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1 Introduction

In 1926, Erwin Schrödinger published his famous equation, introducing the concept
of the wavefunction [1]. Ever since, the electron wave function has been funda-
mental to understanding the properties of atoms, molecules and solid matter. The
mean square of the wave function can be understood as the electron’s probability
density, thereby defining the shape of atomic orbitals. Although most textbooks
concerning atomic physics have depicted representations of electron orbitals for
decades, measurements that visualise these orbitals are fairly recent. The atoms’
small size poses a significant challenge. The diameter of a single ground state
atom is only a few Ångström, which is far smaller than optical wavelengths and is
therefore outside the reach of measurement with an optical microscope.

In 2013 Stodolna et al. [2] were able to reconstruct an image of the wave func-
tion of a hydrogen atom by directly measuring the nodal structure of its Stark
states using photoionisation microscopy. Orbitals of large molecules have also be-
en measured using methods such as scanning tunneling microscopy [3] or photo-
emission spectroscopy [4].

A novel technique for wave function imaging proposed by Karpiuk et al. [5]
circumvents the problem posed by the atom’s small size by measuring the orbital
of a Rydberg atom.

Rydberg atoms have an electron in a highly excited state, which results in a
number of extraordinary and exaggerated properties. One of these exagerated pro-
perties is its orbital radius, which can be on the micron scale for a Rydberg state
with a principle quantum number in the range of n ≈ 100. Objects of the size of
µm can be well resolved using currently established optical microscopy, however
the orbital of a single electron cannot be measured directly. A contrast medium,
that interacts with the electron and the light, is necessary.

The proposed contrast medium is a Bose-Einstein condensate (BEC). The inter-
action between the Rydberg electron and the surrounding ground state atoms in
the BEC can be described with a scattering potential that causes the ground state
atoms to experience an attractive force towards areas of high Rydberg electron
probability. Thus the electron probability distribution is imprinted onto the density
of the BEC. The density imprint can be visualised using phase contrast imaging.

The quality of the wave function imaging, in particular the contrast, is expected
to improve by confining the ultracold atoms in a flat, quasi-2D trapping potential
compared to a cigar shaped potential as is typical for magnetic traps [5].

The topic of this master thesis is the setup and characterisation of an accordion
lattice that fulfills the technical requirements for wave function imaging. The
working principle of the accordion lattice is the intersection of two equivalent la-
ser beams at a variable angle. This results in an interference pattern consisting of
bright layers. The spacing can be modified by varying the angle of intersection, the-
reby pressing the layers together and pulling them apart, similar to an accordion.
Further expansion of the setup can include an active stabilisation with complete
phase control.

The idea is to achieve a quasi 2D-layer of quantum gas by loading the atoms
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into a single plane of the optical lattice at large spacing. The spacing can then
be reduced until the desired confinement of the atoms is reached. This procedure
avoids loading multiple layers of the lattice.

The accordion lattice presented in this thesis can achieve a lattice spacing between
3.5µm and 35µm.

The theoretical concept of wavefunction imaging which serves as the motivation
to this work is covered in detail in chapter 3. In order to provide a basis of under-
standing , an overview of the properties and interactions of BECs and Rydberg-
atoms is given in sections 3.1 and 3.2. Chapter 4 focusses on the theoretical
concepts of optical dipole traps in general. It lists a number of various applica-
tions for ultracold atoms in lattices and explains the working principle of dipole
traps. It also briefly covers heating mechanisms, that can cause the atoms to leave
the trap, and introduces tunneling.

A description of the design and setup of the accordion lattice can be found in
chapter 5. It includes characterisation measurements of the camera, which is a
crucial part of the measurements detailed in chapter 6 and 7. Lastly chapter 9
contains a brief comparison between different types of quasi-2D dipole traps.
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2 Zusammenfassung auf deutsch

Im Jahre 1926 veröffentlichte Erwin Schrödinger die Formel, die den Begriff der
Wellenfunktion einführte und ihn weltberühmt machte [1]. Seitdem ist die Wel-
lenfunktion von Elektronen fundamentaler Bestandteil für das Verständnis von
Atomen, Molekülen und Festkörpern. Das Betragsquadrat der Wellenfunktion kann
als die Wahrscheinlichkeitsdichte des Elektrons aufgefasst werden. Es definiert
somit die Form atomarer Orbitale. Obwohl unzählige Physiklehrbücher bereits seit
Jahrzehnten bildliche Darstellungen von Elektronenorbits enthalten, gibt es erst
seit sehr kurzer Zeit erfolgreiche Messungen, die den Elektronenorbit visualieren.
Aufgrund der äußerst kleinen Ausdehnung des Atoms, stellt seine Vermessung
eine beträchtliche Herausforderung dar. Der Druchmesser eines einzelnen Grund-
zustandsatoms beträgt nur wenige Ångström, was deutlich kleiner ist als optische
Wellenlängen. Deshalb die Abbildung des Atoms außerhalb der Möglichkeiten von
bisherigen optischen Mikroskopen.

2013, fast ein Jahrhundert nach Schrödingers Veröffentlichung waren Stodolna
et al. [2] in der Lage, ein Bild der Wellenfunktion eines Wasserstoffatoms zu
rekonstruieren, indem sie direkte Messungen der Knotenstruktur von Stark
-zuständen mit einem Photionisationsmikroskop durchführten. Es existieren auch
andere Messmethoden für große molekulare Orbitale, wie beispielsweise Raster-
tunnelmikroskopie [3] oder Photoemissionsspektroskopie [4].

Eine neuartige Methode zur Abbildung von Wellenfunktionen, die das Problem
der geringen atomaren Ausdehnung umgeht, wurde 2015 von Karpiuk et al.
vorgeschlagen [5]. Es wurde die Vermessung von Rydbergorbitalen vorgeschlagen.

Rydbergatome haben ein Elektron in einem hoch angeregten Zustand. Dies führt
zu einer Reihe außergewöhlicher und extremer Eigenschaften. Eine dieser Eigen-
schaften ist the enorme Größe des Orbitalradius, welche für einen Rydbergzustand
mit einer Hauptquantunzahl n ≈ 100 im Bereich von µm liegt. Objekte dieser
Größe können mit den bereits etablierten optischen Mikroskopiemethoden direkt
abgebildet werden, jedoch gilt dies nicht ohne Weiteres für ein einzelnes Elektron.
Ein Kontrastmedium wird benötigt, das sowohl mit dem Elektron als auch mit
dem Licht interagiert.

Die Kontrastmedium, das von Karpiuk et al. vorgeschlagen wurde, ist ein Bose-
Einstein-Kondensat (BEK). Die Wechselwirkung zwischen dem Rydbergatom und
den Grundzustandsatomen im BEK kann durch ein Streupotential beschrieben
werden, das eine Kraft auf die Grundzustandsatome ausübt, sodass sie zu Regionen
mit hoher Aufenthaltswahrscheinlichkeit des Rydbergelektron hingezogen werden.
Somit kann die Wahrscheinlichkeitsdichte des Elektrons auf die Dichte des BEK ge-
prägt werden. Die Aufprägung auf die Dichteverteilung kann mittels einer Phasen-
konstrastabbildung visualisiert werden.

Es wird erwartet, dass die Qualität der Abibildung der Wellenfunktion, insbeson-
dere der Kontrast, zunimmt, wenn die ultrakalten Atome des BEKs in einem quasi
zwei-dimensionalen Fallenpotential gefangen sind, im Vergleich zu Abbildungen,
die mit einem BEK aufgenommen werden, die sich in einem zylindrischen, drei-
dimensionalen Fallenpotential befinden [5].
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Das Thema dieser Masterarbeit ist der Aufbau und die Charakterisierung eines

”
Accordion Lattice“, eines komprimierbaren Gitters, das die technischen Anfor-

derungen für die Abbildung von Wellenfunktionen erfüllt. Das Prinzip des
Akkordeon Gitters ist die Kreuzung zweier äquivalenter Strahlen unter einem ver-
änderlichen Winkel. Dies führt zu einem Interferenzmuster mit hellen und dunklen
Schichten. Der Abstand zwischen den Schichten kann durch Veränderung des
Kreuzungswinkels variiert werden. Dadurch werden die einzelnen Schichten des
Gitters zusammengepresst oder auseinander gezogen, ähnlich dem Zusammen-
drücken und Auseinanderziehen eines Akkordeons. Eine Erweiterung des Aufbaus
kann eine Regelung der Phase, sowie eine aktive Phasenstabilisierung enthalten.

Die Idee zur Erzeugung einer quasi-zwei-dimensionalen Falle mit dem Accordion
Lattice beruht darauf, dass die Atom bei großem Gitterabstand in eine einzelne
Schicht des Interferenzmusters geladen werden können, woraufhin der Gitter
-abstand komprimiert werden kann, bis die gewünschten Einschlussparameter
erreicht sind. Dieses Verfahren vermeidet das Laden mehrerer Schichten des Gitters
mit Atomen.

Das Accordion Lattice, welches in dieser Arbeit vorgestellt wird, kann Gitter-
abstände im Bereich von 3.5µm bis 35µm realisieren.

Eine detailierte theoretische Beschreibung des Wellenfunktionsabbildung, welche
die Motivation für diese Arbeit darstellt, befindet sich in Kapitel 3. Um ein Grund-
verständnis der darin enthaltenen Prinzipien zu gewährleisten, werden zunächst in
Abschnitt 3.1 und 3.2 die Eigenschaften von BEKs und Rydbergatomen, sowie
ihrer Wechselwirkung dargelegt. Kapitel 4 behandelt die Funktionsweise von opti-
schen Dipolefallen im Allgemeinen. Es führt eine Reihe von Anwendungen kalter
atomarer Gase in Gitterexperimenten auf und erklärt die theoretischen Grund-
lagen zur Dipolkraft und den Fallenpotentialen. Das Kapitel enthält auch einen
Abschnitt zu Heizmechanismen in Dipolfallen, die dazu führen können, dass die
Atome die Falle verlassen. Außerdem wird Tunneln von Atomen von einem Poten-
tialtopf zum nächsten angesprochen.

Eine Beschreibung des Aufbaus sowie eine schematische Darstellung des
Accordion Lattice befinden sich in Kapitel 5. Es beinhaltet Charakterisierungs-
messungen der verwendeten Kamera, da sie wesentlicher Bestandteil der Messungen
in den darauffolgenden Kapiteln 6 und 7 darstellt. Zuletzt wird in Kapitel 9 ein
Vergleich des Accordion Lattice mit alternativen quasi-zwei-dimensionalen Fallen
gezogen.
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3 Wave function imaging

The following chapter serves as an introduction to the relevant physical concepts
by providing the necessary basic understanding needed for the scope of this thesis:
a anccordion lattice for the purpose of directly imaging a Rydberg electron orbital.
Wave function imaging could allow us to optically measure the atomic orbital of
a Rydberg atom using an ultracold quantum gas as a contrast medium. Therefore
an overview of the relevant properties of Bose-einstein condensates (BECs) and
of Rydberg atoms in general is provided, before the working principles of wave
function imaging are explained in theory and the possible experimental realisation
is outlined.

3.1 Bose-Einstein-Condensate (BEC)

Imagine cooling down a cloud of identical particles with a mass of m. The thermal
de-Broglie wavelength λdB increases

λdB = ~
√

2π

mkBT
, (1)

with decreasing distance between the particles, until both lengths are of similar
size, so that

nλ3
dB > 1, (2)

where n is the particle density. A critical phase space density is then reached and
the system undergoes a phase transition called Bose-Einstein-condensation, named
after S. A. Bose and A. Einstein who predicted this phenomenon in 1924 [7, 8].

For identical, non-interacting particles a critical temperature Tcrit can be attri-
buted to the phase transition at

Tcrit =
2π~2

mkB

(
n

2, 612

)2/3

[9]. (3)

When the temperature drops beneath the critical temperature, the atoms conden-
sate into a macroscopically populated ground state while a fraction of the particles
remains thermally excited. The wave functions of the individual atoms begin to
overlap and the behaviour of the cloud can no longer be described with classical
means. Due to constructive interference of the wave functions, a single macroscopic
wave function can be attributed to the atoms residing within the collective ground
state. The amount of particles in the ground state depends on the temperature. In
the case of an ideal, non-interacting BEC with N particles in a three-dimensional
harmonic potential the fraction of particles in the ground state equals

N0

N
= 1−

(
T

Tcrit

)3

[9]. (4)

According to equation (4) all particles are in the ground state at T = 0 K. This is
not true for experimentally realised BECs where the particles interact with each
other. This effect is called quantum depletion. Weakly interacting particles can be
described by assuming finite pressure and a chemical potential even at T = 0 K [9].
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3.1.1 Gross-Pitaevskii equation (GPE)

Within the context of the Bogoliubov theory the behaviour of a BEC of weakly
interacting atoms can be modelled with the Gross-Pitaeskii-Equation (GPE). Using
quantum field theory the GPE can be derived from a many-body Hamiltonian Ĥ
in second quantisation

Ĥ =

∫
d3rΨ̂†(r)

(
− ~2

2m
∇2 + Vext(r)

)
Ψ̂(r)

+
1

2

∫∫
d3rd3r′Ψ̂†(r)Ψ̂†(r′)U(r − r′)Ψ̂(r′)Ψ̂(r),

(5)

where the first integral contains terms describing the kinetic energy in the conden-
sate, and a potential Vext(r), provided by external fields, for example by an optical
or magnetic trap [10]. The second integral describes the interaction between the
particles with an interaction potential U(r− r′). Ψ̂(r) and Ψ̂†(r) are bosonic field
operators. Due to symmetry they fulfill the following commutation relations:

[Ψ̂(r), Ψ̂†(r′)] = δ(r − r′),

[Ψ̂(r), Ψ̂(r′)] = 0,

[Ψ̂†(r), Ψ̂†(r′)] = 0.
(6)

The time-evolution of the field operators in the Heisenberg picture behaves
according to

i~
∂

∂t
Ψ̂(r, t) = [Ψ̂(r), Ĥ]. (7)

Together with the commutation relations (6), equation (7) can be written as

i~
∂

∂t
Ψ̂(r, t) =

(
− ~2

2m
∇2 + Vext(r)

)
Ψ̂(r)

+

∫
d3r′Ψ̂†(r)Ψ̂†(r′)U(r − r′)Ψ̂(r′)Ψ̂(r).

