate states of the hydrogenic manifold. For this state, the
electron probability density is also maximized at the position of the perturber
- the corresponding PEC however, looks different as aSs (k(R)) differs from
the triplet case (and even aSs (0) > 0). In the same way, additional singlet
Butterfly molecular states appear, again maximizing the gradient of the wave
function along R, θ, and φ.

Fig. 3.11: Sketch of the spin-
couplings involved in the scat-
tering between the Rydberg
electron and a neutral atom.

However, it is not sufficient to only extend
the scattering Hamiltonian by the singlet terms,
because the electronic quantum numbers S1, S2
are no good quantum numbers for the full sys-
tem. As discussed in section 2.1, the Rydberg
electron spin couples to its angular momentum
L̂1 leading to the fine structure of the Rydberg
levels. Fortunately, the coupling to the nuclear
spin Î1 can be neglected for sufficiently high
lying states. For the neutral atom with its elec-
tronic spin Ŝ2 it is vice versa: As the neutral
atom is in its electronic ground state, the an-
gular momentum L2 is zero and does not need
to be taken into account. Though, the interac-
tion between Ŝ2 and the nuclear spin Î2 is of
significant strength. Therefore, the hyperfine interaction for the neutral atom
(see section 2.1) has to be accounted for. All relevant spins involved in the
problem as well as their couplings are sketched in Fig. 3.11. The basis to
describe the full system is now given by |n1, L1, J1,mJ1〉⊗ |mS2 ,mI2〉, where
the first part describes the spin-orbit coupled state of the Rydberg electron.
The second part refers to the neutral perturber atom with the valence electron
in the 5S1/2 state. The full Hamiltonian reads

Ĥ(r, R) =Ĥ0 +
[
2πaTs (k(R))P̂T + 2πaSs (k(R))P̂S

]
δ3(r−Rẑ)

+
[
6πaTp (k(R))P̂T + 6πaSp(k(R))P̂S

]
δ3(r−Rẑ)←−∇ · −→∇

+AHFSŜ2 · Î2 −
C4

R4 . (3.26)
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Note, that the spin-orbit coupling of the Rydberg electron is already included
in Ĥ0 (see section 2.1).
The result of a full diagonalization of this Hamiltonian in a truncated

basis for different interatomic distances R leads to the PECs depicted in
Fig. 3.12(a). In comparison to the previous case, there are two sets of PECs:
One set for F2 = 1 lowered in energy by − 5

2AHFS and one for F2 = 2 increased
in energy by 3

2AHFS. Some of the potential curves of the F2 = 2 show no
difference to the PECs calculated in section 3.4.2 except for an energy offset.
This is due to the fact that for the electron in a fully stretched state and
a parallel spin of the neutral atom, the triplet scattering case is regained.
For all other cases, singlet and triplet scattering is mixed which can be
illustrated by considering the configuration ↓S1↑S2 which is present in both
the triplet (↑↓+↓↑)/

√
2 channel and the singlet (↑↓-↓↑)/

√
2 channel. The fact

that this state is coupled to the ↑S1↓S2 configuration indicates, that states
of different mF2 of the neutral atom get coupled. The only good quantum
number remaining as long as fields are absent or pointing along z is the sum
of all magnetic quantum numbers

mk = mJ1 +mS2 +mI2 . (3.27)

In Fig. 3.12(b), the potential energy curves for the 40S+5S(F2 = 2) molec-
ular state are presented as a function of interparticle separation. One can
see, that there is one potential, which is of pure triplet character, that is
unchanged in comparison to Fig. 3.9(b). In addition, there is a shallower
potential showing up, which is the one of mixed singlet and triplet charac-
ter. Remarkably, the mixing leads only to attractive curves in Fig. 3.9(b),
although aSs (0) > 0.
Including the singlet scattering channels and the hyperfine interaction

into the calculation of these potential energy curves was first presented by
Anderson et. al. [44] and discussed at the example of Rydberg D-states. The
first experimental observation was in 2015 [45] and later Ref. [5] followed,
where magnetic offset fields were included enabling the tuning between singlet
and triplet contributions. In Ref. [47], Niederprüm et. al. showed, that the
excitation of Rydberg molecules, where different F2-character is mixed, can
be applied to induce remote spin flips in the neutral atom.
One more effect modifying the Born-Oppenheimer potential curves is the

coupling of the angular momentum l in the p-wave scattering process to
the total spin of the scattering process [107, 108], which is the sum of the
Rydberg electron spin S1 and the neutral atom spin S2. This leads to more
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Fig. 3.12: Adiabatic potential energy curves U in the vicinity of the 40S state
(U = 0) is presented as a function of internuclear distance R between the Rydberg
nucleus and the neutral atom. Triplet and singlet, s- and p-wave scattering is
included for the electron-atom scattering process and the hyperfine structure of the
neutral atom is considered. (a) PECs in the vicinity of the 40S state. (b) Zoom-in
on the 40S+5S(F2 = 2) state, offset by the hyperfine energy of the F2 = 2 state
which is Eref = 3

2AHFS.

p-wave terms in the Hamiltonian depending on the coupled spin j = 0, 1, 2
with different momentum dependent phase shifts, resulting in more Butterfly
Born-Oppenheimer potential curves separating from the hydrogenic manifold.
This term is not included in our calculations, yet. Up to now, the term
has not been rigorously identified in experiments, although first hints are
discussed in Thomas et al. [48].

3.4.4 Calculation of the Born-Oppenheimer potentials

In order to retrieve the Born-Oppenheimer potential curves from the Hamil-
tonians presented in the previous sections, we start with the eigenstates of
the bare Rydberg Hamiltonian (as detailed in section 2) as the basis for
the calculation including interactions. These basis states in the J-basis are
characterized by the quantum numbers n1, L1, J1,mJ1 ,mS2 ,mI2 , where the
state of the Rydberg electron is given in the J1-basis.
The entries of the matrix representation of the Hamiltonian are thus
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calculated as(〈
n1, L1, J1,mJ1

∣∣⊗〈mS2 ,mI2

∣∣)Ĥ (∣∣n′1, L′1, J ′1,m′J1

〉
⊗
∣∣m′S2 ,m

′
I2

〉)
. (3.28)

The basis needs to be truncated in order to limit the size of the matrix which
enables to perform the full diagonalization of the Hamiltonian to find the
new eigenenergies and eigenstates for the system including interactions. To
find the relevant states that need to be included in the calculation, one state
of interest is preassigned. States which are energetically very distant to this
state of interest in comparison to their coupling strength won’t contribute to
the potential curve of the state of interest. Therefore, only states of one or a
few neighboring principal quantum numbers are typically taken into account.
Including these states prevents the state of interest to diverge at the position
of the p-wave shape resonance; the mutual coupling between the states leads
to a situation, where only the outermost states diverge. However, one must
not choose the basis size too large, as the eigenenergies don’t converge. This
is a consequence of the δ-potential used in the scattering Hamiltonian and is
discussed in detail in Ref. [109].
In order to evaluate the Hamiltonian for the basis states, one has to de-

termine the momentum k(R) of the electron in the scattering process. The
semi-classical electron momentum k(R) =

√
2
R
− 1

(n∗)2 is applied, correspond-
ing to the kinetic energy the electron gains in the Coulomb potential of the
core ion, when approaching it. The scattering process is supposed to be
elastic, which means that the kinetic energy has to be the same for all states.
Therefore, the semi-classical electron momentum is evaluated for the state of
interest and applied to all states taken into account.
The s- and p-wave scattering terms are evaluated for the singlet and

triplet case. Therefore, the Rydberg states can no longer be treated in the
J1 basis, but have to be decoupled into the L1, S1 basis with the help of
Clebsch-Gordan coefficients (see appendix A.2). Then, the relative spin
orientation of S1 and S2 can be determined. Moreover, for the calculations we
choose the perturber atom to be positioned on the z-axis. Then, it is helpful
to split the Rydberg wave functions into the radial part and the spherical
harmonics Ψ(r) = R(r)Y mL

L (θ, φ) as discussed in section 2.2. As the spherical
harmonics are defined for the L1 quantum number rather than the J1, the
change to the L1, S1-basis pays off. The choice to use the molecular axis
as quantization axis simplifies the calculations, as the spherical harmonics
vanish on the z-axis for mL 6= 0 and the gradient of the spherical harmonics
vanishes for mL 6= ±1. Therefore, only states with mL = −1, 0, 1 need to be
included in the calculation. For details on the calculation, especially how the
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positioning of the perturber on the z-axis simplifies the angular dependence,
see appendix A.2.

3.4.5 Systematic errors in the calculation of Born-Oppenheimer
potentials

There are some sources of inaccuracies in the calculation of the potential
energy curves that need to be discussed: First, as already mentioned above,
taking a finite number of neighboring states into account, one misses relevant
coupling to the state of interest, but the eigenenergies don’t converge when
taking more and more states into account. Therefore, one typically restricts
the basis size to the neighboring two to four hydrogenic manifolds, as the
results show good agreement with results obtained by a Greens-function
method [108]. Also the result for states well isolated by their respective
quantum defects are in good agreement with the perturbative approach.
Second, the same semi-classical k-value is used for all states, but as their

binding energies differ, their respective momentum should change accordingly.
This problem is the most prominent for very low principal quantum numbers,
where the binding energies of neighboring states differ dramatically. For
increasing principal quantum numbers the momentum at fixed R converges
and for & 40, neighboring state have almost identical momentum such that
the influence on the PECs is negligible for our work. An additional problem
with the momentum dependent scattering length is the following: The p-wave
scattering length diverges for small k as can be seen in Eq. 3.17. Therefore, at
the position where the semi-classical momentum reaches zero a kink evolves
in the potential energy curves. This kink is particularly pronounced for low
n . 30 states and impedes the determination of molecular binding energies
for these states. There is no established way to overcome this problem for
such low principal quantum numbers, but in the work presented in the thesis,
only states of higher principal quantum number are of interest.
Third, the use of Fermi’s pseudo-potential is only valid as long as the

range of interaction for the electron-atom scattering is small in comparison
to the electron’s de-Broglie wavelength, such that the interaction can be
solely described by the phase shift. However, the range of interaction is 18 a0
and the de-Broglie wavelength of the electron gets similar to that once it
gains enough kinetic energy in the Coulomb potential of the ionic core; for
example for the 25S1/2 mJ = 1/2 state presented in Fig. 2.1, the de-Broglie
wavelength is about 35 a0 for the Rydberg electron at r ≈ 200 a0. This value
is almost the same for high principal quantum numbers as well. The use of
the δ-potential is not well justified for extremely small separations between
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the neutral atom and the Rydberg nucleus. However, in our experiments
even the nearest neighbor is typically much further away (≈ 700 a0) from the
Rydberg core.

Fourth, we performed the calculations with sets of phase shifts we received
from I. Fabrikant [98]. Comparing them to unpublished phase shifts we
received from J. Pérez-Ríos as well as ones from H. Sadeghpour revealed
small deviations. For example, we recognized, that calculating S-type Born-
Oppenheimer potentials with the phase shifts from J. Pérez-Ríos results in
slightly shallower potentials than using the ones from I. Fabrikant.
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4
Experimental setup

The experimental setup is designed to prepare dense ultracold samples of
Rubidium-87 and study Rydberg atoms in this environment. Therefore, a
magneto-optical trap is loaded, the atoms are magnetically transported to
the science chamber, followed by evaporative cooling to quantum degeneracy.
Subsequently, two-photon excitation allows to excite one atom into a Rydberg
state. In order to detect the Rydberg state, electric field ionization is applied
and the ions are counted on a multi-channel plate detector. Absorption and
phase contrast imaging are used to characterize the ultracold sample.
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4.1 Vacuum setup

The experimental setup is designed for the study of Rydberg atoms in an
ultracold and dense environment. Parts of it are presented in Refs. [110–
115] as the design and built up of the apparatus started already in 2011.
The vacuum setup consist of two chambers, a MOT chamber and a science
chamber, connected by a magnetic transport. In Fig. 4.1 a half section view
of the setup is shown.

The two chamber design allows for loading the magneto-optical trap (MOT)
directly from the Rubidium-87 background gas, stemming from a rubidium
reservoir attached to the chamber. However, the pressure in the cham-
ber (maintained by an Agilent Vacion Plus 75 Starcell pump) of about
8× 10−9 mbar hinders the preparation of a Bose-Einstein condensate, as
collisions with particles of the background gas lead to heating of the sample.
Therefore, the atoms are transported through a (DN 16) pipe of about 45 cm
length to the science chamber by subsequently switching twelve pairs of coils
(connected in anti-Helmholtz configuration), marked in blue in Fig. 4.1. The
pressure in the science chamber is assumed to be 3× 10−11 mbar, measured
by an ion gauge (Varian UHV-24p) in the pumping cross, where an ion
pump (Agilent Vacion Plus 150 Starcell Pump) and a titanium sublima-

MOT chamber

Magnetic transport

Science chamber

Electrical feedthroughs

To pumping
 cross

Rubidium reservoir

Coil holder for Ioffe trap

Electric field compensation

Offset coils

Channeltron

Multi channel plate

Fig. 4.1: Overview of the experimental setup - half section view. A two-chamber
design is used, consisting of a MOT chamber, magnetic transport and a science
chamber.
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tion pump (Agilent TSP/Mini TI Ball) are installed. Inside the glass cell,
the magnetic transport has a 90° turn to insert the atoms into the electric
field compensation box. In the science chamber the atoms are held in a
Quadrupole-Ioffe-Configuration (QUIC) trap and evaporative cooling allows
to prepare thermal samples in the microkelvin temperature regime or even
cool down to Bose-Einstein condensation. Subsequently, two-photon Rydberg
excitation, electric field ionization and ion detection are performed. Finally,
the cloud is imaged either after some time-of-flight after release from the
trap, or by in-situ phase contrast imaging in the trap.
The science chamber is a tempax glass cell (Japan Cells custom design),

which is anti-reflection coated for 420 nm, 480 nm, 780 nm and 1020 nm. The
design of the glass cell is chosen such, that the coils for the QUIC trap holding
the atoms can be mounted as close as possible to the atoms to ensure that
the currents required can be held reasonable. At the same time, the volume
inside the cell needs to be large to have sufficient space for the electric field
compensation box and ion detectors.
While the first generation electric field compensation box was made out

of titanium (non-magnetic), the second generation of the box, which was
inserted into the vacuum setup in 2016, is made out of stainless steel (DIN
1.4404, AISI 316L). The box, displayed in Fig. 4.2 consists of six electric
field electrodes to shield the atoms from stray electric fields. Holes in the
field plates are covered with 50 µm thick wires to improve the electric field
homogeneity inside the box. A radio-frequency antenna is mounted on one of
the field plates to provide the RF signal for evaporative cooling. A channeltron
(Photonis CEM 5901 MAGNUM) and a multi-channel plate detector (MCP)
(Hamamatsu F4655-10) are mounted at the electric field compensation box
and are used to detect ions, stemming from ionized Rydberg atoms. The
second generation box has a three segment ion lens in front of the MCP
detector, to spread the ions over several channels of the MCP. For high
resolution phase contrast imaging and focused Rydberg excitation, there were
two aspheres (Asphericon A15-12HPX-S) mounted in the top and bottom
field plates of the first generation box. In the second generation box, there is
only one asphere (Asphericon A15-12HPX-U) implemented which is mounted
in the bottom field plate.

Several reasons motivated the change to the second generation electric field
compensation box: In the first generation setup, all ions were focused on a
single channel of the MCP which lead to destruction of this particular channel.
Later, an electric short made the MCP break completely. In addition, in the
first generation setup, the RF electrode was wound around the channeltron,
causing the channeltron to heat up. Therefore, its resistance was dramatically
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x y

z

Fig. 4.2: Second generation electric field compensation box. Starting from the
cable holder on the very left, there is the MCP detector, the three segments of the
ions lens, a cubic field compensation box and a channeltron detector. The asphere
mounted in the bottom field plate is not visible, as well as the RF coil which is
placed inside the box.

reduced, such that it could not be operated on full front plate voltage and
the detection efficiency was thus dramatically reduced. Furthermore, it
turned out that the aspheres in the first box were only standard quality but
not diffraction limited “ultra” quality which limited the imaging resolution.
While the presence of the two aspheres made it easier to align the Rydberg
excitation beam, the alignment of the high resolution phase contrast imaging
was more challenging, as the beam needs to be collimated between the lenses.
Additionally, the electric field stability in the first box was not as good as
expected, attributed to the box being made of titanium. However, it turned
out, that the improved electric field stability of the new box is mainly due
to the larger separation from the high-voltage electrodes of the MCP (and
ion lens) to the atoms in comparison to the first generation box - hence the
titanium was probably not the limiting factor in the beginning.

4.2 Trapping and cooling of atomic clouds

First, Rubidium-87 atoms are caught in a magneto-optical trap from the
background vapor. Therefore, three orthogonal pairs of cooling and repumping
laser beams intersect at the center of the magnetic quadrupole field created
by a pair of coils in anti-Helmholtz configuration. During MOT loading, there
are 6.4 A running through the coils, resulting in magnetic fields of 5.5 G/cm
along x,y and 11 G/cm along z. The orientation of the x-,y-, and z-axis
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Fig. 4.3: Level scheme 87Rb D2-line including relevant laser transitions for cooling
and imaging of the cloud.

with respect to the setup is marked in Fig. 4.2. The transitions at about
780 nm for the MOT cooling and repumping laser are marked in Fig. 4.3.
The MOT cooling laser is detuned by about 40 MHz (1.05 Γ) with respect to
the transition during MOT loading.

