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Zusammenfassung

In den vergangenen Jahren hat sich das Forschungsgebiet der Rydberg-Physik
in vielerlei Hinsicht weiterentwickelt. Besonders interessant sind die neuge-
wonnenen Erkenntnisse über die Wechselwirkung zwischen einem Rydberg-
Atom und ultrakalten neutralen Atomen des selben Elements. Ein Rydberg-
Atom besitzt mindestens ein angeregtes Elektron mit einer sehr hohen Haupt-
quantenzahl. Die resultierende Elektronen-Wellenfunktion des Rydberg-Atoms
nimmt dabei enorme Ausmaße an im Vergleich zu einem Grundzustandsatom.
Die Anregung eines Rydberg-Atoms in einer ultrakalten und dichten Atom-
wolke, beispielsweise in einem Bose-Einstein Kondensat (BEK) ist von be-
sonderem Interesse, da dabei in Abhängigkeit von der Hauptquantenzahl das
Rydberg-Atom mit wenigen bis vielen Atomen des Kondensats wechselwirken
kann. Ein solches System ermöglicht die Untersuchung eines theoretischen
Models der Vielteilchen-Wechselwirkung [4] für den Übergang von Zweiteilchen-
Wechselwirkung zur Vielteilchen-Wechselwirkung. Ein Rydberg-Atom mit einer
Hauptquantenzahl von n = 150, das in einem BEK mit einer maximalen Dichte
von ρ = 5.2×1014 atoms/cm3 angeregt wird, besitzt eine Ausdehnung von einigen
Mikrometern und überlappt somit mit mehreren Zehntausend Grundzustands-
atome des Kondensats. Hingegen dazu befinden sich für n = 40 nur wenige
Grundzustandsatome innerhalb der Elektronen-Wellenfunktion. Die Kopplung
zwischen dem Rydberg-Elektron und den ultrakalten Grundzustandsatomen
des Kondensats ist dabei überraschend stark. Dies lässt sich auf den enor-
men Massenunterschied des Rydberg-Elektrons und der Grundzustandsatome
zurückführen. Diese starke Kopplung des Rydberg-Elektrons ermöglicht die
Anregung von Phononen im BEK, welche eine kollektive Oszillation des Kon-
densats auslösen können [5]. Der zugrunde liegende Effekt hierbei beruht auf
der niederenergetischen Streuung des Rydberg-Elektrons an den ultrakalten
Atomen in dessen Orbit. Selbiger Effekt kann zu einer Bildung von polaren und
nicht-polaren ultralang-reichweitigen Rydberg-Molekülen führen [6, 7].
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Im Rahmen dieser Masterarbeit wurde ein Model zur Beschreibung der
gemessenen spektralen Linienform einer Rydberg-Anregung in einem 87Rb
Bose-Einstein Kondensats entwickelt. Dabei zeigt sich, dass die Simulation der
Spektren stark von den zugrunde liegenden Potentialen abhängt. Der Vergleich
der Simulation mit und ohne der p-Wellen Korrektur mit den experimentell
gemessenen spektralen Linienformen weist auf eine Kopplung zwischen dem
Butterfly-Zustand, aus der entarteten (n− 3) - Mannigfaltigkeit, und dem via
Zwei-Photonen Anregungsschema adressierten nS Rydberg-Zustand hin. Des
Weiteren ermöglicht die auf dem entwickelten Model basierende Simulation
eine Beschreibung der kompletten spektralen Linienform in Abhängigkeit von
den zugrunde liegenden Potentialen. Hingegen dazu konnten die vorherigen
Ansätze [8–12] lediglich eine Linienverschiebung sowie eine Linienverbreiterung
in Abhängigkeit von der Hauptquantenzahl bestimmen. Zusätzlich wurde in der
vorliegenden Arbeit der Einfluss unterschiedlicher Strahl-Taillen des fokussierten
Anregungslasers sowie verschiedener Positionen des Fokus auf die Linienformen
diskutiert. Der Vergleich der Simulation mit einer Messung für unterschiedliche
Fokus-Positionen zeigt eine bemerkenswerte Übereinstimmung. In dem zweiten
Teil der vorliegenden Masterarbeit wurde die Dynamik eines Rydberg-Atoms,
angeregt im Bose-Einstein Kondensat, mit einem semi-klassischen Ansatz simu-
liert, welcher für die Kollision des ionischen Rydberg-Kerns mit den umgebenden
ultrakalten Atomen geeignet ist [13]. Der Vergleich der simulierten Dynamik mit
den experimentell beobachteten Reaktionsprodukten zeigt, dass die Dynamik des
Systems nicht nur durch den ionischen Rydberg-Kern dominiert wird, sondern
auch durch die streuungs-induzierte Wechselwirkung zwischen dem Rydberg-
Elektron und den Grundzustandsatomen des Kondensats stark beeinflusst wird.
Des Weiteren ergibt sich aus dem Vergleich der modellierten Lebensdauern des
Rydberg-Atoms mit den gemessenen Reaktionszeiten, dass eine quantenme-
chanische Beschreibung benötigt wird, um die für höhere Hauptquantenzahlen
(n & 100) untypische lange Lebensdauer eines Rydberg-Atoms im Kondensat zu
beschreiben. Die Arbeit soll eine weiterführende Erforschung des vorliegenden
Systems fördern mit Hinsicht auf eine theoretische Arbeit zur Quantenreflexion
sowie zur Beschreibung der Dynamik mit einem Vielteilchen-Ansatz.
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1
Introduction

In recent years, the intense study of Rydberg physics has led to a large and
extensive research field. In particular, the interaction of a Rydberg atom
with ultracold neutral atoms is of great interest to examine the electron-atom
scattering properties. A Rydberg atom possesses an electron excited to a high
principle quantum number and thus extends over a large volume compared to
the size of a ground-state atom. By utilizing the high density of a Bose-Einstein
condensate (BEC) and the large extension of a Rydberg atom, the interaction of
a Rydberg electron with many neutral atoms can be studied. In addition, such
a system provides the opportunity to test theoretical models over the range of
few to many-body physics for low to high principle quantum numbers [4]. For a
BEC with a peak density of 5.2×1014 atoms/cm3 and a Rydberg atom excited
with a principle quantum number of n = 40 . . . 150, few to several ten thousand
atoms are contained by the Rydberg electron orbit. Furthermore, the coupling
between the Rydberg electron and neutral atoms is surprisingly strong due to
the favorable mass ratio between the interaction partners.

Recently, it has been demonstrated, that a single Rydberg electron can excite
phonons in a BEC, which can trigger a collective oscillation of the condensate [5].
The underlying effect is the low-energy scattering of the Rydberg electron
with many ultracold neutral atoms from the BEC, which can also lead to a
formation of polar and non-polar ultralong-range Rydberg molecules [6, 7].
These scattering-induced Rydberg molecules are formed as the result of the
attractive interaction of the Rydberg electron trapping a neutral atom in its
wave function at a localized position, leading to molecules with an immense
bond distance of several thousand Bohr radii [14], which were spectroscopically