(8)

It is then assumed, that the density distribution can be described as a scalar field
with small fluctuations. Hence the field operator can be changed to

Ψ̂(r) = 〈Ψ̂(r)〉+ δΨ̂(r) (9)

with 〈Ψ̂(r)〉 as an order parameter [10]. We consider a BEC with a temperature
well below the critical temperature (3). The majority of particles are in the ground
state. This allows us to use the mean-field-approximation, neglecting the fluctua-
tions and replacing 〈Ψ̂(r)〉 with a scalar order parameter [9]

ψ(r, t) =
√
N0ψ0(r, t). (10)

N0 � 1 is the number of particles in the ground state.
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The interaction between two atoms can be described as a binary collision [10]
and the interaction potential can therefore be written as

U(r − r′) = gδ(r − r′), (11)

which corresponds to a contact interaction with a coupling constant g. The couplin
constandt is defined as

g =
4π~2as

m
(12)

with the scattering length as of the particles [10]. In general, the scattering can
also include higher partial waves, however for sufficiently low temperatures only
s-wave scattering is taken into account [9].

Plugging the interaction potential into equation (8) gives us the time-dependent
Gross-Pitaevskii equation (GPE)

i~
∂

∂t
ψ(r, t) =

[
− ~2

2m
∇2 + Vext(r) + g|ψ(r, t)|2

]
ψ(r, t), (13)

which corresponds to a non-linear Schrödinger equation for the condensate wave
function. It describes the collective dynamics only of the particles in the macros-
copically populated state, particles in other states are neglected [10]. ψ(r, t) refers
to the condensate wave function dependent on time t and position r.

|ψ(r, t)|2 = N0|ψ0(r, t)|2 (14)

can be considered the density distribution of the BEC [9].
This shows one of the main advantages of experiments using a BEC: it displays

uniform behaviour which can be modelled with a single collective wave function.

3.1.2 Experimental realisation

Although the theoretical prediction of BEC exists since 1924 [7, 8], it was several
decades before a BEC could be realised in 1995 by two groups, the group of E.
Cornell and C. Wieman in Colarodo using Rubidium [11] and the group of W.
Ketterle at MIT using Sodium [12].

The reason why there is such a large gap in time between theory and experiment
is that the necessary cooling methods hadn’t been developped yet, as well as the
lasers, which are vital for the application of those methods [13]. This section gives
a brief overview of some of those cooling techniques.

The first requirement for creating a BEC is a cloud of atoms enclosed by a
vacuum. The vacuum is necessary in order to avoid collisions with background gas
and heating [14]. The atoms have to be of a single species, as the phase transition
relies on the symmetrical properties of the bosons and their indistinguishability
[15]. However, subsequent mixing of condensates in order to create a dual-species
BEC is possible [16]. Atomic clouds are often produced by heating an atom source.
The atoms in the resulting cloud are too fast and hot to be condensed into a BEC.
They have to be slowed down and pre-cooled first. One method of achieving this
is the Zeeman slower [17].
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In a Zeeman slower the hot atoms travel through a cylinder through which a
laser beam is directed, so that the beam is counter-propagating the atoms’ motion
along the cylinder. The laser beam is resonant with the atoms, so that they absorb
the incoming photons and spontaneously emit them in a random direction, thus
resulting in a force in direction of the beam, which slows them down. In order to
compensate the Doppler shift due to the reduced velocity, a magnetic field gradient
is applied along the tube. This causes a Zeeman shift which is dependent on the
position of the atoms along the tube. The Zeeman shift compensates the Doppler
shift and the laser remains in resonance with the atoms. The atoms as hot as 300 K
can be cooled down to a few Kelvin using this method [17].

Another method that uses the spontaneous light force is Doppler cooling, also
referred to as optical molasses. It uses counter-propagating beam pairs with a red
detuning relative to the atoms’ resonance to cool down atoms down to the Doppler
limit, which is defined by the natural linewidth Γ of the atomic transition

TDoppler =
~Γ

2kB

. (15)

Temperatures as low as tens of µK can be reached [18]. While Doppler cooling
slows the atoms down, it doesn’t trap them, the atoms will eventually be lost.

The magneto-optical trap (MOT) on the other hand combines trapping and
cooling of atoms. The coils around the trap are in anti-helmholtz configuration
leading to a position-dependent Zeeman shift. The cloud of atoms trapped inside
the (MOT) is cooled down using Doppler cooling. The counter-propagating beams
have circular polarisation. This method of cooling is also limited by the Doppler
limit. For Alkali atoms such as Rubidium a minimal temperature on the order of
100 µK can be reached [14], which is still orders of magnitude above the critical
temperature, but the atoms are now cold enough to be transferred into a different
trap for further cooling.

This trap can be a magnetic quadrupol trap. The atoms are cooled down using
radio-frequency (RF) evaporation, where the hottest atoms are selectively removed
from the trapping potential, until the cloud condensates into a BEC. The critical
temperature depends on the density of the cloud and on the atomic mass of the
particles. To give an example, using equation (3) as an approximation, a cloud of
Rubidium 87 with a density of n =5 x 1013 cm−3 condensates at around 250 nK,
which is within a realistic range compared to experimental data [14].

Once the atoms have been condensed into a BEC, they can be used in a variety of
experiments such as for instance interferrometry or gyroscopes [19], dipolar BECs
are very sensitive to magnetic fields [15] and could therefore be used as sensors.

The BEC is also an essential component for wave function imaging. To be able
to image orbital of a Rydberg atom, the BEC serves as a contrast medium. The
properties of the Rydberg atom, which is the second indispensable component for
the wave function imaging, are described in the following section.
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3.2 Rydberg atoms

Atoms that have a single electron in a highly excited state are called Rydberg
atoms. The excited electron can be referred to as Rydberg electron.

To give an or example, principle quantum numbers of n ≈ 300 have been achieved
for Strontium [20], while interstellar Hydrogen can reach n ≈ 800 [21]. The high
principle quantum number dominates many physical properties of Rydberg atoms,
exaggerating the values of these properties.

Rydberg atoms are extremely sensitive with respect to external electric fields,
which means they interact strongly with their environment. Their extreme pro-
perties make them fascinating objects for research. For example, they act as very
sensitive microwave resonators, which makes them excellent agents for probing and
measuring small fields [22]. Due to strong long-range interactions between Rydberg
atoms, they could be used for quantum simulations [23], or quantum information
processing [24, 25, 26]. They have relevance in the area of ultracold plasma physics,
because they are easily ionised by collisions which can lead to plasma formation
[27, 28]. Rydberg atoms have also been proposed as single photon sources [29].

One of the extreme properties of Rydberg atoms is their size. In contrast to
ground state atoms, which have a radius on the scale of a few Ångström, a Rydberg
atom that is excited to n ≈ 100 can have a radius on the micron scale [30]. Its
orbital is large enough to be optically resolved, which opens the possibility of direct,
optical measurements of a single atomic orbital [5]. In order to achieve the imaging
of a Rydberg orbital a contrast medium has to be introduced that interacts with
the Rydberg electron and the light. In our case this contrast medium is a BEC.

The relevant properties of Rydberg atoms that are necessary for understanding
the concept of wave function imaging are explained in the following sections. All
equations stated in this chapter about Rydberg atoms are given in atomic units.

3.2.1 Energy levels of a Rydberg atom

The energy level a hydrogen atom without any external fields is defined as

En = ERyd
1

n2
(16)

with ERyd = 13.6 eV being the Rydberg energy. Equation (16) depends only on the
principle quantum number n, which means that the energy levels are degenerate
with respect to the angular momentum l or spin s. Without an external magnetic
field there is no finestructure in the hydrogen model.

The energy levels of alkali atoms and Rydberg atoms (excluding hydrogen) how-
ever, are described with a quantum defect δn,l,j, that lifts this degeneracy

E = ERyd
Z2

(n− δn,l,j)2
= ERyd

Z2

(n∗)2
(17)

and includes the nucleus charge Z. Equation (17) is still very similar to equa-
tion (16) of the Bohr-model of hydrogen. While the valence electron has been
highly excited the remaining electrons shield the core’s positive charge. The Ryd-
berg electron can polarise the core electrons anisotropically and this leads to the
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quantum defect which depends on n, the orbital angular momentum l and total
angular momentum j. This effect is most pronounced for low-l states. The defect
becomes smaller with increasing angular momentum and can be neglected after
l > 4 [31, 32].

The defect originates from the Rydberg electrons interaction with the core. Elec-
trons with higher angular momentum l are less likely to be found near the core
than electron with low l. Therefore the defect is only relevant at low l [30]. It also
lifts the degeneracy of the finestructure. Therefore Rydberg atoms can be excited
into well- defined quantum states, such as s-, p- or d-states for example [5].

3.2.2 Scaling laws

Alkali atoms are often used for Rydberg excitation in the context of ultracold
gases, because they have only one electron in their outermost shell and are easily
cooled using methods of laser cooling.

Similar to alkali atoms with its single excited electron and the core which is
shielded by the remaining non-excited electrons, many aspects of the behaviour of
Rydberg atoms can be modelled with a hydrogen-like model in combination with
central-field approximation (CFA) and quantum-defect theory [30].

In particular those physical properties, which are dominated by the effective
principle quantum number n∗ become extreme in Rydberg atoms, e. g. a 87Rb
atom excited to n = 100 has an orbital radius of about one micron, which is about
four orders of magnitude larger a ground state atom of a few Ångström. A few
examples of scaling are given in table 1.

Property: Scales with
Orbital radius: n∗2

Binding energy: n∗−2

Radiative lifetime: n∗3

Dipole moment: n∗2

Polarisability: n∗7

Van-der-Waals coefficient: n+11

Table 1: Properties of Rydberg atoms and their scaling with the effictive principle
quantum number n∗ [30]

3.2.3 Rydberg-electron wave function

The wave function of the Rydberg electron is defined by the Schrödinger equation[
− 1

2µ
∇2 + V (r)

]
ψ(r, θ, φ) = Eψ(r, θ, φ). (18)

It contains the reduced electron mass µ and the core potential V (r) and ψ(r, θ, φ)
is the Rydberg electron function. Assuming V (r) has spherical symmetry and
therefore no angular dependence, the Schrödinger equation (18) can be rewritten
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in spherical coordinates[
− 1

2µr

d2

dr2
r +

L̂2

2µr2
+ V (r)

]
ψ(r, θ, φ) = Eψ(r, θ, φ). (19)

The wave function can thus be separated into a part with radial dependence R(r)

Figure 1: Absolute values of radial Rydberg electron wave functions with different
angular momentum l. The lines are offset for easier comparison.[14]

and a part with angular dependence

ψ(r, θ, φ) = R(r)Y m
l (θ, φ). (20)

Laplace’s spherical harmonics Y m
l (θ, φ) satisfy equation (19) and can be found in

most textbooks concerning quantum physics such as [33]. So far the equations (18
- 20) are valid for hydrogen in general (including those excited to a Rydberg state).
The radial part R(r) of the electron wave function of alkali atoms and Rydberg
atoms differs from the hydrogen model. It can be determined by solving the radial
part of the Schrödinger equation[

− 1

2µr

d2

dr2
r +

l(l + 1)

2µr2
+ Vmod

]
R(r) = E(r), (21)

which contains a modified potential Vmod to account for the effective charge Zeff(r),
polarisability of the core and spin-orbit coupling

Vmod = −Zeff(r)

r
+ Vpol + Vso. (22)

The electrons in the core shield the positive charge from the Rydberg electron re-
sulting in a reduced effective charge Zeff . The polarisation potential Vpol is defined
as

Vpol = − αc

2r4
(1− e(r/rc)6) (23)
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where αc is the polarisability of the core and rc is a cutoff radius below which the
polarisability becomes unimportant [34].

The effect of the spin-orbit coupling Vso is approximated by

Vso ≈
α2

FS

4r3
(j(j + 1)− l(l + 1)− s(s+ 1)) (24)

with the fine-structure constant αFS [35]. Equation (21) can be solved numerically
for R(r).

Figure 1 demonstrates that electrons with higher angular momentum l are less
likely to be found near the core than electrons with low l. This limits the interaction
of the Rydberg electron with the core, leading to the extremely long radiative
lifetimes of the Rydberg states, especially of high-l states. Rydberg states have
very long lifetimes compared to their less excited counterparts. While a state that
has been excited by a few n has a lifetime of a nanoseconds, a Rydberg state can
exist for many microseconds before spontaneously decaying [30].

3.2.4 Rydberg blockade

Another extraordinary property of Rydberg atoms is their long-range interaction.
Mutual interaction between Rydberg atoms can be more than ten orders of mag-
nitude stronger than those between ground state atoms [26]. When two Rydberg
atoms are in close proximity, they induce a dipole moment in each other owing to
their strong polarisability. This leads to induced dipole-dipole interaction, which
can be described by a van-der-Waals potential

VvdW =
C6

R6
(25)

with a van-der-Waals coefficient C6 ∝ n11 and the distance R between the two
atoms. This leads to a strong long-range interaction between Rydberg atoms.

Once an atom has been photo-excited to a Rydberg state, this interaction causes
a shift of the Rydberg energy level of the surrounding atoms, even if they them-
selves remain in the ground state. If the shift is larger than the bandwidth γL of
the excitation laser, then the wavelength is no longer sufficient to excite them to
the Rydberg state and no additional Rydberg atom can be created within a certain
blockade radius [36]

rB =

(
C6

~γL

) 1
6

. (26)

Typically, the linewidth of the Rydberg level is smaller than γL and is therefore
neglected in equation (26) [14].

This effect is called the Rydberg blockade. Depending on the angular momentum
l of the Rydberg state the Rydberg blockade can be anisotropic [37].

If the atoms within the blockade volume are indistinguishable, it is impossible to
determine exactly which atom has been excited to a Rydberg state, the excitation
becomes delocalised. The reason for this is that the atoms within the range of the
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Rydberg atom are in a state, which is a superposition of all permutation of possible
states with one excitation

|E〉 =
1√
N

(|e, g, g, ...〉+ |g, e, g, ...〉+ |g, g, e, ...〉+ ...). (27)

The Rydberg blockade is an essential effect that is exploited e. g. in single photon
sources [29].