In order to frequency stabilize the MOT lasers, the following procedure is
applied: One arm of a reference laser operating at 780.246 nm is coupled into
a fiber leading to a fiber coupled electro-optic modulator (EOM) and then to
an ultra low expansion (ULE) cavity. The frequency sideband created by the
EOM1 driven at 324 MHz2 is frequency locked to the cavity using the Pound-
Drever-Hall technique [116, 117]. The EOM frequency is chosen such, that
the reference laser is in resonance with the 85Rubidium F = 3 → F ′ = 3, 4
crossover peak. The beam of this reference laser is then split into three arms
and each arm is overlapped with one of the other 780 nm beams (MOT cooler,
MOT repumper, imaging laser) on an AC-coupled photodiode. The beat
frequencies are stabilized to set point frequencies stemming from a direct
digital synthesizer (DDS) board using a delay line lock (frequency dividers
are used, as the DDS board can not output such high frequencies). In Fig. 4.4
the set point frequencies for the different laser beams are given, together with
the frequency shift of ±80 MHz introduced by acousto-optical modulators
(AOMs) used for switching of the laser beams. When the laser frequencies
are supposed to change for example between MOT and molasses phase, the

1EOSPACE PM-0K5-20-PFA-PFA-780-S3mmFS
2Windfreak Synth USB II
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Fig. 4.4: Set point frequencies for the 780 nm lasers which are frequency stabilized
with respect to the reference laser by frequency offset locks.

set point frequencies are changed. The reference laser, repumping laser and
imaging laser are all external cavity diode lasers(Toptica DL Pro). MOT
cooling and optical pumping light stems from the same (Toptica TA Pro)
system but is switched with two separate AOMs.
The MOT phase, which takes 9.5 s is followed by a compressed MOT for

12 ms, molasses for 6 ms and optical pumping to the F = 2, mF = 2 state for
1.5 ms. The optical pumping is followed by a magnetic transport, which takes
about 1.4 s and is discussed in more detail in Ref. [110]. At the end of the
transport about one billion atoms arrive with a temperature of about 800 µK.
The atoms are held in a quadrupole trap (39.12 A resulting in 135 G/cm along
x and y and 270 G/cm along z) and the first RF evaporation ramp is started.
After a delay of 5 s, we start to ramp on the Ioffe coil to 48.62 A such that it
runs on full current once the first evaporation ramp is over. This additional
Ioffe coil is needed to prevent Majorana spin-flip losses in the cloud. The
final trap geometry of the Quadrupole-Ioffe-Configuration (QUIC) trap is
characterized by the trap frequencies ωr = 2π× 200 Hz, ωa = 2π× 15 Hz and
a magnetic offset field of about 1.7 G.
An overview of the radio-frequency (RF) evaporation ramps is given in

table 4.1. If experiments with a non-condensed sample are performed, such
as the result presented in section 5, ramp 3a is applied. For the thermal
sample the peak density (see App. B.1) results in 5.1× 1013 cm−3 for this
configuration. A temperature of 1.2 µK and atom number of 6.6× 106 are
extracted after time-of-flight (TOF) using absorption imaging. This dense
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RF Time Atom no. Temp. Peak density
Start 45 MHz 0 s 8× 108 800 µK

Ramp 1 11.25 MHz 7 s 2× 108 200 µK 7× 1011 cm−3

Ramp 2 2.8 MHz 4.5 s 3.1× 107 27 µK 2× 1012 cm−3

Ramp 3a 1.19 MHz 3.5 s 6.6× 106 1.2 µK 5.1× 1013 cm−3

Ramp 3b 1.04 MHz 3.5 s 1× 106 0.2 µK 4.5× 1014 cm−3

Table 4.1: Overview of the linear radio frequency ramps used for evaporative
cooling. The end frequencies of each ramp and ramp duration is given as well as
typical values for the final atom number, temperature, and density for the three
cooling ramps applied. When spectroscopy is performed in a thermal ultracold
cloud, ramp 3a is chosen. To reach a BEC ramp 3b is applied.

sample is perfectly suited to study ultralong-range Rydberg molecules, as the
typical nearest neighbor spacing is 2760 a0. Hence, for Rydberg S-states with
n < 36 the nearest neighbor atom is typically located inside the orbit, as can
be extracted from Fig. 3.3(a) where the orbit sizes are given.
In contrast, when ramp 3b is applied, the atomic cloud is cooled to Bose-

Einstein condensation. The typical BEC has 0.75× 106 to 1× 106 atoms
(determined 10 MHz offresonant in TOF) and below 2× 105 atoms in the
thermal fraction (determined on resonance). The BEC has peak densities on
the order of 4.5× 1014 cm−3 and a chemical potential of about 3.6 kHz (see
App. B.2). The Thomas-Fermi radius along the short axis is Rr = 4.6 µm
and Ra = 61 µm along the long trap axis.
This BEC is then used, to load a tiny optical dipole trap [118], which is

formed by an 855 nm beam of about 23 µW, focused by the aspheric lens
(Asphericon A15-12HPX-U) of high numerical aperture NA= 0.55 in the
bottom of our field compensation box down to ≈1.8 µm. After loading, which
takes 10 ms, the BEC is shifted away by magnetic field ramps taking 10 ms
as well and leaves a micro-BEC in the optical trap.
The micro-BEC is axially confined by the combination of the magnetic

trap and the optical trap leading to trap frequencies of ωa ≈ 2π × 270 Hz.
This trap frequency is measured by monitoring the oscillation of the cloud
after a magnetic field kick as presented in Fig. 4.5(a). As the cloud oscillates
along the imaging axis, we can detect the oscillation by monitoring the width
of the cloud, as it moves in and out of the focal plane of our high-resolution
imaging.

Along the radial axes, the micro-BEC is confined by the optical trap, leading
to trap frequencies of ωr ≈ 2π × 2.4 kHz. This trap frequency is measured
via parametric heating. The trap depth is modulated by 3% for 20 ms with a
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Fig. 4.5: Trap frequency measurements for the micro-BEC. (a) The axial trap
frequency is measured by monitoring the cloud oscillation after a magnetic field
kick. The black and blue points are fits to the two axes of the cloud which vary
as the sample oscillates in and out of the imaging plane. The solid line is a sine
fit in addition to a linear decay, revealing a trap frequency of 264(5) Hz for this
configuration. (b) The radial trap frequency is measured via parametric heating.
Therefore, the atom number is recorded as a function of the trap modulation
frequency. The red solid line is a fit of two Gaussian dips, delivering the resonance
at 4884(44) Hz for this data set.

certain frequency. Afterwards, the number of atoms that remain in the trap
is determined. An exemplary heating curve is presented in Fig. 4.5(b) with a
peak at twice the radial trap frequency as the breathing mode of the cloud is
excited. Note that the BEC’s extent along the trapping beam is significant in
comparison to its Rayleigh length. This leads to a distribution of radial trap
frequencies along the cloud, which causes the peak in Fig, 4.5 to broaden.
The second smaller peak is probably due to a slight deviation of the beam
profile in comparison to a Gaussian beam, such that the trap is not perfectly
harmonic.

When only taking the optical potential into account, the BEC shape clearly
deviates from a Thomas-Fermi profile as the cloud considerably spills out
along the beam. In our setup, the additional potential by the magnetic
field moderates this effect such that we don’t see a significant deviation
from a Thomas-Fermi profile when we model the density distribution in the
hybrid-trap. The micro-BEC consist of ≈5× 104 atoms, leading to a peak
density of approximately 3× 1015 cm−3. Three-body losses limit the lifetime

66



Chapter 4. Experimental setup

Fig. 4.6: Cloud orientation. (a) When Rydberg spectroscopy is performed in the
large BEC, the 420 nm beam illuminates the full cloud along the y-axis while the
second excitation beam at 1020 nm is focused through the center of the cloud. (b)
For Rydberg experiments in the micro-BEC, the parent large BEC is shifted aside
and the focused excitation beam at 1020 nm only excites atoms in the optical tweezer
trap.

to τ = 19.5 ms. Therefore, the use of higher trap power is not favorable as
more atoms would get lost already during the trap loading procedure. The
chemical potential of the micro-BEC is h × 26 kHz which corresponds to
kB × 1.2 µK. The offset magnetic field amounts 1.72 G but can be increased
up to 7.73 G depending on the way we perform the magnetic field ramps to
separate the micro-BEC.
The relative positioning of the parent large BEC and the micro-BEC

including the magnetic field orientation is illustrated in Fig. 4.6(b). The
imaging lens is placed below the sample resulting in an image along the long
axis of the micro-BEC.

4.3 Rydberg excitation

Once the sample is prepared, one of the atoms is excited to a nS Rydberg state
with mJ = {−1/2,+1/2}. Therefore, two-photon excitation is performed
to excite a single atom to the Rydberg state incorporating the intermediate
6P3/2 level at a detuning ∆ (see Fig. 4.7). For this, the sample is illuminated
with two frequency-tuneable laser beams at wavelengths 420 nm and 1020 nm.
We use excitation pulses ranging from 200 ns to 20 µs pulse duration. Within
one cloud we perform up to several thousand subsequent excitation pulses.
Each excitation pulse is followed by an electric field ionization pulse and
the detection of the resulting ions on a detector after some time-of-flight.
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The timing of the control AOMs, field ionization pulses and the oscilloscope
is triggered using a Swabian Instruments pulse generator. The relative
orientation of the large BEC, micro-BEC, magnetic field axis, and the Rydberg
excitation beams is illustrated in Fig. 4.6.

Two-photon Rydberg excitatio in rubidium is commonly performed exciting
with two lasers at 780 nm and 480 nm via the 5P3/2 state. However, the
excitation scheme used in our experiments incorporating the 6P3/2 state has
some advantages: It is technically more challenging to provide high power at
480 nm than at 1020 nm. Therefore, it is easier to provide sufficiently high
coupling strength to the Rydberg state without significant heating of the cloud
when using the scheme involving the 1020 nm laser. In addition, frequency
tuning of a 1020 nm external cavity diode laser is straightforward, whereas
the tuning of a 480 nm laser (which is typically received by second-harmonic
generation) is more complicated. Therefore, switching from one Rydberg
state to another by setting the laser to a different wavelength requires less
effort.

4.3.1 Excitation laser beams
A large beam at 420.3 nm illuminates the whole sample along the y-axis as
indicated in Fig. 4.6. The beam has 0.77 mm 1/e2 radius and its frequency is
detuned by ∆ with respect to the transition from 5S1/2 F = 2 to 6P3/2 F = 3.
Electric dipole matrix elements and lifetimes for this transition can be found
in Ref. [119]. For the frequency stabilization of this laser (Toptica SHG-Pro),
a sidearm of the non-frequency doubled seed laser is sent through an EOM3

generating sidebands. Such a sideband is frequency locked to an ultra-low
expansion cavity using the Pound-Drever-Hall technique [116, 117]. Note
that the combination of this 420 nm laser with the 855 nm tweezer light can
cause atoms to photo-ionize. This can lead to some offset ion count signal on
the MCP.
The second laser beam at about 1020 nm propagates along the z-axis as

marked in Fig. 4.6. It provides coupling to the desired nS (or nD) Rydberg
state. The 1020 nm beam is focused by an high-NA aspheric lens inside our
electric field compensation box, resulting in a focal spot size of 2.1(3) µm. This
allows to have a larger mean density in the excitation volume in comparison
to the mean density of the entire cloud. The focus is overlapped with
the trapping beam for the micro-BEC, such that for experiments with the
micro-BEC no excitation takes place in the remaining shifted large BEC

3EOSPACE PM-0K5-20-PFA-PFA-840-S3mmFS; frequency generation: Windfreak
Synth USB II
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(cf. Fig. 4.6(b)). Analogous to the 420 nm laser, this laser (Toptica TA-Pro)
is frequency stabilized using a sidearm that is sent through a fiber-coupled
EOM4 and locking a sideband to the ultra-low expansion cavity using the
Pound-Drever-Hall technique [116, 117]. In order to scan the laser in the
vicinity of a Rydberg resonance, the EOM is operated by the (amplified)
output of a direct digital synthesizer board (Analog Devices AD9959), which
is programmed using an Arduino Due. Thereby, we can scan the sideband
from 100 MHz to 650 MHz before the lock gets unstable - below 100 MHz we
get too close to the carrier peak of the cavity and for 650 MHz the sideband
from the neighboring carrier peak comes close, as the free spectral range of
the ULE is about 1.5 GHz5. It is also possible to scan the frequency even
between two excitation pulses (up to 100 kHz), allowing to retrieve a spectrum
from a single cloud.
In Fig. 4.7, a sketch of the excitation scheme is presented. The case,

where the |nS,mJ = +1/2〉 Rydberg state is supposed to be addressed is
marked with solid arrows. The 420 nm beam is σ+-polarized coupling the∣∣5S1/2, F = 2,mF = 2

〉
state to

∣∣6P3/2, F = 3,mF = 3
〉
off-resonant by ∆ =

80 MHz. The coupling to the mJ = +1/2 state is provided by the 1020 nm
beam, which is linearly polarized. As it is inciding perpendicular to the
magnetic field axis, it could in principle drive both σ+ and σ−-transitions.
However, for the case of nS Rydberg states, only the σ−-component will lead
to Rydberg excitation to the |nS,mJ = +1/2〉 state. This is indicated by the
solid arrows in Fig. 4.7(b).

In case of Rydberg excitation to the |nS,mJ = −1/2〉 state which is marked
with dashed arrows in Fig. 4.7, the blue laser is σ−-polarized and the detuning
to the intermediate state is chosen to be ∆ = 830 MHz. For this detuning
being large in comparison to the hyperfine splitting of the state, one can
neglect the splitting and treat the state in the J-basis (Fig. 4.7(c)). The
σ−-light then couples offresonantly to the mJ = −1/2 state and the laser at
1020 nm drives the π-transition to the nS, mJ = −1/2 Rydberg state.

4.3.2 Electric field control
For increasing principal quantum number, the electric field sensitivity of the
Rydberg atom increases dramatically (∝ n7). Therefore, electric stray fields
need to be compensated to observe narrow and non-shifted spectroscopic
transitions for high n. The box providing the compensation voltages (Mea-

4EOSPACE PM-0K5-20-PFA-PFA-1010-SFS3mm
5Shifting EOM sidebands of neighboring carrier peaks on top of each other results in
FSR = 1496.4 MHz
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Fig. 4.7: Excitation scheme for nS Rydberg excitation. Depending on the laser
polarization and intermediate detuning, mJ = −1/2 and mJ = +1/2 states can be
addressed marked by dashed and solid arrows, respectively (a) Overview of energy
levels and splittings involved. (b) Level scheme in the F -basis. (c) Level scheme in
the J-basis.

surement Computing USB-3112) can control all electrodes and features very
low noise. In order to determine the correct compensation voltages for the six
cubically arranged field electrodes, we scan them pairwise applying a constant
electric offset field and recording the shift of the Rydberg transition frequency.
As discussed in section 2.3.1 the nS Rydberg transition line experiences a
quadratic Stark shift. By extracting the minimum shift from a fit, we find
the compensation field for the corresponding axis.

In order to compensate for field inhomogeneities two opposing field plates
are e.g. put to a slightly increased voltage, while all other four plates are
accordingly lowered, to change the gradient of the electric field at the center
of the cubus. By scanning the electrode voltages this way, one can observe a
broadening or narrowing of the Rydberg line and optimize the voltages for
minimal Rydberg transition linewidth.
In our case, the limit is set by the stray field leaking into the cube along

the y-axis. It is caused by the high voltage, applied to the MCP front plate
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and the last lens of the ions lens tubes. Its field inhomogeneities can not be
fully compensated by the cubic set of field plates. The residual electric stray
field gives rise to a Gaussian linewidth of ≈3 MHz for n = 190 and drifts of
typically <3 mV/cm per day.

4.3.3 Electric field ionization and detection
In order to detect the Rydberg atoms, an electric field ionization pulse is ap-
plied after each excitation pulse. We choose the pulse to provide at least twice
the field strength needed to ionize the nS Rydberg state (see section 2.3.1).
Thereby, we ensure that we also detect Rydberg atoms which have undergone
a state-changing collision and have a larger mL quantum number [4]. The
positive and negative voltage for the field ionization of Rydberg states of
n . 100 is provided by two power supplies (TDK Lambda Z650-0.32) for
the two field plates on the x-axis. For switching from the compensation
fields to the ionization field we use a high-voltage switch (CGC instruments
NIM-AMX700-3). For high-n Rydberg states, where voltages below ±10 V
are required, an arbitrary function generator (Agilent Technologies 33522B)
is used for both the compensation field and the ionization field along the
x-axis. It features less noise and faster switching behavior. In addition, state
selective ionization ramps can be performed.
The ions are then detected by either the channeltron (Photonis CEM

5901 MAGNUM) or the MCP detector (Hamamatsu F4655-10) after some
microseconds of time-of-flight. Rb+

2 ions, which can be formed by collisions
of Rydberg atoms with neutral ground-state atoms [4] have twice the mass of
the Rb+ ions and can hence be identified by their longer time-of-flight.

