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Deutsche Zusammenfassung

Ziel der vorliegenden Arbeit ist die Untersuchung supra�uider Phänomene in einem dipo-
laren Quantengas.
Das weitläu�ge Feld reibungsfreier Strömungen umfasst sowohl eher festkörperspezi�sche
E�ekte wie Supraleitung bei welcher beispielsweise der elektrische Widerstand vollständig
verschwindet [42], als auch Phänomene aus der Atomphysik wie Supra�uidität, die einen
Verlust von innerer Viskosität in �üssigen Gasen wie Helium beschreibt [43].
Im Folgenden sollen Stabilität wie generelles langreichweitiges Verhalten eines speziellen
Supra�uids, nämlich eines dipolaren Bose-Einstein Kondensats aus Dysprosium untersucht
werden. Dazu rühren wir mit einem oder mehreren Laserstrahlen gauÿförmiger Inten-
sitätsverteilung durch 162Dy und 164Dy-Atomwolken und untersuchen die resultierende
Temperaturentwicklung. Geschieht die Bewegung langsam genug, so bleibt der supra�uide
Zustand erhalten und keine Erwärmung ist beobachtbar. Überschreitet man allerdings eine
kritische Geschwindigkeitsgrenze, so beginnt sich das Kondensat durch die Bewegung des
Defekts aufzuheizen und der supra�uide Zustand wird zerstört.
Dieses Verhalten wurde theoretisch erstmalig 1941 von Lev Landau als ein Ergebnis der
Erzeugung von Anregungen im Supra�uid beschrieben [41]. Seine Untersuchungen gipfel-
ten in der Postulierung seiner berühmten kritischen, oder "Landau", Geschwindigkeit,
die in beeindruckend simpler Weise das mikroskopische Anregungsspektrum des Medi-
ums, in Form von dessen Dispersionsrelation, mit makroskopischen Flusseigenschaften in
Verbindung setzt. Wir verwenden Dysprosium, weil es dasjenige Element mit dem höchsten
magnetischen Moment im Periodensystem ist [33], was es uns ermöglicht, Anisotropie durch
die Dipol-Dipol-Wechselwirkung in die Dispersionsrelation einzubringen [40]. Dadurch
wiederum unterscheiden sich die kritischen Geschwindigkeiten gemäÿ Landaus Vorhersagen
parallel und orthogonal zu der Dipolrichtung. Diese richtungsabhängige Aufspaltung wurde
zwar schon theoretisch vorhergesagt [49], doch wir sind die Ersten die diese Prognosen in
einem dipolaren Quantengas experimentell veri�zieren.
Zur Bestimmung der kritischen Geschwindigkeit rühren wir mit einem attraktiv wirkenden
Laserstrahl der Wellenlänge 532 nm linear durch das Kondensat. Die Erwärmung bei
verschiedenen Rührgeschwindigkeiten wird daraufhin verglichen und durch Anlegen einer
entsprechenden Fit-Funktion [45] die kritische Geschwindigkeit ermittelt, wobei experi-
mentelle und numerische Simulationsergebnisse in überragender Übereinstimmung miteinan-
der und mit theoretischen Vorhersagen für das Verhalten eines homogenen Bose-Einstein
Kondensates [40] stehen.
Es konnte veri�ziert werden, dass die kritische Geschwindigkeit in einem Dysprosium BEC
durch die Ausrichtung der mikroskopischen Dipole manipuliert werden kann, so dass sie
sich parallel und orthogonal zu der Projektion der Dipole in die Rührebene unterscheiden.
Dieser E�ekt wird nicht durch reine Dichteänderungen, hervorgerufen durch die Dipol-
Dipol-Wechselwirkung, erzeugt, und der genaue Wert der Grenzgeschwindigkeit kann durch
Adaption der Wolkenform beziehungsweise durch Änderungen an den Rührereigenschaften
modi�ziert werden.



Um das qualitative Verhalten der kritischen Geschwindigkeit weiter zu analysieren wur-
den zusätzliche Simulationen bei unterschiedlichen Rührbedingungen durchgeführt. Dabei
konnte unter anderem gezeigt werden, dass das mehrmalige Abfahren desselben Streck-
enabschnitts in den Simulationen ein nährungsweise lineares Heizverhalten erzeugt. Wird
das magnetische Feld zum Anordnen der Dipole auch in Zwischenstufen zwischen orthog-
onaler und paralleler Anordnung zur Kondensatebene angelegt, so konnten wir eine mono-
tone Abnahme der kritischen Geschwindigkeit mit zunehmendem Drehwinkel beobachten.
Fährt man mit dem Laserstrahl entlang beliebiger Winkel relativ zur Dipolprojektion,
so nimmt die Landau-Geschwindigkeit zwar monoton aber nicht linear zur orthogonalen
Ausrichtung hin ab. Dieses Verhalten ist in Übereinstimmung mit theoretischen Vorher-
sagen in [47] die diese Nichtlinearität damit erklären, dass die Ausbreitungsrichtung der
erzeugten Anregungen nicht notwendigerweise entlang des Rührweges liegen muss. Erhöht
man die Amplitude der Strahlbewegung, so konnte eine signi�kante Erhöhung der resul-
tierenden Wärmeentwicklung und ein Verschieben des maximalen Heizpunkts zu höheren
Geschwindigkeiten beobachtet werden. Eine Verbreiterung des Rührers führt ebenso zu
einer höheren Wärmeentwicklung, allerdings nimmt die kritische Geschwindigkeit hier ab.
Erhöht man die Potentialtiefe des Rührers, so nimmt die erzeugte Wärmemenge weiter zu.
Zu guter Letzt wurde noch die Kontaktwechselwirkungsstärke adaptiert. Die Idee war hier
durch Vergleich der experimentellen und numerischen Ergebnisse den exakten Wert für
diesen Parameter in 162Dy zu bestimmen, der bisher nicht genau bekannt ist. Durch un-
sere Ergebnisse konnten wir ihn auf den Bereich 121 a0 < aDy,162

s < 161 a0 eingrenzen, was
ziemlich exakt mit früheren Ergebnissen der Stanford-Gruppe von Benjamin Lev überein-
stimmt [35,51,58,59].
Zusätzlich zur Bestimmung der kritischen Geschwindigkeit in unserem System beschäftigten
wir uns auch mit der Erzeugung von Vortices. Diese sind von besonderer Bedeutung für
den Nachweis von Supra�uidität, da sie nur unter dieser Bedingung auftreten können.
Um zu veri�zieren, dass unsere numerischen Simulation in der Lage sind Vortexerzeugun-
gen abzubilden, rotieren wir kreisförmig mit zwei identischen Laserstrahlen um die Kon-
densatmitte. Im Gegensatz zu den zuvor besprochenen Simulationsläufen benutzen wir
nun repulsive Strahlen, da diese zur Vortexerzeugung besser geeignet sind [37]. Im realen
Experiment wurde dafür im Rahmen dieser Arbeit eine 405 nm Laserdiode aufgebaut und
vollständig in das nötige EOD-System eingekoppelt, sowie der Strahl ausgerichtet.
Die Hauptherausforderung in den Vortexsimulationen stellte das Au�nden eines funk-
tionierenden Parameterbereichs bezüglich Rührer- und Falleneigenschaften dar. Im Zuge
unzähliger Versuche stellte sich heraus, dass eine signi�kante Evolutionszeit nach dem
Abschlieÿen der Strahlbewegungen notwendig ist, um die Ausbildung von Vortices zu er-
möglichen. Abhängig von den exakten Systemparametern zeigt sich, dass eine Rührzeit
von etwa tstir = 300 ms und eine darauf folgende Evolutionsdauer von circa tevo = 400 ms
das Minimum an zu simulierender Zeit darstellen.
Die kritische Rührfrequenz zur Erzeugung der ersten Vortices wurde dann untersucht
und befand sich in grober Übereinstimmung mit theoretischen Vorhersagen. Der Erzeu-
gungsvorgang stellte sich als äuÿerst sensitiv bezüglich Inhomogenitäten in den Fallen-
parametern dar, was bei zukünftigen experimentellen Veri�kationen unserer Ergebnisse
möglicherweise zu Problemen bezüglich Messungenauigkeiten und langfristigen Drifts in
realen Fallenparametern führen könnte.
Von besonderem Interesse war für uns das Verhalten von Vortex-Gittern unter Variation



der Dipol-Ausrichtung, da das die groÿe Stärke unseres Material Dysprosium darstellt.
Bei Untersuchungen des Grundzustands konnten wir zeigen, dass die kritische Rotations-
frequenz des Mediums von der Ausrichtung der Dipole abhängt. Mit zunehmendem Kip-
pwinkel der Dipole in die Kondensatebene nahm die nötige Frequenz zur Vortexerzeugung
zu und die Vortices änderten ihre relative Ausrichtung. Ordnen sich diese normalerweise
dreiecksförmig in einem Abrikosov-Gitter an [65], so konnten wir eine Änderung hin zu
einer linearen Anordnung [64] entlang der Dipolprojektionsrichtung beobachten. Dieses
Verhalten konnte in einem dynamischen System mit zwei kreisförmigen Rührern veri�ziert
werden, wobei der Kontrast und damit die Sichtbarkeit der Vortex-Kerne deutlich abgenom-
men hat.
Alles in allem stellen die Resultate dieser Arbeit eine Zusammenfassung der supra�uiden
Eigenschaften in Dysprosium Bose-Einstein Kondensaten dar, wobei unsere Ergebnisse
eine überwältigende Übereinstimmung zwischen experimentellen, numerisch simulierten
und theoretisch prognostizierten Verhaltensmustern darstellen.
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Michael Eisenmann Introduction

1 Introduction

Technological progress and increasing automation in our modern societies create the ne-
cessity for the availability of arbitrarily large amounts of electrical energy even at very
remote locations. As our demand is still mostly met by a centralised system consisting of
a small number of large-scale power plants, the ability for low-loss energy transfer becomes
increasingly important.
The most promising path towards this goal was opened in 1911 when Heike Onnes dis-
covered the phenomenon of superconductivity [67], a state with exactly zero electrical
resistance.
The very broad topic of dissipationless �ow knows many manifestations, for example as
the already discussed vanishing of electrical resistance [42], or as loss of inner viscosity
in liquid helium [43] forming a super�uid state. These two phenomena, super�udity and
superconductivity, are manifestations of the same phenomenon [72] either in charged or
neutral matter.
These parallels motivate us to try to get deeper insights into the stability and long-range
behaviour of super�uid systems in our quantum gas. Atomic physics is known as a �eld for
ground breaking proof of concept research [74,75,76], as it typically enables precise control
of the system's external degrees of freedom [77]. A good example are ultracold quantum
gases, allowing the study of many-body phenomena known from solid state physics [68].
In this thesis we investigate the stability and behaviour of a super�uid state in the form of
a Dysprosium Bose-Einstein condensate. We show that the response of such a state to an
impurity moving through it is highly dependent on the objects velocity. Below a certain
threshold super�uidity persists, while surpassing this threshold results in the creation of
excitations and the breakdown of the super�uid state. This behaviour could be explained
by Lev Landau in 1941 through the creation of excitations in the super�uid [41]. He was
able to postulate his well-known critical, or "Landau", velocity, connecting in a remark-
ably easy way the microscopic dispersion relation of a super�uid system to its macroscopic
�ow properties. Using Dysprosium, the element with the highest magnetic moment in the
periodic system [33] further creates anisotropies in the condensates dispersion relation [40].
This enables us to verify a direction dependency of the sound velocity, as well as the criti-
cal velocity in our dipolar system, through experimental investigations and full numerical
simulations. This behaviour has already been theoretically predicted [49] but was never
observed before our work.
Through variations in the linear stirring process, potentially in the form of di�erent stir-
ring angles relative to the dipoles tilt [47] or through modi�cations in the stirrer potential
[37], the qualitative scaling behaviour of the critical velocity in our system can be studied.
Depending on the trajectory of the impurity, in our case an attractive or repulsive laser
beam, di�erent excitations can be created, ranging from phonons for linear stirring [69] to
vortices, as carriers of angular momentum, for stirring circularly [50].
Vortex creation is of special interest when probing for super�uidity, as their existence is
clear evicence thereof [61]. While vortices have been observed many times in isotropic
systems [50,62], their possible existence and behaviour in anisotropic dipolar systems has
until now only been theoretically predicted [70].
During this work, the relevant parameters for vortex creation through laser stirring in a
Dysprosium BEC will be explored through numerical simulations. The dependency of vari-
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Michael Eisenmann Introduction

ations in this values is of special interest, as experimental veri�cations of our numerical
results might be limited by measurement inaccuracies and other experimental di�culties.
Of most relevance will be the investigation of dipolar in�uences on vortex creation and
arrangement when the dipole-orientation is varied. Following theoretical predictions we
expect changes in the density distribution around the vortex core [71], as well as adaptions
in the arrangement inside a vortex lattice from a typical triangular Abrikosov lattice [65] to
linear lines [64] and possibly even more peculiar patterns [40]. The work in this thesis will
compare analytical, numerical and experimental results in order to enable a well-rounded
understanding of the relevant processes.
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2 Bose-Einstein condensation of Dysprosium

All investigations on super�uidity discussed in this thesis will be conducted on a Bose-
Einstein condensate of the rare earth metal Dysprosium. It is thus a natural choice to start
this chapter with some deeper insights into the process of Bose-Einstein condensation in
general, the most relevant forms of interaction in a dipolar gas, as well as their mathematical
description.

2.1 Bose-Einstein Condensation

W. K ET T ERLE , D.S. DURFEE , and D.M . STAMPER-K
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Figure 1: Simpli�ed visualization of the condensation process from a thermal gas to a BEC.
For high temperatures, meaning temperatures well above the critical temperature T � TC,
atomic gases can be understood as clusters of classical particles with mean distance 〈d〉. If
the temperature is reduced, the former classical particles tend to behave like waves with
the de-Broglie wavelength λdB. Around the critical temperature T = TC, when λdB gets in
the order of d, the wavefunctions can be regarded as overlapping until they form a single
matter wave at the theoretical limit of T = 0 K. (Adapted from [5])

One of the most surprising states of matter, discovered in the last century, manifests itself
in an ensemble of bosons, macroscopically occupying the lowest energy state with zero
momentum −→p =

−→
0 .

The concept of what is known today as "Bose-Einstein Condensation" was �rst predicted
by Satyendranath Bose in 1924 for photons [1] and was later extended by Albert Einstein for
non-interacting bosons [2,3]. More than 40 years after this predictions the �rst occurence
of a Bose-Einstein Condensate (BEC) could be experimentally detected in trapped, laser
cooled, neutral atoms of 87Rb and 23Na [4,24].
To give a short theoretical inside into the very broad topic of Bose-Einstein condensation,
we want to re�ect upon the behaviour of an ideal Bose gas, during a cooling process into
degeneracy. Let this discussion start with N particles con�ned into a volume V , resulting
in a density n. The quantity typically used for characterising the onset of Bose-Einstein
condensation is the phase space density

D = nλ3
dB (2.1.1)
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depending on the thermal de-Broglie wavelength λdB. This temperature dependent wave-
length can be understood as the coherence length of the involved particles [22]

λdB(T ) =

√
2π~2

mkBT
, (2.1.2)

where ~ is the reduced Planck constant, m the particle mass, kB the Boltzmann constant
and T the temperature. One can show [22] that Bose-Einstein condensation does not
arise directly at D = 1, where one would intuitively expect it, due to the wavefunctions
beginning to overlap, but at a later point D > ζ(3/2) ≈ 2.6121. This insight allows us
to introduce the critical temperature for a non-interacting three-dimensional gas with no
internal degrees of freedom [22]

TC =
2π~2

mkB

(
n

ζ(3/2)

)2/3

≈ 3.3125
~2n2/3

mkB
. (2.1.3)

Through further cooling the condensed fraction of particles [22] can be increased, until it
reaches unity at zero temperature.

NBEC

Ntot

= 1−
(
T

TC

)3

(2.1.4)

Here NBEC denotes the particle number in the ground state in contrast to the whole number
of participants Ntot.

2.2 Two-body Interactions

As in the ideal case a BEC has zero momentum, its kinetic energy cancels and any weak
interaction will play a dominant role. In the following section the most relevant interactions
describing a dipolar gas, namely short-range isotropic contact-interaction and long-range
anisotropic dipole-dipole-interaction, will be introduced and their quantitative in�uence on
condensate shape and characteristics discussed.

2.2.1 Contact-Interaction

The most basic form of interaction in a Bose-Einstein condensate is the contact interaction.
It has its origin in the Van-der-Waals attraction scaling as -C6/r6 [52] with the element-
dependent Van-der-Waals coe�cient C6 and their interparticle distance r.
At smaller distances an electrostatic repulsion, due to an overlap of electron orbitals with
an r12-dependence dominates and creates together with the Van-der-Waals interaction a
molecular potential, the so called Lennard-Jones potential.