3.2.5 Interaction between Rydberg atoms and ground state atoms

The interaction between the Rydberg atom and the ground state atoms can be
discussed in terms of scattering theory. The following evaluation can be found in
most standard textbooks, which include scattering theory [9, 38].

Scattering processes can be modelled with the Schrödinger equation[
−∇

2

2µ
+ V (R)

]
Ψ(R) = EΨ(R), (28)

wherein µ is the reduced mass of the two scattering partners, V (R) is the scattering
potential,R is the distance between the particles. Ψ(R) denotes the scattering wave
function. The ansatz for the scattering wave function is

Ψ(R, θ) =
∞∑
`=0

Rk`(R)Y m
` (θ, ϕ) (29)

with a radial wave function Rk`(R), and the spherical harmonics Y m
` (θ, ϕ). Due

to symmetry reasons only m` = 0 are relevant, which means that the spherical
harmonics can be reduced to the Legendre polynominals P 0

` (cos θ). Note that ` is
the angular momentum of the scattering process and not of the angular momentum
l of the Rydberg state. Using this ansatz (29) the Schrödinger equation can be
rewritten as[

− 1

2µR

d2

dR2
+
`(`+ 1)

2
+ V (R)

]
Rk`(R) = ERk`(R). (30)

The ground state atoms’ interaction with the Rydberg electron and the ionic
core can be treated separately according to the Born-Oppenheimer approximation.
Scattering processes between the Rydberg electron and the ground state atoms are
from now on referred to as electron-atom scattering and scattering between atoms
and the ionic Rydberg core are referred to as ion-atom scattering.

If the electron is sufficiently far away from the core, the interaction between the
Rydberg electron and the core is very weak and the Rydberg electron can therefore
be described as a quasi-free particle. In the case of interaction ranges which are
small compared to the de Broglie wavelength of the electron, the interaction can
be described as a contact interaction using the Fermi-pseudo potential [39] which
is defined as

Vpseudo(r) =
2π~2a

me

δ(r) (31)
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Figure 2: Interaction potential for an 53S Rydberg atom with 5S ground state
atoms with and without taking into account p-wave scattering. The po-
tential has been calculated for 87Rb atoms. The effect of p-wave scatte-
ring is significant in a limited range of about 2000 a. u., for longer distan-
ces the p-wave scattering becomes negligible [40].

with the electron mass me and the scattering length a between the electron and
the neutral atom. The interaction is described to be point-like. The scattering
potential of the Rydberg electron with the atoms can be written as

VRyd(R) =

∫
Vpseudo(r −R)|ψRyd(r)|2d3r =

2π~2a

me

|ψRyd(R)|2. (32)

ψRyd(r) denotes the Rydberg electron wavefunction and |ψRyd(r)|2 is the elec-
tron’s density distribution. The scattering length a is the s-wave scattering length
between a free electron and a neutral ground state atom. At low temperatures only
the s-wave scattering is taken into account, however p-wave shape resonance can
occur. The p-wave shape resonance only contributes in a limited range, which is
demonstrated in figure 2.

The ion-atom scattering can be classically described using a polarisation poten-
tial

Vi(R) = − α

2R4
= −C4

R4
. (33)

It is also referred to as C4-potential and α is the ground state polarisability of
the atoms. For 87Rb the polarisability is α = 318.8 a. u. [41]. The interaction range
between a 87Rb+-ion and a 87Rb-atom can be approximated to
Ri =

√
mRbC4 ≈ 5025 a. u..

Thus, for sufficiently high n, the ground state atoms interact with the ionic core
only for very small internuclear distances. The Rydberg electron on the other hand
interacts with any atom that enters it’s orbital and therefore has a much larger
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interaction range. In consequence the interaction with the core is only relevant for
samples with high density and can be neglected under most experimental conditi-
ons.

The interaction of the Rydberg atom with its surrounding medium also influences
its lifetime. Increasing the particle density leads to more collisions with other atoms
which can result in decay or even ionisation of the Rydberg atom [42].

In an experiment the lifetime of the Rydbeg state limits the interaction time
between the Rydberg electron and its environment. This is also true for wave
function imaging, a technique that relies on the the interaction between a Rydberg
atom and a BEC, which is discussed in the following section.

3.3 Microscopy of atomic orbitals

This chapter explains the theory behind wave function imaging, it is based on a
proposal by Karpiuk et al.[5]. The idea is to optically measure the electronic orbital
of a Rydberg atom. Advantages of using Rydberg atoms for wave function imaging
are the size of the orbital and the prospect of achieving textbook like images e. g.
of S- or D-orbitals.

Optically measuring the Rydberg elctron orbital requires a medium that interacts
with the Rydberg electron and the imaging beam. A BEC fulfills this requirement
and is therefore used as a medium. Properties of BECs and Rydberg atoms have
been covered in previous sections and wave function imaging exploits the interac-
tion between those two components.

Imagine a single Rydberg atom inside a BEC. As mentioned in section 3.2, Ryd-
berg atoms interact strongly with their environment, in our case the surrounding
ground state atoms, many of which are enclosed within the Rydberg electron’s
orbital.

The interaction with the Rydberg core can be neglected, thus only the Rydberg
electron-atom scattering is taken into account. The effect of the Rydberg atom
on the BEC can be modelled eit the scattering potential, which has already been
introduced in chapter 3.2.5

VRyd(r) =
2π~2a

me

|ψRyd(r)|2. (34)

The Rydberg electron is regarded as a quasi-free particle, so the interaction bet-
ween the electron and the ground state atoms is reduced to the scattering length a.
In the experiment at hand a is the triplet s-wave scattering length between a free
electron and a ground state atom. Due to an external magnetic field, the spins of
the ground state atoms and the Rydberg electron are parallel, in consequence the
scattering is triplet scattering. For the case of 87Rb the triplet scattering length is
a = −16.1 a. u. [43]. The sample is prepared with parallel spins resulting in triplet
scattering, as it results in a deeper scattering potential than singlet scattering [44].
The effects of the p-wave shape resonance are neglected for n > 100, because they
only contribute within a limited spatial range [45].

The scattering potential (34) is introduced into the GPE, which models the effect
of the single Rydberg atom on the BEC

17



i~
∂

∂t
ψ(r, t) =

[
− ~2

2m
∇2 + Vext(r) + g|ψ(r, t)|2 + VRyd(r −R)

]
ψ(r, t). (35)

The Rydberg state’s lifetime defines the time period during which the scattering
potential has an effect. A 87Rb atom excited to n > 100 in a BEC has an average
lifetime on the order of 10 µs [5]. The interaction of the Rydberg electron with the
BEC decays exponentially with a time constant, which is defined by the lifetime of
the Rydberg state [6]. The Rydberg state’s lifetime in a BEC is about two orders
of magnitude shorter than its lifetime in a thermal cloud [47]. In a condensate
l-changing collisions and chemical reactions, that shorten the lifetime, can occur
[46, 47], due to the high density of the sample.

Although the lifetime of the Rydberg state is limited, it is nevertheless sufficient
for the scattering potential to cause a phase imprint on the BEC. The resulting
phase gradient in the medium generates a redistribution of the atoms in the BEC.
The ground state atoms begin to rearrange themselves according to the attractive
interaction. They experience a force towards regions of high Rydberg electron
probability.

There are now two possible methods for continuing. The first is to simply wait, as
the ground state atoms continue to redistribute themselves, enhancing the imprint
of the Rydberg orbital onto the density distribution of the BEC. Strictly speaking
with this technique we do not imprint the wave function, but in fact imprint the
atomic orbital which is the absolute square of the wave function. After a period
of time (on the order of hundreds of microseconds [6]) maximal contrast between
high and low density is reached before the imprint begins to dissolve. An example
of an image of a density imprint is depicted in figure 3 for the case of a 140D state.

The second option is to repeatedly pulse the excitation laser so that a new
Rydberg atom is excited every time its predecessor has decayed. The achievable
contrast is higher, but the resolution is reduced, as the Rydberg atom isn’t excited
in the exact same spot each time [5].

After the orbital has been imprinted onto the density of the BEC, it can be
measured optically. Due to the density in the BEC simple absorption imaging
cannot be used to image the density distribution, however it can be visualized via
phase-contrast imaging [13].

The resulting image corresponds to an integration of the density inside the BEC
along the imaging axis of the phase-contrast imaging.

An ideal image of the orbital is high in resolution and contrast. If the principle
quantum number of the Rydberg atom is too small, the electron orbital, which
scales with n∗2, is difficult to resolve. On the other hand a high principle quantum
number results in a low contrast, because the effective scattering potential (34)
scales with n∗−6. The effective scattering potential should be at least an order of
magnitude deeper than the chemical potential in the BEC. Otherwise there is no
sufficient phase imprint before the Rydberg atom decays [5]. The best images are
expected for a principle quantum number between 100 and 160, because the orbital
radius is large enough to be resolved and at the same time the potential is still
sufficiently deep for providing a phase imprint with high contrast.
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(a) image directly after decay (b) image after additional 180 µs

(c) image starts to dissolve

Figure 3: Time evolution of the imprint of a 140D Rydberg atom onto the density
of the BEC. a) shows an image directly after the decay of the Rydberg
atoms, which in this simulation had a lifetime of 30µs , b) after about
180µs the density distribution of the BEC shows maximum contrast
before it starts to disolve as is shown c) [6].

19



In addition to that the density of the BEC also influence the quality of the image.
High density in the BEC reduces the lifetime of the Rydberg state and thereby
reduces the interaction time of the Rydberg electron with the BEC. In a dilute
BEC there is more shot noise as a result of the smaller number of interacting
atoms [6].

3.4 Experimental realisation

3.4.1 Single Rydberg excitation

In our experiment the Rydberg atoms are excited via 2-photon-excitation following
the scheme depicted in figure 4. In some cases three-photon excitation can also be
practiced. It is possible, in theory, to excite a Rydberg atom with a single photon,
however that would require a light source at 297 nm [48], a wavelength which
in practice is difficult to produce and problematic to work with due to lack of
commercial optical elements for that specific wavelength. Another advantage of
two-photon excitation is that it allows us to excite an atom from an S-state into
an S- or D-state. That is not possible with a single-photon excitation scheme due
to the dipole selection rules [48].

The Rydberg atom creates a blockade around itself, where no additional Rydberg
excitation is possible (see chapter 3.2.4). If the blockade radius exceeds the width
of the excitation beam, in this example the infrared laser with 1020 nm, then only
a single Rydberg atom is excited. In the experiment the infrared beam has a waist
of 2µm [49]. For comparison, a 87Rb atom excited to n = 100 has a blockade radius
of 15µm.

 

|𝑛𝑆1/2  

420 nm 

1020 nm 

|6𝑃3/2  

|5𝑆1/2  

Figure 4: Example of a two-photon excitation scheme for exciting a 87Rb atom to
a Rydberg state.

3.4.2 Phase contrast imaging

Simple absorption imaging is not suitable for measuring the imprint of the Rydberg
orbital, because the optical density of the BEC is too high to employ this technique.
Instead phase contrast imaging [13] is applied.

The cloud is illuminated with a beam that has been so far detuned from resonance
that dispersion is high, while absorption is low. Parts of the cloud with higher
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density scatter the incoming light more strongly than dilute areas. The scattered
light is redirected onto a phase plate and experiences a phase shift. By interfering
with the unscattered light it creates an image of the density distribution of the
ultracold cloud. Dense areas will appear bright on the camera due to constructive
interference. In the schematic setup shown in figure 5, the image is additionally
magnified before being projected onto a camera. An imaging system with high NA
(numerical aperture) should be chosen in order achieve sufficiently high imaging
resolution.

Figure 5: Schematic setup of the phase-contrast imaging system as it is currently
implemented in the cold 87Rb atoms experiment. The blue area refers to
the imaging beam. The red lines indicate the light that was scattered by
the BEC [14]. The scattered light aquires a phase due to the phase plate
and interfers with the non-scattered light on the camera.

3.4.3 Trapping potential of the BEC

The size of the trapped cloud should be similar in size to the Rydberg orbital, so
that the background created by ground state atoms that haven’t interacted with
the Rydberg electron is as low as possible. However a cloud that is smaller than
the Rydberg orbital can lead to a distorted image of the orbital [44].

Furthermore, the imaging contrast is expected to improve significantly for a flat
quasi-2D trapping potential as compared to a cigar shaped potential formed by
a typical magnetic quadrupole trap [6]. A simulated image of a single imprinted
Rydberg orbital on a flat BEC is depicted in figure 6.

A pancake shaped cloud of atoms trapped in such a quasi-2d potential should be
located inside the focal plane of the imaging system, perpendicular to the imaging
axis. The creation of a trapping potential, capable of fulfilling the experimental
demands of wave function imaging, is the goal of this master thesis.
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Figure 6: Simulated phase contrast image of a 140D orbital in a pancake shaped
BEC with finite resolution of the imaging system after an evolution time
of 189 µs. The simimulation is based on a the same code as in figure 3
[6] and has been adjusted for a pancake potential. The potential has a
trapping frequency of 500 Hz along the direction of strong confinement
and 8 Hz in perpendicular directions. A maximum contrast of 60 % is
calculated for these parameters.
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4 Dipole traps and lattices

This chapter focuses on the working principles and use of dipole traps and optical
lattices. It is based mainly on R. Grimm and M. Weidemüller’s article on optical
dipole traps [50] and M. Lewenstein and A.Sanpera’s review on ultracold lattice
gases [51]. First an introduction to ultracold atoms in lattices and their application
is given, followed by a theoretical description of the concept of trapping atoms in
a dipole trap and an explanation of the heating mechanisms in such a trap. Lastly
the behaviour of atoms in optical lattices is explored.

4.1 Ultracold atoms in lattices

Ultracold atoms trapped inside lattices, either as ensembles or as single atoms
placed on individual lattice sites, are not only of interest for atomic physics but
also for other fields of research. The reason for this is the sheer range of possible
systems which can be represented and simulated by ultracold lattice gases.

The trapping potentials of optical lattices and dipole traps in general are extre-
mely versatile. Three-dimensional lattices can be used to simulate cubic or hexago-
nal crystal structures without any defects [52, 53], thereby serving as a platform for
simulating solid-state phonemena. Solid-state physics uses the Hubbard model as
a simplified representation of a solid with strongly interacting electrons and it can
be well simulated with cold atoms in a lattice [54, 55]. These insights could be im-
portant for investigating effects like high-temperature-superconductivity [56, 57],
superfluid to Mott-insulator transition [58] or the metal-insulator transition [59].