We want to study the interaction of one Rydberg atom with neutral atoms
close by without Rydberg-Rydberg interactions taking place (see section 2.4).
Therefore, we aim to produce only one single Rydberg atom in the sample.
In typical experiments, the Rydberg blockade radius is much larger than
the BEC which should prevent the excitation of a second Rydberg atom in
our sample. However, the efficiency of the blockade effect in a high density
cloud is an open question. Therefore, as an experimental test, we prepare
a low density cloud smaller than the Rydberg blockade radius for n = 100
and measure the number of detected ions for a linear increase of excitation
power. When the blockade effect sets in, the rate of detected ions starts to
deviate from a linear increase. The outcome of such a test is presented in
Fig. 4.8, where the ion count rate is shown as a function of the power of
the second excitation laser. This test allows us to determine a lower bound
for the experimental ion-detection efficiency of at least 40%. Additionally,
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Fig. 4.8: Saturation test for the multi-channel plate detector. The ion count rate
is monitored as a function of excitation laser power.

to ensure that we excite less than one Rydberg atom per pulse for the high
density case as well, we additionally keep the mean ion count rate below 0.3
ions per excitation pulse.

4.3.4 Diamagnetic shift of the Rydberg level
Rydberg atoms of high principal quantum number experience a significant
diamagnetic line shift even at a moderate external magnetic field strength
(see section 2.3). Before spectroscopy in a dense sample is performed, the line
center frequency of the Rydberg transition is determined independently in a
dilute thermal sample held in the QUIC trap, where the offset magnetic field
amounts B0 = 1.74 G for the trap configuration chosen in the experiments
presented in chapter 6. After loading of the optical micro-trap, an offset field
along the x-axis is applied to separate the large BEC from the micro-BEC
in the optical trap. Only for the first set of measurements, in addition a
magnetic field ramp along y was applied as well, as it leads to a slightly larger
atom number for the micro-BEC. However, this magnetic field ramp along y
was accompanied by a worse confinement along z and an increased magnetic
offset field of B1 = 7.73 G. At this magnetic field strength diamagnetic line
shifts are relevant for n > 120.
Therefore, calibration measurements are performed to characterize the

influence of the magnetic offset field. The atomic sample is prepared in the
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Fig. 4.9: Rydberg spectra for the
∣∣160S1/2,mJ = 1/2

〉
Rydberg state at varying

magnetic offset fields B. Zero detuning is referenced to the atomic Rydberg resonance
at zero magnetic field. The red line shows a fit to the data based on Eq. 2.26 to the
extracted line centers.

∣∣5S1/2, F = 2,mF = 2
〉
state (Landé factor gF = 1/2), which features the

same linear Zeeman shift as the
∣∣nS1/2,mJ = 1/2

〉
Rydberg states (Landé

factor gJ = 2). Hence, for the optical transition, the linear Zeeman effect
cancels and only the diamagnetic term remains. To quantify the diamagnetic
shift for the Rydberg spectra in the dense cloud, for Rydberg states of n ≥ 127,
additional Rydberg spectra have been measured for varying magnetic offset
fields of the QUIC trap in a dilute sample. An exemplary dataset for the∣∣160S1/2,mJ = 1/2

〉
state is shown in Fig. 4.9. From a quadratic fit to

the data based on Eq. 2.26, a correction of 11.8 MHz is obtained for the∣∣160S1/2,mJ = 1/2
〉
state in the magnetic field of B1 = 7.73 G. The same

procedure, applied to the data for n = 127 and n = 190 results in shifts of
2.9 MHz and 22.1 MHz, respectively.

Note that for the data shown in Fig. 6.6 the altered loading procedure
of the micro-BEC (avoiding magnetic fields ramps along the y-axis) results
in a negligible change of the magnetic field strength, and consequently no
significant diamagnetic shift.
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4.4 Imaging of ultracold samples

In order to determine the atom number and temperature of the atomic sample,
the cloud is imaged. Performing absorption imaging after time-of-flight allows
us to extract both the atom number and temperature. As a second imaging
technique, we can apply phase-contrast imaging to image the cloud in-situ in
the trap.

4.4.1 Absorption imaging of the density distribution

Absorption images of the cloud are recorded after the atoms are released
from the trap and expand during some variable time-of-flight (TOF) which is
typically chosen to be 23 ms for clouds of microkelvin temperature in our exper-
iment. For BECs 30 ms of TOF is used as a result of the slower expansion due
to the lower temperature (and low chemical potential). The expansion of the
cloud is given by it’s kinetic energy for long TOFs. The σ+ polarized imaging
light is close to resonance with the transition from the

∣∣5S1/2, F = 2,mF = 2
〉

to the
∣∣5P3/2, F

′ = 3,m′F = 3
〉
state at λ = 780.247 nm as indicated in

Fig. 4.3. The imaging beam is propagating along the y-axis, antiparal-
lel to the 420 nm Rydberg excitation beam. It is illuminating the cloud for
50 µs and is recorded on a CCD camera (PCO pixelfly usb). Power and
detuning of the imaging light is adjusted as well as the TOF to ensure that
the imaging light is not fully absorbed by the cloud, to prevent saturation
effects in the optical density distribution.
For absorption imaging, we determine the optical density distribution

OD from the fraction of the intensity I passing through the cloud and the
background intensity I0. The OD is extracted according to

OD = log
(
I

I0

)
= log

(
cε2

0/2 · E2
0e
−2 ω

c
n′′refl

cε2
0/2 · E2

0

)
= 4π

λ
n′′refl, (4.1)

where n′′ref is the real part of the refractive index and l is the length of the
sample. For the closed transition from F = 2,mF = 2 to F ′ = 3,m′F = 3 the
electric dipole matrix element is given by the reduced dipole matrix element
dred = | 〈J = 1/2| |er| |J ′ = 3/2〉 | = 4.227ea0 multiplied by

√
1/2 [79]. With

that, one can calculate the real part of the refractive index according to

n′′ref = 1 + n(x, y, z) d2
red

2ε0~Γ ·
1

1 + (∆/2Γ)2 . (4.2)
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Here, ∆ is the laser detuning with respect to resonance, Γ refers to the
natural line width of the transition and n(x, y, z) the three dimensional
density distribution of the cloud.

In order to receive the total atom number of the cloud, one has to be aware,
that by taking an image the projection of the cloud integrated along one axis
is received. For the ideal gas the number of detected atoms is extracted from
the column density distribution as

Ndetected,Gauss =
∫ ∫

a exp
(
− x2

2σ2
x
− z2

2σ2
y

)
dx dy = 2πaσxσy. (4.3)

The Gaussian widths σx, σy of the cloud and the amplitude a are extracted
by fitting the mathematical expression in the integral to the optical density
distribution obtained from the recorded pictures. The final atom number is
given by the fitted atom number, rescaled according to

Ntot,Gauss =
∫
nGauss(x, y, z) d3r

= 2πaσxσy/
(

4π
λ
· d2

red
2ε0~Γ

1
1 + (∆/2Γ)2

)
. (4.4)

For the analysis of absorption images of a BEC, the Thomas-Fermi profile
integrated along one direction is fit to the imaged integrated OD to receive
the detected atom number

Ndetected,TF =
∫ ∫

a

[
1− x2

R2
x
− y2

R2
y

]3/2

dx dy = 2π
5 aRxRy (4.5)

(see also App. B.2). The amplitude a and the Thomas-Fermi radii Rx, Ry
are extracted from the 2D fitting procedure of the mathematical expression
in the integral to the optical density distribution. The total number of atoms
in the cloud is found according to

Ntot,TF =
∫
nTF(x, y, z) d3r

=2π
5 aRxRy/

(
4π
λ

d2
red

2ε0~Γ ·
1

1 + (∆/2Γ)2

)
. (4.6)

In order to avoid saturation of the picture, the laser needs to be detuned by
∆ = 2π × (−4 MHz) to ∆ = 2π × (−10 MHz) depending on the size of the
BEC.
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4.4.2 Phase contrast imaging of the density distribution
When the cloud is imaged in-situ in the magnetic trap, its optical density
on resonance is too high such that the absorption typically saturates. One
method to avoid this saturation effects and image an object of high OD is
phase contrast imaging: The imaging beam is detuned with respect to the∣∣5S1/2, F = 2,mF = 2

〉
to the

∣∣5P3/2, F
′ = 3

〉
transition at 780.247 nm by a

large detuning of +500 MHz resulting in no considerable absorption but still
significant dispersion of the light by the cloud. After the beam has traversed
the cloud it is focused through a phase plate6 which has a 100 µm diameter
dip in the center leading to a phase shift of π/2. The light which is scattered
by the BEC does not experience this π/2 phase shift, such that interference
between the scattered and unscattered light creates the phase contrast image
on the camera. For details see Ref. [113]. The imaging setup is sketched in
Fig. 4.10, where the propagation of the imaging beam (blue) is marked in
contrast to the propagation of the light scattered by the BEC (red). The
asphere in the bottom of our electric field compensation box has a numerical
aperture of NA= 0.55 to achieve a high-resolution image. In combination
with the choice of subsequent lenses in the imaging path, this allows for a
magnification of 44 at the CCD camera (Andor iXon Ultra 897). To record a
picture, the cloud is illuminated for 10 µs along the z-axis.

As introduced, when phase contrast imaging is performed the properties of
the atomic cloud are obtained from the dispersion of the light introduced by
the atoms which is measured by interference of this light with background
light. Thereby, not the real but the imaginary part n′ref of the refractive index
is accessed from the phase shift distribution [120]

Φ = 1
2

(
I

I0
− 1
)

= 4π
λ
n′ref. (4.7)

This formula is only valid if the transmission through the cloud is close
to unity, the refractive index is small and the phase plate provides π/2
phase shift. As we perform phase contrast imaging with linearly polarized
light propgating perpendicular to the magnetic field axis (see Fig. 4.3), π-
transitions from

∣∣5S1/2, F = 2,mF = 2
〉
to both

∣∣5P3/2, F
′ = 2,m′F = 2

〉
and∣∣5P3/2, F

′ = 3,m′F = 2
〉
are driven. Therefore, we have to consider the two

electric dipole matrix elements which are given by the reduced matrix element
dred = | 〈J = 1/2| |er| |J ′ = 3/2〉 | = 4.227ea0 multiplied by

√
1/6 and -

√
1/6,

6Fused silica substrate PW-2008-UV, refractive index: 1.454 at 780 nm, from Laser
Components GmbH. Phase plate custom made by Holoeye: 430 nm deep dip resulting
in π/2 phase shift.
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Fig. 4.10: Schematic illustration of the phase contrast imaging system. The blue
shaded region indicates the spacial extent of the imaging beam while the red lines
represent the propagation of the light scattered by the BEC (green). Lenses are
sketched as gray bars, the labels refer to their respective focal lengths.

respectively [79]. Thus, the imaginary part of the refractive index is given by

n′ref = n(x, y, z)
[
d2
red

6ε0~Γ ·
−∆F=3

1 + (∆F=3/2Γ)2 + d2
red

6ε0~Γ ·
−∆F=2

1 + (∆F=2/2Γ)2

]
.

(4.8)

Here, ∆F=3 denotes the detuning of the laser with respect to the F =
2,mF = 2 to F ′ = 3,m′F = 2 transition, whereas ∆F=2 labels the one to
F ′ = 2,m′F = 2.

We extract the number of detected atoms in the BEC from the phase shift
distribution integrated along one axis

Ndetected,TF =
∫ ∫

a

[
1− x2

R2
x
− y2

R2
y

]3/2

dx dy = 2π
5 aRxRy (4.9)

(see also App. B.2). Again, we determine the amplitude a and the Thomas-
Fermi radii Rx, Ry by a 2D fit of the mathematical expression in the integral
of the phase shift distribution. By rescaling this detected atom number
according to

Ntot,TF = 2π
5 aRxRy/

(4π
λ

[
d2
red

6ε0~Γ ·
−∆F=3

1 + (∆F=3/2Γ)2

+ d2
red

6ε0~Γ ·
−∆F=2

1 + (∆F=2/2Γ)2

])
(4.10)

we can retrieve the total atom number of the cloud.
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5
Photo-association of Trilobite Rydberg

molecules

Trilobite Rydberg molecules are exotic ultralong-range dimer molecules with
a huge electric dipole moment. This enormous electric dipole moment makes
them appealing candidates for research of polar systems (see section 1).
Trilobite Rydberg molecules consist of a neutral ground-state atom which is
bound to the highly excited electron of a Rydberg atom by electron-neutral
scattering. Already the first theoretical study of ultralong-range Rydberg
molecules by Greene et al. [36] predicted their existence. The constructive
interference of high-L electronic Rydberg states at the position of the neutral
perturber atom gives rise to the unusual permanent electric dipole moment of
the molecule (see section 3.4.1) which can amount to tenthousands of Debye
[36]. Usually, homonuclear molecules don’t possess an electric dipole moment,
as the electron probability density is distributed symmetrically between the
two nuclei. In this case, the symmetry is broken as one electron is excited to
the Rydberg state.
Direct photo-association of Trilobite Rydberg molecules is hindered as

dipole selection rules don’t provide coupling to the state lacking low-L char-
acter. An exception is cesium, where the non-integer part of the S-state
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quantum defect is small by coincidence. Thereby, the level spacing between
the S-state and the neighboring hydrogenic manifold is small which leads to
admixing of S-character to the Trilobite potential energy curve and therefore
allows for photo-association in this special case [42].
However, as presented in this chapter which is based on Ref. [2], a more

general pathway exists to photo-associate Trilobite Rydberg molecules, making
use of resonant coupling of the electron’s orbital motion to the nuclear spin
of the neutral perturber atom. For a particular principal quantum number
the hyperfine splitting for the neutral atom matches the energy gap between
the high-L Trilobite state and the optically accessible S-state. This resonance
allows to form a hybrid potential energy curve consisting of the Trilobite
state and the molecular S-state, offering the possibility to optically address
the hybrid molecular state and providing a significant electric dipole moment.
This novel method is applicable for many atomic species and is demonstrated
here for the case of 87Rb, where this resonant spin-orbit coupling gets efficient
for n = 50.

Photo-association spectra are presented and compared to theoretical predic-
tions based on the calculation of Born-Oppenheimer potential energy curves,
as discussed in section 3.4. In the model, s- and p-wave electron-neutral
scattering between the Rydberg electron and the neutral perturber atom is
taken into account for both the singlet and triplet scattering channel, as well
as the hyperfine interaction in the perturber atom. In addition, the electric
dipole moment of the hybrid molecule is measured to be 135(45) D providing
further evidence for the Trilobite character of the molecule.

5.1 Hybridized Trilobite Rydberg molecules

Rydberg electrons scatter with neutral ground-state atoms within the Rydberg
orbit to form ultralong-range Rydberg molecules. Trilobite Rydberg molecular
potentials stem from the s-wave scattering term for the Rydberg electron in
(almost) degenerate energy levels of the hydrogenic manifold as introduced
in detail in section 3.4.1. Such Trilobite Rydberg molecules can not be
directly photo-associated by one or two-photon processes as they inherit
their high-L character from the manifold states. In order to photo-associate
a Trilobite Rydberg molecule, low-L character has to be admixed to their
energy eigenstates. The full Born-Oppenheimer two-body potential energy
curves U for the Rydberg atom interacting with one neighboring neutral atom
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are calculated based on the Hamiltonian

Ĥ(r, R) =Ĥ0 +
[
2πaTs (k(R))P̂T + 2πaSs (k(R))P̂S

]
δ3(r−Rẑ)

+
[
6πaTp (k(R))P̂T + 6πaSp(k(R))P̂S

]
δ3(r−Rẑ)←−∇ · −→∇

+AHFSŜ2 · Î2 , (5.1)

which is evaluated for a truncated basis1 and diagonalized. Here, Ĥ0 is
the Hamiltonian for the bare Rydberg atom including fine structure. The
following four terms take care of the electron-neutral scattering for s- and p-
wave scattering in the singlet (S) and triplet (T) scattering channel, depending
on the respective scattering lengths as,p(k(R)). The last term describes the
hyperfine interaction in the neutral atom with the electronic spin S and the
nuclear spin I of the neutral atom. While r refers to the distance between
the Rydberg electron and the Rydberg nucleus, R denotes the position of the
neutral atom with respect to the Rydberg ionic core. Variables with index 1
refer to the Rydberg atom and with index 2 to the neutral atom. A detailed
discussion of the Hamiltonian including the characteristic features related to
the terms is given in section 3. The ion-atom interaction term taken into
account in that chapter is negligible for the atomic densities used in this
chapter. Therefore, the term is omitted.
The lowest well of the Trilobite potential energy curves, calculated based

on this Hamiltonian, is split by tens of GHz down to a few GHz with respect
to the next lower lying nS Rydberg state for principal quantum numbers
between 25 and 60. Only when this splitting gets comparable to the hyperfine
splitting of 6.8 GHz, the singlet Trilobite potential can couple to the S-state
potential of mixed singlet and triplet character (see section 3.4.3). This
enables photo-association of hybrid Trilobite Rydberg molecules as it allows
to admix low-L character to the Trilobite PEC. The resonant coupling is
illustrated in Fig. 5.1, where Born-Oppenheimer potential curves are presented
in the vicinity of the 40S, 50S and 60S state. All potentials corresponding to
a nuclear spin of the neutral perturber atom of F2 = 2 are marked in orange,
while black PECs correspond to F2 = 1.

