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Prüfungsvorsitzender: Prof. Dr. Hans Peter Büchler
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Abstract

Quantum gases can act as model systems for condensed matter phenomena, especially

dipolar quantum gases can exhibit spontaneous symmetry breaking owing to the long-range

and anisotropic character of the interactions. In particular, a Bose-Einstein condensate

with dipolar interaction can act as a quantum ferrofluid which, in analogy to a classical

ferrofluid, has been predicted to exhibit a Rosensweig instability where the translational

symmetry is broken and self-organized structures form. In this thesis, we experimentally

observe this effect in a dipolar Bose-Einstein condensate of dysprosium atoms. This

manifests itself in a transition from a superfluid to a state with ordered droplet ensembles.

Prior to this work, the resulting quantum droplets were expected to collapse at the

mean-field level due to an essentially attractive interaction. However, we observe them

to be stable and demonstrate quantitatively that quantum fluctuations, a consequence of

Heisenberg’s uncertainty principle, stabilize the droplets against the expected collapse.
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Allgemeinverständliche

Zusammenfassung

Wir beschäftigen uns in dieser Arbeit mit ultrakalten Quantengasen. Diese kalten Quan-

tengase sind ein Gaswölkchen mit tausend bis millionen Atomen nah am absoluten

Temperaturnullpunkt für die in erster Linie quantenmechanische Eigenschaften wichtig

sind. Die Besonderheit von solch kalten Atomen ist die einzigartige hochgenaue Kontrolle

von inneren und äußeren Eigenschaften des Systems. Äußere Eigenschaften sind unter

anderem elektrische und magnetische Felder sowie die Form und Tiefe der Atomfalle.

Wohingegen innere Eigenschaften atomspezifische Merkmale und die Wechselwirkung

zwischen mehreren Atomen sind. Es lassen sich verschiedene Wechselwirkungen zwischen

den Atomen realisieren, die das Forschungsfeld von kalten Atomen sehr vielfältig macht.

Durch diese genaue Kontrolle sind Hochpräzisionsanwendungen mit solchen Quanten-

systemen möglich. Unter anderem lassen sich die zur Zeit genauesten Uhren der Welt

bauen, die über 1000 mal genauer sind als die üblichen Caesium-Atomuhren, die die

Sekunde definieren und die internationale Referenzzeit bestimmen. Uhren mit kalten

Atomen haben eine Abweichung von weniger als einer Sekunde in 16 Milliarden Jahren.

Als Vergleich: Unser Universum ist etwas weniger als 14 Milliarden Jahre alt. Eine weitere

Hochpräzisionsanwendung ist die Bestimmung von fundamentalen Naturkonstanten, wie

zum Beispiel der Gravitationskonstante und der Feinstrukturkonstante.

Ein weitere wichtige Motivation für die Erforschung kalter Atome ist, dass in Zukunft mit

kalten Atomen Quantencomputer möglich sein können. Sowohl ein klassischer Computer

als auch ein Quantencomputer rechnen mit Bits, also mit Einsen und Nullen. Allerdings

muss bei einem Quantencomputer ein Bit nicht entweder Null oder Eins sein, wie dies für

den klassischen Computer der Fall ist, sondern der Zustand eines Quanten-Bits (Qubit)

ist eine Überlagerung oder Summe von Null und Eins. Durch dieses so genannte Super-

positionsprinzip können bestimmte Probleme der Informatik effizienter gelöst werden.

Aktuelle Versuche mit Quantencomputern können bereits erste Quantenalgorithmen mit

mehreren Qubits durchführen.

Eine weitere Motivation für kalte Quantengase ist die Durchführung von Quantensimula-

tionen. Bei Quantensimulationen werden kalte Atome als Modellsystem für kompliziertere

Vielteilchensysteme wie Festkörper, Flüssigkeiten und Atomkerne genutzt. Der Vorteil von

diesen Modellen mit kalten Atomen ist, dass sie typischerweise 1000-fach größer als die

Atomabstände im Festkörper sind und somit direkt optisch beobachtbar sind. Quanten-

simulationen können helfen bisher nicht komplett verstandene Effekte, wie beispielsweise

die Supraleitung, besser untersuchen zu können. Der erste Schritt in diese Richtung war

die Simulation eines magnetischen Übergangs.
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Zusammenfassung

Auf der Suche nach neuen Modellsystemen mit quantenmechanischen Eigenschaften wer-

den auch häufig neue unerwartete Materiezustände gefunden. Dies können außergewöhnliche

Zustände mit extremen Eigenschaften sein. Einerseits können sich Teile des kalten Quan-

tengases wie ein neues Quasiteilchen verhalten oder andererseits in einen anderen extremen

Aggregatzustand übergehen und einen neuen Phasenübergang zeigen. Es gibt weitaus

mehr als die drei bekannten Aggregatszustände fest, flüssig und gasförmig. Viele weitere

Zustände sind eine Mischung aus diesen dreien oder haben eigenständige neue Eigen-

schaften. Ein ganz besonderes Beispiel ist der bisher noch nicht erzeugte Suprakristall. Es

ist ein Materiezustand, der gleichzeitig fest und flüssig ist und dazu keine innere Reibung

aufweist.

Motiviert durch diese Möglichkeiten, wurde im Rahmen dieser Arbeit ein ultrakaltes

Quantengas aus Dysprosiumatomen erzeugt. Damit haben wir einen neuen Materiezustand

gefunden, der sich ähnlich wie ein Flüssigkeitstropfen verhält. Da diese Tröpfchen nur

aufgrund von Quanteneffekten existieren können, nennen wir sie Quanten-Tröpfchen. Wir

haben diesen neuen Zustand gefunden indem wir eine sogenannte Rosensweig-Instabilität

eingeleitet haben. Diese Rosensweig-Instabilität kannte man bisher nur von Ferrofluiden.

In Zukunft könnten diese Quanten-Tröpfchen ein Modellsystem für flüssige Heliumtropfen

oder Atomkerne sein.

Für die restliche Zusammenfassung gehen wir genauer auf die durchgeführten Experi-

mente ein. Wir erklären, welche quantenmechanischen Effekte wir nutzen und welche

inneren und äußeren Eigenschaften wir kontrollieren können. Wir vergleichen darüber

hinaus unsere Ergebnisse aus der Quantenmechanik mit klassischen Beispielen um diese

verständlicher darstellen zu können.

In der Welt der Quantenmechanik ist alles anders: Auf Längenskalen von wenigen

Nanometern sind klassische Vorstellungen von Materie nicht mehr möglich. In diesem

Längenbereich sind die Bausteine der Materie sowohl Welle als auch Teilchen und haben

nur noch eine gewisse Wahrscheinlichkeit an einem bestimmten Ort zu sein. Diese Effekte

lassen sich in ultrakalten verdünnten Gasen direkt beobachten. Hierfür werden Tausende

bis Millionen Atome bis auf wenige Milliardstel Grad über dem absoluten Nullpunkt

herabgekühlt. Dann sind die Atome einzeln nicht mehr unterscheidbar und vereinen sich

zu einer kollektiven Materiewelle. Dieser ungewöhnliche Zustand nennt sich Bose-Einstein-

Kondensat und verleiht dem Atomkollektiv erstaunliche Eigenschaften. Diese Materiewelle

fließt als Quantenflüssigkeit ohne Viskosität - also völlig reibungsfrei - und wird deshalb

Supraflüssigkeit genannt.

Wir haben eine solche Supraflüssigkeit mit starkem magnetischem Verhalten hergestellt.

Es handelt sich dabei um ein Bose-Einstein-Kondensat aus Dysprosiumatomen und wir

nennen es Quanten-Ferrofluid. Da Dysprosium das am stärksten magnetische Element im

Periodensystem ist, verhält sich unsere Quantenflüssigkeit wie ein herkömmliches Ferrofluid.

Ferrofluide bestehen aus unzähligen winzigen magnetischen Eisenpartikeln, die in Öl oder

Wasser gelöst sind. Bereits diese Ferrofluide haben bemerkenswerte Eigenschaften. Sie

werden durch ein äußeres Magnetfeld magnetisiert und können sich entsprechend der

magnetischen Feldrichtung anordnen. Legt man ein starkes Magnetfeld senkrecht zu der

Ferrofluidoberfläche an, wirken verschiedene Kräfte auf das Ferrofluid: die Schwerkraft, die
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magnetische Kraft und die Oberflächenspannung. Wenn die magnetische Kraft alle anderen

Kräfte übertrifft, widerfährt die Oberfläche des Ferrofluids eine Rosensweig-Instabilität.

Es bildet sich dann eine igelförmige, regelmäßige Oberflächenstruktur aus vielen Spitzen.

Aus der Sicht der magnetischen Teilchen ist dieses Verhalten verständlich: Da sich Nord-

und Südpol eines Magneten anziehen, ist es für die Teilchen energetisch vorteilhaft sich

entlang der Feldrichtung anzuordnen und somit Spitzen auf der zuvor glatten Oberfläche

zu erzeugen. Im Quanten-Ferrofluid übernehmen die Dysprosiumatome die Rolle der

Eisenteilchen als winzige atomare Magnete.

Für unsere Untersuchungen haben wir ein pfannkuchenförmiges Wölkchen aus etwa

15.000 Dysprosiumatomen in einer optischen Atomfalle hergestellt. Wir legten ein Magnet-

feld an und richteten somit die atomaren Magnete senkrecht zur Pfannkuchenebene aus.

In unserem Quanten-Ferrofluid wirken auch verschiedene innere und äußere Kräfte wie

bei einem Ferrofluid. Von außen werden die Atome von der optischen Falle gefangen und

innere Kräfte sind atomare Wechselwirkungen. Zusätzlich zu der magnetischen Wechsel-

wirkung gibt es noch eine abstoßende Kontaktwechselwirkung zwischen den Atomen. Diese

abstoßende Kraft konnten wir präzise verringern und verursachten damit eine magnetische

Instabilität. Wir beobachteten, wie bei einer Rosensweig-Instabilität von Ferrofluiden, das

Auftreten von geordneten Kristallstrukturen. Diese Strukturen setzen sich aus mikroskopis-

chen Tröpfchen zusammen. Die Tröpfchen haben jeweils Ausmaße kleiner als 1 µm und

ihre Existenz wurde nach dem bisherigen Kenntnisstand nicht für möglich gehalten.

Durch weitere Untersuchungen der Quantentröpfchen haben wir starke Anzeichen,

dass Quantenfluktuationen, die durch die Heisenberg’sche Unschärferelation hervorgerufen

werden, eine entscheidende Rolle für die Stabilität dieser Quantenmaterie spielen. Wir

konnten den Ursprung der Stabilität herausfinden, indem wir die Tröpfchen in einer opti-

schen Pinzette einzeln getrennt haben. Dadurch konnten wir die Eigenschaften einzelner

Quantentröpfchen untersuchen und ihre inneren Kräfte variieren. Das Verhalten der

Tröpfchen entspricht den Erwartungen von theoretischen Modellen, die Quantenfluktu-

ationen einbeziehen. Dies bedeutet auch, dass wir erstmals einen Materiezustand gefunden

haben, der nur aufgrund von Quantenfluktuationen existieren kann.

Diese Quantenfluktuationen ermöglichen einen einzigartigen Materiezustand, in dem

gegensätzliche Eigenschaften von Gasen, Kristallen und Supraflüssigkeiten verbunden

werden konnten. Diese Verknüpfung könnte ein erster Schritt zu einem sogenannten

Suprakristall sein, ein räumlich geordneter Festkörper mit suprafluiden Eigenschaften.
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1. Introduction

Physical substances exist in distinct forms, so-called states of matter, that have well-defined

physical properties. In every day life we experience four states of matter: solids, liquids,

gases and plasmas. These classical states are connected by phase transitions when the

substance moves from one state to another under specific physical conditions. For example,

by increasing the temperature of a solid, the matter gains thermal energy and becomes

more excited and active. If this energy overcomes the inter-particle forces that hold the

atoms together, the solid melts and undergoes a phase transition to a liquid, where the

characteristic order of a solid is abruptly lost.

However, under extreme physical conditions there exists many other states of matter,

often in situations with extremely cold temperatures, extremely high density, extreme

pressures or extremely high energy. In the framework of this thesis, we investigate dilute

gases of extremely cold atoms, meaning temperatures as close as possible to the absolute

zero. Such ultracold atoms are typically a few billionth of a degree above absolute zero

and are governed by the rules of quantum mechanics. In these quantum gases a new state

of matter, a Bose-Einstein condensate, has been discovered for bosonic alkali atoms in

1995 [1–3]. In a Bose-Einstein condensate (BEC), all atoms occupy the same lowest energy

quantum state and cumulate to a single quantum matter wave.

From then on, the field of atomic physics witnessed an enormous increase in the number

of groups working on ultracold gases. Some of the early demonstrated important BEC

properties are matter-wave interference [4] or the generally accepted proof of superfluidity

with quantum vortices [5]. Though, what makes quantum gases truly fascinating are inter-

particle interactions. Although quantum gases are dilute, interactions play a dominant

role and can strongly change the many-body properties [6]. Early studies focussed on the

short-range contact interaction. The strength of this contact interaction is characterized

by a single parameter: the scattering length a. This scattering length can be magnetically

tuned at will with so-called Feshbach resonances [7, 8]. These Feshbach resonances were

used to create molecular BECs [9–11] from fermionic quantum gases [12] and investigate

their crossover to a Bardeen-Cooper-Schrieffer BCS-type superfluid [13] or to observe the

universal trimer Efimov bound states [14].

Moreover, the external confinement for ultracold quantum gases can be modified to

various geometries. This offers also the possibility to use optical lattices [15, 16] to mimic

solid state physics. Two famous examples that successfully showed condensed matter

behaviour are the superfluid to Mott insulator transition [17] and atoms manifesting the

Anderson localization [18, 19]. Recent technical advances even allowed to detect single

atoms in optical lattices with optical microscope objectives [20, 21]. With this high control

on internal and external properties including the excellent detection methods, it was
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Chapter 1. Introduction

possible to simulate a magnetic phase transition [22]. This trend to perform quantum

simulations with high control on internal and external properties [23, 24] as well as to

engineer exotic quantum systems that can lead to new states of matter, drives much of

the fundamental research in the field of ultracold atoms.

All the achievements mentioned above, were investigated with alkali elements (Li, Na,

K, Rb, Cs) that feature only an isotropic short-range atomic interaction. In 2005 the

experimental realization of chromium BECs [25] opened the door to the investigation

of strong inter-atomic magnetic dipole-dipole interactions in a quantum gas. In strong

contrast to the contact interaction, the dipolar interaction is anisotropic and long-range

and allows to study fundamentally different phenomena compared to experiments with

alkali elements. This dipolar interaction in ultracold gases has attracted a lot of attention,

both experimentally and theoretically [26–28]. For ultracold dipolar systems, exotic states

of matter have been proposed, including the elusive supersolid state. This state of matter

unites properties of solids and superfluids [29, 30]. Self-organized ground states have been

predicted [31, 32], that are related to a non-monotonically increasing excitation spectrum

displaying a roton minimum [33], similar to the one observed in superfluid helium [34].

Early experimental studies with chromium BECs [25, 35, 36] in Stuttgart and Paris

have developed the basic principles of dipolar quantum gases. In particular the dipolar

interaction manifests itself in an anisotropic response to external magnetic fields. The

ultracold samples have displayed magnetostriction with an elongation along the field

direction [36–38] that also modifies the stability criterion of dipolar BECs [39, 40]. If it

becomes unstable it exhibits a dynamic collapse that can show a d-wave symmetry [41–43].

Another effect of the anisotropic dipolar interaction is the coupling of the spin degree

of freedom to the orbital angular momentum, hence, dipolar collisions do not conserve

magnetic quantum numbers [44, 45]. This effect has been used to successfully cool a

chromium cloud using demagnetization cooling [46]. The spin relaxation was also observed

as an important effect of spinor physics with dipolar BECs [47, 48] as well as for atoms in

an optical lattice [49–52]. Last for chromium atoms, the dipolar interaction anisotropically

modifies collective mode frequencies [53] and the excitation spectrum [54].

In the last few years plenty of other dipolar systems became available. Dipolar effects are

possible for BECs with Rydberg atoms [55, 56] or heteronuclear molecule gases [57] that

both present electric dipole moments. Up to date only diatomic molecules composed of

alkali atoms are available at ultracold temperatures. In detail these are the two fermionic

molecules 40K87Rb [58–60] and 23Na40K [61] and the bosonic molecules 7Li133Cs [62],
41K87Rb [63], 85Rb133Cs [64], 87Rb133Cs [65, 66] and very recently 23Na87Rb [67]. The

molecule 40K87Rb was already trapped in an optical lattice and realized a lattice spin

model [68]. Besides, weak dipolar effects have even been observed with alkali metals by

carefully tuning the contact interaction to vanishing strength [69, 70] or with investigations

in spinor gases [71, 72].

Furthermore, the family of magnetic dipolar quantum gases has been extended by

two lanthanides: erbium [73, 74] and dysprosium [75, 76]. Both elements exhibit even

stronger magnetic dipolar interactions than chromium atoms and have already proven

their superiority. For both elements, quantum gases of bosonic and fermionic atoms
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were created thanks to universal dipolar scattering [77]. Both elements present a dense

chaotic spectrum of Feshbach resonances [78, 79] with the possibility to create magnetic

molecules [80, 81]. Very recently erbium atoms were trapped in an optical lattice and

have shown dipolar interaction to neighbouring lattice sites [82]. For dipolar fermions the

anisotropic character of the interaction deformed the Fermi surface [83] and modified the

elastic scattering process [84], while Fermi degeneracy allowed, through the Pauli exclusion

principle, to control the inelastic processes [85].

This thesis

In Stuttgart the first dipolar quantum gas was achieved in 2005, followed by the investiga-

tion of many fascinating phenomena. However, the range of achievable physics was limited

due to fundamental properties of the element chromium and a detection with poor optical

resolution. Beginning of 2012, we switched from the element chromium to dysprosium

and started to build a new generation apparatus with state of the art experimental tools.

With this apparatus we were able to generate a new exotic state of matter, a liquid-like

quantum droplet, that is only possible as a consequence of quantum fluctuations.

This thesis introduces in chapter 2 the theory on quantum gases and describes the two

apparent inter-particle interactions. These are first the short-range contact interaction and

second the long-range dipolar interaction. We introduce a mean-field model to describe

dipolar BECs and give two approximations to derive the properties of condensates.

In the third chapter, we describe our new generation apparatus to create dysprosium

quantum gases. We shortly mention the cooling methods used and describe the technical

tools employed to tune and detect internal parameters. First, we can carefully tune the

strength of the contact interaction with a Feshbach resonance. This requires a stable,

repeatable magnetic field control. Second, we use a microscope objective that allows to

detect the condensate properties in situ with a spatial resolution of 1µm. This is a unique

feature for dipolar quantum gases and allowed the discovery of the new state of matter.

The creation and behaviour of this state is very similar to a classical ferrofluid.

Thus, in chapter 4 we compare a classical ferrofluid with a dipolar condensate, that

is a quantum ferrofluid with superfluid properties. We show that a classical as well as a

quantum ferrofluid present a magnetically induced instability: the Rosensweig instability

and the roton instability respectively. For a Rosensweig instability, the surface of a classical

ferrofluid surface forms a regular pattern of peaks and valleys [86].

Indeed, we observed the Rosensweig instability also for a quantum ferrofluid in chapter

5 [87]. Surprisingly, we detected stable droplet ensembles, that were theoretically not

predicted prior to this work. Each microscopic droplet has a radial size smaller than our

resolution limit of 1µm. We propose quantum fluctuations as the stabilizing mechanism

for our new state of matter.

Finally in chapter 6, we show the distinct evidence that quantum fluctuations stabilize

our droplet state [88]. Additionally, we prove that this liquid-like quantum droplet is

self-confining for relaxed confinement and remains superfluid as we observe matter-wave

interference. Thus, this quantum droplet might be a first step to a supersolid state or a

quantum model system for superfluid helium droplets or atomic nuclei.
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2. Dipolar Quantum Gases

The description of dipolar quantum gases requires theoretical notions from quantum

mechanics, quantum statistics, atomic physics and classical electrodynamics. A quantum

statistical treatment reveals the existence of the Bose-Einstein condensed state, while

atomic physics provides the microscopic details about its constituents as well as the tools

to create and manipulate it. Finally, the interaction existing between two dipoles results

from the laws of classical electrodynamics. Hence, this chapter is a short summary and

not an in-depth look at the subject of dipolar quantum gases.

We start this chapter with an overview on degenerate quantum gases and Bose-Einstein

condensation. In the following, we give a short introduction1 to inter-particle interactions

and the resulting scattering theory. We first show that Van-der-Waals interactions can

be reduced in the ultracold regime to a short-range interaction described with a single

parameter, the scattering length a. Next, we characterize a second inter-particle interaction:

the long-range and anisotropic dipole-dipole interaction. Finally, we combine condensation

and inter-particle interactions in a mean-field model resulting in the Gross-Pitaevskii

equation (GPE). For this GPE, we present two approximations with analytic feasible

solutions to reveal the basic properties of Bose-Einstein condensates.

2.1. Bose-Einstein condensation: a superfluid state

The transformation of a thermodynamic system from one phase of matter to another one

is called a phase transition. During a phase transition certain system properties change

discontinuously and often involve a symmetry breaking process. Popular examples are the

freezing and evaporation of liquids as a result of a change in temperature. Most transitions

are governed by microscopic particle interactions that influence macroscopic phenomena

to reach the systems lowest energy.

However, there exists a unique phase transition that can occur in the absence of

interactions, but requires quantum statistics: Bose-Einstein condensation. In 1924 Bose

predicted this phase transition for photons [90] and Einstein extended the work for a

gas of non-interacting, massive bosons [91, 92]. They concluded that for a dense and

cold enough sample a macroscopic number of particles occupies one single-particle state,

resulting in a new form of matter. This state is in many systems the zero-momentum

state and nowadays this new phase of matter is called a Bose-Einstein condensate (BEC).

Such BECs exhibit quantum mechanical effects determining macroscopic phenomena of

the many-particle system.

1For further details, we refer to a thorough review given in [89].
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Chapter 2. Dipolar Quantum Gases

A qualitative explanation at which conditions quantum mechanical effects start to

dominate is depicted in figure 2.1a and goes as follows. The quantum-mechanical description

associates wave-like attributes to matter. The quantitative relation between a massive

particle and the associated wave aspects is given by the de-Broglie wavelength λdB = 2π~/p,
where p is the particle momentum and ~ = h/2π the reduced Planck constant [93]. For a

many-body sample in thermal equilibrium at temperature T the momentum is p ∝
√
mkBT

with m the particle mass and kB the Boltzmann constant. If the resulting thermal de-

Broglie wavelength λdB =
√

2π~2/mkBT is large compared to the characteristic length

scale of the problem, the particles have to be treated as matter waves and obey the rules

of quantum mechanics. In the case of a many-particle system the characteristic length

is given by the inter-particle distance n−1/3, where n is the particle density. Combining

these considerations, we find that the condition for the emergence of quantum mechanical

effects (or coherent many-body effects) is2

kBT .
~2n2/3

m
. (2.1)

When quantum mechanics emerge for indistinguishable particles that are allowed to occupy

the same particle state, quantum statistics play a dominant role. Degenerate particles in

the same state experience the exchange interaction3 [96, 97], that leads to an effective

attraction of bosons. Therefore, we concentrate in this thesis on quantum fluids [98],

involving liquids and gases4. We will present detailed fluid mechanics concerning our

system in chapter 4.

To observe quantum effects for typical liquids with particle densities of n ≈ 1028 m−3

the temperature has to be on the order of 10 K/A with A the mass number. Indeed,

liquid helium (4He) shows a phase transition at T = 2.17 K at saturated vapour pressure

and was first observed in 1937 [99, 100]. Below this so-called λ-point the liquid has

two components: a normal one and a superfluid one characterised by a zero viscosity

[101]. After the connection between superfluidity to Bose-Einstein condensation in 1938

[102, 103], superfluid helium was considered as the prototype of BECs.

However, every liquid exhibits strong inter-particle interactions. Such strong interactions

push particles out of the zero-momentum state and even at absolute zero temperature

particles with non-zero momenta are present, although the superfluid fraction is unity.

As we shall see later in chapter 5 and 6, this effect is related to the so-called quantum

fluctuations. One major step was the generalization of Bose-Einstein condensation to

interacting systems in 1956 [104, 105]. It was then possible to estimate theoretically the

condensed fraction of superfluid helium to be 8 % [104] and the recent measured value with

neutron scattering gives a condensed fraction of 7 % [106]. Hence, liquid helium established

2This condition, only using simple connections, is remarkably close to the full analysis [94, 95] that gives

a critical temperature of kBTc = 2π
ζ(3/2)3/2

~2n2/3

m ≈ 3.31~2n2/3

m with ζ(x) the Riemann zeta function.
3The exchange interaction is a quantum mechanical effect that can only occur between identical particles.
For fermions, the exchange interaction is called Pauli repulsion.

4In most crystalline solids this exchange of neighbouring atoms and the effects of indistinguishability
vanish, and hence quantum statistics are negligible [98, p. 2].
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2.1. Bose-Einstein condensation: a superfluid state
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Fig. 2.1. Degeneracy in quantum fluids. a, Simple image of the phase transition from a
thermal gas to a quantum degenerate Bose-Einstein condensate. Important length
scales for the system are the particle distance n−1/3 and the thermal de-Broglie
wavelength λdB. Further explanation is given in the text. b, Summary of quantum-
degenerate systems and their particle densities and temperatures. Systems with
degenerate electrons are above the blue line, which is satisfied for white dwarfs [138]
as for quasi-particles and the electron gas in solids. Whereas systems with degenerate
atoms or neutrons have to be at least above the green line. This is fulfilled for neutron
stars [139], liquid helium [140] and neutral atomic gases as cold as T ≈ 1 nK [141, 142].

the fundament of quantum fluids, but the reduced occupancy of the zero-momentum state

in liquids made it prohibitively difficult to study Bose-Einstein condensation in details.

A superior system would be ultracold gases with reduced inter-particle interactions. The

quest for gaseous BECs started in the 1980s when laser cooling and trapping of neutral

atoms [107] have been developed (cooling and trapping methods are described in chapter

3). By now, quantum degeneracy has been achieved for several neutral atomic species5

with typical densities of n ≈ 1019−1021 m−3 and typical temperatures of T ≈ 50 nK−2µK.

In this thesis we use dysprosium atoms (164Dy) with an atomic density of n ≈ 1020 m−3

in the BEC phase and cool the atoms as low as T ≈ 70 nK. One should mention that

most of these BECs, including ours, are metastable6, as their true equilibrium state at low

temperatures is either liquid or solid. However, the extremely low densities (as comparison

the density of air is n ≈ 1025 m−3) suppress the creation rate of molecular states and the

subsequent dense equilibrium state.

BECs have also been achieved for quasi-particles with low effective mass at higher

temperatures, up to room temperature. Such (quasi-)particles are magnons [143, 144],

excitons [145], polaritons [146, 147] and photons [148]. In Figure 2.1b we present a

summary of degenerate quantum systems, both bosonic and fermionic.

5Condensed atomic isotopes: 1H [108], 4He* [109, 110], 7Li [3, 111], 23Na [2], 39K [112], 41K [113], 40Ca
[114], 52Cr [25], 85Rb [115], 87Rb [1], 84Sr [116, 117], 86Sr [118], 88Sr [119], 133Cs [120], 160Dy [121], 162Dy
[121], 164Dy [75], 166Er [122], 168Er [73], 170Er [122], 168Yb [123], 170Yb [124], 174Yb [125], 176Yb [126].
To complete the atomic list, we mention degenerate Fermi gases: 3He [127], 6Li [128, 129], 40K [12], 53Cr
[130], 87Sr [131, 132], 161Dy [76], 167Er [74], 171Yb [133], 173Yb [134].
These fermions can be bound to molecules and form a molecular BEC: 6Li2 [9, 10], 40K2 [11].

6The only exception is spin-polarized hydrogen, as there exists no triplet bound state [108, 135–137].
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Chapter 2. Dipolar Quantum Gases

2.2. Two-body interactions

In the previous section, we mentioned the extremely low densities of ultracold gases to

prevent clustering of atoms. Hence, one might expect that inter-particle interactions

are insignificant. Despite the diluteness of cold gases, two-body interactions determine

fundamental properties of BECs, such as density profile, ground state energy and collective

oscillation frequencies. Actually, it is even possible to prepare strongly correlated systems

with cold gases [6]. In the following, we discuss aspects of the two-body interactions

relevant to the description of a dipolar BEC, which are the isotropic, short-range contact

interaction and the anisotropic, long-range dipole-dipole interaction.

2.2.1. Short-range contact interaction

At small separations r between two atoms, several interactions contribute to the interaction

potential U(r) between them. For small distances the electron shells around each atom

start to overlap and the strong electrostatic and Pauli repulsion keeps atoms apart. While at

larger distances electric induced-dipole-dipole interactions lead to an attractive interaction,

known as the van der Waals interaction that scales as −C6/r
6 with the element-dependent

van der Waals coefficient C6. These forces balance each other at a typical separation which

corresponds to the equilibrium distance of bound diatomic molecules. This interatomic

potential is called molecular potential and is sketched in figure 2.2b,c.

The molecular potential typically has a depth that corresponds to temperatures higher

than 1000 K. This indicates again that a cold atomic gas is not the true ground state of

the system, as the energetic minimum is reached with bound molecular states. But at low

temperatures the molecule formation is dominated by three-body recombinations [149]. In

the considered dilute systems, such inelastic three-body collisions are rare but the elastic

two-body collision rates are sufficient to maintain thermal equilibrium. Thus, two-body

collisions play a crucial role in the realization of BECs and their fundamental properties.