Optical lattices can create perfect regular structures with high symmetry. How-
ever it is also possible to create purposefully disordered systems [60], for example by
using speckle radiation or overlapping lattices with different spacings [61]. Control-
led disorder is relevant for condensed matter physics, as it is essential for the study
of delocalisation [62], but also for investigating spin-glasses [63, 64], spin-liquids
[65] and the disordered Ising model [66], which is the basis for the understanding
of quantum magnetism.

In addition to that, dipole traps and lattices also allow measurements with a
reduced number of dimensions: two-dimensional systems [58, 66] and even one-
dimensional systems [67] can be realised.

Lattices are also key components in experiments of quantum information, quan-
tum computation and topology [68, 69, 70].

The application of lattices is not limited to the field of physics but extends to
chemistry as well. The controlled formation of molecules in an optical lattice has
been achieved for example by the group of Jun Ye et al. [71].

In summary, ultracold atomic gases in optical lattices are highly versatile instru-
ments and offer insights into many fields of physics.[51]
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4.2 Dipole force

Intersecting two or more beams creates different kinds of optical lattices, such as
cubic or hexagonal lattices, depending on the orientation of the beams. In all the
examples mentioned above the optical lattice acts as a dipole trap for the atoms.
The working principle of dipole traps in general is explained in this chapter.

Within a monochromatic laser beam atoms experience a force along the intensity
gradient called dipole force.

In order to understand the origin of this force, one can consider the electron
inside the atom to be an oscillator driven by an external laser field. This classical
approach is called the Lorentz model [72]. The electric field component ~E of the

light induces a dipole moment ~p within the atom. The field ~E oscillates at the laser
frequency ω and can be written as

~E(~r, t) = E0(~r) · exp(−iωt) · ~e+ c.c.. (36)

E0(~r) is the amplitude of the electric field and it is pointing in the direction of
~e, the unit polarisation vector. The induced dipole moment ~p of the atom can be
defined likewise as

~p(~r, t) = p0(~r) · exp(−iωt) · ~e+ c.c. = α(ω) · ~E(~r, t). (37)

α(ω) is the complex polarisability of the atom. With knowledge of the dipole

moment and the driving field ~E, an interaction potential can be formulated using
the time average of the two

Udipole = −1

2
〈~p ~E〉. (38)

Using the fact that the field intensity I is defined as

I = 2ε0c|E0|2, (39)

the potential in equation (38) can be rewritten as

Udipole = − 1

2ε0c
Re(α) · I(~r). (40)

The negative gradient of the interaction potential is the dipole force

~Fdipole(~r) = −∇Udipole =
1

2ε0c
Re(α) · ∇I(~r). (41)

The scattering rate of the photons is calculated with the imaginary part of the
polarisability

Γsc =
1

~ε0c
Im(α) · I(~r) (42)

and can also be understood as the ratio between the absorbed power Pabs and the
photon energy

Γsc =
Pabs

~ω
. (43)
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The Lorentz-model defines Γ as the on-resonance damping of the electron’s moti-
on. A semi-classical approach to the problem is also possible. In this case the atom
is viewed as a quantum object and is reduced to a two-level system with a ground
state and an excited state, while the light is described as a classical radiation field.
The damping rate Γ is then determined by the dipole matrix element µ = e · ~r
between the ground state |g〉 and the excited state |e〉

Γ =
ω3

0

3πε0~c3
|〈e|µ|g〉|2 (44)

and corresponds to the spontaneous decay rate from the excited level. Dipole traps
in general operate at frequencies far detuned from the atomic resonance. This
significantly reduces photon scattering, subsequent heating and avoids saturation.
The dipole potential and the scattering rate can then be written as

Udipole(~r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(~r), (45)

Γsc(~r) =
3πc2

2~ω3
0

(
ω

ω0

)3(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(~r). (46)

If the detuning ∆ = ω − ω0 is large enough to neglect saturation, but the driving
frequency is still chosen at |∆| � ω0, then this would allow us to use the so-called
rotating wave approximation. The dipole potential can thus be simplified to

Udipole(~r) =
3πc2

2ω3
0

Γ

∆
I(~r) ∝ Γ

∆
I(~r) (47)

with a scattering rate of

Γsc(~r) =
3πc2

2~ω3
0

(
Γ

∆

)2

I(~r) ∝
(

Γ

∆

)2

I(~r) (48)

Equations 47 and 48 show why dipole traps for cold atoms often use light with
very high intensity and large detuning at the same time. The potential becomes
deeper for higher intensity. In addition the radiation force due to photon scattering
is reduced to a negligible value compared to the dipole force by choosing light with
a frequency which is far detuned from the atoms’ resonance frequency (Γ� |∆|),
which reduces the loss due to heating. In summary the dipole force depends on the
detuning, the damping rate and the intensity gradient (∇I)

~FDipole ∝ −
Γ

∆
∇I(~r). (49)

The sign and therefore the direction of the dipole force now depends on the sign
of the detuning. Blue detuned light (∆ > 0) causes the atoms to move towards
lower intensity, while red detuning (∆ < 0) results in a force towards the intensity
maximum. The focus of a red detuned Gaussian beam is the simplest example of
such a trap and is referred to as an optical tweezer [73].
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While these equations describe a simplified atom as a two-level-system, real
atoms have multitudes of levels. However the behaviour described in equation 49
remains the same, even if the atomic sub-structure is taken into account.

Alkali atoms for example have a very characteristic splitting of the D-line, the
transition from n2S1/2 to n2P1/2 and n2P3/2. If the detuning largely exceeds this
splitting, then the hyperfine-structure can be completely neglected. For linearly
polarised light (P = 0), the dipole potential remains exactly as it has been defined
in equation 47. The detuning ∆ is then defined relative to the center of the D-
line dublett. For circular polarisation (P = ±1) of the incoming laser light an
additional correction term is added

Udipole(~r) =
3πc2

2ω3
0

Γ

∆

(
1 +

1

3
PgFmF

∆′FS

∆

)
I(~r), (50)

which also includes the Landé factor gF and the magnetic sub-state mF . ∆′FS is
the fine-structure splitting and is typically significantly smaller than the detuning.
Therefore the last term is often neglected, again reducing the alkali atom to a
simple two-level-system with only one relevant transition s→ p.

4.3 Heating mechanisms in dipole traps

The dipole force is a conservative force. In consequence it cannot be used for
cooling, only for trapping. As optical dipole traps use far detuned light, optical
excitation is very low. Typically such traps have a depth in a range lower than 1
mK, which is why atoms have to be cooled down prior to being loaded into the
trap. In consequence if the atoms gain too much kinetic energy through any kind
of heating process, the atoms will eventually leave the trap [50].

The origins of heating in dipole traps is explored in this section.
One important source of heating comes from spontaneous scattering of photons.

The scattering process consists of absorption of a photon and spontaneous emission
in a random direction. This causes fluctuations of the radiation force and thus
heating. In the case of far detuned light, the scattering can be considered to be
elastic [50].The heating power is given by

Pheat = 2ERΓ̄sc = kBTRΓ̄sc. (51)

ER and TR refer to the recoil energy and the corresponding recoil temperature, Γ̄sc

is the average photon scattering rate. For the far-detuned case the scattering rate
Γsc decreases drastically, which makes heating due to photon scattering negligible,
especially compared to heating due to technical limitations.

Heating can result from fluctuations in the potential caused by instability in in-
tensity and spacial instability (position of the trap). This kind of heating strongly
depends on the technical specifications of the laser used. For typical trap frequen-
cies of dipole traps, the intensity noise and beam-pointing noise of the laser in
the kHz range are relevent. To name an example, 87Rb atoms, that are trapped a
focussed Gaussian beam with a power of 1 W and a beam waist of 50µm, have a
trapping frequency of 2.4 kHz.
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Let’s first take a look at heating through intensity fluctuations. We assume a
harmonic potential (in close approximation). The motion of the trapped atom
with mass m can be described with a mean square trap frequency ω2

x = kx/m and
a spring constant kx along one axis. In the case of a far-detuned Gaussian beam
with a 1/e-intensity radius a the spring constant can be written as k = 2U0/a

2,
wherein U0 is the maximal potential depth. This means that the spring constant
is proportional to the laser intensity. The Hamiltonian for a trapped atom under
these circumstances can be written as

H =
p2

2m
+

1

2
mω2

x(1 + ε(t))x2 (52)

with the fractional fluctuation of the laser intensity being represented by ε(t). It
is defined by

ε(t) =
I(t)− I0

I0

(53)

In order to derive the heating rate the Hamiltonian (52) can be solved via first-
order time-dependent perturbation theory. The second harmonic of the trapping
frequency leads to dominant parametric heating, because the Hamiltonian and the
perturbative term share the same spacial symmetry. The resulting time dependence
of the energy is exponential as shown in [74]

〈Ėx〉 = Γx〈Ex〉 (54)

with an exponential rate of

Γx = π2ν2
xSk(2νx). (55)

νx = ωx/2π is the trapping frequency and Sk is the one-side power spectrum of
the fractional fluctuation of the spring constant kx. It is defined so that∫ ∞

0

dνSk(ν) = 〈ε2(t)〉, (56)

which is the mean square fractional fluctuation in the spring constant [74].

The other source of parametric heating is instability in beam-pointing. It is
characterised by the following Hamiltonian

H =
p2

2m
+

1

2
mω2

x(x+ εx(t))2 (57)

This time εx(t) is the fractional fluctuation of the position of the trap, more preci-
sely, of the trap center. Similarly to the heating through intensity fluctuations, the
heating rate can be again calculated via perturbation theory. This time however
the result is a linear behavior [74]

〈Ėx〉 =
π

2
mω4

xSx(ωx). (58)
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In contrast to equation (55), here the heating is independent of the trap energy
〈E〉. The power spectrum is defined similar to equation (56)∫ inf

0

dνSx(ν) = 〈ε2x(t)〉 = ε2x (59)

wherein ε2x is the mean square variation of the trap position [74].
Atoms start leaving the trap when their mean energy 〈E(t)〉 is close to or above

the potential depth U0.
According to [75] the rate with which the atoms are lost depends not only on

the parametric heating rate, but also on the initial conditions. If the mean energy
of the atoms loaded into the trap is well below the potential depth of U0, the
population inside the trap decays at a smaller rate, than if the trap is loaded at a
temperature similar to the trap depth. While this makes a dipole trap with higher
intensity favourable, a deep potential well in combination with tight confinement
also increases the effect of the fluctuations.

4.4 Tunneling between lattice sites

The heating mechanisms described in the previous section are not the only reason
atoms can leave a potential well. Within an optical lattice atoms can tunnel from
one lattice site into a neighbouring site. The tunneling rate depends on the on
the potential depth and the lattice spacing. Tunneling can be surpressed by the
potential difference between neighbouring latice sites.

4.4.1 Recoil energy

Imagine for example an optical lattice potential created by two counter -propagating
narrow-band laser beams, each with Gaussian beam profiles and a beam waist of
w0. The resulting dipole potential in cylinder coordinates is

U(r, z) = −U0 exp

(
−2r2

w2
0

)
sin2(

πz

s
). (60)

In this example the beams are propagating along the z-axis and s = π/k is the lat-
tice spacing and is defined by the wavelength of the counter-propagating beams, in
this case s = λ/2. The spacing of an accordion lattice is defined by the wavelength
and the angle of two intersecting beams (see chapter 5.2 for details). U0 denotes
the potential depth and is often stated in terms of temperature U0 = kBT . If U0 is
sufficiently deep, the individual potential wells in the lattice can be approximated
as a harmonic potential and a trapping frequency ωtr in direction of propagation
can be defined as

ωtr =

√
2U0

m
k (61)

with m being the mass of a trapped particle [76]. The recoil energy ER in such a
potential is

ER =
~2k2

2m
= kBTR. (62)
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TR is the corresponding recoil temperature. The potential depth is often given in
multiples of the recoil energy [77].

4.4.2 Bloch states

The motion of a quantum particle in a one-dimensional potential in general is
defined by a Hamiltonian

Ĥ =
p̂

2m
+ U(x). (63)

If the potential U(x) is spatially periodic, then the eigenstates that solve the sta-
tionary Schrödinger equation

Ĥ |φn,q(x)〉 = En(q) |φn,q(x)〉 (64)

are the Bloch functions |φn,q(x)〉, which have the same spatial periodicity as the
potential U(x) [77]. Here n denotes the energy band index, which will be explained
below and q is the quasimomentum. The Bloch functions take the form

φn,q(x) = exp(iqx) · un,q(x). (65)

The function un,q(x) = un,q(x + s) has the same periodicity s of the potential
U(x) = U(x+s). Due to the periodicity both the potential and the Bloch functions
can be written in a Fourier series

U(x) =
∑
l

Ul exp(ilGx), (66)

φn,q(x) =
∑
l

cnl exp(iqx+ ilGx). (67)

The reciprocal lattice vector is defined as G = 2π/s [77]. Using this ansatz in the
stationary Schrödinger equation and limiting l to |l| ≤ N , the result is a 2(2N+1)-
dimensional linear system of equations of the shape

(
~2

2m
(q − lG)2 + U0

)
· cq−lG + UG · cq−(l+1)G

+ U−G · cq−(l−1)G = cq−lG · E
(68)

with l = −N ,−N + 1, ...,N − 1,N [77]. Equation (68) produces 2N + 1 different
eigenenergies En with n = 0, 1, 2, ..., 2N for given quasimomentum q. The quasi-
momentum q can be restricted to −~k ≤ q ≤ ~k, which is the first Brillouin
zone. In the case of a sinusoidal potential with lattice spacing s the wave vector is
k = π/s. In the case of deep lattice potentials, it is often sufficient to only consider
the lowest bands. For example in the case of U0 ≤ 20ER is it enough to take |l| ≤ 5
into account [76], only the lowest bands are of interest.
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Figure 7 shows the dispersion relations En(q) for different potential depths in
the first Brillouin zone. The eigenenergy spectrum is separated into energy bands
En by the lattice potential. There are gaps of forbidden energy values in between
the energy bands and the energy gaps become larger for deep lattices while the
bands become narrower. The lowest band’s dependence on q also decreases with
increasing potential depth.