For low n the hyperfine splitting between states with F2 = 1 and F2 = 2 is
much smaller than the Rydberg level spacing between the S-state and the
Rydberg states of the hydrogenic manifold (labeled m) which is shown for
n = 40 in Fig. 5.1(a). In contrast, for high n it is different: The hyperfine

1For the PECs presented in this chapter for a certain state of interest, Rydberg states
within +80 GHz to −140 GHz with respect to the state are taken into account. This
corresponds to each two hydrogenic manifolds above and below the state of interest.

81



Chapter 5. Photo-association of Trilobite Rydberg molecules

Fig. 5.1: Born-Oppenheimer potential energy curves U as a function of internuclear
separation R in the vicinity of the 40S, 50S and 60S state. The energy of the bare
nS Rydberg state is set to U/h = 0 GHz, respectively (a) For n = 40 the hyperfine
splitting between F2 = 1 and F2 = 2 states is small in comparison to the level
splitting between S- and manifold-states. (b) For n = 50 the splitting between the
S-type and the Trilobite PEC is comparable to the hyperfine splitting leading to an
avoided crossing at R ≈ 3500 a0, which is marked by a red arrow. (c) For n = 60 the
hyperfine splitting is larger than the level spacing between S- and manifold-states.
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splitting is still 6.8 GHz, but due to the relative level spacing decreasing
according to n−3, the splitting of the S-state to the Trilobite and manifold
states is smaller than the hyperfine splitting which is shown at the example of
the 60S state (see Fig. 5.1(c)). In between, for n ≈ 50 the splitting between
the Trilobite state and the S-state is comparable to the hyperfine splitting. A
hybrid molecule can be excited, composed of the 50S1/2,mJ1 = −1/2, F2 = 2
state as well as the 47 Trilobite F2 = 1 state.
In a pictorial way, one can understand this hybridization process in the

following way: The ↓rS↑g molecular state can be photo-excited, where rS
labels the electronic spin orientation of Rydberg S-state and g the nuclear
spin orientation of the neutral atom in its electronic ground state. This
state couples via mixed singlet and triplet scattering ↓rS↑g ± ↑rT↓g to the
Trilobite Rydberg molecule state, referred to as rT, where the perturber
atom has a flipped nuclear spin. By this spin-flip, energy of the nuclear spin
is resonantly transferred to the orbital angular momentum of the Rydberg
electron. Where the two potential energy curves meet, an avoided crossing
arises due to the coupling, allowing to photo-associate molecules of both
↓rS↑g and ↑rT↓g character. The position of the avoided crossing is indicated
in Fig. 5.1 by the red arrow.

The admixture of the Rydberg S-state to the Trilobite molecular potential
is shown in Fig. 5.2. While the triplet Trilobite molecular potential curve
crosses the 50S state without any coupling at 4188 a0, the singlet Trilobite
molecular potential curve, crossing at about 3500 a0, couples strongly to
the mixed S-type potential curve. Thereby, S-character is admixed to the
Trilobite PEC. The S-character which is represented by the green shading of
the PECs in Fig. 5.2 is calculated according to

P (S) =
∑

mJ1 ,mS2 ,mI2

|〈n = 50, L1 = 0, J1 = 1/2|Ψ〉|2 (5.2)

summing the square of the entries in the eigenvector corresponding to the
contributions of the 50S Rydberg state to the molecular curve. Other S-
states contribute only marginally. Molecular bound states can only be
photo-associated if this S-character is sufficiently high.
The insets show the electron probability density for three representative

internuclear separations to visualize how the hybrid character evolves with R.
While the molecular state in the outermost well has an electron probability
density which is almost identical to a Rydberg S-orbital, the electron proba-
bility density for the state crossing the S-state shows the characteristic shape
of a Trilobite Rydberg molecule. Further in from the crossing, the electron

83



Chapter 5. Photo-association of Trilobite Rydberg molecules

Fig. 5.2: Born-Oppenheimer potential energy curves U as a function of internuclear
separation R. The

∣∣50S1/2, F2 = 2
〉

state corresponds to U/h = 0 MHz. The
hybridization of the 47m,F2 = 1 singlet Trilobite PEC with the 50S,F2 = 2 molecular
potential is evident at R ≈ 3500 a0. The S-character of the PECs is indicated by
the green shading. The insets show the weighted electron probability density for
the three positions of the PEC marked with blue circles.

probability density is still significantly distorted. The hybrid molecules photo-
associated in this work, are bound at internuclear distances comparable to
this position.

To quantify further how much the Trilobite character of the Born-Oppen-
heimer potential varies depending on the internuclear separation of the two
atoms, not only the S-character of the adiabatic state is extracted but the
state is decomposed into the different L1-values. The angular momentum
probability distribution of the Rydberg electron P (L1) is plotted in Fig. 5.3(a)
for the potential energy curve exhibiting strong hybridization between the
n = 47 Trilobite state and the 50S state (shown as a thick line in Fig. 5.3(b))
as a function of internuclear separation R. This illustrates which high-L
orbital angular momentum states contribute to the shape of the electronic
wave function of the hybrid Trilobite Rydberg molecule.

For values of R, were the radial wave function has nodes no admixture
of other states to the state under consideration can take place - thus the
hybridization vanishes. That shapes the behavior of P (L1) depending on R.
To highlight this, the internuclear separations where the 50S wave function
has a node are indicated by the white vertical lines. Further, the red lines

84



Chapter 5. Photo-association of Trilobite Rydberg molecules

Fig. 5.3: Orbital angular momentum character of the hybridized 87Rb Trilobite
molecule. (a) Angular-momentum distribution P (L1) is presented as a function of
the internuclear distance R for the hybridized Trilobite molecule in the vicinity of
the 50S Rydberg state. The white dashed lines indicate the values of R for which the
50S-wave function has a node. The red dotted lines show the nodes of the n = 47
high-L wave functions. (b) Molecular potential energy U as a function of R in the
vicinity of the 50S Rydberg state. The thick line shows the potential energy curve
for which P (L1) is plotted in (a) (cf. Fig. 5.2).

mark the positions where the high-L1 wave functions have their nodes. The
number of nodes depending on n and L is discussed in section 2.2. It was also
verified that the major contribution to the hybrid Trilobite potential stem
from Rydberg states with principal quantum numbers n = 50 and n = 47.

As the ultracold cloud is held in a magnetic trap, we can not avoid magnetic
offset fields in the experiment. In order to include these offset fields in the
calculation of the potential energy curves the Hamiltonian accounting for the
magnetic Zeeman effect (see section 2.3.2)

ĤB = B
2 · (L̂1 + gSŜ1 + gSŜ2 + gI Î2) (5.3)

is added to the Hamiltonian (Eq. 5.1) for the Rydberg atom interacting with
the neutral perturber atom. While gS is the electron spin g-factor, the nuclear
spin g-factor is denoted by gI . The PECs split according to the asymptotic
Rydberg states which experience a different Zeeman effect. Also the coupling
between the states is modified by the presence of the magnetic field B.
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Fig. 5.4: Molecular potential energy curves in the vicinity of the 50S Rydberg
state including an offset magnetic field (1.64 G) are presented as a function of the
internuclear separation. The PECs are split due to the Zeeman effect. Curves with
mK = 5/2 (3/2) are indicated with blue (red) lines. The grey lines correspond
to PECs of different mK , not relevant for this work. Zero energy corresponds to∣∣50S1/2, F2 = 2,mF2 = 2

〉
.

The result of the full diagonalization of the Hamiltonian including the
magnetic offset field is presented in Fig. 5.4, where the Born-Oppenheimer
PECs in the vicinity of the 50S state are shown as a function of the internuclear
distance between the Rydberg nucleus and the neutral ground-state atom.
The magnetic offset field was set to 1.64 G for this calculation, corresponding
to the value present in our experiment. One can identify 10 PECs associated
with the 50S1/2, F2 = 2 asymptote which are split depending on their magnetic
projection of the nuclear spin mF2 = {−2,−1, 0, 1, 2} and Rydberg electron
spin mJ1 = {−1/2,+1/2}. Two of the asymptotes fall on top, as the mF2 =
−2,mJ1 = 1/2 Rydberg state experiences the same Zeeman shift as the
mF2 = 2,mJ1 = −1/2 state. PECs relevant for our experiment have mk =
mJ1 +mS2 +mI2 = {3/2, 5/2} as the cloud is prepared in F2 = 2,mF2 = 2
where mS2 = 1/2 and mI2 = 3/2 and the Rydberg spin is mJ1 = ±1/2. The
corresponding curves are marked in red (mk = 3/2) and blue (mk = 5/2),
respectively.

For the calculation of the Born-Oppenheimer PECs in Fig. 5.4, the magnetic
field is assumed to be parallel to the internuclear axis of the ultralong-range
molecule. Generally, it is required to average the calculated spectra, received
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from the PECs, over all possible alignment angles between the internuclear
axis and the magnetic field direction in order to model the experiment. This
is necessary due to the fact, that the location of the neutral perturber atom is
random for each experimental realization as the weak rotational splitting can
not be resolved in the experiment. However, in the numerical calculations we
found that the alignment angle between the field direction and the internuclear
axis has only minor influence on all PECs relevant to this work. For S-type
Rydberg states the PECs are even independent of that angle, which is indeed
expected, as the S-type molecules are of Hund’s case (b). Because of no
angular momentum L1 = 0 the orbital state is isotropic and has no alignment
and the spins involved in the molecular problem S1, S2, and I2 align with the
magnetic field. For the Trilobite wave function the molecular binding is very
strong (typically GHz) and decouples the orbital and intrinsic spins. The
spins can therefore independently align with the magnetic field, while the
Trilobite wave function is locked to the internuclear axis. Altogether, this
means that the hybrid S- and Trilobite states in this work also do not depend
on the alignment angle between internuclear axis and magnetic field.

5.2 Spectroscopy of Trilobite Rydberg molecules

In order to photo-associate Trilobite Rydberg molecules, an atomic sample of
sufficiently high density is needed to ensure that a neighboring ground-state
atom is located inside the Rydberg orbit. Additionally, the temperature needs
to be low, as the molecules can break up due to its small binding energy, if there
is too much kinetic energy. Therefore, the experiment starts with a sample
of about 6.6× 106 atoms at 1.2 µK with a peak density of 5.1× 1013 cm−3,
corresponding to the cooling ramp 3a, discussed in section 4.2. The atoms
are prepared in the F2 = 2,mF2 = 2 hyperfine state, corresponding to
mS2 = 1/2,mI2 = 3/2.
For the Rydberg excitation, a two-photon scheme is used. It involves σ−-

polarized light at 420 nm (1/e2 radius: 0.77 mm), which is off-resonant with re-
spect to the transition from

∣∣5S1/2, F = 2,mF = 2
〉
to
∣∣6P3/2, F = 3,mF = 1

〉
by ∆ = 830 MHz and is illuminating the full cloud, combined with a second
laser beam at 1015.4 nm, driving π transitions to the 50S1/2,mJ1 = −1/2
state (labeled ↓), which is focused to 2.1(3) µm. As discussed in section 4.3,
there is still some residual coupling to the mJ1 = +1/2 Rydberg state (labeled
↑) for the ∆ chosen. The magnetic offset field of 1.64 G points along the axial
direction of our QUIC trap (see Fig 4.6), which allows us to spectroscopically
resolve both mJ1 levels, due to their Zeeman splitting of δ = −4.6 MHz. The
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excitation probability for the
∣∣50S1/2 ↓

〉
Rydberg states is about four times

larger than for the
∣∣50S1/2 ↑

〉
component. The cloud is illuminated for 20 µs,

leading to an average Rydberg excitation probability well below unity for the
applied powers, in order to avoid Rydberg-Rydberg interactions (for details
see sections 2.4 and 4.3.3). After Rydberg excitation, a strong electric field of
360 V/cm is applied in order to ionize the Rydberg atoms and accelerate the
produced ions towards the channeltron detector. The channeltron detector
was used despite of it lower detection efficiency as the MCP was broken and
the data was taken before the rebuilt phase of the experiment in 2016.

The process of excitation, ionization and subsequent detection is repeated
1000 times at a rate of 2 kHz for each single atomic sample. As a consequence,
the atom number decreases by ≈ 25%, while the cloud temperature slightly
increases to 1.4 µK. To obtain Rydberg molecule spectra, as presented in
Fig. 5.5, the aforementioned measurement sequence is repeated for different
frequency detunings δ of the 1015.4 nm laser. Each data point is then an
average over three such experimental runs and the exemplary errorbars
represent the standard error extracted from 3000 pulses.
In Fig. 5.5 the mean ion count rate is depicted as a function of the laser

detuning δ, where the frequency reference δ = 0 MHz corresponds to the
transition to the

∣∣50S1/2 ↑
〉
Rydberg state. This transition doesn’t shift

in the magnetic field, as the Zeeman effect for the ground state and this
Rydberg state is the same such that the effect on the transition frequency
cancels. To compare the signal stemming from this Rydberg transition with
the theoretical calculation of the previous section, the total spin projection
has to be mK = 5/2 (as mJ1 = 1/2,mS2 = 1/2,mI2 = 3/2). The strong
transition to the

∣∣50S1/2 ↓
〉
Rydberg state at δ = −4.6 MHz is shifted due to

the magnetic offset field and corresponds to mK = 3/2. All other peaks arise
due to the photo-association of ultralong-range Rydberg molecules. While
conventional S-type Rydberg molecules have negative binding energies, in
this spectrum a peak at δ = 4.2 MHz arises. We will later attribute it to the
photo-association of hybridized Trilobite Rydberg molecule.

In order to identify the peaks in the spectrum, molecular bound states are
calculated for the potential energy curves relevant for this work. Therefore,
the PECs with mK = 3/2 and 5/2 are presented in Fig. 5.6(a) together
with the absolute squared radial wave function of the vibrational molecular
bound states |Φν(R)|2, which we calculate using the Numerov algorithm (the
same way as for the radial wave functions of the Rydberg orbits). Bound
states in the mK = 5/2 (3/2) Born-Oppenheimer potential are marked in
blue (red) and are offset by their respective binding energy. In Fig. 5.5 they
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Fig. 5.5: Rydberg molecule spectrum showing the mean ion count rate as a function
of laser detuning δ in the vicinity of the atomic Rydberg resonance

∣∣50S1/2 ↑
〉
(at

δ = 0 MHz). The red arrow marks the peak attributed to the photo-association of
Trilobite Rydberg molecules. The magnetic offset field amounts 1.64 G. Representa-
tive error bars indicate the standard deviation. Solid lines are fits to the data based
on a sum of multiple Lorentzians. Blue filled (red open) symbols indicate calculated
binding energies of molecular states associated with PECs for which mK = 5/2
(mK = 3/2).

are marked with the corresponding blue (red) symbols and especially for
the case of the PEC of pure triplet character (mK = 5/2), the calculated
binding energies show good agreement with the experimental data. Also for
the mK = 3/2 case, where the presence of the Trilobite potential modifies
the PECs, the experimental results match the calculated binding energies
considerably well. Note that the mK = 3/2 state which is marked with the
triangle is bound in a molecular potential which asymptotically connects to∣∣50S1/2 ↑, F2 = 2,mF2 = 1

〉
state, which can not be excited in our experiment

as the spin-polarized sample has mF2 = 2. The mixed singlet and triplet
scattering of the electron leads to some admixing of the other hyperfine state
to the molecular state - the photo-association of this molecule induces a
spin flip to mF2 = 1 analogous to Ref. [47]. This allows for associating the
molecular states, despite the fact that the asymptotic Rydberg level is not
accessible in the experiment.

In order to identify the peak appearing at positive detuning, the calculated
binding energies for the consecutively numbered bound states which are bound
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Fig. 5.6: Bound states in the hybrid PECs of both Trilobite and S-type character.
(a) Long-range molecular potentials U with mK = {3/2, 5/2} are presented in
the vicinity of the 50S Rydberg state as a function of the internuclear separation.
Calculated vibrational bound states |Φν(R)|2 are shaded in red (blue) depending,
whether they are bound in the mK = 3/2 (5/2) PEC and are offset by their
respective binding energies Ub. Bound states with significant Trilobite admixture
are numbered (1)-(8). Zero energy corresponds to the asymptote of the state∣∣50S1/2 ↑, F2 = 2,mF2 = 2

〉
(b) Calculated binding energies Ub and dipole moments

d for the vibrational bound states (1)-(8) in (a).

in the hybridized potential of both Trilobite and S-type character are listed
in Fig. 5.6(b) together with their respective electric dipole moment d. The
measured binding energy of δ = +4.2 MHz agrees with the state numbered
(6) for this additional peak. States (3)-(5) do not show up as strongly as
expected in the spectrum, but they very likely contribute to the offset signal
at low positive detunings. Note that for state (6) a large portion of the radial
wave function is located at relatively large internuclear separations such that
the Franck-Condon factor can be considerably high. This is different for
states (3)-(5). In addition, the expected lifetime of the molecular bound state
(6) is reasonable and amounts τ = 1.8 µs.

