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Zusammenfassung

Im Rahmen dieser Bachelorarbeit wird mithilfe eines Defekts in einem photonischen

Kristall ein optischer Rsonator der Resonanzwellenlänge 780 nm erzeugt. Diese

Wellenlänge entspricht dem D2 Übergang im Rubidiumatom. Zunächst wird gezeigt,

welche Effekte in einem photonischen Kristall zu einer Bandlücke führen und worauf

bei der Herstellung einer Cavity aus dem Kristall geachtet werden muss.

Daraufhin wird die Auswirkung des Cavity-Designs auf Größen wie den Quality-

Faktor, den Purcell-Faktor und die Kooperativität der Rubidium-Atome untersucht.

Abschließend wird die Rabi-Oszillation eines Rubidiumatoms im Zentrum der

Cavity simuliert und ausgewertet. Die Untersuchung legt dabei nahe, dass die

Atom-Licht-Wechselwirkung in der Cavity soweit gestärkt werden kann, dass die

in heißen Atomen auftretenden Dekohärenzeffekte und die Flugzeitverbreiterung

überwunden werden können.

Abstract

In the course of this Bachelor thesis, an optical resonator is designed in a one-

dimensional photonic crystal and later optimized to support a resonance at 780

nm. This wavelength corresponds to the D2 transition in a rubidium atom.

First, the thesis deals with the question which parameters influence which properties

of photonic crystal band gaps and what has to be taken into account when designing

a Cavity. Second, cavity quantum electrodynamics parameters such as the quality

factor, the purcell factor and the cooperativity of rubidium atoms within the cavity

are investigated. Finally, Rabi oscillations of a rubidium-atom passing through the

cavity are demonstrated and the excitation states are studied. The results of this

study suggest that in such a well-designed, high-Q cavity the coherent atom-light

interaction is large enough to overcome the decoherence mechanisms and transit

time broadening of the atoms in a thermal vapor, hence approaching the string

coupling limit in such hybrid systems.
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1 Introduction

The structures of a photonic crystal (PhC) cavity offer an exceptional potential to

future technological applications based on strong atom-light interaction. In fields

ranging from classical to quantum information processing and nonlinear optics to

compact biomedical and chemical sensing PhCs are already widely used [1].

PhCs are nano-structured, low-loss, periodic, dielectric media supporting photonic

band gaps due to the periodically varying regions of high and low refractive indices.

Band gaps are historically well-known from solid-state physics where the propagation

of electrons is prohibited by ionic potentials in semi-conductor lattices.

In PhCs the periodic potential of an atom lattice is replaced by a potential of

changing refractive indices controlling the propagation of light instead of electrons.

Wavelengths allowed to pass a PhC build Bloch modes while other wavelengths

are eliminated by reflections and destructive interference at lower refractive index

regions causing a photonic band gap which prevents light with a frequency within

the gap from propagating into a certain direction.

Depending on whether a PhC has a periodicity in one, two or three dimensions, it

exhibits a one, two or three dimensional band gap. In order to create a complete

band gap, i.e. preventing light with a specified frequency from propagating in every

direction, a PhC lattice must be periodic along the x-, y- and z- direction [2]. Due

to the difficulties in fabrication of three-dimensional PhCs, one- or two-dimensional

structures are commonly used for scientific research. Moreover, the choice of a one

dimensional PhC cavity is even more favorable due to its simple compatibility with

laser coupling [3].

Breaking the periodicity of a PhC structure creates a defect center supporting a

localized photonic mode within the photonic bandgap of the crystal. The frequency

of the energy trapped between the periodic parts of the crystal is denoted as the

resonance frequency. Figure 1.1 shows a schematic of a standing wave trapped in

the non-periodic defect center of the PhC similar to a Bragg resonator where a

standing wave is developed between the two Bragg mirrors.

Choosing the resonance wavelength of the defect center to match with a transition

in an atom leads to atom-light interaction in the vicinity of PhC cavities. The PhC

cavity studied in this thesis consists of silicon nitride (Si3N4) and is tailored to the

resonance wavelength of 780.24 nm matching the D2 transition of the rubidium

∣∣∣∣∣ 3



1 Introduction

Figure 1.1: A Scematic of a one-dimensional PhC cavity made out of air holes (yellow, ε1 = 1)

in a silicon nitride slab (blue, ε2 = 2). The mirror regions obtain a photonic band gap which is

preventing light with a specified frequency from propagating in the x-direction. Breaking the

periodicity of the structure in the defect region creates a localized photonic mode depicted in red

within the photonic bandgap of the crystal.

atom.

An idealized, two-level rubidium atom flying in the vicinity of the cavity can

undergo Rabi oscillations, i.e. absorb a cavity photon, get excited and emit the

photon back into the structure where the cycle restarts again. The investigation

of such Rabi cycles, i.e. the behavior of the rubidium atoms as they interact with

these nano-scale cavity is one of the main goals of this thesis.

Despite the long study of photonic crystals, a design of a specific structure for

a precise resonance wavelength is still challenging. Long simulation times and

high sensitivity of the structures to small changes in the defect region impose an

impediment of the design process. That is why the summary of the design process

of the PhC cavity is another goal of this work.

The thesis begins with a theoretical description of the origin of photonic band gaps

and the effects of defect centers in PhCs. It continues with the derivation of the

optical Bloch equations for a two-level atom and ends with the introduction of

cavity quantum electrodynamics parameters. The third chapter gives an overview

of the codes and parameters set in Lumerical or Matlab for simulating the cavity

and Rabi oscillations of the atom. Chapter four deals with the theoretical results

of the investigated PhC cavity. Finally, a summary of the results and an outlook

for the future follow up theoretical and experimental studies are given in the last

chapter.

4

∣∣∣∣∣



2 Theory

2.1 Photonic Crystals

This chapter aims to show the origin of band gaps in photonic crystals. The Bloch

Theroem as well as the Master Equation leading to the band gap will be derived.

Bloch’s Theorem

The energy gap between the valence and the conductive band for electrons in

semiconductors is caused by a periodic potential of an ionic, atomic lattice V (r).

This potential is assumed to have a translational symmetry

V (r) = V (r + a) = V (r + n ·a) (2.1)

with the periodic lattice vector a and the position vector r. The Fourier transform

of the potential is given by

V (r) =
∑
G

AGe
iGr (2.2)

where G is the reciprocal lattice vector [4]. When the Fourier components of the

electron wave function, ψ(r) =
∑

k C(k)eikr and the potential (2.2) are plugged

into Schrödinger’s equation, one gets

∑
k

eikr

[(
~2k2

2m
− E

)
Ck +

∑
G

VGCk−G

]
= 0, (2.3)

where the term in the brackets must equal to zero. This yields a solution for the

wave function as

ψk(r) =
∑
G

Ck−G · e−iGr︸ ︷︷ ︸
Ak(r)

· eikr. (2.4)

In the above equation the underbraced term is defined as the harmonic function

A(r). This solution of the wave functionis composed of a periodic envelope having

∣∣∣∣∣ 5



2 Theory

the same periodicity as the solid lattice and plane wave eikr describing a phase

factor of the propagating electron wave. In general, this solution can be applied

to every wave function in a periodic lattice and is known as the the Bloch theorem [5].

Instead of atomic lattices, a function of varying refractive indices in PhCs is con-

sidered as the potential for propagating light waves. With the help of Bloch’s

Theorem, the origin of photonic band gaps will be derived in the next sections.

Translational Symmetry and Bloch Modes

Figure 2.1: Schematics of a one-

dimensional PhC. The whole structure is built

up through a translation of the unit cells by

the lattice constant a. The unit cell has a

height h, width w and holes with radius r.

A one-dimensional PhC as the one de-

picted in figure 2.1 can be broken up into

discrete unit cells which builds up the

whole crystal through translational sym-

metry. This is achieved through the trans-

lation operator T which translates a unit

cell by the lattice constant a in the di-

rection of the primitive lattice vector [2].

The result of a translation,

T eikxx = eikx(x−na) =
(
e−ikxna

)
eikxx,

(2.5)

shows the term eikxx itself is again multi-

plied by some constant eikxna. For an eigenvalue problem, this implies that the

operators Θ̂ and T can commute and they have the same set of eigenfunctions.