The Bloch states are delocalised over the entire lattice [78].

Figure 7: Energy bands En(q) for different potential depths within the first bril-
lioun zone. The potential depth of U0 = 0ER corresponds to a free
particle. [76]

4.4.3 Wannier states

In deep lattices (U0 � ER) only the lowest band is taken into account and the
wave functions can become localised within certain potential wells. In that case the
Bloch states are no longer a convenient basis for calculation. Instead the Wannier
states are introduced, which comprise of a superposition of all Bloch states in one
energyband [77]. The Wannier states provide a single-particle basis that is well
suited for the case of deep, discrete lattice sites, where the particle is localised
in a specific potential well. They are connected to the Bloch states by a Fourier
transformation

wn(R, x) =
1

s

∫
dq exp(−iqR)φn,q(x) (69)

and is centered around the lattice site R [77], with R = u · s, u ∈ N. They fulfill
the orthonormality relation for different sites R and energy bands n∫

d~r w∗n(r −Ru)wn′(r −Rv) = δn,n′δu,v (70)
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4.4.4 Tunneling matrix element J

A particle that tunnels from one potential well into a neighbouring well requires a
certain amount of kinetic energy. This energy can be described by the parameter
J > 0, also defined as the tunneling matrix element or hopping matrix element in
context of the tight binding model [78]. In general J is detemined by the energies
En(q) of the Bloch energy bands. For particles trapped in a deep lattice (U0 � ER),
it is sufficient to only take into account the lowest band and next nearest neighbour
tunneling.

The tunneling matrix element can be interpreted as the overlapp between two
localised wannier states [77]

J = −
∫

d~r

(
~2

2m
∇wu · ∇wu+1 + wuUextwu+1

)
. (71)

In the case of deep lattices the tunneling matrix element J can be approximated
using

En(q)

ER

=

√
U0

ER

− 2J cos(qs) (72)

and

J =
4√
π
ER

(
U0

ER

)3/4

exp

[
−2

(
U0

ER

)1/2
]
, (73)

which is obtained by analytically calculating the eigenenergies of the lowest band
in the limit of deep periodic potentials, also called the tight binding limit [79].
According to equation (72) the energy gain J corresponds to four times the with
of the lowest energy band. For finite potential depths equation (73) is only an
approximation for J . For a potential depth of U0 > 15ER for example it can
estimate J with an accuracy of about 10 % [78]. The tunneling matrix element
can be used to determine a characteristic time for tunneling as Ttun = 2π~/J ,
which means, if J is smaller than the Planck constant, the characteristic time for
tunneling is more than one second. In the context of cold atoms experiments one
second is often considered an extremely long time compared to other time scales,
like for instance lifetimes of Rydberg atoms on the scale of a few µs.

Figure 8 shows a calculation of the tunneling rate J/h as a function of the poten-
tial depth using equation (73). The calculations were performed for five different
lattice spacings, which are realised by a counter-propagating beam of 1064 nm light
and by the accordion lattice that is characterised in this thesis. For the potential
range depicted in figure 8 the approximation of a deep lattice potential is valid. For
the example of the accordion lattice, tunneling can be completely neglected. For
the case of the counter-propagating beam, the spacing is an order of magnitude
smaller than the smallest spacing in the accordion. For such lattice with such a
small spacing, tunneling may be relevant, depending on the timescale of the ex-
periment. At a potential depth of 500 nK, the tunneling rate would still be below
100 Hz.
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In conclusion, tunneling decreases for deep potentials with wide lattice spacing s.
In addition, tunneling is forbidden due to energy conservation, if neighbouring lat-
tice sites have a potential difference of ∆U0 > J [76].
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Figure 8: A calculation of the tunneling rate J/h as a function of the potenti-
al depth using equation (73) for deep lattice potentials. J is calculated
for trapped 87Rb atom in a counter-propagating beam of 1064 nm light
(s=0.532 µm), as well as for different lattice spacings realised by the ac-
cordion lattice, described in this thesis. The tunneling rate increases with
smaller lattice spacings and decreasing potential depth. In this example
tunneling is only significant for the counter-propagating trap. It can be
completely neglected in the case for the accordion lattice.
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5 Experimental setup

This chapter focusses on the experimental realisation of the accordion lattice. First
the technical requirements are specified, followed by a schematic, a description of
the setup and an explanation of the working principle of the accordion lattice in
section 5.2. This chapter also includes a characterisation of the camera, as it is the
main instrument for measurement in this thesis.

5.1 Experimental requirements

Within the scope of this thesis an accordion lattice for trapping ultracold 87Rb
atom is develloped. In order to be able to use the trapped atoms in an experiment,
that enables the imaging of the electronic orbital of a Rydberg atom, several expe-
rimental requirements have to be fulfilled, which will be explained in the following.

Laser frequency and stability

The laser frequency for the dipole trap has to be far detuned from the atomic
resonance, otherwise the atoms will leave the trap due to the parametric heating
already described in chapter 4.3. A trapping time on the scale of at least tens of
milliseconds is desired. This means the laser intensity and beam pointing has to
remain as stable as possible, on short timescales in order to avoid heating, and on
long timescales to be able to obtain reproducible results.

Furthermore the wavelength has to be λ > 1010 nm, otherwise it would result
in ionisation of the Rydbergatom in combination with the 420 nm light from the
two-photon excitation. As a lot of the measurements performed inside the science
chamber rely on ionisation as a method of detecting Rydberg excitation, any ad-
ditional ionisation by trap light has to be avoided.

Spatial requirements

The ultracold atoms reside inside a vacuum inside a glass chamber. Optical access
is limited by the size of the windows. The window has a height of 12 mm and is 13
mm away from the cloud of atoms in the center of the vacuum. This means, that
two beams can intersect with an angle less than 24◦ without being clipped by the
window.

Since the accordion lattice will be integrated into a versatile and therefore com-
plex cold atom experiment, the size of the setup is desired to be as compact as
possible. Especially the coil holders around the glass cell obstruct any addtional
optical setup. It is therefore not possible to position elements of the setup closer
than about 150 mm close to the atom cloud. This distance is set by the distance
between the glass cell and the surrounding coil holders. As space on the entire
optical table is very limited, the setup has to be as compact as possible and the
distance between the setup and the actual dipole trap has to be at least 150 mm.
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Confinement and orientation

As has already been stated in section 3.4.3, a flat, pancake shaped trapping poten-
tial perpendicular to the imaging axis provides the best contrast for wavefunction
imaging. In consequence, for best results the potential has to provide very tight
confinement on the range of a few µm (roughly the size of the Rydberg orbital)
along the axis of the imaging beam and weak confinement in perpendicular direc-
tions. The beam used for imaging enters the science chamber from the top and
is reflected by a mirror below the chamber onto a camera through an imaging
system for phase contrast imaging. Therefore the dipole trap has to be aligned
horizontally.

The trapped atoms have to remain within the focal depth of the imaging system
which is only a few µm. If the pancake shaped cloud of atoms drifts outside this
plane the resolution of the obtained images is drastically decreased.

In addition, it is required, that the trap can be loaded by overlapping with the
magnetic quadrupol trap, that holds the atoms. Therefore a potential well has to
be of similar size as the extent of the magnetic trap. The latter provides a cigar
shaped confinement which is between 5µm and 10µm wide and ten times as long.

In order to fulfill these requirements a dipole trap called an accordion lattice is
chosen. The design and its function is explained on the following pages.

5.2 Schematic setup

This section covers the working principle of the accordion lattice, including a sche-
matic of the setup, which is displayed in figure 9 .

The working principle of the accordion lattice is the intersection of two iden-
tical laser beams at a variable angle, resulting in an interference pattern at the
intersection. First a single 1064 nm beam passes a λ/2-waveplate and is reflected
on the mirror M1. The mirror is mounted at a 45◦ angle. The beam is reflected
into a polarising beam splitter cube (PBS1), which splits the light into two line-
ar polarised components. The s-polarised component is reflected by the cube, the
p-polarised component passes through a second beam splitter cube (PBS2) without
deflection. It is reflected back of a mirror M2. Between the second cube (PBS2)
and the mirror (M2), there is a λ/4-waveplate. Therefore the reflected beam passes
the λ/4-waveplate twice and is consequently s-polarised. The beam reenters the
beamsplitter (PBS2) and is reflected.

The result is two parallel laser beams with identical polarisation. The two beams
are crossed by a lens (L1) and create an interference pattern consisting of many
layers at their intersection. To achieve maximal contrast in the interference pattern,
both intersecting beams need to have the same intensity. The intensity of the beams
in relation to each other can be tuned with the λ/2-waveplate.

The spacing of the pattern depends on the angle with which the beams intersect.
By changing the angle the spacing can be varied.

The mirror M1, which reflects the single beam into the cubes, is mounted on top
of a motorized stage. It can be precisely displaced, thereby changing the distance
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Figure 9: Schematic setup of the accordion lattice. The 1064 nm laser light is re-
flected on mirror M1, which is mounted on a translation stage. The stage
can be displaced by d, which also changes the distance D between the
two parallel beams, that are crossed by the lens L1. The interference pat-
tern at the point of intersection is indicated inside the circle. The lattice
planes are stacked along the z-axis.

between the two parallel beams and the resulting angle of intersection. Sperical
aberations in the lens (L1) can cause the position of the interference pattern to
change, when the angle of intersection is varied. This effect is minimised by using
an aspherical lens.

When using the accordion lattice as a dipole trap, the atoms are loaded into a
single plane of the interference pattern at large spacing. This is done by overlapping
the lattice with a magnetic trap that hold the atoms. By then moving the mirror
on the stage, the spacing is reduced and confinement along the z-axis is increased
to the desired value. The loading of the trap at large spacing avoids the population
of multiple layers within the lattice.

For the pancake potentials to be perpendicular to the imaging beam of the phase
imaging system, the polarising beam cubes (PBS) have to be mounted vertically,
stacked on top of one another. The accordion lattice only provides strong confine-
ment along the z-axis. The trapped atoms are still able to escape the trap in the
direction of beam propagation. Therefore additional confinement in the xy-plane is
needed. For that a second beam can be implemented, which propagates along the
z-axis and is perpendicular to trapping potential provided by the accordion lattice.
This additional beam along the z-axis can be for example a 1064 nm gaussian be-
am. This thesis will however place its main focus on the confinement created by
the accordion lattice.
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In order to be able to use the atoms trapped in the accordion lattice for wave
function imaging, the layer of atoms has to remain spatially stable within the
focal plane of the imaging system used for the phase contrast imaging, otherwise
the resolution of the images is descreased. The position of the layers within the
interference pattern depends on the relative phase between the two intersecting
beams. The phase is defined by the difference in the optical path length between
the two intersecting beams. With perfect alignment this difference is exactly twice
the distance between the first cube (PBS1) and the second mirror (M2). However,
this distance can vary due to temperature fluctuations and the subsequent thermal
expansion of the setup.

Thus, a mechanism to actively compensate the phase has to be implemented into
the system. This can be achieved by adding a piezo stack to the back of the mirror
M1. By applying a voltage to the piezo stack, phase drifts can be compensated.
The phase information needed to apply the correct voltage is obtained by imaging
the lattice onto a camera and extracting the phase from the data. A PID-controller
(proportional-integral-derivative controller) can be used to stabilise the phase at a
desired value. Details concerning the phase stabilisation can be found in chapter 7.

In order to achieve a deep dipole potential with little parametric heating, a laser
with a wavelength of 1064 nm was chosen. It provides large, red detuning relative
to the 5S to 5P transition in Rubidium while at the same time avoiding heating and
ionisation. Lasers as well as optical components designed for this wavelength are
commercially available. The laser used for this setup is a NKT Koheras Boostik,
which is designed to have low intensity and phase noise.

The aspheric lens L1 (see figure 9) has a focal length of 150 mm and a diameter of
750 mm. All other optical elements are one inch in diameter. This means that two
intersecting beam cross at an angle of less than 19◦ and the distance between the
setup and the atoms is 150 mm to fulfill the spatial requirements of the apparatus.
The Gaussian optics waist in front of the setup is w0 = 520 µm, therefore the
width in the focal point of the lens is w′ = 97 µm.

Mirror M1 in the setup (see figure 9) is mounted atop a motorised stage, so that
it can be displaced fast and smoothly. A MTS25/M-Z8 motorised translation stage
from Thorlabs was chosen. It has a translation range of 25 mm, which is needed to
displace the beam along the whole width of the polarising cubes. In addition it is
smaller in size than comparable models, which means it would consume less space
on the optical table. Position and speed can be set via a controller, which can be
externally triggered to perform a predefined action. The trigger signal is a TTL
signal. In consequence the motion of the stage can be triggered by a voltage signal
from a Raspberry Pi for example.
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The spacing in an interference pattern from two intersection beams is given as
follows:

s =
λ

2 sin(θ/2)
. (74)

wherein λ is the wavelength of the laser light and θ is the angle between the two
beams. The intersection angle can be calculated from the distance of the parallel
beams and the geometry of setup.

θ

2
= arctan

(
D

2f

)
. (75)

D is the distance between the parallel beams and f is the focal length of the
aspherical lens. D can also be written in terms of the mirror displacement d on
the stage with d0 as the starting position:

D = 2(d+ d0). (76)

The spacing can then be written as a function of wavelength, focal length and
mirror displacement.

s =
λ

2

√
1 +

(
f

d+ d0

)2

(77)

The values for the setup described in this thesis are λ = 1064 nm, f = 150 mm
and 4 mm ≤ D ≤ 46 mm, taking into account, that any clipping of the beams
at the edges of the cubes has to be avoided. This yields a spacing range of
40 µm ≥ s ≥ 3.5 µm.