1ζ(x) =
∑∞

k=1 k
−x is the Riemann zeta function
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Figure 2: Two colliding quantum mechanical particles with relative velocity v and scattering
distance rscat in the center of mass frame

One can show that since the VdW interaction is short-range (1/r6), at low collision en-
ergies the only angular momentum is l = 0, allowing only spherically symmetric s-waves-
scattering. The Van-der-Waals interaction, dictating the long-range behaviour in this po-
tential, exhibits an e�ective range that can be estimated from the kinetic energy acquired
due to the attractive potential [53] of

rVdW =
4

√
2mC6

~2
. (2.2.1)

This is in general signi�cantly smaller than the particle's de-Broglie wavelength and can not
be resolved e�ectively. Therefore the exact form of the interaction potential is irrelevant,
enabling the replacement by a pseudo-potential with in�nitesimal radius [54], that can be
written as

Vs(r) = g δ(r) (2.2.2)

with the Dirac Delta-distribution δ(r) and the contact interaction coupling strength

g =
4π~2

m
as (2.2.3)

where the whole information about the scattering process is now contained in the scatter-
ing length as (and the mass m), that is positive for repulsive and negative for attractive
interactions and can be varied via Feshbach-resonances [25]. While this contact-interaction
is present in every Bose-Einstein condensate, another, and due to its anisotropy often more
intersting form of inter-particle interaction, can be found if the condensate atoms possess
a magnetic moment.

2.2.2 Dipolar interaction

The resulting interaction between particles possessing a magnetic moments is, as opposed to
the contact interaction, long-range and anisotropic, allowing the study of a broader variety
of phenomena. For a more detailed description of this anisotropic, long-range interaction
we want to start with the assumption that all dipoles are aligned in the same direction. In
actual experiments this is realised by applying an external magnetic �eld strong enough
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Figure 3: (a) Relative orientation of dipoles inside a dipolar condensate. The two shown
dipoles are aligned along the magnetic �eld direction B at a distance r and an angle
θ = ] (r,B) to each other. (b),(c) and (d) illustrate the e�ect of the dipolar interaction
in dependence of the dipole orientation. The dipoles attract each other in a head-to-tail
con�guration (b), repel each other when they are side-by-side (c) and have no e�ective
interaction with each other, if they are tilted by the "magic angle" θm ≈ 54.7◦.

to polarize the whole cloud of atoms. Under such conditions, the interaction potential
between two dipoles takes the form [55]

Vdd(r, θ) =
µ0µ

2
m

4π

1− 3cos2(θ)

r3
(2.2.4)

with the relative position between the dipoles described by their distance r, the angle
θ = ] (r,B) between the external magnetic �eld, preseting the dipole polarization direction
µ, and the magnetic vacuum permeability µ0. The anisotropy enters through the angle θ,
resulting in an attractive interaction around θ = 0 or π and a repulsive one around θ =
π/2 and 3π/2 separated by the so called "magic angle" θm = arccos(1/

√
3) ≈ 54.7◦ with

a vanishing dipolar interaction potential. The characteristic length scale associated with
the dipole-dipole interaction is known as the dipolar length [55]

add =
µ0µ

2
mm

12π~2
(2.2.5)

where the prefactors are chosen such that a dipolar BEC under three-dimensional homo-
geneous conditions becomes unstable for add/a > 1 [55]. Likewise, as an equivalent to the
contact interaction coupling strength the dipolar coupling strength is introduced:

gdd =
4π~2add

m
=
µ0µ

2
m

3
(2.2.6)

These de�nitions allow for an easy comparison between the strengths of the two interaction
types through their ratio, the relative dipolar strength

εdd =
gdd
g

=
add
as

=
µ0µ

2
mm

12π~2as
. (2.2.7)

The remaining challenge is to describe a realistic Bose-Einstein condensate where both
interactions are present. In the following we will refer to such an object as a dipolar BEC
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(dBEC). In the limit of weak dipolar interactions the so called "�rst-order Born approxi-
mation" [9] is valid, allowing us to neglect coupling e�ects between these two interactions
and to describe the overall interaction potential as the simple sum of its both constituents.

Vint(r) = Vs(r) + Vdd(r) = g δ(r) +
3

4π
gdd

1− 3 cos2(θ)

r3
(2.2.8)

In order to observe the dipolar e�ects clearly and have the condensate's long-range be-
haviour dominated by the dipole-dipole-interactions, the dipolar interaction length should
desirably be of comparable size to the contact interaction add ≥ as or larger.

2.3 Theoretical Description

After taking a look into the process of Bose-Einstein condensation and the relevant in-
teractions, our next step is to discuss the necessary theory to describe such a complex
many body system as a Bose-Einstein condensate. Systems consisting of high numbers of
interacting particles prove to be quite challenging to describe theoretically without resort-
ing to approximations. In the following we will try to simplify the many-body problem,
explore special cases for weak and strong interactions and take a short look into higher
order e�ects.

2.3.1 Mean-�eld and Extended Gross-Pitaevskii Equation

In order to reasonably describe a high number of interacting particles, a common approx-
imation is to sum the interaction potentials, that a single particle experiences from all its
peers, up into a single e�ective potential. For the beginning we will start with the com-
plete many-body Hamiltonian in second quantization after switching into the Heisenberg
representation [22]

i~
∂

∂t
Ψ̂(r, t) =

[
Ψ̂(r, t), H

]
=

(
− ~2

2m
∇2 + Vext(r) +

∫
d3r′Ψ̂†(r′, t)Vint(r− r′)Ψ̂(r′, t)

)
Ψ(r, t)

(2.3.1)

describing N bosons in an external potential Vext and interacting corresponding to the
interaction potential Vint from equation (2.2.8) , with the normalized boson annihilation and
creation operators Ψ̂(r) , Ψ̂†(r). This time dependent �eld operator can be decomposed into
a mainly occupied condensate wave function given by the complex number Ψ = 〈Ψ̂(r, t)〉
and a perturbation Operator δΦ̂ with vanishing expectation value 〈δΨ̂(r, t)〉 = 0.

Ψ̂(r, t) = Φ(r, t) + δΨ̂(r, t) (2.3.2)

In the non-interacting case at zero temperature, all atoms occupy a single state. The
approximation we are applying here is that this remains mostly the case, but due to in-
teractions a small perturbation given in the form of the perturbation operator δΨ̂(r, t)
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reduces the condensate fraction minimally. At a later stage we will encounter this pertur-
bation again under the name of "quantum �uctuations", but for now it shall be neglected
(δΨ̂(r, t) = 0). Plugging this decomposition into equation (2.3.1) and therefore limiting
oneself to work only with the expectation value of the particle wave function is known as
"mean-�eld ansatz" and results in the non-local, time-dependend Gross-Pitaevskii equa-
tion, describing the dynamics of a dBEC

i~
∂

∂t
Ψ(r, t) =

(
− ~2

2m
∇2 + Vext(r) + gn(r, t) +

∫
d3r Vdd(r− r′) n(r, t)

)
Ψ(r, t) (2.3.3)

including the atomic density n(r, t) = |Ψ(r, t)|2 = |
√

n(r, t) eiφ|2 [22]. Separating the space-
and time-dependency in the wavefunction Ψ(r, t) = ψ(r) exp(−iµt/~) with the chemical
potential µ, allows us to separate o� the time-dependency in the Gross-Pitaevskii equation,
leading to the stationary GPE useful for investigation of ground state properties

µψ(r) =
(
− ~2

2m
∇2 + Vext(r) + gn(r) +

∫
d3r′ Vdd(r− r′)n(r′)

)
ψ(r) (2.3.4)

where the kinetic energy can be identi�ed as the �rst summand, the external potential as
the second, the contact interaction as the third and the dipolar interaction as the last one.
Resulting from equation (2.3.4) the corresponding energy functional can be given by [22]

E(n, r) =

∫
d3r

(
~2

2m
∇2 + Vext(r) +

1

2

[
gn(r) +

∫
d3r′ Vdd(r− r′)n(r′)

])
n(r) . (2.3.5)

Taking into account all interactions for dipolar gases leads to the problem that neither
analytical nor semi-analytical solutions of the Gross-Pitaevskii equation can be found,
making it necessary to fall back on the study of special cases.

2.3.2 Weak Interaction Limit - Variational Method

One way to bypass the mentioned problem that no exact solutions for the energy-functional
(2.3.5) can be found is to use a Gaussian wave function

Ψ(r) =

√
N

π3/2σxσyσz
exp

(
− x2

2σ2
x

− y2

2σ2
y

− z2

2σ2
z

)
(2.3.6)

as an Ansatz and minimize the energy through variation of the lengths σx,y,z. This wave
function then results in a density distribution that also exhibits a Gaussian form

n(r) = |Ψ(r)|2 =
N

π3/2σxσyσz
exp
(
− x2

σ2
x

− y2

σ2
y

− z2

σ2
z

)
. (2.3.7)

The described approximate solution in equation (2.3.7) then represents the exact ground
state solution only for non-interacting particles. When increasing the interaction strength
the validity of this approach gets worse, but still gives the correct scaling dependencies.
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2.3.3 Strong Interaction Limit - Thomas-Fermi Approximation

The other special case we want to discuss is the one of strong inter-particle interactions.
Assuming them to exceed the in�uence of the particle's kinetic energy signi�cantly, the
�rst term in equation (2.3.4) can be neglected, leading to the so called "Thomas-Fermi
approximation". At this point we want to limit ourselves to the most relevant results fol-
lowing this approximation and refer for more details to [22]. When neglecting the in�uence
of the kinetic energy the GPE simpli�es to

µψ(r) =

(
m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

+ gn(r) +

∫
d3r′Vdd (r− r′)n (r, t)

)
ψ(r) . (2.3.8)

Figure 4: Dipolar anisotropic function fdip depending on the cloud aspect ratio κ. For
prolate clouds (κ < 1), fdip is positive, while it is negative for oblate traps (κ > 1) and
vanishes for spherically symmetric systems.

Through dipolar interactions and consequently resulting anisotropic magnetostriction, the
shape of a cloud made of dipolar particles will get deformed. For clari�cation of a few
relevant parameters we want to start with a distinction between the deformation of the
trap, in form of the trap aspect ratio λ = ωz/ωρ (for simplicity we assume identical trap
frequencies ωρ orthogonal to the magnetic �eld direction, which shall be, arbitrarily cho-
sen, the z-direction), and the real BEC-cloud-deformation described by the cloud aspect
ratio κ = Rρ/Rz, for the moment manifested in the ratio of the radii of a purely contact
interacting BEC [22]

Rcontact
x,y,z = 151/5

(Na
a

)1/5 ω

ωx,y,z

a . (2.3.9)

This represents the radius of a condensate strongly interacting condensate. Such conden-
sates can be shown to exhibit a parabolic density distribution [22].

nTF(r) = |ψ(r)|2 =

{
15N

8πRxRyRz

(
1− x2

R2
x
− y2

R2
y
− z2

R2
z

)
for nTF > 0

0 else
(2.3.10)
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Under the in�uence of dipolar interactions the density still holds a parabolic behaviour in
every direction, but an anisotropy in the bloud radii arises. The new radii take the form
[22]

Rρ =
[ 15Nκ

4πmω2
ρ

(
g + gdd

[3

2

κ2fdip(κ)

1− κ2
− 1
])]1/5

(2.3.11)

Rz =
Rρ

κ
=
[ 15N

4πmω2
ρκ

4

(
g + gdd

[3

2

κ2fdip(κ)

1− κ2
− 1
])]1/5

(2.3.12)

and are now primarily dependend on the strength of the dipolar interaction, as they scale
with the dipolar coupling strength gdd and a scalling factor depending on the cloud aspect
ratio κ, the dipolar anisotropic function [22]

fdip(κ) =
1 + 2κ2

1− κ2
− 3κ2artanh(

√
1− κ2)

(1− κ2)3/2
(2.3.13)

which is a monotonically decreasing function with values ranging from 1 for BECs highly
elongated in the magnetic �eld direction, down to -2 for highly oblate cases (see �gure 4).
The qualitative reason for a modi�cation of the cloud form under dipolar in�uences can
be illustrated in a very intuitive way. Our BEC, being a physical system, always strives to
minimise its energy, resulting in a minimisation of fdip(κ) and therefore κ, leading to an
elongation in the �eld direction, that can be understood through the equivalent of classical
dipoles, arranging themselves head-to-tail along an external magnetic �eld.

2.3.4 Beyond Mean-Field E�ects - Quantum Fluctuations

The energy minimisation of the condensate seems to lead inevitably to a collapse of the
condensate. Minimising κ should result in an ever increasing density, shrinking the BEC
practically to zero volume. In contrast to this, a restabilisation after a �rst shrinking step of
the dBEC, connected to the quantum �uctuations term in equation (2.3.2), leads to a novel
state of matter named "Quantum Droplet" [14,15]. Going beyond the previously discussed
mean-�eld approach, Lee, Huang and Yang were able to calculate an additional correction
term in order take the quantum �uctuation term in equation (2.3.2) into account, �rst
only for pure contact interaction [16]. Passing over from pure contact interaction to the
consideration of dipolar e�ects, an extension within the local-density approximation was
introduced by Lima and Pelster in 2011 [18]. Following their discussions, the correction-
term for the BEC's energy density has the form

EQF

V
=

64

15
gn2

√
na3

s

π
F5(εdd) (2.3.14)

with the correction factor

Fl(εdd) =
1

2

∫
dθk sin(θk)

√
1 + εdd(3 cos2(θk)− 1) . (2.3.15)

This energy density correction only plays a relevant role for high densities or strong inter-
action strengths.
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2.3.5 Complete e�ective GPE

Summarising the e�ects of all previously discussed interactions, the resulting e�ective GPE
that will be used for the simulations later on in this thesis reads [22]

i~ ∂tΨ(r, t) =
[
− ~2∇2

2m
+ Vext(r, t) + g|ψ|2

+

∫
Vdd(r− r′)|ψ(r′)|2dr′ + 32 g

√
a

3
√
π

(
1 +

3

2
ε2dd

)
|ψ|3

]
Ψ(r, t)

(2.3.16)

contain in�uences of the kinetic energy (that shall from now on be called quantum pressure)
in the �rst summand, external potentials in the second, contact interaction in the third,
dipolar interactions in the fourth and quantum �uctuations in the last summand.

2.4 Excitations in a dBEC

After building a theoretical foundation for the behaviour of a dipolar Bose-Einstein conden-
sate, we can pass over to possible excitations that can be excited in such a system. These
discussions will provide the basis for an understanding of the breakdown of super�uidity
in later parts of this thesis.

2.4.1 Speed of Sound in a Homogeneous Dipolar Gas
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Figure 5: a) Dispersion relation, following equation 2.4.1 for a homogeneous 162Dy conden-
sate with a central atomic density of n0 = 2 · 1020 m−3. The corresponding parameters are
m = 162 u, as = 140 a0, add = 131 a0 and therefore εdd = 0.873. b) The speed of sound
for the same conditions following equation (2.4.3) as a function of the angle α between
magnetization and excitation.

The Bose-Einstein condensates we are working on are trapped and therefore highly complex
systems, for whom the exact dispersion relation is unknown. Therefore the a �rst intuitive
approach is to examine the homogeneous three-dimensional case in order to get some basic

Page 11 / 69



Michael Eisenmann Dysprosium BEC

insights. The Bogoliubov excitation spectrum for a dipolar homogeneous cloud [40] (shown
in �gure 5(a)) reads

ωhom(k, α) = k

√
~2k2

4m2
+
g n0

m
[1 + εdd (3 cos2(α)− 1)] (2.4.1)

where k = |k| is the absolute value of the wavevector k and α = ](k,µm) the angle between
k and the polarization direction µm (in the case of strong magnetic �elds identical to the
direction of the magnetic �eld B). A closer look at the sum under the square root on the
right hand side of equation 2.4.1 reveals two di�erent dependencies on the wavevector k. For
high momenta, the dispersion relation is dominated by the �rst summand, resulting in the
well known quadratic dispersion dependence ω(k) = ~k2/2m of free particles, independent
of the angle α and therefore any dipolar in�uences. On the other hand, in the case of small
momenta, with the second summand determining the behaviour, dipolar e�ects become
relevant. Here the dispersion relation scales linearly with the wavevector k, as is a general
behaviour of phonons. The dispersion relation allows us to determine the system's sound
velocity vs following

vs(α) = lim
k→0

(
ω(k)

k

)
. (2.4.2)

For our homogeneous system described by equation 2.4.1 this takes the form

vs,hom(α) =

√
gn0

m
[1 + εdd (3 cos2(α)− 1)] (2.4.3)

and is shown in �gure 5(b) for the parameters in our Dysprosium BEC, meaning a central
density of n0 = 2 · 1020m−3, a mass of m = 162u and a relative dipolar strength of
εdd = add/as = 131 a0/140 a0 = 0.873. It reveals a velocity maximum for propagation
parallel to the external magnetic �eld (α = 0◦) and a minimum orthogonal to it (α = 90◦).
That leads to elliptical sound waves depicted in the next section. This behaviour can
be understood intuitively in the following way. A density wave propagating through the
BEC creates a landscape of alternating planes with either high or low density. If the
magnetization direction is parallel to the phonon's wavevector, the microscopic dipoles
on the plane, being lifted from the former �at surface, interact repulsively, leading to an
increased energy and therefore increased speed of sound. On the other hand, if the dipoles
are aligned inside the density planes, it is energetically favourable to align along each other,
reducing the overall energy and therefore the speed of sound.
A surpring property of equation (2.4.1), arising from the just discussed phenomenon of
energy minimization, is, that the speed of sound in a homogeneous BEC gets imaginary
for dipolar interactions exceeding the contact interacions (εdd = gdd/g ≥ 1). This process
is called "phonon instability" and softens the phonon modes into negative energy, leading
to a collapse of the BEC [20].
Apart from the creation of sound waves in the homogeneous case, under trapped conditions
other excitations can exist and the dispersion relation gets modi�ed. One example thereof
is a strong con�nement in one direction, allowing the possibility for Roton-creation, a quasi-
particle at a �nite momentum value. This case is discussed in more detail in section A.1.
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It is worth mentioning that in both cases, homogeneous and highly trapped, a description
by a continuous dispersion relation is only useful as long as the excitation has a smaller
wavelength than the size of the condensate (k RBEC ≤ 1).