For the peak at δ = −8.4 MHz, it is not clear what causes the deviation
from the predicted peak position of state (1). As the following measurements
of the electric dipole moment were performed before the bound states were
calculated, we didn’t consider this state for the measurement of the dipole
moment.
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5.3 Response to external electric fields

To gain further evidence that the unusual spectroscopic signal at blue detuning
in Fig. 5.5 can be attributed to the photo-association of ultralong-range
Rydberg molecules of hybrid Trilobite and S-character, its response to an
external electric field is investigated. As the Trilobite Rydberg molecule
possesses a huge electric dipole moment, one would expect that some electric
dipole moment is admixed in the hybrid molecule as well. The expected
strength of the dipole moment d along the z-axis, can be calculated according
to

d = e

∫
|Φv(R)|2 〈Ψel(R)| ẑ |Ψel(R)〉 dR . (5.4)

Here, Ψel(R) is the adiabatic electronic wave function at location R on the
PEC of interest, which is obtained from our full diagonalization of Ĥ: The
eigenvector associated with the PECs eigenenergy at R delivers the weights
for the Rydberg states making up the state Ψel(R). These R-dependent
expectation values of the electronic dipole operator (along the z-direction)
are weighted with the square modulus of the vibrational wave function of
interest Φv(R) to find the weighted dipole moment for the states which are
photo-associated in the experiment. The calculated dipole moments received
for the hybrid Trilobite molecules are listed in Fig. 5.6(b). For state (6), a
dipole moment of 117 D are expected.

To measure the electric dipole moment in the experiment, a homogeneous
static electric field E is applied parallel to the magnetic field of the trap and
spectra are recorded in the vicinity of the

∣∣50S1/2 ↑
〉
Rydberg state. In order

to avoid any influence of possible field drift during the measurement, the
sequence is slightly adapted: The full range of detunings δ is scanned for
one atomic cloud in 200 steps ramping up and down in frequency 20 times
which results in total in 4000 Rydberg excitation pulses per cloud. This is
done for four different electric field values E for successively prepared clouds
and the whole sequence is repeated such that each data point shows the
average over 125 experimental runs. Thereby, one can avoid that possible
drifts of electric stray fields systematically affect the measurement. Due to
the increased number of excitation pulses per atomic cloud, the temperature
is increased to 2.5 µK and the atom number decreases to 4.5× 106 after the
4000 Rydberg excitation pulses.

The result of this measurement is presented in Fig. 5.7, where the mean ion
count rate is shown as a function of laser detuning δ for a set of four electric
fields E . For the small electric fields applied which are only in the mV/cm
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Fig. 5.7: Rydberg Stark map showing the mean ion count rate as a function of the
laser detuning δ in the vicinity of the

∣∣50S1/2 ↑
〉
Rydberg state (δ = 0 MHz for the

field free case) for four values of the electric field E. Orange points depict the peak
position of the blue detuned hybrid molecular state of Trilobite and S-character
extracted from Lorentzian fits to the data. The red line is a linear fit to the peak
positions, which yields an electric dipole moment of 135(45) D.

range, the atomic Rydberg transition to the
∣∣50S1/2 ↑

〉
state at δ = 0 MHz

exhibits no noticeable Stark effect (see section 2.3.1). In contrast, the signal
caused by the photo-association of hybrid Trilobite Rydberg molecules at
δ = 4.2 MHz for no field, shifts by more than a MHz for an applied electric
offset field of 21 mV/cm. The linear shift of the line with respect to the
applied electric field reveals its large permanent electric dipole moment (and
not an induced one) and confirms the assignment of the spectroscopic signal
to the photo-association of hybrid Trilobite Rydberg molecules. The line
centers for the different offset fields are extracted from Lorentzian fits to the
line shape of the Trilobite signal and the results are plotted as orange points
in Fig. 5.7. The electric dipole moment is extracted from this values by a
linear fit (shown in red) and results in d = h× dδ/dE = 135(45) D. Within
experimental uncertainties, this agrees with the theoretically predicted electric
dipole moment of 117 D.
Note that conventional S-type ultralong-range Rydberg molecules, which

feature only a small perturbative admixture of the Trilobite state, typically
show a symmetric broadening of the molecular line relative to the atomic
transition in response to electric fields [41]. This differs from what is observed
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here and hints at the need for a more elaborate theoretical description. One
may speculate that it indicates a parallel orientation of the molecular state
with respect to the electric field axis.

5.4 Tuning the spin-orbit coupling out of resonance

In section 5.1 it was discussed, that the coupling of the orbital angular
momentum of the Rydberg electron to the nuclear spin of the neutral ground-
state atom, which leads to the coupling of the Trilobite state to low-L Rydberg
states depends crucially on the relative energy scale of the hyperfine splitting
in comparison to the Rydberg level spacing and therefore the principal
quantum number. In comparison to the 50S Rydberg state studied up to
now, the strength of this coupling varies considerably with n for neighboring
states.

For the case of the 49S state an increased Rydberg level spacing occurs and
the singlet Trilobite PEC doesn’t cross the S-type PEC, but passes about
50 MHz blue detuned. Although that energetic splitting is comparatively
large, the curves of mK = 3/2 couple considerably, leading to the lowering in
energy of the Born-Oppenheimer curve with 49S1/2 ↓, F2 = 2,mF2 = 2. The
potential energy curves for 49S are presented in Fig. 5.8(a) as a function of
internuclear separation. In the experiment this is reflected by the broad wing
at red detunings visible in the spectrum presented in Fig. 5.8(b), where the
mean ion count rate is shown as a function of laser detuning δ in the vicinity
of the transition to the

∣∣49S1/2 ↑
〉
state (δ = 0 MHz). In contrast to the case

of the 50S state in Fig. 5.8(e), no peak at blue detunings is visible at all for
49S. This is consistent with the calculated molecular bound states, which
only show up at red detunings for 49S.
As discussed in detail in section 5.1, for 50S (Fig. 5.8(b)) the Trilobite

PEC crosses the S-type PEC at ≈3500 a0, leading to a strong hybridization
with the mK = 3/2 state. This leads to the hybridized Trilobite molecules at
blue detuning with respect to the atomic line, which are in agreement with
the experimental observation (Fig. 5.8(e)).
In contrast, for 51S, the crossing of the Trilobite state with the S-state

takes place at larger internuclear separations of about 4400 a0, which makes
the outermost potential well of the S-type PEC with mF2 = 2 and mK = 3/2
open up. Therefore, no bound state exists in this PEC, which is in accordance
with the measured spectrum presented in Fig. 5.8(f). There, no noticeable
peaks show up at red detuning with respect to the

∣∣51S1/2 ↓
〉
state. As

the energy gap between the Trilobite state and the S-state is not close to

93



Chapter 5. Photo-association of Trilobite Rydberg molecules

Fig. 5.8: (a)-(c) Ultralong-range molecular potentials U in the vicinity of the
Rydberg states 49S (a), 50S (c), and 51S (c) as a function of internuclear separation
R for a magnetic offset field of 1.64 G. Blue dotted (red solid) curves show PECs
with mK = 5/2 (mK = 3/2). Grey lines indicate PECS of different mK , not
relevant for this work. Zero energy corresponds to the asymptotes of the states
nS1/2 ↑, F2 = 2,mF2 = 2 corresponding to mK = 5/2. (d)-(f) Rydberg molecule
spectra showing the mean ion count rate as a function of laser detuning δ in the
vicinity of the atomic Rydberg states 49S (d), 50S (e), and 51S (f) at a magnetic
offset field of 1.64 G. The zero of the frequency axis (δ = 0 MHz) is referenced
to the nS1/2 ↑ atomic Rydberg level. Solid lines are fits to the data based on a
sum of multiple Lorentzians. Blue filled (red open) symbols indicate calculated
binding energies of molecular bound states associated with PECs for mK = 5/2
(mK = 3/2).
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resonance with the hyperfine splitting in the ground-state atom anymore,
the coupling is much weaker than for 50S and no hybrid molecules can be
observed.
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6
Ionic impurity in a Bose-Einstein condensate

The study of ion-atom interaction in the quantum scattering regime is a
longstanding goal in experimental physics and many proposals exist for
interesting novel research in this field (see section 1). Typically, ion-atom
interaction at ultracold temperatures is investigated in hybrid systems, where
an ultracold cloud is overlapped with an ion, trapped in a Paul trap [61,
64, 71–73, 121]. In Paul traps the ion can be centered in the trap at the
beginning of the experiment and cooled to temperatures of hundreds or
even tens of microkelvin. However, as soon as the ion starts to interact
with neighboring atoms and slightly deflects from the trap center, it heats
up due to its micromotion in the radio-frequency ion trap. Therefore, the
temperature for such hybrid systems is usually limited to the millikelvin
regime [74], far above the s-wave quantum scattering limit. Mixtures with
favorable mass ratios, might allow to reach the quantum scattering regime
in the future [122, 123]. As an alternative method, optical trapping of ions
has recently been demonstrated, but controlled mixing with ultracold atoms
remains an open challenge [75, 76], as the optical trapping laser also forms a
potential for the atoms.

In this chapter, which is based on Ref. [1], a novel approach is presented
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which allows the study of ion-atom interaction for the core of a giant Rydberg
atom immersed in a BEC of 87Rb. The Rydberg nucleus is located in a
dense micro-BEC where a small interparticle separation leads to ion-atom
interaction in the MHz regime. As the Rydberg atom is excited from a
condensed sample the ultralow temperature environment of the parent atomic
ensemble is maintained. The kinetic energy of the Rydberg atom is slightly
increased due to the photon-recoil of the Rydberg excitation which amounts
kB × 730 nK for our experiment. Hence, the interaction of the BEC with the
Rydberg ionic core is studied at temperatures below a microkelvin, which is
about three orders of magnitude lower compared to what has been achieved
in hybrid traps [124, 125]. Yet, our system temperature is still above the
s-wave scattering limit, which for Rb is E∗ = kB × 78.9 nK (see section 3.2).
Note that the potential barrier for f-wave scattering amounts to 2.84 µK, such
that in our system only s-, p- and d-wave scattering contributes. A striking
advantage of the method is that rapid acceleration of the ionic impurity due
to detrimental electric stray fields is prevented by the Rydberg electron which
provides an effective shielding.

By exciting Rydberg states with principal quantum numbers up to n = 190,
a setting can be prepared, in which the Rydberg electron orbit largely exceeds
the BEC size. Thereby, the typically dominant electron-atom interaction is
suppressed due to the reduced overlap of the electron probability density and
the atomic sample. The reduction of the electron-atom interaction is revealed
by Rydberg spectra recorded for increasing principal quantum numbers. The
comparison of the Rydberg excitation spectra at high n to our theoretical
model unravels the contribution of the ion-atom interaction to the observed
line shape. In addition, the collisional lifetime of the Rydberg excitation in
the dense sample is measured.

6.1 Concept to study the ion-atom interaction between a
Rydberg nucleus and a neutral atom

A Rydberg atom excited in a dense and ultracold sample interacts with
neighboring neutral atoms via ion-atom and electron-atom interaction. As
detailed in section 3, the ion-atom interaction is treated classically and
described by the polarization potential Vi = −C4/R

4. In contrast, the
electron-atom interaction is treated quantum mechanically as a contact
interaction, where s- and p-wave scattering contributes in the singlet and
triplet scattering channel. For the work presented in this chapter nS Rydberg
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states with mJ = +1/21 are addressed and as the BEC is prepared in the
F = 2,mF = 2 state, only triplet scattering needs to be considered. A full
diagonalization of the Hamiltonian

Ĥ(r, R) =Ĥ0 + Ĥsc,e + Ĥi

=Ĥ0 + 2πas(k(R)) δ3(r−Rẑ)

+ 6πap(k(R)) δ3(r−Rẑ)←−∇ · −→∇ − C4

R4 (6.1)

evaluated for a truncated basis2 yields the two-body Born-Oppenheimer
potential energy curves Ui,e (PEC) (see chapter 3). Here, Ĥ0 denotes the
Hamiltonian of the bare Rydberg atom including fine structure. The second
and third term comprise the triplet s- and p-wave scattering of the Rydberg
electron at r interacting with the neutral atom at R. It depends on the
respective scattering length as,p(k(R)). Finally, as already introduced, the
last term refers to the ion-atom interaction potential Vi. The Hamiltonian and
the characteristic features in the two-body potential energy curves Ui,e related
to its terms are discussed in detail in chapter 3. The label (i,e) indicates,
that both the contribution of the ion and the electron is taken into account.
The interaction between the ionic Rydberg core and the neutral atom

dominates only for very small internuclear separations. This is presented in
Fig. 6.1, where in the upper panel the inner part of the interaction potential
Ui,e (black) is shown as a function of internuclear separation R for the Rydberg
190S state. For comparison, the potential Ue is presented (red) for which the
last term in Eq. 6.1 is omitted. The two potential energy curves Ui,e and
Ue differ significantly for small internuclear separations of ≈ 1000 a0. In this
regime the C4-term gets considerable. Note, that the divergence at 1700 a0 is
caused by the shape resonance in the triplet p-wave scattering channel.
In order to find signatures of the ion-atom interaction for the Rydberg

nucleus interacting with a neutral atom, are small nearest neighbor spacing is
required. Thereto, the density of the BEC needs to be increased dramatically
in comparison to typical ultracold experiments with 87Rb. In our experiment,
this is achieved by the use of a tight micro-trap. To illustrate how the
experiment meets this requirement the nearest neighbor (N = 1), next
nearest neighbor (N = 2) and next-next nearest neighbor distribution (N = 3)

1The mJ quantum number is +1/2 throughout this chapter and is not explicitly stated
anymore.

2One hydrogenic manifold above and one below the state of interest were taken into
account. We numerically tested, that taking one or two more manifolds into account
does not significantly change the calculated Rydberg spectrum.
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Fig. 6.1: The potential energy curves Ui,e (black) and Ue (red) are presented as a
function of internuclear distance R in the vicinity of the 190S1/2 + 5S1/2 asymptote
(at U/h = 0 MHz). While Ue only accounts for the electron-atom interaction,
Ui,e also includes the interaction with the Rydberg core ion. In the lower panel,
nearest (solid), next nearest (dashed), and next-next nearest (dash-dotted) neighbor
distributions are depicted for a typical peak density of ρ = 3× 1015 cm−3.

according to [126]

pN (R) = 3
(N − 1)!

(4πρ
3

)N
R3N−1 exp

(
−4πρ

3 R3
)

(6.2)

are of interest. These distributions are presented in the lower panel of Fig. 6.1
for the peak density of ρ = 3× 1015 cm−3 of our experiment. The nearest
neighbor distribution peaks at ≈ 700 a0, where Ui,e and Ue show a deviation
of more than 4 MHz.

However, for such a high density, many neutral atoms are located inside the
Rydberg orbit and the electron-atom interaction typically dominates the effect
of the ion-atom interaction by far. For large internuclear separations the PEC
Ui,e, which is presented in Fig. 6.2 as a function of internuclear separation
R, is fully dominated by the electron-atom interaction. The potential energy
curve resembles the electron probability density. As the size of the Rydberg
orbit increases with the principal quantum number, the range of the potential
increases accordingly. In our experiment, a BEC is prepared (depicted by
the green shaded area in Fig. 6.2) for which the radial extent is significantly
smaller than the range of the interaction potential for large n. Thereby,
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Fig. 6.2: The full spatial range of the potential energy Ui,e is shown for three
principal quantum numbers as a function of internuclear separation R. Zero energy
is set to the respective asymptotic

∣∣nS1/2
〉
Rydberg state. For comparison the

spatial extent of the BEC Thomas-Fermi profile (green) along the short trap axis is
indicated.

the reduced overlap between the large Rydberg orbit and the BEC can be
employed to suppress the dominant effect of the electron-atom interaction.
Note, that the potential wells at large internuclear separations are in the
kHz range, while the contribution of the C4-term illustrated in Fig. 6.1 at
internuclear distances corresponding to the typical particle spacing is in the
MHz range.

In summary, our approach to study the ion-atom interaction is based on the
combination of a very dense and small BEC with a Rydberg excitation of very
high principal quantum number. This allows us to achieve a sufficiently small
nearest neighbor spacing to increase the contribution of ion-atom interaction,
while reducing the electron-atom interaction due to the small extent of the
ultracold cloud in comparison to the Rydberg orbit size.