In our case
(

f
d+d0

)2

� 1, which allows the following approximation to be made

with a deviation from equation (77) of about 1 %

s ≈ λ

2
· f

d+ d0

(78)

As the wavelength as well as the focal length are fixed values in this setup, one
has absolute control over the spacing via the mirror on the stage. The spacing is
limited by the size of the optical components and the beam width, clipping of the
beam has to be avoided. By applying a voltage to the piezo, which is depicted in
figure 9, the phase of the lattice fringes within the Gaussian envelope can be adjus-
ted. That means we have absolute control over spacing and phase within the lattice
by controlling the position of the mirror on the stage and voltage on the piezo stack.
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5.3 Characterisation of the Pi Camera

For most measurements as well as for the feedback loop a Raspberry Pi NoIR
camera was used in combination with a Raspberry Pi 3. This particular camera
has no inbuilt infrared filter and is therefore suited to measuring light at a wave-
length of 1064 nm, which is in the near-infrared region. The camera uses a Sony
IMX219PQ CMOS-chip. Like most standard camera-chips, it mimics the percep-
tion of the human eye, which means that the response does not behave linearly
with increasing intensity. The human eye perceives increasing light intensity with
a near logarithmic behaviour. As the camera is the main measurement instrument
used in this thesis, characterisation measurements of the chip are appropriate.

The Raspberry Pi Camera has several settings which can be varied, such as reso-
lution, shutter speed or the ISO (International Organization of Standardization),
which is a standardised value for light sensitivity. Furthermore the chip has pixels
that are sensitive to three colours: red, green and blue. The data of each color can
be evaluated separately.

For all characterisation measurements in this chapter the camera is placed in the
focus of the setup where the two beams cross (see figure 9).

5.3.1 Comparison of the colours
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Figure 10: Comparison of the lattice profile measured by the pixels, which are
sensitive twos the colours red, green and blue. Contrary to expectations
the highest intensity is measured by the pixel which are most sensitiive
in the blue region. The green curve shows the best contrast. Therefore
further measurements are perform with the data from the green pixels.

Figure 10 shows the intensity profile of the interference pattern with a spacing
of 16µm measured by pixels which are sensitive towards three different colours.
The measurement has been done with ISO = 300, an exposure time of 500µs and
at full resolution.
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Although the light is in the near-infrared, the blue pixels measure the highest
intensity. The green pixels measured the lowest intensity and the curve of the red
pixels is in between the other two colours. The data from the green pixels also has
the lowest minimal values, which means that the visibility of the green image is
the best. For this reason only the data of the green pixels has been evaluated in
the following sections of this chapter.

5.3.2 Exposure time and saturation

As already mentioned, the camera chip is expected to show a non-linear response
with increasing intensity. Therefore the response of the camera is measured for
different exposure times and different laser power. The camera has been set to
measure at half of its maximum resolution. The two expressions, shutter time and
exposure time, refer to the same setting and are interchangable.

In order to protect the chip against damage from too much laser power, a neutral
density filter is placed filter in front of the camera. One of the two parallel beams is
blocked, thus only one polarised Gaussian beam is directed at the Pi Camera. The
laser power on the chip is further varied by adjusting the λ/2-waveplate, which
determines how much power is transmitted or reflected by the PBS (see figure 9).

Figure 11 shows a measurement of counts depending on the laser power. A
Thorlabs NE30A filter is placed in front of the camera. It transmits 0.54 % of
the power at 1064 nm [80], so that only a few µW of power reach the camera. For
increased laser power the camera’s response shows no visible non-linearity for the
short exposure time of 200µs, in contrast the data with the longest exposure time
of 1000µs deviates significantly from linear behaviour. The slope decreases for laser
power above 1µW. This implies a possible saturation effect. As saturation effects
are to be avoided, another measurement is performed in a lower power regime.

For the measurements depicted in figure 12 a Thorlabs NE40A filter is used, that
only transmits 0.1 % of the power at 1064 nm [80], reducing the incoming laser
power from 100µW to 100 nW. In the range of 200 nW to 600 nW the response
is approximately linear, which suggest that there is no saturation. However, no
response can be measured below 100 nW.
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Figure 11: Power measured by the Pi Camera for different exposure times. For
the small exposure time of 200µs, the behaviour is almost linear. For
larger exposure times the slope of the curves decreases resulting in non-
linearity.
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Figure 12: Power measured by the Pi Camera in a low power regime for different
exposure times. The camera’s response to a power below 700 nW is ap-
proximately linear, however, the camera is insensitive beneath 100 nW.
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Apart from high laser power, saturation can also occur as a result of a prolonged
exposure time. Figure 13 shows how the measured counts increase with exposure
time. The measured power increases strongly at small exposure times below 3 ms,
after which the slope decreases, indicating saturation.

The effect of saturation on the shape of the measured Gaussian profile is depicted
in figure 14. The data is normalised for better comparability of the shape of the
curves. For a very short exposure time of 100µs the curve is very narrow and
displays a sharp edge at the base. For longer exposure times the curve slopes off
smoothly at the base, as is typical for Gaussian profiles, but it also broadens and
becomes flatter at the top. The flattened peak is visible in figure 14 for exposure
times of 5 ms and longer, which corresponds to the reduced slope in figure 13. The
curve measured with an exposure time of 1 ms has the greatest resemblance with
a Gaussian curve. Saturation occurs at exposure times longer than 1 ms.

In conclusion more laser power and longer exposure times cause saturation and
enhance the non-linearity of the camera. Reducing both parameters results in a
more linear behaviour, but there is also the disadvantage of not being able to
measure small intensities, which is why the exposure time should not be set too
low.
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Figure 13: Counts measured at 300 nW for different exposure times ranging from
100µs to 20 ms. The measured counts increase approximately linearly
up to an exposure time of about 2 ms. Thereafter the slope decreases
which indicates a saturation effect.
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Figure 14: Normalised measurement of a Gaussian profile for different exposure
times at 300 nW. For the shortest exposure time the bell curve is signi-
ficantly reduced in width has an edge at the base instead of sloping off
smoothly. For exposure times longer than 5 ms the curve broadens and
the top is flattened, which indicates saturation.

5.3.3 Resolution

Apart from settings such as the exposure time for example, the chips finite pixel
size has to be taken into account. According to the chip’s specifications [86], the
pixel size is 1.12µm x 1.12µm.

The ratio between the pixel sizes at full, half and a quarter of the maximal
resolution hase been measured for different lattice spacings. The pixel diameters
for full, half resolution and quarter resolution are expected to be 1.12µm, 2.24µm,
4.48µm, which corresponds to a ratio of 1:2:4, however the measured ratio is 1:3.5:7
and is the same for all pixel colours. This may be due to the binning process
performed by the camera. By comparing the measurements with results taken
from a beamprofiler with a known pixel size of 3.69µm x 3.69µm, the pixel size
for each resolution of the Pi Camera can be determined.

Images of an interference pattern with a spacing of approximately 22µm at
different resolutions are depicted in figure 15. All images in figure 15 show an
area of 200µm x 200µm. The corresponding pixel sizes can be found in table 2.
Comparing the values in the table 2 with the expectations shows a match for half
and quarter resolution. The pixel size at full resolution is significantly smaller than
expected.

Unlike the Pi Camera the beamprofiler has a linear intensity response. Therefore
the diameter of the interference pattern measured with the beamprofiler in figure
15a) is visibly larger than in the other pictures taken with the Pi Camera. The
beamprofiler is able to measure the small intensities towards the edge of the spot,
which are cut off by the Pi Camera. The asymmetry in figure 15a) results from a
slight misalignment of the intersecting beams.
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The measurement at high resolution depicted in 15b) also shows an interference
pattern with small spacing in y-direction. The origin is an interference effect on
the camera chip itself or the filters infront of it and does not result from the setup
of the accordion lattice. This effect cannot be resolved in the other pictures. The
contrast between the bright and dark areas of the lattice is also reduced with
resolution, particularly in figure 15d). Also the diameter of the measured image is
reduced, which means that the small intensities towards the edge of the lattice are
no longer measured.

Taking pictures with higher resolution offers better visibility and allows the mea-
surement of smaller lattice spacings, however it comes at the cost of slower mea-
surment rate. Increasing the resolution also increases the number of pixels that
have to be scanned in order to take a picture, which means that each picture takes
more time.

Camera pixel size
Beamprofiler 3.69µm x 3.69µm
Pi Camera at full resolution 0.64µm x 0.64µm
Pi Camera at half resultion 2.24µm x 2.24µm
Pi Camera at quarter resolution 4.48µm x 4.48µm

Table 2: Pixel size for different camera resolutions
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Figure 15: Image of the lattice with a spacing of 22µm taken with a beamprofiler in
a) with a pixel size of 3.69µm and the Pi Camera at different resolutions
with a pixel size of b) 0.64µm, c) 2.24µm and d) 4.48µm.
Each image displays an area of 200µm x 200µm.
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6 Characterisation of the accordion lattice

This chapter contains measurements of the accordion lattice, including a compari-
son of the measured lattice spacing with the theoretical expectations. The stability
of the position of the intersecting beams has been measured in the focus of the as-
pheric lens. The phase of the interference pattern during the motion of the mirror
was measured, as well as the temperature dependent phase shift in a lattice with
static spacing.

6.1 Lattice spacing
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Figure 16: Lattice spacing measured as a function of the stage position d. The
bahaviour is in agreement with the theoretical expectation. The data is
fitted to equation (77) in order to obtain the offset d0 = 1.06.

Figure 16 shows, how the spacing changes, when the mirror is displaced by the
stage. The data is in good agreement with the theoretical expectations given by
equation (77). The function has been fit to the data, the offset is determined as
d0 = 1.06 mm. The spacing ranges from 48.3µm to 3.37µm, which corresponds
to a distance of 3.3 mm ≤ D ≤ 47.9 mm and exceeds the conservative estimate
made in chapter 5.2. However for the extremal values of the spacing, parts of
the beam started to clip at the edges of the cubes and the mount of the λ/4-
waveplate. The top beam, which is reflected in PBS2 (see figure 9) is clipped
earlier than the bottom beam, because it passes through the the λ/4-waveplate,
which is fixed inside a lense tube. The retaining ring, which holds the waveplate
in its place, has an aperture of 23 mm. This limits the translation range. For this
reason, further measurements are resistricted to a range of 4.58 mm ≤ D ≤ 46 mm
which corresponds to a spacing range of 3.5µm to 35µm.

45



6.2 Stability during motion of the stage

In an ideal case, the position of the beams and their distance from each other should
not vary when the mirror is moved. However this is not the case as measurements
in figures 17 and 18 demonstrate. For this measurement one of the parallel beams
is blocked and the position of the other beam on the camera is measured while the
stage moves. The measurement is then repeated for the other beam. Data outside
the range specified in the previous section is omitted due to the clipping of the
beam.

Figure 17 shows how the beams move up to 44µm away from each other along
the z-axis.The two curves in figure 17 have almost the same shape, except for the
fact that the beams move in opposite directions relative to each other.

Figure 18, which depicts the motion of the beams along the y-axis, shows a
parallel behaviour of both beams. The displacement of the beams is almost identical
and they deviate less than 10µm away from each other. Overall the beams move
up to 30µm during the motion of the stage.

The distance between both beams should not be more than half the width of
the intersecting beams. The two beams move by ∆z = 44µm and ∆y = 30, which
justifies the beam diameter w′ = 97µm in the focal point of the setup. In principle,
it is possible to reduce the beamwidth further in y-direction and still achieve a
lattice, as the beams only drift up to 10µm apart along that axis. However, in this
case that is not advisable, as the effect of a shift of the whole lattice position is
stronger for a smaller spot size.

The measured values ∆z and ∆y are independent of the speed of the translation
stage or the direction in which the stage moves.
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Figure 17: The z position of the two beams on the camera is measured separately
during the motion of the translation stage. For a displacement up to
22 mm the two beams move less than 45µm apart. .
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Figure 18: During the motion of the stage both beams move within a range of
30µm in the focal plane of the aspheric lens. The distance between
both beams is less than 10µm for any stage position.

The speed of the translation stage has no measurable effect on how the fringes
of the accordion lattice shift during compression. In figure 19, the lattice spacing
has been changed slowly from 35µm to 3.5µm within more than two minutes.
Afterwards the direction of the stage is reversed and the lattice spacing is redu-
ced at maximum speed within 10 s. The center fringe, which has a maximum at
about 60µm at the beginning of the measurement, moves by 8.6± 0.64µm during
compression and during the expansion it moves by 9.0 ± 0.64µm, which can be
considered the same within the margin of error. The uncertainty is defined as one
pixel size at full resolution.

During the dispalcement the image of the accordion lattice measured by the
Pi Camera becomes darker and brighter. This effect is reapeatable and can be
explained by the distance between the intersecting beams during the motion of
the stage as well as imperfections of the PBS cubes. However, due to the non-
linearity of the Pi Camera, these intensity fluctuations appear magnified in the
measurement data.

Although the shift of the center fringe does not depend on the speed or direction
of the stage displacement, it is dependent on the alignment of the set up and the
temperature. The shift of the center fringe measured at a temperature of 19.7 ◦C
is z = 8.7 µm, for 19.9 ◦C it changes to z = −8.7 µm. The change of sign indicates,
that the fringe shifts in the opposite direction.
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Figure 19: Slow compression of the accordion lattice during a time period of 148 s,
followed by a fast expansion of the lattice spacing within 10 s. The center
fringe moves by about 9µm for each direction of motion.

6.3 Temperature stability
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Figure 20: Phase shift (black points) and temperature (red line) measured over the
course of 16 hours for a static lattice spacing of 8µm. The phase was
measured every 2 minutes.

The position of the lattice potentials within the Gaussian envelope depends on
the phase difference between the two intersecting beams. In an ideal setup the
difference in optical pathlength is exactly twice the distance between the surface
of PBS1 and the mirror M2 for all distances D. Due to thermal expansion the
difference varies with temperature.
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In the setup the distance amounts to around 35 mm and the components are
mounted on an aluminium breadboard. The thermal expansion coefficient of alu-
minium is 23.1·10−6 K−1 [82]. The setup is therefore expected to have a temperature
stability of approximately 3π/K.

Figure 20 shows how the phase and temperature in the laboratory change over
the course of 16 hours. The phase is recorded every two minutes and the tempe-
rature is measured every four minutes with an accuracy of 0.1 K. A correlation
between temperature and phase evolution can be seen: the phase increases with
falling temperature and vice versa. For the range of temperature fluctuations in
the laboratory, the expansion of the materials can be considered to depend linear-
ly on the temperature. From the data depicted in figure 20, the π-temperature
of the system can be calculated, assuming, that the phase behaves linearly with
temperature. During the 16 hours, the phase shifts by ∆ϕ = 1.12π ± 0.05π and
the temperature difference is ∆T = 0.4 ± 0.1 K. The temperature stability of the
system can be calculated to be ∆ϕ/∆T = 2.8± 0.8 π/K, which is close to our first
approximation.