To make a rough estimate of the molecular interaction range, we estimate it for particles

with zero energy by dimensional arguments. If two particles approach a separation r0

they gain the kinetic energy ∆p2/2mred = C6/r
6
0, with mred the reduced mass. By using

the Heisenberg’s uncertainty principle ∆p ≈ ~/∆x with ∆x = r0, we obtain for typical

van der Waals coefficients7 an interaction range of r0 ≈ 100 a0 with a0 the Bohr radius.

This interaction range is typically much smaller than the mean inter-particle distance for

dilute atomic gases of n−1/3 ≈ 4000 a0. Therefore, ultracold gases are composed of freely

moving atoms that do not interact, except when approaching another atom closer than r0

to collide elastically. This means for the scattering theory that each collision perturbs the

atomic wave function only by a small amount. Hence, for only calculating the asymptotic

scattering behaviour, it is not crucial to know the exact molecular potential. Following this

idea, the molecular potential may be simplified with a so-called two-body pseudo potential

that yields the same scattering properties.

7The interaction range reads finally r0 = (2mredC6/~2)1/4 and by using the van der Waals coefficient for

dysprosium atoms CDy
6 = 2003Eha

6
0 [79] (with Eh the Hartree energy) we get a range of rDy

0 = 156 a0.
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Fig. 2.2. Scattering of two neutral atoms. a, Two colliding atoms with relative velocity v
in their center of mass frame. The impact parameter rimp determines their relative
angular momentum. b,c, Molecular potential U(r) (blue line) and its radial wave
function R(r)r (green line) for zero energy. The extrapolation of the wave function
from large r is drawn as dashed line that crosses the horizontal r-axis at the scattering
length a. Slightly different potentials can result in a positive (b) or a negative (c)
scattering length a. Adapted from [150].

To get insight into the properties and symmetries needed for such pseudo potentials,

we consider the simple case of two colliding particles in the center of mass frame [151],

see figure 2.2a. This pair moves with a relative velocity v and the impact parameter rimp,

resulting to the relative angular momentum ~l ' rimpmredv with l the quantum number

of the relative angular momentum. At low temperatures, we may express the relative

velocity with the de-Broglie wavelength λdB = 2π~/mredv. For a collision to happen,

the impact parameter rimp has to be less than the interaction range r0. Thus, we find

the condition for the angular momentum l ≤ 2πr0/λdB. As discussed in section 2.1 the

de-Broglie wavelength for BECs is much larger than the interaction range and as the

relative angular momentum l is quantized, the only solution possible is l = 0. In this zero

angular momentum regime, independent of the actual interaction potential, the scattered

wave function is a spherical wave or a so-called s-wave.

Evidently, we can replace the interaction potential by a spherical pseudo potential. The

simplest pseudo potential describing the isotropic two-body short-range interaction is

Ucontact(r) = g δ(r) =
4π~2a

m
δ(r) (2.2)

with δ(r) the Dirac delta function, g the so-called contact coupling strength, that is

only dependent on the s-wave scattering length a. A positive scattering length a means

a repulsive potential, while negative a represents an attractive one. The value of the

scattering length a can be traced back to the real molecular potential U(r). When

numerically calculating the wave function of the molecular potential for zero energy, the

wave function shows many oscillations for r < r0. But for large distances r > r0 the

intercept of the asymptotic wave function on the r-axis restores the scattering length a, as

shown in figure 2.2b. The parameter a is very large (negative or positive) when the last

molecular state (virtual state or bound state) of the specific potential is close to zero energy

(figure 2.2c shows the case of a virtual state above zero energy) [152]. The dependence of

a on molecular states is more discussed in section 3.3.1 on Feshbach resonances.
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Chapter 2. Dipolar Quantum Gases

2.2.2. Long-range dipole-dipole interaction

Ultracold quantum gases in the degenerate regime have been achieved for many different

elements5 and most phenomena can be explained with solely including the short-range

contact interaction of section 2.2.1. Though, a few successfully cooled atomic species

feature further non-negligible inter-particle interactions. These are the three elements

chromium, erbium and dysprosium each with a strong magnetic dipole moment µm of

6µB, 7µB and 10µB, where µB is the Bohr magneton. Dipolar interactions can result in

unusual effects for BECs, that gained large interest in the field of atomic physics [26–28].

We now introduce the dipole-dipole interaction available in dipolar quantum gases.

In the presence of an external magnetic field B, the magnetic dipoles align in the same

direction z such that the sample gets polarized, as depicted in figure 2.3a. For two aligned

dipoles the dipole-dipole interaction potential reads

Udd(r) =
µ0µ

2
m

4π

1− 3 cos2 ϑ

r3
, (2.3)

with µ0 the vacuum permeability and ϑ the angle between the polarization direction µm

and the relative position r of the dipoles. The dipole-dipole interaction has two main

properties: it is long-range and anisotropic. The latter anisotropic character is illustrated

in figure 2.3b and evidently depends on the relative position of the two dipoles, which can

be easily seen in two limiting cases. The interaction potential is attractive for a head-to-tail

configuration (ϑ = 0◦), while it is repulsive in a side-by-side configuration (ϑ = 90◦).

The long-range character implies that the systems interaction energy depends on global

system properties, such as the total atom number. Contrary, the short-range interaction

energy depends only on local properties, such as the local density. To quantify this

statement and define the long-range character of interactions, we test the convergence of

the interaction energy for large distances [153]. For this we consider the potential energy

for a single particle in the center of a sphere of radius R with homogeneously distributed

particles with density n. We further assume the interaction potential to be proportional

to 1/rα with α the defining parameter for the interaction range. We obtain for the single

particle in a three-dimensional sphere with constant density the interaction energy

E� =

∫ R

b

4πr2 n
1

rα
dr ∝

[
r3−α]R

b
(2.4)

with b being a small but finite cut-off radius. For increasing radius R, hence increasing the

volume of the sphere, the volume contribution to the energy can be neglected when α > 3,

but diverges if α ≤ 3. We define the latter case to be long-range potentials, as global

parameters such as the size are important. Hence, the dipolar interaction is long-range in

three dimensions8.

As the interaction range is not finite anymore, in principle all partial waves with angular

momenta l > 0 contribute to the scattering process. This forbids the possibility to describe

8This definition can be generalized to systems with D dimensions in the same manner. Accordingly the
interaction is called long-range if the interaction fulfils α/D ≤ 1.
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2
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of the inter-particle interactions. A non-dipolar BEC consists of atoms that can be
seen as hard spheres with the scattering length a as radius. A dipolar BEC includes
an additional atomic magnetic moment and we specify it to be strongly dipolar for
εdd > 1.

the scattering correctly with a short-range pseudo potential [154], as done in section 2.2.1

for the molecular potential. Nevertheless, for low enough scattering energies, the dipolar

scattering can be approximated to be universal and scatters only into s-wave channels

[77, 155]. Additionally, the anisotropy of the potential couples orbital angular momentum

with spin angular momentum. This results in state-changing collisions, called dipolar

relaxation [44].

For further discussion of different dipolar systems, it is convenient to define various

parameters to quantify the strength of the dipolar interaction. Similar to the scattering

length a for the contact interaction, we introduce the characteristic dipolar length

add =
µ0µ

2
mm

12π~2
(2.5)

and the dipolar coupling strength

gdd =
4π~2add

m
=
µ0µ

2
m

3
. (2.6)

The numerical factors are chosen such that a three-dimensional, homogeneous dipolar

condensate becomes unstable for add > a, as shown in section 4.4.2. The ratio of dipolar

and contact coupling strength is defined as relative dipolar strength

εdd =
gdd

g
=
add

a
=
µ0µ

2
mm

12π~2a
. (2.7)

This interplay of both interactions is shown as a simple illustration in figure 2.3c with the

contact interaction pictured as hard spheres.
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Chapter 2. Dipolar Quantum Gases

Unusual effects in dipolar gases are mainly predicted for dominating dipolar interaction

in the strongly dipolar regime, meaning εdd > 1. In table 2.1, we mention the parameters

quantifying the interaction strength for different atomic species. Only the two isotopes

of dysprosium 162Dy and 164Dy are in the strongly dipolar regime. However, so-called

Feshbach resonances are an important tool to tune the contact interaction and manipulate

the scattering length a [8], as described later in section 3.3.1. With this technique even

condensates of chromium atoms could reach the strongly dipolar regime by decreasing the

contact interaction strength [36].

To conclude this section on inter-particle interactions, the full binary pseudo potential

of contact and dipolar interaction, that is used in the following sections to describe the

many-body behaviour of condensates, reads

Uint(r) = g δ(r) +
3

4π
gdd

1− 3 cos2 ϑ

r3
. (2.8)

2.3. Mean-field description of dipolar gases

In the previous section the two-body interactions were introduced, namely the isotropic

short-range contact interaction and the anisotropic long-range dipole-dipole interaction.

In this section we give a description of interacting Bose-Einstein condensates, that consist

typically of more than 10,000 atoms. This description requires a many-body theory of a

complex system where each particle interacts with all others. Such many-body systems

with interactions are in general difficult to solve exactly. A simple approximation is the

so-called mean-field theory, where the effect of all inter-particle interactions on a test

particle is averaged to an effective mean field. This reduces the many-body-problem to a

single particle problem with mean-field interaction potentials.

In this section we present the mean-field model of dipolar quantum gases and obtain

the Gross-Pitaevskii equation. This equation is a nonlinear, partial differential equation

and needs further approximation to be solved analytically. We demonstrate two easy

approaches: the variational method and the Thomas-Fermi approximation.

2.3.1. Gross-Pitaevskii equation

The fundamental starting point for a many-body problem is the description in second

quantization. The many-body Hamiltonian for N interacting bosons confined by an

external potential Vext is given by [158]

Ĥ =

∫
d3r Ψ̂†(r)

(
−~2∇2

2m
+ Vext(r)

)
Ψ̂(r)

+
1

2

∫
d3r d3r′ Ψ̂†(r)Ψ̂†(r′)Uint(r − r′)Ψ̂(r′)Ψ̂(r) , (2.9)

where Ψ̂†(r) and Ψ̂(r) are the bosonic field operators that create and annihilate a particle

at position r and fulfil the normalization N =
∫

d3r 〈Ψ̂†(r)Ψ̂(r)〉 with the angle brackets
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2.3. Mean-field description of dipolar gases

87Rb 52Cr 162Dy 164Dy 166Er 168Er 170Er

a (a0) 100.4(1) 102.5(4) 122(10) 92(8) 72(13) 137(1) -221(22)

µm (µB) 1 6 9.93 9.93 6.98 6.98 6.98

add (a0) 0.7 15.1 129.2 130.8 65.4 66.2 67.0

εdd 0.007 0.15 1.06 1.42 0.91 0.48 -0.30

Refs. [156] [45] [157] [81, 157] [122] [82] [122]

Tab. 2.1. Dipolar and contact interaction parameters. S-wave scattering length a, mag-
netic dipole moment µm, characteristic dipolar length add and relative dipolar strength
εdd for different atomic species. Alkali atoms are represented by rubidium that are
almost non-dipolar. To observe dipolar effects, εdd has to be non-negligible, as it is
the case for chromium, dysprosium and erbium atoms. Comparing these species, only
dysprosium is in the strongly dipolar regime.

denoting the expectation value. In the Heisenberg representation the field operators are

time dependent and change with time described by the Heisenberg equation9 [94, p. 38]

i~
∂

∂t
Ψ̂(r, t) =

[
Ψ̂(r, t), Ĥ

]
=

(
−~2∇2

2m
+ Vext(r) +

∫
d3r′ Ψ̂†(r′, t)Uint(r − r′)Ψ̂(r′, t)

)
Ψ̂(r, t) . (2.10)

Starting from now, we include approximations for a mean-field description of many-bosons

quantum systems as formulated by Bogolyubov in 1947 [159]. The key point is to separate

the condensate wave function out of the field operators. In the thermodynamic limit of

high atom numbers N � 1, the two states with N and N + 1 ' N correspond to the same

physical configuration and consequently the field operator can then be decomposed to

[158, p. 11]

Ψ̂(r) = Ψ(r) + δΨ̂(r) , (2.11)

where Ψ(r) = 〈Ψ̂(r)〉 is the condensate wave function and δΨ̂(r) is a small perturbation,

that may be called quantum fluctuations. These quantum fluctuations are crucial for the

results presented in this thesis, and hence we focus on fluctuations in chapters 5 and 6.

Nevertheless, to introduce the basic static and dynamic properties of condensates, we

neglect any quantum fluctuations in the following. By inserting the field operator from

eq. (2.11) in eq. (2.10), we obtain the non-linear, time-dependent Gross-Pitaevskii equation

(GPE)

i~
∂

∂t
Ψ(r, t) =

(
−~2∇2

2m
+ Vext(r) + Φint(r)

)
Ψ(r, t) , (2.12)

with the mean-field interaction potential Φint using the density n(r, t) = |Ψ(r, t)|2

Φint(r) =

∫
d3r′ Uint(r − r′)n(r′, t) . (2.13)

9We use the commutation relations
[
Ψ̂(r, t), Ψ̂†(r′, t)

]
= δ(r − r′) and

[
Ψ̂(r, t), Ψ̂(r′, t)

]
= 0.
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Chapter 2. Dipolar Quantum Gases

To easily obtain the static properties of condensates within this formalism of mean-field

theory, we write the condensate wave function as Ψ(r, t) = ψ(r) e−iµt/~ with µ the chemical

potential of the condensate. We insert this ansatz into eq. (2.12) and use the two-body

interaction potential from eq. (2.8), resulting in the stationary Gross-Pitaevskii equation

µψ(r) =

(
−~2∇2

2m
+ Vext(r) + g n(r) + Φdip(r)

)
ψ(r) , (2.14)

with Φdip the mean-field dipolar potential

Φdip(r) =

∫
d3r′ Udd(r − r′)n(r′) . (2.15)

One can see that the dipolar interaction adds a non-local term, due to its long-range

character. In contrast, the contact interaction depends only on the local density.

For completeness we give the important energy functional of a dipolar quantum gas [26]

E(n) =

∫
d3r

[
~2∇2

2m
n(r) + Vext n(r) +

g

2
n(r)2 +

Φdip(r)

2
n(r)

]
. (2.16)

The different terms in the energy functional describing the total energy correspond to

kinetic, potential and interaction energy. Minimizing the total energy with a variational

method and a suitable trial density function is a convenient way to approach fundamental

properties of condensates in a simple manner. In the next two sections, we present two

established analytical methods.

2.3.2. Variational method: Gaussian density profile

To perform experiments with ultracold gases, the atoms have to be trapped in an external

potential Vext. In this thesis, the experiments are performed in harmonic traps which

we consider to be anisotropic for generality. The three-dimensional harmonic oscillator

potential is

Vext(r) =
m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, (2.17)

with the trap frequencies ωj (j = x, y, z) and we define the geometric mean of the trap

frequencies ω = (ωxωyωz)
1/3. Such harmonic trapping leads to an inhomogeneous density

distribution of the gas and hence the necessity for calculating its spatial extent. For a

non-interacting quantum gas10 the stationary GPE (2.14) simplifies to the well-known

Schrödinger equation. For a harmonic external potential (2.17) the solutions are the

Hermite functions, as shown in figure 2.4a. A condensate will form in the energetically

lowest state, that has a Gaussian wave function

ψG(r) =

(
N

π3/2axayaz

)1/2

exp

(
− x2

2a2
x

− y2

2a2
y

− z2

2a2
z

)
, (2.18)

10The critical temperature for a trapped non-interacting sample differs from eq. (2.1) and reads kBTc ≈
0.94~ωN1/3 [158].
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Fig. 2.4. Gaussian wave function. a, Representation of the wave functions for the first four
bound eigenstates. The horizontal axis shows position z in units of the harmonic
oscillator length az. The vertical axis gives the energy for the harmonic external
potential Vext and indicates the state energies. b, Integrated density profiles with and
without interactions. The figure shows the one-dimensional density n1D(z), that is
the density n(r) integrated along the x- and y-direction, for a BEC with 10,000 164Dy
atoms in a spherical harmonic trap with ω = ωz = 2π ·100 Hz. The blue line is the case
of a non-interacting ideal gas with a harmonic oscillator length of az ≈ 0.79µm and a
central density of n0 ≈ 3.7 · 1021 m−3. Including a typical contact interaction strength
with a scattering length of a = 100 a0 (green line) reduces dramatically the central
density to n0 ≈ 3.3 · 1020 m−3 and increases the Gaussian width12 to σz ≈ 1.76µm.

where the harmonic oscillator lengths aj (j = x, y, z) are given by aj =
√

~/mωj and we

define the characteristic oscillator length a = (axayaz)
1/3 =

√
~/mω. Consequently, the

density distribution nG(r) = |ψG(r)|2 is a Gaussian with the central density n0 = N/π3/2a3.

However, inter-particle interactions strongly change the density of the ultracold gas.

For instance of repulsive interactions the size of the sample will increase with respect

to the non-interacting case (see figure 2.4b). To get physical insight into the behaviour

of interacting gases, we adopt the Gaussian wave function (2.18) to a variational trial

function with the density distribution11 given as [95, p. 165]

ntrial(r) =
N

π3/2σxσyσz
exp

(
−x

2

σ2
x

− y2

σ2
y

− z2

σ2
z

)
(2.19)

with the Gaussian widths σj as variational parameters. By substituting this trial function

in the energy functional (2.16) one yields energy expressions. Minimizing the total energy

for given external potentials and interactions with respect to the parameters σj, leads

to the variational ground state. With this simple variational approach, early studies on

stationary properties [160, 161] as well as dynamics [162, 163] of non-dipolar gases have

been performed. In the same manner dipolar gases have been investigated [39, 164] and

we give the energy terms for a cylindrical symmetric trap in appendix A.6.

Although the Gaussian trial function is successful for the energy contributions and can

be easily calculated, it fails in describing the realistic density profile of atomic BECs.

Hence, the next section introduces another approach: the Thomas-Fermi approximation.

11The trial function still satisfies the normalization condition N =
∫

d3r n(r).
12By neglecting the kinetic energy term in the energy functional (2.16), one derives an analytical expression

[95, p. 166] for the Gaussian width σj =
(

2
π

)1/10 (Na
a

)1/5 ω
ωj
a, resulting in σz ≈ 1.74µm for figure 2.4.
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2.3.3. Interaction dominated regime: Thomas-Fermi

approximation

For sufficiently large total atom number N , that includes sufficiently high densities n,

the interaction terms in the energy functional (2.16) dominates over the kinetic energy

term. Hence, a better approximation for the condensate density distribution for large

number of atoms may be obtained by excluding the kinetic energy term and then solving

the stationary GPE (2.14). For a non-dipolar condensate, we find that the GPE in the so

called Thomas-Fermi approximation13 simplifies to

µ = Vext(r) + g nTF(r) . (2.20)

This equation has an analytical solution by using the external potential Vext from eq. (2.17)

and ensuring the normalization criterion N =
∫

d3r nTF(r). Then, the density in Thomas-

Fermi approximation follows a parabolic distribution

nTF(r) = |ψTF(r)|2 =
15N

8πRxRyRz

[
1− x2

R2
x

− y2

R2
y

− z2

R2
z

]
for nTF ≥ 0 , (2.21)

mimicking the external potential and featuring an ellipsoidal shape with lengths Rj along

the semi-principal axes given by

Rj = 151/5

(
Na

a

)1/5
ω

ωj
a . (2.22)

In the following, we will call these lengths Thomas-Fermi radii. By defining the central

density for the inverted parabola to be n0 = 15N/8πRxRyRz, the constant chemical

potential from eq. (2.20) can be also written as µ = g n0. This again indicates the local

character of the contact interaction, as the chemical potential µ only depends on the local

density value.

Figure 2.5a shows the density distribution in Thomas-Fermi approximation in comparison

with the Gaussian trial function. The solutions from both approaches present a difference

in shape and central density. When comparing them with numerically calculations of the

GPE [165] or experimentally measured density profiles [166], it agrees very well with the

Thomas-Fermi approximation. We show in figure 2.5b an exact numerical solution and

the approximation with an inverted parabola distribution for an atom number N = 10,000

and scattering length a = 100 a0. They agree in absolute central density and spatial extent.

However, the approximation fails in the region close to the Thomas-Fermi radii Rj. In

fact, the inverted parabolic distribution is not differentiable at Rj and accordingly the

kinetic energy would diverge. Hence, the exact density distribution has to show a smooth

behaviour to vanishing density.

The corresponding energy terms for a dipolar gas in Thomas-Fermi approximation are

13This approximation is valid if the parameter Na/a� 1 is very large [94, p. 164]. As a is on the order
of nanometers and a is typically in the micrometer range, atom numbers N higher than 10,000 validate
this approximation.

28



2.3. Mean-field description of dipolar gases

z (µm)
-2 0

b

0

1

2

2-4 4

Numerical

Thomas-
Fermi2

0
-3

D
e

n
si

ty
 (

1
0

 m
)

z (µm)
-2 0

a

0

1

2

3

2-4 4

Gaussian

Thomas-
Fermi2

0
-3

D
e

n
si

ty
 (

1
0

 m
)

Fig. 2.5. Thomas-Fermi approximation. a, Density distribution in Gaussian and Thomas-
Fermi approximation. The profiles show the density n(r) along the z-direction for
a non-dipolar BEC with 10,000 164Dy atoms in a spherical harmonic trap with
ω = ωz = 2π ·100 Hz and a = 100 a0. The Gaussian has a width of σz ≈ 1.76µm and a
central density of n0 ≈ 3.3 ·1020 m−3, while the inverted parabola has a Thomas-Fermi
radius of Rz = 3.13µm and a central density of n0 ≈ 1.9 · 1020 m−3. b, Numerically
calculated and approximated density profiles for the same parameters as before. The
exact solution coincides very well with the Thomas-Fermi profile and both agree
with central density and spatial extent. There are minor differences close to the
Thomas-Fermi radius.

presented in appendix A.5. The discussion on static properties of dipolar gases will be

continued in section 4.5 when we have introduced fluid mechanics for liquids and gases

with dipolar interactions.
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3. Producing a Dysprosium BEC

with high-resolution Imaging

In 2005 the first dipolar quantum gas, consisting of chromium atoms, was achieved in

Stuttgart [25]. Then, pioneering work on static and dynamic properties of dipolar quantum

gases was performed [36, 39, 41]. But soon the accessible range of physics was limited

due to fundamental properties of the element chromium and an atom detection with poor

optical resolution. Consequently, we have built a new generation apparatus that now

overcomes these restrictions.

Motivated by the first creation of dysprosium condensates in 2011 [75] and the expected

phenomena for strongly dipolar gases, we started in the beginning of 2012 to build an

experiment that can routinely generate dysprosium quantum gases in a glass cell with high

optical access. Finally, we condensed dysprosium atoms in June 2014 for the first time

in our research group and imaged them in situ with high resolution in April 2015. The

way of this research journey is reported in 7 bachelor theses [167–173] and 4 master theses

[174–177]. A very detailed description of the recent setup and experimental sequence is

given in Thomas Maier’s Ph.D. thesis [178].

This chapter only gives a short summary of the experimental setup and production of

dysprosium BECs. First, we introduce the rare-earth metal dysprosium and its optical

transitions utilized for laser cooling. Second, we summarize briefly the complex cooling

process of dysprosium atoms down to quantum degeneracy, and third we introduce our

main technical tools for tuning and detecting internal properties of dysprosium BECs.

This includes our feature, unique for dipolar quantum gases, to image the atoms in situ

with a high spatial resolution.

3.1. Dysprosium: properties and optical transitions

Dysprosium is a rare earth element with 66 protons in the lanthanide series and possesses

seven stable isotopes, with four having a high natural abundance. These are the two

bosonic isotopes 162Dy (25.5 %) and 164Dy (28.3 %) as well as two fermionic isotopes 161Dy

(18.9 %) and 163Dy (24.9 %) [179]. Dysprosium has a relatively high melting point (1412 ◦C)

and boiling point (2567 ◦C) compared to other metals [180].

The electronic ground state configuration [Xe]4f106s2 offers an open 4f shell inside closed

other shells, which leads to a large orbital angular momentum of L = 6. With four

unpaired electrons in the f-shell, dysprosium has a total electronic spin of S = 2, and

hence a total angular momentum of J = 8. This 5I8 ground state is the origin of the
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high magnetic moment of µm = 9.93µB. This is, together with the element terbium, the

highest magnetic moment of all elements. In contrast to the bosonic isotopes, which have

no nuclear spin, the fermionic isotopes possess a nuclear spin of I = 5/2 leading to six

additional hyperfine levels from F = 11/2 to F = 21/2 in the electronic ground state.

Due to this complex electronic structure, dysprosium and other lanthanides feature a rich

atomic energy spectrum (shown for dysprosium in figure 3.1a) with several possible optical

transitions and decay channels. Hence, it was not obvious that lanthanides feature suitable

closed cycling transitions. Despite the existence of numerous decay channels, important

early studies with erbium atoms showed that laser cooling is possible [181]. Meanwhile there

are plenty different laser cooling schemes for lanthanides such as dysprosium [75, 182, 183],

holmium [184, 185], erbium [186, 187], thulium [188, 189] and the special case of ytterbium

[190, 191], that has a more simple energy spectrum due to a filled f-shell. In addition,

these rich energy spectra allow measurements of a possible time variation of the fine

structure constant using dysprosium atoms [192, 193] and to have the currently most

accurate atomic clocks using ytterbium atoms [194, 195].

Up to now, only two experiments created dysprosium quantum gases14 and they differ in

the laser cooling transitions used, that we show in figure 3.1 with relevant parameters. An

essential part of every experiment creating ultracold atoms is a so-called magneto-optical

trap (MOT), consisting of six laser beams and a magnetic gradient field. This results in

optical cooling and a magneto-optical confinement for the atoms [107]. If the used optical

transition has a high decay rate Γ or natural linewidth γ, the corresponding MOT is then

able to capture atoms from an atomic beam with a velocity of a couple meters per second.

But, a high decay rate or linewidth also limits the lowest possible temperature, defined by

the so-called Doppler temperature TDoppler = ~Γ/2kB.

Therefore, for the first achieved dysprosium BEC in Illinois/Stanford, the researchers

started with a MOT using the strongest cooling transition with a wavelength of 421 nm

and a natural linewidth of γ421 = 32.2 MHz [182]. To reach colder atomic samples they

used a subsequent second stage MOT operating at the very narrow transition at 741 nm

with a small linewidth of γ741 = 1.78 kHz [75]. In contrast, our approach is based on a

narrow-line MOT using the transition at 626 nm with a linewidth of γ626 = 136 kHz. This

enables the MOT to directly capture atoms from an atomic beam and offers a low cooling

temperature at the same time [183]. This cooling scheme is inspired by experiments on

erbium [187] and ytterbium atoms [191] with a similar transition.

Actually, a magneto-optical trap is only a single technical part of experiments creating

ultracold gases. Starting with solid dysprosium and to finally generate a gaseous condensate

is a complex production process. It consists of many steps that all have to be properly

quantified and are very time-sensitive, partially on a 10µs time scale. Additionally as a

BEC is a metastable state and is generally destroyed when detecting it, we have to create

a new sample every 20 seconds. In the next section, we present the experimental setup

and summarize the production of dysprosium quantum gases.

14There are many groups working on further experiments using ultracold dysprosium gases, for example
in Mainz, Innsbruck, Paris, Pisa and São Carlos
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Fig. 3.1. Atomic energy spectrum of dysprosium. a, A part of the atomic dysprosium
energy spectrum where the levels are sorted to their respective angular momentum J
[198]. The scale gives the wavelength λ of an optical transition from the electronic
ground state. Energy states with even (odd) parity are shown as red (black) line. The
coloured arrows indicate three optical transitions that are used for laser cooling of
dysprosium atoms. b, The table gives relevant parameters for these optical cooling
transitions. The vacuum wavelength λ, natural linewidth γ, decay rate Γ = 2πγ,
decay constant τ = 1/Γ, saturation intensity Isat = 2π2~cΓ/3λ3, Doppler temperature
TDoppler = ~Γ/2kB and recoil temperature Trecoil = ~2k2/2mkB with the wave number
k = 2π/λ.

3.2. Experimental setup and production of

dysprosium BECs

We give an overview of the steps used to generate a dysprosium condensate. It includes

basics of laser cooling, magneto-optical trapping and optical trapping that are explained

in reviews and textbooks [95, 107, 151]. Here, we can only give a brief description on these

techniques and give recent, important experimental numbers. Instead of describing the

mostly home-built laser systems and their frequency stabilization, we concentrate on the

main steps given in this list:

1. Deceleration of the hot atomic beam with a Zeeman slower

2. Cooling and trapping in a magneto-optical trap (MOT)

3. Transfer to the optical tweezers and transport to a glass cell

4. Transfer to a crossed optical dipole trap (ODT) and post-cooling

5. Forced evaporation to quantum degeneracy

6. Tuning and detection of internal parameters

With these steps we will shortly describe the sequential production of condensates and

the vacuum chamber that protects the gaseous atom clouds from the environment. The

vacuum chamber consists of three main parts: the oven chamber, the MOT chamber and

the glass cell. A more thorough description of our preparation sequence of quantum gases

can be found in the Ph.D. thesis [178], that also includes the laser systems.
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Effusion cell and Zeeman slower

This part describes the preparation of dysprosium in the gas phase and the collimation

of the atoms in a decelerated atomic beam. First, a high-purity dysprosium granulate15

(99.9 %) is put in a molybdenum crucible, as dysprosium reacts with any ceramic crucible

at high temperatures. The crucible is placed in a high-temperature effusion cell16 that

sublimates atoms at T = 1200-1250 ◦C. The whole effusion cell is placed in the oven

vacuum chamber with a pressure of p ≈ 10−9 mbar (see figure 3.2a). The crucible has only

a small aperture and collimates the atomic beam. Further collimation of the atomic beam

is achieved by a transversal cooling stage with a two-dimensional optical molasses using

blue light17 (421 nm) that is red detuned by -1 γ421. By using an intensity of up to 9 Isat,421

per beam, we can increase the atomic flux by a factor of up to five [183].