Inserting |kx| = |β| = 2π/a into expression (2.5) shows that the spatial propagation

of the plane wave stays unchanged when replacing k with the reciprocal lattice

vector β, (
e−ikxna

)
eikxx=̂

(
e−iβna

)︸ ︷︷ ︸
=̂1

eikxx. (2.6)

This implies that the frequencies must also be periodic in the x-direction

ωkx(kx) = ωkx(kx + nβ). In fact, only frequencies for kx in the range from

−π/a < kx < π/a, need to be considered.

6
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2.1 Photonic Crystals

Origin of the Band Gap in Photonic Crystals

The propagation of electromagnetic fields is described by the macroscopic Maxwell

equations. For linear, lossless dielectric materials they are given by

∇×E(r, t) = −µ0
∂H(r, t)

∂t
, (2.7)

∇×H(r, t) = ε0ε(r)
∂E(r, t)

∂t
, (2.8)

∇ · [ε(r)E(r, t)] = 0, (2.9)

∇ ·H(r, t) = 0, (2.10)

with the electric and magnetic fields E and H, the vacuum permittivity ε0 ≈
8.854 · 10−12 F/m, the position-dependent relative permittivity ε(r) and the vacuum

permeability µ0 = 4π · 10−7 H/m [2]. For the sake of simplicity, the problem is

restricted to dielectric media with no free charges, ρ, and no free currents, J .

Due to the linearity of Maxwell’s Equations, the time and spatial dependence can

be separated from each other. Thus, expanding the fields into a set of harmonic

modes,

H(r, t) = H(r)e−iωt, E(r, t) = E(r)e−iωt, (2.11)

with the amplitudesE(r) andH(r) provides a convenient mathematical description

of the electromagnetic fields where ω is the radial frequency and t is the time [2].

As well as for the wave function of an electron, the Bloch Theorem can be applied

to describe the amplitudes of the electromagnetic waves [2],

H(r) = Hk(r) · eikr, E(r) = Ek(r) · eikr. (2.12)

Re-writing the equations in terms of the magnetic field H only and substituting

Maxwell’s curl equation (2.7) into (2.8) leads to the Master Equation

(∇+ ik)× 1

εr
(∇+ ik)×︸ ︷︷ ︸

=Θ̂

Hk =

(
ωk
c0

)2

Hk (2.13)

with the constants ε0 and µ0 combined to the vacuum speed of light c0 = 1/
√
ε0µ0.

This Master Equation represents an eigenvalue problem with Hk as eigenmodes of

the function (2.13) [2]. Any linear combination of eigenmodes is still a valid solution

to the Master Equation. The operator Θ̂ acting on the eigenmodes is Hermitian

and creates a complete set of orthonormal eigenfunctions with real eigenvalues [2].

∣∣∣∣∣ 7



2 Theory

Figure 2.2: Schematics of a harmonic sequence of high and low refractive index regions with

ε2 = 2 and ε1 = 1. The solution to a propagating wave in such a sequence is given by a Bloch

mode. The examples of modes concentrating their energy in the high- refractive index regions (a)

and the low-refractive index regions (b) are both valid solutions. Their different concentration of

the energy leads to a differences in frequencies of these modes and a forbidden range of energies

called the photonic band gap.

In order to find the lowest order eigenmodes of H(r), the functional(
ωk
c0

)2

→ min
ωk

∫
dr3
| (∇+ ik)× (∇+ ik)×Hk|2dΩ∫

Ω
ε |Hk|2 dr3

(2.14)

must be minimized by maximizing the denominator. This is achieved through an

overlap of the high intensity of the electric fields with high dielectric constant areas

[2]. Figure 2.2 depicts orthogonal solutions to the eigenmodes with their energies

concentrated in either the high or low-dielectric-constant areas. Both solutions

8
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2.1 Photonic Crystals

are representing Bloch waves with the same periodicity as the periodic function

of the refractive index and are valid solutions of (2.13). The modes concentrating

their energy in the high-refractive index regions lead to large denominators and

smaller frequencies. Modes experiencing low refractive index regions lead to small

denominators and large frequencies. The differences in frequencies of the modes

form a forbidden range of energies of the modes which is known as the photonic

band gap.

Scale Invariance of the Master-Equation

The derived Master-Equation (2.13) for PhCs is scale invariant as there is no

constant with the dimension of length in it [2]. This leads to a connection between

electromagnetic eigenmode solutions which only differ in scale. Recalling the

Master-Equation and defining a new dielectric function ε′(r) that is, for some scale

parameter s, just a compressed or expanded version of the old one ε′(r) = ε(r/s),

a change of variables r′ = sr and ∇′ = ∇/s with ε(r′/s) none other than ε′(r′)

leads to

∇′ ×
(

1

ε′(r′)
s∇′ ×H(r′/s)

)
=
( ω
cs

)2

H(r′/s). (2.15)

This is the Master-Equation again with eigenmode profile H ′(r′) and frequency

ω′ = ω/s. The new profile and its corresponding frequency can be obtained by

simply rescaling the old mode profiles and frequencies. THis can be made use of to

tailor the resonance wavelength of a given structure to a wanted value.

Photonic Crystal Cavities

Figure 2.3: Schematics of the

donor-acceptor model.

If the periodicity of a one-dimensional PhC is bro-

ken up, a defect state in the material evolves and

creates a localized field of high energy. The modes

localized in the defect region are confined within

a small, finite space and therefore quantized into

discrete frequencies [2].

Changing the properties of the defect region gen-

erates different sets of quantized frequencies in the

that region. This may either pull a mode down

into the band gap from the upper bands which

are referred to as the air bands from now on or

push modes up into the gap from the lower bands
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2 Theory

which are referred to as the dielectric band. By increasing the radius of a defect

hole, modes are pulled into the band gap from the dielectric band and an acceptor

defect state is created. By decreasing the radius of an individual hole modes from

the air band are pulled into the band gap and a donor defect state is created as

shown in figure 2.3 [6]. The best spatial localization of a defect mode is achieved

when its frequency is near to the center of the band gap [6].

10
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2.2 Atom-Light Interaction

2.2 Atom-Light Interaction

For many physical considerations including only one atomic transition, e.g. the

transition related to a resonant cavity mode, it is sufficient to consider an atom

as a two-level system. By choosing a suitable basis, making use of the Rotating-

Wave-Approximation and solving the Von-Neumann equation, the optical Bloch

equations describing the states of two-level atoms will be derived in this chapter.

Two-Level Atom

Figure 2.4: Schematic of a two-level

atom with the ground and excited state

|g〉 and |e〉 and the corresponding ener-

gies Eg and Ee. ∆ depicts the detuning.

The levels are separated by the energy

~ω0.

A two-level atom has two energy levels, |g〉
and |e〉, separated by the energy ~ω0. The

excited state |e〉 can be reached through optical

excitation with the resonant frequency ω0 [7]. In

the two-level atom only transitions between the

the ground and excited state at the decay rate

Γ0 can happen. In order to consider off-resonant

excitation, the detuning ∆ is introduced. The

eigenvectors |e〉 and |g〉 span a two-dimensional

Hilbert space. Therefore, the interaction of

the atom with the electromagnetic field can be

approximated as an electric-dipole interaction,

ĤA = Eg |g〉 〈g|+ Ee |e〉 〈e| . (2.16)

In the so-called dipole approximation, the wave-

length of the electric field E applied to the atom is considered to be much larger

than the extent of the atom [8]. Therefore, the dipole moment of a two-level atom

is approximated by

d̂ = −e0 · x̂ (2.17)

where d̂ is the dipole operator, x̂ the position operator and e0 ≈ 1.602 · 10−19 C is the

elementary charge. Assuming that the atom possesses inversion symmetry, i.e. that

the energy eigenstates of the atom are either symmetric or anti-symmetric makes

the terms 〈e| x̂ |e〉 and 〈g| x̂ |g〉 vanish. Then, one gets the following expectation

value of the dipole operator

〈ψ| d̂ |ψ〉 = −e0(|ce|2 〈e| x̂ |e〉︸ ︷︷ ︸
=0

+cec
∗
g 〈g| x̂ |e〉+ cgc

∗
e 〈e| x̂ |g〉+ |cg|2 〈g| x̂ |g〉︸ ︷︷ ︸

=0

).