6.2 A Rydberg atom interacting with many atoms in a dense
micro-BEC

The experiments presented in this chapter aim to observe the effect of the
ion-atom interaction on the Rydberg excitation spectrum. Therefore, a

101



Chapter 6. Ionic impurity in a Bose-Einstein condensate

theoretical model for the line shape of the Rydberg excitation spectrum is
necessary which can be compared to the experimental results. This can finally
enable us to disentangle the contributions of the electron-atom and ion-atom
interaction contributing to the full line shape.
In order to model the line shape, one has to be aware that for a single

Rydberg atom within a high density BEC, not only a single neutral atom
is located inside the Rydberg orbit, but up to several thousands are. This
raises the question to what extent it is suitable to apply the two-body
interaction potential for each neutral atom independently. In our experiment,
the Rydberg atom is excited to a nS Rydberg state, which is non-degenerate.
Therefore, the admixture of other Rydberg states to the S-state due to the
presence of the neutral atom is small and such is the modification of the
S-orbital. This modification even decreases for increasing principal quantum
number. At n = 160 it amounts to

∫
[1− P (S)]ρ d3r ≈ 2× 10−5, with P (S)

being the S-character of the S-type Born-Oppenheimer potential energy curve
and ρ the normalized BEC density distribution used in the work presented in
this chapter. The fact that the modification of the S-orbital is small implies
that the potential for one atom in the Rydberg orbit is not changed by the
presence of another atom. This allows us to employ the pairwise interaction
potential, even for the case where many ground-state atoms are interacting
with the same Rydberg atom.

For modeling the presence of many neutral atoms interacting with the
Rydberg atom, we follow the treatment developed in Refs. [6, 110, 115]. In
order to calculate the expected spectral line shape for the Rydberg excitation,
a Monte-Carlo sampling approach is applied. It treats the atoms in the BEC
as point-like particles of infinite mass that are randomly distributed within
the range of U according to the Thomas-Fermi density distribution of the
micro-BEC. The latter is known from independent measurements of atom
numbers and trap frequencies. The atoms are assumed to have uncorrelated
positions, as expected for a weakly interacting BEC.
One of the atoms is designated to carry the single Rydberg excitation.

For each of the remaining atoms, the potential energy ui is extracted from
the interaction potential U according to its distance R to the Rydberg ionic
core. The sum over the ui delivers the energy shift Un for a single Monte-
Carlo configuration. The spectrum is obtained from the contributions of
all Un, weighted by the local excitation probability of the corresponding
Rydberg atom. This probability is given by the intensity distribution of
the 1020 nm excitation laser. Additionally, the contributions are convoluted
with a Lorentzian profile reflecting the Rydberg excitation Fourier limited
bandwidth. Note that the exact shape of the beam profile of the excitation
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Fig. 6.3: Modeled Rydberg excitation spectrum for ρpeak ≈ 3× 1015 cm−3 at∣∣71S1/2
〉
in (a) and

∣∣160S1/2
〉
in (b). The normalized excitation probability is

presented in black (red) based on the interaction potential Ui,e including (Ue
excluding) the contribution of the ionic core. The excitation probability is a depicted
as a function of detuning δ with respect to the bare atomic Rydberg resonance at
δ = 0 MHz.

laser has minor influence on the spectral shape due to the small sample
size. Typically, 5× 105 realizations are sampled for obtaining the modeled
excitation spectrum. The area below the spectrum is finally normalized for
comparison to the experimental data.

An exemplary spectrum is presented in Fig 6.3(a), for the case of a
∣∣71S1/2

〉
Rydberg state, excited in a micro-BEC of ≈ 47850 atoms with trap frequencies
ωr = 2π × 2442 Hz and ωa = 2π × 268 Hz. This corresponds to a peak
density of about 3× 1015 cm−3 alike the peak density in the experiment.
The more particles are found within the Rydberg orbit, the more energy
values ui contribute to the overall detuning Un required to resonantly excite
the Rydberg atom in this environment. Therefore, a larger detuning δ is
generally required to excite a Rydberg atom in a high density environment
compared to a low density environment. As long as the Rydberg orbit is
significantly smaller than the BEC, the mean shift of the spectrum is, to
first order, independent of n. This is the result of the electron probability
density being normalized. More specifically, if the principal quantum number
is increased, the orbit volume increases as (n6) and so does the number of
atoms inside. At the same time, due to the normalization of the electron
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probability density, the potential depth is getting shallower proportional
to n−6. This compensates for the increased number of perturber atoms
contributing, such that the overall line shift is the same. In this regime, the
line shift and broadening mainly depends linearly on the background density.
In first approximation, taking only the s-wave scattering into account and
neglecting the k-dependence of the scattering length, one can quantify the
mean shift of the Rydberg line as

∆Emean = 2πaTs (0)ρ, (6.3)

as discussed in Ref. [56]. This formula is only applicable as long as the Rydberg
orbit is significantly smaller than the size of the micro-BEC. However, once
the Rydberg orbit exceeds the size of the micro-BEC, the electron-atom
interaction is suppressed due to the reduced number of atoms interacting with
the Rydberg electron. Therefore, the spectrum narrows although the center
density is high. This can be seen at the example of the spectrum for

∣∣160S1/2
〉

presented in Fig. 6.3(b), which is narrowed significantly in comparison to the
case of

∣∣71S1/2
〉
shown in (a).

Note that there is no perfect mapping between the local density and the
required detuning [3] for a Rydberg excitation in this environment: If a single
neutral atom is located close to the p-wave resonance, it can contribute with
a large negative or positive shift ui to the overall detuning Un required to
excite a Rydberg atom in such a configuration of neighboring atoms. This is
the reason for the non-vanishing signal at extreme negative and at positive
detunings δ in Fig. 6.3(a). For increasing n this effect reduces [6].
Previously, Rydberg excitation in ultracold experiments has been investi-

gated in density regimes, for which the presence of numerous atoms within
the Rydberg orbit, leads to significant broadenings and line shifts of the
Rydberg spectroscopy line [6, 56, 57]. The ion-atom interaction was negligible
as the Rydberg orbit was not exceeding the Thomas-Fermi radius of the
BEC. In this regime, the model described above has been successfully applied,
revealing the impact of the p-wave shape resonance on the line shape [6].
Moreover, this semi-classical sampling method has been shown to reproduce
a full quantum mechanical treatment based on a functional determinant
approach at sufficiently large densities [49, 127]. This holds for our system
parameters and also when including the ion-atom interaction [128].

The ion-atom interaction is independent of the principal quantum number n
and thus only depends on the density of the sample, which controls the nearest
neighbor spacing. This can be seen by comparing a spectrum modeled based
on Ui,e which includes both ion-atom interaction and electron-atom interaction

104



Chapter 6. Ionic impurity in a Bose-Einstein condensate

as presented in black in Fig. 6.3 and a spectrum based on Ue, where the
ion-atom interaction is neglected as presented in red. The contribution of the
ion-atom interaction to the overall line broadening and shift is approximately
the same for 71S and 160S as the density distribution of the BEC is the
same and for our experimental parameters amounts ≈ 5 MHz. Obviously, it
is favorable to investigate the ion-atom contribution at 160S as the relative
effect in comparison to the overall line broadening is much more pronounced.

6.3 Evidence for ion-atom interaction at submicrokelvin
temperature

In order to access the ion-atom interaction, as a first step the suppression of
the electron-atom interaction is demonstrated experimentally. The very first
onset of this effect has been previously observed in Ref. [56]. In our experiment,
a BEC of about 6× 105 Rubidium-87 atoms with a temperature below 250 nK
is prepared in the QUIC trap (corresponding to ramp 3b in section 4.2). The
optical microtrap (wavelength 855 nm, Gaussian waist ≈ 1.8 µm) is ramped
on linearly within 10 ms and a subsequent ramp of the magnetic offset fields
(taking 10 ms) shifts the parent BEC aside, leaving typically 6.5× 104 atoms
in the micro-BEC. For the trap frequencies of ωr = 2π × 2180(60) Hz and
ωa = 2π × 215(30) Hz this results in a peak density of ≈ 3× 1015 cm−3. The
Thomas-Fermi radii amount about Rr = 1.0 µm and Ra = 9.2 µm. When the
tweezer is switched off, and the micro-BEC expands in the magnetic trap, an
upper temperature limit 250 nK can be found. The lifetime of the micro-BEC
in the trap amounts to 19.5 ms and is limited by three-body loss.
A single Rydberg atom is excited from the micro-BEC, which is spin-

polarized in the
∣∣5S1/2, F = 2,mF = 2

〉
state, to an

∣∣nS1/2,mJ = 1/2
〉
Ryd-

berg state by two-photon excitation. The excitation couples to the intermedi-
ate state

∣∣6P3/2, F = 3,mF = 3
〉
offresonantly with a single-photon detuning

of ∆ = 80 MHz. The laser beam at 420 nm illuminates all atoms. In contrast,
the second beam at 1020 nm is focused through the same aspheric lens as the
beam providing the optical tweezer trap. Thereby, Rydberg atoms can only be
excited in the micro-BEC but not in the parent BEC which was shifted aside.
The recoil energy transferred during excitation amounts to kB × 730 nK. The
excitation pulses take 500 ns each. Exceptionally, for the datasets recorded
at n = 40 and 71 pulses of200 ns duration are applied due to the shorter
collisional lifetime in the dense sample. Each excitation pulse is followed
by electric field-ionization and detection (efficiency > 40%) of the produced
ion on a microchannel plate detector. This procedure is repeated five times
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with a repetition rate of 20 kHz in the same atomic sample. To avoid any
Rydberg-Rydberg interaction, the ion count rate is kept well below one (< 0.3
ions/pulse). Rydberg spectra are obtained by variation of the two-photon
detuning δ and averaging over at least 75 realizations. For high-n Rydberg
states of n > 127 we account for diamagnetic line shifts (see sections 2.3 and
4.3.4) that arise due to the magnetic field ramps to a final value of 7.73 G
during sample preparation. For more details on the experimental setup see
chapter 4.

The results of such measurements for increasing principal quantum number
n are presented in Fig. 6.4. For low principal quantum numbers, the spectra
exhibit the expected huge shift and broadening as discussed in the previous
section. As the Rydberg orbit size of both the 41S and the 71S state is
considerably smaller than the Thomas-Fermi radii of the micro-BEC, the
corresponding Rydberg spectra show about the same line shift which is
comparable to the shift ∆Emean = −289 MHz, obtained from the very simple
model in Eq. 6.3.

However, for increasing principal quantum number, the spectrum narrows
down and shifts to smaller detunings. This follows the prediction of our model
introduced in the previous section and is caused by the decreasing overlap of
the Rydberg orbit with the atomic cloud. The dimensions are sketched in
the inset of Fig. 6.4; for n = 190 the Rydberg orbit has a radius of ≈ 3.7 µm
in contrast to the Thomas-Fermi radius of Rr = 1.0 µm along the short trap
axis. The Rydberg spectra show an increased offset signal for increasing
principal quantum number. The increase is linked to the higher laser power
that is needed to photo-excite the high-n Rydberg states. The offset signal
can partly be attributed to the combination of the 420 nm Rydberg laser and
the 855 nm trap laser as photo-ionization takes place through coupling to the
intermediate state.

The line shift expected from the full numerical model is marked with grey
diamonds and follows the data nicely. Both the experimental line center as
well as the line width is extracted from a Gaussian fit to the data, which is
indicated by the solid lines in Fig. 6.4. A constant offset is included in the
fitting procedure to account for the background ion count rate in the spectra.
The choice of a Gaussian is justified as the functional determinant approach
predicts a Gaussian envelope for the Rydberg excitation in the BEC [49].
Although, the ion-atom interaction causes an additional red shift of ≈ 5 MHz
to the line center, the effect on the spectral width is more prominent.

In Fig. 6.5 the extracted Gaussian line widths σ are presented and compared
to the simulated line widths based on Ui,e (Ue) depicted in black (red). The
data clearly follows the prediction of the model, where both ion-atom and
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Fig. 6.4: Rydberg spectroscopy in the BEC. The normalized ion count rate is shown
as a function of laser detuning δ with respect to the bare nS1/2 Rydberg resonance
(δ = 0 MHz) for a set of principal quantum numbers n as indicated. Solid lines are
Gaussian fits to the data to extract the spectral width σ. The datasets are offset for
better readability and zero count rate is denoted by the dotted lines. The data for
n = 40, 71 is scaled by a factor of two. Error bars show 1σ statistical uncertainty.
The filled diamonds indicate the center of the excitation spectra predicted from a full
numerical simulation. Insets: Illustration of the BEC dimension (green), trapped in
the optical tweezer (red), and the size of the nS Rydberg electron orbit (blue) for
the Rydberg states n = 127, 160, 190.
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Fig. 6.5: Spectral width σ of the Rydberg spectra, extracted from a Gaussian fit, as
a function of principal quantum number n. Error bars indicate the confidence interval
from the fitting procedure. The solid black (dashed red) line shows the prediction
from our numerical simulation with (without) taking the ion-atom interaction into
account. Shaded regions indicate the experimental uncertainty in atom number
(±10%) and trapping parameters.

electron-atom interaction is taken into account. In contrast, the model,
for which the ion-atom interaction is neglected deviates for high principal
quantum numbers. The shaded region indicates the confidence interval due
to uncertainties in the input parameters of the theoretical model, namely
the atom number and the trap frequencies. The error in the atom number is
estimated to be ±10%, while dominant contribution comes from the error in
the trap frequency. This is due to the choice of magnetic offset ramps which
leads to a trap configuration with a second potential minimum on the y-axis.
This doesn’t influence the cloud during Rydberg spectroscopy but impedes
the precise determination of the trap frequency. Note, that before and after
each measurement, the electric stray fields in the chamber are compensated
allowing us to achieve Gaussian widths of the bare Rydberg transition in the
dilute sample which are < 1 MHz for n up to 175 and < 3 MHz for n = 190.

To gain further evidence for the ion-atom interaction contributing to the line
shape of the Rydberg spectroscopy signal, the full modeled line shape should
be compared to the measured spectra. In order to reduce the errorbars on the
simulated spectra, received by the Monte-Carlo sampling method presented
in section 6.2, the trap alignment was improved and the magnetic field ramps
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adjusted. This leads to a new trap geometry of ωr = 2π × 2442(20) Hz for
the radial and ωa = 2π×268(4) Hz for the axial trap axis. The residual offset
magnetic field at the position of the micro-trap amounts to 1.74 G. Therefore,
no correction due to diamagnetic shifts need to be taken into account, as the
offset magnetic field is the same during calibration in the dilute cloud and for
the final measurement. Additionally, the experimental sequence is repeated
at least 100 times for each data point to reduce statistical uncertainty.

In Fig. 6.6, Rydberg spectra for n = 160 and n = 175 obtained with this
optimized experimental sequence are presented. The spectral line shape is
directly compared to the result of the simulation. The parameters entering
the simulation, which are atom number and trap frequency are determined
in independent measurements. The area under the simulated spectrum is
normalized to the area below the data, which is obtained by the same Gaussian
fitting procedure as described previously.

The model taking only the electron-atom interaction Ue into account,
presented in red in Fig. 6.6, clearly deviates from the observed experimental
line shape. Especially, the wing reaching to large negative detunings is not
reproduced by the model at all. In contrast, the modeled spectrum presented
in black, where both the ion-atom and the electron-atom interaction Ui,e are
taken into account agrees much better and indeed reproduces the wing at
negative detunings. This comparison unravels the role of ion-atom interaction
of the Rydberg nucleus in the Bose-Einstein condensate, broadening and
shifting the Rydberg excitation spectrum. It can only be revealed on account
of the combination of a large orbit size of the Rydberg atom and the high
density of neutral atoms close to its Rydberg nucleus. Deviations between
the modeled spectrum and the experimental data at very small detunings are
attributed to excitations in the residual thermal low density fraction of the
BEC.

Note that spin-orbit interaction in the electron-atom p-wave scattering
channel is not included in the Hamiltonian Eq. 6.1 [107, 108]. For the spin
configuration studied in this work, the main effect of spin-orbit coupling are
slight shifts of the divergence arising from the p-wave shape resonance and
small modifications of the Born-Oppenheimer potential close by. We have
checked at the example of the data for n = 160 that including spin-orbit
coupling for p-wave scattering does not significantly affect the simulated
excitation spectrum (see App. C.1).
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Fig. 6.6: Contribution of ion-atom interaction to Rydberg spectra for high-n
Rydberg S-states (n = 160, 175). The normalized ion count rate is shown as a
function of laser detuning δ in the vicinity of the bare

∣∣nS1/2
〉
Rydberg resonance

(δ = 0 MHz). The solid black (dashed red) line shows the result of our full numerical
line shape simulation with (without) taking the ion-atom interaction into account.
The shaded areas indicate experimental uncertainty dominated by a ±10% error on
the atom number [N = 5.1× 104 (160S), N = 4.6× 104 (175S)]. Error bars show
1σ statistical uncertainty.
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6.4 Collisional lifetime

In order to perform further studies on the ionic impurity in the micro-BEC
it is of great importance to know the lifetime of the Rydberg excitation in
the sample. As investigated in Ref. [4] this lifetime in a dense environment is
mainly limited by collisions with neighboring atoms, leading to a change of
the Rydberg state from the initial S-state into a high-L Rydberg state. For
low principal quantum numbers, the collisions can also lead to the formation
of Rb+

2 molecular ions. In both processes, the collision partners gain kinetic
energy and leave the micro-BEC.