The collimated atomic beam has a mean velocity of 450 m/s and as mentioned before

a MOT can only capture atoms with a velocity of a few m/s. Hence, we longitudinally

decelerate the atomic beam with a spin-flip Zeeman slower. Our Zeeman slower consists

of a long tube (90 cm), through which the atomic beam travels, a blue laser beam with a

red detuning of -17.5 γ421 and a power of 80 mW and a well-chosen magnetic field that

varies spatially along the tube direction. The magnetic field is designed such that the

Zeeman shift exactly compensates the Doppler shift for a certain velocity class [199]. At

the entrance the blue beam is first resonant for atoms with a velocity of ∼600 m/s and

as the atoms propagate along the tube, the resonance shifts to lower and lower velocity

classes down to a final velocity of 10-15 m/s at the exit, attached to the MOT chamber.

Furthermore the ZS acts as a differential pumping stage to have a two orders of

magnitude lower pressure (p ≈ 10−11 mbar) in the MOT chamber than in the oven

chamber (p ≈ 10−9 mbar).

Narrow-line magneto-optical trap

The decelerated dysprosium atoms are captured in a narrow-line MOT in the MOT vacuum

chamber (see figure 3.2b). The MOT operates with orange light18 red-detuned to the

optical transition at 626 nm with a linewidth of γ626 = 136 kHz. To accomplish a large

capture and trapping volume, the beams have a diameter of 22.5 mm and an intensity of

up to 250 Isat,626 per beam. Additionally, we employ a commercial spectral broadener19 to

increase the laser linewidth to ∼70 γ626, that further increases the capture velocity. We

typically load more than 108 atoms with a temperature of about 500µK in 4 seconds at a

central detuning of -35 γ626 and with an axial magnetic field gradient of |∇B| = 3 G/cm.

15HMW Hauner: 6672002
16Createc Fischer: HTC-40-10-2000-SHM with water cooling WK 63-40 and the power supply CU-3504-

S1-DC-700
17The laser source are two optically pumped titanium-sapphire laser (Coherent, MBR110) operating at a

wavelength of 842 nm with both up to 4.5 W optical power. This infrared light is frequency doubled in a
self-built monolithic cavity with a non-linear, Brewster-cut lithium triborate crystal (LBO). We can
achieve blue powers of up to 2 W for a single laser system [169].

18We create the orange 626 nm light by sum-frequency generation of two infrared fiber lasers at 1050 nm
and 1550 nm with a power up to 5 W (NKT Photonics: HPA Y10 and HPA E15) in a periodically poled
lithium niobate crystal (Covesion: MSFG626-0.5-40). We achieve up to 2 W for the orange laser power.

19Electro-optical modulator with a resonance frequency of 105 kHz. Qubig: EO-F0.1M3-VIS
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Fig. 3.2. Experimental vacuum chamber and laser beams. a, Oven chamber with effu-
sion cell and transversal cooling. The dysprosium atoms are sublimated from the
effusion cell, transversally cooled with blue light (blue arrows) and then decelerated
in the Zeeman slower. b, MOT chamber and glass cell. After the atoms exit the
Zeeman slower they are captured by the orange MOT (orange arrows). The atoms
can be imaged from the bottom with the probe beam. The atoms from the MOT are
transferred into the transport beam (red arrow) and subsequently transported with a
moveable lens over 375 mm into the glass cell.

At this stage of the MOT, the temperature is far from being limited by the Doppler

temperature TDoppler,626 = 3.3µK. To reduce the temperature and to increase the atomic

density, the MOT is compressed in 170 ms by decreasing the detuning to -5 γ626 and the

intensity to 0.24 Isat,626. We end up with a temperature of about 10µK that allows us to

load the atoms directly in an optical dipole trap.

Transport beam

We create the optical tweezers [200] or transport beam with a focused broadband fiber

laser20 operating at 1070 nm with a maximum power of 72 W at the MOT position. The

laser is focussed down to a beam waist of 37.3(1.2)µm, which creates a trap depth of

∼640µK at maximum intensity. The last focussing lens of the optical tweezers is mounted

on an air-bearing translation stage21 with 40 cm translation range and 0.5µm accuracy

and repeatability [168]. This allows to move the focus of the transport beam inside the

vacuum chamber from the MOT chamber to the glass cell.

The compressed MOT still has a Gaussian width of around 400µm, which is a factor of

10 larger than the radial size of the transport beam at focus. Therefore, we do not transfer

the atoms at the focal point as this limits the spatial overlap between transport beam and

MOT. Instead we employ the moveable lens to move the focus 15 mm away from the MOT

position. The waist size at this position is 170µm, which increases the trapping area by

nearly a factor of 18, but also decreases the potential depth by the same amount. After

compressing the MOT we superimpose the transport beam for 120 ms and then release

20IPG Laser: YLR-100-LP-WC, linewidth of 2 nm
21AeroTec: Linear Stage ABL15040 with Controller HLE10-60-A-MXH-B
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the atoms from the MOT. The atoms are then only trapped by the transport beam. As

the atoms are trapped in an out-of-equilibrium position, they would start to oscillate. To

suppress this oscillation, we rapidly move the transport beam in 47 ms, such that the focal

point is at the prior MOT position.

After that, we transfer the atoms within 2 s from the MOT chamber into the glass cell

by moving the last focusing lens over a range of 375 mm. We typically end up with 107

atoms with a temperature of 100µK in the glass cell. We measure the same values in the

MOT chamber without moving the last lens. This indicates that the optical transport

is lossless and without additional heating. We found that this is the case provided the

power is > 60 W, that can be only supported for broadband fiber lasers. Unfortunately,

this broadband frequency mode structure induces a heating due to two-photon Raman

transitions [201]. Thus, further cooling steps are performed in a narrow single-mode ODT.

Optical dipole trap and evaporation

We transported the atoms to the glass cell to have two major advantages. The octagonal

glass cell offers high optical access and the reduction of magnetizable parts close to the

atoms in comparison to a steel vacuum chamber. On a quartz-glass frame22 9 high quality

windows23 are bonded (see figure 3.3a). The bondage technique allows for inside and

outside anti-reflection coatings for the windows to minimize stray reflections. The two

large windows (diameter 50.8 mm) allow a large optical access for the high-resolution

objective, that is specified in section 3.3.3. This objective might be also used to write

time-averaged potentials with an electro-optical deflector (EOD), that is shown in chapter

7 as outlook. Three side windows (29.4 mm) and further four small windows (14.9 mm)

allow optical access for laser beams and the glass-metal transition is non-magnetic.

Once in the glass cell, the atoms in the transport beam are transferred to a crossed

optical dipole trap (cODT) within 200 ms. The cODT consists of two dipole traps that

we name ODT 1 and ODT 2. Both traps are created by a 55 W solid-state laser24, that is

very narrow in frequency (1 kHz) and has a wavelength of 1064 nm. Both dipole traps are

coupled in polarization-maintaining fibers suitable for high powers25 to optimize pointing

stability and are actively intensity stabilized with an acousto-optic modulator26. The

dipole trap ODT 1 along the x-direction, superimposed with the transport beam, is radial

symmetric and has a radial beam waist of 39(2)µm with a maximum power of 12 W, while

the ODT 2 along the y-direction is elliptically shaped with beam waists horizontally of

119(5)µm and vertically of 31(2)µm with a power up to 8 W.

We transfer typically 5·105 atoms to the crossed ODT with a temperature of typically

35µK, while most of the atoms are trapped in ODT 1. Thus, to increase the atom number

in the crossed region, we employ another laser cooling step using orange light along the

y-direction. The beam has a very low intensity of ∼ 0.03 Isat,626 with a red-detuning of

22Precision Glassblowing of Colorado
23Gooch & Housego: Corning 7980-OA fused silica, flatness λ/20
24Coherent: Mephisto MOPA 55W
25OZ Optics: PMJ-A3HPC,A3HPC-1064-10/125-5AS-2-1-LMA
26AA opto-electronic: AA.MTS80-A3-1064Ac, center frequency 80 MHz and we use a two-frequency driver

setup to minimize beam movement at different parameter settings [202].
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Fig. 3.3. Glass cell and cooling parameters. a, The figure shows a schematic view of the
glass cell. The transport beam transfers the atoms from the MOT vaccum chamber
to the glass cell. There, they are loaded into a crossed optical dipole trap created by
ODT 1 and ODT 2. In the crossed ODT we employ laser cooling with orange light.
The atoms may be imaged from two directions: Time-of-flight absorption imaging from
the side in y-direction and phase-contrast imaging from the bottom in z-direction. The
latter allows high-resolution in situ images due to a high numerical aperture objective.
The objective may be also used to write tailored potentials with an EOD system. Close
to the glass cell we attached a pair of Helmholtz coils capable to generate homogeneous
magnetic fields. b, The table presents a summary of the different cooling steps and the

according atom number N , temperature T , peak density n0, particle distance n
−1/3
0

and thermal de-Broglie wavelength λdB. The cooling steps are: dysprosium atoms
in the gas phase within the crucible (Oven), at the exit of the Zeeman slower (ZS),
captured in the magneto-optical trap (MOT), compressed MOT (cMOT), after the
transport to the glass cell (Transp), in the narrow-line optical dipole trap (ODT), in
the post-laser cooled crossed ODT (cODT) and finally for the phase transition to a
BEC.

-1 γ626 and is illuminated on the atoms for 500 ms. After this cooling step, we still have

typically 3 ·106 atoms in ODT 1 and 5 ·105 atoms in the crossed region, both with a

temperature of 20µK.

To finally achieve a quantum degenerate gas, we utilize forced evaporative cooling [203].

This technique is commonly used to achieve densities and temperatures that cannot be

reached with laser cooling. Evaporative cooling is based on removing the hottest atoms

from the system to reach a lower equilibrium temperature after thermalization due to

elastic two-body collision processes. An atom can leave our system if its thermal energy is

higher than the potential trap of the cODT. Hence, for a constant trap depth this cooling

method would stagnate at some point. Thus, we lower in an optimized way the trap

depth, which is proportional to the intensity of the dipole traps, to further decrease the

sample temperature. After 6.3 s of forced evaporation, we finally generate a dysprosium

condensate consisting of typically 15,000 atoms and a temperature of 70-100 nK.

To conclude this section on the production of dysprosium quantum gases, we give in

figure 3.3b a summary of all the mentioned cooling steps with respective parameters

important for the onset of quantum degeneracy.
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3.3. Tuning and detection of internal properties

Strongly dipolar quantum gases, such as a dysprosium quantum gas, can act as a model

system for condensed matter phenomena. But novel phenomena are mostly predicted in a

small parameter range. Hence, in the field of ultracold atomic physics, two technical main

tools are needed: control on internal and external properties and a reliable detection of

the atomic cloud properties.

In this section, we describe the possibility to tune the contact interaction strength by

utilizing magnetic Feshbach resonances. Hence, we need an accurately controlled and

reproducible homogeneous magnetic field. Last, we present the high-resolution in situ

imaging to extract the condensate properties.

3.3.1. Feshbach resonances: tuning the contact interaction

In the previous section 2.2.1, we introduced the molecular potential U(r) and that it

can be reduced in the ultracold regime to a scattering process solely described with the

scattering length a as single parameter. We also mentioned that if the potential U(r)

supports a molecular bound state close to the kinetic energy of the particles, that is

essentially zero energy in the ultracold regime, the absolute value of the scattering length

a is large. If the bound state is slightly lower than zero energy, then a is positive, while it

is negative, if the bound state is a virtual state with an energy higher than zero [95, 152].

In principle the molecular potential, and hence the energy levels, can be modified with

static electric fields due to an induced dipole-dipole interaction between polarized atoms

[204]. Unfortunately, the required electric fields are on the order of 100 kV/cm, which is

very challenging for experiments in a vacuum chamber. Instead for our experiments, we

utilize so-called Feshbach resonances [8], that are magnetically controlled.

Atoms are not point-like particles, but exhibit an internal structure with angular quantum

numbers. Thus, they do not only feature one single molecular potential, they provide

a manifold of possible collision channels, each with different quantum numbers. When

these different potentials or channels are coupled, the scattering behaviour can be strongly

modified. Theoretical predictions were carried out independently by Feshbach in the

context of nuclear physics [205] and by Fano approaching the problem in the background

of atomic physics [206]. The elementary properties of such a Feshbach resonance can be

understood from a simple picture [8].

We consider two molecular potentials U(r) and Uc(r), as shown in figure 3.4a. The

potential U(r) describes the interaction of two atoms with a small kinetic energy E. This

channel is asymptotically the one of two unbound atoms in the collision process and

represents the energetically open channel. The other potential Uc(r) is an energetically

closed channel, where the atoms are in a different angular momentum state. However, this

channel remains important as it can support a bound molecular state at the energy level

Ec near the threshold of the open channel. If the energy Ec approaches the energy E of the

incident particles, then even weak coupling can lead to a strong mixing between the two

channels. If the corresponding magnetic moments of the two channels are different, the
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Fig. 3.4. Feshbach resonance. a, Basic two-channel model for a Feshbach resonance. Atoms
with collision energy E (green) can enter the open channel U(r) (blue line), while the
closed channel Uc(r) (red line) features a bound state at energy Ec. The energy level
Ec can be tuned in resonance with a magnetic field via a Zeeman shift. This leads,
due to a coupling of different molecular states, to a mixing of the two states and a
change of the scattering length a. Based on [8]. b, Scattering length a as a function
of magnetic field B in the vicinity of a Feshbach resonance. The Feshbach resonance
is located at B0 and has a width of ∆B. Far away from any resonance the scattering
length approaches the value abg, while it vanishes at the magnetic field B0 + ∆B.

energy difference can be controlled with a magnetic field via the Zeeman shift. This leads

to a magnetically tunable Feshbach resonance with a resonant behaviour of the scattering

process, where the scattering length a diverges at a given magnetic field. The change in

scattering length around the resonance can be described by [8]

a(B) = abg

(
1− ∆B

B −B0

)
(3.1)

with abg the background scattering length far away from the resonance, ∆B the resonance

width and B0 the resonance position, where the scattering length a diverges. Figure 3.4b

shows this resonance expression. An important point is the zero crossing of the scattering

length, that occurs at a magnetic field of B = B0 + ∆B.

Feshbach resonances for dysprosium show remarkable properties. Due to its complex

internal atomic structure, we observe a dense spectrum of many Feshbach resonances with

a mean density of 4.4 resonances per Gauss [79, 207]. Additionally, a statistical analysis

of the spacings between resonances has shown correlations that induced a distribution

reminiscent of quantum chaos [78, 79]. Despite this dense and chaotic spectrum of Feshbach

resonances there are specific resonances that decouple from the chaotic background and

present a broad resonance width [81]. Further studies on scattering properties have yielded

a background scattering length of abg = 92(8) a0 for 164Dy [81, 157]. These results have

established the possibility to tune the interactions in a dysprosium quantum gas. The

next section describes our magnetic field control and the particular Feshbach resonance

that we used for the results in this thesis.

39



Chapter 3. Producing a Dysprosium BEC with high-resolution Imaging

3.3.2. Magnetic field control

A controllable homogeneous magnetic field is required to utilize a Feshbach resonance and

tune the contact interaction. To attach coils close to the glass cell, we built a plastic holder

that has openings for coils and the glass cell windows (see figure 3.5a). The plastic holder

is designed such that the optical access is not restricted. We can apply a homogeneous

magnetic field along the z-direction with a coil pair in Helmholtz configuration. The coils

have each 3 × 3 turns with a diameter of around 88 mm and create a magnetic field of

1.67 G/A. A bipolar actively stabilized current source27 with a maximal current of 6 A

supplies the coils.

Additionally, to compensate residual magnetic fields, such as earth magnetic field, or to

apply a weak magnetic field in an arbitrary direction, we implemented three orthogonal

large Helmholtz coil pairs (not shown in the figure). Each coil has a slightly different

diameter of around 1 m, is centered to the glass cell and features 5×3 turns . We use three

home-built bipolar current sources28 that offer a maximal current of 6 to 8 A, dependent on

the specific coil. Each coil can reach a maximum field of 1.5 G in its respective direction.

Lastly, we attached a coil pair in an anti-Helmholtz configuration along the z-direction

to the plastic holder (shown in figure 3.5a). Each coil has 5 × 18 turns, a diameter

of 105 mm and the coil pair generates a magnetic gradient of 3.57 G/A cm in the axial

z-direction. This coil pair can be used to compensate gravitational force or to weaken

the trap confinement of the optical dipole traps, respectively. For the results shown in

chapters 5 and 6, we use it to compensate partially or completely gravity.

With these mentioned coils we can properly control the external magnetic field for the

atoms and study specific Feshbach resonances. In earlier studies29 we detected 309 Feshbach

resonances up to a field of 70 G with a resolution of 14.5 mG [79]. These resonances were

mapped with atom-loss spectroscopy, that consists in recording the number of atoms left

after a given wait time as a function of magnetic field. On a Feshbach resonance, inelastic

three-body collisions are amplified [208] such that it shows strong atom losses visible as a

minimum in final atom number.

For the work presented in this thesis, we use one particular Feshbach resonance close to a

field of 7 G, that is not strongly affected by other neighbouring resonances. We measure its

properties with atom-loss spectroscopy on N = 2·105 atoms evaporated to a temperature

of T = 400 nK in the crossed optical dipole trap. We then set the magnetic field to the

target value (with a step size of 5 mG), where the atoms are held for 500 ms. During this

time, inelastic three-body recombination causes atom loss and at the resonance position

B0 the atom number is minimal, as shown in figure 3.5b with blue circles. With this

method, we locate the resonance position to be B0 = 7.117(3) G.

To measure the resonance width ∆B, we search for the zero crossing of the scattering

length a. As the cross section σ of elastic collisions due to the contact interaction scales

like σ = 8πa2, evaporation is ineffective for vanishing contact interaction strength. As

27HighFinesse: BCS6 12 M2014, relative current stability is < 2.5·10−5

28Based on OPA549
29For these studies, we used a different pair of coils along the y-direction, that were attached to another

plastic holder [178].
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Fig. 3.5. Magnetic field control and Feshbach resonance. a, Sectional view of the glass
cell. For mounting the Feshbach coils and gradient coils close to the glass cell, we
implemented a plastic holder. Adapted from [178]. b, Atom-loss spectroscopy mapping
a Feshbach resonance of 164Dy. The number of atoms (blue circles) and temperature
(red diamonds) are normalized. The atom number minimum shows the center of
the Feshbach resonance at B0 = 7.117(3) G, while the temperature is maximized at
B0 + ∆B, with the resonance width ∆B = 51(15) mG.

a consequence the temperature after some evaporation is maximal at the magnetic field

B0 + ∆B. For such a thermalization measurement, we changed the magnetic field already

1.2 s before the evaporation process ends and observed the maximal temperature at the

position B0 + ∆B, with ∆B = 51(15) mG (as shown in figure 3.5b with red diamonds).

Note that on the right side of the Feshbach resonance appears another very narrow

resonance. This resonance slightly changes the zero crossing position, and hence we take

this systematic error into account in the uncertainty on the resonance width ∆B.

Tuning the contact interaction strength by using this Feshbach resonance is the first

of two key tools to study dipolar quantum gases. The second is a microscope with high

spatial resolution to detect the atomic density distribution in situ, which is explained in

the next section.

3.3.3. High-resolution phase contrast imaging

Probing a trapped condensate directly in the trap needs a suitable imaging technique that

provides a high spatial resolution and is not distorted by refractive effects of the dense

atomic sample. Hence, we use a microscope objective and apply an imaging technique

that relies on a dispersive phase shift instead of a direct absorption of photons.

First, we concentrate on the microscope objective. As the typical size of a trapped

condensate is on the order of some µm, the resolution of the microscope has to be around

1µm and the image has to be magnified to be larger than typical CCD pixel sizes. Thus,

we use two custom-made objectives, that are diffraction-limited for the imaging wavelength

λ = 421 nm as well as for trapping light at λ = 532 nm (see outlook in chapter 7). The

first microscope objective is mounted above the glass cell (see figure 3.5a) and has an

41
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effective focal length of f1 = 25 mm and is corrected for the upper window of our glass cell.

The clear aperture of the objective is 17 mm, yielding a numerical aperture of NA = 0.32

given by the Rayleigh criterion. This gives a theoretical resolution of 800 nm and we

measured the resolution to be at least 1µm for blue light [172, 176]. To be able to align

the microscope objective30, it is mounted to a brass tube connected to translation and

tilt stages (see figure 3.6a). Rough alignment is done with a home-built non-magnetic

xyz linear translation stage, while the fine alignment works with a piezo xyz stage31 and

a tilt stage32. The image is then magnified by a second commercial objective33 with a

focal length of f2 = 1250 mm leading to a magnification factor of 50. The magnified image

is guided to an EMCCD camera34 which has a pixel size of 16× 16µm. Thus, one pixel

width corresponds to 320 nm.

Now, we describe the imaging technique used for dense atomic samples (see schematic

setup in figure 3.6b). Phase-contrast polarization imaging was first introduced with lithium

atoms [111] and relies on the dispersive phase shift instead of direct absorption giving rise

to the atomic density. We use an off-resonant blue beam, close to the 421 nm transition,

with a red-detuning of δ = -1.1 GHz = -35 γ421 to suppress absorption. The imaging beam

is linearly polarized and we apply the magnetic field in the beam propagation direction

such that the atoms see a mixture of left- and right-handed circularly polarized light.

In our case the dysprosium atoms are fully spin-polarized in the lowest lying Zeeman

state mJ = −8. Thus the atoms couple mainly to the σ− optical transition, while the σ+

transition is suppressed by a factor of ∼150 due to a ratio of 1/150 in the Clebsch-Gordan

coefficients for the two transitions. Hence, the atoms show a strong circular birefringence

or optical rotation. If both coupled and uncoupled polarizations are combined on a linear

polarizer, with the angle θ between the initial linear polarization direction and the axis of

the polarizer, the transferred intensity distribution depends on the dispersive shift of the

atoms.

In order to extract the atomic column density independently of the camera properties,

we take a series of three images for each sample. The first image with intensity distribution

I1 is taken with atoms and includes the information of the atoms, the second image with

intensity I2 is taken without atoms and the third one (I3) is taken without imaging light.

Then the column density is given by [176]

n2D = 8
3λ2

2π

δ

γ421

[
θ − arccos

(√
I1 − I3

I2 − I3

· cos θ

)]
(3.2)

recalling the detuning of the imaging light δ and the polarizer angle θ. The atom number

per camera pixel is calculated by Npix = (16µm/50)2 n2D, where the prefactor is the

imaged area on a single pixel.

30Special Optics: Microscope objective, 54-17-1250-532/421nm
31Physik Instrumente (PI): Nanopositioning stage P-563.3CD with travel ranges 300× 300× 300µm and

controller E-725.3CDA.
32Newport Spectra-Physics: M-TTN80.
33Special Optics: Objective, 54-17-25-532/421nm
34Andor: iXon DU897 ECS-EXF, 512× 512 active pixels with a pixel size of 16µm
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Fig. 3.6. High-resolution imaging of a dipolar quantum gas. a, Mechanical setup of
the microscope imaging. The microscope objective (f1 = 25 mm) is mounted on
a brass tube, that can be adjusted with translation and tilt stages. The image is
magnified by a factor of 50 with a collimation objective (f2 = 1250 mm) also attached
to translation stages. Adapted from [178]. b, Schematic setup of phase-contrast
polarization imaging. A far detuned collimated imaging beam (blue) is guided on
the atoms and magnified with the microscope objective and the second objective.
Before the beam is imaged with an EMCCD camera it is directed through a linear
polarizer. The atomic plane (grey) is also magnified and focussed on the camera. c,
Single sample image of a dysprosium Bose-Einstein condensate. Here, each camera
pixel has a physical size of 16µm. As the magnification factor is 50, the field of view
in this image is 15µm×15µm.

For the experiments shown here, the polarizer angle is θ = 15◦, the image beam is

detuned by δ = -35 γ421 and the figure 3.6c shows an in situ image of a condensate

consisting of 15,000 164Dy atoms.
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4. Classical and Quantum

Ferrofluids: a Comparison

Fluid mechanics is the branch of physics that studies the motion of fluids (liquids and

gases). It only considers macroscopic phenomena rather than the microscopic ones. Hence,

the fluid is regarded as a continuous medium that deforms or flows when subjected to a

force. By applying general conservation laws of mass, momentum and energy, one derives

equations for the macroscopic variables pressure, density and fluid velocity.

In this chapter we compare classical ferrofluids (magnetic liquids) with quantum fer-

rofluids (magnetic gaseous condensates). Although they show differences in their basic

properties (such as compressibility, magnetic polarization or superfluidity), they share

similar relations and deformed states. First, we introduce properties and applications

of classical ferrofluids and concentrate on the Rosensweig instability. After deriving the

equations needed for the dispersion relation, we focus on the deformation of ferrofluid drops.

As a comparison, we develop in the exact same manner equations describing quantum

ferrofluids and present their excitation spectrum for a homogeneous gas. Finally, we

characterize trapped inhomogeneous condensates and depict their anisotropic deformation

and stability threshold.

4.1. Ferrofluids - Properties and Applications

Liquids that exhibit magnetization in the presence of a magnetic field, meaning a fer-

romagnetic material, are called ferrofluids [209]. However, since no substance is known

whose Curie point exceeds its melting point [209, p. 33], ferrofluids are not found in nature

and have to be synthesized. The rest of this section is on the composition, properties and

applications of these synthesized ferrofluids.

Such magnetic fluids can be realized by forming a colloidal suspension of solid single-

domain magnetic particles with a typical dimension of 10 nm in a liquid carrier. The

magnetic particles are magnetite, maghemite or cobalt ferrite and the carrier liquid is

water or an organic solvent. In order to avoid agglomeration, the magnetic particles are

coated with a molecular layer of dispersant that acts as surfactant [210]. Dependent on

carrier liquid, surfactant, the magnetic particles and their concentrations, characteristics

like solubility, viscosity, saturation magnetization and permeability are controllable. Since

the first generation of stable synthetic ferrofluids in 1965 [211], two main properties are

used for technical applications [210, 212]: magnetic position control and absorption of

electromagnetic energy [213].
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Being ferromagnetic, ferrofluids are attracted by magnetic field maxima, and hence

are used for dynamic sealing [214]. Ferrofluidic sealings are designed to protect sensitive

environments and machinery components, but still maintain the rotational degree of

freedom for a mechanical shaft. For this, a small amount of ferrofluid bridges the gap

between a stationary magnet and a magnetizable rotating shaft. This is used for instance

in hard disk drives that operate in a dust-free environment. The tiniest particle would be

larger than the gap between head and disk of typically 3 nm and would result in a head

crash and loss of data. As these sealings can permit pressure differences in the range of

one atmospheric pressure, they are also used for rotational feedthroughs in high vacuum

applications. One further mechanical usage of magnetic fluids is in loudspeakers35 [215].

Additionally, there are biomedical applications for ferrofluids [216]. The property of

ferrofluids to absorb electromagnetic energy at frequencies that differ from the water

resonance frequency allows localized hyperthermia treatment. This technique was already

used to treat brain tumours in human studies [217]. Further medical applications are in

localized drug targeting by external fields [218] and contrast enhancement for Magnetic

Resonance Imaging (MRI) [219].

Finally, magnetic fluids are an interdisciplinary topic that combine features of magnetism

and fluid behaviour in one medium. As a response on magnetic fields, these fluids can

display novel phenomena. These responses include spontaneous formation of labyrinth

patterns [220] and the normal-field or Rosensweig instability [86]. Both effects are shown

in figure 4.1 with a thin layer of ferrofluid36 and as a second non-magnetic medium a

chemiluminescent fluid. Despite all progress in the well-established field of ferrofluids,

recent progress still rises novel applications with magnetic control [221]. One example is

the self-assembly of magnetic nanoparticles in multipolar geometries [222].

In the next section, we use the theory of ferrohydrodynamics describing fluid motion with

strong forces of magnetic polarization [209]. This is the basis to identify the underlying

mechanisms responsible for a normal-field instability and the deformation of ferrofluids.

4.2. Normal-field instability of a classical ferrofluid

When a uniform magnetic field is applied perpendicular to a pool of magnetic fluid, it

can destabilize the interface with air or a non-magnetic fluid [223]. If the magnetic field

exceeds a critical value, a static ordered pattern deforms the surface. This spontaneous

pattern formation is called normal-field or Rosensweig instability [86]. To get insight in

this phenomenon, we present a description for the magnetic fluid motion that can be

derived using ferrohydrodynamics [209].

35A loudspeaker uses the Lorentz force on the voice coil, that is attached to the membrane, placed in
a permanent magnetic field. Most of the energy fed into a loudspeaker is wasted as dissipated heat
to the membrane or air. As this is not an effective cooling process, the ferrofluid closes any air gap
and conducts the heat away from the coil. In addition the fluid passively damps the movement of the
speaker and avoids resonant response characteristics.

36Ferrotec Educational Ferrofluid Type EFH1. The carrier liquid is a light mineral oil.
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Fig. 4.1. A patterned instability in a ferrofluid mixture. A thin layer of ferrofluid (EFH1)
with an unmixable non-magnetic chemiluminescent fluid taken from a glow stick. We
applied a magnetic field perpendicular to the plane of view with a permanent magnet.
One can observe in the center the normal-field instability with a triangular pattern
of seven droplets. On the outer region the two fluids exhibit a static pattern that is
related to the labyrinth instability. It exhibits a pattern of glowing bubbles within
domains of ferrofluid, that convert at the most outside region to fingers of magnetic
fluid. The picture was taken with the Canon EF 100mm f/2.8 USM Macro lens,
ISO-3200 and an exposure time of 2 s.