(2.18)

∣∣∣∣∣ 11



2 Theory

Density Matrix

To study the processes within atoms it is necessary to switch to a statistical

description of atomic ensembles. Due to the Ergodic hypothesis an expectation

value for a system of many atoms can be treated equally as an expectation value

to the time-evolution of a single atom. The density matrix operator ρ = |ψ〉 〈ψ|
describes the behavior of a mixed quantum state with the wave function ψ [9]. For

a two-level atom, the density matrix

ρ = (cg |g〉+ ce |e〉)
(
c∗g 〈g|+ c∗e 〈e|

)
=

(
cgc
∗
g cgc

∗
e

cec
∗
g cec

∗
e

)
=

(
ρgg ρge
ρeg ρee

)
. (2.19)

includes the population for the ground and excited state in the diagonal elements

and the coherences of the atoms in the off-diagonal elements. The expectation

value of an operator A can be computed using the following relation

〈A〉 = Tr{ρA}. (2.20)

The advantage of the density operator lies in the fact that it can be applied to a

statistical mixture of pure states [9]. If the atoms are in state |e〉 with probability

pe and in state |g〉 with probability pg, the density operator ρ = pe |e〉 〈e|+pg |g〉 〈g|
can be defined and used to compute the average values of observables

〈A〉 = Tr{ρA} = pe 〈e|A |e〉+ pg 〈g|A |g〉 . (2.21)

The equation describing the time-evolution of the density matrix is given by the

Von-Neumann equation

∂ρ(t)

∂t
= − i

~

[
Ĥ(t), ρ(t)

]
(2.22)

where Ĥ(t) describes the Hamiltonian of the system [8]. This equation does not

consider any decoherence processes, e.g. spontaneous emission or collision. These

effects can be included into the calculation by adding the Lindblad operator which

sums over all dissipative channels m which an atom can emit to [8],

L̂D(ρ) = −1

2

∑
m

(
CmC

†
mρ+ ρC†mCm

)
+
∑

m

CmρC
†
m. (2.23)

A two-level atom only allows a transition between the ground and excited state

with the decay rate Γ0 C1 =
√

Γ0 〈g|e〉. Therefore, the Lindblad operator (2.23) for

a two-level atom can be simplified to [8]

L̂D(ρ) = Γ0

(
ρee −ρge/2
−ρeg/2 −ρee

)
. (2.24)

12
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2.2 Atom-Light Interaction

Rotating-Wave Approximation

The atom-light interaction is given by the atom-field Hamiltonian

ĤA-F = −d ·E(t,x). (2.25)

where E(t,x) describes a classical, monochromatic plane wave

E(t,x) =
1

2

(
E0 · eiωt +E∗0 · e

−iωt) . (2.26)

The total Hamiltonian of the system is given by the sum of the atom’s Hamiltonian

(2.16) and the atom-field Hamiltonian (2.16)

Ĥ(t) = ĤA + ĤRWA
A-F . (2.27)

For a strong interaction of the plane wave (2.26) with the atom, its frequency has

to be close to the atomic transition frequency ω ≈ ω0. A unitary transformation

matrix, (
1 0

0 eiωt

)
, (2.28)

is used to switch into a dynamics of the atom which oscillates with the same

frequency ω as the light [8]. The transformed density matrix is then given by

ρ̃ = U †ρU =

(
ρgg ρgee

iωt

ρege
−iωt ρee

)
. (2.29)

Inserting equation (2.29) into the Von-Neumann equation (2.22) leads to the

transformation of the Hamiltonian,

H̃ = U †HU − i~U ∂U
∂t
, (2.30)

which can be calculated by inserting the transformed density matrix (2.29) into

(2.30) and simplified by the dipole matrix elements deg = 〈e| d̂ |g〉

H̃ =

 0
deg

2
(E0 + E∗0e

i2ωt)

deg

2
(E0e

−i2ωt + E∗0) ~(ω0 − ω)

 . (2.31)

where the energy of the ground state is set to zero [8].

The off-diagonal elements of the Hamiltonian (2.31) contain terms oscillating at

twice the optical frequency. These terms can be neglected as these oscillations are

∣∣∣∣∣ 13



2 Theory

much faster than the evolution timescales of the atomic system [8]. This step is

known as the rotating wave approximation [8] and simplify the Hamiltonian to

H̃ = ~
(

0 Ω0/2

Ω∗0/2 −∆

)
(2.32)

where the detuning is ∆ = ω − ω0 and the Rabi frequency is defined as

Ωr =
deg ·E0

~
. (2.33)

Bloch Equations

The transformation of the Lindblad operator (2.23) into the rotating frame is simply

given by L̃(ρ̃) = L(ρ) [8]. Adding the Lindblad Ooperator (2.23) to the Neumann

equation (2.22) results in the Lindblad master equation

∂ρ(t)

∂t
= − i

~

[
Ĥ(t), ρ(t)

]
+ L̂D(ρ). (2.34)

Writing down each component of the time-evolution of ρ(t) leads to the optical

Bloch equations:

∂

∂t
ρgg = Γ0ρee +

i

2
Ωr(ρge − ρeg) (2.35)

∂

∂t
ρge = −

(
1

2
Γ0 + i∆

)
ρge +

i

2
Ωr(ρgg − ρee) (2.36)

∂

∂t
ρeg = −

(
1

2
Γ0 − i∆

)
ρeg +

i

2
Ωr(ρee − ρgg) (2.37)

∂

∂t
ρee = −Γ0ρee +

i

2
Ωr(ρeg − ρge) (2.38)

These equations describe the interaction of the oscillating electric field with the

atom. The components ρgg and ρee describe the probabilities of finding an atom in

its ground or excited state respectively. Numerically, these equations can be solved

using the Runge-Kutta method which is discussed in the next chapter, Basics of

the Simulation.

Rabi Oscillations

In the last sections, applying a monochromatic, resonant, electromagnetic field lead

to a time evolution of the density matrix given by the optical Bloch equations. The

solutions to these equations show the oscillations of the probabilities of finding an

14
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2.2 Atom-Light Interaction

atom in its excited or ground state and are called the Rabi oscillations. Due to

collisions of the atoms, spontaneous emission and other effects which are balancing

the probabilities of finding an atom in a certain state, a Rabi oscillation is damped

and stops after a certain time. Then, an equilibrium of finding the atom in its

excited or ground state the atom is achieved.
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2.3 Cavity Quantum Electrodynamics

This chapter gives an overview of the interaction of two-level atoms with confined

modes in PhC cavities. In order to characterize the interaction strength, cavity

quantum electrodynamics parameters as the quality factor, the mode volume, the

coupling strength and the cooperativity are introduced.

Quality Factor

The quality factor is a dimensionless parameter which characterizes a resonator’s

full width half maximum ∆ω relative to its resonance frequency ωr [10],

Q =
ωr
∆ω

. (2.39)

It can be derived by looking at the decay of the time-dependent electric field

confined in the cavity. The time domain signal of the resonant electric field is

described by

E(t) = e−t(κ−iωr) ·u(t), (2.40)

where κ is the cavity decay rate and u(t) is a the electric field envelope.

Looking at the spectral energy density

|E(ω)|2 =
1

κ2 + (ω − ωr)2
, (2.41)

to determine the half-maximum frequencies at ω = ωr ± κ leads to the full width

half maximum ∆ω = 2κ. This can be substituted into expression (2.39) leading to

Q =
ωr
2κ
, (2.42)

as well as to the definition of the cavity decay rate

κ =
ωr

2Q
=

π · c
λresQ

(2.43)

where c is the vacuum speed of light and λres the resonance wavelength.

The larger the qualitiy factor of a cavity is, the smaller the decay rate of the field

would be and the longer is the photon lifetime in the cavity [7].

16
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2.3 Cavity Quantum Electrodynamics

Mode Volume

The mode volume Vm gives a measure of the spatial confinement of the electromag-

netic field in a cavity [11]. It is given by

Vm =

∫
V
ε(r)|E(r|2d3r

|Emax(r)|2
(2.44)

where ε(r) is the relative permittivity, r the position vector and Emax(r) the

maximum of the electric field. The integral represents an integration over the whole

space. The smaller the mode volume is, the smaller the space in which a photon is

squeezed and the stronger the interaction between a single atom whithin the mode

volume of the photon can be.

Vacuum Rabi frequency

The strength of an atom-photon interaction can be described by the vacuum Rabi

frequency g which is derived from the field quantization. It is a feature of the mode

itself and is given by

g = 2 · 1
~

√
~ω0

2ε0Vm

E(ra) · dge (2.45)

where ra depicts the atom position. The vacuum Rabi frequency is used in the

calculation of the cooperativity.

Purcell Factor

The decay rate of an atom is not an intrinsic property and is strongly dependent on

its surroundings. The Purcell factor Fp is a number which describes the modification

of an atom’s decay rate in an environment different from vacuum. An emitter in

an optical cavity emits photons at a decay rate Γcav = Fp ·Γ0.