2.4.2 Anisotropic Speed of Sound

In order to illustrate the anisotropy in the speed of sound following equation (2.4.3) we
compare the simulated density pro�les of a purely contact-interacting and a dipolar BEC.
Therefore simulation results for the relative density distribution ∆n(r, t) = n(r, t)−n0(r, t),
meaning the di�erence between the density distribution n(r, t) at a given time t and the
density distribution of the cloud in its energetic ground state in equilibrium n0(r, t), are
shown in �gure 6. The atoms there are initially con�ned in a small volume and then
abruptly released.

B
v
v

(a) (c)(b) (d)

t0 t1 t2 t3

v

v

(e) (g)(f) (h)
B

t0 t1 t2 t3

Figure 6: Simulated relative density distribution for the �ow of 162Dy-atoms for pure contact
interaction ((a)-(d)) and for additional dipole-dipole-interactions ((e)-(f)) after equidistant
time steps t0 to t3 . The atoms start all trapped in the center of our numerical grid. After
releasing they start to �ow outward creating density waves, revealing a constant speed
of sound in the pure contact-interaction case and a clear anisotropy in favour of the the
direction parallel to an external magnetic �eld under additional dipolar interactions.

In (a)-(d) the situation for pure contact interaction is shown, exhibiting an isotropic speed
of sound in both directions. Compared to this in (e)-(h) additional dipole-dipole interac-
tions are implemented, resulting in a signi�cant anisotropy in the systems speed of sound
with a drastically increased propagation speed in the direction of an external magnetic
�eld v‖ and a practically unchanged velocity in the orthogonal direction v⊥.
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3 Experimental Setup

In the following chapter a short summary of the experimental procedures necessary to
generate the data presented in this thesis will be given. The beginning will be a short
introduction to the element Dysprosium and its relevant properties. A short overview of
the experimental setup, utilized for the creation of degenerate Dysprosium gases, will be
given, and we will �nish with a description of the electro-opctical de�ector system (EOD)
used for the creation of time-varying optical potentials in the form of a Gaussian laser
beam moving inside of the BEC.

3.1 Dysprosium

The element used in this work is Dysprosium, a rare-earth element in the lanthanide group
with 66 protons and electrons. It posseses a relatively high melting (1412 ◦C) and boil-
ing point (2567 ◦C), as well as seven stable isotopes of which four are naturally occuring
in signi�cant proportion. Of these, 162Dy (25.5%) and 164Dy (28.3%) are bosonic, while
161Dy (18.9%) and 163Dy (24.9%) are fermionic [30].
These fermionic isotopes feature a nuclear spin of I = 5/2, resulting in a splitting into
six hyper�ne states, ranging from F = 11/2 to F = 21/2, while their bosonic counterparts
miss any sort of hyper�ne splitting. The 66 electrons result in an electronic ground state
con�guration of [Xe]4f106s2, describing a partly �lled 4f shell with and a closed 6s shell.
These four missing electrons in the 4f shell, lead to an orbital angular momentum of L = 6
and total electronic spin of S = 2, resulting in a total angular momentum of J = 8.
This unusual high angular momentum is responsible for Dysprosiums high magnetic mo-
ment of µm = 9.93 µB, with the Bohr magneton µB, making it, together with Terbium,
the element with the highest magnetic moment in the periodic system of elements. This
magnetic moment, together with the mass of the 162Dy isotope m162 = 161.92 a.u, where
u describes the uni�ed atomic mass unit results in a signi�cant dipolar length. Following
equation [2.2.5] it takes the value aDy

dd = 131 a0, with the Bohr radius a0. The background
s-wave scattering length as di�ers signi�cantly for the two bosonic isoptopes used in the
course of this work, taking values of as,164 = 69(4) a0 [31] and as,162 = 141(17) a0 [35].
Following the discussions in chapter 2.2.2, a dipolar BEC is stable for εdd = add/as < 1.
While this is usually (apart from regions very close to Feshbach resonances) ful�lled for
the 162Dy-isotope, 164Dy-condensates are stable only for increased scattering lengths, for
example near Feshbach resonances. A second and experimentally better accessible way to
increase stability is an adaptation of the trapping conditions. Due to anisotropy in the
interactions, the clouds density distribution in�uences the systems robustness, allowing
changes of the stability threshold through variations of the trap aspect ratio [32,48].
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3.2 Creation of Dysprosium BECs

In the following a short overview of the experimental setup and the steps necessary to
create a degenerate gas of Dysprosium shall be given. The atoms path through the three
parts of the vaccum chamber, from the oven chamber over the MOT chamber to the glass
cell, where they will end as a Bose-Einstein condensate. For a more detailed description of
the whole process, we refer to the Ph.D. theses of Thomas Maier [33] and Holger Kadau [20].

ODT 3

High-NA

objectiveMagnetic High-Feld

Helmholtz coils

ODT 4

ODT 2

 Transport

Fast coils

phase-contrast

imaging
& ODT 1

Figure 7: A scheme of the glass cell, that the atoms enter from the MOT via a transport
beam. They are trapped in a crossed optical dipole trap (cODT) created by the laser
beams ODT1 and ODT2. Possible imaging paths are time-of-�ight absorbtion imaging from
the side, as well as high-resolution insitu phase-contrast imaging in the vertical direction.
Parallel to this a beam (ODT3) of an electro-optical de�ector (EOD) system passes the high-
numerical aperture objective, enabling the creation of time-dependent optical potentials.
A light sheet (ODT4), respresenting a highly �attend laser beam, can be used to further
manipulate the trapping conditions of the condensate. Magnetic �eld coils around the
glass cell provide homogeneous as well as a controlled gradient magnetic �elds, in�uencing
properties of the trapped atoms.

From solid to gas

The utilized Dysprosium begins as a solid, in the form of a high-purity granulate (99.9 %)
inside a molybdenum crucible in an e�usion cell. This cell is localised inside of the vac-
cum system in the oven chamber, where our Dysprosium is heated up to temperatures of
T ≈ 1250 ◦C under a pressure of p ≈ 10−9 mbar.
These conditions are su�cient for sublimation, allowing the atoms to leave the crucible
through a small aperture. The atoms are cooled in the transverse direction through a
transversed cooling scheme, using red-detuned light of the broad 421 nm transition. In the
longitudinal direction the atoms posses a mean velocity of around 450 m/s, signi�cantly to
quick for trapping inside of a magneto-optical trap. Therefore we use a spin-�ip Zeeman
slower, also working on the 421 nm transition. This results in the atoms begin decelerated
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to around 10 m/s, slow enough to allow trapping in a magneto-optical trap.

Cooling in a magneto-optical trap (MOT)

After leaving the Zeeman-slower, the atoms arrive in the MOT-chamber where they are
captured in a narrow-line magneto-optical trap working at 626 nm with a linewidth of
γ626 ≈ 136 kHz. The chosen wavelength results in a red-detuning of the MOT lasers, A
large beam diameter of 22.5 mm and consequently a high intensity of 250 Isat,626 is chosen
in order to trap as many atoms as possible. An additional spectral broadener is used to
increase the laser linewidth, increasing the velocity range where trapping is possible. In
the end, loading of around 8 · 107 atoms of 162Dy at a central detuning of 35 γ626, at around
500µK, is possible. The �nal cooling step in the MOT consists of reducing the detuning
to 5 γ626 and the intensity to 0.24 Isat,626, lowering the temperature to ≈ 10µK, low enough
to load them in an optical trap.

Transport to the glass cell

In order to transport the atoms from the MOT to the glass cell, we use a focused broad-
band �ber laser at 1070 nm. We focus the laser down to a beam waist of ≈ 40µm with
a maximum power of ≈ 72 W, producing a potential trap depth of ≈ 640µK. The trans-
portation is carried out by moving the laser focus, where the atoms are primarily trapped,
from the MOT to the glass cell. Therefore the last focussing lens of the transport beam is
positioned on a translation-stage.
Our MOT, even after compressing, still has a Gaussian width of around 400µm, signi�-
cantly bigger than the beam waist of the transport laser. In order to load as many atoms
as possible, the overlap between the MOT and the transport beam should be optimized,
therefore we position the mounted lens around 15 mm away from the MOT position, where
the trapping area is 18-fold increased, but therefore the trapping depth reduced by the
same amount. We deactivate the MOT, after superimposing it with the transport beam,
threreby trapping the atoms purely in the optical tweezer. The focus is now moved to the
atom position in 47 ms and subsequently to the glass cell within another 1.2 s over a dis-
tance of 37.5 cm. This procedure usually results in ≈ 107 atoms with a mean temperature
of 120µK ending up in the glass cell.

Crossed optical dipole trap (cODT)

After entering the glass cell, the atoms are transfered into a crossed optical dipole trap,
consistint of two laser beams ODT1 and ODT2, intersecting at an angle of 90◦, both pro-
duced by a 1064 nm solid-state-laser with a power of 55 W. ODT1, being superimposed
with the transport beam, is radially symmetric with a beam waist of ≈ 40µm and a power
of up to 12 W, while ODT2 has an elliptical shape with waists of ≈ 120µm and ≈ 30µm
in horizontal and vertical direction.
Inside of the crossed dipole trap, the atoms are cooled with an orange 626 nm laser to
increase the population in the crossed trap region. Up to 5 · 105 atoms with a temperature
of about 20µK can be trapped in the crossed ODT this way, with around �ve times that
number still remaining in ODT1.
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Forced evaporation to degeneracy

Degeneracy is achieved from here on through forced evaporative cooling. The idea behind
this method is to remove the hottest atoms out of the gas by lowering the potential depth
of the traps further and further. If this is done slow enough, the remaining atoms can
rethermalize through two-body collisions, e�ectively reducing the mean temperature of the
remaining particles. In this way, by reducing the intensity of the trap beams and thereby
the potential depth, over around 4.5 s, we end up with a Bose-Einstein condensate of up
to 50.000 162Dy atoms with a mean temperature of 50 nK.

3.3 Time-Averaged Potentials by an Electro-Optical De�ector (EOD)

In the following a short introduction to the electro-optical de�ector (EOD) system, that is
used to create a time-dependent optical potential inside our Dysprosium condensate shall
be given.
For a more detailed description of the system and the theory behind it, the master thesis
of Matthias Wenzel [34] can be consulted.
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Figure 8: Intensity patterns of the ODT3 beam for di�erent con�gurations of the EOD
system are shown, taken with a CCD-Camera. In (a) two laser beam spots with Gaussian
intensity distribution are created equidistantly to their center. At t1 > t0 (b) and t2 > t1
(c) the beam position is shown when rotating the potential pattern with a constant velocity.
This con�guration can be used to create vortex patterns inside the BEC. (d)-(f) show a
linear stirring procedure, where the laser beam is moved in the horizontal direction from
position (d) over (e) (at t1) to position (f) (at t2), usable for measurements of the critical
velocity of the system, as shall be discussed in later parts of this work.

The EOD system used for the work in this thesis is presented in �gure 9. It consists of
a laser beam, passing a Pockels cell, able to vary the laser power, and two orthogonal
re�ectors, to manipulate the beams propagation direction.
We choose one power stabilized laser-system with a wavelength of 532 nm (�gure 9(a)),
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enabling the creation of attractive potentials for the Dysprosium atoms.
The choice of this wavelength is motivated by Dysprosium possessing a higher polarizability
for 532 nm than for 1064 nm used in the dipole traps, enabling smaller spot sizes following
the Abbe di�raction-limit.
A further 405 nm laser diode-system has been implemented and aligned during the course
of this thesis (see �gure 9(b)) for the purpose of allowing the creation of repulsive potentials
as well.
These two beams are coupled into optical �bers and brought together onto the same optical
table. The beams are overlapped (�gure 9(c)) with a dichroic mirror, transmitting the green
and re�ecting the blue light. After that a part of the intensity is coupled into a photo diode
in order to stabilize the laser power using either the AOM in (a) or (b).
The light then passes a Pockels cell that allows to precisely manipulate the polarization
direction, enabling together with a following polarizer in the de�ector system to tune the
transmitted beam power very fast.
After the Pockels cell, the light arrives at the de�ector-system, containing two orthogonal
de�ectors for moving the beam in horizontal and vertical direction, building the core of
the whole EOD-apparatus.
In detail these de�ectors consist of crystals that vary the de�ection angle of passing light
in dependence of an applied voltage. Therefore through variation of the voltage the beam
position can be varied between de�ned positions ri = (xi, yi) with a �xed frequency fscan.
The desired potential can now be designed by the correct selection of the iteration positions,
moving for a time tmove between them, and holding at each spot for times thold.
An example for the potentials used in this thesis is shown in �gure [8] where an example
for linear as well as circular stirring is shown.
The desired potential would get blurred out if the time necessary to switch between the
aspired positions is in the same order as the hold time on these spots (tmove ≈ thold), due to
the signi�cant intensity contributions between them. However the Pockels cell functions as
a sort of shutter, allowing us to turn down the laser intensity during the moving intervalls
and turning it up again during the hold times, enabling us to create more detailed potential
landscapes.
This whole procedure is controlled by the real-time processing system "ADwin Gold II".
The corresponding code for the linear and ciruclar stirring procedures shown in �gure [8],
written in Adbasic with a LabView interface, was implemented as part of this thesis.
The trap depth at the spots for a non-moving beam can be calculated to

V 532 nm
stirrer =

Re[α]P

ε0πcw2
0

= −27.3µK (3.3.1)

with the real part of the polarizability Re[α], calculated to be 429 a.u. for green light, the
laser power P, typically ≈ 1µW in our experiments, the vaccum permitivity ε0, the speed
of light c and the beam waist w0 estimated to be around 1.5µm.
Due to the fact that our EOD-beam is approximately parallel to the gravitational direction
z, an additional gravitational potential Vgrav = mgz acts on the condensate particles,
slightly reducing the resulting potential depth.
The time-averaged potential depth Vstirrer(r) at any position is determined by the laser
power, the hold duration at the respective position and how frequently it is passed.
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When passing the de�ector system, both beams (green and blue) enter the �rst de�ector
correctly linear polarized and therefore both get de�ected identically. Problematic about
the implementation of the additional 405 nm beam is that the waveplate inside the de�ector
system is optimized for 532 nm and therefore rotates the polarization of the blue light
incompletely.
Therefore when entering the second de�ector only the green light is correctly polarized,
and gets de�ected as expected, while a part of the blue beam, that did not obtain the
correct polarization, passes unde�ected.
A polarizer for blue light prevents the transmission of this undesired beam parts. In the
end both beams are de�ected in the desired way, whereby losses in the blue intensity have
to be accepted due to the �ltering of the unde�ected parts.
In fact that does not pose a signi�cant problem, for we only need a few milliwatt of stirrer
power for our experiment. To reduce the power of the two beams accordingly we add several
optical attenuators before the beam is signi�cantly widened through a 7.5:1 telescope and
focused into the glass cell through a 25 mm objective.
It is worth mentioning that, even though the double-pass-AOM system for the 405 nm
laser diode was build and fully aligned during the course of this thesis, it did not produce
any experimental data used in the analysis following in later chapters.
The main reason behind this is that the sign of the potential (negative for 532 nm and
positive for 405 nm light) has negligible in�uence on the critical velocity of a super�uid
system, while it is of signi�cant importance for vortex creation [37].
For its irrelevance all the critical velocity measurements have been performed with the
green laser beam.
The implemented 405 nm beam path has not been used beyond testing and aligning during
this thesis, but will surely �nd its reason for being in future ground-breaking work like the
creation of vortices out of dipolar materials.
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Figure 9: The EOD system with its respective beam paths is shown. (a) A Verdi V10
generates 532 nm laser light, that is power stabilized by an AOM and coupled into a �ber.
(b) 405 nm light is produced by a laser diode, providing us with up to 150 nW. The power
is stabilized by a double-pass-AOM system before coupling into an optical �ber. (c) After
coupling out, both laser beams are overlapped by a dichroic mirror, transmitting the green
and re�ecting the blue light. A small fraction of the incoming intensity is coupled into
a photo diode, for stabilising the laser power through the AOMs in (a) and (b). The
beam then passes a Pockels cell, allowing to turn the beam power on and o� as desired.
Subsequently the laser passes the de�ector system, where its direction can be manipulated.
Finally the polarization of the 405 nm-beam gets linearized again and the power reduced
to a few OD �lter before the beam gets widened through a 7.5:1 telescope and guided to
the 25 mm objective where it is focused into the glass cell.
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4 Numerical Simulation Methods

Super�uid phenomena, like the critical velocity, are highly dependent on numerous dis-
tinct parameters from interaction mechanisms over trapping conditions to stirrer prop-
erties, making a satisfying analytical description unaccessible and creating the necessity
for extensive numerical simulations in order to achieve a theoretical understanding of the
processes.