Chapter 1 Introduction

observed for 87Rb by Bendkowsky et al. [15, 16] and via atom loss for 84Sr by
DeSalvo et al. [17]. The bound-states of the polar molecules are provided by a
set of high angular momentum states (trilobite state), which in combination with
the giant internuclear separation leads to a large permanent dipole moment [6].
These fairly unusual polar homonuclear molecules, were observed for Rb in 2011
by Li et al. [18] with a dipole moment D on the order of 1 Debye and for Cs by
Tallant et al. [19] with D = 15 - 100 Debye, respectively. Interestingly, due to the
relatively small fractional nS quantum defect of cesium, which leads to a strong
non-adiabatic coupling between the photon-associated nS Rydberg state and
the close-by trilobite state, blueshifted ultralong-range Cs2 Rydberg molecules
with a dipole moment one hundred times larger than for Rb, are observable [19].
In general, these kind of scattering processes are sufficiently described in terms
of s-wave scattering, for a non-singular p-wave contribution [20].
The calculations of I. I. Fabrikant [10] reveals the presence of a low-energy

e−-Rb(5S) p-wave shape resonance for an energy of Er = 23 meV, which
was predicted by A. Johnston and P. Burrow [21]. It turns out, that this
shape resonance leads to an additional set of high angular momentum states
(butterfly state) [6, 7], resulting in a second type of polar ultralong-range
Rydberg molecules. With higher densities of ultracold atoms, the molecular
bound states become unresolvable as many neutral atoms overlap with the
Rydberg orbit [S1, 5, 22]. The obtained Rydberg-BEC spectral line shapes,
measured by Schlagmüller et al. [S1], exhibit features, which are evidence for
the predicted low-energy e−-Rb(5S) p-wave shape resonance. A microscopic
model, which was developed within the scope of this work, reveals a strong
dependence of the observed spectral line shapes on this shape resonance.
A promising application of the strong coupling between a Rydberg electron

and the surrounding cold atomic cloud is an imaging technique, which can be
used to image the Rydberg electron wave function [23]. For this technique, a
sufficiently long lifetime of the Rydberg atom immersed in a quantum gas is
necessary for an observable impact. It has also been shown by Balewski et al. [5],
that the lifetime of a Rydberg atom in a BEC is reduced, but surprisingly long
lifetimes were observed for higher principle quantum numbers (n & 100) by
Schlagmüller et al. [S2]. A study of these long lifetimes reveals a reaction
mechanism, which relies on the coupling of the photon-associated nS state with
the butterfly state of the upper-lying degenerate hydrogenic manifold [S2]. As
a part of this study, the dynamics of this system has been reviewed, in the
framework of this master thesis using a semi-classical approach.
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2
Rydberg spectroscopy in a Bose-Einstein

Condensate

In this chapter the theoretical model and simulation developed within the
framework of this master thesis are discussed, to understand the spectroscopic
line shape resulting from a single Rydberg atom excitation in a Bose-Einstein
condensate. The theoretical background for the developed theoretical model is
introduced in the first section (2.1). Following this, the experimental realization
as well as the interpretation of the experimentally obtained spectral line shapes
is described in section 2.2. Based on the theoretical background, the developed
microscopic model and the simulation method is presented in section 2.3.1.
Subsequently, the results of the simulation are tested against the experimental
results for different principle quantum numbers (section 2.3.1), an enlarged
excitation beam waist (section 2.3.2), and a method to probe the density
distribution of a Bose-Einstein condensate (section 2.3.3).
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2.1 Rydberg atom - perturber atom interaction

A Rydberg atom excited in an ultracold and dense atomic cloud, strongly
interacts with the surrounding neutral atoms. Due to the large extension of the
Rydberg electron wave function, a large amount of neutral atoms are present
inside the Rydberg electron orbit. This mainly leads to two different effects
based on the polarizability of the neutral atoms. On the one hand, the exposed
ionic core of the Rydberg atom attracts the neutral atoms of the BEC, whereas
on the other hand the Rydberg electron can scatter at the neutral atoms inside
its electron orbit. Due to the mass ratio of the Rydberg core and the Rydberg
electron, the relative nuclear motion of the Rydberg core and the neutral atoms
is much slower than the electronic motion of the Rydberg electron, meaning that
one can apply the Born-Oppenheimer approximation. In fact, for the system
at hand this approach is appropriate [6]. This allows to treat the interaction
between the Rydberg atom and the atoms of the BEC separately for the Rydberg
core and the Rydberg electron.

Moreover, the Rydberg core of an alkali metal e.g. rubidium can be treated as
an ion with a single positive charge due to the shielding of the core by the inner
lying electronic structure. This means, for an internuclear distance larger than
the extension of the inner lying electronic structure of the Rydberg core, the
interaction between the Rydberg core and each neutral atom of the surrounding
ultracold and dense cloud is given by the polarization potential, which in turn
depends on the polarizability of each individual neutral atom. In contrast, the
interaction between the Rydberg electron and the neutral atoms is described by
an electron-atom scattering process, as the Rydberg electron scatters at each
neutral atom inside its electron orbit. This means the neutral atoms inside
the Rydberg electron orbit do perturb the electron wave function and thus
this neutral atoms are denoted as perturber atoms. In order to understand
the interaction between a Rydberg atom and the surrounding neutral atoms of
the ultracold and dense atomic cloud, a theoretical description of the ion-atom
interaction and the electron-atom scattering is presented in the following.

2.1.1 Ion-atom interaction

In comparison to the size of a neutral atom, the electron density distribution
of an atom in the nS Rydberg state is spread over a huge volume due to the
large orbit of the Rydberg electron. Thus, as a simple approach one can neglect
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the presence of the Rydberg electron to study the interaction between the ionic
Rydberg core and the surrounding neutral atoms. The interaction between a
single ion and a neutral atom is dominated by the polarization potential; its
asymptotic limit is shown in equation 2.3 [24]. Thus, for large internuclear
distances, one can describe the ion-atom interaction between a neutral atom and
the ionic Rydberg core using the asymptotic limit of the polarization potential
of equation 2.3. The interaction strength for large internuclear distances is
proportional to the dipole polarizability of a neutral atom. A classical approach
of the ion-atom interaction leads to the same result [25]. In the following this
classical approach is shown.

Due to the finite spatial charge distribution of a neutral atom its polarizability
α is non-zero and, therefore, an external electric field E induces a dipole moment
p given by

p(E) = α · E. (2.1)

By using equation 2.1 one can derive the potential energy of an induced
dipole moment in an external electric field as

Vdip = −
∫

F dr = −
∫

(p · ∇)E dr = −1
2

∫
∇(p ·E) dr = −1

2α |E|
2
. (2.2)

For the electric field of a single charge (E(r) = r−2) this leads to the following
polarization potential, given in atomic units by

VC4(R) ≡ −C4
R4 = α/2

R4 , (2.3)

where α is the polarizability of a neutral atom and R is the internuclear
distance between the ion and a neutral atom. However, this polarization
potential is only the asymptotic limit for large internuclear distances. For small
internuclear distances the electron cloud of the ionic Rydberg core starts to
sense the valence electron of the neutral atom. This leads to a strong repulsive
interaction for very close distances, due to the Pauli exclusion principle.

The result of the calculation of an ab initio study of the 2Σ+
g of Rb+

2 molecule
for the lowest energy state (blue), taken from [27], is shown in figure 2.1 as well
as the polarization potential only (red) from equation 2.3. For the calculation
of the potential energy curves, the ion-atom system of Rb+

2 is considered as a
system with one active electron. To model the interaction of the ions and the
one active electron a relativistic pseudopotential is used. The polarization of
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Fig. 2.1: Results of a ab initio study of the lowest potential energy curve (PEC)
of 2Σ+

g of Rb+
2 and the polarization potential only. For the polarization potential a

polarizability of α = 318.8(14) a.u. [26] of the Rb perturber atoms is used. On the left
the potentials with a logarithmic axis for the internuclear distance are shown, where on
the right the interaction strength of the attractive part is shown in a double-logarithmic
illustration.

rubidium is given by a core polarization potential. Here we consider only the
lowest potential energy curve, which asymptotically equals the 5S ground-state
of the atoms surrounding the ionic Rydberg core. As is apparent from figure 2.1,
the interaction strength and therefore also the potential energy curve of the 2Σ+

g
of Rb+

2 and the polarization potential VC4(R) starts to deviate for internuclear
distances smaller than 30 a0. This means that for R < 30 a0 the interaction
between the valence electron of the perturber atom and the electron cloud of
the ionic Rydberg core starts to matter. In fact, for a closer distance, the
polarization potential underestimates the strength of the interaction and the
relativistic pseudopotential of the ab initio calculated potential starts to take
over.
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2.1.2 Electron-atom scattering