4.2.1. Hydrodynamic equations of an incompressible ferrofluid

To describe the mechanics of fluids with mass density ρ = ρ(r, t) one introduces the

velocity field v = v(r, t), which is a vector field that gives the velocity of an element of

fluid at position r and time t. As total mass or particle number are conserved, the density

and velocity field follow the continuity equation37

∂ρ

∂t
+∇ · (ρv) = 0 . (4.1)

Ferrofluids can in general be considered as incompressible [209, p. 20] such that the density

ρ is constant and the continuity equation reduces to a divergence-free velocity field

∇ · v = 0 . (4.2)

The continuity equation (4.1) describes the spatial dependence of the flow field v, while the

time dependence for incompressible fluids is well described by the Navier-Stokes equation

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+ ρη∇2v + f , (4.3)

37The continuity equation occurs in any field theory with a conserved quantity. In electromagnetism the
electric charge is conserved, while for quantum mechanics the probability density is a conserved quantity.
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with ∇p the thermodynamic pressure gradient, η the dynamical viscosity and f the sum

of all force densities that act throughout the whole volume38. Explicitly, for a ferrofluid

and assuming non-viscous flow the equation of motion simplifies39 to [209, p. 178]

ρ
∂v

∂t
+
ρ∇v2

2
= −∇p+ ρg0 + µ0M∇H , (4.4)

where g0 is the local gravitational acceleration40 and µ0M∇H is the Kelvin force density

[224, p. 144], [225], with H the magnitude of the auxiliary magnetic field and M the

magnitude of the magnetization field41. For the magnetic force density we neglect magne-

tostriction of the single magnetic nanoparticles, meaning that we assume the microscopic

magnetic moment to be constant [209, p. 111] and assume collinearity of magnetization and

magnetic field. In conclusion, equations (4.2) and (4.4) are known as the incompressible

Euler equations of ferrofluid dynamics.

In the following, we further simplify the Euler equations by investigating only potential

flows. This assumption involves only irrotational velocity fields that fulfil ∇ × v = 0.

Hence, the velocity field v can be described as the gradient of a scalar function

v = ∇Φ , (4.5)

the so-called velocity potential Φ(r, t). By using the first part of the Euler equations (4.2),

the velocity potential obeys Laplace’s equation [226, p. 21]

∇2Φ = ∆Φ = 0 . (4.6)

This equation needs further boundary conditions to be solved, especially for time-dependent

problems or surfaces to other media. Hence, we will insert the velocity potential from

eq. (4.5) to the second part of the Euler equations (4.4) and perform a volume integral to

derive the Bernoulli’s equation for unsteady potential flow [226, p. 19]

ρ
∂Φ

∂t
+
ρv2

2
+ p+ ρg0z − µ0MH = f(t) = 0 , (4.7)

where the gravitational force g0 is antiparallel to the z-direction and f(t) is an arbitrary

function of time, resulting from the integration. However, this function can be put equal to

zero by transforming the velocity potential with Φ′ = Φ−
∫
f(t) dt, as the resulting velocity

field remains unchanged. For steady flow (assuming the velocity potential is independent

of time) eq. (4.7) simplifies to Bernoulli’s principle or equation.

38A force density is defined as the force per unit volume. The force acting on a given volume V is defined
with the volume integral F =

∫
V
f dV .

39In addition the vector relation (v · ∇)v = ∇v2/2 is used.
40The gravitational force is a body force density defined as force per volume and density. The total force

acting throughout the body is F =
∫
ρg0 dV .

41The relation between B, H and M is in SI units B = µ0(H +M). The magnetization field is the
distribution of magnetic moments per volume and the magnetic moment is µm =

∫
M dV . As the

terminology for magnetic fields is far from being clear due to historical reasons, we use the following
expressions: B is the magnetic field, while H is the auxiliary magnetic field or auxiliary field.
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Fig. 4.2. Qualitative sketch for a surface disturbance in a ferrofluid. Initially the mag-
netic fluid occupies the region z < 0 with a flat surface, while the upper region is a
non-magnetic phase (dashed line). The applied uniform magnetic field is perpendic-
ular to the initial surface. The deflection of the surface is denoted with ζ with its
normal vector n. The gravitational force acts anti-parallel to the z-direction. Surface
displacements perturb the magnetic field B whereby the magnetic field is focused at
wave crests. Based on [209].

4.2.2. Dispersion relation of surface waves in a ferrofluid

Fluid surfaces tend to form a plane under the influence of gravitation. Applying a uniform

magnetic field perturbs the ferrofluid surface and can induce a normal-field instability.

Such external perturbations induce surface waves, that are discussed in this section to

derive a dispersion relation. We follow a similar approach as presented in [226, chapter 12

and 61].

To obtain the dispersion relation we consider an initially flat volume of ferrofluid

occupying the region of space z < 0. The upper half z > 0 is a non-magnetic phase, e.g. air

with a pressure p0 acting on the ferrofluid surface (see figure 4.2). To describe the surface

behaviour, we use Laplace’s equation42 (4.6) and Bernoulli’s equation (4.7). Starting with

Laplace’s equation, we define the boundary conditions: a surface wave propagating along

the x-axis that is uniform along the y-axis and without spatial boundaries in all directions,

meaning an infinite large plane. Consequently, we start with a simple harmonic assumption

for the velocity potential Φ = f(z) cos(kx− ωt) with the wave number k = 2π/λ. It fulfils

Laplace’s equation

∆Φ =
∂2Φ

∂x2
+
∂2Φ

∂z2
=
∂2f

∂z2
− k2f = 0 (4.8)

for f(z) = Aekz +Be−kz. We only take the first term as our fluid occupies the region z < 0

and the velocity potential has to remain finite. Thus, we obtain for the velocity potential

Φ = Aekz cos(kx− ωt) . (4.9)

The dispersion relation is still undefined, so we must set further boundary conditions. As

we deal with a surface, we have to take into account the surface tension as a boundary

condition. If the surface is curved, the pressures in the two media are different. This is

42This equation limits the solutions on an irrotational velocity field, however, this is non-relevant for this
section that focuses on surface waves.
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expressed in the Laplace formula or Young-Laplace equation

∆p = p0 − p = σs

(
1

Rx

+
1

Ry

)
, (4.10)

where σs is the surface tension coefficient and Rx, Ry are the principal radii of curvature

of the surface at a given point. The velocity potential also has to fulfil the Bernoulli’s

equation (4.7). This equation is simplified by considering surface waves with amplitudes

much smaller than the wavelength λ. Hence, the velocity of moving fluid particles is

comparatively small such that we can neglect43 the second term in eq. (4.7) and insert

eq. (4.10)

ρ
∂Φ

∂t
+ ρg0z − σs

(
1

Rx

+
1

Ry

)
− µ0MH = p0 . (4.11)

We define a small surface perturbation ζ = ζ(x, y, t) that represents the z-coordinate of a

point on the surface, where the equilibrium state is ζ = 0 (see figure 4.2). To remove the

constant pressure p0 from the equation above, we redefine the potential Φ′ = Φ + (p0/ρ)t,

as the resulting velocity field remains unchanged. Hence, by dropping the primes, eq. (4.11)

results in

ρ
∂Φ

∂t
+ ρg0ζ − σs

(
∂2ζ

∂x2
+
∂2ζ

∂y2

)
− µ0M

kµrMζ

1 + µr

= 0 , (4.12)

with µr the relative permeability44 and where we have replaced the auxiliary field H

by its expression obtained in appendix A.8 with eq. (A.46). The vertical component of

the velocity is vz = ∂ζ/∂t and according to the definition of the velocity potential also

vz = ∂Φ/∂z applies. Finally, by differentiating the relation (4.12) with respect to t and

afterwards replacing the time derivative ∂ζ/∂t by a spatial derivative ∂Φ/∂z, we obtain

the boundary condition on the potential Φ

ρ
∂2Φ

∂t2
+ ρg0

∂Φ

∂z
− σs

∂

∂z

(
∂2Φ

∂x2
+
∂2Φ

∂y2

)
− µ0µrkM

2

1 + µr

∂Φ

∂z
= 0 . (4.13)

At last, inserting the potential Φ from eq. (4.9) in the condition (4.13) results in the

dispersion relation of surface waves in a ferrofluid [209, p. 189]

ρω2 = ρg0k + σsk
3 − k2µ0µrM

2

1 + µr

. (4.14)

The first term on the right-hand side corresponds to gravity waves existing at the fluid

surface with the gravitational force acting as a restoring force [226, p. 39]. They dominate

the right side of eq. (4.14), when k is small or correspondingly when the wavelength is

43This approximation can be understood as follows: During one oscillation period τ the fluid particles
travel the amplitude a of the wave, hence their velocity is on the order of v = a/τ . The velocity varies
noticeably for time intervals on the order of τ or distances on the order on the wavelength λ. Therefore
comparing the terms on the left hand side of eq. (4.4) the condition ∇v2 � ∂v/∂t is equivalent to
a2/λτ2 � a/τ2 or a� λ. Hence, the oscillation amplitude has to be small compared to the wavelength.

44The relative permeability is the ratio of the medium permeability µmed = µ0(1 + χmed) to the vacuum
permeability µ0, with χmed the magnetic susceptibility. Or in other words µr = 1 + χmed.
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Fig. 4.3. Dispersion relation of ferrofluid surface waves. a, The dispersion relation of
surface waves in a ferrofluid shown in the ω2-k plane for different values of magneti-
zation M . For the calculated example shown here, we used the measured properties
[227] of the magnetic fluid EFH1 (ρ = 1169 kg/m3, σs = 0.0258 N/m, µr = 2.552). b,
A ferrofluid in the presence of an applied magnetic field perpendicular to the surface
remains flat for small magnetization. If the magnetic field (induced magnetization)
exceeds a critical value, the surface develops a triangular pattern of spikes due to a
softening of excitations. Images taken from [228].

long. Wind-generated ocean waves are an example of gravity waves. The second term

is dominant for high values of k and such waves are called capillary waves [226, p. 238].

These waves also travel at the inter-phase boundary of the fluid but in contrast to gravity

waves the dynamics is dominated by the surface tension σs. Typically capillary waves on a

water surface are ripples with a wavelength of a few centimeters. The dispersion relation

of waves is shown in figure 4.3a as red dashed line. For small values of k the graph starts

linear, while for higher values the cubic capillary term dominates.

The last term is of importance for intermediate values of k, when a magnetic field is

present. It describes a magnetic field concentration at the peaks of a surface disturbance,

as depicted in figure 4.2. As a ferrofluid is attracted by field maxima it gives a negative

contribution to the dispersion. Additionally, as ω appears squared, the negative magnetic

term can lead to an imaginary ω. For a critical magnetization45 Mc the dispersion relation

becomes zero for a finite value of k (green line in figure 4.3a) and the Rosensweig instability

occurs [86]. This instability describes the phenomenon of a flat ferrofluid surface developing

surface perturbations for a critical external field. These perturbations create a regular

pattern, typically triangular, of surface spikes, as shown in figure 4.3b. This transition

from a flat surface of surface spikes presents a hysteresis, closely related to first-order

phase transitions [229].

4.3. Deformation of a ferrofluid drop in a uniform

magnetic field

Magnetostriction is a property of magnetic materials that causes to change their shape

due to a change in magnetization. In 1842 James Joule identified the magnetostrictive

45The critical magnetization is calculated by M2
c = 2

µ0µr
(1 + µr)

√
ρg0σs with the corresponding critical

wave number kc =
√
ρg0/σs [209, p. 191].

51



Chapter 4. Classical and Quantum Ferrofluids: a Comparison

effect on an iron bar exposed to a magnetic field [230]. Similar effects on the shape of

a magnetizable fluid are possible under particular conditions. The starting point is a

spherical magnetic fluid drop in the absence of any external force. The surface tension

maintains the spherical shape in equilibrium as the surface energy is minimized with the

smallest surface area. By applying a uniform homogeneous magnetic field, the drop deforms

into a prolate spheroid, whose long axis is along the magnetic field lines to minimize its

magnetic energy. Therefore, the magnetic forces counteract the surface tension and can

even induce a jump in elongation.

Experiments showing these effects were performed for an immiscible ferrofluid drop in a

non-magnetic fluid [231, 232]. Both fluids have the same density such that the magnetic

drop is levitating against gravity. This instability or jump in shape can be understood

from a balanced interplay between magnetic energy and interfacial tension energy. In the

following, we present the contributing energy terms and find stable shapes by minimizing

the total energy.

In the absence of a magnetic field, a levitating ferrofluid drop has a spherical shape

with a radial size of R0 in equilibrium. In the presence of a magnetic field, the drop forms

a shape close to a prolate spheroid with semi-major axis length Rc and semi-minor axis

length Ra. In the following, we use a constant volume of V = 4
3
πR3

0 = 4
3
πR2

aRc during any

state of deformation. So, the product of the surface tension coefficient σs and the spheroid

surface gives the surface energy46

Es(κ) = 2πσsR
2
0κ
−1/3

(
κ+ ε−1 arcsin ε

)
(4.15)

with the aspect ratio κ = Ra/Rc and the eccentricity ε(κ) =
√

1− κ2. The surface tension

shows an energetic minimum for the smallest surface, which are round spheres with an

aspect ratio of κ = 1.

On the contrary, the magnetic energy for a spheroidal drop exposed to a homogeneous

field takes the form [232]

Em(κ) = −V µ0H
2

2

(
1

µr − 1
+Dm(κ)

)−1

(4.16)

with the shape dependent deformation factor47 [234, p. 211-215]

Dm(κ) =
κ2

1− κ2
− κ2artanh

√
1− κ2

(1− κ2)3/2
. (4.17)

46The surface area of a prolate spheroid is given as A = 2πRaRc

(
κ+ ε−1 arcsin ε

)
. In the limit of a

sphere with Ra = Rc = R0 the surface area simplifies by using κ = 1, ε = 0 and limε→0 ε
−1 arcsin ε = 1

to A = 4πR2
0.

47Here the deformation factor or demagnetization factor Dm is used to describe the magnetic material’s
response to a magnetic field. The factor Dm is defined such that a uniformly magnetized object
M in a uniform magnetic field B shows a magnetic auxiliary field interior of the medium with
Hmed = B/µ0 −DmM . Evidently, the auxiliary field inside the medium Hmed points oppositely to
the magnetic field B when the magnetization field M is sufficiently strong. Outside the medium the
relation B/µ0 = H is always true.
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Fig. 4.4. Deformation of a ferrofluid drop. a, Photographs of a ferrofluid drop at different
magnetic field strengths. The first image was taken at B1 = µ0H1 ≈ 76 G and the
drop elongates further for increasing magnetic field. The drop shape is described by
a spheroid with axes Ra, Rc and the aspect ratio κ = Ra/Rc. Measured parameters
for the drop are µr = 1.89, σs = 0.0135 N/m and R0 = 1.29 mm leading to the value
µ0H

2
1R0/σs ≈ 4.4 [233]. b, Variation of the aspect ratio κ for increasing magnetic

field, shown for different relative permeabilities µr (black lines). For µr & 21 it shows
an s-shaped curve and unstable regions (grey filled area). Due to this behaviour the
drop can become unstable and turns to a different elongated state (grey dashed lines).

In this case of a spheroid it has the limits Dm(1) = 1/3 (sphere) and Dm(0) = 0. As a

consequence the magnetic energy is minimized for fully elongated drops with κ→ 0. With

this interplay of surface and magnetic forces, the drop adapts to elongated spheroids along

the field direction to reach its energy minimum, as shown in figure 4.4a.

In order to give a quantitative expression for the drop shape with aspect ratio κ, we

search for extrema in the total energy Es + Em with respect to κ for a given field H and

size R0. This results in the expression µ0H
2R0/σs = g(κ) [232], where the function g(κ)

is given in appendix A.9 with eq. (A.49). Figure 4.4b gives the calculated aspect ratio

κ against the function g(κ). The horizontal axis is regarded as an axis of magnetic field

squared. First, one sees the obvious behaviour that a magnetic drop elongates to lower

aspect ratio κ for increasing magnetic field. Second, for increasing relative permeability

µr, the function goes from a monotonic curve to an s-shaped one. The transition between

these two shapes appears for µr & 21, a value found for ferrofluids with high concentrations

of magnetic particles48. Further analysis of the energy functional shows that a part of

the s-shaped curves corresponds to a local maximum in total energy, that is marked in

figure 4.4b as grey area . Therefore, this part is unstable and for increasing magnetic field

the magnetic drop can become unstable and subsequently must go to a stable point with

a much more elongated shape. By again decreasing the magnetic field, the deformation

shows a hysteresis effect in relation to a first order phase transition. Such an instability

of ferrofluid magnetic drops including the hysteresis has been observed experimentally in

[232] with a very concentrated ferrofluid phase with µr ≈ 40.

48The record for the relative permeability of ferrofluids is µr ≈ 180 at a temperature of -50◦C [235, 236].
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Finally, studies on the deformation of a non-levitating ferrofluid drop on a superhy-

drophobic surface, lead also to an elongation along the direction of the field [237, 238].

This deformation is illustrated in figure 4.5a,b for a ferrofluid drop submitted to a vertical

magnetic field. However, when including a vertical magnetic gradient acting on the drop

this first again leads to a deformation of the drop into a spiked cone and for a critical field

strength to cleavage into two smaller drops [239], see figure 4.5c-e. For onward increasing

magnetic field, the drops split further into drop patterns showing a static self-assembly of

ferrofluid drops into ordered structures with mainly triangular symmetry, see figure 4.5f,g.

The drop division is related to the Rosensweig instability from section 4.2, but differs from

it in several ways. For instance, the Rosensweig instability appears also in a homogeneous

magnetic field, while for the drop patterns one requirement is a magnetic gradient. Further,

a Rosensweig pattern is reversible, while the drop patterns are irreversible when the field is

removed (see figure 4.5h). The irreversibility preventing convergence is due to a repulsion

between the drops and the non-wetting nature of the substrate, which ensures that the

drops are not physically connected.

Herewith, the overview on classical ferrofluids ends. The rest of the chapter concentrates

on quantum ferrofluids and points out the similarities of classical and quantum ferrofluids.

4.4. Softening of excitations in a quantum ferrofluid

In many-body physics elementary excitations are non-trivial and important, as they can

describe properties such as superfluidity and its critical velocity [101, 159, 240]. First

evidence for elementary excitations in a dilute condensate has been observed in 1996 as

collective oscillations [241] in agreement with hydrodynamic equations for superfluids [226,

p. 507]. Hence, in the following section we derive the quantum hydrodynamics in close

similarity to classical hydrodynamics. After that, we use this description to determine

the excitation spectrum of a homogeneous gas and consider phonon and roton softening,

which lead to instabilities.

4.4.1. Hydrodynamic equations of a compressible quantum

ferrofluid

Describing a quantum ferrofluid in a similar way as a classical ferrofluid may be achieved

by using an equivalent set of equations for the GPE (2.12). These equations are dependent

on the density n = |Ψ|2 and the gradient of the phase, which is proportional to the local

velocity of the condensate. To understand the nature of the velocity of the condensate, we

follow a similar approach as described in [94, p. 41] and [95, p. 184].

We start with the dipolar non-local GPE (2.12), multiply it by Ψ∗(r, t) and subtract

the complex conjugate of the resulting equation49. One derives the equation

∂|Ψ|2

∂t
+∇ ·

[
~

2mi
(Ψ∗∇Ψ−Ψ∇Ψ∗)

]
= 0 , (4.18)

49Subtracting the complex conjugated part is equal to twice the imaginary part.
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Fig. 4.5. Ferrofluid drop on a superhydrophobic surface. a,b, Photographs of a 20µl
ferrofluid drop exposed to a nearly uniform magnetic field perpendicular to the surface.
The drop elongates along the magnetic field direction and its ellipticity increases for
higher fields (field values given in figure). c-h, Ferrofluid drop upon increasing a
non-uniform field with a strong magnetic gradient (the vertical magnetic field and
gradient values are shown in the figure). The state of the drop is as follows: c, near-zero
field (nearly spherical drop); d, strong field (conical spiked drop); e, above critical
field (two daughter drops); f,g, increasing field leads to more drops; h, decreasing field
shows strong hysteresis. Adapted from [239, Supplementary Materials].

that is the same as one obtains from a usual linear Schrödinger equation, as all non-linear

potentials in the GPE are real. Eq. (4.18) is the continuity equation for the particle density

n = |Ψ|2 and may be written as

∂n

∂t
+∇ · (nv) = 0 , (4.19)

where the velocity of the condensate is defined by

v =
~

2mi

Ψ∗∇Ψ−Ψ∇Ψ∗

|Ψ|2
. (4.20)

The continuity equation (4.19) has now exactly the same form as eq. (4.1) for classical

fluids. Here the conserved quantity is the probability density or particle density, while for

the classical fluid it is the total mass or particle number. However, a gas is compressible,

in contrast to an incompressible fluid with constant density described in section 4.2.1.

By expressing the wave function into an amplitude and a phase, we might write it as

Ψ(r, t) =
√
n(r, t) eiS(r,t) and in this case the velocity of the condensate is with eq. (4.20)

v =
~
m
∇S . (4.21)

This equation describes the condensate with potential flows and the velocity potential is

Φ = ~S/m, in equality with eq. (4.5) for classical fluids. Hence, this condition is only valid

for irrotational motions of the condensate that meet ∇× v = 0.
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By inserting the previously defined wave function Ψ =
√
n eiS in the GPE (2.12) and

separating imaginary and real part50, we end up with the continuity equation (4.19) for

the imaginary part and the real part reads

− ~
∂S

∂t
= − ~2

2m
√
n
∇2
√
n+

mv2

2
+ Vext(r) + gn+ Φdip(r) . (4.22)

We find the equation of motion for the velocity by taking the gradient of the last equation

m
∂v

∂t
+
m∇v2

2
= −∇p

n
−∇Vext −∇Φdip +∇

(
~2

2m
√
n
∇2
√
n

)
(4.23)

with v given by eq. (4.21) and we define the pressure p = n2g/2. Comparing eq. (4.23)

with the Euler equation of a ferrofluid (4.4) shows a close similarity. They both include a

kinetic energy term proportional to ∇v2, a pressure gradient ∇p, an external force that

causes trapping and an internal magnetic interaction. The only difference between the

two equations is the last term in eq. (4.23) that corresponds to the zero-point energy,

sometimes called quantum pressure.

Another minor difference exists in the magnetic interaction terms ∇Φdip and the Kelvin

force µ0M∇H from eq. (4.4). A quantum ferrofluid is in the ultracold regime, and hence

the magnetic constituents are fully spin polarized for magnetic fields51 exceeding ∼10 mG.

Thus, for quantum ferrofluids the dipolar interaction energy is typically independent of the

magnetic field strength, while for classical ferrofluids the magnetization usually increases

for higher magnetic fields

4.4.2. Dispersion relation of a homogeneous dipolar gas

We now use the hydrodynamic equations to get a dispersion relation for quantum gases.

By considering a three-dimensional (3D) homogeneous gas without external trapping

and introducing small density perturbations to linearize the equations, we examine the

excitation spectrum and possible instabilities. We obtain (calculated in appendix A.2) the

Bogoliubov excitation spectrum [159, 242] of a dipolar homogeneous condensate

E(q) = ~ω(q) =

√(
~2q2

2m

)2

+
~2q2

2m
2n0 [g − gdd(1− 3 cos2 α)] , (4.24)

where α is the angle between the polarization direction µm and the wave propagation q.

For high values of q the dispersion relation is well described with a quadratic dispersion

with Efree(q) = ~2q2/2m the free particle energy. Whereas for small momenta, the

excitations show a linear sound-like dispersion that can be related to modes of phonon

quasi-particles. Indeed, the sound velocity is defined as cs(α) = limq→0E(q)/q and reads

50The separation is done with following relations: i∂Ψ
∂t = i∂

√
n

∂t eiS − ∂S
∂t

√
n eiS with ∂n

∂t = 2
√
n∂
√
n

∂t and
−∇2Ψ = (−∇2

√
n+
√
n(∇S)2 − i

√
n∇2S − 2i∇

√
n∇S) eiS with 1√

n
∇(n∇S) =

√
n∇2S + 2∇

√
n∇S

51The Zeeman energy has to be similar to the thermal energy. Thus, the rough estimate µBB ≈ kBT
yields B = 10 mG for T = 700 nK.
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Fig. 4.6. Excitations in a homogeneous quantum gas. a, Universal dispersion relation of
a 3D homogeneous dipolar Bose gas in dimensionless units with the sound velocity
cs =

√
n0g/m. Without dipolar interactions (red solid line) the dispersion relation

starts linearly with a transition to a quadratic free particle behaviour. Weak dipolar
interactions (blue lines) stiffen the dispersion for phonons travelling parallel (α = 0)
in polarization direction µm, while softening in the perpendicular direction (α = π/2).
Strong dipolar interactions (green lines), change the dispersion dramastically (see
inset) and can lead to a phonon instability. b, Illustrating the phonon instability
for strongly dipolar gases. Density waves perturb the homogeneous gas and create
lines of increased density (grey shaded area). Dependent on the phonon propagation
direction, the created lines show dipolar repulsion and are stable (α = 0) or show
dipolar attraction and are unstable (α = π/2).

cs(α) =
√
n0g/m

√
1− εdd(1− 3 cos2 α). The dipolar interaction induces an anisotropic

sound velocity (see figure 4.6a). It is maximal for excitations propagating along the

magnetization direction (α = 0), while it is minimal in the perpendicular direction

(α = π/2). This anisotropy of the excitation spectrum52 has been investigated with Bragg

spectroscopy [245] in a chromium BEC with εdd = 0.15 [54].

Strong dipolar interactions (εdd & 1) reveal the anisotropy of the excitation spectrum

(see inset of figure 4.6a). While the phonon modes in magnetization direction (α = 0)

are stiffened and show real and positive excitation energies, the opposite happens in the

perpendicular direction. There (α = π/2) the dipolar interaction softens the modes and

leads for gdd > g to imaginary excitation energies, indicating a so-called phonon instability.

The phonon instability occurs for phonons with the lowest possible momentum q → 0.

Figure 4.6b intuitively illustrates this anisotropic behaviour. A phonon with q in the

magnetization direction µm creates planes of higher density where the dipoles point out

of the density plane. In this configuration the dipoles interact repulsively leading to

an increased energy and hence a stable configuration. This is again the opposite for

the perpendicular direction. Here, the lines of increased density are aligned with the

dipoles, introducing an attractive dipolar interaction. The system can lower its energy by

populating this unstable mode that finally leads to a phonon instability.

52For trapped condensates in Thomas-Fermi approximation the averaged sound velocity is decreased by
the factor 32/15π [243, 244].
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To conclude this section, let us compare the results in a homogeneous dipolar gas with

a classical ferrofluid. In section 4.2 we focused on incompressible ferrofluids and hence

neglected any local density changes needed for sound waves53. However, anisotropic sound

velocities have been predicted [246] and measured [247] for compressible ferrofluids with

vicious flow. Here, the anisotropy arises from a change in the ferrofluid microstructure

that modifies the viscosity, but the actual mechanism is very complicated and remains

unclear. One possible process might be the formation of magnetic particle chain clusters

[248]. A detailed view into the acoustics of magnetic fluids is given in [249, section 3.9].

4.4.3. Roton excitations in a two-dimensional geometry

In the previous section we presented the property of homogeneous condensates to become

dynamically unstable for dominating dipolar interactions (εdd ≥ 1). For this part, we

will show that in contrast to 3D condensates a quasi-two-dimensional (2D) gas is stable

even for strongly dipolar BECs (εdd � 1). This situation is achieved by adding a strong

harmonic trapping potential in the polarization direction with trapping frequency ωz. If

the confinement is sufficiently strong54 the density distribution is restricted to the ground

state of the harmonic oscillator. Consequently, the excitations along the z-direction are

exponentially suppressed, which prevents softening of phonon modes propagating along

the dipole direction [250].

By assuming the above mentioned, we can analytically calculate (see appendix A.3) the

excitation spectrum of a two-dimensional homogeneous dipolar BEC [250, 251]

E(q⊥) =

√(
~2q2
⊥

2m

)2

+
~2q2
⊥

2m
2n0

[
g + 2gddH2D

(
q⊥σz√

2

)]
(4.25)

with q⊥ the absolute value of the quasi-momentum perpendicular to the confinement and

dipole direction, H2D(x) = 1 − 3
√
π

2
|x| erfc(x)ex

2
with erfc(x) the complementary error

function and we recall σz =
√

~/mωz. By comparing the dispersion relations of the

3D (eq. (4.24)) and 2D homogeneous case they exhibit a similar structure. However,

they feature one major difference in the 2D case, as the effective dipolar contribution

is dependent on the absolute value of the quasi-momentum q and is proportional to the

monotonously decreasing function H2D(q⊥σz/
√

2), depicted in figure 4.7a.

As already mentioned the reduction to two dimensions changes the stability properties.

Considering the phonon instability for momentum q → 0, one gets the 2D stability criterion

g + 2gdd > 0. If this condition fails, the dispersion energy becomes imaginary, indicating

the missing existence of a ground state. However, due to the momentum dependence of the

dipolar interaction, there exists one further possible instability: The dispersion relation

may show a local minimum at finite values of q⊥ for gdd > g, as seen in figure 4.7b. In

analogy to the excitations in superfluid helium [34, 240, 252] the quasi-particles related to

53The derivation of sound waves in fluids is well established [226, p. 245], but the anisotropic sound
velocity is beyond the scope of this thesis.