4.1 Simulated Stirring Characteristics

For our analysis we perform numerical simulations on the extended Gross-Pitaevskii equa-
tion (eGPE)

i~ ∂tΨ(r, t) =
[
ĤQP + Ĥext + Ĥcon + Ĥdip + ĤQF

]
Ψ(r, t)

=
[
− ~2∇2

2m
+ Vext(r, t) + g|ψ|2

+

∫
Vdd(r− r′)|ψ(r′)|2dr′ + 32g

√
a

3
√
π

(
1 +

3

2
ε2dd

)
|ψ|3

]
Ψ(r, t)

(4.1.1)

containing the hamiltonians for quantum pressure ĤQP, external potential Ĥext, contact
interaction Ĥcon, dipolar interaction Ĥdip and quantum �uctuations ĤQF on a rectangular-
shaped three-dimensional lattice with 128-512 grid. The external potential Vext contains a
time-independent harmonic trapping potential, re�ecting the in�uence of dipole traps, and
an attractive potential attributed to the stirring laser beam

Vext(r, t) = Vtrap(r) + Vstirrer(r, t) (4.1.2)

where the latter was chosen to posses a gaussian energy distribution in accordance with
a gaussian laser beam pro�le in the experiment. It is movable in the plane with velocity
v (the projection in x-direction shall be denoted vx and in y-direction vy) in any desired
direction.

Vstirrer(r, t) = − Re[α]P

ε0πcw2
0︸ ︷︷ ︸

V0

· 1

1 +
(
z
zR

)2 · exp

−2 (x− vxt)
2 + 2 (y − vyt)

2

w2
0

(
1 +

(
z
zR

)2
)

 . (4.1.3)

Here zR denotes the Rayleigh length zR = πw2
0/λ, w0 the beam waist, P the laser power

and α the polarizability of our isotope Dy162 at a laser wavelength of 532 nm. Striving for
conformance with the experimental conditions we typically choose a beam waist of 1.5m,
a laser power of 1m and calculated the polarizability to be Re[α] ≈ 429 a.u. .
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4.2 Mathematical and Numerical Tools

Before discussing these simulation procedures in detail, it seems necessary to look into
the utilized mathematical tools �rst. The simulation mechanism descript in the following
is based on the work of David Peter during his Master Thesis [38] and has been opti-
mized further through the implementation of the Crank-Nicolson Method [39] to calculate
derivatives faster and with higher numerical stability.

4.2.1 Split-step method

The time-evolution of a quantummechanical wave function in the case of a time-independent

Hamiltonian
[
Ĥ(t), Ĥ(t′)

]
= 0 is well known to be given by

Ψ(t+ ∆t) = exp

(
− i
~
Ĥ∆t

)
Ψ(t) (4.2.1)

for small time steps ∆t. As the di�erent energy contributions are independent of each
other, we can decompose the Hamilton operator

Ĥ = ĤQP + Ĥext + Ĥcon + Ĥdip + ĤQF . (4.2.2)

Plugging this decomposition into the time-evolution (4.2.1) we have to apply the Baker-
Campbell-Hausdor� formula treating the sum of operators in an exponent

e(X+Y )∆t = eX∆t · eY∆t · e−
1
2

[X,Y ]∆t2 (4.2.3)

where the latest factor holds some unpleasant complications for our calculations. Since the
eigensystem of the quantum pressure Hamiltonian is the momentum space in contrast to
real space for all the others, these contributions do not commute, forcing us to take a closer
look at the commutation factor. The fact that its exponent scales quadratically with the
size of the time-step ∆t compared to the linear scaling of the other exponents, allows us
to neglect it for small enough time-steps, resulting in a pure multiplication of the di�erent
energy contributions

e−
i
~ Ĥ∆t = e−

i
~ ĤQP∆t · e−

i
~ Ĥext∆t · e−

i
~ Ĥcon∆t · e−

i
~ Ĥdip∆t · e−

i
~ ĤQF∆t . (4.2.4)

This reduces the calculation costs drastically, to the expense of the necessity for a higher
number of time-steps. The main problem occurring from this procedure is the possibility
for numerical instability, due to the second order spatical derivatives contained in the
quantum pressure Hamiltonian. In order to counteract this tendency, a new numerical
scheme was implemented for the time-evolution of the quantum pressure in our system.
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4.2.2 Crank-Nicolson Scheme

Trying to �nd numerical solutions for a di�erential equation describing a quantum mechani-
cal system can be challenging, as the corresponding Hamiltonians often contain derivatives,
possibly leading to numerical instabilities when using basic methods as for example the
regular Split-Step Method discussed above.

i~ ∂tΨ = ĤΨ ⇒ ∂tΨ = − i
~
Ĥ
(
x, y, z, ∂2

x, ∂
2
y, ∂

2
z

)
Ψ (4.2.5)

The Crank-Nicolson Scheme provides a numerically stable method to deal with these deriva-
tives. First splitting up the Hamiltonian into a part without any derivatives Ĥstat and parts
containing them Ĥ i

dyn will allow for a signi�cant simpli�cation of the problem.

Ĥ = Ĥstat +
∑
i

Ĥ i
dyn (4.2.6)

The basic idea is to solve the static and the dynamic parts after another, starting without
the derivatives.

Ψ
n+1/2
i = Ĥstat Ψn

i = e−i∆tĤstat Ψn
i (4.2.7)

Here i denotes the spacial position on the quantized grid, ∆t describes the duration of
a time step and n the number of the time step with n + 1/2 clarifying that our new
wavefunction describes only an intermediate step on the way to the �nal result for the next
time step Ψn+1.
Working on a numerical grid with discrete timesteps and grid spacings, derivatives on a
function Ψn

i are applied in the form of di�erence quotients

∂rΨ
n
i =

Ψn
i+1 −Ψn

i

∆r
; ∂2

r Ψi =
Ψn

i+1 − 2Ψn
i + Ψn

i−1

(∆r)2
(4.2.8)

∂tΨ
n
i =

Ψn+1
i −Ψn

i

∆t
; ∂2

t Ψi =
Ψn+1

i − 2Ψn
i + Ψn−1

i

(∆t)2
(4.2.9)

with the distance between neighbouring spatial lattice points ∆r. With this the propaga-
tion due to one of the dynamic Hamiltonians can be given by

Ψn+1 −Ψn+1/2

∆t
=

i

2~
Ĥdyn

(
Ψn+1 + Ψn+1/2

)
(4.2.10)

where on the right side the mean value of Ψn+1 and Ψn+1/2 was chosen, equivalent to the
mean of applying a forward Euler method at time n + 1/2 and a backward Euler method
at time n+1. Assuming that Ĥdyn consists of a second derivative in space, as it will be the
case for the quantum pressure term, our result following equation [4.2.8], takes the form

Ψn+1
i −Ψ

n+1/2
i

∆t
=

i

2~(∆r)2

[
(Ψn+1

i+1 − 2Ψn+1
i + Ψn+1

i−1 ) + (Ψ
n+1/2
i+1 − 2Ψ

n+1/2
i + Ψ

n+1/2
i−1 )

]
.

(4.2.11)
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We end with this intrinsic equation, containing the known wavefunctions Ψ
n+1/2
i+1 , Ψ

n+1/2
i ,

Ψ
n+1/2
i−1 at time n + 1/2 and the unknown wavefunctions Ψn+1

i+1 , Ψn+1
i , Ψn+1

i−1 at time n + 1.
Choosing the desired boundary conditions, in our case the vanishing of the wavefunction on
the borders of our grid (lim

i→0
Ψn

i = 0 and lim
i→imax

Ψn
i = 0 with imax the grid length), describing

closed boundary conditions, this equation posses a unique solution for the wavefunctions
Ψn+1
i and Ψn+1

i±1 .
Should the original Hamiltonian contain more than one term with derivatives, than steps
4.2.10 or situationally 4.2.11 have to be repeated for every one of them. Executing this
procedure on every grid point �nishes one step of the time-evolution and the whole proce-
dure can be repeated for every desired number of time-steps.

4.2.3 Real Time Evolution

In the following the time evolution due to the di�erent energy contributions given by the
individual terms in equation [4.2.4] shall be discussed. The four evolution steps from the
wavefunction at time t to t + ∆t are implemented in the following order.

Ψ(r, t)
Ĥcon−−→ Ψ1(r)

Ĥdip−−→ Ψ2(r)
ĤQP−−→ Ψ3(r)

ĤQF−−→ Ψ4(r)
Ĥext−−→ Ψ(r, t+ ∆t) (4.2.12)

Contact interaction

The in�uence of contact interaction on the wavefunction can be described by the stan-
dard time-evolution for time-independent Hamiltonians (4.2.1) with the contact interaction
Hamiltonian

Ψ1(r) = exp

(
− i
~
gN |Ψ(r)|2 ∆t

)
Ψ(r, t) . (4.2.13)

Dipolar interaction

To simplify the calculation with the density integral of the dipolar part, it seems advisable
to switch to Fourier space, where one takes advantage of the convolution theorem, making
it take the form of a simple multiplication

F{Φdd} = F{Vdd ∗ n} = (2π)3/2 · F{Vdd} · F [n] . (4.2.14)

Thereby the evolution can be conducted by using the Fourier-transformation F and the
corresponding back-transformation F−1

Ψ2(r) = exp

(
− i
~
· F−1

{
(2π)3/2 · F{Vdd} · F{|Ψ1|2}

})
Ψ1(r) (4.2.15)

= exp

(
+
i

~
· gddNF−1

{(
1− 3 cos2(α)

)
· F{|Ψ1|2}

}
∆t

)
Ψ1(r) .
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Quantum Pressure

The quantum pressure term represents the biggest challenge in our whole procedure, due
the contained derivatives. The term itself takes the well known form

ĤQP = − ~2

2m
∇2 = − ~2

2m

∂2

∂x2
− ~2

2m

∂2

∂y2
− ~2

2m

∂2

∂z2
= ĤQP,x + ĤQP,y + ĤQP,z . (4.2.16)

Segmenting the Hamiltonian into three di�erent parts with only derivatives in a single
direction left, the Crank-Nicolson scheme, introduced in section [4.2.2], can be used to
calculate this time-evolution in a numerically stable way.

Quantum Fluctuations

The Hamiltonian for quantum �uctuations does not contain derivatives and can therefore
be calculated straight forward [18] by

Ψ4(r) = exp

(
− i
~
ĤQF ∆t

)
Ψ3(r) = exp

(
− i
~
· 32

2
gn

√
na3

s

π
F5(εdd) ·∆t

)
Ψ3(r) (4.2.17)

with F5 given according to equation [2.3.15].

External potential

Similar to the contact interaction term, the calculation in real space enables the represen-
tation of the time-evolution by a pure multiplication

Ψ(r, t+ ∆t) = exp

(
− i
~
· V (r) ·∆t

)
Ψ4(r) . (4.2.18)

Here it is worth mentioning, that, for cases with activated stirring laser, the potential V (r)
is time-dependent, violating the requirements for usage of evolution [4.2.1], that is only
valid for time-independent Hamiltonians. In fact, with the stirring velocities we are using,
even a single oscillation contains several thousand time-steps, making the potential on a
step-to-step basis practically constant, justifying the usage of this simpli�ed evolution-
mechanism.

4.2.4 Imaginary Time Evolution

Before performing real-time evolution steps, the starting step for all of our simulations is
to �nd the ground state of the condensate under the chosen conditions, meaning especially
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the chosen trapping conditions. We determine this ground state by solving the extended
Gross-Pitaevskii equation [2.3.3] using the imaginary time evolution method [28].
The idea behind the imaginary time evolution is to replace the time t by an imaginary
equivalent τ = −i t

Ψ(τ + ∆τ) = exp

(
−1

~
Ĥ∆t

)
Ψ(τ) . (4.2.19)

It is worth noting that this breaks the normalization, making it necessary to normalize again
after every time step in order to ensure numerical stability. Decomposing the wavefunction
Ψ into ground state ΨGS and excited part δΨ, as well as assuming the ground state energy
to be zero ĤΨGS = 0 results in

Ψ(τ + ∆τ) = ΨGS + exp

(
−1

~
Ĥ∆t

)
δΨ(τ) . (4.2.20)

Choosing a vanishing ground state energy has the advantage that only positive eigenvalues
are left, creating an exponential decay of the excited part δΨ for successive evolution steps
and a convergence to the ground state wave function ΨGS.

4.3 Explicit Stirring Procedures

After reviewing the important mathematical tools we have formed the basis for a closer
look at the simulation schemes for linear and circular beam stirring, that will be generating
the results shown in the rest of this thesis.

4.3.1 Linear Stirring

Most of this thesis covers the investigation of anisotropy in the critical velocity, as will be
further discussed in chapter [5], leading us to stir linearly in di�erent directions with the
Gaussian laser beam described in [4.1.3].
Figure 10 shows the simulated cloud at relevant times during the stirring procedure. We
start with N atoms following a Gaussian density distribution with widths σx,y,z, that are
chosen either by an educated guess or according to previous results under similar conditions,
in a harmonic trapping potential Vtrap(r) without a stirrer Vstirrer(r, t) = 0 (a). Then the
ground state is found using imaginary time evolution of the eGPE (4.1.1) using the split-
step method and the Crank-Nicolson scheme for the derivatives for an activated stirring
laser in the center (b). After getting into the ground state, we perform one oscillation with
the stirrer potential, moving it with a constant velocity v from the center in the desired
direction over a distance rmax (c), then back in the opposite direction for 2 rmax (d) and
back to the center over another rmax. An additional free evolution time can be added at
this point to investigate the behaviour of di�erent formed density waves (e), whereby no
additional heating takes place. We determine the induced heating ∆E1 = Ef

tot − Ei
tot by

comparing the system's total energy before (Ei
tot) and after (Ef

tot) the stirring.
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(b) (c) (d) (e)

t0 t1 t2 t3 t4

(a)

Figure 10: Density (upper row) and phase (lower row) of the simulated cloud, trapped
under radially symmetric conditions with trap frequencies fx,y = 50Hz and fz = 168Hz,
are shown at di�erent times during the course of a linear stirring procedure at 1.5 m/s,
signi�cantly above the critical velocity. (a) shows the initial cloud condition with a Gaussian
density distribution around the cloud center. (b) represents the energetic ground state with
activated stirrer, calculated by imaginary time evolution. In (c) the laser beam is shortly
behind it's �rst turning point, creating a density wave moving past it. After the second
turning point (d) the stirrer creates a second wave, while the �rst one got re�ected at the
cloud edge, moving then parallel to the second one. At the end of the stirring procedure
the stirrer arrived back to its starting point (e), having created two density waves that are
interfering with each other.