To increase passive stability the setup including the aspheric lens has been en-
closed in a cardboard box to shield it from major fluctuations in the humidity and
temperature. Figure 21 shows the temperature measured simultaneously by two
thermometers, one placed inside the box with the setup and one next to the box
on the optical table. Over the course of 24 hours the temperature inside the lab
has varied by 1 K while the temperature inside the box has changed by 0.5 K. The
box has reduced temperature fluctuations by a factor of two.
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Figure 21: Temperature fluctuations in the lab measured simultaneously inside and
outside the box enclosing the setup. The box reduces temperature fluc-
tuations by 50%.
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7 Active phase stabilisation

The active phase stabilisation is realised with a feedback loop, that repeatedly
measures and corrects the phase. The phase is measured with the Raspberry Pi 3
with an attached Pi Camera. By performing a fourier transformation of the image
data from the camera, the phase and spacing of the lattice can be determined.
The phase error is measured relative to a position on the camera chip. A voltage
output has to be generated and applied to the piezo stack in order to compensate
the error.

7.1 Telescope

To avoid the atoms drifting out of the imaging plane the phase of the interference
pattern has to remain as stable as possible. This can be achieved by implementing a
feedback loop. The phase information can be obtained via a camera and converted
into a voltage signal which is applied to the piezo stack shown in figure 9. The
camera can however not be placed in the focus of the setup, as this space is already
occupied by the cold atoms in the science chamber.

Instead the camera is placed in the focus of an optical telescope in Kepler-
configuration, that magnifies the interference pattern. A schematic of the telescope
can be found in figure 22. The variables f1, f2 and f3 are the focal lengths of the
lenses L1, L2 and L3. The distance between L2 and L3 is arbitrary.
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Figure 22: Schematic setup of the telescope in Kepler configuration

The lattice spacing in the focal plane of the telescope is

s′ =
λ

2

√
1 +

(
2f3

D′

)2

(79)

D′ is the distance between the parallel beams between L2 and L3. The distance
D′ is defined as

D′ =
f2

f1

D. (80)
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Inserting equation (80) into equation (81) leads to

s′ =
λ

2

√
1 +

(
2f1

D

f3

f2

)2

=
λ

2

√
1 +

(
A

2f1

D

)2

. (81)

A = f3/f2 is the magnification of the telescope.

In this case
(

2f1
D

)2 � 1 is valid, meaning that the following approximation can
be made

s′ ≈ A · λ
2
· 2f1

D
= A · s (82)

Figure 23 shows the lattice spacing in the focal plane of the telescope as a function
of the stage position d. It is very similar to the measurement in the focal plane of
the lattice setup depicted in figure 16. The magnification of the telescope can be
determined accurately by fitting the data in figure 23 to equation (82). The result
is A = 1.83. The working distances of the lenses L2 and L3 are estimated to be
7.5 cm and 15.5 cm.
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Figure 23: Magnified lattice spacing measured as a function of stage position d.
The telescope in Kepler configuration has a magnification of A=1.83.
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7.2 Feedback loop

The Raspberry Pi is not capable of creating an analogue voltage output. It can only
imitate different voltages via pulse width modulation (PWM). It creates a digital
signal which alternates between high (5 V) and low (0 V) at a high frequency (in
the range of MHz). The duty cycle refers to the proportion of time spent on the
high voltage level within a period. While PWM is sufficient for dimming the light
of an led for example, it may not be appropriate for operating a piezo stack.

The piezo stack expands according to the voltage applied to it. The applied
voltage has to be an analogue DC signal, since an oscillating voltage signal could
also cause an oscillating phase or even damage the piezo if the resonance frequency
of the piezo is applied. Therefore, a digital to analogue converter (DAC) is used in
order to generate a genuine analogue signal. A high-precision AD/DA board from
Waveshare was mounted on top of the Raspberry Pi, which allows for an analogue
voltage output within a range of 5 V.

As the voltage range provided by the Raspberry Pi is insufficient to compensa-
te phase errors due to drifting temperature over the course of several hours, an
amplifying circuit is added, that enlarges the voltage range to 14.7 V. The amplifi-
cation circuit also includes a low-pass filter, that removes high frequency noise and
protects the piezo. Without the filter the piezo starts buzzing when the amplified
voltage is applied, presumably due to a signal close to the piezo’s resonance. The
piezo used for this setup is a P-080 PICMA stack ring actuator with a resonance
frequency between 10 kHz and 20 kHz. The low pass filter has a cutoff frequency
of about 800 Hz, which is considerably lower than the resonance and removes most
of the noise spectrum.

Figure 24 shows how the phase can be corrected by applying a voltage signal
to the piezo. Exemplary, a triangular voltage between 0 V and 14.7 V was applied.
The response is also a triangular signal. This implies that the phase responds to
the voltage signal in a linear fashion, and in consequence also that the expansion of
the piezo is linear with the applied voltage. This linear behaviour is only expected
to hold within a relatively low voltage regime. The piezo stack can be operated in
a voltage regime of -20 to 100 V. Scanning larger phase differences by applying a
larger voltage range may result in non-linearity and a small hysteresis, as is typical
for piezos.

Under ideal circumstances the phase shift should be the same for every lattice
spacing.Figure 25 shows that the maximal phase that can be shifted with 14.7 V is
different for different lattice spacings (or stage positions). There is an almost linear
behaviour of the maximal phase shift compared to the stage position. However the
difference between the largest phase shift of 4.34π and the smallest phase of 4.07π
is only 6 %. The dependence of the maximal phase shift on the lattice spacing is
very weak and can be neglected, especially if a measurement error of one pixel
is taken into account and because they have no measurable impact on the phase
stabilisation with the PID, meaning the phase can be stabilised equally well at all
lattice spacings, if the error is measured accurately.
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Figure 24: Phase shift measured in the focal plane of the accordion lattice setup at
a static spacing of 3.6µm. A triangular voltage between 0 V and 14.7 V
is applied to the piezostack at the back of mirror M2. The phase varies
up to 4.34 π.
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Figure 25: Maximal phase shift in the focal plane of the accordion lattice setup at
different stage positions for an applied voltage of 14.7 V. The errorbars
result from assuming an error of one pixel in the spacing.
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In order to be able to realiably stabilise the atoms in the cold atoms experiment,
the phase in the focal plane of the telescope needs to be identical to the phase in the
focus of the accordion lattice setup. This is verified by comparing the phase shift
in the focal plane of the lattice setup with the phase shift behind the telescope.
Figure 26 shows that the phase shift is indeed identical, except for the fact, that
it shifts in opposite directions, because the telescope turns the image of the lattice
upside down.
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Figure 26: Phase shift measured in the focal plane of the aspheric lens (black data)
and in the focal plane of the telescope (red data) for the same stage po-
sition. The range of the phase shift is identical with 4.4π. The telescope
turns the image of the lattice upside down, which causes the phase to
shift in the opposite direction. Therefore, the phase error, which can be
corrected with a PID, has a different sign behind the telescope.

The phase is measured by integrating the data gathered by the camera along the
z-axis. The phase information is obtained by performing a fourier transformation
on the data. A proportional-integral-derivative (PID) controller is included into
the python code in order to allow active phase stabilisation.

A PID controller is the standard tool for feedback control systems. It repeatedly
measures the value, in our case the phase, compares it to a set point, and generates
a signal according to the error, that has been measured. The PID controller com-
prises of three different components. The proportional component (P) generates
a signal which is proportional to the error. Without the additional integral (I-)
component the system can have a so-called steady state error, which means that
it is stabilised at a value which is different from the set point. The I-component
also reduces the time the system needs to reach the set point. The derivative (D-)
term determines the slope of the error. It dampens the output signal and thereby
increases the stability of the system and reduces a possible overshoot of the output.
Controllers don’t necessarily have to have all of these three components. For some
applications, a PI- controller or P-controller is enough. The gain values and cutoff
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frequencies of the P-, I- and D- components depend strongly on the system which
is to be stabilised.

PID controllers are mostly realised as an electronic circuit, where the input value
is a voltage. In this work, however, the controller has been implemented as part of
the code. Therefore the measurement of the phase as well as the calculation of the
output voltage signal is executed by the same code. A simulated PID is usually
slower than its hardware counterpart. However, in our case, the bandwidth of the
feedback loop is limited by the Raspberry Pi, which, depending on the amount of
data from the camera it has to process, can only handle between 1.5 and 4 phase
measurements per second. A PID controller with a bandwidth on the order of kHz
for example would not make any significant difference in increasing the bandwidth
of the whole feedback system.

Thermal fluctuations usually cause phase drifts on a time scale of minutes and
hours. In addition, the phase measurements of the static lattice show a lot of high
frequency fluctuations. This could be a consequence of the limited accuracy of the
measurement device. Figure 27 shows two stabilised measurements of the phase
over the course of 12 hours. One of the stabilisation mechanisms takes the high
frequency noise into account, by setting error values below a certain limit to zero.
The data of that measurement is depicted in black and the limit is set to 0.1π.
Fluctuations and drifts below this value are not corrected. The other code generates
an output signal for all error values and thereby suffers from the imperfection in
the measurement of the phase. The corresponding measurement data is depicted
in red.

Looking at figure 27, one can see that both methods stabilise the phase around
zero. However, the red data deviates visibly further from the set point than the
black data. Its standard deviation is 0.055π. For comparison, the standard devia-
tion of the black data is 0.040π, which is almost a third less. This difference in
stability can also be visualised in an Allan plot.
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Figure 27: Comparison between two stabilised measurements of the phase. In both
measurements the phase was stabilised at the set point of 0. The red
measurement data is taken from a phase stabilisation that generates
a signal for all measured errors, thereby amplifying the effects of high
frequency noise and measurement instabilities. The PID used for the
stabilisation of the black data only corrected phase error larger than
0.1π. Therefore, the black phase signal is more stable, which is reflected
in the smaller standard deviation.

Allan variance or Allan deviation [83] is often used to visualize the stability of a
system over time. It can be used to characterise the stability or clocks, gyroscopes
of lasers, to name a few examples.

The Allan variance is also known as two-sample variance[83]. It is defined as

σ2(τ) =
1

2τ 2
〈(xn+2 − 2xn+1 + xn)2〉. (83)

with τ being the sample period, xn is a phase angle in radians and τ is the sample
period. In the case of the accordion lattice xn corresponds to the measured phase
error. The range of the sampling time τ is limited by the measurement rate and
the time span of the entire measurement series. The Allan deviation is determined
by the square root of the Allan variance [83]

σ(τ) =
√
σ2(τ). (84)

Graphs, such as the one presented in figure 28, show the stability of a system
for different timescales. Usually the Allan deviation becomes smaller for increasing
sampling time τ , as the fluctuations with high frequency are averaged out. For
very large time scales, the Allan deviation can increase again, as long term drifts,
such as for example the temperature fluctuations over the course of one day, take
effect. The measurement data in figure 28 show the characteristic decrease of the
Allan deviation over time. The lower the value of the Allan deviation for a given
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timescale, the higher the stability of the system on that timescale. As is evident
from figure 28, the measurement data concerning the phase stabilisation with all
error values (black) is consistently higher than that of the phase stabilisation,
that neglects the small errors below 0.1π (red). By attempting to correct the
high frequency noise, the PID code has amplified the short term fluctuations and
reduced stability, even compared to the measurement without active stabilisation,
which is depicted in blue. For the timescale of several minutes, a passive system
shows less deviation than a imperfectly stabilised one. However on the time scale
of hours (104 s), both actively stabilised systems are superior to the passive system.
The reduced stability of the passive system on that timescale is most likely due to
the temperature drifts, which have already been shown to evolve over the course
of hours (see figure 21).

Figure 28: Allan variance for the non-stabilised measurement of the phase depic-
ted in figure 20 in red and black and of the stabilised measurements in
figure 27. The stabilised phase has been measured with a rate of 2 Hz,
the non-stabilised phase, depicted in blue, was measured every 2 mi-
nutes. Therefore the data range of the non-stabilised measurement is
much smaller. The red line indicates the stabilised phase, with amplified
fluctuations due to the error componsation by the PID. Therefore the
Allan deviation is higher than both the other stabilised measurement
and the passive measurement up to a sampling time of about an hour.
For time scales longer than an hour the temperature drifts register in
the data of the passive measurement by increasing the Allan deviation.
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8 The accordion lattice as a dipole trap

The accordion lattice is designed to trap ultracold 87Rb atoms with a 1064 nm
laser beam. In chapters 6 and 7, the technical details of the accordion lattice
were characterised without regard to its purpose as a dipole trap. As there are no
measurements of trapped atoms in this thesis, this chapter contains estimations
concerning for instance trapping frequencies based on typical experimental values,
like for example a trap depth of kB · 10µK. All data concerning 87Rb are taken
from a table of literature values [84].

8.1 Trapping potential

Like all alkali atoms, 87Rb has a characteristic fine-structure splitting of the D-line.
If the detuning of the laser is much larger than the splitting, the fine-structure can
be neglected and an effective resonance frequency ωeff is assumed to be in between
those two transitions. For linear polarisation the lines of the fine-structure are
attributed with strength factors. The line strength factor of the D1 line is 1/3, for
the D2 line, it is 2/3 [50]. The effective resonance frequency can thus be calculated

ωeff =
1

3
ω1 +

2

3
ω2. (85)

The effective scattering rate can be determined in a similar fashion

Γeff =
1

3
Γ1 +

2

3
Γ2. (86)

The indices in equations (85) and (86) indicate the data concerning the D1 and D2

line. In the case of 87Rb the D1 transition is 52S1/2 → 52P1/2 and the D2 transition
is 52S1/2 → 52P3/2. The literature values for these transitions are:

ω1 = 2π · 377.107 THz

Γ1 = 2π · 5.750 MHz

ω2 = 2π · 384.230 THz

Γ2 = 2π · 6.066 MHz,

which leads to ωeff = 2π ·382 THz and Γeff = 2π ·6 MHz. The fine-structure splitting
is ∆′FS = 2π · 7 THz, which is a lot smaller than the detuning of the 1064 nm laser
beam at ∆ = 2π · 100 THz. Therefore the fine-structure can be neglected and the
atom is considered a two-level system. Equation (45) is valid in this case with some
modifications.