Besides the interaction between the ionic Rydberg core and the neutral atoms,
the interaction of the Rydberg electron with the neutral atoms (perturber atoms)
is described by an electron-atom scattering process, as the Rydberg electron
scatters with each neutral atom inside its electron orbit. Since the classical
outermost turning point of the Rydberg electron scales with (n∗)2 [28], where n∗
corresponds to the effective principle quantum number, for a moderately high
principle quantum number the extension of the Rydberg electron becomes huge
compared to atomic proportions. By considering an ultracold cloud with a high
density like a Bose-Einstein condensate, for a moderately high Rydberg state
there is on average at least one perturber atom inside the Rydberg electron
orbit. For achievable densities of the experimental setup (see section 2.2), e.g.
for the peak density ρ̂ = 5.2×1014 cm−3, a moderately high principle quantum
numbers corresponds to n > 26. The investigated principle quantum numbers
are n = 40 . . . 149, thus one has to take into account the scattering between
the Rydberg electron and the perturber atoms in its orbit for the system at
hand. For large distances the Coulomb interaction between the ionic Rydberg
core and the Rydberg electron is weak and does not change rapidly with the
position, as a consequence the momentum available for the scattering can be
considered as low [7]. In particular, if the de Broglie wavelength of the electron
is much larger than the interaction range, the scattering can be considered as a
low-energy scattering process (s-wave dominated). For low-energy scattering
the interaction potential between the scattering partners is short-ranged for
r−s with s ≥ 2 [20]. Furthermore, this short-range interaction can be modeled
as a contact interaction, where the interaction strength is proportional to the
scattering length, leading to the well-known Fermi pseudopotential introduced
by E. Fermi [8].

The pseudopotential for s-wave scattering of an electron-atom scattering
process, in atomic units, is given by

Vpseudo(r) = 2πas δ(r), (2.4)

with the scattering length as of s-wave scattering and the Dirac delta function
δ(r), which represents the contact interaction. On its part, the scattering length
as depends on the internal states of the colliding particles. For the system at
hand (see section 2.2), the appropriate scattering length is the triplet scattering
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Chapter 2 Rydberg spectroscopy in a Bose-Einstein Condensate

length of e−-Rb(5S), which is used in the following discussions. An important
thing to note is, by using the contact interaction we assume a local perturbation
of the electron wave function. In other words, due to the presence of a perturber
atom inside the Rydberg electron orbit, the wave function is modified on a
length scale, which varies slowly with position. As long as this assumption holds
one can calculate the electron-atom scattering potential by integrating over the
electron density distribution multiplied with the pseudopotential [9]. Therefore,
with equation 2.4 this leads to the following potential energy resulting from the
s-wave scattering:

Vscat(R) =
∫
R3
Vpseudo(r−R) |ψ(r)|2 dr = 2πas |ψ(R)|2 , (2.5)

where |ψ(R)|2 is the electron density distribution, which is probed by its
scattering partner at position R.

In the case of many perturber atoms inside the Rydberg orbit this leads to a
mean line shift of the Rydberg spectrum for a constant density of perturber
atoms. Since the interaction range is small enough, one can use the contact
interaction and thus, the perturbation of each perturber is localized and the
energy contribution of all the atoms inside the Rydberg electron orbit add up,
leading to a mean shift in energy ∆E. This can be shown by using equation 2.5:

∆E(ρ) =
∫
R3

∑
i

Vpseudo(r−Ri) |ψ(r)|2 dr

=
∫
R3
ρ
∫
R3
Vpseudo(r−R) |ψ(r)|2 drdR

= ρ
∫
R3

2πas |ψ(R)|2 dR

∆E(ρ) = 2πas ρ, (2.6)

where ρ is the homogeneous density of the perturber atoms. The result of
equation 2.6 was derived by Fermi [8] to explain the line shifts of the Rydberg
absorption line explored by E. Amaldi and E. Segré in 1934 [29]. The spectro-
scopic line shapes, measured by Gaj et al. [22], suggest that the same mean
shift approach holds in an ultracold environment.
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Chapter 2 Rydberg spectroscopy in a Bose-Einstein Condensate

So far we neglected the increase of momentum of the Rydberg electron as it
comes closer to the ionic Rydberg core. As the momentum increases, the kinetic
energy available for the electron-atom scattering process increases as well. In
a semi-classical approach, one can obtain the radial dependence of the wave
number k(R) of the Rydberg electron by considering the energy of the Rydberg
electron −1/2(n∗)2 and the increase in energy 1/R when the scattering process
takes place at the internuclear distance R between the ionic Rydberg core and
the perturber atom [6]. In atomic units, this leads to the following implicit form
of the wave number

1
2k

2(R) = − 1
2 (n∗)2 + 1

R
, (2.7)

with the effective principle quantum number n∗. With this, we can rewrite the
Fermi pseudopotential from equation 2.4 including the k-dependence of the
Rydberg electron, in terms of atomic units as

V̂s(r,R) = 2πas[k(R)] δ(r−R), (2.8)

with the k-dependent scattering length of s-wave scattering as[k(R)] which is
defined as

as[k] ≡ − tan δs(k)/k, (2.9)

using the corresponding scattering phase shifts δs(k). In analogy to equation 2.5,
one can rewrite the scattering potential, including the modified scattering length
as[k(R)], in atomic units as

Vscat(R) = 2πas[k(R)] |ψ(R)|2 . (2.10)

Furthermore, if the spin-orbit interaction is negligible, the two-body adiabatic
potential energy curve (PEC) of an nS Rydberg electron and a perturber atom,
can be calculated by using the Born-Oppenheimer approximation, which leads
to the following result

UnS,k(R) = − 1
2(n∗)2 + VnS,k(R)

= − 1
2(n∗)2 + 2πas[k(R)] |ψnS(R)|2 , (2.11)

where ψnS is the wave function of the atomic nS Rydberg state, n∗ is the
effective principle quantum number and VnS,k(R) is the scattering potential.
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Fig. 2.2: Two-body adiabatic potential energy curves for the 53S + 5S state, with
(red) and without (blue) the k-dependent triplet scattering length. For the k = 0 case
the triplet scattering length as,� = −15.7(1) a0 from [30] is used. For the k-dependent
triplet scattering length, adapted phase shifts from C. H. Greene based on calculations
of I. I. Fabrikant, are used [31].

Figure 2.2 shows the two-body potential energies according to equation 2.11 for
two 87Rb atoms (one in the 53S Rydberg state and the other in the ground-state
5S) for a constant triplet scattering length (blue) and a k-dependent scattering
length (red). The resulting PEC is proportional to the square of the absolute
value of the electron wave function |ψnS(R)|2 and therefore, both potential energy
curves (with a constant scattering length and with a k-dependent scattering
length) mimic the electron density distribution. This leads to the characteristic
oscillatory shape of the calculated adiabatic potential energy curves. As is
apparent from figure 2.2, the increasing kinetic energy of the Rydberg electron
leads to shallower potential wells for smaller internuclear distances until the
k-dependent scattering length changes its sign and thus the potential becomes
repulsive (R < 520 a0). In contrast, the PEC for the k = 0 case is attractive for
all distances. This means by neglecting the kinetic energy, one overestimates
the depth of the calculated potential energies significantly for closer distances.
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(a) Butterfly (b) Trilobite

Fig. 2.3: A illustration of the Rydberg electron density distribution |ψ(R)|2 of (a) a
butterfly state for an internuclear distance of R = 1300 a0 and (b) a trilobite state for
an internuclear distance of R = 2700 a0 of the n = 50 hydrogenic manifold in Cartesian
coordinate [31]. The ionic Rydberg core and perturber are aligned along the axis of
symmetry. The perturber is located at the largest peaks in the density distribution.