For a single mode, the Purcell factor can be calculated using

Fp =
3

4π2

(
λ

n

)(
Q

V

)
. (2.46)

where λ is the free space wavelength and n is the refractive index of the material.

For multiple modes of a resonator, a numerical calculation of the Purcell factor is

necessary which will be dicussed in the chapter Basics of the Simulation.
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Cooperativity

The cooperativity is a dimensionless parameter measuring the ratio of the coherent

to incoherent phenomena in a cQED system. Thereby, it weighs the square of

the wanted atom-cavity coupling rate g against the unwanted loss mechanisms

κ and Γ0⊥

C =
g(ra)2

2κ ·Γ0⊥
=

3λ3
res|E(ra)/Emax|2

8π2

Q

Vm

. (2.47)

The parameter κ shows the photon decay rate from the cavity and Γ0⊥ is the decay

rate of the atom into all other modes except the desired cavity mode. Note, that

the total decay rate of the atom Γ0 is given by the sum of all decay rates

Γ0 = Γ0⊥ + Γcav (2.48)

where Γ0⊥ only includes the decay rate into dissipative channels and Γcav the one

into a cavity mode.

Physically, the cooperativity can be interpreted as a scaled number of absorption and

emission cycles between a confined photon and the atom before the photon in the

resonator is lost. As the cooperativity is proportional to Q/Vm, high cooperativities

can be achieved through small mode volumes and large quality factors.

18
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3 Basics of the Simulation

This chapter aims at introducing the finite difference time domain (FDTD) method

and the Lumerical software to the reader. Moreover Matlab codes, including a

Range-Kutta code for solving the optical Bloch equations and a code setting up a

trajectory of an atom moving through a PhC are presented.

3.1 Lumerical

3.1.1 The FDTD Method

Figure 3.1: A Yee Cell represents a part

of a spatial and temporal grid at which the

field components are solved [12]

FDTD solutions is a fully vectorial, time-

domain solver of Maxwell’s Equations. The

electric and magnetic fields for future time

steps are calculated based on the fields at

former time steps. There is an offset of the

H field by a half-time and a half-position

step compared to the E field is made [13].

E(x, t) = Eq,n,

H(x, t) = Hq+1/2,n+1/2,

Then, the derivatives in Maxwell’s curl equa-

tions are approximated as finite differences

or slopes for discretized time steps n and

position steps q. In order to compute the vector components of the electric and

magnetic fields at each time step, they are sampled on a Yee cell which can be seen

in figure 3.1. A Yee cell represents a part of a spatial and temporal grid. Each field

component is solved at a slightly different location within the grid cell, as shown in

figure 3.1. The electric and magnetic field at later times are updated based on the

fields at previous time steps based on the following equations,

En+1 = En + α∇×Hn+1/2,

Hn+3/2 = Hn+1/2 + β∇×En+1,
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where the parameters α and β represent simulation-dependent constants [13]. The

data collected from the FDTD solver is interpolated to the origin of the Yee cell so

that the end user receives a discretized map of points at which the fields are solved

for their analysis. [12]. The size of the Yee cell depends on the mesh size of the

simulation.

The FDTD method leads to results with high accuracy in the time and spatial

domain as only few initial approximations must be made by setting the offset of the

H field by one half time step compared to the E field in the beginning [13]. Moreover,

the method is used in simulations where geometric optics breaks down and where

devices on the order of the size of the wavelength have to be simulated [13].

The main benefit of FDTD is that it allows one to handle almost any kind of

structure with a precise mesh as the fields are computed at all discretized spatial

points within the simulation domain at every time step. This makes it possible to

observe the electric fields as a movie through time. Using the Fourier transform

of the electric field function, it becomes also possible to investigate the resonance

frequencies of the field which is especially useful for studying optical resonators.

3.1.2 Simulation Tools and Objects

In order to run simulations with the FDTD method the software Lumerical is used.

Lumerical offers a graphical user interface where it is possible to add a simulation

region, components, sources and monitors to a simulation. These features extracted

out of the main tool bar as depicted in figure 3.2 are described in the following

sections.

Simulation Region

Every simulation allows only one simulation region where the time of the simulation,

the background refractive index, the simulation volume geometry, the mesh settings

and boundary conditions can be selected appropriately [14]. PML, i.e. perfectly

matched layer, boundary conditions are absorbing boundary conditions suppressing

any reflection from the boundary of the simulation region. They can be used to

extend structures through the boundaries to mimic an infinitely large structure.

Metal boundary conditions are used as perfectly reflecting boundaries. Periodic

boundaries are employed to simulate infinitely periodic structure. Bloch boundaries

are similar to the periodic ones but are used when a phase shift of the fields exists

between unit cell boundaries. Symmetric and anti-symmetric boundary conditions

are useful where a structure and source have symmetry. They reduce the simulation

volume and time. The result of a half, quarter or eighth of the simulation is unfolded
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3.1 Lumerical

across the planes of symmetry to get the simulation result of the whole region [14].

Structures and Objects

The structures and objects that can be added from the structures menu in the

main toolbar contain predefined structures e.g. circles and rectangles. They can be

combined in structure groups where the properties of all objects within a group

can be set simultaneously using a setup script. It is possible to import images of

an atomic-force microscope for presenting the geometries of an already fabricated

structure [14].

Sources

Various sources can be added from the source menu in the main tool bar. A dipole

point source represents an oscillating point source and can be used to simulate an

atom. Moreover, Gaussian, plane wave sources or total-field-scattered-field plane

waves can be added [14].

Monitors

Monitors allow to collect data from the simulation. The refractive index monitor

is used to record the refractive index as a function of position. The field time

monitor is capturing the data of the electric and magnetic fields as a function

of time. A movie is saving a file showing the time-evolution of the fields. The

frequency-domain field profile monitor or power monitors are collecting the data of

the fields ot the transmission, reflection, absorption for different frequency points.

These monitors return the field profiles and are useful for analyzing the fractions of

power transmitted through a surface [14].

Analysis Groups

Complex analysis with data from any monitors can be done in an analysis group.

The data of any object can be collected by a C++ based script in the analysis

group and used in post-processing calculations. The results from an analysis group

can be viewed and collected the same way as monitor results [14].

Optimization and Parameter Sweep

Next to the script editor, optimizations and parameter sweeps can be added to a

simulation. In the edit window, it is possible to set which parameter(s) are varied

or optimized and from which maximum to which minimum value the parameter is
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Figure 3.2: User interface of FDTD solutions. In the the main toolbar it is possible to add a

simulation region, components, sources and monitors to a simulation. The object tree lists all

components that are in a simulation. The results window lists all corresponding results. In the

Optimization and Sweeps window, an Optimization or sweep can be started. The prompt script

executes commands in Lumerical scripting language.

varied. For each varied parameter a separate simulation file is saved in a mutual

folder. An optimization creates an additional figure of merit to track the trends of

a parameter change [14].

Script environment

The script environment includes the script file editor and the script prompt. The

script prompt executes only one command at a time and the editor allows to collect

groups of commands, save them as a script file or to load and run them again. It

is possible, just like in the graphic editor, to add objects and set their properties,

collect results, manipulate and plot data, to print results to the script prompt and

to export data to different formats [14].

Time to Simulate and Memory Requirements

A simulation can be run in 2D or 3D. A 3D simulation requires a memory pro-

portional to ∝ V · (λ/dx)3 and a simulation time ∝ V · (λ/dx)4 with V depicting

the simulation volume, λ the propagating wavelength and dx the mesh size in

each direction. In the 2D case, a memory of ∝ V · (λ/dx)2 and a simulation time

∝ V · (λ/dx)3 are required. The finer the mesh, the more Yee cells where the fields
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must be calculated. Therefore, it is always recommended to do initial simulations

with relatively coarse mesh or in 2D instead of 3D to save a lot of time in the long

run [14].

3.1.3 A Photonic Crystal Cavity Simulation

The following section describes the set up of a PhC cavity simulation of and how

to analyze different characteristics, e.g. the quality factor and the field profiles, the

band structure of the crystal and the Purcell factor of a dipole source.

Band structure

As the PhC is periodic, it is only necessary to simulate one unit cell of the structure

for the band structure calculation [15]. The variables used in this simulation

including the periodicity, the apodization parameters, and the vector k are set in

the ’model’ analysis group setup script.

The previously described Bloch boundary conditions are used at each boundary

of the unit cell. Then a parameter sweep is started varying the k-vectors. Each

produced file of the parameter sweep, one simulation for each k, gives the simulation

results of the band frequencies for a particular k-vector.