54This means it has to satisfy the condition µ = n0(g + 2gdd)� ~ωz.
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We plot three different contact interaction strengths: purely dipolar case (red dashed
line), attractive regime (blue dash-dot line) and for values at the roton instability
with a local minimum (green solid line). For the plot we used following values for
dysprosium atoms: n0 = 1020 m−3, n0gdd/~ = 2π · 536 Hz and ωz = 2π · 2 kHz.

this minimum are called rotons. The excitation spectrum with such a roton minumum is

often referred to a roton-maxon spectrum [33]. This roton-maxon-spectrum is observable in

a small parameter range of interaction strengths, as shown in figure 4.7b. If the minimum

reaches zero energy (in the figure achieved by decreasing the contact interaction strength

g) a roton instability occurs, that is fundamentally different to a phonon instability. While

a phonon instability happens at zero momentum, a roton instability is related to a finite

momentum, meaning the instability exhibits a characteristic roton length scale.

Following the main message of this chapter, we again compare the demonstrated

properties of a quantum ferrofluid with a classical ferrofluid. The roton-maxon-spectrum

shown here in a 2D quantum ferrofluid is similar to the excitation spectrum of surface

waves in classical ferrofluids presented in section 4.2.2. For example, they both feature a

dispersion relation with local minimum at a finite length scale. Furthermore, in both cases

tuning the internal interaction properties of the fluid can drive the fluid to an instability:

the Rosensweig instability for the classical case and the roton instability for the quantum

one. Subsequent to the instability, a classical ferrofluid undergoes spontaneous deformation

into regular surface patterns. A very similar pattern formation has been theoretically

predicted for an interface of a dipolar condensate [253].

Finally, we mention a short list of predicted roton-related effects for trapped dipolar

condensates in three dimensions. All the mentioned effects were calculated using numerical

methods to evaluate the Gross-Pitaevskii equation (2.12). Analytical approximations as

shown in section 2.3.2 and 2.3.3 are not feasible predicting such unusual effects.

Under certain circumstances an oblate shaped dipolar BEC assumes a biconcave shape,

with its maximum density off-center [31, 32]. These biconcave condensates can become

unstable due to azimuthal excitations, a so-called angular roton [254]. Perturbation theory

has shown that the unstable density modulation has a wavelength characteristic of the

roton length scale [255]. Last, the roton-maxon spectrum remains for three dimensions,

but is broadened as its shape is density dependent [256, 257].
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4.5. Deformation and stability of a trapped dipolar

condensate

Now, we discuss the static properties of trapped inhomogeneous dipolar condensates, such

as deformation and stability conditions. Recalling section 2.3.3, we introduced the density

distribution of a non-dipolar condensate in the Thomas-Fermi approximation to be an

inverted parabola given by eq. (2.21). As the short-range contact interaction is isotropic

and only dependent on local properties, the Thomas-Fermi radii in the three different

directions are independent, see eq. (2.22). Whereas, when considering a dipolar condensate,

the occurring dipolar interaction is anisotropic and long-range, and hence depends on

global properties, such as the complete spatial extent. Thus, we expect the Thomas-Fermi

radii to be coupled with each other and to show an anisotropic behaviour.

In this section we focus on the static behaviour of quantum gases, such as magne-

tostriction or instabilities. Both are an important source of information about the nature

of dipolar condensates. But first, we have to introduce the hydrodynamic equations in

Thomas-Fermi approximation.

4.5.1. Hydrodynamics in Thomas-Fermi approximation

Now, we utilize the Thomas-Fermi approximation, that we already introduced in section

2.3.3 and give the theoretical tools needed to describe static properties of dipolar con-

densates. The Thomas-Fermi approximation neglects the kinetic term in the stationary

GPE (2.14). Equally, neglecting the quantum pressure term of the hydrodynamic equa-

tions (4.19) and (4.23) results in the Thomas-Fermi limit valid for dominant interactions.

The presence of the non-local dipolar mean-field potential Φdip (2.15) means that the

hydrodynamic equations are integral equations that are not trivial to solve. Nevertheless,

by adopting an inverted parabola ansatz for the density profile55 with eq. (2.21), the

dipolar mean-field potential contains only terms that are constant or quadratic in the

spatial coordinates. This leads to the remarkable effect that even by including dipolar

interactions the density distribution remains an inverted parabola. This behaviour has

been investigated extensively for trapped [258, 259] and free expanding condensates [36–38].

In the following short summary, we will focus on static inhomogeneous trapped quantum

ferrofluids in Thomas-Fermi approximation, whose equilibrium state is described with

µ = Vext(r) + g n(r) + Φdip(r) , (4.26)

that is the stationary case (v = 0) of eq. (4.22) neglecting the quantum pressure term.

First, to simplify the discussion on trapped quantum ferrofluids, we choose a trapping

potential with a cylindrical symmetry along the polarization direction z of the magnetic

dipoles. The external trap then reads Vext(ρ, z) = m/2 (ωρρ
2 + ωzz

2) with ρ2 = x2 +y2 and

55Although this section is about static properties, we give for completeness the respective velocity of the
condensate as v(r, t) = 1

2∇
[
αx(t)x2 + αy(t)y2 + αz(t)z

2
]
, where the parameters αj = Ṙj/Rj describe

the radii change in time.
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we define the trap aspect ratio λ = ωz/ωρ. Second, for the density distribution we adopt

an inverted parabola with cylindrical symmetry and corresponding Thomas-Fermi radii

Rρ in radial direction and Rz in axial direction. We may also define the condensate aspect

ratio κ = Rρ/Rz, as was done for the treatment of classical ferrofluid drops in section

4.3. The evaluation of the dipolar mean-field potential Φdip (2.15) over the parabolic

density distribution can be achieved analytically through the use of spheroidal coordinates

[258, 259]. It results in a potential inside the condensate region, given by

ΦTF
dip(ρ, z, κ) = n0gdd

[
ρ2

R2
x

− 2z2

R2
z

− fdip(κ)

(
1− 3

2

ρ2 − 2z2

R2
x −R2

z

)]
(4.27)

with the geometry dependent dipolar anisotropic function

fdip(κ) =
1 + 2κ2

1− κ2
− 3κ2artanh

√
1− κ2

(1− κ2)3/2
. (4.28)

The dipolar anisotropic function is illustrated in figure 4.8a and is a monotonically

decreasing function that changes sign at κ = 1. It is very similar to the deformation factor

of classical ferrofluids mentioned in eq. (4.17). As stated before the terms in ΦTF
dip are

either constant or quadratic in the spatial coordinates, just like the contributions of the

harmonic trap or contact interaction to eq. (4.26). Thus an inverted parabola remains a

self-consistent solution to the dipolar hydrodynamic equations.

To get an intuitive picture how the dipolar mean-field potential alters the condensate

shape, we consider a spherical symmetric trap (λ = 1) with frequency ω. For a weakly

dipolar condensate (εdd � 1) the density distribution remains nearly spherical (κ = 1)

with a Thomas-Fermi radius R. Then the calculated dipolar mean-field potential is [260]

ΦTF
dip(r, κ = 1) = εdd

mω2

5

(
1− 3 cos2 ϑ

){r2 for r ≤ R
R

5

r3
for r > R

. (4.29)

For this case, as shown in figure 4.8b, the dipolar mean-field potential ΦTF
dip is saddle-shaped.
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It is attractive along the polarization axis and repulsive perpendicular to it. The potential

outside the condensate corresponds obviously to a field generated by N dipoles located at

the center of the condensate. Therefore, a dipolar condensate becomes elongated along

the polarization axis due to the anisotropic, mean-field dipolar potential. Such a change

of the cloud shape due to internal magnetic forces is called magnetostriction and will be

discussed in the next section.

4.5.2. Magnetostriction of quantum ferrofluids

We have seen in the previous section that a parabolic density profile is a solution of the

hydrodynamic equation (4.26) in Thomas-Fermi approximation. It remains to determine

the Thomas-Fermi radii such that they satisfy the hydrodynamic equation. Substituting

the dipolar mean-field potential (4.27) in the hydrodynamic equation (4.26) and comparing

constant and quadratic coefficients in respect to the spatial coordinates, yields three

coupled equations. The first equation, due to the constant terms, determines the chemical

potential

µ = n0 [g − gddfdip(κ)] = g n0 [1− εddfdip(κ)] . (4.30)

This equation indicates that the effect of the dipolar interaction lowers the chemical

potential56 for prolate condensates (κ < 1), while raising it for oblate condensates (κ > 1).

The second and third equation are obtained from the quadratic coefficients and determine

the Thomas-Fermi radii [258, 259]

Rρ = 151/5

(
Na

a

)1/5 (
λ2/3κ

)1/5
[
1 + εdd

(
3

2

κ2fdip(κ)

1− κ2
− 1

)]1/5

a (4.31)

and Rz = Rρ/κ with57 the condensate aspect ratio κ, determined by solving the transcen-

dental equation

λ = κ

(
1 + 2εdd − 3εddfdip(κ)

1−κ2

1− εdd + κ2

2

3εddfdip(κ)

1−κ2

)1/2

. (4.32)

Figure 4.9a shows typical density profiles of non-dipolar and dipolar condensates in a

spherical trap (λ = 1). For increasing dipolar interaction the condensate becomes more

prolate than the external trap and it always presents κ < λ. Or in other words, a dipolar

condensate elongates along the polarization direction showing magnetostriction due to the

interplay of external trapping, short-range interactions and anisotropic dipolar interactions.

Evidently, the condensate and trap aspect ratio are equal in the non-dipolar case and the

radii simplify back to eq. (2.22) derived in section 2.3.3.

We take a closer look at the transcendental equation (4.32) with figure 4.9b. Usually in

experimental realizations the external confinement remains constant, while one changes the

56Note that this also changes the validity criterion for the Thomas-Fermi approximation compared to
section 2.3.3. The approximation is suitable if N(a − fdip(κ)add)/a � 1 is fulfilled. A systematic
discussion in [261] results in more accurate values describing the very prolate case N(a−add)κ5/3/a� 1
and the very oblate case N(a+ 2add)/κ10/3a� 1.

57Recalling the characteristic oscillator length a =
√

~/mω with ω = (ω2
ρωz)

1/3.
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internal interactions. Hence, we focus on a constant trap aspect ratio λ and increase the

relative dipolar strength εdd, depicted as black lines in figure 4.9b. As long as 0 ≤ εdd ≤ 1

there exists a single solution for any chosen λ. As expected, the condensate aspect ratio κ

decreases for stronger dipolar interactions. But for εdd > 1, the transcendental equation

develops imaginary solutions (black region) and exhibits further possible solutions (below

the dashed black line). This may indicate an instability of a dipolar condensate and is the

subject of what follows.

As one might expect, any solutions below the dashed line in figure 4.9b are unstable

solutions that do not belong to an energetic minimum. This would be very similar to the

deformation of a classical ferrofluid drop, introduced in section 4.3. A ferrofluid drop also

elongates along the magnetic field direction and eventually undergoes an instability for

sufficiently strong dipolar interactions. The previous analysis of the interplay of surface

energy and magnetic energy explained stable and unstable regions in figure 4.4. Therefore,

to be fully convinced for the case of a quantum ferrofluid, we analyse the energy functional

(2.16) evaluated for a parabolic density profile in the next section.
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4.5.3. Instability due to deformation

In order to get a more quantitative insight into the instability of a dipolar condensate,

we calculate the energy functional (2.16) in Thomas-Fermi approximation. We again

consider an external radially symmetric trapping and evaluate the energy functional over

a general radially symmetric parabolic density profile with Thomas-Fermi radii Rρ and Rz

as variational parameters. We mention the resulting energy expressions in appendix A.5,

that are used in the following.

To obtain the instability region, we investigate the energy landscape E(Rρ, Rz) and

search for energy minima. We give a detailed discussion about the case of a dipolar BEC in

a trap with aspect ratio λ = 3, shown in figure 4.10a-d, and keep figure 4.9b in mind. For

εdd < 1 the energy landscape supports a global minimum for λ = 3 and also for any other

harmonic external trap (figure 4.10a). When lowering the contact interaction to εdd > 1,

the absolute ground state of the system is an infinitely thin BEC with κ→ 0. Depending

on the trap shape there can exist a local minimum in the energy landscape corresponding

to a metastable state. We call it metastable as this minimum is energetically disconnected

by a barrier from the absolute ground state. For example in the case of λ = 3, we show a

metastable state with ε = 1.1 in figure 4.10b. Reminding figure 4.9b, the solutions below

the dashed line correspond to the saddle-shaped barrier in the energy landscape and hence

an unstable solution. Finally, when the scattering length is further decreased the local

minimum vanishes at acrit (figure 4.10c) and hence the missing existence of any stable or

metastable state with a < acrit (figure 4.10d).

For each trap aspect ratio there exists a specific critical scattering length acrit when the

local minimum vanishes and we show this dependence in the so-called stability diagram

with figure 4.10e as orange line. Dipolar condensates in prolate shaped traps with λ < 1 are

unstable for positive scattering length with a < add = acrit. The condensate is elongated

along the polarization direction and the dipoles mainly attract each other. The dipolar

energy contribution is then negative and has a destabilizing character for the system.

Hence, only sufficiently strong repulsive contact interaction stabilizes the system. In

contrast, dipolar condensates in strongly oblate traps with λ � 1 can be stabilized for

a < add. In this geometry the dipoles sit mainly side-by-side and repel each other, which is

a positive dipolar energy contribution and stabilizes the system. Here, it may be possible

to generate stable systems with attractive contact interactions.

In the previous section 2.3.2 we also introduced another variational method utilizing a

Gaussian density profile. When using a Gaussian density distribution as a trial function,

one derives energy expressions written in appendix A.6. The expressions imply the

quantum pressure, a finite atom number effect, that is neglected in the Thomas-Fermi

approximation. By performing the same analysis on the energy functional as stated above,

the resulting stability diagram is slightly different as before and is shown in figure 4.10e as

red line. The main difference is for dipolar condensates in prolate traps that are slightly

more stable, as the quantum pressure can counteract some of the attractive interactions.

Note that the Gaussian approximation gives exactly the same results as the Thomas-Fermi

approximation if the atom number goes to infinity (N →∞).
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Finally, to judge on the practicability for both approximations, we performed exact

numerical simulations for the time-dependent GPE (2.12) without any restrictions to the

density distribution and searched for the stability threshold58 as well. The results are shown

as dots in figure 4.10e and they are in excellent agreement with the Gaussian approximation

for prolate traps with λ < 1, but disagree with both approximations for oblate traps with

λ > 1. This can be explained with the different instability mechanism occurring for these

two different regimes. In the prolate configuration the dipoles experience mainly attractive

dipolar interaction, and the instability mechanism is a phonon instability as described in

section 4.4.2. To recall, a phonon instability leads to collapse with the lowest possible

momentum, and hence to the center of the trap. Contrary for mainly repulsive dipolar

interaction, as present in an oblate configuration, a dipolar condensate undergoes a roton

instability as stated in section 4.4.3. As reminder, a roton instability is related to a finite

momentum, and hence may exhibit a peak density off-center [31, 32] with a resulting

collapse off-center [254]. Hence, this discrepancy for the stability properties can be already

seen as an indirect evidence for the existence of rotonic structures [262].

Indeed, we present in this thesis that the stability mechanism is well described with the

numerical results including rotons. However, we also present unexpected long-lived stable

states after the roton instability. This main achievement of this thesis is now discussed in

the following two chapters.

58We first performed imaginary time evolution to find the energetic ground state and then let it evolve in
real time evolution. Mostly the dipolar BEC became unstable in real time evolution.
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5. Rosensweig Instability in a

Quantum Ferrofluid

Self-organized structure formation is a fundamental phenomenon of nature determining

the properties of matter. Self-organization typically leads to a spontaneous breaking of

continuous translation symmetry, corresponding to phase transitions. The search for exotic

phases of matter drives much of the fundamental research in condensed matter physics.

Phases displaying different types of order at once are of particular interest. The prime

example is a supersolid breaking simultaneously two continuous symmetries, namely the

phase invariance in a superfluid state and the translational symmetry in a crystal.

In this chapter, we report on the first observation of the spontaneously broken transla-

tional symmetry for the density distribution in a superfluid. For this purpose, we use a

dipolar condensate that acts as a quantum ferrofluid. In analogy to a classical ferrofluid, a

quantum ferrofluid exhibits a Rosensweig instability, where the translational symmetry

is broken and self-organized structures form in a superfluid - a first step to a supersolid

phase. But these structures were expected to collapse using mean-field theory. Hence, we

present possible beyond mean-field effects including quantum fluctuations and three-body

collisions, that would both prevent a collapse.

5.1. Observation of droplet formation in a quantum

ferrofluid

In the previous chapters, we introduced all theoretical and technical tools needed to describe

and produce a strongly dipolar condensate. Especially, we described the characteristics of

classical and quantum ferrofluids and their intriguing responses to magnetic fields. For

example, ferrofluids undergo a Rosensweig instability when the internal dipolar interaction

exceeds all other fluid forces. The fluid then forms a regular pattern of peaks and valleys

that results in separated droplets on a hydrophobic surface (sections 4.2 and 4.3).

For our measurements presenting the Rosensweig instability of a quantum ferrofluid, we

first prepared a stable strongly dipolar condensate. For this, we used the technical tools

described in chapter 3 such as optical trapping, Feshbach resonances and high-resolution

imaging and keep the stability properties of a dipolar condensate in mind (section 4.5).

Then we induced an instability in the quantum ferrofluid that we identified as a Rosensweig

or roton instability (section 4.4.3). Subsequent, we observe long-lived droplet patterns [87],

that are not expected within the mean-field description derived in section 2.3. Finally, we

determine the nature of this instability and give prospects for a supersolid state.
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5.1.1. Preparation of a stable dipolar condensate

To prepare a strongly dipolar condensate consisting of 164Dy atoms, we perform all

steps described in section 3.2. After the final step of forced evaporative cooling in

a crossed optical dipole trap (cODT) (see figure 5.1a), we achieve condensates with

typically 15,000 atoms and a temperature of T = 70 nK. As shown in section 4.5, the

external trapping configuration and the respective magnetic field direction determine the

stability of a dipolar condensate. To obtain a stable strongly dipolar BEC with εdd > 1,

the final evaporation trap is oblate-shaped with harmonic trap frequencies of around

(ωx, ωy, ωz) = 2π · (60, 50, 150) Hz giving a trap aspect ratio of λ ≈ 3. Additionally the

external magnetic field polarizes the magnetic dipoles along the z-direction, the direction

with the strongest confinement. In this configuration, the magnetic dipoles predominantly

repel each other and a condensate can be stabilized even for εdd > 1.

Reminding the stability diagram of a trapped dysprosium condensate in figure 4.10e,

one sees that the critical scattering length is close to the background scattering length

(acrit ≈ abg) for a trap59 with aspect ratio λ = 3. We recall the background scattering

length for 164Dy to be abg = 92(8) a0 [81, 157]. Hence, we prepare the BEC in the vicinity

of a Feshbach resonance located at B0 = 7.117(3) G with a width of ∆B = 51(15) mG

(recalling figure 3.5b), to magnetically tune60 the scattering length a to higher values above

abg. For this, we apply a vertical field along the z-axis with field values lower than B0

during the last evaporation process. With the knowledge on the Feshbach resonance and

equation (3.1), we get the scattering length a dependent on the magnetic field strength as

shown in figure 5.1b. The BEC is created at a field of BBEC = 6.962(3) G corresponding

to a scattering length of aBEC = 115(20) a0, which is close to the characteristic dipolar

length add = 131 a0 of dysprosium atoms (recalling table 2.1).

To use magnetic Feshbach resonances, the magnetic field has to be repeatedly controlled

and known with high precision. For this, we frequently calibrate our magnetic coils with

radio-frequency spectroscopy between the two lowest Zeeman sub-levels of dysprosium

atoms. For this method, we apply radio-frequency radiation with a constant frequency

for typically one second after the forced evaporative cooling. If the Zeeman splitting

matches the energy of the applied radio-frequency, the atoms are transferred to higher

Zeeman sub-levels. This heats up the sample and atoms are lost from the trap. With this

technique we calibrated the coil pair creating a homogeneous field along the z-direction to

address the Feshbach resonance and adjusted the three orthogonal Helmholtz coil pairs to

compensate residual magnetic fields along the x- and y-direction.

Before we use the dipolar condensate for experiments, we shape the external trap to fit

our needs, as shown in figure 5.1c. Within 100 ms the intensities of both dipole trap lasers

are slightly reduced to get harmonic trap frequencies of (ωx, ωy, ωz) = 2π · (46, 44, 133) Hz

59Note that in figure 4.10 we used a mean trapping frequency of ω = 2π · 100 Hz, which is slightly higher
than our trap after forced evaporation with ω ≈ 2π · 77 Hz. However, the critical scattering length
changes only slightly, by less than 2 a0.

60We did all the following mentioned investigations also on a second, even narrower resonance located
at B0 = 1.326(3) G with a width of ∆B = 8(5) mG. All the results remain qualitatively the same,
indicating the independence of a particular Feshbach resonance.
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Fig. 5.1. Crossed optical dipole trap and scattering length. a, Crossed optical dipole
trap (cODT) and magnetic field in the experiment. ODT 1 is a round laser beam,
while ODT 1 is elliptical. The magnetic field points perpendicular to both dipole trap
directions. b, Scattering length a versus magnetic field B for the Feshbach resonance
located at 7.117 G. We show the confidence interval for the scattering length and the
characteristic dipole length add is indicated as a dashed grey line. The field BBEC at
which we create the condensate and the field Bdrop where we induce the droplet state
are indicated as dashed green line. c, Experimental sequence to shape the cODT and
tune the magnetic field. We use a homogeneous field to tune the contact interaction
with the Feshbach resonance

resulting in a radially quasi-symmetric trap confinement with a trap aspect ratio very

close to λ = 3. As this trap is very shallow and hardly holds the atoms against gravity, we

partially compensate gravity by applying an additional magnetic gradient of 1.1 G/cm at

the same time along the z-direction61. In this reshaped trap we let the condensate settle

for further 100 ms, before we tune and detect its internal properties.

For the experiments mentioned in the following, we abruptly change the magnetic

field within 0.5 ms to Bdrop = 6.656(3) G that corresponds to a scattering length of

adrop = 95(13) a0 close to the background scattering length abg = 92(8) a0. We let the

atomic sample then evolve for some wait time and image it in situ with the high-resolution

phase contrast imaging explained in section 3.3.3. The results of this experimental sequence

are presented in the next sections.

61A magnetic gradient field of 2.9 G/cm would compensate gravity completely and the atoms would levitate
as the forces cancel each other (µm∇B = mg0). We use this in section 6.2.2 to levitate non-trapped
atoms for a few ms.

69



Chapter 5. Rosensweig Instability in a Quantum Ferrofluid

5.1.2. Droplet patterns

By reducing the scattering length a below the stability threshold close to abg, the dipolar

interaction overcomes any other interactions in the quantum fluid. For dominant dipolar

interactions, we expect an angular roton instability [31, 254] to occur in an oblate-shaped

trap (section 4.4.3), that can lead to a periodic perturbation of the atomic density

distribution [253]. This is closely connected to the Rosensweig instability in a classical

ferrofluid [86]. Indeed by reducing the scattering length a from add (BBEC = 6.962(3) G)

to abg (Bdrop = 6.656(3) G), we observed a finite-wavelength instability that triggered an

unexpected transition to ordered states, as depicted in figure 5.2a. The ordered states we

observe consist of multiple tiny droplets arranging in a triangular pattern. The stability

mechanism of these droplets is investigated in this thesis.

In figure 5.2b, we show typical in situ images of the resultant triangular patterns for

the quantum ferrofluid with different numbers of droplets, Nd, ranging from two to ten.

Note that up to now, we have no direct control on how many droplets form and it remains

a statistical process. Hence, any analysis remains statistical and we have to average

detected internal properties for many experimental realizations. To analyse the average

number of atoms per droplet, we count the number of droplets Nd in relation to the total

number of atoms N . The statistical analysis is shown in figure 5.2c indicating a linear

dependence between Nd and the number of atoms, with a slope of 1,750(300) atoms per

droplet. For Nd = 2, we observed a mean droplet distance of d = 3.0(4)µm. The droplets,

which have a large effective dipole moment of Nµm, strongly repel each other while the

radial trapping applies a restoring force. Hence, the distance d can be calculated using a

simplified one-dimensional classical system by minimizing the total energy of the system.

For this model, we assume two strongly dipolar particles with 1,750 times the mass and

magnetic moment of a dysprosium atom that are confined in a harmonic trap. After a

short analysis of the total energy of a trapped system of two such dipoles, we find that the

energy is minimized if each particle sits off-center and they have a respective distance of

d = 2

(
9a4

xaddN

16

)1/5

=

(
3Nµ0µ

2
m

2πmω2
x

)1/5

(5.1)

with ax the harmonic oscillator length ax =
√

~/mωx. For our experimental parameters,

we get a distance of d = 3.3µm, in agreement with the observed distance62. For Nd > 2,

the droplets arrange mostly in triangular structures, and form a microscopic crystal with a

droplet distance of d = 2-3µm. Owing to the isotropy of the repulsion between droplets in

the radial plane, we expect the triangular configuration to have the lowest energy, which

was for example shown in [263].

Comparing our quantum ferrofluid with a classical ferrofluid, very similar behaviour

and patterns have been observed on a superhydrophobic surface, as shown in figure 4.5

[239]. In this classical-ferrofluid system, a single droplet first deforms as the external

magnetic field is increased, and then divides into two droplets when some critical field

62In the next chapter 6 we will see in a more advanced analysis that the droplets cannot be considered as
point-like particles anymore.
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Fig. 5.2. Growth of a microscopic droplet crystal. a, Schematic of the experimental
procedure. We prepared a stable, strongly dipolar dysprosium BEC with a ≈ add in an
oblate trap (left). By decreasing the scattering length a, we induced an instability close
to a ≈ abg. Following this instability, the atoms clustered to droplets in a triangular
pattern (right). b, Representative single samples of droplet patterns imaged in situ,
with droplet numbers, Nd, ranging from two to ten. Each image has a field of view
with 10.5µm× 10.5µm. c, We used a set of 112 realizations with different numbers
of droplets and atoms for a statistical analysis. The plot shows the mean number
of atoms N as a function of the number of droplets Nd, with error bars indicating
the standard deviation. The fitted linear relation (grey dashed line) has a slope of
1,750(300) atoms per droplet. This shows that increasing the number of atoms results
in growth of the microscopic droplet crystal.

is reached. For a quantum ferrofluid, a single droplet should be unstable for a < add,

owing to the attractive part of the dipolar interaction, and so should collapse. Although,

the counteracting quantum pressure, the zero-point energy that exists as a result of an

external trapping potential, can compensate attraction and prevent collapse [111], mean

field calculations predict this not to be the case [254]. However, in our system the collapse

is stopped leading to the creation of tiny droplets, each with a detected radius smaller

than 1µm limited by the resolution of our imaging.

The very small size of the droplets also indicates a high peak density. Our experimental

observation can only give a lower bound of n0 & 2·1020 m−3 due to the missing knowledge

on the exact spatial extent of the droplet. In the next section, we will therefore focus on

the dynamics and lifetime of the droplets. The decrease in atom number for longer times

should be mainly dependent on the three-body losses. With this idea we can then give a

further estimate for the peak density of the droplets.
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Chapter 5. Rosensweig Instability in a Quantum Ferrofluid

5.1.3. Dynamics and lifetime of the droplets

For further quantitative statistical analysis, we have to introduce a parameter that describes

the appearance and disappearance of the droplet pattern and is automatically computed

for several hundred samples. The counting of the number of droplets Nd, as done for figure

5.2c remained a manual evaluation procedure with a possible subjective impreciseness.

Hence, we come up with the following objective quantitative statistical analysis.

We computed the Fourier spectrum S(k) of the obtained images, as described in the

figure 5.3a-c and its caption. The patterns are visible as a local maximum in S(k) at

finite momentum k = 2π/d ≈ 2.5µm−1, whereas the spectrum of a BEC monotonically

decreases with k. We define the spectral weight

SW =

5µm−1∑
k=1.5µm−1

S(k) , (5.2)

which is a quantity that represents the strength of the structured states, and normalize

it such that a BEC has SWBEC = 1. After a quench of the interactions from a ≈ add to

a ≈ abg, we statistically investigated the pattern-formation time and the lifetime of these

patterns with figure 5.3d. We repeated this measurement 13 times and found statistically

that the pattern is fully developed after ∼7 ms, and has a 1/e-lifetime of about 300 ms.

The decay of the droplet structure is accompanied by a decrease in the number of atoms,

with a 1/e-lifetime of about 130 ms, while the residual thermal cloud had constant atom

number. Owing to the decreasing number of atoms, the structures evolve back to lower

numbers of droplets, Nd, until there are no droplets left (insets of Fig. 2d).

We expect that mainly three-body losses limit the lifetime of the droplet patterns. Hence,

we compared this lifetime with a non-structured BEC at a field of BBEC. We followed an

analysis of the atom number decay as described in [264]. There, the three-body collision

rates resulting to losses are calculated in the Thomas-Fermi limit with a parabolic density

distribution63. This leads to an atom number decay that reads

N(t) = N0

(
1 +

t

τ3

)−5/4

, (5.3)

with N0 the initial atom number at t = 0 and the three-body decay constant τ3. We

measured the decay constant to be τ3 = 6(2) s for a condensate with an initial peak

density of n0 = 1.5(5) · 1020 m−3. With this knowledge we can calculate the three-body

loss coefficient for a condensate to be L3 = 21/8n2
0τ3 = 1.9+5

−1.3 · 10−41 m−6/s.

By doing the same analysis for the droplet patterns (which is likely to be oversimplified),

we get τ3 = 120(30) ms corresponding to a peak density of n0 ≈ 10+10
−5 ·1020 m−3. In section

6.2 we come back to the calculated density of the droplets using a more advanced analysis.