4.3.2 Circular Stirring

Apart from measuring the critical velocity through phonon excitations, the creation of vor-
tices, carriers of angular-momentum, is another interesting topic. Vortices will be discussed
explicitely in chapter [6], but their relevant property for the moment is that they form,
when a certain amount of angular momentum is put into a super�uid system, which can be
achieved by stirring in a circular fashion inside of the condensate. Di�erent stages during
the procedure we are using for that purpose can be seen in �gure 11. Similar to the linear
stirring case we are starting with a Gaussian density distribution as shown in (a), depicting
density and phase distribution of the condensate. The di�erence is that we are now using
two laser beams instead of one, with the same distance to the cloud center, but on opposite
sides. They are circulating around the center with a chosen angular velocity ω, chosen to
be 50 Hz for the shown data. The ground state after imaginary time evolution is shown
in (b), depicting a high density at the beam spots and a resulting overall reduction of the
condensate size. This general appearance does not change during the course of our 300 ms
stirring time as it can be seen in (c) after 100 ms. After starting to ramp down the laser
power over 10 ms, the �rst vortex patterns are arranging after only a dozen of milliseconds
as illustrated by the condesate in (d) 50 ms after deactivating the beams. Further free
evolution time typically does not create any further vortices, but gives the cloud time to
rethermalize and increase the contrast of the vortex lattice (e).
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(b)(a) (c) (e)(d)

t0 t1 t2 t3 t4

Figure 11: Density (upper row) and phase (lower row) of the simulated cloud, trapped under
radially symmetric conditions with trap frequencies fx,y = 50Hz and fz = 500Hz, are shown
at di�erent times during the course of a circular stirring procedure for an angular stirring
velocity of 50 Hz, above the critical frequency limit for vortex creation. (a) shows the
initial Gaussian density distribution around the cloud center. (b) represents the energetic
ground state with activated laser beams, calculated by imaginary time evolution. In (c)
the laser beams are circulating for roughly 100 ms through the condensate. (d) depicts the
situation 50 ms after the end of stirring and a rapid ramp down of the laser power. In
(e) the condensate is shown at the end of the simulation process after 1 s of free evolution
without laser beams.

4.4 Rescaling of Simulation Data

Striving for a detailed understanding of the investigated heating procedures, conformity
between experimental data and simulations is highly desirable.
In the experiment, the BEC-fraction is easier accessible than the temperature, making it
reasonable to convert our simulated temperature into BEC-fraction and compare on this
basis. This coversion is performed straight forward following equation (2.1.4)

N0

N
= 1−

(
T

TC

)3

with the critical temperature for Bose-Einstein condensation according to equation [2.1.3].
First attempts in this direction revealed a signi�cant deviation from lab results in the form
of a highly enhanced heating in the simulations. This can be explained by the absence of
any energy dissipation in the numerics, that is present in the experiment with hot atoms
leaving the trap and the system loosing energy over time.
To take this into account, we added a phenomenological coe�cient c to adjust the heating.

N0

N
= 1−

(
T0

TC

+ c
∆T

TC

)3

(4.4.1)

As seen in the dotted lines in �gure 12, with this additional factor, taking values on the
order of 5% to 10%, we were able to match our data succesfully for velocites below 0.5
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Figure 12: Comparison of the heating behaviour depicted in BEC-fraction, for experimental
data (points with corresponding error bars) and simulation results (lines) is shown for an ex-
ample run. Red symbolizes the reduction of BEC-fraction for stirring parallel to the dipole
orientation, blue orthogonally to it and gray for a dipole-angle of 45◦. Simulation data
is �tted to the experimental results following equation (4.4.1) (dashed line) and equation
(4.4.2) (solid line).

mm/s, but could not map the saturation e�ects kicking in for higher velocities in the
experimental data. To respect this behaviour, probably caused by the loss of condensed
atoms to the thermal fraction in the experiment, due to the heating and a reduction in
further energy deposition. Therefore we scaled the heating additionally by the current
BEC-fraction to replicate this procedure in the simulations, leading to

N0

N
= 1−

(
T0

TC

+ c
N0

N

∆T

TC

)3

. (4.4.2)

This description allows for a remarkably good agreement between theory and experiment,
as shown in the solid lines of �gure 12. This is especially remarkable when considering
that our numerics are working on the eGPE and therefore only describe zero-temperature
processes, while a signi�cantly large thermal fraction can be observed in the experimental
data. This might indicate that thermal in�uences on the critical velocity and the heating
behaviour in general play a subordinate role.
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5 Breakdown of Super�uidity

The concept of super�uidity describes a wide range of remarkable many-particle phenom-
ena where the most famous can be described as frictionless �ow.
It arises in di�erent areas of physics, manifesting itself in a vanishing electrical resistance in
superconducting materials, where it was �rst observed [42], or as a loss of inner viscosity in
liquid helium [43]. In this chapter we investigate a Dysprosium Bose-Einstein condensate
under the in�uence of an external perturbance in the form of a Gaussian laser beam, with
the aim to get insights into the breakdown process of this super�uid state. The correspond-
ing breakdown procedure could be explained by Lev Landau in 1941 as a consequence of
the creation of excitations inside the �uid [41]. This theory results in the postulation of
the famous Landau-velocity that represents a remarkable connection between microscopic
excitation spectra and macroscopic transport properties of super�uids.

5.1 Landau Critical Velocity

The starting point for the following discussions shall be an intuitive derivation of Landau's
criterion. Even though the existence of super�uidity is a purely quantum mechanical
phenomenon, the famous Landau velocity [41] for the breakdown of super�uidity can be
derived in a remarkably intuitive way.
Considering an object with mass m moving inside a stationary super�uid with relative
velocity vi, the initial energy Ei and momentum pi take the form:

Ei =
m |vi|2

2
; pi = m vi . (5.1.1)

When passing through the �uid we assume the impurity to create an excitation at mo-
mentum p and energy ε(p), resulting in the overall energy of both impurity and excitation
of:

Ef =
m |vf |2

2
+ ε(p) ; pf = m vf + p . (5.1.2)

Here vf denotes the impurity's velocity after the interaction process, resulting in an exci-
tation with momentum p and energy ε(p). Using conservation of energy and momentum,
one can easily show that

p · vi =
|p|2

2m
+ ε(p) . (5.1.3)

Separating the norm and direction of the impurities velocity (vi = vi·v̂i) allows to explicitely
solve for the velocity

vi =
|p|2
2m

+ ε(p)

v̂i · p
. (5.1.4)
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This can only be ful�lled if vi is larger than a minimal velocity threshold vc

vi ≥ vc = Min
p

(
|p|2
2m

+ ε(p)

v̂i · p

)
. (5.1.5)

The right hand side of the upper inequality portrays the famous Landau critical velocity
in its general form, describing which velocity the disturbance needs to exceed in order to
be able to create excitations and therefore break the super�uid state. It is helpful, for
promoting a deeper understanding of this relation, to take a closer look at two special
cases.
In the strong coupling limit our excitation is a motion of the entire super�uid. In this case
the overall momentum and energy result in p =

∑
i pi ≡ N pi and ε(p) = N2p2

i /2m where
pi describes the single particle momentum, N the number of particles in the medium, and
where we assume the momentum to be equally distributed over all super�uid constituents.
Here the critical velocity vc is zero, meaning that the pure presence of the impurity termi-
nates the state of super�uidity.
In the weak coupling limit, the �rst summand in the numerator of the critical velocity can
be neglected, resulting in the most prominent representation of Landau's critical velocity

vc = Min
p

(
ε(p)

v̂i · p

)
=̂ Min

k

(
ω(k)

v̂i · k

)
. (5.1.6)

Here the right hand side, where to notation was switched from energy ε(p) and momentum
p to frequency ω(k) and wavevector k, is the form of Landau's criterion that will be used
for the rest of this thesis. The denominators in equation (5.1.6) imply some interesting
behaviour. It has been shown [47] for dipolar super�uids, that, by plugging the dispersion
relation (2.4.1) into the Landau criterion (5.1.6), the created excitations do not have to
move in the same direction as the stirrer itself and an equation for the e�ective critical
velocity has been derived that, adapted to our notation, takes the form

vc(η) = vc,‖ vc,⊥
(
sin2(η) v2

c,‖ + cos2(η) v2
c,⊥
)−1/2

(5.1.7)

with vc,‖ and vc,⊥ describing the critical velocity parallel and orthogonal to the dipoles
orientation and η the stirring angle inside the condensate-plane, ranging from parallel
(η = 0◦) to orthogonal (η = 90◦) relative to the dipole-projection. Thus the critical
velocity when stirring at a speci�c angle can be determined, as long as its counterparts
along and perpendicular to the tilt are known. This predicted anisotropy in the sound
velocity and therefore the critical velocity is a spectacular e�ect directly originating from
the dipole-dipole interaction.
Such an anisotropy in the critical velocity has been predicted and discussed before [47,49],
but has not been veri�ed experimentally yet. In the following we will compare experimental
and numerically simulated data for stirring a 162Dy condensate with a macroscopic stirrer
in order to proof the existence of this splitting. Using full numerical simulations enables us
to take all possibly arising �nite-size e�ects into account. Later on further simulations will
deepen our qualitative understanding of the heating behaviour of such a stirred super�uid.
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5.2 Anisotropy in the Critical Velocity of Dysprosium

In the strive for a full quantitative understanding of the critical Landau velocity in our sys-
tem, we compare experimentally measured and numerically simulated heating behaviours
of a 162Dy condensate containing approximately 8, 000 atoms and aim to extract the stir-
ring velocity threshold above which signi�cant heating in the dBEC sets in.

Our procedure for investigating the heating behaviour of a Dysprosium BEC, as it is fully
explained in section [3.3], looks the following. After forming a 162Dy condensate, we stir it
linearly with a laser beam of size w0 = 1.5µm and with a power of P = 1.0µW . Through
comparison of the system before and after the stirring we can determine the e�ective heat-
ing and through its onset the critical velocity of the system.
In order to determine this critical velocity vc we apply a �t-function, partially zero, describ-
ing the dissipationless regime, and partially rising, describing the heating after exceeding
the velocity threshold. The exact heating behaviour for a macroscopic stirrer with non-
uniform potential depth, as is our Gaussian laser beam, is unknown. Therefore we will fall
back onto a description as a point-like stirrer. The heating induced by such an impurity has
been theoretically investigated in [45], resulting in the following approximated �t-function
for our system

Ttheo(v) = T0 + h ts
v3

v3
c

(
v2

c

v2
− 1

)2

Θ(v − vc) (5.2.1)

with T0 as the initial temperature, h describing a heating-factor, ts the overall stirring
time, in all our systems chosen to be 1 s, vc the critical velocity threshold, v the stirrer
velocity and Θ the Heaviside-function.
This function is of course obtained for an idealised system and can not quantitatively
represent our data. This justi�es the need for full numerical simulations. However, ex-
tracting a critical velocity in order to compare experimental and simulated results requires
a �tting-function to be used. While using the function (5.2.1) achieves reasonable results
for the relatively smooth simulation data, it generates massive �tting-errors in the case of
the more di�use experimental results, making it impractical to use here. Therefore we will
content ourselves to a pragmatic linear �t-function that has already been used, in similar
form, in the context of critical velocity measurements [50].

Tlin(v) = T0 + h ts

(
v

vc

− 1

)
Θ (v − vc) (5.2.2)

The results of this �tting-procedure to the experimental data points are presented in form
of dotted lines in the �gures 13, 14 and 15. The extracted velocity thresholds, marked by
arrows in the �gure, have been summarised in table 1. Linear �tting was performed for the
experimental and simulated data, but to maintain clarity, only the former ones are shown
in the plots.
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Plot α [◦] R [µm] fx [Hz] fy [Hz] fz [Hz] η [◦] vc(Exp) [µm/s] vc(Sim) [µm/s]

(a) 0 2 49(1) 52(2) 168(1)
0 198(31) 210(7)
45 197(16) 189(18)
90 210(40) 211(6)

(b) 90 1 49(1) 52(2) 168(1)
0 350(39) 358(8)
45 144(36) 268(8)
90 161(13) 162(11)

(c) 90 1 81(7) 39(2) 140(9)
0 260(49) 334(15)
45 105(13) 204(4)
90 128(30) 160(10)

(d) 90 2 49(1) 52(2) 168(1)
0 565(54) 710(19)
45 216(54) 213(12)
90 208(58) 188(20)

Table 1: Critical velocities from experimental and simulated results shown in �gures 13, 14
and 15 via the �tting function 5.2.2, with the standard �t deviation in brackets.

Creating anisotropy in the critical velocity

The most striking e�ect that will be extensively investigated in this chapter is the di�er-
ence of the critical velocity in di�erent directions relative to the dipole-orientation in our
dipolar super�uid, a 162Dy Bose-Einstein condensate.
This e�ect can be easily observed in �gure 13 (a) and (b). In (a) the magnetic �eld is
pointing out of the condensate plane, creating an isotropic interaction strength in all hor-
izontal directions inside the BEC. Therefore stirring along di�erent directions results in
the same heating threshold. This behaviour is veri�ed in the presented experimental and
simulated results. When comparing this with (b), where the dipoles are tilted inside of the
plane (α = 90◦) and the interactions di�er along and perpendicular to the tilt-direction, a
signi�cant change is therefore observable in the critical velocity.
Fitting a linear function onto the experimental data following equation (5.2.2), in the
case of a vertical magnetic �eld orientation (a), reveals critical velocities that are identical
(va

c ≈ 200µm/s) within their �tting-errors for parallel, orthogonal and in-between stirring.
This is true for the experimental as well as the simulated results, even showing a notable
agreement between these two. When tilting the magnetic �eld, the critical velocities sep-
arate, with a signi�cant increase in the parallel (vb

c,0◦ ≈ 350µm/s) and a small decrease in
the orthogonal stirring direction (vb

c,90◦ ≈ 160µm/s), again in excellent agreement between
experimental and numerical results. Experimental data-points that have a signi�cant de-
viation from their surrounding and are located near the trap frequencies (gray dots) are
excluded from the �tting procedure, as they are most likely a result of a center-of-mass
oscillation in the trap, creating additional heating that is in no context to the critical ve-
locity we strive to investigate.
This increase of the critical velocity in the parallel stirring direction is in accordance with
the theory for the speed of sound in a homogeneous system, as was discussed in section
2.4.1 were the sound velocity parallel to the dipole orientation was predicted to be higher
than orthogonal to it. Stirring under an angle of η = 45◦ features a special behaviour with
a critical velocity between the earlier discussed cases in the simulation (vb,Sim

c,45◦ ≈ 270µm/s),
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Figure 13: Comparison of the Heating behaviour when tilting the magnetic �eld out of (a)
and into the BEC plane (b). Experimental (dots) and simulated (broad lines) results for the
heating of a 162Dy condensate with approx 8,000 atoms when stirred with a Gaussian laser
beam with a beam waist of w0 = 1.5µm and power of P = 1.0µW. The respective trapping
conditions and stirrer parameters are summarised in table 1 together with the critical
velocity threshold determined following a linear �t via equation (5.2.2). The �ts to the
experimental data points are shown in the form of dotted lines and the �tted critical velocity
is highlighted by coloured arrows on the bottom side, for the experimentally measured data.
Additionally a density scheme of the respective measured cloud is shown in the bottom right
corner with colored bars representing the stirring path. It is worth noting that the width of
the bars does not re�ect the correct beam waist of the stirrer, which is signi�cantly bigger.
Experimental data-points that have a signi�cant deviation from their surrounding and are
located near the trap frequencies (gray dotes) are excluded from the �tting procedure.

but a behaviour similar to the orthogonal (vb,Exp
c,45◦ ≈ 144µm/s) stirring in the experimental

data. This simulation result represents an uncommon case. A similarity with the orthog-
onal stirring case can be identi�ed in all other data sets and can be justi�ed following the
discussions around equation (5.1.7) in the last section.
When applying the results discussed there, a critical velocity of vb,Theo

c,45◦ = 205.8µm/s can
be calculated, being signi�cantly closer to the orthogonal than the parallel stirring result.
These data sets demonstrate in a very intuitive way how the anisotropic interaction strength
over the macroscopic size of the condensate, due to the direction-dependent dipole-dipole
interaction between the condensate particles, induces a split-up of the critical velocity in
di�erent directions relative to the dipole tilt.
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In�uence of Magnetostriction

Figure 14: Comparison of the heating when changing the cloud aspect ratio from
κa = Rx/Ry ≈ 1.4 (b) to κb = Rx/Ry ≈ 1.4−1 (c). The meaning of the plot constituents is
identical to �gure 13. Even though the exact critical velocity position varies when inverting
the cloud aspect ratio, the splitting itself remains, proo�ng that magnetostriction is not
the origin of the phenomenon.

It might not be obvious that the anisotropy in the critical velocities is an e�ect of the
anisotropic interaction itself, but rather a relict of the anisotropic density distribution due
to the e�ects of magnetostriction on the atomic cloud modifying the density landscape
following equation (2.4.3).
In order to falsify this claim, the heating behaviour of two condensates with reversed cloud
aspect ratios is compared in �gure 14 (b) and (c). For both cases, (b) with κa = Rx/Ry ≈ 1.4,
and (c) with κb = Rx/Ry ≈ 1.4−1 we estimate the critical velocity via a linear �t to the
experimental and simulated data, with the results shown in table 1.
Comparing the resulting critical velocities for both cloud conditions, several relevant as-
pects are striking. First of all, in agreement with the discussion above, stirring parallel to
the dipole-tilt-direction results in a signi�cantly higher critical velocity and lower overall
heating compared to stirring in other directions. This clearly shows that the observed
e�ect is not caused by magnetostriction.
Furthermore the signi�cant mismatch between the simulated and experimentally measured
heating behaviours of η = 45◦-case, as it was known from (b) has signi�cantly decreased
in (c), with the numerical results here con�rming the similarity to the orthogonal stirring
case. The quantitative di�erence in the critical velocities between (b) and (c) might be
caused by them not possessing the exact same density distribution.