As the goal of the band structure simulation is to see whether the structure supports

the band gap for all polarizations, sources capable of exciting all modes of interest

for the device are created. A number of randomly oriented and randomly distributed

dipole sources is used. It is also possible to set the dipole orientations to only

excite certain modes in order to isolate bands of interest [15]. Symmetric boundary

conditions can also be used in order to restrict the possible modes and to isolate

the bands [15].

The bandstructure analysis group loads the time signals from each time monitor for

each field component and apodizes the signals in order to filter out the beginning

and end portions of the time signal to remove any transit time behavior [15]. The

Fourier transforms of the apodized time signals is then used to calculate the peaks

at the resonance frequencies for each k-vector. Several Fourier transforms of each

time monitor are summed to ensur that all the resonant frequencies of a mode are

found just in case a time monitor is located in a high-symmetry point [15].

To sum it up, the band structure calculation sets certain values of k vectors and

then analyses the spectra. The frequencies of the peaks of the spectra for each k

vector are plotted against k, resulting in the band structure.
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Quality Factor and Field Profiles

To begin with the set up of the simulation of the quality factor and the field profiles,

a simulation region having a simulation time of 3000 fs, a background refractive

index of n = 1, a simulation volume geometry of x = 12000 nm, y = 1400 nm

and z = 1300 nm and stabilized PML boundary conditions is set up. In this

specific case, the PhC cavity is created out of etched holes in a silicon nitride slab.

Therefore a rectangle with the approximate refractive index of silicon nitride n = 2

for a wavelength of 780 nm is added to the simulation region. The rectangle is

included into the simulation before the circles/ holes as depicted in figure 3.3 as

the added objects are written into the simulation in the order of the object tree.

Figure 3.3: Object tree setting up the

simulation for a PhC cavity analysis.

The rectangle or slab expands through the

PML layers at both sides of the simulation

boundaries in order to avoid artificial reflec-

tions as can be seen in figure 3.3 from the

blue slab expanding through the orange sim-

ulation boundaries. For the purposes of this

analysis, the PhC cavity is assumed to have

14 holes at each side of the mirror region and

seven holes in the tapered region.

The mesh in the x-, y- and z- direction is set

by adding a mesh override region with the

mesh steps dx = dy = dz = 7 nm. Setting

a small mesh size increases the calculation

time but also the resolution of the holes and

therefore the accuracy of the result [16].

For the initial phase of a design, the approach

is to start with coarse meshes to obtain ini-

tial results and to move to finer meshes to

obtain the final data of a simulation [16].

A dipole source injects a pulsed signal into the PhC cavity. As it is assumed that

the modes of the cavity represent TE modes, the polarization of the dipole source

is set to be TE, i.e parallel to the y axis. In order to adapt the dipole’s radiation to

the characteristics of a Rubidium atom, the center wavelength of the dipole is set

to 780 nm referring to the wavelength of the D2 transition. The intensity of the

injected light pulse from the dipole has to be excluded out of the final field profiles

otherwise the fields depict a spot of high intensity at the dipole position.

As the cavity is confining the fields much longer compared to the initial length of

the dipole pulse, the effects of the source can be cut out by using a time window
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for processing the electric field envelope. The electric field of the dipole pulse is

intentionally not included in this window function and only the time intervals of

the field where the frequencies of the cavity modes are remaining are analyzed and

then interpolated to determine the complete time signal of the electric field.

Four time monitors spread over a region of the cavity’s defect region are chosen

to capture the behavior of the electric and magnetic fields. To capture the modal

fields, the frequency domain profile monitors are used. These monitors are stored

in an analysis group called mode profiles.

As the structure exhibits three planes of symmetry, symmetric and anti-symmetric

boundary conditions are used to reduce computation time. However, the cost of

symmetry boundary conditions is that they forbid certain modes from appearing

in the results, i.e. the modes that do not exhibit the same symmetry relation as

the boundary condition. For this PhC cavity, there is a plane of symmetry through

the center of the slab (x = 0 plane). Using a symmetric boundary condition on

this plane will only allow TE modes and eliminate TM modes from the results.

Since for this structure the cavity modes are expected to be TE, the symmetric

boundaries represent the right conditions here [16]. The other planes (y = 0 plane

and z = 0 plane) are supposed to be anti-symmteric. Note, it is important to set

the dipole away from the symmetric and anti-symmetric boundaries or a highly

symmetric point to ensure that is coupling to all the allowed modes.

When studying resonators, the auto-shutoff feature of FDTD Solutions must be

disabled. The auto-shutoff is a measure of the energy left in the simulation region.

If this value is small enough, a simulation is stopped before the end of the simulation

time. An optical resonator only traps a small fraction of the original excitation

energy injected in the simulation. As a result the auto-shutoff can assume that the

energy left in the simulation is too small to continue the simulation and trigger

an early termination of the simulation. To fully capture the complete dynamics of

the cavity however, the autoshutoff can be disabled by unchecking the ”use early

shutoff” in the Advanced Options tab of the FDTD simulation region [16]. Finally,

the analysis group can determine the Q-factor the same way as described in the

Cavity Quantum Electrodynamics chapter and obtains the data of the electric mode

profile.

Purcell Factor

The Purcell factor is describing the spontaneous emission rate modification of an

emitter inside a cavity or resonator [17]. Since the emission rate of the dipole in

the simulation is proportional to the local density of optical states in our study, the

Purcell factor is given by the power emitted by a dipole source in the environment
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of the resonator by the power emitted by the dipole in free space. Therefore,

all the symmetric and anti-symmetric boundary conditions must be disabled as

those are acting as a mirror for the single dipole source and increasing the Purcell

factor artificially. Then, the simulation must run until the fields have completely

decayed to really receive the whole power emitted by the dipole source in the

environment [17].

Common Simulation Problems

Typically, PML boundary conditions which absorb most incident radiation prop-

agating away from the cavity are used. It is important to leave enough distance

between the cavity and the PML boundaries. If the boundaries are too close to

the cavity, they absorb the non-propagating local evanescent fields which exist

within the cavity. A rule of thumb is to leave at least half a wavelength of distance

between the boundaries and the structure in the y and z direction [18].

In the x direction, the silicon nitride slab must be extended through the simulation

boundaries to mimic an infinite slab. If an interface between the slab and the

PML in the x-direction is included, this can cause artificial confinement caused

by the reflection on the interface. Using the “extend through PML” option in the

FDTD region settings avoids this artificial confinement [18]. Moreover, stabilized

PML boundary conditions adapt the amount of PML layers at the boundaries and

maintain the simulation stability.

To get valid Q-factor results, it is important to include an integer number of mesh

cells per lattice constant in the mirror regions. This makes sure that the holes

are all meshed in the same way. Otherwise, each hole has a slightly different size

and shape in the simulation and the periodicity is not distinguished. Moreover,

it is important to make sure that enough PhC periods are included in the mirror

regions. Using a low number of unit cells can result in a poor confinement of the

electromagnetic fields in the transverse direction [18].
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3.2 Matlab

3.2.1 Runge-Kutta Method

In the Atom-Light Interaction chapter the optical Bloch equations describing the

interaction of the oscillating electric field with an atom were derived. Numerically,

these equations can be solved using the Runge-Kutta method. This method is used

to approximate the solution of first order differential equations given by

dy(t)

dt
= y′(t) = f(y(t), t) (3.1)

with some known initial condition y(t0) = y0 [19]. The math behind this method

is simple to understand by starting from a first-order Euler approximation. The

derivative of (3.1) at the time t0 is then given by

y′(t0) = f(y(t0), t0)

Expanding y(t) around t0 and assuming a time step h leads to

y(t0 + h) = y(t0) + y′(t0)h+ y′′(t0)
h

2
+ ...

Dropping all the orders higher than the linear term yields to [19]

y(t0 + h) ≈ y(t0) + y′(t0)h = y(t0) + k1h.

This algorithm already provides one possibility to solve the differential equation

(3.1) numerically. However, it is necessary to use relatively small time steps to get

accurate results. The forth order Runge-Kutta produces more reasonable results in

fewer steps by approximating the derivative after stepping half way through the

time step h. Each of the slope estimates k1, k2, k3 and k4 from the forth order

Runge-Kutta can be described in the following way

k1 = f(y(t0), t0),

k2 = f(y(t0) + k1
h

2
, t0 +

h

2
),

k3 = f(y(t0) + k2
h

2
, t0 +

h

2
),

k4 = f(y(t0) + k3h, t0 + h).