63A three-body decay is described with dN/dt = −L3〈n2〉N , with 〈n2〉t=0 = 21/8n2
0 using the peak

density n0 in Thomas-Fermi approximation for the initial conditions. By inserting the atom number
dependent Thomas-Fermi radii one sees 〈n2〉 ∝ N4/5, which gives N−9/5dN = dt/τ3 with τ3 = 21/8n2

0L3.
Integrating the last equation with an initial atom number N0 results in eq. (5.3).
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Fig. 5.3. Evaluation of the structures and lifetime analysis. Illustration of our statistical
evaluation procedure. We began with the spatial density distribution (a), and then
calculated the absolute value of the two-dimensional Fourier transform S(kx, ky) (b)
and radially averaged over k = (k2

x + k2
y)

1/2 to obtain the spectrum S(k) (c). We
removed the white noise from the spectrum S(k) such that S(k) = 0 for k > 7µm−1,
which corresponds to structures below our resolution. The spectra in c represent an
average of 13 images for both BECs and patterns at a wait time of 10 ms. For patterns
in the spatial density distribution, we observe enhanced signal for k ≈ 2.5µm−1 in the
spectrum (red line), whereas the spectrum of BECs (black line) shows monotonic decay
for increasing momentum. We define the sum of these spectra over a momentum range
as the relative spectral weight SW (shaded areas, as defined in the text), which is a
quantity for the strength of the structured states. d, We performed a sudden quench
(over 0.5 ms) of the BEC below the instability to Bdrop = 6.656(3) G for varying wait
times. To determine the creation time and lifetime of the patterns, we plot the relative
spectral weight SW (red diamonds) against wait time. Each point is an average of
13 realizations, with error bars indicating the standard error. The plot shows rapid
pattern formation within 7 ms without accompanied atom losses and afterwards a
surprisingly long 1/e-lifetime of about 300 ms. This lifetime seems to be limited by a
decrease in the number of atoms (blue circles). The insets are typical spatial density
distributions of a single sample before pattern formation (BEC; bottom left), and at
three different wait times.
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Chapter 5. Rosensweig Instability in a Quantum Ferrofluid

5.1.4. Transition with bistability and hysteresis

The droplet formation due to the occurrence of the Rosensweig instability seems to break

the translational symmetry of a continuous quantum ferrofluid. Such a symmetry breaking

is a typical indication of a phase transition in the thermodynamic limit. For classical

ferrofluids we have discussed first-order phase transition for the Rosensweig instability

an the deformation of a single drop. For the drop deformation, we have explicitly shown

bistability, that means the system has two stable equilibrium states visible as local

minima in the energy potential (see figure 4.4b). Additionally, such a bistability is often

accompanied by hysteresis, evident for classical ferrofluids. Due to the strong similarity

of classical and quantum ferrofluids, we expect also for the observed droplet formation a

hysteretic behaviour with bistability.

We thus performed experiments to explore this hysteretic behaviour. The experimental

sequence is depicted in figure 5.4a and it includes to induce the droplet formation and

to come back to the initial state. For this, we prepared the BEC close to the Feshbach

resonance with a ≈ add and ramped the magnetic field linearly to varying values near

the instability point. We ensured that the structures were formed within 10 ms, even for

values of the magnetic field close to the stability threshold, and waited at the chosen value

for twice this time. Figure 5.4b shows a clear hysteresis. For the return, we observe the

same spectral weights as for the way down, but for magnetic fields that are about 20 mG

greater. This demonstrates that our system features bistability in the transition region.

In the thermodynamic limit, such behaviour is a clear signature of a first-order phase

transition and the existence of latent heat in the crystallization process. Note that the

spectral weight for the return remains slightly higher due to residual defects in the BEC.

To verify that we are not dealing with an energetically excited state resulting from

quench dynamics, we performed forced evaporative cooling at a constant magnetic field far

away from any Feshbach resonance with a ≈ abg. We observed very similar self-organized

structures, which started to occur for temperatures near the expected critical temperature

for the phase transition to a BEC, as shown in figure 5.4c. This strongly indicates that

multiple tiny droplets are energetically favourable compared to a single, larger condensate.

But as we will see later the droplet patterns are not the true ground state of the system

and is metastable.

The measurement showing hysteresis presented that droplet structures can melt back

into a single BEC. Additionally, with the forced evaporative cooling to droplet patterns

occurring at the expected critical temperature, it is quite plausible that the droplets are

superfluid individually. Hence, we have seen that the Rosensweig instability in a quantum

ferrofluid presents features of a first-order crystallisation phase transition in a superfluid

phase. Though, this is still not the evidence of a supersolid state, where two continuous

symmetries are broken at the same time. To establish the superfluid character one has

to observe long-range phase coherence, thus an inter-droplet phase coherence. But if the

individual droplets still share the same phase via weak links or lose their mutual phase

coherence remains unclear. We assess the prospects for a supersolid state in the next

section.
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Fig. 5.4. Hysteresis of pattern formation and evaporation to patterns. a, A timeline
of the experiment in which we observed hysteresis. We prepared the Dy BEC close
to the Feshbach resonance at BBEC = 6.962(3) G and ramped down the magnetic
field linearly to different values, with a constant change rate, the lowest of which was
B = 6.680(3) G. To ensure that the structures had enough time to form, we waited
for 20 ms at each value before imaging the atomic sample in situ. For the way back,
we first waited at the lowest field value for 20 ms and then increased the magnetic
field with the same ramp speed to higher values, once again holding for 20 ms at
each value before imaging the sample in situ. b, Hysteresis plot for the structured
patterns, which shows the spectral weight SW against magnetic field as it is decreased
(red diamonds and line) and then increased (green squares and line). Each point is
an average of 14 realizations, with the vertical error bars indicating standard errors.
We determined the long-term field stability to be 3 mG, as shown by the horizontal
error bars for selected points. A clear hysteresis is visible, although the total time
is twice as long for the way back. The labels 1-6 in a and b indicate data points at
particular field values to help the understandability; the lines in b serve as a guide
to the eye. c, Evaporation to droplet patterns. We prepared a dipolar BEC with
forced evaporative cooling as shown in section 5.1.1, but we kept the magnetic field
at a field of B = 1.012 G, far away from any Feshbach resonances. This means, we
evaporated the dysprosium atoms at a scattering length of a ≈ abg. Instead to observe
a transition to a condensed matter wave, we observed a transition to very similar
droplet patterns. This transition happens at the expected critical temperature of
Tc ≈ 150 nK for 60,000 atoms in a trap with ω ≈ 2π · 80 Hz.
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5.1.5. Prospects of a supersolid state

A supersolid is a spatially ordered material with superfluid properties [265–267]. We take

the following definition for a supersolid: spontaneous breaking of a continuous translation

symmetry and of phase invariance [268]. It seems hard to merge these very different and

seemingly conflictive solid and superfluid behaviours into a single phase of matter. The

supersolid phase remains elusive and the search for this phase has focused mainly on solid

helium, where claims of its discovery [269, 270] have been withdrawn recently [271].

Another approach starts with a superfluid of Bose-condensed ultracold atoms, which

seems to be an excellent system with strong control on inter-particle interactions. These

interactions can be tuned and one can create two-body potentials that can lead to the

occurrence of a supersolid phase. We will discuss two physical systems, both realizable

in experiments using cold atoms or molecules, which were proposed to provide a stable

supersolid phase.

By utilizing the Rydberg blockade or dipole blockade [272] one can realize a repulsive

potential that flattens off and remains constant below a characteristic cut-off distance. For

a condensate with such inter-particle interactions, it was predicted that it shows roton

excitations in three dimensions and can form superfluid droplets. Furthermore, the droplets

arrange in a triangular structure and such a droplet crystal can turn to a supersolid when

tunnelling between neighbouring droplets takes place and phase coherence is established

across the whole system [273, 274]. The droplet size in this system is mainly determined

by the characteristic cutoff distance of the Rydberg blockade and the particular form of

the potential is not crucial. This means the long-range behaviour is largely irrelevant

and the supersolid phase is a consequence of the flatness at short-distances. However, a

supersolid can also be achieved with only long-range interactions.

We consider atoms or molecules possessing a magnetic or electric dipole moment that

are confined to a two dimensional plane. The dipoles are aligned perpendicular to the

plane with an external electric or magnetic field. In such a configuration the dipolar

interaction can act purely repulsive and a first-order transition from a superfluid to a

crystalline phase has been predicted [263, 275]. In three-dimensions any structure close to

a supersolid state will undergo subsequent instabilities and collapse [276]. However, our

droplet patterns remain stable and could be a good candidate for a supersolid state even

in three dimensions, although it is not the ground state of the system.

In our droplet system we have indeed long-range order and expect each droplet to be

superfluid, but we did not probe the relative phase between individual droplets. Figure

5.5 exemplifies the difference between a supersolid state compared to a droplet crystal

without phase coherence. Experiments that are capable to detect phase coherence could

be interference measurements of individual overlapping droplets. The randomness in the

droplet ensembles creation mechanism has so far prevented a precise measurement of the

relative phase. Indeed one needs stable starting conditions because phase coherence is

established by a reproducibility of interference patterns for different samples. Nevertheless,

we performed such measurements as shown in section 6.2.2, that do not show the relative

phase coherence but give further information on the droplets.
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Fig. 5.5. Droplet crystal and supersolid. a, Droplet crystal with a background of incoherent
atoms (grey). Each droplet exhibits a different phase relation. b, Supersolid state
with a coherent background that remains phase coherence of the individual droplets.

In the next section, we focus on the stability mechanism of our droplets. We attribute

the stability to beyond mean-field effects, which are quantum fluctuations and repulsive

three-body collisions. Recent theoretical studies, using these mechanism unfortunately

expect that individual droplets loose their phase coherence on a short time scale for our

recent experimental parameters [277, 278].

5.2. Beyond mean-field effects

When we derived the Gross-Pitaevskii equation (2.12), we only considered binary in-

teractions and neglected any quantum fluctuations in eq. (2.11), which resulted in the

energy mean-field contributions (2.16). We derived the energy density due to the contact

interaction to be
Econtact

V
=
g n2

2
, (5.4)

recalling the contact interaction strength g = 4π~2a/m from eq. (2.2). This expression

was already found in 1929 by Lenz [279]. However, the mean-field approximation neglects

fluctuations around mean values that are inherent to quantum mechanical systems. In

1957, Lee, Huang and Yang included quantum fluctuations as a perturbation around the

expectation value and calculated explicitly for binary short-range potentials a higher order

correction term for a homogeneous density [280, 281]. Two years later Wu and others

extended this work to the next order correction term by studying three-particle collisions

through the two-body potential [282–284]. Considering these corrections gives an energy

density for the short-range contact interaction that reads

Econtact

V
=
g n2

2

{
1 +

128

15
√
π

√
na3 +

[
8(4π − 3

√
3)

3
ln(Cna3)

]
na3 + . . .

}

=
g n2

2

{
1 +

128

15
√
π

√
na3

}
+
g3 n

3

6
+ . . . (5.5)

with a term proportional to (na)5/2 due to quantum fluctuations and a term proportional

to (na)3. The numerical prefactor of the quantum fluctuation term is constant, whereas
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the latter depends on the constant C in the argument of the logarithm, that can be in

principle calculated from knowledge on the short-range details of the interaction potential

[285, 286]. In the following, we will call this prefactor g3 giving the scale of the three-body

correction. We expect quantum fluctuations to influence the condensate properties much

earlier than the three-body correction, as the latter has the higher order scaling. Hence,

we will neglect for now the three-body correction term.

5.2.1. Quantum fluctuations

In this section, we discuss the quantum fluctuations. We expand the correction term for

dipolar interactions and calculate the energy functional with these corrections. We present

observed beyond mean-field effects for non-dipolar quantum gases and discuss the arising

stability properties for a dipolar system.

The expressions above were only derived by assuming short-range inter-particle interac-

tions. However, additional long-range dipolar interactions modify the quantum fluctuation

term. This correction was formally derived including microscopic properties of the in-

teraction potential by avoiding pseudo-potentials [287]. With these calculated quantum

fluctuations and using the local density approximation64 for trapped inhomogeneous gases

[288, 289], the resulting beyond mean-field equation for the chemical potential of a dipolar

quantum gas reads [290, 291]

µ = Vext(r) + g n(r) +
32

3
g

√
n(r)3a3

π
Q5(εdd) + Φdip(r) (5.6)

with the respective energy functional for the density distribution n = n(r)

E [n(r)] =

∫
d3r

[
Vext n+

g

2
n2 +

64

15
g n2

√
na3

π
Q5(εdd) +

Φdip

2
n

]
. (5.7)

In both equations the quantum fluctuation term is multiplied with the correction factor

Q5(εdd) dependent on the relative dipolar strength [291]

Q5(x) = (1− x)5/2
2F1

(
−5

2
,
1

2
;
3

2
;

3x

x− 1

)
Taylor
≈ 1 +

3

2
x2 +

1

7
x3 − 3

56
x4 + . . . (5.8)

with 2F1(a, b; c; z) the ordinary hypergeometric function65. We show the function Q5(εdd) in

64A trapped dilute BEC can usually be divided into regions with an extent much larger than the range of
the inter-particle interactions, but still much smaller than the scale of the spatial variation of the density
distribution n(r). In these regions, the gas can be considered as locally homogeneous and eq. (5.5)
remains valid for trapped condensates.

65The ordinary hypergeometric function 2F1(a, b; c; z) includes many other special functions as specific
cases. For example 2F1(a, b; b; z) = (1 − z)−a and 2F1( 1

2 ,
1
2 ; 3

2 ; z2) = arcsin(z)/z. Additionally, there
exists linear identities that are true for any hypergeometric function, explicitly we use the relation

2F1(a, b; c; z) = b
b−a 2F1(a, b+ 1; c; z)− a

b−a 2F1(a+ 1, b; c; z) to simplify the function Q5 [292, chapter

2.8, eq. (32)]. By using this relation three times on 2F1(− 5
2 ,

1
2 ; 3

2 ; z) from eq. (5.8), we get the identity

2F1(− 5
2 ,

1
2 ; 3

2 ; z) = 1
6 2F1(− 5

2 ,
3
2 ; 3

2 ; z) + 5
24 2F1(− 3

2 ,
3
2 ; 3

2 ; z) + 5
16 2F1(− 1

2 ,
3
2 ; 3

2 ; z) + 5
16 2F1( 1

2 ,
1
2 ; 3

2 ; z).
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Fig. 5.6. Corrections for the energy density. a, Energy density corrections normalized to
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εdd = 1.3 (blue dashed line). Additionally, we present the (in the next section
introduced) three-body contribution (red) with κ3 = ~L3 ≈ 10−41 ~m−6/s and with
600 times this value (orange dashed line). b, Correction function Q5(εdd) which
governs the energy correction on the relative dipolar strength εdd (blue). For εdd > 1
the function Q5 has a small imaginary part and the real part is negative. Thus, the
dashed blue line is |Re(Q5)|. We approximate Q5 with a second order Taylor series
(green).

figure 5.6b and its lowest order Taylor expansion at the point x = 0. The function Q5(εdd)

is discontinuous at εdd = 1 and has a very small imaginary part for εdd > 1. However, it

is expected that the correction factor remains valid even in the strongly dipolar regime

for oblate shaped traps [287]. Hence, we will use in the following Q5(εdd) ≈ 1 + 3
2
ε2

dd to

effectively circumvent the discontinuity and the very small imaginary part of Q5(εdd > 1).

In figure 5.6a we show the energy density of quantum fluctuations (purple line) normalized

to the mean-field contact interaction energy (green line). By including dipolar interactions

the quantum fluctuations increase by a factor of 3.5 for εdd = 1.3 (blue) compared to

the non-dipolar case. Quantum fluctuations are a common feature for systems with high

density or the presence of strong interactions and have been already observed to alter the

many-body behaviour of non-dipolar quantum gases. The first observation was made in

strongly interacting Fermi gases. These offer the possibility to bind two fermions to one

bosonic dimer and study molecular Bose-Einstein condensates. In systems working with

fermionic 6Li the molecular BEC had, due to quantum fluctuations, increased collective

oscillation frequencies [293], a modified density distribution [294] and a decreased pressure

[295]. Furthermore in a strongly interacting atomic BEC of 7Li, the same modified spatial

density distribution was observed in situ [296]. Finally for strongly interacting bosonic
85Rb atoms, the excitation spectrum showed the onset of quantum fluctuations [297].

If quantum fluctuations are the stabilization mechanism for the droplets, our observations

would be the first many-body state in quantum gases only existing as a consequence of

quantum fluctuations. Thus, it is of interest to develop a variational approach similar to

section 4.5.3 to investigate the energy functional including quantum fluctuations. For this
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Chapter 5. Rosensweig Instability in a Quantum Ferrofluid

we use an inverted parabola ansatz for the density distribution (section 2.3.3) which is

described with the two variational width parameters Rρ and Rz. Evaluating the energy

functional66 of eq. (5.7), gives the energy landscapes shown in figure 5.7a-d. We use trap

and atomic parameters that agree with the experiments shown in the previous section 5.1.

Depending on the scattering length a, we find either one or two minima that lie on two

distinct solution branches with very different energy (figure 5.7e). The two branches differ

by their radial extent Rρ and the associated cloud aspect ratio κ = Rρ/Rz as well as the

peak density n0, as shown in figure 5.7f-h. We thus associate the state with a lower density

to the condensate phase and the other with a higher density to the droplet state.

The tendency of a ferrofluid to elongate along the magnetic field direction and to show

an instability to much more elongated states was shown for the classical case in section 4.3

and figure 4.4b. For a quantum ferrofluid one certainly needs the quantum fluctuations as

a stabilizing effect for the elongated state. Then the occurrence of bistability related to

first order phase transitions is also possible. This is the reason for the lack of a stable very

elongated state within the mean-field discussion in section 4.5. Very recent theoretical

investigations have shown such quantum stabilization in a bosonic non-dipolar mixture

with competing attraction and repulsion [298] and for our dipolar system [299, 300].

There are a few more interesting features in figure 5.7. Both the condensate and droplet

state can be energetically metastable (local energetic minimum) or the global energetic

minimum depending on the scattering length. The energy of the droplet and condensate

state intersects at a transition point with ainter ≈ 90 a0. This transition point is very

close to the background scattering length of 164Dy with abg = 92(8) a0, where we observed

the Rosensweig instability. For further reduced scattering length, the droplet becomes

a strongly bound state with negative energy compared to non-interacting atoms. This

bound droplet state shows a constant peak density independent of atom number (figure

5.7i), which is a typical property of a liquid with a homogeneous density.

Finally, we compare the variational calculations with the experimental observations.

Most importantly, we could identify one possible stability mechanism for the droplets

that can stop the collapse. Furthermore, the intersection point of the condensate and

droplet state agrees very well with the observed occurrence of the droplets. However,

for the experiments we observe many droplets arranging in a regular pattern, whereas

the calculations consider only a single droplet. We expect the angular roton instability

that induces the condensate to collapse off-center to prevent the formation of a single

droplet. Instead the roton instability creates a ring with higher density that is the

origin of multiple droplet formation. Very recent numerical simulations started with our

experimental parameters and used two paths to the droplet state [301]. The first path

was only decreasing the scattering length and resulted in multiple droplets. Contrarily,

the second path additionally changed the trap to a prolate case and back to the original

state while decreasing the scattering length. This circumvented the roton instability and

resulted in a single droplet that had in addition a much lower total energy than multiple

droplets. Thus our observed droplet patterns are not the true ground state our system.

66We give explicitly the energy terms in the appendix A.5 with the quantum fluctuation term in eq. (A.25).
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Fig. 5.7. Properties of dipolar condensates including quantum fluctuations. We show
properties of condensates with N = 10,000 164Dy atoms in a radial symmetric trap
with aspect ratio λ = 3 and ω = 2π ·65 Hz. a-d, Energy landscape for variational
calculations with inverted parabolic ansatz as a function of Rρ and Rz. Up to two
minima are found as a function of scattering length a, whose value is stated in the
figure. e-h, We track the two minima for variable scattering length a and present the
condensate state as green line and the droplet state as blue line. We give respectively
the energy of the minimum (e), Thomas-Fermi radii Rρ,z (f), aspect ratio κ (g) and
the peak density n0 (h). i, We show the peak density n0 in dependence of the atom
number N . A BEC increases its density proportional to N2/5, while the droplet state
has a nearly constant density that is slightly decreasing for higher atom numbers.
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5.2.2. Repulsive three-body interactions

In this section, we discuss the impact of three-body corrections and their applicability to

stabilize a droplet state. Hence, we neglect quantum fluctuations and only consider three-

body corrections. The three-body correction factor g3 is expected to be very small [285].

Thus, we include additional three-body collisions, which could appear as a consequence

of an additional three-body interaction potential. This three-body potential gives a

correction for the Gross-Pitaevskii equation that can be written as g′3n
2/2. Here, g′3 is the

complex three-body coupling strength that can describe elastic and inelastic three-body

scattering. The elastic part is the (real) three-body coupling strength κ3 = Re(g′3) and the

inelastic part is used for the three-body recombination rate L3 = Im(g′3)/~, that we already

introduced in section 5.1.3 describing atom losses. Up to now elastic three-body scattering

that should modify many-body effects has not been observed for ultracold quantum gases.

It is expected that the non-measured elastic three-body collisions have a coupling

strength κ3 that is on the same order of magnitude as the low three-body loss coefficient:

κ3 ≈ ~L3 ≈ 10−41 ~m−6/s. With this argument, the expected value of κ3 leads to a

three-body contribution to the total energy density which is more than 100 times weaker

than the contribution of quantum fluctuations (red line in figure 5.6a). But depending on

the microscopic three-body interaction potential, it may be possible that the three-body

coupling strength κ3 overcomes the inelastic three-body collisions.

With such high elastic three-body interactions, theoretical investigations in the early

2000s predicted stable states with a high atomic density. For instance, a non-dipolar

quantum gas with an attractive contact interaction and a repulsive three-body interaction

has shown a first-order liquid-gas phase transition apparent with a strong change in density

[302, 303]. This work has also been extended to bosons and fermions with the observation

of stable so-called quantum droplets [304]. Very recent numerical investigations have

presented stable droplet patterns in a dipolar quantum gas with repulsive three-body

collisions [277, 278], but they had to assume a very high three-body coupling strength

compared to the three-body loss coefficient L3 (κ3 & 600 ~L3 ≈ 600 ·10−41 ~m−6/s).

Furthermore, recent variational calculations with a Gaussian ansatz have also shown

bistability related to a first-order phase transition for such a system [301]. We will do a

similar approach with an inverted parabola ansatz and estimate a minimal three-body

coupling strength κ3 to observe stable droplets with our experimental parameters.

We evaluate the energy functional including a repulsive three-body coupling by using

a parabolic density distribution as done in the previous section67. For sufficiently high

κ3, we observe very similar properties as for the case with quantum fluctuations, that

we have shown in the previous figure 5.7. As one example we present an energy surface

in figure 5.8a showing a bistability with two minima. In the following, we focus on the

dependence of the minima in respect to the three-body coupling strength κ3. We map the

intersection point ainter, where the minimum energy of the condensate and droplet state is

equal and show it in figure 5.8b. For scattering lengths lower than ainter the droplet state

is energetically favourable compared to the condensate state. We expect ainter to be in the

67We mention the energy terms in the appendix A.5 with the three-body term in eq. (A.26).
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Fig. 5.8. Properties of dipolar condensates including three-body repulsion. We show
properties of condensates with N = 10,000 164Dy atoms in a radial symmetric trap
with aspect ratio λ = 3 and ω = 2π ·65 Hz. a, Energy landscape for variational
calculations using a parabolic density distribution as a function of Rρ and Rz. For a
very strong three-body repulsion with κ3 = 600·10−41 ~m−6/s there exists two minima
with similar energy at a = 90 a0. b, We track the intersection point ainter, where the
energy of the droplet and condensate state is equal, dependent on the three-body
coupling strength κ3 (red line). The intersection point ainter is in the range of the
background scattering length abg for κ3 = 500-2000·10−41 ~m−6/s. We show ainter for
quantum fluctuations as a dashed blue line. c, Peak density for the droplet state at a
scattering length of a = 90 a0 for variable three-body coupling strength κ3, shown as
red line. The peak density reaches the observed density on the order of n0 ≈ 1021 m−3

again only for very high three-body repulsion with κ3 > 500·10−41 ~m−6/s. The peak
density including quantum fluctuations is the dashed blue line.

range of abg, which is the case for κ3 & 600 ~L3. Additionally, we show the peak density

n0 at a scattering length of 90 a0 for the droplet state in dependence of κ3. Again we can

only reach experimental observed densities on the order of n0 ≈ 1021 m−3 if the three-body

coupling strength is κ3 & 500 ~L3. In contrast the quantum fluctuations reached the

expected values of ainter and peak density n0 without any changeable parameter (shown as

dashed line in figure 5.8b,c). Due to this behaviour, that repulsive three-body collisions can

only reproduce our observations with exceptionally high κ3, whereas quantum fluctuations

explain the stability without any free parameter, we strongly favour the explanation with

quantum fluctuations. In the next chapter we strengthen the quantum fluctuations to be

the stabilization reason, as we perform more advanced measurements of the density for

the quantum droplets and the stability dependence on the scattering length a.
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In the previous section we reported on the observation of a new state of matter which

appeared as a product of the Rosensweig instability in a quantum ferrofluid. We observed

droplet ensembles that can exist due to a competition of different energy density contribu-

tions. They experience an effective attractive mean-field contribution with a scaling of n2

and a repulsive part that scales n2+α. This interplay results in liquid-like droplets. Such

energy functionals with higher order terms are also used to reliably describe liquid helium

droplets [305] and atomic nuclei [306]. Hence, our quantum droplets might be a model

system for other quantum matter phenomena. We showed in section 5.2 that the stability

of our droplet ensembles could be explained by quantum fluctuations or alternatively by

an extremely strong three-body repulsion.

In this chapter, we present discriminating experiments that allow us to establish that

the droplets are stabilized by quantum fluctuations. We realized an investigation method

to detect properties of the droplets. The main idea is to isolate the droplets by releasing

them into an optical waveguide. We present the preparation method and the subsequent

propagation of droplets in such a waveguide. We observed inter-droplet repulsion and

use this measurement to calculate the spatial extent of a droplet. Further, we examine

the scaling behaviour of the density in dependence of the scattering length and obtain

agreement with the quantum fluctuations. Finally, we expand the droplets in the absence of

gravity to prove that each droplet remains superfluid as well as the peak density agrees with

theoretical predictions including quantum fluctuations. All results give strong evidence for

quantum fluctuations, and hence we call our new state quantum droplets [88].

6.1. Quantum droplets in an optical waveguide

In this section, we perform studies on quantum droplets in an optical waveguide. These

studies were inspired by a similar experimental sequence performed for bright solitons

in non-dipolar quantum gases [307, 308]. Such solitons are self-confining matter waves

that means they are stable even when the external confinement along one direction is

removed. This means solitary waves can propagate over long distances in a waveguide with

neither attenuation nor change in shape. These solitary waves arise from a compensation

of natural dispersion by an attractive interaction. The existence of solitary waves is a very

general feature of nonlinear wave equations and they have been also observed in many

other physical systems including water waves and optics amongst others. If more than a

single soliton is apparent, the possibility arises to study soliton collision processes that are

dependent on the relative phases of the individual solitons [309, 310].
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In the context of dipolar condensates, bright solitons have been predicted in a two-

dimensional geometry, where the magnetic dipoles are artificially turned negative or when

they are polarized along the plane resulting in an effective attraction [311, 312]. However,

we want to stress out that these predictions feature a very different configuration than

in our experiments. Additionally, the natural dispersion arising from kinetic energy is

known not to stabilize droplets against the mean-field collapse. In consequence although,

we observe self-confined quantum droplets that are not solitons or solitary waves in the

strict sense. In fact the droplets are again more related to classical ferrofluids, where a

surface object was observed that remains localized along two dimensions [313].

Quantum droplets arise from the competition between three contributions. First, the

mean-field interactions that tends to create high density elongated states along the magnetic

field direction. Second, the repulsive quantum fluctuations that prevent the droplet density

from getting too high. And third, the trap confinement constraining the droplets along

the field direction. In fact, the droplets remain essentially unchanged when the radial

confinement is removed [301]. As a consequence of this effect, we can investigate isolated

quantum droplets in an optical waveguide. We will observe their self-confinement and

propagation in the waveguide, as well as evidence for collisions between droplets.

6.1.1. Preparation of droplets in a waveguide

To perform systematic measurements on the quantum droplets, we place them in an

optical waveguide. This relaxes their confinement in one direction and they are allowed to

propagate along this x-direction. The waveguide is a single optical dipole trap (ODT 1) that

creates a tight confinement around the x-axis. The release in this waveguide is performed

as shown in figure 6.1a. We first created as already explained in section 5.1.1 a stable

BEC containing ∼10,000 164Dy atoms in a crossed optical dipole trap at a magnetic field

of B = BBEC = 6.96(1) G with a weak magnetic gradient to compensate partially gravity.

We then lowered the magnetic field within 1 ms to a lower field of Bdrop = 6.66(1) G and

created as described before in section 5.1.2 droplet ensembles. After further 10 ms, one

dipole trap (ODT 2) was turned off in 10 ms, while the power of the other one (ODT 1)

was increased. This increase is performed to ensure that the atoms are not pulled out of

the trap by gravity. The droplets were then allowed to move in the waveguide for tWG and

were imaged in situ with the high-resolution imaging (section 3.3.3).

In figure 6.1c we present in situ images during the reshaping of the optical dipole traps.

The droplet patterns in a triangular structure are compressed along the y-direction but

are allowed to propagate freely along the x-direction. We then observe the following: The

condensed atoms remain fragmented into up to six droplets and down to one droplet.