For the potential energy curves calculated by the approach of equation 2.11,
Greene et al. [6] predict the presence of two different types of molecular Rydberg
states. On the one hand, the adiabatic potential energy curve of a Rydberg
state with a low angular momentum (for Rb l < 3) supports bound-states for
non-polar ultralong-range Rydberg molecules. On the other hand, a class of
high-l states, which splits off of the degenerate hydrogenic manifold, leads to
a second type of polar ultralong-range Rydberg molecules. In addition to the
class of states, which leads to the polar molecules, Greene et al. [6] also predict
a second class of high-l states, which splits off of the degenerate hydrogenic
manifold, due to the existence of a shape resonance with a 3P o symmetry of the
e−-Rb(5S) scattering. Accordingly, the second class of states appears only if
the p-wave scattering is included in the calculations. For closer internuclear
distances the electron density distribution of a Rydberg atom in the state, which
arises from the p-wave contribution, looks like a butterfly and thus is called
butterfly state (see figure 2.3a) [7]. For the same reason the other class of states
is denoted as trilobite state (see figure 2.3b) [6]. In contrast to the butterfly
state, the trilobite state occurs for s-wave scattering only.
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This shape resonance occurs, as a resonant coupling to a quasi bound state
behind the centrifugal barrier, which arises for a non-zero angular momentum,
is possible for a certain kinetic energy available for the electron-atom scattering
process. Following the method of Omont [9], including a p-wave correction, one
can obtain the interaction potential for the p-wave contribution as

V̂p(r,R) = −6π tan δp(k(R))
k(R)3 δ(r−R)←−∇ · −→∇ , (2.12)

with the corresponding p-wave scattering phase shifts δp(k(R)). The arrows on
top of the nabla operator in equation 2.12 indicate the acting direction, meaning
that one operator acts on the wave function on the left hand side and the other
on the wave function on the right hand side, for calculating the expectation
value. The p-wave scattering term of equation 2.12 becomes dominant as tan δp
diverges for δp → π/2, meaning that one has to consider the p-wave contribution
for the calculations. A proper interpretation of the consequences implementing
the interaction potential V̂s and V̂p is given by Hamilton et al. [7]. Namely, the
interaction part given by V̂s selects a linear combination of atomic states which
maximizes the wave function at the perturber position, where V̂p selects a linear
combination maximizing the derivative of the wave function at the perturber
position. Therefore, the trilobite state is composed of a set of states, which
maximizes the wave function at the perturber position, whereas the butterfly
state consists of states, which maximizes either the wave function or its deriva-
tive at the perturber position, depending on the internuclear distance. In the
following, figure 2.4 shows the used phase shifts for s- and p-wave scattering
from I. I. Fabrikant, which are adapted by C. H. Greene [31], depending on
the kinetic energy. Regarding equation 2.7 it is clear that the kinetic energy of
the Rydberg electron depends on the internuclear distance R and the effective
principle quantum number n∗. The phase shifts depicted in figure 2.4 are plotted
versus the kinetic energy of a 53S Rydberg electron.

By recalling, that the p-wave shape resonance occurs at a certain kinetic
energy of the Rydberg electron. It becomes clear that, as the perturber atom
gets closer to the ionic Rydberg core, at a certain internuclear distance Rres
the kinetic energy of the Rydberg electron meet the resonance condition, which
in turn leads to a resonant coupling to a quasi bound state. At this certain
distance the triplet p-wave phase shift δp reaches π/2 and due to the tangent in
the interaction potential the energy seems to diverge. This divergence in energy
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Fig. 2.4: Adapted triplet s- and p-wave phase shifts from C. H. Greene [31] based on
calculations of I. I. Fabrikant for low-energy scattering of e−-Rb(5S), as a function of
the kinetic energy of the Rydberg electron and therefore as a function of the internuclear
distance R between the ionic Rydberg core and the perturber atom, for a 53S Rydberg
electron.

is non-physical, but it demonstrates that one can not neglect higher-order wave
corrections for the scattering, if a shape resonance can occur. Nevertheless, due
to level repulsion, in the case of low-energy electron-atom scattering the resulting
energies of eigenstates are limited by the upper n + 1 and lower n − 1 lying
hydrogenic manifold. Therefore, even without energy renormalization, applying
a diagonalization method close to this resonance is reasonably accurate [7]. The
p-wave phase shifts displayed in figure 2.4 reach δp = π/2 for Ekin ≈ 29 meV,
which corresponds to an internuclear distance of Rres ≈ 800 a0 for a 53S Rydberg
electron.
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Fig. 2.5: Two-body adiabatic potential energy curves between the hydrogenic manifolds
of the principle quantum number n = 49 and n = 50, including the polarization potential
VC4 of the ion-atom interaction, with a polarizability of α = 318.8(14) a.u. [26] of the
Rb perturber atoms. The asymptotic two-body interaction energy of the Rydberg state
and the perturber atom (53S + 5S) is set to zero energy.

In order to obtain the PEC of 87Rb for the interaction between the Rydberg
electron and a perturber atom, based on the Born-Oppenheimer approximation
and including the s-wave scattering V̂s(r,R) as well as the p-wave correction
V̂p(r,R), a degenerate perturbation theory can be applied [S1]. Figure 2.5
shows the calculated adiabatic potential energy curves between the n = 49 and
n = 50 hydrogenic manifold. For a large internuclear distance, the interaction
between the Rydberg atom and the perturber atom vanishes and the potential
energy levels split into four bare states. Namely, a class of high-l states with
l ≥ 3 (the so called hydrogenic manifold) and the low-l states 53S, 51D and
52P . The degeneracy of the energy levels of the low-l bare states is lifted from
the corresponding manifold, as for a low angular momentum the probability
to find the Rydberg electron close to the Rydberg core is enhanced and thus
the shielding of the Rydberg core through the inner lying electronic structure
becomes insufficient leading to a shift in energy. To take into account this
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so called quantum defect, one can introduce an effective principle quantum
number n∗ [28]. As one can see from figure 2.5, from each hydrogenic manifold
both classes of high-l states (trilobite state and butterfly state) split off. In the
vicinity of the p-wave shape resonance, the potential energy curve corresponding
to the butterfly state crosses the two-body states 53S + 5S, 51D + 5S and
52P + 5S, where 5S denotes the perturber atom and nl the corresponding
Rydberg state. The butterfly state couples to the low-l two-body states and
thus an avoided crossing occurs at the crossing position. Based on the energy
level repulsion of the avoided crossings one can see from figure 2.5 that the
coupling of the butterfly state and the 53S + 5S state is weaker compared to
the other two avoided crossings along the butterfly state. This is the case, as
the coupling between the high-l states increases with higher angular momentum.
The shape resonance position is reflected by the calculation (see figure 2.5),
as close to the resonance the p-wave correction V̂p from equation 2.12 takes
over and thus the PEC of the butterfly state exhibits a maximum gradient.
In the following, it turns out that this p-wave correction is essential in order
to understand the spectral line shape of a single Rydberg atom excited in
an ultracold dense cloud like a Bose-Einstein condensate [S1]. The modeling
of these spectra is one of the main subjects of this work and is presented in
chapter 2.3.
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2.2 Experimental realization
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5S1/2

Fig. 2.6: Illustration of the realization of a localized Rydberg excitation in a BEC. For
the excitation a collimated 420 nm laser beam aligned with the y-axis and a focused
infrared laser with a minimal waist of 2.1(3) µm aligned with the z-axis is used. The
quantization axis is given by an offset magnetic field in the y-direction. For a 111S
Rydberg state the classical extension of the Rydberg electron orbit (cyan) is shown in
the center of the BEC. A sketch in the top right corner shows the two-photon Rydberg
excitation scheme as well as the involved energy levels.