The estimate k1 is the slope at the beginning of the time step. This slope k1 is

used to step halfway through the time step. Then k2 is an estimate of the slope at
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the midpoint of the time step h which gives a better approximation to the slope. If

the more accurate slope k2 is used to step halfway through the time step h, then

k3 gives another improved estimate of the slope at the midpoint. Finally, the slope

k3 is used to step all the way across the time step to t0 + h, and k4 is an estimate

of the slope at the endpoint [19].

Then, a weighted sum of these slopes is used to get the final estimate of y(t0 + h)

y(t0 + h) = y(t0) +
k1 + 2k2 + 2k3 + k4

6
h (3.2)

Note, this simulation method depends on the size step h. Larger values of h result

in poorer approximations [19].

3.2.2 Monte-Carlo Analysis

The Monte-Carlo simulation used to simulate the trajectories and the states of

atoms moving through the PhC cavity and to generate random trajectories of

a complex system of many atoms. The speed distribution of the atoms follows

directly from the Boltzmann distribution.

It is assumed that the probability of finding one atom with kinetic energy E

decreases exponentially with the energy. This can be expressed mathematically via

the Bolzmann distribution

f(E) = A · e−E/kBT . (3.3)

The Bolzmann distribution is taken to be a postulate and used to show how

the Maxwell-speed distribution follows from it. If the energy in the Boltzmann

distribution is just one-dimensional kinetic energy, then the expression becomes

f(vz) = A · e
−mv2z

2
· 1
kbT (3.4)

This function must be normalized via the constant A. This is accomplished by

integrating the probability from minus to plus infinity and setting it equal to one.

Making use of the definite integral form∫ ∞
−∞

e−x
2

dx =
√
π, with the substitution x =

√
m

2kbT
vz (3.5)

allows one to normalize the function (3.4) via

A ·
√

2kbT

m

∫ ∞
−∞

e
− m

2kbT
vz = 1 which gives A =

√
m

2πkbT
. (3.6)
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Converting this relationship to one which expresses the probability in terms of

speed in three dimensions gives the Maxwell speed distribution:

f(v) = 4π

(
m

2πkbT

)3/2

v2 · e
−mv2
2kBT (3.7)

Comparing this expression to the normal distribution

f(x, µ, σ) =
1√
πσ2

e
−(y−µ)2

2σ2 , (3.8)

with the expectation value µ and the standard deviation σ, it becomes clear that

the standard deviation of the speed distribution (3.7) is given by σ =
√

kbT
m

.

The atoms in the Monte-Carlo code are initialized randomly with a velocity within

(−∞,+∞) and a propability given by the Maxwell distribution. However, the

focus of thesis will lie on analyzing one simple trajectory with the velocity v =

σ ·vz = σ(0, 0, 1) to visualize the physical effects of an atom moving straight

through the maximum field intensity of the centered hole in the PhC cavity. In the

results reported in this thesis, the number of atoms is set to one and the intensity

profile derived from FDTD is included into the simulation. Moreover, a map of

position-dependent Rabi frequencies is included. The refractive index info of the

slab is extracted from a 2D refractive index monitor from FDTD and expanded

to 3D by reshaping the index region. The simulation region of the Matlab code

finishes at the same boundaries as the FDTD simulation region. It is divided up

into sections above, below, in front of and behind the slab as well as a section

containing the holes within the slab to define the reflections at these boundaries if

necessary.

A first loop updates the position and velocity vectors for each time step while

another loop updates the components of the density matrix with the forth-order

Runge-Kutta method. The time steps at which the atom is observed need to

be small enough for the Runge-Kutta code to approximate the derivatives of the

optical Bloch equations properly.
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4 Results

This chapter presents the final design of a one-dimensional PhC cavity beginning

with the band structure and Bloch modes in the mirror region heading to the mode

profile in the tapered region. Employing the previously described Matlab code, the

interaction of a Rubidium atom with the confined light in the cavity is investigated.

Finally, the thermal behavior of the cavity is analyzed.

4.1 Bandstructure

In the Photonic Crystals chapter, it has been described how certain wavelengths or

frequencies of light are not allowed to pass a PhC which is leading to a forbidden

range of energies forming a photonic band gap. As discussed, breaking the periodic-

ity of a PhC creates a defect center in the structure supporting a localized photonic

mode within the photonic bandgap. Choosing this mode in the defect region to

match with a transition in an atom leads to atom-light interaction in the vecinity

of PhC cavities. Therefore, the band gap in the mirror region has to support the

transition frequency or wavelength of the atom, in this case the rubidium atom.

The investigated transition in the atom corresponds to the D2 line with a resonance

wavelength λD2 and frequency fD2 [20],

λD2 = 780.24 nm, fD2 = 384.23 THz.

With the unit cell of the PhC cavity studied in this thesis a band gap supporting

these values is achieved. The unit cell of the crystal consists of silicon nitride

(Si3N4) with an air hole in the center of the unit cell which has the following

properties,

Periodicity a = 325 nm,

Radius r = 91 nm,

Width w = 426 nm,

Height h = 241 nm.
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Figure 4.1: Simulated Band structure of the PhC mirror region. The band diagram exhibits

a band gap from f1 = 340.21 THz to f2 = 397.86 THz. The polygons mark the frequency points

used in the next section to calculate the Boch Modes. The crosses mark the frequency points

extracted out of the band structure calculation.

The band diagram exhibits a band gap from f1 = 340.21 THz to f2 = 397.86 THz.

This can be seen in figure 4.1. The aimed frequency of 384.23 THz corresponding

to the D2 Rubidium transition lies within this band gap. Therefore, the periodic

region of the crystal indeed acts like a high-reflectivity mirror at this frequency.
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4.2 Bloch Modes

Figure 4.2: Simulated Bloch mode for f1 = 340.21 THz marked with a

blue polygon in the band structure graph. The white lines indicate the

boundaries of the cavity and the holes. The white areas depict regions of high

intensity. The dark areas mark regions of low intensity.

Figure 4.3: Simulated Bloch mode for f2 = 397.86 THz marked with a

pink polygon in the band structure graph. The white lines indicate the

boundaries of the cavity and the holes. The white areas depict regions of high

intensity. The dark areas mark regions of low intensity.

In the Photonic Crystals chapter, the origin of Bloch modes due to the discrete

translational symmetry in PhCs was discussed. In figures 4.2 and 4.3 the Bloch

modes at the frequencies f1 = 340.21 THz to f2 = 397.86 THz with ka = π marked

with a polygon in the band structure graph are shown. The electric field intensity
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is either more concentrated in the dielectric or rather pushed into the air while still

obeying the imposed translational symmetry of the crystal.

4.3 Cavity Mode Profiles

If the periodicity of the one-dimensional PhC is broken up, a defect state in

the PhC material is introduced and creates a PhC cavity. As described in the

chapter Photonic Crystals decreasing the radius of individual holes pulls modes

from the higher frequency air band down into the band gap. In order to get the

best interaction of the rubidium atoms with the confined light, the set of modes

concentrating their field in the air holes where the atoms can fly through has to

be localized in the defect region. In the presented PhC cavity, the defect region is

slowly tapered to a smaller hole size from the radius of the periodic region r = 91

nm to

r4 = 81 nm,

r3 = 73 nm,

r2 = 67 nm,

r1 = 63 nm.

The distances between the positions of these holes are gradually decreased by

∆a = 1 nm. Moreover, the distance between the first hole of the mirror region and

the last hole of the tapered region is set to a = 317 nm in order to match the phase

relation between the regions and to avoid scattering. As the defect region comprises

a total of seven holes, there is some distributions of the electric field strength within

this region. The intensities of the electric field are plotted against the x, y and z

axis in figures 4.4, 4.5 and 4.6 and show how the electric field strength varies as a

function of space. In figure 4.4 one can see the simulated electric field intensity

profile |E(x, y)|. The top and side panels of the figures show horizontal and vertical

cuts of the electric field through the center of the cavity. The white lines indicate

the boundaries of the holes and the slab. The arrows corresponding to x and y

mark the spatial orientation. One can observe in figure 4.4 that the electric field

exhibits a maximum intensity in the centeral hole of the tapered region. The cross

sections in figures 4.5 and 4.6 show the evanescent tails of the electric field along

both the y and z direction. The cross section along the y-axis in figure 4.6 is

especially interesting as one can clearly see how the electric field is really confined

in the airy hole and suppressed in the dielectric region.
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4.3 Cavity Mode Profiles

The resonance frequency λCav of the cavity for a simulation mesh of dx = dy =

dz = 7 nm is given by

λCav = 781.83 nm.