Some atoms originally in the condensate do not form quantum droplets, but this fraction

is hard to quantify since it is hard to tell apart from a residual thermal fraction in our

images. Second, during the evolution time tWG the initial confinement energy is turned

into relative kinetic energy and the droplets move apart. Additionally, we expect the

droplets to repel each other as a consequence of the effectively repulsive dipolar interaction

between them.
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Fig. 6.1. Preparation of droplets in a waveguide. a, Experimental sequence to release
the droplets in an optical waveguide. The droplets were generated with a change in
magnetic field from BBEC to Bdrop in 1 ms and a wait time of 10 ms such that the
droplets could develop. Afterwards ODT 2 was turned off in 10 ms, while the power
PODT1 was increased to hold the atoms against the partially compensated gravity.
The droplets were then released to the waveguide for the time tWG. b, Schematic
representation of the droplets in the waveguide created by ODT 1 along the x-direction.
The droplet elongation along the magnetic field direction z is depicted and their
respective distance d is indicated. c, Representative single sample images during the
reshaping of the optical traps. The droplet patterns in an oblate trap (t = 15 ms) are
compressed along the y-direction that creates occasionally a zigzag droplet structure
(t=20 ms). Then the droplets are released to a waveguide (t = 25 ms) and are allowed
to expand freely along x and can increase their respective distance (t > 25 ms). Each
image shows a field of view of 16µm× 9µm.

The final experimental configuration of droplets in a waveguide is shown in figure 6.1b

with their respective separation d. The optical waveguide features trap frequencies of

ωy = 2π · 123(5) Hz and ωz = 2π · 100(10) Hz. Along the x-direction the trap frequency

is ωx < 2π · 1 Hz, which is too weak to hold the atoms and they are pulled either by a

residual magnetic field gradient or the gravitation.

In the next two sections, we investigate the properties of the droplets within this

waveguide. With systematic measurements, we can see self-confining droplets and can

calculate their spatial extent. These fundamental properties of the quantum droplets will

help in section 6.2 to unravel their nature and confirm quantum fluctuations to be the

mechanism ensuring stability.
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6.1.2. Propagating and self-confining droplets

After placing the quantum droplets in the waveguide, they were allowed to move along the

x-direction. We then imaged them as a function of time in the waveguide tWG using our

high-resolution imaging. We show representative images in figure 6.2b. We observe atom

numbers of N = 800(200) in the droplets. The droplets move away from each other, but

remain constant in their size. We extract the in situ size with a fit to a Gaussian function

with the Gaussian width as a fit parameter. Note that in this section the Gaussian width

is defined using the variance Var(x) = σ2
Var,x, which leads to widths that are a factor of√

2 smaller than previously defined68 in eq. (2.19). With this definition, we observe an in

situ size of σVar,x ≈ 900 nm, that does not evolve for the shown period under observation

of tWG = 20 ms, as shown in figure 6.2c with blue circles. This size is mainly limited by

our optical resolution of ∼1µm and hence we can only state this as an upper bound for

the radial droplet size.

By measuring the separation between droplets d, we observe a significant increase up to

a factor of four, as depicted in figure 6.2d. These facts that a single droplet appears to be

stable and that their spatial size remains constant when they move apart, indicates strongly

that they are self-confining. Thus, we can exclude already any long-range mechanism

between the droplets as a stability process.

To illustrate the self-confinement, we compare it with the evolution of a condensate that

is not separated into droplets and subject it to the same experimental sequence. For this

measurement, we did the same sequence as shown in figure 6.1a, but kept the magnetic

field throughout at a value of B = BBEC = 6.96(1) G. The results of this slightly changed

sequence is shown in figure 6.2a. The condensate expands as a whole in the waveguide,

at the time of release to the waveguide (tWG = 0 ms) it has an axial size of σVar,x ≈ 5µm

which increases by a factor of 10 for the longest observation time of tWG = 20 ms, as

presented in figure 6.2b with red diamonds. This strong expansion is due to a release of

kinetic and interaction energy. The axial size undergoes in the first 10 ms a linear growth69

with rates of σ̇Var,x ≈ 1µm/ms. This expansion rate can be described in terms of the

released energy Ex = 1
2
mσ̇Var,x [314], which results in Ex ≈ 4.5 ~ωinit

x , with ωinit
x = 2π 46 Hz

the initial trap frequency along the x-direction. We will come back to expansion dynamics

in section 6.2.2 to measure the density of the droplets.

Since the confinement along the x-direction is very weak, residual magnetic gradients

or the gravitation pull the atoms away from the imaging region of the waveguide. To

keep them within the field of view and measure the droplet repulsion, we need a small

confinement along the x-direction. For this, we kept the other dipole trap (ODT 2) turned

on at a very reduced power70. This second set of experiments is shown in the next section

and can be used to give a spatial extent for the droplets.

68The Gaussian density function such that the squared Gaussian width is equal to the variance reads

f(x) = 1√
2πσVar

exp
(

(x−x0)2

2σ2
Var

)
. The Gaussian width σ from eq. (2.19) and σVar have a relation that

reads σ =
√

2σVar.
69For longer times the atomic cloud is accelerated along the x-direction, which speeds up the expansion of

the condensate.
70The trap had a power of PODT2 = 0.14 given in relative units of figure 6.1a.
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Fig. 6.2. Condensates and droplets in a waveguide. a,b, Examples of in situ single
sample images after release in the waveguide (field of view is 80µm× 6.4µm). Images
were taken at propagation times in the waveguide tWG = 0, 5, 10, 15, 20 ms. The
samples were released to the waveguide as a condensate kept at a magnetic field of
BBEC = 6.96 G (a) and in comparison as droplets at a magnetic field of Bdrop = 6.66 G
(b). While the condensate expands strongly along the x-direction, the size of the
droplets remains unchanged. This indicates that the droplets are self-confining. c,
This evolution of the Gaussian width σVar,x is shown for condensates (red diamonds)
and is compared to droplets (blue circles). Each point is an average of 5 realizations
and the error bars give the standard deviation. d, Separation d between the droplets
as a function of time tWG. We used the data taken for c to extract the separation d
and show it with an error of one standard deviation.

6.1.3. Periodic quantum droplet oscillations

In this section, the quantum droplets were released to a prolate trap. This prolate trap

was created by the optical waveguide (ODT 1) and a second perpendicular dipole trap

(ODT 2) that created a weak confinement along the x-direction. This results in a prolate

trap with harmonic trap frequencies of (ωx, ωy, ωz) = 2π · (14.5(1), 123(5), 110(10)) where

the magnetic field is still pointing along z. This trap has a high trap aspect ratio71 of

λ = ωy,z/ωx ≈ 8. In this trap we can investigate the repulsive interaction between the

droplets and use a refined analysis of the droplet distance to calculate the spatial extent

of the droplets.

71The trap aspect ratio is slightly different used as defined before. Previous traps were radial symmetric
along the magnetic field direction z. Here, the trap is radial symmetric along the x-direction.
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By releasing the droplets to the prolate-shaped trap, we observe an oscillatory motion

of the droplets along the x-direction with the weak confinement of ωx = 2π · 14.5(1) Hz.

We show this behaviour qualitatively in figure 6.3a with a set of in situ images taken for

increasing oscillation time ttrap in the prolate trap. For the shown examples each image

has four to six droplets and we can observe an oscillatory motion of the separation d

between the droplets, which is represented in figure 6.3b. The oscillation frequency is

very close to the trap frequency ωx and one observes a strong damping of the oscillations.

This damping is at least in part due to the coupling of the droplet relative motion to the

background of atoms that are not inside droplets. This background consists mainly of

non-condensed thermal atoms, but we also expect a remnant condensed fraction that is

not inside the droplets. This background is excited as well and presents a breathing mode

that can be also seen in figure 6.3a as the diffuse background. This breathing mode is

strongly damped for ttrap > 30 ms, which in turn slows down the droplets relative motion.

Future studies with a reduced thermal background would allow to test the elasticity of the

droplet collisions and that the oscillation frequency shows a possible deviation from the

trap frequency.

For long observation times ttrap the droplets equilibrate at a distance of d = 2.5(5)µm.

Furthermore, when we first adiabatically loaded a stable condensate in the prolate trap

and then induced the Rosensweig instability by changing the field from BBEC to Bdrop,

we observed the same distance. This distance is smaller than the length obtained by

a simple analysis of the problem assuming point-like dipoles. This analysis results in

d = (3Nµ0µ
2
m/2πmω

2
x)

1/5 ≈ 4.5µm, as shown in eq. (5.1). This indicates that the

separation is reduced by a finite extent of the droplets along the z-direction. Thus, we

cannot assume the droplets to be point-like and need a more refined analysis.

To quantitatively determine the separation d and relate it to the spatial extent, we

calculate the dipolar energy Edd,inter between two droplets at a distance d in the Gaussian

ansatz with cylindrical symmetry. The calculation to obtain this inter-droplet interaction

is shown in appendix A.4 and the final result for Edd,inter is written in eq. (A.22). The

dipolar interaction is in our geometry effectively repulsive at long range and depends on

the separation d as well as the spatial extents σVar,ρ and σVar,z. There exists always a

global minimum for d = 0 as the dipolar interaction is for overlapping droplets effectively

attractive. For d > 0, the dipolar repulsion is counteracted by the harmonic trap energy

that reads Etrap = Nmω2
xd

2/4 for two droplets with the mass of N dysprosium atoms.

We then search for energy minima in the sum of dipolar energy (Edd,inter) and trap

energy (Etrap) as a function of the droplet separation d. For low enough droplet sizes

such that d � σVar,ρ, the individual density distributions are only weakly overlapping,

and there exists a local minimum. In figure 6.3c we present the distance d of this local

minimum obtained as a function of the Gaussian widths σVar,ρ and σVar,z for 800 atoms in

a droplet. When a local minimum exists, its separation d depends mainly on σVar,z. The

experimentally observed separation of d = 2.5(5)µm is only possible within the region

delimited by the dashed line visible in figure 6.3c. From this we see that the experimental

value can be only fulfilled for σVar,z = 2.5(5)µm and for the radial extent we can only give

an upper bound of σVar,ρ . 500 nm.
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6.1. Quantum droplets in an optical waveguide
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Fig. 6.3. Quantum droplets in a prolate trap. a, After the creation of the quantum
droplets we transfer them to a prolate trap with trap frequencies (ωx, ωy, ωz) =
2π · (14.5, 123, 110) Hz. The droplets then oscillate along the x-direction in the
harmonic trap and are allowed to collide. We show in situ images for a time sequence
of multiple oscillating droplets with the oscillation time ttrap mentioned in the figure.
Each image has a field of view of 38.4µm×5.5µm. b, Separation between the droplets
d as a function of wait time ttrap in the prolate trap. Each point is an average of 5
realizations with the standard deviation as error bars. The separation d oscillates
with the axial frequency ωx and shows a strong damping. The grey dashed line is a
guide to the eye with a frequency of ωx. At long times the droplets equilibrate with
a separation of d = 2.5(5)µm. c, Droplet separation d that locally minimizes the
total energy of two repelling droplets in a harmonic confinement with trap frequency
ωx. The separation d is a function of the droplet widths σVar,ρ and σVar,z. The local
energy minimum for d > 0 only exists in a certain range of parameters. If a minimum
exists the separation d only depends on σVar,z. The area within the dashed line shows
the possible values of σVar,ρ and σVar,z for our experimentally observed separation of
d = 2.5(5)µm.
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Chapter 6. Quantum Droplets

6.2. Evidence of quantum fluctuations

In the previous section, we used our measurements to show that the droplets are strongly

elongated along the magnetic field direction with an aspect ratio of κ . 0.2. Inside a

droplet, this results in a dipolar interaction that is mainly attractive and since εdd > 1

this attraction is stronger than the repulsive contact interaction. Hence, the droplets

are expected to be unstable in the mean-field description, as discussed in section 4.5.3.

In section 5.2, we presented how beyond mean-field effects can stabilize these droplets.

For example in figure 5.7g we calculated the aspect ratio for droplets including quantum

fluctuations and got similar values with κ < 0.2. However, the same is true including

additional repulsive three-body interactions. But quantum fluctuations and three-body

interactions differ in their atomic density scaling for the energy density. Thus, measuring

the droplet density should unravel the nature of the stabilizing mechanism.

In this section, we identify quantum fluctuations to be the stabilization mechanism,

as we measure further properties of the droplets. The following experiments determine

the droplet atomic density and its dependence on the scattering length a. The measured

properties agree very well with corrections that include quantum fluctuations and are

incompatible with three-body repulsion.

6.2.1. Lifetime of quantum droplets

The droplets are dense and thus exhibit enhanced three-body recombination losses. We

have shown indeed in section 5.1.3 the droplet ensembles reduced lifetime compared to a

condensate. By extracting the droplet lifetime, we could estimate a droplet peak density.

In this section, we measure the droplet lifetime for different values of the scattering

length a. When using quantum fluctuations as stabilization mechanism, we have seen a

strong increase of the density for decreasing a in figure 5.7h. In contrast when including

three-body repulsion the scaling of the density with a is much weaker [301]. In turn, we

expect also that the three-body recombination losses, that strongly increase for higher

densities, show a strong dependence on the scattering length a.

The experimental sequence is identical to the previous section 6.1.3 where we released

the droplets in a prolate trap. The only difference is that we investigated it here for much

longer times ttrap. For this time, we tuned the magnetic field to varying final values Bf to

control the final scattering length af and map the total atom number N of the sample. As

a result of these measurements, we show three exemplary atom number decay curves in

figure 6.4a for varying magnetic field Bf. We observe initially a decay with a fast time

scale, that we call τf and is typically a few hundred ms. This fast decay stops at atom

numbers of N = 4000(250) and then follows a decay with a much longer time scale of

several seconds. We associate the fast one to the lifetime of the droplets, before a remnant

cloud with 4000 atoms is left, that is too dilute to form droplets and thus decays much

more slowly. We do in fact only observe droplets during the initial fast decay. The lifetime

of the droplets is then extracted with a fit to an exponential decay. By allowing the

long-term atom number to change between 3750 and 4250, we get an uncertainty on τf.
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Br = 6.573(5) G. The filled blue and hatched grey areas represent the expected scaling
using quantum fluctuations and three-body repulsion. The areas take into account
the uncertainty range on the droplets aspect ratio 0 ≤ κ ≤ 0.2.

We present the measured lifetimes τf as red circles normalized to the reference lifetime

τr at Br = 6.573(5) G in figure 6.4b against their scattering length af given in units of the

reference scattering length ar = 94(12) a0. The data is presented in unitless variables not

only for simplicity, it also leads to a more convenient theoretical analysis. The ratio of the

lifetimes fulfils the relation
τf

τr

=
〈n2

r 〉
〈n2

f 〉
=
n2

0,r

n2
0,f

, (6.1)

where the decay lifetime is given as τ = 1/L3〈n2〉. We used a constant three-body loss

rate L3 independent of the scattering length a and the fact that the droplet density is

independent of the atom number (as shown in figure 5.7i).

A simple analytic calculation to estimate the peak density n0 in dependence of the

scattering length a including beyond mean-field effects is shown in appendix A.7. The

squared ratio of the peak densities taken at different scattering lengths is then only

dependent on the two dimensionless variables af
ar

and add
ar

, as shown with eq. (A.34) and

(A.35). In particular for three-body repulsion, the ratio is independent on the three-body

coupling constant κ3. We present in figure 6.4b the scaling behaviour of these ratios using

quantum fluctuations (blue area) and three-body repulsion (grey hatched area).
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Chapter 6. Quantum Droplets

The data points are incompatible with the scaling predicted by three-body repulsion

while without any fit parameter they follow the scaling of quantum fluctuations. This

demonstrates explicit that quantum fluctuations constitute the stabilizing mechanism.

But, a value for the central peak density is still missing, that is derived in the final section.

6.2.2. Expansion and interference of droplets

The last investigation method used in this thesis for the quantum droplets is their time

of flight (ToF) expansion in free space. However, the droplet expansion is not yet

completely understood and needs further theoretical and experimental effort. There has

been predictions that liquid-like droplets exhibit an absence of growth without external

confinement [277, 298]. On the other hand the expansion of dipolar gases is well studied

in the mean-field approximation [36–38], but is in our case modified by beyond mean-field

effects [291]. Therefore, to quantitatively express the droplet expansion, we measure the

released energy and use these measurements to obtain the atomic density of the droplets.

For the expansion measurements, we used the experimental sequence as shown in figure

6.5a. As before we transferred the droplets in the optical waveguide and turned off the

waveguide after tWG = 4 ms. In order to keep the atoms at the focal position of our

high-resolution imaging system, we increased the magnetic field gradient to compensate

completely gravity. At the same time we may have quenched the magnetic field BToF

in 50µs to values ranging from Bdrop to 7.01 G, which tuned the short-range contact

interaction. The droplets then levitated for the time tToF and were imaged for various

times after release. Figure 6.5b shows examples of this expansion measurement for

B = Bdrop and B = 6.86 G.

We first discuss the case of a constant magnetic field (no quench) at B = Bdrop. We record

the sizes σVar,x and σVar,y as a function of the time tToF. We show in figure 6.5c the size along

the y-direction with blue circles and observe that the droplets expand. The sizes undergo

a linear growth with a rate of σ̇Var,x = 0.17(3)µm/ms and σ̇Var,y = 0.24(3)µm/ms. We

qualitatively express the expansion dynamics in terms of a released energy Ei = 1
2
mσ̇2

Var,i

[314], which is the sum of kinetic and interaction energy [94, p. 168]. This results

in Ex = 0.045(4) ~ωy and Ey = 0.09(1) ~ωy, which are remarkably low energies and

demonstrates that kinetic energy plays only a marginal role as expected. However, a full

theory is presently not available to describe the free-space dynamics for our system after

the release. To circumvent the absence of a theoretical model for the droplet dynamics, we

investigate only relative changes in the released energy for increasing contact interactions.

Hence, we consider now the droplet expansion for BToF > Bdrop. For increasing fields

BToF the scattering length a is increased. Thus, we release additional interaction energy,

that can be measured as faster expansion. The droplets’ size becomes comparable to

or larger than their relative distance such that neighbouring ones overlap. In this case,

we observed matter-wave interference fringes along the x-direction as exemplified on the

right side of figure 6.5b. The presence of these fringes demonstrates that each droplet

individually is phase coherent and thus superfluid. Their observation opens the door to

studies of the relative phase coherence between droplets, which is compelling evidence for
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view of 80µm× 48µm. For the two left images the magnetic field was kept at Bdrop

during expansion, while for the two right images it was quenched to B = 6.86 G. We
can observe clear interference fringes along the x-axis while we can still measure the
expanded width along the y-direction. c, Gaussian width σVar,y as a function of time
of flight tToF. We show examples for varying field BToF: Blue circles show expansion
at BToF = Bdrop and red diamonds at BToF = BBEC. Each point is an average of
30-40 realizations with one standard deviation as error bars. By assuming a linear
time dependence (dashed lines), we can evaluate the released energy Ey = 1

2mσ̇
2
Var,y.

a supersolid state discussed in section 5.1.5. In the present case we do not observe fringe

patterns that allow us to measure the droplets relative phase, but this is mainly due to

shot-to-shot noise in the in-situ position and relative spacing of the droplets since we are

not yet in the far-field regime.

Although the droplets start to overlap along the x-direction and show interference

fringes, we can still measure their size along the y-direction. As an example, we show

in Figure 6.5c the widths σVar,y for BToF = BBEC = 6.96 G as red diamonds and observe

again a linear growth in the size with slope σ̇Var,y. By repeating this measurement for

varying magnetic field BToF, we get the released energy Ey(BToF). For increasing magnetic

field the contact interaction is changed by an amount of ∆aToF = a(BToF)− a(Bdrop) with

a(Bdrop) = 95(13) a0.
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Chapter 6. Quantum Droplets

We present in figure 6.6a in blue circles the difference in released energy ∆Ey =

Ey(BToF) − Ey(Bdrop) in dependence of the change in scattering length ∆aToF. As can

be seen, the released energy and the corresponding expansion rate is strongly increased.

Given the short quench time of 50µs for the magnetic field, the initial density distribution

of a single droplet does not have time to adapt to the interaction quench. One thus expects

that the change in released energy is given by

∆E ' 1

N

∫
d3r

∆g

2
n2 =

∆g

2
〈n〉 =

{
1

4
√

2
∆g n0 with Gaussian ansatz

2
7

∆g n0 with inverted parabola
, (6.2)

with ∆g = 4π~2∆aToF/m. Since we are dealing with the difference in total energy here,

the variation of the beyond mean-field corrections is negligible. Thus, we can adjust

eq. (6.2) to our measured data in figure 6.6a using the density as a single fit parameter.

The result is shown as green line with a green shaded confidence interval and we obtain

〈n〉 = 1.7(7)·1020 m−3. Using the Gaussian ansatz this yields nG
0 = 4.9(2.0)·1020 m−3, while

for the inverted parabola we obtain nTF
0 = 3.0(1.2)·1020 m−3.

The final last step is to verify if the obtained peak density values are compatible with

predictions including quantum fluctuations. For this verification, we consider the chemical

potential of a dipolar quantum gas with beyond mean-field correction terms, as given in

eq. (5.6). We use a Gaussian function or an inverted parabola for the density distribution72

and analyse the mechanical stability condition73 ∂µ
∂n
≥ 0 at the central trap position with

the peak density n0

∂µ

∂n

∣∣∣∣
r=0

= g [1− εddfdip(κ)] +

{
16g
√
n0a3/π (1 + 3

2
ε2

dd) Quantum fluctuations

κ3n0 Three-body repulsion
. (6.3)

For our experimental values of εdd ≈ 1 and fdip(κ < 0.2) > 0.83, the first two mean-field

contributions nearly balance each other which leads to a major role for beyond mean-

field effects. We show the relation (6.3) in figure 6.6b as a function of the peak density

n0. For low densities, ∂µ
∂n

is negative and the system is unstable, while for high enough

densities it becomes positive and the system fulfils the stability condition. We plot ∂µ
∂n

by

including quantum fluctuations as blue shaded region using the parameters a = 95(13) a0

and κ = 0.1 (this κ value is a factor two below the experimental upper bound, it yields

fdip(κ) = 0.94). And with three-body repulsions it is shown for the parameters a = 95 a0

and κ3 = 6·10−39 ~m6/s as a dashed grey line. The measured peak densities are shown as

orange square (nTF
0 ) and red circle (nG

0 ). Both density values are in agreement with the

stabilizing density due to quantum fluctuations, while even a very high value of κ3 is not

sufficient to stabilize these densities.

72This simplifies the dipolar contribution Φdip = −εddgn0fdip(κ) and defines a peak density n0 at the
central position of the trap.

73The bulk modulus K is for a thermodynamic system defined as K = −V ∂p
∂V which can be written

for quantum gases as K = n2 ∂µ
∂n [95, p. 413]. The bulk modulus measures the resistance to uniform

compression. If K is negative the system is unstable against a decrease in volume.
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Fig. 6.6. Results from the expansion measurements. a, Difference in released energy
∆Ey with respect to B = Bdrop = 6.66 G with adrop = 95(13) a0. The blue points
were taken for BToF = 6.73 G to 7.01 G and are plotted for the change in scattering
length ∆aToF. The green shaded area is an estimate of the change in released energy
dependent on the density as a single fit parameter, see eq. (6.2), which gives an
expectation value for the density of 〈n〉 = 1.7(7)·1020 m−3. The green shaded area
represents the confidence interval. b, Derivative of the chemical potential with respect
to density (∂µ/∂n) as a function of peak density n0. The blue shaded area expresses
our uncertainty on the scattering length. Negative values imply mechanical instability,
while positive values are stable. The expectation value for the density 〈n〉 obtained
from a is shown as peak densities assuming a Gaussian distribution (red circle) or an
inverted parabola (orange square). The dashed grey line shows ∂µ/∂n obtained using
a three-body repulsion with parameters a = 95 a0 and κ3 = 6·10−39 ~m−6/s, which
stabilizes at a peak density n0 = 12·1020 m−3 much higher than experimentally shown.

In this chapter, we have seen that quantum droplets are self-confining due to their strong

elongation along the magnetic field direction. By systematic measurements on individual

droplets, we demonstrated quantitatively that quantum fluctuations mechanically stabilize

them against the mean-field collapse. We observed in addition interference of several

droplets indicating that each droplet remains superfluid itself. Hence, quantum droplets

are a novel liquid-like state of matter stabilized by quantum fluctuations.
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7. Conclusion and Outlook

In this thesis, we have presented the experimental observation of a new state of matter,

a liquid-like quantum droplet. This state was unpredicted prior to our experimental

investigations, which is a rare case in the field of cold atomic physics. Ultracold gases

realize a very clean, controllable many-body model system, that can be predetermined in

the framework of mean-field theory. However, our experiments have exhibited clear effects

that go beyond this mean-field theory. In fact, we have shown that quantum fluctuations

play a dominant role, which are neglected in mean-field theory. The studies presented

in this work are the first theoretical description and experimental detection of quantum

fluctuations acting as a stabilizing mechanism. We expect this to be a major discovery for

the growing research field of dipolar quantum gases and to be the basis for proposals of

novel achievable physics.

This discovery of quantum droplets was only possible thanks to our recently built new

generation apparatus. This step forward allowed us to cool dysprosium atoms down

to quantum degeneracy with advanced laser cooling schemes. In particular, the optical

transport to a glass cell with high optical access enables the use of an imaging system

with a high spatial resolution of 1µm. An additional precise magnetic field control can

tune the contact interaction strength by utilizing magnetic Feshbach resonances. With

these experimental tools, we created a quantum ferrofluid of dysprosium atoms with a

high control on internal and external properties as well as a detection method unique for

dipolar gases.

Preparing this controllable system, we could induce a Rosensweig instability, known

from classical ferrofluids. A classical ferrofluid forms a regular pattern of surface peaks

when a strong magnetic field is present. This effect is only possible as a consequence of

a competition of three different forces: surface tension, gravitation and magnetic dipole-

dipole interaction. This interplay appears also as a non-monotonously increasing dispersion

relation possessing a local minimum. We demonstrated in this thesis the similarities of

classical and quantum ferrofluids. Quantum ferrofluids also exhibit a competition of

contact interaction, external trapping and magnetic dipole-dipole interaction, which is

the basis of an excitation spectrum featuring a roton minimum. By carefully tuning the

contact interaction, we induced an angular roton or Rosensweig instability and created

stable quantum droplets. By releasing these droplets to an optical waveguide, we could

observe first properties. They are self-confining as a result of their strong elongation along

the magnetic field. And they can travel without a change of shape along a waveguide and

remain superfluid.

We presented a variational approach as a first theoretical framework to predict properties

of the quantum droplets. For this, we inserted a parabolic density distribution in the
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energy functional including beyond mean-field corrections due to quantum fluctuations.

With this approach, we could verify the observed effects. We could check the parameter

range to observe stable droplets and understand the nature of the Rosensweig instability.

The transition from a condensate to a droplet state is very similar to a first-order phase

transition featuring bistability and hysteresis. We could also conclude that the droplets are

strongly elongated along the magnetic field direction and behave like a liquid. However,

this approach is not yet fully developed. The absolute values of the spatial extent and

peak density are not consistent with experimental observations. A different approach

using a stability criterion derived from the chemical potential resulted in very good

agreement for the peak density and the density scaling. Future studies have to determine

the appropriate density function to obtain values consistent with experiments. Very recent

work describing quantum droplets numerically [299], indicates that the density distribution

may be described with a function ∝ (1 − z2

R2
z
)2/3 along the magnetic field direction and

a Gaussian function perpendicular to it. However, this probably changes the geometry

dependent dipolar anisotropic function fdip(κ) and complicates the variational approach.

Outlook

We achieved further progress in the understanding of quantum droplets with numerical

calculations using the Gross-Pitaevskii equation (2.12) including an additional term at-

tributed to quantum fluctuations. We already used this new tool for numerical calculations

in this thesis shown in figure 2.5b and 4.10e. One of the first simulations on quantum

droplets is depicted in figure 7.1a. We could reproduce elongated droplets with a high

atomic density. These studies will help to predict basic properties such as peak density,

spatial extent and stability properties, but also more complicated characteristics such as

collective oscillation frequencies, droplet collision physics or free expansion.

Of course, the above mentioned aspects can be also experimentally investigated. Unfor-

tunately, the droplet creation remains a statistical process with varying number of droplets

and spatial position. But our apparatus offers the possibility to create time-averaged

tailored trapping potentials using a green laser guided through an electro-optical deflector

(EOD) system and the microscope objective. In figure 7.1b,c we show first results with

two different potentials imprinted on a dysprosium condensate. With this possibility to

create almost arbitrary potentials, we could seed single droplets at well defined positions.

Alternatively, we could create a single big quantum droplet by circumventing the roton

instability and inducing the phonon instability to the droplet state.

Additionally, with these tailored potentials one can visibly demonstrate the long-range

character of the dipolar interaction. In a linear three-well system with controllable

tunnelling and particle interaction various phases are expected to occur [315–317]. In on

of these phases, the atoms may be found on the two outer wells, while the central one

is depopulated. The tailored potential may also allow to observe dipolar condensate in

toroidal traps (see figure 7.1c). There, the condensate is predicted to form a self-induced

Josephson junction [318].

For all these experiments we use the magnetic Feshbach resonances to tune the contact

interaction strength. However, the microscopic scattering process and the properties of the
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22.4 µm

Fig. 7.1. Control over quantum droplets and tailored potentials. a, Numerical simula-
tion of the Rosensweig instability of a quantum ferrofluid. The figure shows isodensity
surfaces for a high density droplet state (red) and a much lower density (blue) in a
side view. b,c, First tailored potentials written on a dysprosium condensate. For
these potentials we used a green laser, two electro-optical deflectors (EOD) and the
microscope objective. Exemplary, we show a four-well system (b) and a toroidal ring
potential (c).

molecular potentials for the closed channel remains unclear. In addition, many Feshbach

resonances seem to be temperature dependent, even in a temperature range when only

s-wave scattering should be dominant. By investigating in detail the two-body interaction

it might be even possible to create bound dimers of dysprosium atoms, which exhibit even

higher dipole-dipole interaction.