In order to measure the lifetime, we mainly follow the procedure described
in Ref. [110]. The different ionization thresholds of the initial S-state in
contrast to the final high-L state are used, to discriminate between the two.
Specifically, S-states tend to ionize adiabatically with a threshold close to the
classical limit of 1/(16n4). In contrast, the high-L states ionize diabatically
at higher field strength ∼ 1/(9n4) [86]. In the experiment, a variable delay
time t is introduced after each Rydberg excitation pulse and subsequently
a two-step ionization sequence is applied. The first part of the ionization
sequence is of lower electric field strength and ionizes predominantly S-states,
while the second part ionizes all remaining Rydberg atoms, including high-L
states. The two parts are sufficiently delayed in time, to ensure that the
ionization products can be distinguished by their arrival time on the detector.
Additionally, associated Rb+

2 ions are also distinguished in time-of-flight due
to their higher mass. Both, the fraction of detected S-states pS and the sum
of measured high-L and Rb+

2 fraction (1− pS) is extracted. The routine is
repeated for increasing ionization delay times t to determine the collisional
lifetime. Note, that the detuning δ is fixed to the center of the respective
spectrum in Fig. 6.4, as exctracted from the Gaussian fit.
An exemplary data set for n = 160 is shown in Fig. 6.7(a). The Rydberg

lifetime is extracted by fitting an exponential decay to the S-state fraction
according to

pS = (1− c) + c · exp
(
− t− t0

τ

)
. (6.4)

Here, c is a constant accounting for finite discriminability between S and
high-L states, whereas the constant t0 captures the pulse lengths. The lifetime
τ is presented as a function of principal quantum number n in Fig. 6.7(b).
Note that the lifetimes are determined for the settings and principal quantum
numbers as for the first data set, which was presented in Fig. 6.4. The lifetime
strongly raises with increasing principal quantum number. This is compatible
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Fig. 6.7: Lifetime of the Rydberg excitation in the dense micro-BEC. (a) Fraction
of S-states pS (blue symbols) ionized by the first field pulse (0.85 V/cm) and fraction
of high-L states (red symbols) ionized by the second field pulse (3.6 V/cm) of the
state-selective ionization sequence as a function of delay time t. The data is taken
for the 160S state at a detuning δ = 42.2 MHz, corresponding to the line center of
the spectrum in Fig. 6.4. Statistical error bars are smaller than the symbol size.
The blue solid line is a fit to the data based on Eq. 6.4. (b) Collisional lifetime τ of
the Rydberg excitation in the BEC as a function of principal quantum number n.
The solid line is a fit to the data based on a ∝ n3 scaling.

to the trend observed in Ref. [4], where collisional lifetimes were investigated
for a large BEC exceeding the Rydberg orbit size by far. Hence, it seems that
the limiting factor for the lifetime is not the number of neutral atoms inside
the Rydberg orbit but rather the the density of atoms at the position of the
Rydberg nucleus and the simultaneous presence of the Rydberg electron at
the core position. For Rydberg S-states the electron probability density at
the position of the core decreases ∝ n−3, motivating the empirical fit ∝ n−3

(gray line) to the data, presented in Fig. 6.7(b). The dependence on the
atomic density seems to be linear, as rescaling our life times according to the
sixfold higher peak density in comparison to Ref. [4] leads to good agreement.

Note that for the Rydberg spectra, presented in Fig. 6.4 and Fig. 6.6, the
ionization fields are chosen large enough to ionize both, S-states and high-L
states, and are switched on after a fixed delay time of 200 ns. Additionally,
the excitation time was chosen to 500 ns for n > 71 and 200 ns for n = 40, 71
to avoid any effects due to the limited lifetime.
In order to study the ion-atom interaction in the BEC in the future, the
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lifetime could be further increased when circular Rydberg states are excited
instead of S-states. This would be additionally advantageous, as the overlap
between the Rydberg orbital and the BEC would be further reduced.
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7
Summary and outlook

In this thesis, the interaction of ions and electrons with ultracold atoms was
investigated at the example of Rubidium-87. Thereto, a Rydberg atom was
excited in a dense ultracold cloud. Both the interaction of the ionic core of the
Rydberg atom and the Rydberg electron itself with neighboring neutral atoms
was studied. Two main achievements were reported: First, photo-association
of hybrid Trilobite Rydberg molecules was demonstrated. This is a special
type of homonuclear molecules with a large electric dipole moment, which is
bound by the electron-atom interaction. Second, it was shown for the first
time that the ion-atom interaction between the Rydberg ionic core and the
neutral atom can be accessed experimentally. The ion-atom interaction was
observed at submicrokelvin temperature, once the nearest neighbor spacing
in BEC is small and the electron-atom interaction is suppressed.
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A Rydberg atom interacting with a neutral atom

The two-body Born-Oppenheimer potentials for the interaction of the Ryd-
berg atom with one neutral atom were studied in detail as presented in
chapter 3. The interaction is described by contributions of the two charges
each interacting with the neutral atom in its electronic ground state: The
Rydberg nucleus attracts the neutral atom, which is given by a classical
polarization potential. This ion-atom interaction dominates only for short
internuclear separations about < 1000 a0. In addition, the Rydberg electron
and the neutral atom interact, which requires a quantum mechanical treat-
ment via contact interaction. The electron-atom interaction is the dominant
contribution for larger internuclear separations.

There are several relevant terms contributing to the electron-atom interac-
tion: For Rydberg levels isolated by their quantum defect, the electron-atom
scattering leads to potential wells supporting bound states for the ultralong-
range Rydberg molecules. For this finding, only s-wave scattering needs to be
taken into account and the Rydberg electron spin and the total spin of the
neutral atom have to be aligned in a triplet configuration. When this triplet
s-wave scattering is applied for the case of the (almost) degenerate Rydberg
levels of the hydrogenic manifold, one potential energy curve is lowered in
energy in the GHz range and supports Trilobite Rydberg molecules. These
molecules are of special interest as they possess huge electric dipole moments.
When p-wave scattering between the Rydberg electron and the neutral atom is
considered as well, it modifies the Born-Oppenheimer potentials mainly in the
range, where the Rydberg electron has gained about 23 meV of kinetic energy
in the Coulomb potential of the Rydberg ionic core. This is the consequence
of a shape resonance occurring at this energy. The shape resonance allows
for the creation of yet another type of Rydberg molecules, so-called Butterfly
Rydberg molecules, which possess large electric dipole moments as well. In
the general case, where the spin of the Rydberg electron is not parallel to
the spin of the neutral atom, the treatment has to be extended to comprise
both singlet and triplet scattering. Even mixing of the singlet and triplet
scattering channel is possible. Additionally, the hyperfine interaction of the
neutral atom has to be taken into account, as the electron spin is coupled to
the nuclear spin.
The Hamiltonian modeling the interaction of the Rydberg atom with

the neutral atom comprises these electron-atom s- and p-wave, singlet and
triplet interaction terms in addition to the ion-atom contribution. The full
Hamiltonian including the binding energies of the bare Rydberg states, the
interaction terms and the hyperfine interaction in the perturber atom is set up
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for a truncated basis of bare Rydberg states. Via diagonalization, the Born-
Oppenheimer potential energy curves are obtained for varying internuclear
separations. With these potentials, we can calculate binding energies of
Rydberg molecular states and compare them to spectroscopically determined
binding energies.
In addition to these terms, the code is capable of including the Zeeman

effect for external magnetic fields, if the field is pointing along the internuclear
axis. This enables to compare the results to experiments performed in our
magnetic trap. In the future, the code could be extended to account for
external electric fields and magnetic fields with arbitrary orientation with
respect to the internuclear axis. Besides, it would be desirable to extend the
model to take also the spin-orbit interaction in the scattering process into
account [107, 108].

Trilobite Rydberg molecules
Trilobite Rydberg molecules are a special class of Rydberg molecules and
are of great interest as they possess huge electric dipole moments which
they inherit from the contribution of Rydberg orbitals with high angular
momentum L. However, photo-association of this molecules via one- or two-
photon transitions is almost impossible, due to the lack of low-L character in
combination with dipole selection rules.

In section 5, which is based on Ref. [2], a method is presented to overcome
this problem. Resonant coupling between the orbital angular momentum
of the Rydberg electron and the nuclear spin of the neutral atom allows
for the admixture of S-character to the Trilobite potential energy curve.
More specifically, the singlet Trilobite potential energy curve for the neutral
atom in F = 1 gets mixed with the S-type potential of mixed singlet and
triplet scattering character for the neutral perturber in F = 2. To tune the
two potential energy curves in resonance, the principal quantum number is
adjusted to n = 50, for which the hyperfine interaction energy in the neutral
atom is comparable to the energy gap between the S-type and the Trilobite
potential energy curve. Such hybrid Trilobite molecules supported by this
mixed potential energy curve were investigated spectroscopically and their
binding energies were determined. In addition, by monitoring the response to
an external electric field it was shown, that these molecules possess a electric
dipole moments of more than 100 Debye.
The new approach to photo-associate Trilobite Rydberg molecules pre-

sented in this thesis is readily applicable to other atomic species that have
a hyperfine structure. This opens routes for the tailored engineering of

117



Chapter 7. Summary and outlook

long-range interacting few- to many-body systems based on strongly polar
Rydberg molecules as discussed for a 1D chain system of such molecules in
Ref. [51]. Moreover, exotic polarons [49, 50] could be realized by a polar
molecule acting as an impurity in a many-body system serving as a bath.
Finally, Trilobite Rydberg molecules could be employed to probe quantum
chemistry on mesoscopic scales [4].

Ion-atom interaction of the Rydberg nucleus in a BEC
Several experimental platforms are dedicated to investigate the interaction
of neutral atoms with ions held in a Paul trap[61, 64, 71–73, 121]. Yet, the
extension to the quantum scattering regime could open up a new world of
phenomena studied in such experiments. This includes the detailed study
of the molecular potential including scattering resonances [58–60], ultracold
quantum chemistry [61–64], impurity physics with charged particles [65–67]
and quantum simulation [68–70]. In section 6 of this thesis, which is based on
Ref. [1], a new approach is presented, allowing to study ion-atom interaction
at submicrokelvin temperature. This temperature is about three orders of
magnitude lower than for hybrid systems based on a Paul trap and only one
order of magnitude above the quantum mechanical s-wave scattering limit.

Starting with a micron-sized very dense Bose-Einstein condensate of rubid-
ium atoms, one single atom among them was excited to a high-lying Rydberg
state up to n = 190. In this case, many neighboring atoms are located inside
the Rydberg orbit. Therefore, a Monte-Carlo sampling method was applied
to find the integrated effect of all the atoms within the Rydberg orbit. Due
to the small nearest neighbor spacing in the sample, the ionic core of the
Rydberg atom interacts significantly with neutral neighboring atoms. This
has been clearly revealed by a line shape analysis of the Rydberg spectroscopy
line in comparison to the modeled line shape. The ion-atom interaction is
usually dominated by the electron-atom interaction of the Rydberg electron
with the atoms within its orbit. Due to the extremely large Rydberg orbit in
this work, the electron-atom interaction could be strongly suppressed. As the
Rydberg orbit of ≈ 3.7 µm exceeds the size of the micro-BEC along the short
trap axis of ≈ 1.0 µm by far, the overlap of the electron probability density
with the ultracold sample was reduced. With the electron still being present,
it even provided a Faraday shield for the Rydberg nucleus, preventing its
acceleration due to detrimental electric stray fields. In addition the lifetime
of the Rydberg excitation in the micro-BEC was studied.

This novel approach to study ion-atom interaction for a single ionic impurity
in a micro-BEC at submicrokelvin temperature opens a new way to study the
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quantum regime of ion-atom scattering. The choice of an atomic species with a
higher s-wave scattering limit such as lithium (E∗ ≈ kB×30 µK) or a reduced
or even recoil-free Rydberg excitation [129] can push the system temperature
to the quantum scattering regime. To study the ion-atom interaction the
excitation of circular Rydberg states could be promising [130–132], as this
would further reduce the overlap between the Rydberg orbit and the micro-
BEC and additionally the lifetime is expected to be orders of magnitudes
higher. It could allow for reaching motional timescales of the ion, that could
possibly be extended by optical trapping techniques [133], to open new routes
to explore many-body polaron physics. In order to make the electron-atom
interaction vanish completely, one could apply photo-ionization [59] - however,
then the Faraday shielding for the ion provided by the electron will vanish
with it. Note that the ion-atom interaction is probed via the Rydberg electron
in this thesis. It is not yet clear, how the pure ion-atom interaction could be
experimentally observed, especially if photo-ionization is applied.
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A.1 Trilobite and Butterfly Rydberg molecules

For reference, see [106]. The Hamiltonian Hsc for the electron-atom s-wave
scattering term can be evaluated in a truncated basis of bare Rydberg states
b = (Ψ1(r),Ψ2(r), ...Ψn(r))T . Each matrix element in the Hamiltonian for
degenerate states is then given by

Hsc,ij = 2πaTs (k(R))
∫
drΨ∗i (r)δ3(r−Rz)Ψ∗j (r)

= 2πaTs (k(R))Ψ∗i (R)Ψj(R), (A.1)

which in total results in a structure like

Hsc(R) = c(R)


|Ψ1(R)|2 Ψ∗1(R)Ψ2(R) ... Ψ∗1(R)Ψn(R)

Ψ∗2(R)Ψ1(R) |Ψ2(R)|2 ... Ψ∗2(R)Ψn(R)
...

...
. . .

...
Ψ∗n(R)Ψ1(R) Ψ∗n(R)Ψ2(R) ... |Ψn(R)|2

 (A.2)

with c(R) = 2πaTs (k(R)). Therefore, this Hamiltonian can be written as
c(R) · M(R) = c(R) · v(R)v†(R) with v(R) = (Ψ1(R),Ψ2(R), ...Ψn(R))T .
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One can show that for a matrix of this form, (n − 1) eigenvalues are zero:
For M 6= 0 and v 6= 0 one knows that rank(M) 6= 0. In addition, one can
apply the Sylvester theorem for separable matrices and finds rank(M) =
rank(vv†) ≤ rank(v) · rank(v†) = 1 · 1. So the rank of the matrix is one,
which means, that there is only one non-zero eigenvalue. This eigenvalue λ
is found by Hv = (c · vv†)v = c · v(v†v) = v(c

∑
i
|vi|2), so the eigenvalue

is λ(R) = c
∑

i
|Ψi(R)|2, corresponding to the Trilobite curve with the

eigenvector equal to v(R). Therefore, the wave function of the Trilobite
molecule is given by basis states (which are the bare Rydberg wave functions)
weighted by the entries of the normalized eigenvector, resulting in

ΨTrilobite(r, R) =
∑

i
Ψi(R)Ψi(r)√∑
i
|Ψi(R)|2

. (A.3)

For r = Rz which is the location of the neutral atom, all summands in the
numerator are positive, corresponding to constructive interference of the Ψr.
This leads to the high electron density at the position of the neutral atom
and the large electric dipole moment, characteristic for Trilobite Rydberg
molecules. As Rydberg wave functions with ml > 0 are zero on the z-axis,
only Rydberg states with mj ∈ {− 1

2 ,
1
2} contribute to the Trilobite molecular

wave function.
For the p-wave scattering the same procedure can be applied: Setting

c(R) = 6πaTp (k(R)) and v(R) = (∇ξΨ1(R),∇ξΨ2(R), ...∇ξΨn(R))T with
ξ ∈ {R, θ, φ}. For each ξ, there are (n− 1) eigenvalues equal to zero and a
single eigenvalue given by λξ(R) = c

∑
i
|∇ξΨi(R)|2. These λξ(R) constitute

the Butterfly molecular PECs. The corresponding wave functions of the
Butterfly molecular state are then given by

Ψξ−Butterfly(r, R) =
∑

i
(∇ξΨi(R))Ψi(r)√∑

i
|∇ξΨi(R)|2

. (A.4)

As discussed in Ref. [37] only Rydberg wave functions with m = 0 contribute
to the R-Butterfly and maximize its gradient along R, whereas only m = 1
wave functions contribute to the angular Butterfly orbit, where the gradient
orthogonal to the internuclear axis is maximized.
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A.2 Evaluating the matrix element of the Hamiltonian for
the Born-Oppenheimer potentials

The Born-Oppenheimer potential curves are calculated by evaluating the
matrix elements 〈Ψ(r)| Ĥ(r, R) |Ψ′(r)〉 of the Hamiltonian

Ĥ(r, R) =Ĥ0 + ĤT
s + ĤS

s + ĤT
p + ĤS

p + ĤHFS + Ĥi

Ĥ(r, R) =Ĥ0 +
[
2πaTs (k(R))P̂T + 2πaSs (k(R))P̂S

]
δ3(r−Rẑ)

+
[
6πaTp (k(R))P̂T + 6πaSp(k(R))P̂S

]
δ3(r−Rẑ)←−∇ · −→∇

+AHFSŜ2 · Î2 −
C4

R4 . (A.5)

in the basis |n,L1, J1,mJ1 ;mS2 ,mI〉1 for a fixed value of R and diagonalizing
this matrix to find the new eigenenergies and eigenvectors for the Rydberg
levels including the interaction with a new atom. In order to retrieve the
potential energy curves this eigenenergies parametrically depending on R are
then joined. In space coordinates this wave functions can be written as

〈r|n,L1, J1,mJ1 ;mS2 ,mI〉

= Rn,L1,J1 (r)
∑
mS1

〈L1,mL1 , S1,mS1 |J1,mJ1〉Y
mL1
L1

(θ, φ)⊗ |mS2 ,mI〉

(A.6)

where the sum includes mS1 = ±1 and the magnetic quantum number
mL1 = mJ1 − mS1 . This needs to be done, as the Rydberg states in the
J,mJ -basis need to be written as a superposition of states in the L,mL, S,mS-
basis, in order to use the spherical harmonics Y mL1

L1
(θ, φ). Apart from that,

the decomposition into the L,mL, S,mS-basis allows to evaluate the singlet
and triplet projection operators which depend on S rather than J .