The resonance frequency of the cavity can shift by changing the mesh size and

the simulation can be further optimized. For the given mesh size, the reported

resonance frequency of the cavity still has a detuning of ∆ = 1, 59 nm from the D2

line of the rubidium atom.

The trend observed while refining the mesh size from 15 nm to 7 nm showed that

the resonance wavelength of the cavity slightly shifted down by ∆λ ≈ 2 nm towards

a smaller wavelength. Therefore, one possibility to improve the result might be

a refined mesh of dx = dy = dz = 1 nm. Another approach suggests a slight

change of the properties of the tapered region. In the follow up studies of this

work, another cavity with a resonance wavelength at λCav = 779.56 nm could be

designed by changing the distances between the positions of the tapered holes by

∆a = 2 nm instead of ∆a = 1 nm.

The cavity quantum electrodynamics parameters of the presented cavity with a

resonance wavelength of λCav = 781.83 nm are shown in the next chapter.
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4 Results

Figure 4.4: Simulated electric field intensity. The top and side panels show horizontal and

vertical cuts of the electric field through the center of the cavity. The white lines indicate the

boundaries of the cavity and the holes. The arrows corresponding to x and y mark the spatial

orientation.
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4.3 Cavity Mode Profiles

Figure 4.5: Simulated electric field intensity. The top and side panels show horizontal and

vertical cuts of the electric field through the center of the cavity. The white lines indicate the

boundaries of the cavity and the holes. The arrows corresponding to y and z mark the spatial

orientation.
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4 Results

Figure 4.6: Simulated electric field intensity. The top and side panels show horizontal and

vertical cuts of the electric field through the center of the cavity. The white lines indicate the

boundaries of the cavity and the holes. The arrows corresponding to y and z mark the spatial

orientation.

4.4 Cavity QED parameters

In the Cavity Quantum Electrodynamics chapter, the quality factor, mode volume,

vacuum Rabi frequency and cooperativity have been introduced. The quality factor

describing how long a photon stays in the cavity can be simply extracted out of

38

∣∣∣∣∣



4.4 Cavity QED parameters

the FDTD simulation the same way as described in the theory. The mode volume

Vm giving a measure of the spatial confinement of the electromagnetic field in the

cavity can be calculated via equation (2.44) using the presented field profiles. The

same applies to the calculation of the vacuum Rabi frequency via equation (2.45)

giving the strength of the atom-photon interaction.

Only for the calculation of the cooperativity an approximation must be made. The

cooperativity measures the ratio of the coherent and incoherent phenomena in a

cQED system. It weighs the square of the atom-cavity coupling rate g against the

unwanted loss mechanisms κ, the electric field decay, and Γ0⊥, the atom’s decay

rate into non-resonant cavity modes which can be seen in equation (2.47).

The main loss channel Γ0⊥ for hot atoms is caused by transit-time broadening. As

the investigated atom is moving with a speed of v = σ and is not trapped in the

cavity, it is only experiencing the excitation of the light for a short time before

leaving the defect region.

The atom is approximatly moving with a speed of v = 200 m/s through the cavity

with height, h = 200 nm, and experiences the electric field for only about 1 ns

which in return leads to the approximation of the atom decay rate of Γ0⊥ = 1 GHz

used in the cooperativity calcultion.

As can be seen from the equation (2.47), increasing the figure of merit Q/V is

critical in order to achieve high cooperativities.

For a simultion mesh of 7 nm, the cavity presented in this thesis has the simulated

Quality factor Q, the decay rate κ, the mode volume Vm, the vacuum Rabi frequency

g and cooperativity C of

Q = 61, 877,

κ = 1.947 · 1010,

Vm = 3.984 · 10−20m3 = 0.0839 ·λ3
0,

g = 4.08 · 1011 1/s,

C = 4.28 · 103.
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4.5 Temperature dependence of the PhC cavity

To get some information about the thermal behavior in the cavity, the effects of the

thermal expansion and the change of the refractive index in the silicon nitride slab

are taken into consideration. Therefore, the linear thermal expansion coefficient of

silicon nitride [21]

dL

dT
= 3.2 · 10−61/K

and the thermo-optic coefficient of silicon nitride [22]

dn

dT
= 2.51± 0.08 · 10−51/K

are used. The expansion coefficients are inserted into the equations,

L = L0 + L0 ·
dL

dT
·∆T,

n = n0 + n0 ·
dn

dT
·∆T

where L0 and n0 represent the initial length and the initial refractive index and ∆T

the temperature change. Starting from 300 K the structure is simulated in steps of

50 degrees up to 350 K. The resonance wavelength and cooperativity as well as the

quality factor and mode volume are plotted against these temperatures in figures

4.7 and 4.8 respectively. For each property a guide to the eye is connecting the

simulated data points.

One can see how the resonance wavelength shifts up for approximately 3 nm

towards larger wavelengths within the temperature interval of 250 degrees. The

mode volume of the cavity decreases slightly and the quality factor increases due

to the temperature change. The reasons for this trend are on the one hand, the

increase of the refractive index leading to a better confinement and on the other

hand, the new resonance wavelength for which the defect region acts like a better

cavity. Although the figure of merit Q/V and thereby the cooperativity is increased

via the temperature increase, the most important observation in these simulations is

the shift of the resonance wavelength. Note, that the increasing cooperativity value

does not improve the atom-light interaction in the cavity as long as the resonance

wavelength of the cavity does not match the transition of the D2 line.
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4.5 Temperature dependence of the PhC cavity

Figure 4.7: Temperature dependence of the resonance wavelength (blue) and

cooperativity (orange) in the PhC cavity in a range from 300 to 550 K.

Figure 4.8: Temperature dependence of the Q-factor (purple) and mode volume

(cyan) in the PhC cavity in a range from 300 to 550 K.
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5 Outlook

The perfect, unperturbed interaction of a two-level atom flying straight through a

resonant PhC cavity shows an idealized interaction scenario of an atom and can

illustrates some physical effects within the cavity well. However, it is not directly

applicable as a result to a real system of hot atoms where more parameters have to

be taken into account in an investigation. That is why this analysis is moved to

the outlook.

5.1 A Two-Level Atom coupled to the PhC

Cavity

As discussed in the chapter Atom-Light Interaction, applying a resonant, electro-

magnetic field to a two-level atom leads to Rabi-Oscillations. After a certain time

this oscillation exchanging the energy of a photon between the atom levels and the

resonant cavity field is damped due to spontaneous emission of the atom and other

effects. In order to still achieve a coherent Rabi oscillation, the coupling between

the light and the electromagnetic field of the cavity must be strong enough.

In the outlook of this thesis, a simulation of an atom flying through the centered

hole of the cavity is presented. Therefore the Matlab code described in the chapter

Basics of the Simulation is used. The rubidium atom inserted into the simulation

starts from an initial position on the top of the z-axis of the simulation region

in its initial, unexcited ground state. The elements of the density matrix are

set to ρgg(t = 0) = 1 and ρee(t = 0) = 0. The atom moves with a velocity

of vz = σ ≈ 169.74 m/s, which is the standard deviation of the Maxwell speed

distribution, parallel to the z-axis right through the center of the middle hole of the

cavity. The enhancement of the atom’s spontaneous emission rate is not considered

yet and the decay rate Γ is set to the natural line width Γ0 = 2π · 6.065 MHz [20].

The evaluated time in the simulation covers the time that the atom needs to pass

the cavity once.

In figure 5.1, the z-position of such an atom is depicted. The dashed lines represent

the cavity boundaries at z = ±120.5 nm. The light blue region marks the time
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5 Outlook

interval during which the atom passes through the cavity. At the time t = 0.283/Γ0,

the atom hits the lower boundary of the simulation region at z = −650 nm and

gets reflected back towards the slab.

Figure 5.1: The z-position of the rubidium atom is depicted for 0.03 times the natural lifetime

of the atom which equals the time that the atom with a velocity of vz = σ = 169.74 m/s needs to

pass the cavity once. The dashed lines represent the height of the cavity and the light blue region

marks the period of time during which the atom passes the cavity.

As the atom passes the simulation region, it experiences different strengths of the

electric field. Therefore the Rabi-frequency determined via equation (2.33) turns

into a position-dependent quantity for the atom. The Rabi frequency of the atom

becomes larger as the atom enters the strong electric field of the cavity as can be

seen in figure 5.2 and reaches to its maximum right at the center of the slab.