Overall the analysis of �gure 14 (b) and (c) demonstrated that the anisotropy in the critical
velocity is not caused by pure magnetostriction e�ects, even though the cloud form and
therefore the trapping conditions seem to have an impact on the exact value of the critical
velocity.
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Varying the Stirring Amplitude

Figure 15: Comparison of the heating when increasing the stirring amplitude from
R = 1.0µm (b) to R = 2.0µm (c). The meaning of the plot constituents is identical to
�gure 13. Stirring over an increased distance and therefore stirring lower density regions
increases the critical velocity in all stirring direction, whereby the e�ect is signi�cantly
stronger parallel to the dipole-tilt.

The next logical step is to study variations in the stirring procedure. For this reason the
stirring amplitude has been varied from 1.0µm to 2.0µm from �gure 15(b) to (d). An
increase in the stirring amplitude is also equivalent to a�ecting areas with lower density
against the edges of the condensate possessing a lower local speed of sound, following the
discussions in section 2.4.1.
Apart from this an overall increase in the critical velocity is observable in all stirring di-
rections, whereby the η = 45◦-case (vd,Exp

c,45◦ = 216µm/s) again behaves nearly identical to

the orthogonal stirring version (vd,Exp
c,90◦ = 208µm/s). This behaviour is again in agreement

with the simulated (vd,Sim
c,45◦ = 213µm/s) result, that predict the same similarity.

Furthermore the structure of the heating process has obviously noticeably changed from
(b) to (d), exhibiting a �at heating region after the original onset of dissipation for the
orthogonal stirring direction and signi�cantly later onset of heating in the orthogonal di-
rection. Such variations will be investigated in more detail in the following section 5.3.
The �tted critical velocities orthogonally and diagonal to the �eld direction only changed
insigni�cantly, while parallel stirring shows a drastically later onset of heating. It can, at
this point, not clearly be veri�ed whether this e�ect is caused by stirring in lower density
regions, or by other e�ects, motivating ones again a more detailed numerical investigation
of the critical velocity dependencies that shall be given in the next section.
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Short Summary

The most important results of this thesis are summarised in �gures 13, 14 and 15. There it
was veri�ed experimentally as well as numerically that the critical velocity in a 162Dy Bose-
Einstein condensate can be manipulated by an outer magnetic �eld aligning the atomic
dipoles, allowing to achieve di�erent critical velocity thresholds parallel and orthogonal to
the projection of this dipoles.
The described splitting is not caused by a pure density modi�cation through magnetostric-
tion and the exact values of the critical velocity can be altered by changing the cloud shape
as well as certain parameters of the stirring procedure, like the stirring amplitude.

5.3 Qualitative Behaviour of the Critical Velocity

The previously shown experimental results were able to verify a splitting of the critical
Landau velocity in the condensate plane if the dipoles in a dipolar super�uid are tilted
(α 6= 0◦). In the following a quantitative analysis of a 162Dy condensate's heating be-
haviour under variation of di�erent parameters of the stirring process hall be given. As no
experimental data corresponding to the following simulations exist, we will limit ourselves
to qualitative discussions of the resulting heating behaviour.

5.3.1 Anisotropic Heating of a Dipolar Super�uid

Following the discussions in section 5.2, where the existence of a separation of the critical
velocities in di�erent directions due to the anisotropy in the dipole-dipole interaction of the
condensate particles has been demonstrated, it seems natural to investigate this splitting
in more detail. Therefore we manipulate the dipole-orientation in the cloud through an
external magnetic �eld and observe how the overall heating behaviour, following a stirring
sequence, behaves.
In �gure 16 the simulated heating per atom in dependence of the stirring velocity for
di�erent magnetic �eld angles from α = 0◦ (a) to α = 90◦ (d) is presented. A negligible
heating can be observed in the beginning of each of the shown heating curves, transitioning
smoothly into an approximately linear regime, before saturation e�ects start to gain impact
and the overall heating decreases again. The origin of this saturation is not fully understood
yet. It might originate in the fact that at high frequencies the BEC experiences a time-
averaged potential rather than a moving impurity.
Comparing the overall amount of heating in �gure 16 (a)-(d) it is noticeable that tilting
the magnetic �eld inside the BEC-plane reduces the heating by the stirring procedure. A
closer look at the beginning of the heating curves reveals that the onset of heating, even
though it can only be estimated, seems to be practically constant in the orthogonal stirring
direction (solid lines), but moves to higher velocities for orthogonal stirring (dashed lines).
This behaviour is in excellent agreement with the experimental results in the last section
(�gure 13) and re�ects the behaviour of sound waves in a homogeneous condensate as
discussed section 2.4.1.
Herewith we veri�ed that this behaviour, as it was identically observed in chapter 5.2,
behaves monotonically also for arbitrary intermediate angle conditions.
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Figure 16: The simulated heating per atom in dependence of the velocity of the stirring
beam and of the magnetic �eld angle for 8,000 atoms in a cylindrically symmetric trap
with a radial trap frequency of fx,y = 50Hz and a vertical trap frequency of fz = 168Hz
and for a stirring amplitude of R = 1µm, is shown. The heating behaviour for stirring
parallel and orthogonal to the projection of the magnetic �eld onto the condensate-plane,
can be seen in dashed and solid lines.(a)-(d) present the heatings rescaled to 1 s of overall
stirring time for one speci�c �eld angle respectively.
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5.3.2 Variation of the Stirring Angle
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Figure 17: Simulation for the heating per atom in dependence of the stirring beam's velocity
and its angle with respect to the magnetic �eld (η) for 8,000 atoms with trap frequencies of
fx = 49Hz, fy = 52Hz and fz = 168Hz for a stirring amplitude of R = 1µm. The magnetic
�eld is tilted inside the BEC-plane (α = 90◦). The simulated heating for a single oscillation
is rescaled to an overall stirring time of 1 s.

A further interesting aspect is the heating behaviour of the BEC when stirring along dif-
ferent angles with respect to the magnetic �eld being tilted into the BEC plane (α = 90◦).
This problem has been theoretically investigated in [47] where it could be shown that the
critical velocity only coincides with the speed of sound in the system when stirring parallel
(η = 0◦) or orthogonally (η = 90◦) to the dipole orientation. In the intermediate steps the
critical velocity is described by equation (5.1.7) as was discussed in section 5.1. The results
of these simulations can be seen in �gure 17 in form of the heating rescaling to a full second
of stirring .
What can be observed is a monotonous increase in the overall heating when varying the
stirring angle η from parallel to orthogonal relative to the dipole orientation. In the sim-
ulated heatings a clear peak around 200µm/s is apparent. This corresponds to a stirring
frequency of

fs =
vs

4 R
=

200 µm
s

4µm
= 50 Hz (5.3.1)

which is equivalent to the mean radial trap frequency. Therefore this peak can be under-
stood as an additional heating due to the excitation of the center-of-mass oscillation of the
condensate.

In the presented results a clear trend is observable showing the anisotropy in the condensate
heating, with a monotonous decrease of the dissipation when stirring parallel either than
orthogonal relative to the dipole-orientation.
This agrees nicely with the already discussed theoretical predictions for the behaviour of
the speed of sound in a three-dimensional homogeneous system in 2.4.1.
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5.3.3 Variation of the Stirring Amplitude

0.0 0.2 0.4 0.6 0.8
0

100

200

300

400

500

600

v[mm/s]

H
ea
tin
g/
A
to
m

[n
K
]

Variation of the Stirring Amplitude

 R = 0.25 μm

 R = 0.50 μm

 R = 0.75 μm

 R = 1.00 μm

⊥ R = 0.25 μm

⊥ R = 0.50 μm

⊥ R = 0.75 μm

⊥ R = 1.00 μm

Figure 18: Simulated heating per atom of a 162Dy condensate with 8,000 atoms in a trap
with trap frequencies of fx = 49Hz, fy = 52Hz and fz = 168Hz in an external magnetic
�eld tilted inside the BEC plane (α = 90◦) when varying the stirring velocity of a stirrer
with a beam waist of w0 = 1.5µm. The heating after rescaling to tstir = 1 s is shown when
varying the amplitude of the stirring movement.

In the next step we study the e�ect of a variations in the stirring amplitude, meaning the
distance that the stirrer travels each oscillation while the dipoles are oriented inside the
BEC plane (α = 90◦).
In �gure 18 the heating per atom rescaled to a full second of stirring is shown for di�erent
stirring amplitudes inside a cloud with a radius of around 4µm.
It is apparent that the dissipated energy increases strongly with the stirring amplitude.
This can be understood when considering the density distribution of a (dipolar) Bose-
Einstein condensate that forms an inverted parabola with decreasing density against the
edges. Stirring with bigger amplitudes around the center reaches regions with lower density,
resulting in a decreased local speed of sound following equation (2.4.3). This simpli�es the
creation of sound waves, increasing again the overall heating.
The heating peak around v ≈ 200µm/s that we identi�ed as the center-of-mass oscillation
in the last section, grows signi�cantly with the stirring amplitude, indicating that it involves
long-wavelength excitations.
What is further clearly visible in �gure 18, is that the heating maximum, before saturation
e�ects get to strong, shifts to higher velocities when the stirring amplitude is increased.
The maximum of heating shifts to higher velocities as the amplitude is increased, which
seems to agree with the assumption that this saturation is caused by time-averaging at
high frequencies. The critical velocity in the form of the onset of heating can not clearly be
identi�ed, as the position of the heating peak makes the behaviour in the relevant velocity
range unpredictable.
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5.3.4 Variation of the Beam Size
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Figure 19: The simulated heating per atom rescaled to 1 s of a 162Dy condensate with
8,000 atoms trapped by trap frequencies of fx = 49Hz, fy = 52Hz and fz = 168Hz when
stirring with varying velocity and a radius of R = 1µm, rescaled to a stirring duraction of
tstir = 1 s, is shown. Resulting thereby the generated heating for di�erent stirrer sizes from
w0 = 0.25µm to w0 = 1.00µm is compared. The curve for parallel stirring with a beam
size of w0 = 0.50µm is nearly directly on its orthogonal w0 = 1.25µm counterpart and is
therefore hardly visible.

Further we vary the size of the stirring beam. Most of the theoretical work on stirred dipolar
quantum gases is based on point-size stirrers [45,47], making it interesting to investigate
the in�uence of the size of macroscopic stirrers. We vary the beam waist and laser power
as described in the following. Changing the beam waist of a Gaussian laser beam also
alters the potential depth following equation (3.3.1). In order to distinguish between the
in�uence of changes in beam waist w0 and potential depth Vstirrer, the latter will be held
constant by adapting the laser power P.

Vstirrer ∝
P

w2
0

Vstirrer constant−−−−−−−−−−→ P ∝ w2
0 (5.3.2)

Under these conditions, the heating behaviour takes the form shown in �gure 19 with
the heating per atom rescaled to a stirring duration of 1 s for di�erent beam waists at a
constant potential depth. With increasing beam waist the overall heating seems to increase
signi�cantly. This can be explained by two di�erent considerations. First by increasing
the beam waist, the area of the beam increases signi�cantly and a higher number of atoms
is accelerated by the stirrer, increasing the overall heating.
Secondly when the beam with a bigger beam waist is oscillating with the same oscillation
amplitude as a smaller one, it stirs regions with lower density, reducing the speed of sound
and simplifying the creation of excitations. This last point would also predict a reduction
in the systems speed of sound and therefore possibly in the critical velocity. A close look
at the heating in the low velocity regime con�rms this.

Page 41 / 69



Michael Eisenmann Critical Velocity

5.3.5 Variation of the Potential Depth
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Figure 20: The simulated heating per atom rescaled to 1 s of heating for a 162Dy condensate
with 8,000 atoms with trap frequencies of fx = 49Hz, fy = 52Hz and fz = 168Hz when
stirring with varying velocity at a beam waist of w0 = 1.5µm and a radius of R = 1µm,
rescaled to a stirring duration of tstir = 1 s, is shown. The potential depth of the stirrer is
increased from 0.25µW=̂0.025µ to 2.0µW=̂0.200µ.

The second beam parameter whose in�uence we want to investigate is the potential depth,
leading to the heating curves shown in �gure 20. The potential depth is varied by changing
the laser power from 0.25µW =̂ 0.025µ to 2.00µW =̂ 0.200µ, where the power can be
translated into potential depth by equation (3.3.1). This then needs to be compared to µ,
the chemical potential of the dipolar condensate [12], given by

µ = g n (1− εddfdip(κ)) . (5.3.3)

with fdip(κ) the dipolar anisotropic function given in equation (2.3.13) and a κ for our
clouds of around 3.57. With higher potential depths the heating increases drastically by a
factor of around 60 between the V = 0.025µ and V = 0.200µ. This can be understood in
the following way. When increasing the stirring potential, the interaction with the atoms
increases, pulling more particles into the beam and increasing the transferred energy.
Experimentally a trade-o� has to be found between obtaining observable heating within
the lifetime of the sample and a su�ciently low coupling to observe super�uid �ow and the
onset of heating. This justi�es the choice of laser power that was made.
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5.3.6 In�uence of the Number of Stirring Cycles
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Figure 21: The simulated heating per atom rescaled to 1 s of stirring time divided by the
number of stirring cycles is shown. The BEC, consisting of 7,500 atoms, was trapped
in a trap with frequencies fx = 49Hz, fy = 52Hz and fz = 168Hz and was stirring by an
attractive laser beam with 1µm stirring amplitude and a beam waist of w0 = 1.5µm. The
vertical lines represent the mean radial (black) and horizontal (gray) trap frequencies.

All the simulation results in this chapter are calculated for a single stirring oscillation and
then rescaled to an overall stirring time of 1 s, in order to make them comparable with
experimental results, where the heating after a single oscillation would be not detectable.
In order to verify that this rescaling procedure is even useful, and that therefore e�ects of
density variations when stirring multiple times over the same locations play no signi�cant
role, we compare the heating after di�erent numbers of stirring cycles.
The heating for several oscillation cycles is rescaled down again to 1 oscillation for com-
parability. This just means that the heating is divided by the respective number of cycles
with the results shown in �gure 21
The heating for a higher number of oscillations seems to oscillate around the single oscil-
lation case with increasing amplitude for higher cycle numbers. This might indicate that
we continue pumping collective modes, like the center-of-mass oscillation discussed before,
with every successive cycle. A phenomenon like this would quite surely not appear in a
realistic experimental setup, where strongly accelerated atoms would just leave the trap.
With an increasing reduction in the atom number, the heating would then reduce and the
long-term behaviour would di�er from a linear tendency. Another possible explanation
for the curious heating after several cycles might be that every oscillation cycle is able to
create density waves moving through the condensate. The stirrer on its path will surely
cross them over and over again. Depending on the exact stirrer velocity these waves will be
passed more often in parallel or anti-parallel direction, what might cause either an increase
or decrease in the respective heating.

In the end, the heating after several stirring cycles in our simulations seems to behave
roughly as the multiple of a single stirring move, validating the validity of our scaling
procedure.
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5.3.7 Variation of the S-Wave-Scattering Length
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Figure 22: The simulated heating behaviour for a 162Dy condensate with 8,000 atoms,
trapped under fx = 49Hz, fy = 52Hz and fz = 168Hz, for di�erent contact scattering
lengths is shown. In (a) and (b) experimental and simulated results are compared in
form of the resulting BEC-fraction. The simulation data is �tted onto the experimental
results following equation 4.4.2 with the corresponding heating factor c given on topside of
the plots.