The measured Rydberg spectra of [S1] and the studied reaction dynamics
in [S2], which are modeled in section 2.3 and chapter 3, are performed in a
pure spin polarized Bose-Einstein condensate (BEC) of approximately 1.4×106

87Rb atoms, which is magnetically trapped in an elongated QUIC trap [32].
For this system the magnetically trapped spin polarized ground-state is given
as

∣∣∣5S1/2, F = 2,mF = 2
〉
. The radial trapping frequency ωr = 2π × 200 Hz

and the axial trapping frequency ωax = 2π × 15 Hz of the QUIC trap lead to
a Thomas-Fermi radius of 5 µm in radial and 66 µm in axial direction, which
describe the spatial extension of a trapped BEC [33], as it is depicted in figure 2.6.
For the experimental setup at hand, the number of trapped atoms and the
used trap frequencies result in a peak density of ρ̂ = 5.2×1014 atoms/cm3

of the BEC. The Rydberg excitation is achieved by a two-photon excitation
scheme using a collimated blue laser beam with a wavelength of 420 nm for the
lower transition and an infrared focused laser beam with a minimal waist of
2.1(3) µm for the upper transition, as is illustrated in figure 2.6. For the two-
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photon excitation the ground-state is coupled to the
∣∣∣nS1/2,ms = 1/2

〉
Rydberg

state by the intermediate state
∣∣∣6P3/2

〉
. The intermediate state detuning is

chosen such that the absorption and heating of the BEC, caused by the 420 nm
excitation laser light, is low. Therefore, the intermediate state detuning is
kept constant at ∆ = 80 MHz ≈ 56 Γ with respect to the state

∣∣∣6P3/2
〉
. The

wavelength of the infrared laser light, which drives the upper transition, is tuned
(1011 nm - 1019 nm) in order to address the corresponding nS Rydberg state
(n = 40 . . . 149). The blue excitation laser light is circularly polarized (σ+),
whereas the linear polarization of the infrared excitation laser is selected in
a way ensuring that it is perpendicular to the magnetic offset field. In the
schematic of figure 2.6 the magnetic offset field, which defines the quantization
axis, is chosen parallel to the y-axis, and therefore the linear polarization of
the infrared excitation laser light is parallel to the x-axis. For the spectroscopy
measurements both excitation lasers are simultaneously pulsed for 2 µs, with a
repetition rate of 2 kHz. For each pulse the created Rydberg atom is electric
field ionized 400 ns after the excitation light is switched off. After the Rydberg
atom is ionized the ion is detected by a microchannel plate. The used electric
field strength is three times higher than the ionization threshold electric field
for the corresponding nS Rydberg state. This is done to also detect Rydberg
atoms, which are subject to an inelastic state-changing collision [S2, 34]. For
the performed Rydberg-BEC spectra, which are subject of this work, the single-
atom Rabi-frequency is kept constant at 250 kHz by adjusting the power of the
infrared excitation laser for different principle quantum numbers, except the
spectra taken for the n = 40, where the used power was doubled. This relatively
small single-atom Rabi-frequency of the Rydberg excitation ensures that the
probability of multiple Rydberg excitations in the BEC is negligibly low. For
a typical experiment the same BEC can be used for up to 500 single Rydberg
excitations. The repeated measurements cause a reduction in atom number and
density, and thus all obtained data used for the evaluation of the Rydberg-BEC
spectra [S1] and the reaction dynamics [S2] are tested to be independent of this
atom loss. A more detailed explanation of the experimental setup can be found
in the PhD thesis of M. Schlagmüller [34].

27



Chapter 2 Rydberg spectroscopy in a Bose-Einstein Condensate

−100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0 100

0.1

0.2

0.3

0.4

0.5
(1)
butterfly,
high density

(2)
53S + butterfly,
high→ low density

(3)

53S,low
density,

therm
al

(4)
butterfly,

high
density

Detuning from atomic resonance δ (MHz)

Av
er

ag
e

io
n

co
un

t

Fig. 2.7: Typical spectrum of an nS Rydberg excitation in a Bose-Einstein condensate.
Here for a principle quantum number of n = 53. The signal in region (1) is due to
a Rydberg excitation with one or more perturber atoms near the avoided crossing
between the 53S Rydberg state and the butterfly state from the upper lying manifold.
In region (2) the Rydberg excitation takes place in an environment of high → low
density. Region (3) shows signal from the thermal cloud as well as Rydberg molecule
lines from the low density region of the BEC and the thermal cloud. The signal in
region (4) is provided by the avoided crossing, where the potential energy is above the
atomic resonance.

2.3 Spectrum of a single Rydberg atom in a BEC

The experimental realization explained in the previous section 2.2 allows the
measurement of a precise spectrum of a single Rydberg excitation in a Bose-
Einstein condensate or in a dense thermal cloud. For the achievable principle
quantum numbers (n = 40 . . . 149), the number of perturber atoms inside the
Rydberg orbit ranges from 6 to 20,000 for the peak density (5.2×1014 atoms/cm3)
of the BEC. In figure 2.7 a typical Rydberg spectrum for a Rydberg state with
principle quantum number of n = 53 is depicted. Due to the relatively high
density in the BEC, a broad spectral line shape is observed, which extends
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over more than 100 MHz. In contrast, a Rydberg spectrum of a thermal cloud
exhibits discrete lines (due to the formation of Rydberg molecules [15]) or for
a larger principle quantum number (e.g. n = 111) a broad line shape of the
order of several MHz [22]. The measurement and evaluation of the presented
spectra is expounded in the PhD thesis of M. Schlagmüller [34]. The resulting
spectrum of a single Rydberg excitation in a BEC can be separated in four
different regions. For a large red detuning from the atomic resonance (region
(1)) the Rydberg atom is excited in a high density environment. The mean
field approach introduced by Fermi, which leads to the mean density shift
(equation 2.6) for a Rydberg atom excited in a very dense environment, can
not explain the signal for a large red detuning (δ � −50 MHz for a density of
ρ ≈ 5×1014 atoms/cm3).
The purpose of this section is to point out that the signal in region (1) can

only be explained by considering one or more perturber atoms in the vicinity of
the avoided crossing between the excited nS Rydberg state and the butterfly
state from the upper lying (n−3) manifold. For the spectrum of a 53S Rydberg
state the relevant potential energies are depicted in figure 2.8. In region (2)
the Rydberg atoms are excited in an area of high or low density depending
on the detuning δ. The signal in region (3) arises from the thermal cloud
around the BEC, where the sharp peaks occur due to the formation of Rydberg
molecules (dimer, trimer,...) [22] created in both the thermal cloud and in the
low density region of the BEC. In region (4) one would expect a signal of the
high density region of the BEC, since the avoided crossing provides potential
energies (δ > 0 MHz) larger than the energy of the bare 53S Rydberg state. This
can be seen from the potential energies displayed in the following in figure 2.8b
(red). Figure 2.8 shows in addition to the potential energies (b) the nearest
neighbor distribution of three different densities in (a). For example in blue
the distribution for the peak density of the BEC is displayed. The nearest
neighbor distribution clarifies the importance of the p-wave shape resonance for
the modeling of the spectral line shapes, as the probability to find the nearest
neighbor peaks in the vicinity of the avoided crossing of the 53S Rydberg state
and the butterfly state. This means that at least the nearest neighbor is strongly
affected by the existence of the p-wave shape resonance. This also reveals that
in the region (1) and (2) of a typical spectrum (see figure 2.7), one would
expect a deviation to the mean density shift, since even for lower densities, e.g.
1×1014 atoms/cm3, the nearest neighbor experiences a lowered potential energy
due to the avoided crossing of the Rydberg state with the butterfly state.
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Fig. 2.8: (a) Nearest neighbor distributions of three relevant densities. In blue the
nearest neighbor distribution for the peak density of the BEC. (b) A zoom in of the
calculated potential energy curves, which is relevant for the modeling of the spectral line
shape, with (red) and without (blue) taking into account the p-wave shape resonance.
The avoided crossing, which arises from the p-wave contribution, appears at a distance
of R ≈ 1420 a0 (red curve). The bare 53S Rydberg state is set to zero energy.