Udipole(~r) = −3πc2

2ω3
eff

(
Γeff

ωeff − ω
+

Γeff

ωeff + ω

)
I(~r), (87)

Using equation (87), the intensity and the power necessary to reach a certain
potential depth can be calculated. The maximum intensity in the center of the
accordion lattice can be written as

Imax = U0 ·
2ω3

eff

3πc2
/

(
Γeff

ωeff − ω
+

Γeff

.
ωeff + ω

)
(88)
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Assuming a potential depth of U0 = kB · 10µK, this results in an intensity peak
of Imax ≈ 6500 J/cm2. The intensity profile of the accordion lattice is a sinusoidal
function with a spacing s in z-direction and a Gaussian envelope in radial direction.
It can be written as

I(y, z) = Imax · cos2
(πz
s

+
ϕ

2

)
· exp

(
−2(y2 + z2)

w2

)
. (89)

ϕ is the phase of the lattice relative to the center of the Gaussian profile. In our
case the width of the Gaussian envelope is w = 97µm. The power can be calculated
by integrating the intensity I(~r) over the lattice area

P =

∫∫
dydz I(~r) (90)

For small lattice spacings compared to the width of the Gaussian envelope, the
following approximation can be made:

P ≈ πw2Imax/4. (91)

In order to achieve a potential depth of U0 = kB · 10µK, a power of at least
P = 0.485 W is necessary.

The potential of the accordion lattice along the z-axis is sinusoidal with a Gaus-
sian envelope. Due to the orientation of the lattice the gravity potential has to be
taken into account as well, which results in the following potential:

U(~r) = −3πc2

2ω3
eff

(
Γeff

ωeff − ω
+

Γeff

ωeff + ω

)
I(~r)−mgz (92)

The potential along the z-axis is defined as

U(z) = −U0 · cos2
(πz
s

)
· exp

(
− r

2

w2

)
−mgz. (93)

The last term accounts for the gravity potential, g is the gravitational acceleration
and m = 1.443160 · 10−25 kg is the mass of a 87Rb atom.

The potential depth determines the temperature limit for the trapped atoms.
Atoms that have a higher thermal energy than the potential depth will leave the
trap. The gravitational potential effectively reduces the potential depth by

∆U0 = mgs/2. (94)

This means that the effect of gravity on a particle in a single potential well is
reduced for small spacing.

For the maximum spacing of s = 35µm, this potential reduction equals ∆U0/kB =
1.78µK in all potential wells. In consequence, the potential depth of lattice sites,
which are further from the center of the Gaussian envelope, is significantly redu-
ced. In the example of a lattice with maximal spacing, a lattice site, which is 78µm
displaced from the lattice center along the z-axis, only has a trap depth of 1µK.
Without the gravity potential the same potential depth is found at a 104µm. At
90µm, gravity reduces the effective potential depth to zero.

For a spacing of 3.5µm, the effect of the gravity potential is only ∆U0/kB =
178 nK and the potential depth of a lattice site becomes zero at 137µm distance
from the lattice center. Figure 29 shows the lattice potentials with two different
lattice spacings.
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Figure 29: Comparison of the lattice trapping potential for 87Rb atom with a large
spacing of a) s = 35 µm and with smaller spacing b) s = 8 µm. The
effective potential depth of the individual lattice sites is reduced by the
gravitational potential, which is taken into account as a linear slope.
This effect is stronger for large lattice spacing and becomes negligible
at very small spacing.

8.2 Trapping frequencies

Dipole traps with deep trapping potentials (U0 � ER) are often characterised by
their trapping frequency, which is calculated by approximating the shape of the
individual potential wells with a harmonic potential. As this approximation only
takes the curvature of the potential into account, additional linear terms, such as
the gravity potential are neglected, provided of course, that the effective depth is
still significantly larger than the recoil energy. In the case of the accordion lattice,
the atoms are loaded into a single plane and the lattice spacing is then decreased
by moving the mirror on the stage by a distance d. The trapping frequency changes
during the compression of the lattice. The trapping frequency of a potential well
in the center of the Gaussian envelope (ϕ = 0) is defined as

ωtr(s) =

√
2U0

m

π

s
. (95)

It can also be expressed as a linear function of the stage position d using the
approximation in equation (78)

ωtr(d) =

√
2U0

m

2π

λf
d. (96)

The offset d0 is neglected in this example. Assuming that there is no shift of the
potential well relative to the center of the Gaussian profile, the trapping frequency
has a linear dependence on the stage position.
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If the atoms are not loaded into the center of the accordion lattice, then the
dependence is no longer linear. The position of the potential well into which the
atoms are loaded can be defined as a phase offset ϕ in radian. Assuming the phase
stays constant during compression, the position of the potential well shifts towards
the center of the lattice, where the potential is deeper. The trapping frequency can
then by written as

ωtr =

√
2U0

m
exp

(
− 1

w2

(sϕ
2π

)2
)
π

s

=

√
2U0

m
exp

(
− 1

w2

(
λfϕ

4πd

)2
)

2π

λf
d.

(97)

In the case of ϕ = 0, this equation can be reduced to equations (95) and (96).
Due to gravity there are no potential wells beyond 90µm from the lattice center
with a maximum spacing of 35µm, that can trap atoms of finite temperature. This
distance corresponds to a phase of 5π. Assuming that atoms can still be trapped at
a 70µm, which corresponds to a 4π phase offset, the trapping frequency in that well
is about half of the frequency in the center, which is a significant difference. As the
lattice is compressed, the difference in trapping frequencies between neighbouring
sites is reduced. For offsets within the range of 4π the difference is smaller than
5 % at a lattice spacing of 10µm, which corresponds to a translation distance of
8 mm on the stage. The trapping frequencies during the compression of the lattice
are depicted in figure 30 for different offsets ϕ.

For the spacing range of the accordion lattice in this thesis the frequency in the
center potential well can be tuned in the range of 2π ·0.63 kHz < ω < 2π ·6.25 kHz.
If the atoms were loaded into the trap with a phase offset of 4π the frequency range
extends to 2π · 0.37 kHz < ω < 2π · 6.25 kHz.
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Figure 30: The trapping frequency in the accordion lattice increases as it is com-
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ned as a phase offset ϕ, which in this example remains constant during
compression. The offset ϕ < 4π can be neglected for lattice spacings
smaller than 10µm.
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9 Comparison with other Quasi-2D- dipole traps

There are of course other methods for creating a pancake shaped trapping poten-
tial. Further examples are given in the following paragraphs.

One example is the lightsheet already implemented in the experiment, which
consists mainly of three lenses, two cylindrical and one spherical. These lenses
create an elliptical beam with a very narrow beam waist along one axis, resulting
in a pancake shaped trapping potential. The trapping beam has a red detuning
relative to the resonance of the atoms, so the dipole force in the trap is attractive.
The cold atoms are trapped in the focus of the gaussian beam. With the schematic
setup is depicted in figure 31 a waist of around ωz = 10 µm along the short axis
and ωy = 110 µm along the long axis can be achieved [89].

Figure 31: Schematic of the lightsheet. This is an example of a red detuned dipole
trap. The beam profile is elliptical due to the cylindrical lenses. The
atoms are trapped in the focus of the system with tight confinement
perpendicular to the beam.

Another method produces a 2d trapping potential with a single beam of blue
detuned light. The laser beam passes through a phase-mask that shifts the phase
of the upper half of the beam by π. This creates a first order Hermite-Gauss mode,
where the upper and lower half of the beam are separated by a dark line in which
the cold atoms are trapped. This offers a few advantages over red-detuned traps. As
the atoms are stored in dark areas, side effects through atom-light-interaction, like
photon scattering or light shift of the atomic levels, are minimized. The confinement
can be tuned either by changing the intensity of the beam or the position of the
Hermite-Gauss focus in respect to the trapped atoms. However this kind of tuning
also changes the trap depth. A schematic of the setup is depicted in figure 32[87].

It is also possible to load the atoms into a static lattice with small spacing
and remove the atoms from all but a single layer with radio frequency radiation.
However this procedure requires a high amount of precision for removing excess
pancakes and comes with a significant loss of atoms.

The main advantage of the accordion lattice featured in this master thesis is
its flexibility. It offers a relatively large range of spacing, in this example between
35µm and 3.5µm and allows a high level of control. By being able to control the
spacing as well as the phase, one can dynamically tune the confinement and adjust
position of the trapped atoms along one axis.
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Figure 32: Schematic of the 2d trapping potential using a Hermite-Gauss mode
using blue-detuned light. The Hermite-Gauss mode is generated with
a phase mask, that shifts the phase of half of the beam. Destructive
interference at the border between the two beams results in a dark line,
in which the atoms are traped.[87]
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10 Conclusion and Outlook

The topic of this thesis is the setup and characterisation of an accordion lattice
for the purpose of wave function imaging.

The accordion lattice presented in this thesis is intended to function as a quasi-2D
trapping potential for a BEC of 87Rb atoms. The BEC serves as a contrast medium
for the visualisation of a Rydberg electron orbital. Therefore the accordion lattice
has to provide a spacing range, which allows the loading of a single plane at large
spacing, and provide tight confinement for the process of wave function imaging
itself.

The accordion lattice presented in this thesis can create a lattice with a variable
lattice spacing between 3.5µm and 35µm, which fulfills these requirements. Ano-
ther requirement is that the pancake potential in which the atoms are trapped,
stays within the focal depth of the imaging system. This thesis focuses largely on
the realisation of the stabilisation in the imaging plane.

A main part of this thesis was setting up the measurement system for gathering
and evaluating data on the accordion lattice and implementing a feedback loop.
For this purpose a Raspberry Pi3 in combination with a Pi Camera NoIR was
chosen. The Raspberry Pi is of advantage, because it is small, inexpensive and at
the same time highly versatile, as it can measure data and create different voltage
outputs on a number of pins. A pre-existing code, which used a Raspberry Pi as a
beamprofiler, was adjusted to suit the measurement requirements. By performing
a fourier transformation of the image data from the camera, the phase and spacing
of the lattice could be determined. The same code was supplemented to include
a PID, thereby generating a voltage signal that, after amplification, regulates the
phase with a piezo stack. The Raspberry Pi was also used to trigger the controller
of the translation stage to perform predefined motions, such as for example moving
the mirror on the stage by one millimeter.

Characterisation measurements of the PiCamera reveal, that the camera has
non-linear behaviour and is insensitive to small intensities. However, the camera
is sufficient for measuring the lattice spacing and phase.

Contrary to expectations the pixel size of the Pi Camera at maximum resolution
was measured at 0.64µm, instead of 1.12µm, as is stated in the camera’s data
sheet. This smaller pixel size allows for resolving the whole spacing range of the
accordion lattice in the focus of the aspheric lens.

As mentioned before, the phase was stabilised using a Raspberry Pi for measuring
the phase error and generating the output. The phase measurement has a certain
amount of noise, which can be amplified by the PID. A more stabile system can
be achieved by only correcting phase fluctuations, which exceed the noise.

Even though the current feedback system is effective in correcting phase errors
due to temperature fluctuations, additional thermal stability would improve the
accordion lattice as a dipole trap for cold atoms. Thermal drifts of the position
of the whole lattice for instance cannot be compensated with the piezo. Further-
more the phase shift during the displacement of the mirror is assumed to have
temperature dependence. Mounting the components on a material with low ther-
mal expansion, such as for instance titanium [91] and/or additional temperature
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stabilisation with a peltier element can improve the stability and thereby facility
repeatable measurements with cold atoms.

Furthermore, the Gaussian waist of the accordion lattice is 97µm and rather large
compared to other other existing dipole traps. It is limited by the straightness of the
translation stage. Choosing a more advanced translation stage with less deviation,
could allow to reduce the size of the trapping beam, especially along the z-axis. A
smaller beam waist would mean that the same confinement can be achieved with
less laser power. Alternatively, instead of the translation stage, an accousto-optical
modulator (AOM) could be used in combination with a lens [92].
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(1993)

[34] M. Marinescu, H. R. Sadeghpour, et al.“Dispersion coefficients for alkali-metal
dimers.” Physical Review A 49.2 (1994): 982.

[35] M. L. Zimmerman, et al. “Stark structure of the Rydberg states of alkali-metal
atoms.” Physical Review A 20.6 (1979): 2251.

[36] D. Tong, et al. “Local blockade of Rydberg excitation in an ultracold gas.”
Physical Review Letters 93.6 (2004): 063001.

[37] D. Barredo, et al. “Demonstration of a strong Rydberg blockade in three-atom
systems with anisotropic interactions.” Physical review letters 112.18 (2014):
183002.

[38] J. J. Sakurai, “Modern Quantum Mechanics, Revised Edition.” Am.J. Phys.
63, 93 (1995)

[39] E. Fermi, “Sopra lo spostamento per pressione delle righe elevate delle serie
spettrali,” Nuovo Cimento, 11, 157–166 (1934).

[40] Felix Engel, “Ultracold chemistry of a Rydberg atom in a rubidium 87 BEC.”
master thesis, University of Stuttgart (2016)

[41] W. F. Holmgren, et al. “Absolute and ratio measurements of the polarizability
of Na, K, and Rb with an atom interferometer.” Physical Review A 81.5 (2010):
053607.

[42] I. Beigman and V. Lebedev, “Collision theory of Rydberg atoms with neutral
and charged particles,” Physics Reports, 250, 95–328 (1995).

[43] C. Bahrim, U. Thumm, and I. I. Fabrikant. “3Se and 1Se scattering lengths
for e-+ Rb, Cs and Fr collisions.” Journal of Physics B: Atomic, Molecular and
Optical Physics 34.6 (2001): L195.

[44] M. Schlagmüller, “A single Rydberg Atom interacting with a Dense and Ul-
tracold Gas” PhD thesis, Universtity of Stuttgart (2016)

[45] M. Schlagmüller, T. Liebisch et al. “Probing an electron scattering resonance
using Rydberg molecules within a dense and ultracold gas.” Physical review
letters 116.5 (2016): 053001.

[46] M. Schlagmüller, et al. “Ultracold chemical reactions of a single Rydberg atom
in a dense gas.” Physical Review X 6.3 (2016): 031020.

[47] J. B. Balewski, et al. “Coupling a single electron to a Bose–Einstein conden-
sate.” Nature 502.7473 (2013): 664.
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