A further aspect of interest is whether the data collected during the work on this thesis can
be used to determine not exactly known characteriscs of the used dipolar atoms. There-
fore in the following the in�uence of the background scattering length of 162Dy shall be
evaluated. In (a) and (b) the simulated results are �tted onto experimental results for a
162Dy cloud in the form of the resulting BEC-fracion following equation (4.4.2). During
this �tting the heating factor c is chosen in a way to achieve optimal agreement between
the experimental and simulated results. The heating peak that we connected to a center-
of-mass oscillation in the last sections can be seen to increase massively with a reduction in
the s-wave scattering length as. Similar to that, the overall amount of heating noticeably
increases with the scattering length. This is understandable as a reduction in the scattering
length reduces the systems speed of sound, following equation (2.4.3) and therefore making
phonon excitation easier.
An optimal agreement between experimental and simulated data is not creatable by vary-
ing the heating factor c for any of the shown data sets, but a very good agreement in
the orthogonal stirring direction can be created for three scattering lengths (as = 121 a0,
as = 141 a0 and as = 161 a0) to the cost of deviations in the parallel direction for high ve-
locities. Examples are shown in (a) with the as = 141 a0 curve �tting best, while in (b)
the as = 161 a0 data set is chosen to �t the experimental results as good as possible. In
both cases the conformity to the experiment is given for velocities below approximately
600µm/s in the parallel direction. Overall our results do not allow us to determine to
s-wave scattering length for 162Dy exactly, but narrow it down to a region between 121 a0

and 161 a0. These �ndings are thereby in excellent agreement with conclusions published
by the Stanford group of Benjamin Lev, where the s-wave scattering length for 162Dy
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was determined in several attempts to be as = 141(17) a0 [35], as = 154(22) a0 [51] and
as = 122(10) a0 [58,59].
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6 Vortices

In the previous chapter the onset of dissipation in a super�uid above a critical �ow velocity
threshold was discussed, and the creation of excitations, following an argumentation of Lev
Landau, was identi�ed as the origin of this phenomenon.
While phonons and rotons are possible quasi-particles able to cause this breakdown of
super�uidity, another mechanism exists that can arise at even lower �ow velocities: Vor-
tex creation [50]. Super�uids are irrotational, as will be shown in the �rst section of this
chapter, and therefore need a process to get rid of that angular momentum, should it be
added to the system. This is done by the creation of an excitation that carries angular
momentum, the vortex, a density hole with particles rotating around a central core [60].
Verifying the presence of vortices is of special interest, since it gives the clearest visible
evidence for the existence of super�uidity in a system [61]. While vortices have been ob-
served many times in isotropic systems [50,62], they have never been observed in a dipolar
system, enabling us to perform pioneering work in this direction with our Dysprosium
dBECs. Due to the anisotropic dipole-dipole interactions in Dysprosium we expect varia-
tions in the density distribution around the vortex core [71], as well as adaptions in their
relative alignment [40,64,65].

6.1 Theoretical Background

In order to allow an easy access into the very broad topic of vortices in super�uids we
will start with a very short introduction of the most relevant characteristics and properties
analysed in later parts of this chapter. More detailed explanations and derivations can be
found in the summary papers [60,57] or in the well known standard work [22].

Vortices in homogeneous super�uids

The wave function of a weakly interacting BEC can be written in the form [22]:

Ψ(r) =
√
n0 e

iφ(r) (6.1.1)

where the density-dependence n0 and phase-behaviour φ(r) can be separated.
The latter is directly related to the local particle velocity [23].

v(r) =
~
m
∇φ(r) (6.1.2)

A remarkable property of condensates following the above velocity dependence is that they
are irrotational, as can be seen by taking the curl of v(r).

∇× v(r) =
~
m
∇×∇φ(r) = 0 (6.1.3)

This results from φ(r) being a scalar �eld and the fact that the curl of a scalar �elds
gradient always vanishes ∇× (∇φ) = 0. Due to its inability to rotate, the super�uid is
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forced to process the desired angular momentum in form of the creation of a vortex. The
intuitive reason for vortex creation is therefore, that the only way to satisfy ∇×∇φ = 0
is to displace all particles from the rotation spot (n0 = 0) and thereby creating a hole in
the condensate, a vortex core. The phase coherence of a super�uid forces the phase change
around a closed path around the vortex core to be multiples of 2π [22]∮

v(r) · dl = 2π
~
m
nv =

h

m
nv (6.1.4)

with nv = 0,±1,±2, ... describing the angular momentum of the vortex constituents as
multiples of h/m, typically labeled "charge", of the vortex. The velocity of particles
moving on circular lines perpendicular to the vortex axis at a distance r⊥ can be derived
from equation (6.1.4) to be

v =
~

mr⊥
nv . (6.1.5)

With the conducted groundwork we are now able to look for the onset of vortex creation
and therefore the rotation speed threshold above which the �rst vortices appear. The
energy necessary for forming a vortex is mainly given by the kinetic energy of the particles
circulating the core, given by [22]

Ev =

∫
1

2
ρv2 dr = π l ρ n2

v

(
~
m

)2

ln

(
R⊥
ξ

)
(6.1.6)

where ρ describes the local mass density and we integrated over a hollow cylinder with
length l, inner radius ξ (corresponds to the radius of the vortex core) and outer radius R⊥
around the vortex line. When doing this rotation the �uid constituents hold an angular
momentum

L =

∫
ρvr dr = π l ρ nv

(
~
m

)
R2
⊥ (6.1.7)

where the integration was performed again over a cylinder with length l and radius R⊥.
In a rotating system vortex creation gets energetically favourable when E−Ω · L < 0 or
respectively when the angular velocity exceeds the critical threshold value

Ωc,hom =
Ev

|L|
=

~
mR2

⊥
nv ln

(
R⊥
ξ

)
nv=1
=

~
mR2

⊥
ln

(
R⊥
ξ

)
. (6.1.8)

In the last step we set the vortex charge nv to 1, because only these ones are stable. This
can be illustrated by the scaling behaviours of the vortex energy Ev (scaling with n2

v) and
the particle momentum L (scaling with nv), making vortex creation for higher charges
highly energetically undesirable.
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Vortices in trapped super�uids

Of course a homogeneous super�uid is a highly idealised system that would require the
medium to possess in�nite extend. Super�uids in atomic physics are typically trapped to a
close region in space, making them clearly inhomogeneous. Therefore the previous results
need to be extended in order to describe our dipolar Bose-Einstein condensate in a satis-
fying way. The trapping primarily creates a space-dependency in the density distribution
n0 → n0(r) that needs to be considered in the derivations shown above. We do not wish to
repeat the full calculations again but will focus on the most relevant results. For a more
detailed derivation we refer again to the sources mentioned in the beginning.

The so called "healing-length" ξ is de�ned as the distance around the core where the kinetic
and interaction energy balance each other [60] (Ekin = EWW). The intuitive name origins
from the visual picture that the condensate has "healed" its defect in form of the vortex
core at this distance. This can be shown to be at

ξ =
~

√
mn0 g

=
1√

4π n0 as
(6.1.9)

for a purely contact interacting BEC, with as the background scattering length and n0 the
peak density in the absence of the vortex. With this we receive the �nal version of the
critical frequency for stable vortex creation in a purely contact-interacting system in the
form of

Ωc,trap =
5

2

~
mR2

⊥
ln
(√

4π n0 as R⊥
)

(6.1.10)

scaling with the condensates density and scattering length.
This relation will most probably not result in a perfect description of our strongly dipolar
Dysprosium condensate, as anisotropic dipolar in�uences are not taken into account.
As an exact derivation of the critical frequency in dipolar systems is not known yet, we
will still use this equation as a rough guide while keeping in mind that, especially for
strong dipole-tilts, the healing-length and therefore the critical frequency will most likely
be signi�cantly modi�ed. This modi�cation is expected to create an anisotropy in the
density distribution around the vortex cores, increasing the density in the direction of the
magnetic �eld an reducing it orthogonal to it [71]. Further it has been predicted that vortex
lattices that typically hold a triangular Abrikosov formation under isotropic conditions [65]
might change to linear lines [64] or even more peculiar patterns [40].

6.2 Vortex Creation

After having discussed the basic theory, it is time to take a look at the speci�cations of
the vortex creation procedure in our simulations.
This section intends to o�er insights into the process for vortex formation in a cylindrically
symmetric 164Dy Bose-Einstein condensate and the critical stirring frequency threshold in
the case of an attractive as well as a repulsive potential that is used to stir the condensate.

Page 48 / 69



Michael Eisenmann Vortices

6.2.1 Forming Mechansims

Vortices have been generated by other experiments in the past via laser stirring [37,63] in
order to introduce angular momentum to the system.
The �rst problem when it comes to stirring a condensate for the creation of excitations
like vortices, is to �nd a working parameter space for the relevant degrees of freedom in
trapping and stirrer details. After some experimenting it became clear that slightly oblate
clouds with a trap aspect ratio of around κ = fz/fr ≈ 10− 15 seem to be promising candi-
dates for our simulations. The condensate discussed in the following is trapped accordingly
in a trap with trap frequencies of fx,y = 40 Hz and fz = 500 Hz, which is equivalent to a trap
aspect ratio of κ = 12.5.
Figure 23 presents di�erent intermediate stages during an exemplary stirring process be-
tween an undisturbed 164Dy condensate out of 4,000 atoms and the resulting vortex lattice
after stirring and an additional formation time. At this point we are not yet interested
in the in�uences of the anisotropic dipole-dipole interaction of the magnetic Dysprosium
atoms. While still including it into the simulations, for now we choose a magnetic �eld
pointing out of the BEC plane and therefore an isotropic dipolar interaction in the BEC
plane. Additionally to the density distribution, the respective phase is depicted to verify
that the forming holes in the condensate are real vortices and not just random density vari-
ations. Following the discussions in the previous chapter the phase around a vortex core
varies by 2π, making the phase distribution a clear indicator for the presence of a vortex.
The stirring is performed by two Gaussian laser beams with a distance of R = 2µm to the
cloud center, each possessing a beam waist of w0 = 1µm as well as an individual power of
up to Pmax = 1µW and rotate around the cloud center with a frequency of f = 50 Hz.
The process starts with the ground state of the dipolar condensate after imaginary time
evolution of an original Gaussian density distribution shown in �gure 23 at t0. Then the
two laser beams start to rotate, while their power is ramped up linearly from zero to
Pmax = 1µW over tramp = 10 ms, followed by tstir = 300 ms of stirring and a down ramping
over tramp. The density and phase of the cloud is shown in �gure 23 at the beginning of
the stirring procedure (t1), in the middle (t2) and at the end (t3).
It is visible that the condensate particles get attracted into the two laser beam spots in the
beginning (t1). Then they form interesting density symmetries during the stirring process,
propably caused by the atoms not being able to follow the beams quick enough, therefore
leaving the laser spots and getting reabsorbed multiple times over the stirring cycles (t2).
In the end, shortly before ramping down the power of the stirring beams, the cloud seems
to be completely disordered (t3).
Because the simulations do not contain any energy dissipation and conserve the number of
particles, the atoms can not leave the trap. In a real experiment this is the point where a
high number of particles would propably be lost, illustrating the main reason why vortex
creation through stirring is highly di�cult to perform under realistic experimental con-
ditions and why we mainly fall back on idealised simulation procedures. After the laser
beams are deactivated, the condensate is given several seconds of free evolution time in
order to rethermalize and form vortices.
The �rst vortices become visible about 400 ms after the end of stirring when the particles
start to form a coherent cloud again (t4). Further time steps are depicted after 1 s (t5), 3 s
(t6) and 5 s (t7) of overall simulation time, illustrating how the condensate stabilizes again,
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resulting in an improved contrast and a better visibility of the vortex cores.
It is worth highlighting that the number of vortices seems to be determined relatively
shortly after the �rst ones become visible (between t4 and t5) and is preserved thereafter.
This behaviour was observed in all simulations containing vortex creation and underlines
that the process of forming a vortex can only happen during the chaotically swirled state
of the condensate where the particles stabilize into a collective cloud. The vortex number
does not change later on, as a certain amount of angular momentum is necessary to create
them and after the stirring procedure the amount of angular momentum in the system is
conserved.

The fact that the number of created vortex cores shows to be determined after a relatively
short free evolution time of a few hundred milliseconds enables the reduction in overall
simulation time. Still this duration, being in the order of 1 s might proof problematic
under realistic experimental conditions. Typical lifetimes of vortices have been shown [62,
78] to of comparable size, making the creation of vortex lattices quite di�cult.
The results discussed in the following sections will all arise from simulations containing a
stirring time of tstir = 300 ms and a free evolution time of 1 s (between t5 and t6). At this
point the qualitative vortex formation is clearly visible and further evolution time brings
no additional information.
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Figure 23: Density and phase plots of a simulated 164Dy condensate out of 4,000 atoms
during stirring with two Gaussian laser beams at a distance of R = 2µm to the center
with a frequency of f = 50Hz at di�erent times t0-t7. The beam waist of this stirrers is
w0 = 1µm and the power ramped up to Pmax = 1µW. We are starting with the the ground
state of the cloud after imaginary time evolution without any stirrer in�uences at t0 (green
box). Then the condensate gets stirred for tstir = 300ms. Here the cloud condition is
shown at the beginning (t1), in the middle of the stirring procedure (t2) and at the end (t3)
(blue box). Finally we apply a free evolution time to allow the condensate to rethermalize
and create vortices. Di�erent stages of this vortex formation are presented with the �rst
appearing vortices after around 700ms (t4 followed by the cloud consolidating after 1 s (t5),
3 s (t6) and 5 s (t7) (red box).
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6.2.2 Critical Frequency

When trying to create vortices through stirring of a super�uid, a certain critical stirring
frequency needs be to exceeded, as was discussed in section 6.1.
In �gure 24 the simulated density and phase distribution of a 164Dy condensate under sim-
ilar conditions as in the previous section is shown for stirring with attractive and repulsive
beams at di�erent velocities f. For our qualitative discussions we ignore that the poten-
tial depth of the beam would theoretically depend on the polarizability of Dysprosium to
the respective wavelength and just assume an identical potential depth for attractive and
repulsive beams, enabling us to just switch the sign (Vattr = −Vrep). The condensate is
trapped in a highly oblate form with trap frequencies of fx,y = 40 Hz and fz = 500 Hz.
Figure 24 reveals two relevant characteristics of the vortex creation mechansism through
stirring. First of all, when increasing the stirring frequency, the �rst vortex gets created
at roughly the critical frequency and more and more vortices tend to appear when even
further accelerating the stirring. The fact that the creation does not start exactly at the
critical frequency corresponding to conditions at the center of the condensate is the density
scaling of this critical frequency following equation (6.1.10). It reduces with the density,
therefore vortices are expected to be �rst created at the edges of the condensate where the
local critical rotation frequency might be lower than in the center.
When comparing attractive and repulsive stirrers with identical potential depth, it is ap-
parent that the repulsive beams always generate more or at least the same amount of
vortices as their attractive counterparts. This behaviour is well known [37] and can be
understood through the density dependence of the critical frequency in equation (6.1.10).
The repulsive laser beams reduce the local density around them, what then again reduces
the local critical frequency, simplifying the creation of vortices.
This tendency was the motivation for us to build a 405 nm laser setup, as discussed in
detail in chapter 3.3, a wavelength forming a repulsive potential for Dysprosium atoms.
Calculating the theoretical critical rotation frequency following equation (6.1.10) with the
following parameters of our system (n0 ≈ 10201/m−3, R⊥ ≈ 4µm) results in a value of
fc = ωc/(2π) = 83.97 Hz at the center of the condensate, which is signi�cantly higher than
the one we are experiencing in �gure 24. Due to the density and therefore critical frequency
reducing against the edges, this an understandable result.

Overall it could be shown that repulsive stirrers are more e�cient in vortex creation than
attractive ones and that even stirring below the critical frequency allows vortex creation
in o�-center positions with lower density.
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Figure 24: Density and phase plots of a simulated 164Dy condensate out of 4,000 atoms after
stirring with two Gaussian laser beams at a distance of R = 2µm to the center under vari-
ation of the stirring frequency. The beam waist of the stirring beams is �xed at w0 = 1µm
and the maximal power after ramping up is chosen to be Pmax = 1µW. The resulting
vortex con�guration after 300ms of stirring and 1 s of free evolution time is depicted for
di�erent stirring frequencies when using either an attractive or a repulsive laser beam. In
all shown cases the dipoles are aligned out of the condensate plane (α = 0◦), making the
DDI isotropic.
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6.3 In�uence of Anisotropic Trapping

Our simulations about the creation and behaviour of vortices should, apart from the basic
question whether their creation is possible at all, also provide insights into possible chal-
lenges for later experimental veri�cations. In a realistic experiment the parameters of a
system are seldom exactly known, but feature small deviations from the desired value, due
to measurement inaccuracies and other experimental di�culties.
A good example of these properties are the exact trap frequencies, having a signi�cant im-
pact on the density distribution and therefore overall shape of the investigated condensate.
Over time the exact value of the trap frequencies can drift noticeably, motivating us to
explore the in�uence of resulting anisotropies in the cloud.
In �gure 25 the resulting vortex con�guration for di�erent radial trap frequency combina-
tions are shown, ranging from an isotropic con�guration with fx,y = 40 Hz to increasingly
anisotropic conditions up to fx = 37 Hz and fy = 43 Hz.

fZ= 500Hz

40/40fX fY/ 39/41 38/42 37/43[Hz]

Figure 25: Density distribution of a 164Dy condensate of 4,000 atoms, trapped under varying
trapping conditions after 300ms of stirring and 1 s of free evolution time. We are stirring
with two repulsive laser beams with beam waist w0 = 1.5µm, rotating them around the
cloud center with at a distance R = 2µ with a frequency fstir = 50Hz. The vertical trap
frequency is �xed to fz = 500Hz and the radial trap frequencies are varied, starting from
the isotropic case fx,y = 40Hz and increasing the anisotropy from left to right.