2.3.1 Microscopic model and simulation of a Rydberg spectrum

In the following, a model to explain the spectral line shape of a single Rydberg
excitation in a Bose-Einstein condensate is presented. For this model the
perturber atoms are treated as uncorrelated, point-like perturbers with zero
velocity, where the binding energies are associated with the internuclear distance
between the perturber atom and the ionic Rydberg core. Therefore, it is assumed
that on the one hand all perturber atoms are affected by the same two-body
potential and on the other hand the perturbation on the Rydberg electron wave
function is small enough.
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Fig. 2.9: Positions corresponding to the scattering energy Eres = 29 meV of the p-wave
shape resonance and the avoided crossing of the nS Rydberg state and the butterfly
state (BF ) for different principle quantum numbers. The avoided crossing position is
obtained from the calculation of the corresponding adiabatic potential energy curve.
The dashed line shows the asymptotic limit (n→∞) of the p-wave shape resonance
position.

This assumption does not hold for few or more perturbers excited deeply in a
potential region, which is associated with the butterfly state from the upper lying
hydrogenic manifold, because in this area a single perturber influences strongly
the Rydberg electron wave function leading to a strongly anisotropic electron
density distribution with a shape of a butterfly (see figure 2.3a). Figure 2.9
shows the position corresponding to the scattering energy of the p-wave shape
resonance as well as the position of the avoided crossing between the nS Rydberg
state and the butterfly state for different principle quantum numbers. Both
positions saturate for higher principle quantum numbers. This is not surprising,
as the kinetic energy available for the scattering process in the limit of n→∞
is limited by the Coulomb interaction which does not depend on the principle
quantum number. From equation 2.7 one can deduce, that the position of the
p-wave shape resonance for Eres = 29 meV saturates at an internuclear distance
of around 940 a0, which is in accordance with the positions shown in figure 2.9.
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For a principle quantum number of n ≥ 160 a slight step occurs, due to the
oscillatory shape of the PEC and thus for the obtained crossing positions. The
avoided crossing position of the nS Rydberg state with the butterfly state seems
to saturate for an internuclear distance of R ≈ 1900 a0. The avoided crossing
positions in figure 2.9 are determined by the position at which the S-character
along the adiabatic state is equal to 0.5. The S-character can be obtained
from the calculations of the adiabatic potential energy curves by calculating
the overlap of the bare Rydberg state with the eigenstate ψi as

si(R) = |〈ψnS(∞)|ψi(R)〉|2 , (2.13)

with the bare Rydberg state ψnS(∞) and the resulting S-character si depending
on the internuclear separation of the perturber atom and the ionic Rydberg core.
Regarding the excitation scheme (see section 2.2), which only allows to excite
into a S-state, it follows that for a perturber placed at a distance R from the
Rydberg core, the S-character si(R) gives the probability to find this perturber
atom in the eigenstate ψi(R).

So far it is not motivated that applying the two-body potential for many
particles inside the Rydberg electron orbit leads to a physical result at all. For a
proper motivation one can define a so called p-wave shell to quantify the number
of strongly influenced perturber atoms by the presence of the p-wave shape
resonance. The shell is approximated by the volume of a spherical shell, where
the inner and outer radii are given by the distance at which the S-character
is below a certain value. In the following, by means of the p-wave shell, the
mean number of perturber atoms in the vicinity of the p-wave shape resonance
for an excitation of the nS Rydberg state is displayed in figure 2.10. From
figure 2.10, it becomes clear that for a Rydberg atom excited in the center of
the BEC (ρ̂ = 5.2×1014 atoms/cm3) on average less than one perturber atom
is found in the vicinity of the p-wave shape resonance. Only for a S-character
larger than 0.99 on average more than one perturber atoms are located in the
p-wave shell. However, by considering the inset of figure 2.10, which illustrates
the width of the shell for different S-character, it is easy to understand that
this additional perturber atom is not located very close to the avoided crossing
of the nS Rydberg state and the butterfly state, as in comparison to s < 0.75
(orange) and s < 0.9 (red) the p-wave shell for s < 0.99 (blue) is significantly
larger. Thus, this verifies for our system the treatment of many perturber atoms
in the Rydberg orbit with a two-body potential.
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Fig. 2.10: Number of perturber atoms inside a p-wave shell for different S-character
s(R) near the avoided crossing for a homogeneous density of 5.2×1014 atoms/cm3. The
inset shows the S-character of the adiabatic states ψS and ψBF , which correspond
asymptotically to the butterfly state and the 100S Rydberg state, respectively. The
line color along the curve in the inset indicates the width of the p-wave shell, where
the narrower shell is always included.

Finally, one has to note that the jumpy behavior for a increasing principle
quantum number n occurs due to the oscillatory shape of the potential energy
curve, which leads to an oscillation with R of the S-character. By considering
the saturation of the p-wave shape resonance position, it follows that the mean
number of perturber atoms inside the p-wave shell has to saturate as well for
high principle quantum numbers.
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For the system at hand it is also important to verify that the de Broglie
wavelength λdB of the electron is much larger than the interaction range r∗, as it
was mentioned in section 2.1.2. The interaction range can be obtained from the
stationary radial Schrödinger equation of a moving particle in the asymptotic
potential VC4 by introducing reduced units x ≡ R/σ and K ≡ k/σ. Thus, in
atomic units it follows

0 =
( 1

2µ
d2

dR2 + C4
R4 − E

)
ψ(R)

=
( d2

dx2 + 1
x4 −K

2
)
y(x), (2.14)

where E = k2/2µ is the energy of a quasi free particle. One can easily verify
the relationship between σ and C4 as σ = (2µC4)1/2 by inserting the reduced
units in equation 2.14. With this, the introduced length scale σ can be used to
define the interaction range r∗ as:

r∗ ≡ σ = (2µC4)1/2 [α=2C4]= √
µα. (2.15)

The interaction range r∗ can be understood as the distance at which the
particle starts to feel the interaction potential. The de Broglie wavelength of
the Rydberg electron is approximated with the semi-classical approach from
equation 2.7, as λdB = 2π/k(R). The ratio of the de Broglie wavelength λdB
and the interaction range of the electron-atom interaction r∗ leads to the family
of curves displayed in the following in figure 2.11, where the polarizability of
the perturber atoms α = 318.8(14) a.u. [26] and the reduced mass µ = mRb/2
of 87Rb is used. For the peak density of the BEC (5.2×1014 atoms/cm3) the
nearest neighbor distribution peaks around rpeak ' 1300 a0. In this region, the
ratio of the de Broglie wavelength and the interaction range is λdB/r

∗ ≈ 10
for the achievable principle quantum numbers. For larger distances the ratio
increases in a monotonous way. The good agreement of the modeled spectral
line shape, which is shown in the following, suggests that even for λdB/r

∗ . 10
the presented theoretical approach is appropriate.
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Fig. 2.11: Ratio of the de Broglie wavelength of the Rydberg electron and the in-
teraction range r∗ defined by equation 2.15, where λdB = 2π/k(R) depends on the
internuclear distance (see equation 2.7), for different principle quantum numbers
n = 40 . . . 200 of a nS Rydberg state.

In the following an approach to generate configurations of perturber atoms
distributed inside the Rydberg electron orbit is presented. Thus, first of all
the configurations are generated based on the density distribution of the Bose-
Einstein condensate. Secondly, the spatial Rydberg excitation probability is
taken into account. Afterwards the perturber atoms are placed in the already
introduced potential energy curves. The interaction energy of the perturber
atoms with the Rydberg atom leads to an energy shift. This means to excite a
Rydberg atom with a specific configuration of perturber atoms inside its Rydberg
orbit, one needs to match the energy shift, given by the interaction, with the
detuning from the atomic resonance. Finally, the resulting configurations are
used to obtain the spectral line shape of a nS Rydberg atom excited in a
Bose-Einstein condensate.
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Fig. 2.12: Density plot of the yz-plane of a simulated BEC with 1.4×106 87Rb atoms.
The upper color plot shows the BEC density distribution using the Thomas-Fermi
approximation. The lower color plot illustrates the difference between the BEC with
(left) and without (right) the additional atoms of the thermal distribution. Therefore,
the maximum value of the column density on the left side is set as ten times smaller
than on the right side. The adopted atom number and temperature of the thermal
distribution (Gaussian) is 0.3×106 and 300 nK, respectively.