A.2.1 Evaluating the Clebsch-Gordan coefficient

The Clebsch-Gordan coefficient CJ,mJ
L,mL,S,mS

= 〈L,mL, S,mS |J,mJ〉 needed
for decomposition of the Rydberg states given in the J,mJ -basis into the
states given in the L,mL, S,mS-basis, can be simplified for our special case

1n from now on refers to n1 and I to I2.
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[134] as

CJ,mJ
L,mL,S,mS

=±
√
L+ 1/2±mJ1

2L+ 1 for S = 1
2 , mS = 1

2 , J = L± 1
2

CJ,mJ
L,mL,S,mS

=
√
L+ 1/2∓mJ1

2L+ 1 for S = 1
2 , mS = −1

2 , J = L± 1
2 .

(A.7)

A.2.2 Evaluating the triplet and singlet projection operators
The singlet and triplet projection operators can be written as

P̂T =3
4 + Ŝ1 · Ŝ2

P̂S =1
4 − Ŝ1 · Ŝ2, (A.8)

and when evaluating the projector one makes use of the relation

〈Ψ(r)| Ŝ1 · Ŝ2 |Ψ(r)〉 = 1
2 〈Ψ(r)|S+

1 S
−
2 + S−1 S

+
2 + 2Sz1Sz2 |Ψ(r)〉 (A.9)

with the raising and lowering operators S+ and S− and the spin projection
operator along z〈

S′,m′S
∣∣Sz |S,mS〉 = ~mS δS′,S δm′

S
,mS〈

S′,m′S
∣∣S+ |S,mS〉 = ~

√
(S −mS)(S +mS + 1)δS′,S δm′

S
−1,mS〈

S′,m′S
∣∣S− |S,mS〉 = ~

√
(S +mS)(S −mS + 1)δS′,S δm′

S
+1,mS

.

(A.10)

This results in〈
S′1 = 1

2 ,m
′
S1 , S

′
2 = 1

2 ,m
′
S2

∣∣∣ Ŝ1 · Ŝ2

∣∣∣S1 = 1
2 ,mS1 , S2 = 1

2 ,mS2

〉
= ~2

2

[
2mS1mS2 δm′

S1
,mS1

δm′
S2
,mS2

+
√(1

2 −mS1

)(3
2 +mS1

)(1
2 +mS2

)(3
2 −mS2

)
δm′

S1
−1,mS1

δm′
S2

+1,mS2

+
√(1

2 +mS1

)(3
2 −mS1

)(1
2 −mS2

)(3
2 +mS2

)
δm′

S1
+1,mS1

δm′
S2
−1,mS2

]
(A.11)
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A.2.3 Evaluating the s-wave electron-neutral scattering term
The evaluation of the s-wave scattering term of the electron-neutral interaction
for the singlet and triplet case is given by

〈n,L1, J1,mJ1 ;mS2 ,mI | ĤT/S
s
∣∣n′, L′1, J ′1,m′J1 ;m′S2 ,m

′
I

〉
= δmI ,m

′
I
〈n,L1, J1,mJ1 ;mS2 | 2πa

T/S
s P̂T/Sδ3(r−Rẑ)

∣∣n′, L′1, J ′1,m′J1 ;m′S2

〉
= δmI ,m

′
I
2πaT/Ss (k)

1/2∑
mS1 =−1/2

1/2∑
m′

S1
=−1/2

C
J1,mJ1
L1,mL1 ,S1,mS1

C
J′1,m

′
J1

L′1,m
′
L1
,S′1,m

′
S1

×
∫
Rn,L1,J1 (r)Rn′,L′1,J′1 (r) δ(r −R) dr

×
∫
Y
mL1
L1

(θ, φ)
(
Y
m′L1
L′1

(θ, φ)
)∗

δ(θ − θ0)δ(φ− φ0) dθ dφ

×
〈
S′1,m

′
S1 , S

′
2,m

′
S2

∣∣ P̂T/S |S1,mS1 , S2,mS2〉 . (A.12)

The Clebsch-Gordan coefficients CJ,mJ
L,mL,S,mS

can be calculated according
to Eq. A.7 and the projection operators P̂T/S according to sec. A.2.2. The
radial integral we solve numerically for each value of R. The integral of the
angular coordinates can be simplified, as we set θ0 = 0 and φ0 = 0 by setting
the position of the perturber onto the z-axis. In addition, it is known, that all
Laplace’s spherical harmonics with mL 6= 0 vanish on the z-axis. Therefore,
it can be simplified according to

Y mL=0
L (θ0 = 0, φ0 = 0) = 1√

2π

√
(2L+ 1)

2
(L−mL)!
(L+mL)! P

mL
L (cos θ)eimLφ

= 1√
2π

√
(2L+ 1)

2
(L− 0)!
(L+ 0)! P

0
L(1)e0

= 1√
2π

√
2L+ 1

2
(A.13)

and the integral over the angular coordinates θ and φ is therefore given by∫
Y
mL1
L1

(θ, φ)
(
Y
m′L1
L′1

(θ, φ)
)∗

δ(θ − θ0)δ(φ− φ0) dθdφ

= 1
4π
√

(2L1 + 1)(2L′1 + 1) (A.14)

125



Chapter A. Rydberg molecules

A.2.4 Evaluating the p-wave electron-neutral scattering term

The evaluation of the p-wave scattering term of the electron-neutral interac-
tion for the singlet and triplet case is performed analogously to the s-wave
scattering term. The matrix elements of the Hamiltonian

〈n,L1, J1,mJ1 ;mS2 ,mI | ĤT/S
p
∣∣n′, L′1, J ′1,m′J1 ;m′S2 ,m

′
I

〉
= δmI ,m

′
I
〈n,L1, J1,mJ1 ;mS2 | 6πa

T/S
p P̂T/Sδ3(r−Rẑ)←−∇ · −→∇

∣∣n′, L′1, J ′1,m′J1 ;m′S2

〉
= δmI ,m

′
I
6πaT/Sp (k)

1/2∑
mS1 =−1/2

1/2∑
m′

S1
=−1/2

C
J1,mJ1
L1,mL1 ,S1,mS1

C
J′1,m

′
J1

L′1,m
′
L1
,S′1,m

′
S1

×
∫
−→
∇ (RY )−→∇

(
R′Y ′∗

)
δ3(r−Rẑ) d3r

×
〈
S′1,m

′
S1 , S

′
2,m

′
S2

∣∣ P̂T/S |S1,mS1 , S2,mS2〉 . (A.15)

have to be calculated, depending parametrically on R. Again, the Clebsch-
Gordan coefficients CJ,mJ

L,mL,S,mS
can be calculated according to Eq. A.7 and

the singlet and triplet projection operators P̂T/S according to sec. A.2.2 the
same as for the s-wave scattering case.

The integral needs some further study. For better readability, we neglect
the indices for now. As the radial part of the wave function R only depends
on the radial coordinate r, whereas the spherical harmonics Y only depend
on the angular coordinates θ, φ, the gradient of the wave function is given by

−→
∇
(
Rn,L1,J1 (r)Y mL1

L1
(θ, φ)

)
=

 ∂R
∂r
Y

1
r
R ∂Y

∂θ
R

r sin(θ)
∂Y
∂φ

 (A.16)
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and so the integral is evaluated as∫
−→
∇ (RY )−→∇

(
R′Y ′∗

)
δ3(r−Rẑ) d3r

=
∫ ∫ ∫ [

∂R
∂r

∂R′

∂r
Y Y ′∗ + R

r

R′

r

∂Y

∂θ

∂Y ′∗

∂θ
+ R
r sin(θ)

R′

r sin(θ)
∂Y

∂φ

∂Y ′∗

∂φ

]
× δ(r −R)δ(θ − θ0)δ(φ− φ0) dr dθ dφ

=
∫

∂R
∂r

∂R′

∂r
δ(r −R) dr︸ ︷︷ ︸

IR1

∫ ∫
Y Y ′∗ δ(θ − θ0)δ(φ− φ0) dθ dφ︸ ︷︷ ︸

IAng1

+
∫
R
r

R′

r
δ(r −R) dr︸ ︷︷ ︸
IR2

∫ ∫
∂Y

∂θ

∂Y ′∗

∂θ
δ(θ − θ0)δ(φ− φ0) dθ dφ︸ ︷︷ ︸
IAng2

+
∫
R
r

R′

r
δ(r −R) dr︸ ︷︷ ︸
IR3

∫ ∫
1

sin(θ)
1

sin(θ)
∂Y

∂φ

∂Y ′∗

∂φ
δ(θ − θ0)δ(φ− φ0) dθ dφ︸ ︷︷ ︸

IAng3

= IR1 × IAng1 + IR2 × IAng2 + IR3 × IAng3 (A.17)

where we introduced the I labels for the different integrals. We evaluate the
integrals IR1, IR2, IR3 numerically. The integral IAng1 is the same as for the
s-wave case and results in

IAng1 =
∫ ∫

Y Y ′∗ δ(θ − θ0)δ(φ− φ0) dθ dφ = 1
4π
√

(2L1 + 1)(2L′1 + 1).

(A.18)

as θ0 = 0 and φ0 = 0 and only mL = 0 terms contribute.
For the evaluation of IAng2 we need the gradient of the spherical harmonic

along θ which is (see Ref. [93])

∂Y mL
∂θ

=
√

2L+ 1
16π

(L−m)!
(L+m)!

[
Pm+1
L (cos(θ))

−(L+m)(L−m+ 1)Pm−1
L (cos(θ))

]
eimφ

=
√

2L+ 1
16π

(L−m)!
(L+m)!

[
Pm+1
L (1)− (L+m)(L−m+ 1)Pm−1

L (1)
]
(A.19)
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where the second line is valid for θ = 0 and φ = 0. The Legendre polynomials
are only non-vanishing for P 0

L(1) = 1, so only spherical harmonics with m± 1
have a non-zero gradiant on the z-axis. Therefore, the second angular integral
results in

IAng2 =
∫ ∫

∂Y

∂θ

∂Y ′∗

∂θ
δ(θ − θ0)δ(φ− φ0) dθ dφ

=

√
(2L1 + 1)

16π
(2L′1 + 1)

16π
(L1 − (mL1 ))!
(L1 + (mL1 ))!

(L′1 − (m′L1
))!

(L′1 + (m′L1
))!

×
[
P
mL1 +1
L1

(1)− (L1 +mL1 )(L1 −mL1 + 1)PmL1−1
L1

(1)
]

×
[
P
m′L1

+1

L′1
(1)− (L′1 +m′L1 )(L′1 −m′L1 + 1)P

m′L1
−1

L′1
(1)
]

=
√

(2L1 + 1)
16π

(2L′1 + 1)
16π ((L1 + 1)L1)−mL1 ((L′1 + 1)L′1)−m

′
L1

×
[
δmL1 ,−1 − (L1 +mL1 )(L1 −mL1 + 1)δmL1 ,1

]
×
[
δm′

L1
,−1 − (L′1 +m′L1 )(L′1 −m′L1 + 1)δm′

L1
,1

]
. (A.20)

The third angular integral contains the derivative of the spherical harmonic
with respect to the angle φ (see Ref. [93])

1
sin(θ)

∂Y mL
∂φ

=
√

2L+ 1
16π

(L−m)!
(L+m)!

[
−Pm+1

L (cos(θ))

−(L+m)(L−m+ 1)Pm−1
L (cos(θ))

] ieimφ
cos(θ)

=
√

2L+ 1
16π

(L−m)!
(L+m)! i

[
−Pm+1

L (1)− (L+m)(L−m+ 1)Pm−1
L (1)

]
.

(A.21)

Having regard to 1
sin(θ)

∂(Ym
L )∗

∂φ
= − 1

sin(θ)
∂Ym

L
∂φ

, one can evaluate the integral
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IAng3 as

IAng3 =
∫ ∫

1
sin(θ)

1
sin(θ)

∂Y

∂φ

∂Y ′∗

∂φ
δ(θ − θ0)δ(φ− φ0) dθ dφ

=
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√
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. (A.22)
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B
Density distribution in the trap

B.1 Ideal gas in the harmonic trap

Both the magnetic trap and the optical dipole trap used in this work, is
approximated to provide harmonic confinement

V (x, y, z) = m

2 (ω2
xx

2 + ω2
yy

2 + ω2
zz

2) (B.1)

with the trap frequencies ωi. According to the Maxwell Boltzmann dis-
tribution, the density distribution of the cloud in the trap is then given
by

n(x, y, z) =n0 exp
(
−
m
2 (ω2

xx
2 + ω2

yy
2 + ω2

zz
2)

kBT

)
=n0 exp

(
− x2

2σ2
x
− y2

2σ2
y
− z2

2σ2
z

)
(B.2)

with the Gaussian widths of the distribution σi = 1
ωi

√
kBT
m

and the peak
density n0. The total atom number is in given by the integral over all three
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dimensions

Ntot =
∫
n(x, y, z) dx dy dz = n0(2π)3/2σxσyσz (B.3)

which tells means in turn, that we can determine the peak density of the
cloud from the atom number and trap parameters according to

n0 = Ntotωxωyωz

(
m

2πkBT

)3/2
. (B.4)

B.2 BEC in the harmonic trap

Again we start with the harmonic trapping potential Eq. B.1. In the Thomas-
Fermi approximation, the kinetic energy is neglected and at the rim of the
condensate the potential energy equals the chemical potential µ. This tells
us, that the Thomas-Fermi radii are given by Ri = 1

ωi

√
2µ
m

and we can write
the density distribution as

n(x, y, z) = n0

[
1− x2

R2
x
− y2

R2
y
− z2

R2
z

]
. (B.5)

Again we receive the total atom number from integration along all three
dimensions

Ntot =
∫ x0

−x0

∫ y0

−y0

∫ z0

−z0

n(x, y, z) dx dy dz with z0 = Rz

√
1− x2

R2
x
− y2

R2
y

=4
3n0Rz

∫ x0

−x0

∫ y0

−y0

[
1− x2

R2
x
− y2

R2
y

]3/2

dx dy with y0 = Ry

√
1− x2

R2
x

=π

2 n0RyRz

∫ x0

−x0

[
1− x2

R2
x

]2

dx with x0 = Rx

= 8
15n0πRxRyRz (B.6)

In order to be able to determine the peak density, we have to rearrange this
formula further, by the use of the Thomas-Fermi radii Ri = 1

ωi

√
2µ
m

and the
chemical potential µ = 4π~2an0/m, where a is the scattering length for the
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particles in the cloud. It results in

Ntot = 8πn0

15ωxωyωz

(2µ
m

)3/2

=(8πn0)5/2a3/2~3

15ωxωyωzm3 . (B.7)

Therefore, the peak density and the chemical potential are given by

n0 = 1
8π

(
15ωxωyωzm3Ntot

a3/2~3

)2/5

µ =1
2
(
15ωxωyωzNtot

√
m~2a

)2/5 (B.8)
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C
Rydberg spectrum in a dense micro-BEC

C.1 Modeling the Rydberg spectrum including the spin-orbit
effect in the scattering process

As mentioned in section 3.4.3, for the calculation of the PECs in the last
chapter 6, the singlet scattering channels can only by neglected as long as
spin-orbit interaction in the p-wave scattering channel is omitted. Including
this coupling in the Fermi model in general causes further butterfly potentials
that cross the S-type Born Oppenheimer curves. For our spin configuration
of mK = 5/2 only two of them couple with the latter (see e.g. [108] Fig. 4(c)
or [107]). Moreover, the coupling of one of them is very weak. Consequently,
the main effect of the spin-orbit coupling is a shift of the avoided crossing
and slight modifications of the potential energy curve in its vicinity. In
order to verify that spin-orbit interaction does not significantly affect our
calculated spectra, the results are compared to additional calculations based
on Born-Oppenheimer curves for which l − S coupling is included in the
p-wave channel in Fig. C.1. We acknowledge C. Fey and P. Schmelcher for
providing the corresponding potential energy curves.

The spectra modeled based on the PECs including the spin-orbit coupling
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Fig. C.1: Data points, red and black curves are taken from Fig. 6.6. In addition,
the result of our full numerical model is presented based on potential energy curves
including spin-orbit coupling in the p-wave scattering channel with (green) and
without (purple) taking the ion-atom interaction into account. Note that the effect
of spin-orbit interaction is within our experimental error bars (shaded regions).

only vary within our experimental error bars but do not significantly deviate
from the results of the calculation neglecting this effect.
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