As the electric field profiles from FDTD are derived from a computer simulation,

their strength mainly depends on the initial conditions of the simulation. That is

why the electric field distribution in the cavity is first normalized to its maximum

value and then scaled by a factor c = 105 which leads to a total number of photons,

nPh = 0, 27 in the cavity. This is calculated through dividing the absolute energy

in the cavity by the energy of a single photon ~ω0 with the radian frequency

ω0 = 2πfD2,

nPh =

∫
V

1
2
εε0|E|2dV
~ω0

.

In figure 5.3 the population of the ground state ρgg of the atom flying through

the cavity can be seen. As the atom enters the simulation in its ground state, the

density matrix element ρgg is one in the beginning, the atom is completely in its
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5.1 A Two-Level Atom coupled to the PhC Cavity

ground state and the coherence of the states is zero. As the atom flies through

the field it starts interacting with the field and gets polarized. That means the

population of the atom in the ground state decreases and its coherence increases.

At t ≈ 0.08/Γ0 the atom is fully transferred to the excited state where both ρgg and

Im(ρeg) vanish. As the atom gets closer to the slab the Rabi frequency increases

(figure 5.2) hence the oscillations become faster (figure 5.3) . Due to the large

coupling rate the atom goes through many Rabi flopping cycles before it leaves the

hole which is depicted as the light blue region. Due to the spontaneous emission

and the motion of the atom the oscillations are damped. After the atom leaves

the hole, the Rabi frequency decreases due to the exponential decrease of the field

leaking out of the cavity. This leads to slower oscillations and can be seen in both

figure 5.3 and 5.4.
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5 Outlook

Figure 5.2: Time-dependent Rabi frequency Ωr of the atom. The total number of photons in

the cavity is nPh = 0, 27. The decay rate of the atom is set to a constant value of Γ = Γ0.

Figure 5.3: Time-dependent population of the ground state ρgg of the atom. The total

number of photons in the cavity is nPh = 0.27. The decay rate of the atom is set to a constant

value of Γ = Γ0.

Figure 5.4: Time-dependent coherence Im(ρgg) of the atom. The total number of photons in

the cavity is nPh = 0, 27. The decay rate of the atom is set to a constant value of Γ0.
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5.1 A Two-Level Atom coupled to the PhC Cavity

The perfect, unperturbed interaction of a two-level atom flying straight through the

resonant light field of a PhC cavity is a good way to idealize the interaction of such

an atom-cavity system and to illustrate the physical effect of the Rabi oscillation.

However, for a real system many more parameters have to be taken into account.

First, the effects of the Purcell factor must be taken into consideration. A single

atom experiences an enhancement of its spontaneous emission rate by the Purcell

factor. As the local density of states in the cavity increases, the atom receives more

channels it can emit an absorbed photon to. As a result an atom absorbs and emits

photons faster.

The decay rates into both kinds of modes, those supported by the cavity and those

not supported by the cavity are enhanced. If the spontaneous emission into the

cavity channels is enhanced, the Purcell effect is not representing a loss mechanism.

But if the emission into a dissipative mode is heightened, the Purcell effect causes

an increased loss of photons.

To separate these two effects, the desired and unwanted modes that the atom can

emit to must be separated. Therefore, the symmetry boundary conditions in FDTD

solutions are used and are enabled and disabled upon the cavity. With enabled

symmetry boundaries, only the desired modes with the same symmetry as the

cavity are isolated in the simulation and the enhancement of spontaneous emission

into these modes is examined.

Without symmetry boundary conditions, all of the modes in the environment of the

cavity are addressed by the atom and the total Purcell factor, i.e. the enhancement

of spontaneous emission into all the modes is taken into account.

Subtracting those two Purcell factors leads to the value of the Purcell factor for

the unwanted non-cavity modes FP⊥ and thereby to the decay rate into dissipative

channels Γ0⊥ = FP⊥Γ0.

Via the Purcell factor calculation described in the chapter Basics of the Simulation,

a first total Purcell factor of

FP = 7, 314

for the dipole source placed right at the center of the cavity was calculated. The

symmetry boundaries were disabled, the mesh size of the simulation was set to

dx = dy = dz = 15 nm and the time of the simulation to t = 100, 000 fs to have

the fields fully decayed at the end of the simulation time.

For the same position of the dipole source, the symmetry boundary conditions

were imposed on the simulation to have solely the desired modes with the same

symmetry as the cavity isolated in the simulation. The calculated value of the

Purcell factor however, represented an unphysical solution as its value was larger

than the simulated total Purcell factor.
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The reason for this lies in the properties of the boundary conditions. The symmetry

boundaries act as a mirror for the dipole and double, quadruple or increase the

power of the dipole source by eight. That is why for a representative value of the

Purcell factor requires further simulations with a transmission box to normalize the

power emitted by the dipole in the environment of the cavity to one single dipole.

Moreover, several simulations with different orientations, i.e polarizations of the

dipole source must be employed to couple to all the possible modes.

In addition, the dipole source must be spatially translated throughout the cavity

to receive Purcell factors at different positions. Then a map of modified emission

rates can be included into the Matlab analysis.

Furthermore, a real system requires a statistical description of an atomic ensemble

with atoms following the Boltzmann velocity distribution. These atoms must have

different velocity components in each spatial direction. This investigation will be

the immediate follow up study of this thesis.

Finally, to inject and extract photons from this cavity, an input and output coupler

at both sides of the cavity is needed. For that a design of an adiabatically tapered

waveguide connecting the periodic mirror regions at both sides of the cavity to

optical fibers is proposed. These regions with a gradual change from an optical

fiber to a PhC region allow the optimal coupling of the light from optical fibers

to the cavity and vice versa. The following figure shows a schematics of a similar,

linear silicon-on-insulator waveguide taper device [23].

Figure 5.5: Schematics of the top view of a linear waveguide taper [23]. W0 is the width

of a single-mode waveguide, Wmax is the maximum taper width, L is the length of the taper,

θ is the local half angle of the taper at point z, θm is the projection of the ray angle of the

first-order mode of the taper [23]. For coupling the PhC cavity a similar adiabatically tapered

device connecting the periodic mirror regions with width Wmax to optical fibers with diameter

W0 instead of waveguides is proposed.
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6 Conclusion

The aim of this thesis was to design a nano-photonic crystal cavity resonating with

rubidium atoms at λD2 = 780.24 nm. For this purpose a design of a seven-hole

tapered photonic crystal cavity within a silicon-nitride (Si3N4) slab was proposed.

The presented design has a unit cell with the periodicity a = 325 nm, the radius of

the holes r = 91 nm, the width of the cell w = 426 nm and the height h = 241 nm.

The radii of the holes in the tapered region are decreased from r = 91 nm to

r4 = 81 nm, r3 = 73 nm, r2 = 67 nm and r1 = 63 nm.

The distances between the positions of these holes are gradually decreased by

∆a = 1 nm. Moreover, the distance between the first hole of the mirror region and

the last hole of the tapered region is set to a = 317 nm in order to match the phase

relation between the regions and to avoid scattering.

The resonance wavelength of the cavity λCav for a simulation mesh of dx = dy =

dz = 7 nm is given by λCav = 781.83 nm. In the follow up studies of this work,

another cavity with a resonance wavelength at λCav = 779.56 nm could be designed

by changing the distances between the positions of the tapered holes by ∆a = 2 nm

instead of ∆a = 1 nm.

Nevertheless, the presented design still offers a good starting point for the investiga-

tions of the dimensions of the cavity quantum electrodynamics parameters in such

a PhC cavity. It has the simulated Quality factor of Q = 61, 877, the decay rate

κ = 1.947 · 1010, the mode volume Vm = 3.984 · 10−20m3 = 0.0839 ·λ3
0, the vacuum

Rabi frequency g = 4.08 · 1011 1/s and the cooperativity C = 4.28 · 103.

The Purcell factor for the dipole source right at the center of the cavity is given

by FP = 7, 314 based on a mesh of dx = dy = dz = 15 nm and the time of the

simulation t = 100, 000 fs in FDTD. In order to receive the fraction of the Purcell

factor enhancing the emission into non-cavity modes, the separation of the cavity

and non-cavity modes is currently in progress.

In addition, instead of the presented idealized interaction of an atom moving

through the resonant cavity, a statistical description of an atomic ensemble of

atoms resonating with the light field will be part of the follow-up studies.
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