Figure 2.12 shows the simulated density distribution of a magnetically trapped
BEC as a false color image as well as the pixel sum along the y- and z-axis.
To obtain the density distribution the Thomas-Fermi approximation is applied,
which leads to a parabolic density profile for trapped BEC [33]. The radial and
axial expansion is determined by the trapping frequencies ωr = 2π× 200 Hz and
ωax = 2π × 15 Hz according to the experimental setup. In the lower color plot
of figure 2.12 the difference between the BEC with (left) and without (right)
the additional atoms of the thermal cloud (Gaussian distribution) is illustrated.
The number of atoms and the temperature of the thermal cloud is obtained by
a bimodal fit of a time-of-flight measurement, performed with the experimental

36



Chapter 2 Rydberg spectroscopy in a Bose-Einstein Condensate

setup presented in section 2.2. The Thomas-Fermi approximation breaks down
at the edge of the BEC, since at the edge the atom number is lower and the
kinetic energy term in the Gross-Pitaevskii is no longer negligible. Therefore,
the density distribution at the edge of the BEC is enlarged on a typical length
scale. In the literature, this length is called the coherence length or healing
length. For the peak density of the BEC one can estimate the healing length
by ξ =

√
4πρ̂a ≈ 0.17 µm, where ρ̂ = 5.2×1014 cm−3 is the peak density and

a = 5.45 nm [35] is the corresponding scattering length of the 87Rb atoms in
the BEC. However, by comparing the density distributions of figure 2.12 (lower
plot), it becomes clear that the added Gaussian distribution shows the most
effect on the overall density distribution at the edge of the BEC. This means the
effect of the added Gaussian distribution outweighs the widened BEC density
near the edge. Thus, for the problem at hand it is appropriate to neglect the
deviation from the parabolic density distribution of the BEC.

For the next step of generating configurations of perturber atoms, the spatial
intensity profile of the excitation beams are implemented. Since, the blue
excitation laser (λ = 420 nm) is collimated and illuminates the entire cloud,
only the focused infrared excitation laser (λ = 1020 nm) is involved in the
further calculations. In the following in figure 2.13 the atom distribution before
and after the weighting of the spatial intensity profile along the elongated axis
is illustrated in a false color. Here, a waist of 2.1 µm is assumed, which was
experimentally determined using a test setup identical to the optics setup in
the experiment, except for the glass cell of the vacuum chamber [36]. Since the
beam waist is determined by a test setup, it may be that the waist in the actual
experimental setup deviates a little from the assumed waist. Since, the laser
intensity falls off exponentially with the square of the distance from the beam
propagation axis (here z-axis), a cutoff distance is introduced, which defines
an excitation volume Vex(z, n). All atoms outside this excitation volume are
taken out of the atom distribution. A proper cutoff can be set at the distance
w̃(z, n) ≡ 2 ·w(z) + rRyd(n) from the propagation axis (z-axis), where rRyd(n) is
the classical outer most turning point of the nS Rydberg electron and w(z) is the
waist of the Gaussian beam. The cutoff distance is enlarged by the expansion
of the Rydberg electron of the corresponding Rydberg state to make sure that
all perturber atoms inside the Rydberg orbit are present in the generated atom
distribution.
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Fig. 2.13: Density plot of the yz-plane of a simulated BEC with 1.4×106 87Rb atoms
surrounded by a thermal cloud with a Gaussian distribution of 0.3×106 atoms and a
temperature of Tthermal = 300 nK. The upper plot shows the density distribution before
a weighting with the spatial profile of the excitation beam, where the lower plot shows
the density distribution after the excitation beam is weighted. The excitation volume
Vex(z, n = 53) is displayed in red.

For the illustration shown in figure 2.13 each atom i inside the excitation
volume is assigned with an uniformly random number randi. Each random
number randi is compared to the beam intensity I(ri, zi) at the position of the
corresponding atom. All atoms with randi < I(ri, zi)/I0, where I0 is the peak
intensity in the center of the beam, are taken out. This procedure corresponds
to a convolution of the density distribution with the spatial beam intensity of
the excitation lasers. After the spatial intensity profile is weighted, only 2%
of the total atom number turn out to be relevant, due to the tightly focused
excitation beam. For the actual calculation of the spectra the same definition
of an excitation volume is utilized. However, the beam intensity is implemented
in a different way, which is explained in the following paragraph.
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Fig. 2.14: Two-body potential energy curves, with (red) and without (blue) including
the p-wave shape resonance, for the 53S Rydberg state. The filled circles represent one
of the simulated perturber atom distributions inside the Rydberg electron orbit at the
center of the atom cloud. For this particular configuration of perturbers the resulting
energy shift of s-wave scattering only is equal to −54.4 MHz, whereas the resulting
energy shift of the s- and p-wave scattering is −81.8 MHz.

The next step in the modeling process is to take into account the interaction
between the Rydberg atom and the perturber atoms inside the wave function
of the Rydberg electron. Therefore, each atom inside the excitation volume
Vex(z, n) of the generated atom distribution is treated as a possible Rydberg
excitation. The energy levels of the i-th Rydberg atom, of the atom distribution,
at the position ri are shifted by

δi =
∑
i6=j

V (|ri −Rj|), (2.16)

with respect to the atomic resonance (δ = 0), where Rj denotes the j-th
perturber atom inside the Rydberg electron orbit and V (r) represents the
calculated two-body potential energy curves introduced in section 2.1. One
has to note that the approach from equation 2.16 is only valid for a negligible
back-action of a single perturber atom on the Rydberg electron wave function.
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As an example, figure 2.14 shows a possible perturber atom distribution in
the PEC, which includes the p-wave shape resonance (red) and in the PEC,
which considers only s-wave scattering (blue). The energy shift for the potential
energies in figure 2.14 are −54.4 MHz and −81.8 MHz for s-wave scattering only
and s- and p-wave scattering, respectively. This example demonstrates, that
the potential energy calculation, which includes the p-wave shape resonance,
can lead to a much larger energy shift for the same perturber atom distribution.
Finally, for the actual spectrum, the excitation bandwidth of the Rydberg
excitation as well as the spatial Gaussian beam intensity has to be considered.
For each atom i the energy shift δi is calculated. Afterwards, the spectrum is
obtained by summing up the Lorentzian contribution of each atom i, which
is weighted with the beam intensity at its position. In other words, every
atom in the simulated atom distribution is treated as a possible Rydberg atom
weighted with the intensity and the available energy given by the detuning of
the excitation laser. Another perspective of this approach is that a specific
configuration of perturber atoms is selected by the excitation laser. This means
a certain detuning δ selects a specific configuration of atoms out of the present
atom distribution in the excitation volume. Based on the density distribution
of the BEC one can map this specific configuration on a density shell. This
is shown in the following section 2.3.3. The actual spectrum is calculated as
follows

S(δ) = A
∑
i

1
π

(
1
2Γ
)2

(
δ − δi

)2 +
(

1
2Γ
)2 × Ii, (2.17)

with the Rydberg excitation bandwidth Γ, the detuning from the atomic reso-
nance δ of the addressed Rydberg state, the energy shift δi, the Gaussian beam
intensity Ii = I(Ri) of the i-th atom in the created atom distribution and a
normalization factor A. In order to increase the sample number, the procedure
of calculating the atom distribution is repeated fifty times before the actual
spectrum is obtained. In the following, the simulated spectral line shape of the
53S Rydberg state, with (solid red) and without (dashed yellow) including the
p-wave shape resonance is depicted in figure 2.15. The total average ion count
of the experimentally obtained spectrum is used to determine the normalization
factor A in equation 2.17. Thus, the spectral line shapes are obtained without
any free parameters. The large deviation of the line shapes with and without
the p-wave contribution in figure 2.15, demonstrate a strong dependence on
the applied potential energy curves of the presented model. Especially, for a
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Fig. 2.15: Spectrum of a Rydberg excitation in a Bose-Einstein condensate and the
resulting line shapes calculated by equation 2.17, with (solid red) and without (dashed
yellow) including the p-wave shape resonance, here for the 53S Rydberg state.