Comparing the resulting vortex formations reveals that isotropic radial conditions enable
the highest number of vortices, in our case 6 visible ones. The more anisotropic the sys-
tem becomes, the less vortices seem to form. In �gure 26 the radial trap frequencies are
�xed to fx,y = 40 Hz, forming radially symmetric conditions, and we vary the vertical trap
frequency fz.
Starting with fz = 300 Hz, 7.5 times the radial counterparts, the number of created vortices
after the stirring process reduces with increasing entrapment, going down from seven to
only two visible vortices for fz = 1000 Hz.
This can be understood when considering equation (6.1.10). Increasing the vertical trap
frequency while holding its radial counterparts constant increases the density in the con-
densate, leading to a higher critical frequency and therefore a reduction in the number of
created vortices.

Our results, especially in �gure 25, highlight the problem that even relatively small de-
viations in the radial trap frequencies can result in a drastic reduction in vortex creation
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e�ciency. Therefore when trying to verify this results under experimental conditions one
would have to invest some time to carefully calibrate the exact trapping parameters. Re-
garding the vertical trap frequency, the creation mechanism seems to be more robust, as
variations in the order of hundred Hertz are necessary to reduce the vortex number in our
example due to an increase in the density and therefore higher necessary frequencies.

Xf 40= Hz

fY=40Hz

Xf 40= Hz

fY=40Hz

700 800 900 1000fZ [Hz]

fZ 300 400 500 600[Hz]

Figure 26: Identical conditions to �gure 25 but here the radial trap frequencies are �xed to
symmetric conditions of fx,y = 40Hz and the vertical trap frequency is varied from 300 to
1000Hz.
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6.4 Vortices at Tilted Magnetic Fields

As it was shown on multiple occasions over the course of this thesis, the signi�cant ad-
vantage of Dysprosium, compared to other materials, is its high magnetic moment and
therefore a strong dependence of its macroscopic behaviour from the dipole alignment of
its constituents. In this section the in�uence of an external magnetic �eld, aligning all
the microscopic dipoles, on the creation of vortices and their arrangement shall be investi-
gated.

6.4.1 Static solutions

For the creation of vortices, angular momentum needs to be added to a super�uid state,
in the following case a 162Dy condensate with 10,000 atoms in a trap with fx = 40 Hz,
fy = 40 Hz and fz = 500 Hz and dipoles aligned along the angle α as shown in �gure 27.
Apart from the relatively complex procedure of stirring inside the condensate, numerical
simulations allow us to add angular momentum directly. Theoretically this is equivalent to
switching into the reference frame of a condensate rotating with the angular frequency ω
around its center. The resulting Hamiltonian in this frame H′ is equivalent to the original
one in the system of rest H reduced by the rotation energy NLω where it is assumed that
all particles posses an angular momentum of L.

H ′ = H −N Lω = H − 2π N |Lz| f (6.4.1)

As vortices with constituents possessing an angular momentum bigger than ~ are unstable,
as was discussed in section 6.1, L will be chosen accordingly to L = Lz · êz = 1 ~ · êz.
Applying imaginary time evolution with the Hamiltonian 6.4.1 results then in the ground
state of the system rotating with frequency f. For a rotation frequency of 15 Hz the ground
states under all shown angles do not contain any vortices, showing that in this situation
the critical frequency for vortex creation is not reached. At f = 20 Hz the isotropic case
of α = 0◦ possesses a vortex lattice as its ground state, which however changes with an
increased dipole tilt. As was mentioned in section 6.1, a complete theoretical model de-
scribing dipolar in�uences on vortex creation has not been developed yet, forcing us to rely
on qualitative discussions of the observed e�ect. As can be seen in general in �gure 27, the
number of created vortices reduces when increasing the �eld tilt. There are two possible
ways to explain that following previous results in this chapter.
First of all, dipolar e�ects create an anisotropy in the condensates density distribution,
comparable to the e�ects of an anisotropic trap. A signi�cant reduction in vortex creation
e�ciency has already been observed there and will probably transfer to this system.
Secondly, dipolar interactions tend to decrease the size of the cloud, increasing the density
around the center area, which, following equation (6.1.10) increases the critical frequency
for vortex creation and therefore reduces the number of vortices.
Of special interest is the alignment of the created vortices. While vortices under isotropic
conditions tend to arrange themselves in an Abrikosov lattive [65], they form vortex lines
along the dipole projection when the system becomes increasingly anisotropic, as was al-
ready predicted by [64]. When taking a close look at the shape of the vortex cores in
�gure 27, it becomes visible that the core-size increases from the center to the edges. This
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behaviour has already been predicted in equation (6.1.9) when considering that the density
reduces outwards. We could not observe this for the stirring results before, as the contrast
there was drastically worse. Further the form of the vortex cores can be seen to change
when going to higher tilt angles. In the radially isotropic case (α = 0◦), the core is round
but gets more and more elongated for higher tilt angles. This is a theoretically known
behaviour, discussed in detail for example in [71].
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Figure 27: Ground states of a 162Dy condensate of 10,000 atoms, trapped with fx = 40Hz,
fy = 40Hz and fz = 500Hz, when rotated with a frequency f and the particle dipoles ori-
ented along an angle α. A reduction in the number of created vortices for higher magnetic
�eld angles and a change in their alignment from a triangular to a linear alignment can
be observed. Further the vortex core size increases from to center to the edges of the
condensate and the core gets elongated along the dipole-orientation.

Page 57 / 69



Michael Eisenmann Vortices

6.4.2 Dynamic solutions

Even though rotating the whole condensate, as it was theoretically performed in the last
section, results in very well pronounced vortex lattices, it is practically very challenging to
perform such a procedure under realistic conditions in our setup. Therefore we will come
back to the more feasible way of circular stirring and check whether the results presented
in the last section could be reproduced for parameters accessible with our experimental
setup.
In �gure 28 the density and phase distributions for simulated 162Dy condensates out of
20,000 atoms trapped with fx = 40 Hz, fy = 40 Hz and fz = 500 Hz when stirring with dif-
ferent frequencies f under magnetic �eld angles α between 0◦ and 90◦.
In the �gure, the conditions below (upper two rows) and above (lower two rows) the critical
frequency threshold are compared. Using equation (6.1.10) to determine the critical rota-
tion frequency for vortex creation with the parameters of our condensate (n0 ≈ 1.2 · 1020 m−3

and R⊥ ≈ 5µm) results in fc = ωc/(2π) = 55.0 Hz for the central position of the cloud.
Again vortex creation can be observed below this threshold, but mostly with some dis-
tance to the center, where the local density and therefore the local critical frequency is
reduced. In contrast to the ground state results in the last section the vortex core size does
not signi�cantly change between central and outer regions and an alignment in linear lines
is only visible with much good will, as the vortex number overall and especially in the tilted
clouds is reduced compared to the static ground state solutions. The conservation of the
core size might possibly be caused by the vortices being formed in the outer regions before
distributing themselves. The shape variations in form of elongations of the core along the
magnetic �eld are visible similar to the ground state results.

Summarising this section we reproduce fundamental vortex behaviours, known from the
ground state solutions in the last section, in a dynamical system via laser stirring for
parameters that are roughly in the accessible region for our experimental setup. Apart
from a signi�cantly lower vortex number, especially in the inhomogeneous clouds, the
vortex core size seems to vary signi�cantly less in the same cloud compared to the ground
state solutions.
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Figure 28: Density and phase of dynamic vortex states given by a 162Dy condensate of
20,000 atoms, trapped with fx = 40Hz, fy = 40Hz and fz = 500Hz, when rotated by a
frequency f with the particle dipoles oriented along an angle α given by the �rst row.
Above a certain rotation frequency threshold vortices start to form. The number of creates
cores reduces signi�cantly for higher magnetic �eld tilt angles and the vortex core becomes
elongated. Surprisingly, the variations in the core size inside the same cloud are drastically
less pronounced than they were in the ground state solutions in �gure 27
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7 Conclusion and Outlook

The aspiration of the work presented in this thesis was to gain insights into the behaviour
of a super�uid system consisting of highly dipolar constituents. For this purpose we in-
vestigated the breakdown of super�uidity and the creation of vortices in 162Dy and 164Dy
Bose-Einstein condensates through linear and circular stirring with laser beams.
When the �ow inside of a super�uid exceeds a certain velocity threshold, dissipation arises
and the super�uid state breaks down. This behaviour was �rst theoretically explained by
Lev Landau in 1941 through the creation of quasiparticles in the medium. Therefore the
critical, or "Landau", velocity can be determined from the knowledge of the systems dis-
persion relation, connecting in a remarkable way microscopic and macroscopic properties
of the super�uid.
In order to determine the critical velocity for our system we stirred the Dysprosium con-
densate using a 532 nm laser beam with di�erent velocities and measured the resulting
heating behaviour. Comparing the results of the experiment with full numerical simula-
tions yielded an astonishing agreement. By �tting a bilinear function onto the heating the
critical velocity could then be identi�ed.
It was veri�ed experimentally and numerically that the critical velocity in a Dysprosium
BEC can be manipulated by an outer magnetic �eld aligning the atomic dipoles, allowing
to achieve di�erent critical velocity thresholds parallel and orthogonal to the projection
of the dipoles. This splitting is not caused by a pure density modi�cation through mag-
netostriction and the exact value of the critical velocity could be altered by changing the
cloud shape, as well as certain parameters of the stirring procedures.
This represents the �rst experimental proof of the theoretically predicted anisotropy in the
critical velocity of a dipolar super�uid.
The qualitative behaviour of the condensates heating under variation of di�erent trap and
stirring parameters has been studied through further numerical simulations. It could be
shown that stirring multiple times along the same path through the condensate creates
an approximately linear increase in heating in the simulations. Tilting the magnetic �eld
inside the condensate plane, the critical velocity increases in the parallel and stays roughly
constant in the orthogonal direction, what could be shown to be in agreement with the the-
ory for the speed of sound in a homogeneous Bose-Einstein condensate. Further the overall
heating reduces with the �eld tilt. Stirring with di�erent angles through the anisotropic
system resulted in a monotonous decrease in the dissipation threshold from a parallel to
an orthogonal stirring direction. When increasing the stirring amplitude, the overall heat-
ing increases and the heating maximum moves to higher velocities. Bigger stirring beams
increased the heating but reduced the critical velocity. Variations in the potential depth
also increased the overall amount of created heating. As the exact background scattering
length of 162Dy is unknown, we varied this parameter in our last linear stirring simulation
and compared the resulting heating to experimental measurements. Through this we were
able to narrow the scattering length down to a region between 121 a0 < aDy,162

s < 161 a0

which is in good agreement with the di�erent results published by the Stanford group of
Benjamin Lev.
In the second part of this thesis the in�uence of dipolar interactions on vortex creation and
lattice arrangement was evaluated.
We started by verifying that our simulations were able to allow the creation of vortices
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by stirring with two identical laser beams circularly around the condensate center. After
�nding the correct parameter space it could be shown that vortex formation requires a free
evolution time after the stirring procedure, in order to allow the condensate to rethermalize.
Examining this creation procedure in detail revealed that a stirring time of tstir = 300 ms
and a free evolution time of tevo = 400 ms tended, depending on the exact system parame-
ters, to be the minimum duration for a succesful vortex excitation.
The critical rotation frequency of the stirrers was investigated with the simulation results
being in accordance with theoretical estimations. Variations in the trap frequencies re-
vealed a noticeable decline in vortex creation when the system becomes inhomogeneous in
relation to both horizontal, and to a lesser degree to the vertical, trapping direction, what
might raise challenges in experimental veri�cations of our numerical results.
In the end the dipoles were tilted inside the condensate plane and the resulting in�uence
on vortex creation investigated. The ground state of a rotating condensate could be shown
to be able to posses vortices under tilted conditions, even though their number decreased
and higher rotation frequencies were necessary to create them when tilting the magnetic
�eld. It could further be shown that vortices change their relative arrangement from a
triangular Abrikosov-lattice to linear vortex lines along the projection of the tilted dipoles.
These behaviours were observed again in a dynamic system when circularly stirring the
condensate with with two Gaussian laser beams.

Outlook

All the investigations on the vortex behaviour presented in this thesis were based on numer-
ical simulations. The necessary modi�cations in the experimental setup for their realisation
have already been performed during the course of this thesis, through the implementation
and full alignment of a 405 nm laser beam path through the EOD system. Using the 162Dy
isotope in our condensate has already been shown to result in bigger condensates than
its 164Dy counterpart, what could enable the experimental veri�cation of our simulation
results.
Of further interest is the exact arrangement of the vortex lattice under more sophisti-
cated conditions. We could already show a linear lattice alignment along the dipole-tilt
projection, but under certain conditions even more interesting lattice patterns have been
predicted [65] and should be realisable in our simulations and hopefully in the experiment.
Especially interesting is the behaviour of a 162Dy-164Dy mixture when it comes to super�uid
properties. As we could show in section 5.3.7 the heating behaviour signi�cantly depends
on the background scattering length. It would be interesting to explore how the critical
velocity, as well as the critical rotation frequency for vortex creation and the resulting
vortex lattice formation would behave. At least for the latter point theoretical predictions
exist [66] and promise interesting observations.
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A Appendix

A.1 Speed of Sound in a strongly trapped Dipolar Gas and Roton
excitation

A homogeneous condensate certainly is a highly idealised system, not easily realisable.
The other extreme case is a strongly trapped, and therefore inhomogeneous, Bose Einstein
condensate. An additional positive side-e�ect of a BEC highly compressed in the dipole
direction is the avoidance of the phonon-instability collapse, discussed in the context of
the homogeneous three-dimensional case. By a strong enough con�nement in the magneti-
zation direction (here and later arbitrarily chosen to be the z-direction) meaning that the
trapping potential has to exceed the chemical potential ( = n0(g + 2gdd)� ~ωz), the den-
sity distribution and therefore the wavefunction can be restricted to the ground state of the
harmonic oscillator. As a consequence, excitations in this direction will be exponentially
suppressed, preventing a heavy phonon mode propagation and thus the collapse. The new
quasi-2D-system makes an adaption of the dispersion relation 2.4.1 necessary, resulting in
[20]

ω(k, α, η) = k

√
~2k2

4m2
+

gn0

m
[1− εddF(k, α, η)] (A.1.1)

with

F(k, α, η) = cos2(α)
(
−2 + 3

√
π k ek2

Erfc(k)
)

+ sin2(α)
(

1− 3
√
π k cos2(η) ek2

Erfc(k)
)
.

(A.1.2)

Here k describes the absolute value of the wavevector k, α again depicts the angle between
k, µm, and η is the angle of propagation inside the condensate plane and Erfc(k) describes
the complementary error function. Comparing this dispersion relation for the trapped sys-
tem (equation A.1.1) with the one for a three dimensional homogeneous system (equation
2.4.1) reveals a similar structure, but a di�erence in the dipolar dependency. The quasi-
2D-system reveals an anisotropy in the dipolar contribution dependend on the wavevector
k, as is obvious from equation A.1.2 . This contribution monotonously decreases with
k. Figure 29 shows the dispersion relation (a,c,e) and the corresponding speed of sound
(b,d,f) in dependence of the stirring angle η for di�erent orientations of the magnetic �eld.
If the dipoles are aligned orthogonal to the BEC-plane (α = 00◦) and therefore creating
an isotropic interaction strength in the condensate, the speed of sound is identical in all
horizontal directions (a,b). When tilting the dipoles, the dispersion relation splits up for
di�erent stirring directions, creating anisotropy in the sound velocity that is nearly un-
changed along the dipole-tilt and drastically decreased orthogonal to it (c,d). Should the
magnetic �eld to fully tilted inside the plane (α = 90◦), the split in the dispersion relation
reaches its maximum, while the speed of sound following equation 2.4.3 gets surprisingly
identical in all directions.
Even though the stability problem is changed, compared to the three dimensional case, it
has not totally vanished. Equation A.1.1 still holds the possibility of imaginary solutions

Page 62 / 69



Michael Eisenmann Appendix

for g + 2gdd < 0. A second instability problem arises from the momentum dependence in
A.1.2, enabling a local energy minimum for �nite momenta. The quasi-particles related
to this minimum are called "rotons", and their energetic minimum "roton minimum". If
the local maximum beforehand is also taken into account, enabling a "maxon", the whole
spectrum is typically called "roton-maxon spectrum"[21].
Similarly to the phonon instability, the collapse mechanism sets in, when the energy of
the roton minimum reaches zero, making it energetically favorable to occupy this mode
macroscopically, while the di�erence lies in the fact that this minimum exists at a �nite
momentum, meaning that the corresponding instability shows a characteristic roton length
scale.
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Figure 29: Dispersion relation ((a),(c),(e)), following equations A.1.1, and corresponding
speed of sound ((b),(d),(f)), for a 162Dy Bose-Einstein condensate under di�erent magnetic
�eld angles α. An atomic density of n0 = 2 · 1020 m−3 is assumed, comparable to the central
density in the regime of our experimental and simulated results shown in later parts of this
thesis.
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