Besides, we can utilize the Feshbach resonances to investigate interesting few-body

physics. For non-dipolar quantum gases universal Efimov states, trimer bound states, were

observed [14]. By including very strong dipolar interaction the Efimov trimers persist.

Moreover, the dipolar interaction adds new physical aspects to Efimov states [319]. In

particular, for dipolar interaction lengths larger than the contact interaction range, the

positions of the Efimov resonances are universally determined by the two-dipole physics

only. The same is predicted for three identical fermionic dipoles, that also show a long-lived

three-dipole state [320].

Finally, we want to mention the rich atomic energy spectrum of lanthanides. For dipolar

atoms, there exists a cooling method that is in principle lossless. The demagnetization

cooling developed for chromium atoms [46] has shown a good cooling potential in recent

experiments [321, 322]. Early studies with dysprosium atoms [177] using a transition at

a wavelength of 684 nm [323] need further effort, but could help to create colder atomic

samples with a higher atom number.

This list is of course far from being complete. Especially, as we are not restricted

to bosonic dipolar gases. We were able to generate fermionic ultracold gases consisting

dysprosium atoms [178]. In principle our apparatus was designed to work with Bose-Fermi

mixtures using two dysprosium isotopes at the same time. This shows the variety of

ultracold gases and the multitude of possibilities for our apparatus.
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A. Appendix

A.1. Fourier transform of the binary interactions

The binary interactions (2.8) may be expressed in Fourier space, as the mean-field interac-

tion potential (2.13) can thereby be simplified. By using the definition of a convolution on

the mean-field interaction potential Φint(r), one reads

Φint(r) =

∫
d3r′ Uint(r − r′)n(r′) = Uint(r) ∗ n(r) . (A.1)

In the following, we use this convention for the three-dimensional Fourier transform

f̃(k) = F {f(r)} =

∫
d3r f(r) e−ikr (A.2a)

f(r) = F−1
{
f̃(k)

}
=

∫
d3k f̃(k) eikr(2π)−3 (A.2b)

to calculate the Fourier transform of the mean-field interaction potential Φint(r) and use

the convolution theorem. This theorem means that a convolution in coordinate space is

equal to the multiplication in the Fourier space

F {Φint} = F {Uint ∗ n} = F {Uint} · F {n} = (Ũdd + Ũcontact) · ñ . (A.3)

The computation of the dipolar interaction in Fourier space Ũdd results in [26, 324, 325]

Ũdd(k) = 3gdd

(
1− 3 cos2 α

) [cos(kb)

(kb)2
− sin(kb)

(kb)3

]
, (A.4)

where b is a distance below which atoms overlap74 and α is the angle between the

polarization direction µm and the wave propagation k. In the limit b→ 0 the right term

in brackets of eq. (A.4) is -1/3 and the Fourier transform of the dipolar interaction gives

F {Udd} (k) = Ũdd(k) = −gdd

(
1− 3 cos2 α

)
, (A.5)

and the contact interaction in Fourier space is easily calculated as

F {Ucontact} (k) = Ũcontact(k) = g . (A.6)

74One has to use this short distance cut-off around the origin to keep the previous integrals finite.
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A.2. Excitation spectrum of a 3D homogeneous

dipolar gas

In this appendix we will derive the excitation spectrum of a homogeneous dipolar con-

densates in three dimensions. We follow an approach [95, p. 188] focusing on collective

excitations using the hydrodynamic equations as derived in section 4.4.1. We repeat for

convenience the Euler equations (4.19) and (4.23) of a compressible dipolar condensate

with a different notation

∂n

∂t
= −∇ · (nv) , (A.7a)

m
∂v

∂t
= −∇

(
µ+

mv2

2

)
, (A.7b)

µ = gn+ Vext + Φdip −
~2

2m
√
n
∇2
√
n , (A.7c)

with µ the chemical potential. Elementary excitations can be investigated by considering

small density and velocity perturbations of the equilibrium state. We choose to linearise

eq. (A.7) with the velocity v(r) = v0 + δv(r) and the density n(r) = n0 + δn(r), where v0
and n0 are the equilibrium values and δv and δn the departure from its equilibrium. By

assuming the case of a three-dimensional homogeneous condensate75 (n0 = const, v0 = 0

and Vext = 0) and neglecting any second order terms, we get76

∂ δn

∂t
= −∇ · (n0δv) , (A.8a)

m
∂ δv

∂t
= −∇δµ , (A.8b)

δµ = gδn+ δΦdip −
~2

4mn0

∇2δn , (A.8c)

with δµ the linear perturbation of the chemical potential and δΦdip the linear perturbation

of the dipolar mean-field potential, that will be simplified later. Taking the time derivative

of (A.8a) and eliminating the velocity with (A.8b) results in the hydrodynamic equation

of motion for the perturbation

m
∂2δn

∂t2
= ∇ · (n0∇δµ) . (A.9)

75The wave function for a homogeneous condensate is given by Ψ =
√
n0ei

µ
~ t, hence the velocity of the

condensate v0 is zero.
76(A.8a) Inserting δv and n in (A.7a) gives ∂n0

∂t + ∂ δn
∂t = −∇ · (n0δv) −∇ · (δnδv). Neglecting second

order terms and n0 = const gives the result.
(A.8b) As before inserting the ansatz and neglect second order terms in the velocity. The equilibrium
density n0 and velocity v fulfill eq. (A.7b) and thus the zero order terms cancel each other.
(A.8c) We need a Taylor expansion for the quantum pressure term:

√
n ≈ √n0 + δn

2
√
n0

. Using this

approximation for (A.7c) and ∇n0 = 0 results in the above.
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A.2. Excitation spectrum of a 3D homogeneous dipolar gas

As we are interested in travelling-wave perturbations, we set for the perturbed density

plane waves δn = δnq(r, t) = δn̂ exp(iqr − iωt) with amplitude δn̂, quasi-momentum ~q
and energy ~ω. With this ansatz, we can further simplify the perturbed chemical potential

from eq. (A.8c) and derive77

δµ = δµq = gδnq + Ũdd(q)δnq +
~2q2

4mn0

δnq , (A.10)

with Ũdd(q) the Fourier transform of the dipolar mean field potential as calculated in

eq. (A.5). Finally, with the plane wave ansatz, the equation of motion (A.9) and the

chemical perturbation (A.10), we obtain the dispersion relation

mω2 = n0gq
2 − n0gdd

(
1− 3 cos2 α

)
q2 +

~2q4

4m
. (A.11)

To make contact with a microscopic description, it is convenient to describe the dispersion

relation with the energy E(q) = ~ω(q) of an excitation. After a simple rearrangement of

the relation (A.11), the excitation spectrum reads

E(q) = ~ω(q) =

√(
~2q2

2m

)2

+
~2q2

2m
2n0 [g − gdd(1− 3 cos2 α)] (A.12)

with ~2q2/2m the free particle energy Efree(q).

The terms in the square brackets represent the Fourier transform of the two-body

interactions including dipolar and contact scattering, see eq. (A.5) and (A.6). Hence, we

finally rewrite the excitation spectrum in a simplified way

E(q) =

√
Efree(q)

[
Efree(q) + 2n0Ũint(q)

]
. (A.13)

77We use the plane wave ansatz to simplify the perturbed dipolar mean-field potential defined in (2.15):
δΦdip =

∫
d3r′ Udd(r − r′) δn̂ e(iqr′−iωt). With the substitution r′ = r − r′, the potential is written

as δΦdip =
∫

d3r′ Udd(r′) e−iqr
′
δn̂ e(iqr−iωt). All the terms dependent on r′ are equal to the Fourier

transform of the dipolar interaction Ũdd(q) as defined in eq. (A.2a) and (A.5), whereas the other terms
are the plane wave δnq(r).
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A.3. Excitation spectrum of a 2D homogeneous

dipolar gas

To derive the excitation spectrum of a two dimensional (2D) dipolar gas, we start first

with the notation of the interaction energy from eq. (2.16) in Fourier space [250]

Eint
(A.1)
=

1

2

∫
d3r n(r) · (Uint(r) ∗ n(r))

(A.3)
=

1

2

∫
d3r n(r) · F−1{F{Uint} · F{n}}

(A.2b)
=

1

2(2π)3

∫
d3q

∫
d3r n(r) eiqrŨint(q)ñ(q)

(A.2a)
=

1

2(2π)3

∫
d3q ñ(−q)Ũint(q)ñ(q) . (A.14)

For a quasi-2D gas, the density along one direction is restricted to the ground state of the

harmonic oscillator. We then take as a general ansatz for a Gaussian density distribution

n(r) = n(ρ)(σz
√
π)−1exp(−z2/σ2

z) with the width σz along the z-direction and n(ρ) the

normalized radial 2D density. The density in Fourier space is ñ(q) = ñ(q⊥)exp(−q2
zσ

2
z/4)

with the radial and axial quasi-momenta q⊥ and qz. By using the Fourier transform of the

binary interactions from eq. (A.5) and (A.6), with subsequent integrating eq. (A.14) over

the qz-direction, the interaction energy is then given by

Eint =
1

2(2π)2

∫
d2q ñ(q⊥)2

∞∫
−∞

dqz
1

2π

[
g + gdd

(
3q2
⊥

q2
⊥ + q2

z

− 1

)]
e−q

2
zσ

2
z/2

=
1

2(2π)2

∫
d2q ñ(q⊥)2 Ũ2D

int (q⊥) , (A.15)

where we used the relation cos2 α = q2
z/q

2 = q2
z/q

2
⊥ + q2

z and defined the effective 2D

interaction potential in Fourier space [251]

Ũ2D
int (q⊥) =

1√
2πσz

[
g + 2gddH2D

(
q⊥σz√

2

)]
. (A.16)

The function H2D is given by H2D = 1− 3
√
π

2
|x| erfc(x) ex

2
, with erfc(x) the complementary

error function. Finally, by replacing in the 3D excitation spectrum (A.13) each term with

its 2D counterpart, meaning q → q⊥, Ũint → Ũ2D
int and n0 → n2D with n2D =

√
2πσzn0, we

obtain the excitation spectrum of a 2D homogeneous dipolar gas

E(q⊥) =

√(
~2q2
⊥

2m

)2

+
~2q2
⊥

2m
2n0

[
g + gddH2D

(
q⊥σz√

2

)]
. (A.17)
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A.4. Dipolar interaction between two condensates

A.4. Dipolar interaction between two condensates

In section 6.1.3, we calculated the droplet spatial extent only with the knowledge of

the harmonic trap and the droplet distance. For this we used the inter-droplet dipolar

interaction, that is derived in this section. We perform here similar calculations as in

[70, 326], but with a different geometry of the droplets. The dipolar interaction energy of

two droplets, described with the density distributions n− and n+, can be calculated as

Edd,inter =

∫
d3r

∫
d3r′ n−(r)Udd(r − r′)n+(r)

=
1

(2π)3

∫
d3q ñ−(−q) Ũdd(q) ñ+(q) , (A.18)

where we used to derive the second term the convolution theorem similar to eq. (A.14).

We assume the density distribution to be a Gaussian function with cylindrical symmetry,

and the droplets are separated by a distance d, which is much larger than their radial

extent σρ

n±(r) =
N

π3/2σ2
ρσz

exp

(
−

(x± d
2
)2

σ2
ρ

− y2

σ2
ρ

− z2

σ2
z

)
. (A.19)

The Fourier transform with the definition from eq. (A.2a) gives

ñ±(q) = N exp

(
−
q2
xσ

2
ρ

4
−
q2
yσ

2
ρ

4
− q2

zσ
2
z

4
∓ iqxd

2

)
. (A.20)

We can now calculate the dipolar inter-droplet interaction by inserting eq. (A.20) and Ũdd

from eq. (A.5) with cos2 α = q2
z/q

2 in eq. (A.18)

Edd,inter = −gddN
2

(2π)3

∫
d3q

(
1− 3

q2
z

q2

)
exp

(
−
q2
xσ

2
ρ

2
−
q2
yσ

2
ρ

2
− q2

zσ
2
z

2
− iqxd

)
= − gddN

2

(2πσρ)3

∫
d3q̄

(
1− 3

q̄2
z

q̄2

)
exp

(
− q̄

2
x

2
−
q̄2
y

2
− q̄2

z

2κ2
− iq̄xd̄

)
, (A.21)

where we used for the second term dimensionless variables q̄ = σρq and d̄ = d/σρ. We

further use the condensate ratio κ = σρ/σz and spherical coordinates (q̄, ϑ, ϕ) and define

u = cosϑ to perform the integration

Edd,inter = − gddN
2

(2πσρ)3

∞∫
0

dq̄

1∫
0

du q̄2
(
1− 3u2

)
e−

1
2
q̄2(1−u2+u2κ−2)

2π∫
0

dϕ e−iq̄d̄
√

1−u2 cosϕ

= − gddN
2

(2πσρ)3

∞∫
0

dq̄

1∫
0

du q̄2
(
1− 3u2

)
e−

1
2
q̄2(1−u2+u2κ−2) 2πJ0(q̄d̄

√
1− u2) , (A.22)

where the integration over ϕ results in a Bessel-function of the first kind J0. Eq. (A.22)

cannot be further simplified in general and is the final result.

107



Appendix A. Appendix

A.5. Energy expressions in the Thomas-Fermi limit

We present the energy expressions in Thomas-Fermi approximation for an external radial

symmetric trapping

Vext(ρ, z) =
m

2

(
ωρρ

2 + ωzz
2
)

=
m

2

ω

λ2/3

(
ρ2 + λ2z2

)
(A.23a)

and recalling the trap aspect ratio λ = ωz/ωρ and the mean of the trap frequencies

ω = (ω2
ρωz)

1/3. Inserting the radial symmetric parabolic density distribution

nTF(ρ, z) = |ψTF(ρ, z)|2 =
15N

8πR2
ρRz

[
1− ρ2

R2
ρ

− z2

R2
z

]
for nTF ≥ 0 (A.23b)

in the energy functional from eq. (2.16) with neglected kinetic energy term results in the

contributing energy terms [258, 259]. We express these with the characteristic oscillator

length a =
√

~/mω and the cloud aspect ratio κ = Rρ/Rz. The potential energy of the

external trap writes
Eext

~ω
=

N

14a2λ2/3

(
2R2

ρ + λ2R2
z

)
(A.24a)

and the mean-field interaction energy (contact and dipolar interaction)

Econtact + Edip

~ω
=

15N2

7

a2a

R2
ρRz

(1− εddfdip(κ)) (A.24b)

with the geometry-dependent function

fdip(κ) =
1 + 2κ2

1− κ2
− 3κ2arctanh

√
1− κ2

(1− κ2)3/2
. (A.24c)

By including terms beyond mean-field theory, as motivated in section 5.2, we get two

further terms as expressed in the energy functional (5.7). First, the quantum fluctuations

[291]

Eqf

~ω̄
=

5

2

(
15

8

)3/2(
Na

a

)5/2(
a3

R2
ρRz

)3/2

Q5(εdd) (A.25)

with the function Q5(εdd) ≈ 1 + 3
2
ε2

dd. And second the three-body term

E3

~ω
=

25

112π2

κ3N
3

R4
ρR

2
z

1

~ω
(A.26)

with the three-body coupling strength κ3.
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A.6. Energy expressions in Gaussian approximation

A.6. Energy expressions in Gaussian approximation

We present the energy expressions in Gaussian approximation for an external radial

symmetric trapping

Vext(ρ, z) =
m

2

(
ωρρ

2 + ωzz
2
)

=
m

2

ω

λ2/3

(
ρ2 + λ2z2

)
(A.27a)

and recalling the trap aspect ratio λ = ωz/ωρ and the mean of the trap frequencies

ω = (ω2
ρωz)

1/3. Inserting the radial symmetric Gaussian trial function

nG(ρ, z) = |ψG(ρ, z)|2 =
N

π3/2σ2
ρσz

exp

(
−ρ

2

σ2
ρ

− z2

σ2
z

)
(A.27b)

in the energy functional from eq. (2.16) results in the contributing energy terms [39, 164].

We express these with the characteristic oscillator length a =
√

~/mω and the cloud

aspect ratio κ = σρ/σz. The kinetic or quantum pressure term writes

Ekin

~ω
=
Na2

4

(
2

σ2
ρ

+
1

σ2
z

)
, (A.28a)

the potential energy
Eext

~ω
=

N

4a2λ2/3

(
2σ2

r + λ2σ2
z

)
(A.28b)

and the mean-field interaction energy (contact and dipolar interaction)

Econtact + Edip

~ω
=

N2

√
2π

a2a

σ2
ρσz

(1− εddfdip(κ)) (A.28c)

with the geometry-dependent function

fdip(κ) =
1 + 2κ2

1− κ2
− 3κ2arctanh

√
1− κ2

(1− κ2)3/2
. (A.28d)

By including terms beyond mean-field theory, as motivated in section 5.2, we get two

further terms as expressed in the energy functional (5.7). First, the quantum fluctuations

[291]

Eqf

~ω
=

512
√

2

75
√

5π7/4

(
Na

a

)5/2(
a3

σ2
ρσz

)3/2

Q5(εdd) (A.29)

with the function Q5(εdd) ≈ 1 + 3
2
ε2

dd. And second the three-body term

E3

~ω
=

1

18
√

3π3

κ3N
3

σ4
ρσ

2
z

1

~ω
(A.30)

with the three-body coupling strength κ3.
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A.7. Droplet peak density and lifetime

In this appendix, we give further information on the quantum droplets. We use the

mechanical stability condition ∂µ
∂n
≥ 0 from eq. (6.3) to derive a minimum peak density for

the droplet state. For convenience we present the stability condition again and it reads

∂µ

∂n

∣∣∣∣
r=0

= g [1− εddfdip(κ)]+

{
16g
√
n0a3/π (1 + 3

2
ε2

dd) Quantum fluctuations

κ3n0 Three-body repulsion
. (A.31)

From this equation one can easily derive the minimum needed central density n0 to stabilize

a droplet. For the case of quantum fluctuations the minimum peak density is given by

n0 =
π

a3

(
εddfdip(κ)− 1

16(1 + 3ε2
dd/2)

)2

(A.32)

and when neglecting quantum fluctuations and assuming three-body repulsion this density

becomes

n0 = g
εddfdip(κ)− 1

κ3

. (A.33)

For both equations the central density does not depend on the atom number but only on

the scattering length a and very weakly on the aspect ratio κ, which is characteristic of a

liquid-like state.

In section 6.2.1, we investigates the lifetime of quantum droplets. There we used the

above mentioned peak densities to give the ratio of the lifetime at two different scattering

lengths af and ar. The relation between lifetimes limited by three-body losses and peak

densities is given by eq. (6.1) and reads τf/τr = n2
0,r/n

2
0,f. With equations (A.32) for

quantum fluctuations and (A.33) for three-body repulsion one can calculate τf/τr without

difficulty. For a fixed aspect ratio κ it depends only on two parameters which we chose

to be εdd,r = add/ar and af/r = af/ar. Then the ratio of the lifetime reads for quantum

fluctuations

τf

τr

= (af/r)
6

εdd,rfdip(κ)− 1
εdd,r
af/r

fdip(κ)− 1

1 + 3
2

(
εdd,r
af/r

)2

1 + 3
2
ε2

dd,r


4

(A.34)

and for three-body repulsion

τf

τr

= (af/r)
−2

(
εdd,rfdip(κ)− 1
εdd,r
af/r

fdip(κ)− 1

)2

. (A.35)

These two functions are shown in figure 6.4b and are used to identify quantum fluctuations

to be the stabilizing mechanism for droplets.
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A.8. Perturbative magnetic field of a ferrofluid surface

A.8. Perturbative magnetic field of a ferrofluid

surface

In this part, we derive the perturbative magnetic field of a ferrofluid for surface deflections

similar to [209, p. 185-187]. This analysis is restricted to linear magnetic material, for

which B = µ0µrH , and restricted to the magnetostatic field equations. These equations

are the Gauss’s law for magnetism

∇ ·B = 0 (∇ ·H = 0 for linear media) (A.36)

and Ampère’s law

∇×H = 0 (A.37)

without current flow. Consistently with section 4.2.2 we consider an initially flat layer of

ferrofluid occupying the region of space z < 0 with a relative permeability µr > 0, while

the upper half z > 0 is a non-magnetic phase (see figure 4.2).

To linearize the magnetic field problem, we define B′ = B + b and H ′ = H +h, where

the magnitudes of b and h are assumed to be small perturbations created by the fluid

surface. The initial field H is uniform in the z-direction and we will use in the following

H = (0, 0, H) and B = (0, 0, B). Due to Ampère’s law (A.37) h can be described in terms

of

h = −∇Φm (A.38)

with Φm the magnetic perturbation potential. By using Gauss’s law (A.36), the potential

also obeys Laplace’s equation ∇2Φm = 0. This equation has to be fulfilled in both magnetic

and non-magnetic media, thus if Φm
1 is the potential in the magnetic phase and Φm

2 the

potential in the non-magnetic one, the following magnetic potentials may be found similarly

to eq. (4.5)

Φm
1 = Φ̂m

1 ζekz, Φm
2 = Φ̂m

2 ζe−kz (A.39)

where Φ̂m
1 , Φ̂

m
2 are amplitudes independent of spatial position and ζ = ζ(x, y, t) is the

z-coordinate of a point on the surface.

The magnetic potentials need further boundary conditions. We will use media changing

surface conditions for magnetic field components of H and B. The first condition at

a material discontinuity is the continuous tangential component of the field H ′. This

means n× (H ′
2 −H ′

1) = 0 with the normal n = (nx, ny, nz) = (−∂ζ/∂x,−∂ζ/∂y, 1) and

H ′
2 −H ′

1 = (hx, hy, H). Calculating this expression leads to

− ∂ζ

∂y
H − hy = 0, hx +

∂ζ

∂x
H and − ∂ζ

∂x
H +

∂ζ

∂y
H = 0 . (A.40)

By using the definition of the magnetic potential (A.38) and the second term of the

previous equation (A.40) has to be valid at the interface, we derive the first boundary
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condition for the potential Φm

∂Φm
1

∂x
+H1

∂ζ

∂x
=
∂Φm

2

∂x
+H2

∂ζ

∂x
, (A.41)

that will be further simplified later.

The second condition at a material discontinuity is that the normal component of

magnetic fieldB is continuous. This condition is mathematically written as n·(B′
2−B′

1) = 0

that can be split up in two conditions n · (B2 −B1) = n · (b2 − b1) = 0. Hence, we can

state B1 = B2 and

− ∂ζ

∂x
(bx,2 − bx,1)− ∂ζ

∂y
(by,2 − by,1) + (bz,2 − bz,1) = 0

1st order−−−−−→ (bz,2 − bz,1) = 0 . (A.42)

By using the potential definition (A.38) and the relation B = µ0µrH, we get the second

boundary condition

µr
∂Φm

1

∂z
=
∂Φm

2

∂z
(A.43)

for the magnetic potential Φm.

Further simplification of the first condition (A.41) is done by integrating in respect to x

and get (Φm
1 − Φm

2 )/ζ = H2 −H1. Then with the knowledge on the magnetic field along

the z-direction, we use H1 = B1/µ0 +M and H2 = B2/µ0 with B1 = B2 to state

Φm
1 − Φm

2 = ζM . (A.44)

Finally, we apply the boundary conditions (A.43) and (A.44) to the magnetic potential

(A.39) at the position z = 0 to get Φ̂m
1 − Φ̂m

2 = M and µrΦ̂
m
1 = −Φ̂m

2 and resulting for the

magnetic potential

Φm
1 =

M

1 + µr

ζekz, Φm
2 =

−µrM

1 + µr

ζe−kz . (A.45)

Thus, finally the perturbative magnetic field created by the fluid surface in the z-direction

can be calculated. As the perturbative field b is continuous normal to the interface (in

good approximation along the z-direction), we get using the second part of eq. (A.45)

bz,1 = bz,2 = µ0hz,2 = µ0

(
∂Φm

2

∂z

)
z=0

= µ0
kµrMζ

1 + µr

. (A.46)

The final equation (A.46) includes a flux concentration at the peaks where ζ is maximal,

as illustrated in figure 4.2.
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A.9. Calculations on the aspect ratio of magnetic

drops

In section 4.3 the deformation of ferrofluid drops in a uniform magnetic field is discussed.

In this appendix, we indicate the calculations needed to find extrema of the total energy

given as a sum of eq. (4.15) and (4.16). The introduced demagnetization factor Dm in

eq. (4.17) is presented again in a different but equal form

Dm(κ) =
κ2(artanh ε− ε)

ε3
. (A.47)

Finding the extrema is achieved by simple mathematical analysis on the first derivative of

Es + Em. Straightforward calculations78 lead finally to an expression

µ0H
2R0/σs = g(κ) (A.48)

with the function

g(κ) =

(
1

µr − 1
+Dm(κ)

)2
ε2κ−4/3(1 + 2κ2 + (1− 4κ2)ε−1κ−1 arcsin ε)

−3 + (2 + κ2)ε−1artanh ε
. (A.49)

78The only used tricks are d
dκ arcsin ε = 1

κ and d
dκartanh ε = 1

κ2 . To simplify the fractions one should use
the obvious relation ε2 = 1− κ2.
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[30] I. Danshita and C. A. R. Sá de Melo, Stability of Superfluid and Supersolid Phases

of Dipolar Bosons in Optical Lattices, Phys. Rev. Lett., 103, 225301 (2009).

[31] S. Ronen, D. C. E. Bortolotti and J. L. Bohn, Radial and Angular Rotons in Trapped

Dipolar Gases, Phys. Rev. Lett., 98, 030406 (2007).

[32] O. Dutta and P. Meystre, Ground-state structure and stability of dipolar condensates

in anisotropic traps, Phys. Rev. A, 75, 053604 (2007).

[33] L. Santos, G. V. Shlyapnikov and M. Lewenstein, Roton-Maxon Spectrum and

Stability of Trapped Dipolar Bose-Einstein Condensates, Phys. Rev. Lett., 90, 250403

(2003).

[34] D. G. Henshaw and A. D. B. Woods, Modes of Atomic Motions in Liquid Helium by

Inelastic Scattering of Neutrons, Phys. Rev., 121, 1266–1274 (1961).

[35] Q. Beaufils, R. Chicireanu, T. Zanon, B. Laburthe-Tolra, E. Maréchal, L. Vernac,
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en cours d’affectation (1924).

[94] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation (International Series of

Monographs on Physics), Clarendon Press (2003).

[95] C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases, Cambridge

University Press (2008).

[96] W. Heisenberg, Mehrkörperproblem und Resonanz in der Quantenmechanik,

Zeitschrift für Physik, 38, 411–426 (1926).

[97] P. A. M. Dirac, On the Theory of Quantum Mechanics, Proceedings of the Royal

Society of London A: Mathematical, Physical and Engineering Sciences, 112, 661–677

(1926).

[98] A. J. Leggett, Quantum Liquids: Bose Condensation and Cooper Pairing in

Condensed-Matter Systems (Oxford Graduate Texts), Oxford University Press (2006).

[99] J. F. Allen and A. D. Misener, Flow of Liquid Helium II, Nature, 141, 75 (1938).

[100] P. Kapitza, Viscosity of Liquid Helium below the λ-Point, Nature, 141, 74 (1938).

[101] L. Landau, Theory of the Superfluidity of Helium II, Phys. Rev., 60, 356–358 (1941).

[102] F. London, The λ-Phenomenon of Liquid Helium and the Bose-Einstein Degeneracy,

Nature, 141, 643–644 (1938).

[103] F. London, On the Bose-Einstein Condensation, Phys. Rev., 54, 947–954 (1938).

[104] O. Penrose and L. Onsager, Bose-Einstein Condensation and Liquid Helium, Phys.

Rev., 104, 576–584 (1956).

[105] O. Penrose, CXXXVI. On the quantum mechanics of helium II, The London, Edin-

burgh, and Dublin Philosophical Magazine and Journal of Science, 42, 1373–1377

(1951).

[106] H. R. Glyde, Bose-Einstein Condensation Measurements and Superflow in Condensed

Helium, Journal of Low Temperature Physics, 172, 364–387 (2013).

122



Bibliography

[107] W. D. Phillips, Nobel Lecture: Laser cooling and trapping of neutral atoms, Rev.

Mod. Phys., 70, 721–741 (1998).

[108] D. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner and

T. J. Greytak, Bose-Einstein Condensation of Atomic Hydrogen, Phys. Rev. Lett.,

81, 3811–3814 (1998).

[109] A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook

and A. Aspect, A Bose-Einstein Condensate of Metastable Atoms, Science, 292,

461–464 (2001).
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die Möglichkeit in die verwirrende Quantenwelt eintauchen zu können.
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sporn (’Schaff mer was’) hätte unsere gemeinsame Reise in der Quantenwelt noch länger

angedauert.

Auf dieser Reise in der Quantenwelt haben uns auch Matthias Schmitt und Matthias

Wenzel begleitet. Ihr habt beide sehr erfolgreiche Masterarbeiten durchgeführt, die unser

Experiment deutlich vorangebracht haben. Vielen Dank für eure Mithilfe und eure positive

Stimmung. Nun dürft ihr unsere Dysprosiummaschine an seine Grenzen führen. Ich
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Hofferberth. Ihr habt mir mit eurem technischen und wissenschaftlichen Wissen in vielen

Situationen weiterhelfen können.

Kein Experiment an unserem Institut würde existieren, wenn unsere Finanzen nicht

ordentlich verwaltet werden. Im Laufe meiner Dissertation haben sich darum Beatrice

Olgun-Lichtenberg, Karin Hauff, Astrid Buck, Oliver Nagel, Nadine Prellwitz, Britta Lenz,
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