large red detuning δ . −50 MHz only by considering the p-wave contribution
a significant signal can be reproduced by the theoretical model. Therefore,
the presence of a signal in this region for both, the measured as well as the
simulated spectrum, indicates the importance of the p-wave shape resonance of
the e−-Rb(5S) scattering for the system at hand. Since, the presented model is
based on a semi-classical approach it does not reproduce the discrete lines of the
Rydberg molecules (−6 . δ < 0 MHz). Furthermore, the overall discrepancy
for a small red detuning (−20 . δ < 0 MHz) is a possible indication that the
correlation between the perturber atoms, which is neglected for the applied
model, matters in this region. In the following the results for principle quantum
numbers n = {40, 53, 71, 90, 111} are depicted in figure 2.16. As one can
clearly see from figure 2.16, even for higher principle quantum numbers, the
signal for a large red detuning is only reproducible if the p-wave shape resonance
is taken into account. In contrast, the calculations for s-wave scattering only
and for s- and p-wave scattering show a more similar broadening for higher
principle quantum numbers. Furthermore, the spectra displayed in figure 2.16
reveal a strong n-dependence of the broadening of the spectral line shapes.
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Fig. 2.16: Spectra of a Rydberg excitation in a Bose-Einstein condensate and the
resulting line shapes calculated by equation 2.17, with (solid red) and without (dashed
yellow) including the p-wave contribution.
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The volume of a nS Rydberg electron orbit scales with VRyd ∝ r3
Ryd ∝ (n∗)6,

therefore the number of total atoms N inside the electron orbit ranges from
few to several thousands for the studied principle quantum numbers. Thus,
compared to a high principle quantum number (n = 111), the standard deviation√
N/N is much larger for lower n, which leads to an additional broadening

mechanism in contrast to high n. Moreover, the depth of the potential energies
scale similar to the energy difference of adjacent energy levels (∝ n−3 [28]).
Regarding the broadening of the spectral line shapes, this means on average
the energy shift from each perturber atom inside the Rydberg electron orbit
decreases with an increasing principle quantum number, leading to a narrower
spectrum for higher n. Therefore, it is not surprising that for increasing principle
quantum numbers the broadening for both, s-wave scattering only and s- and
p-wave scattering, exhibit a similar trend. For a high principle quantum number,
the p-wave contribution leads to an overall red shift of the simulated line shape
in addition to the wing on the red side of the overall peak in the spectra. As a
consequence, the broadening of the spectrum depends strongly on the principle
quantum number, however, the influence of the p-wave shape resonance on the
additional broadening plays a subordinate role.
Finally, it is important to mention that, since all perturber atoms in the

Rydberg orbit are treated by means of a pair-interaction with the Rydberg atom,
the presented model is only valid as long the perturbation of each perturber
atom on the Rydberg electron wave function is localized. This can happen if
a perturber atom is placed in the butterfly state. However, the probability to
excite such a configuration is strongly suppressed, due to the limited available
energy given by the Rydberg excitation detuning, the low S-character far away
from the addressed Rydberg state and the uncorrelated spatial atom distribution.
Thus, for the investigated principle quantum numbers and densities, one can
claim that the presented simulation method is self-consistent, because the
restrictions of the model can not be exceeded by the created configurations
based on the introduced method.
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2.3.2 Variation of the excitation beam waist
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Fig. 2.17: Density plot of the yz-plane of a simulated BEC with 1.4×106 87Rb atoms
surrounded by a thermal cloud with a Gaussian distribution of 0.3×106 atoms and
a temperature of Tthermal = 300 nK, which is weighted with the spatial profile of the
excitation beam. The simulated distributions are shown, from top to bottom for a
beam waist of w0 = {2.1, 4.2, 10.5}µm of the focused infrared Rydberg excitation laser.
The beam waist along the z-axis is displayed in red.

The developed microscopic model and the presented simulation method
allows a variation of several experimental parameters. As an example, the
influence of an increased beam waist is discussed in this section, whereas in
the next section 2.3.3, different positions of the excitation laser focus in BEC
are examined. As already mentioned the actual beam waist of the infrared
excitation laser can be slightly different from the beam size measured in the
test setup. Therefore in this section, the simulation is used to test the influence
on the spectral line shape for a different beam waist of the infrared excitation
laser. In figure 2.17, the result of the simulated atom distribution convoluted
with the intensity profile of the infrared Gaussian beam for three different
waists w0 = {2.1, 4.2, 10.5}µm, is depicted. With an increased beam waist, the
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Fig. 2.18: Spectra of a Rydberg excitation in a Bose-Einstein condensate and the
resulting line shapes calculated by equation 2.17, where the p-wave shape resonance is
taken into account. Here for the 53S Rydberg state and three different beam waists.

region of possible Rydberg excitation extends over a larger volume inside the
BEC. Therefore, more configurations are involved in the simulation. This can
lead to a redistribution of the probability to find specific configurations in the
sample and thereby to a different line shape of the spectrum. Especially, in
comparison to a tightly focused Gaussian beam, for a large beam waist lower
density configurations are more significant, since the probability to excite further
away from the center of the BEC is enhanced (see figure 2.17). In fact, the
results of the simulated line shapes, displayed in figure 2.18, show an enhanced
contribution from lower density regions for an increased beam waist. This
can be understood, as a lower density leads to a reduced number of perturber
atoms inside the Rydberg electron orbit, which in turn leads to a reduced
resulting energy shift. Therefore, the overall shift of the signal towards a smaller
red detuning can be assigned to an increased contribution of lower density
configurations. The simulated line shapes in figure 2.18 match the experimental
data for a waist w0 = 10.5 µm very well. Even for a higher principle quantum
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Fig. 2.19: Spectra of a Rydberg excitation in a Bose-Einstein condensate and the
resulting line shapes calculated by equation 2.17, where the p-wave shape resonance is
taken into account. Here for the 90S Rydberg state and three different beam waists.

number, e.g. n = 90, the simulation match with the experimental data for the
same beam waist (see figure 2.19) in a very convincing way. This suggests that
the assumed minimal beam waist of the infrared Rydberg excitation laser is
different in the actual experimental setup. However, it turns out in the following
section, that the measured value of the beam waist (w0 = 2.1 µm) is relatively
close to the actual beam waist in the experiment.

2.3.3 Variation of the excitation position

In this section the simulation method is compared to the experimental results,
which are presented and discussed in detail by Cubel Liebisch et al. [S3], for a
different overlap of the tightly focused infrared excitation laser with the Bose-
Einstein condensate. In order to probe different regions in the BEC, the infrared
excitation beam is moved along the axis perpendicular to the propagation
direction and the axial axis of the BEC (x-axis see figure 2.6). For each position
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Fig. 2.20: Density plot of the xz-plane of a simulated spatial excitation distribution for
a 90S Rydberg state in a BEC with 1.4×106 87Rb atoms surrounded by a thermal cloud
with a Gaussian distribution of 0.3×106 atoms and a temperature of Tthermal = 300 nK.
From left to right the resulting distribution for a detuning of δ = {−55, −24, −12}MHz
from the atomic resonance of the addressed Rydberg state is displayed. The beam
waist along the z-axis is displayed in red.

the ion signal is evaluated for three different detunings from the atomic resonance
of the addressed nS Rydberg state. With the microscopic model, introduced
in section 2.3.1, it is clear that for different detunings the excitation laser is
resonant with configurations of a specific region in the BEC. This means that,
for a given detuning a specific density region is probed, which allows a mapping
between detuning and density. In the following this detuning-density mapping
is demonstrated using the developed simulation method.
Figure 2.20 shows the spatial distribution of possible Rydberg excitations

simulated for a detuning of δ = {−55, −24, −12}MHz from the atomic reso-
nance of the 90S Rydberg state, as a density plot of the xz-plane (elongated
axis perpendicular to the drawing plane). The excitation distribution indicates
that for a large red detuning the excitation probability is enhanced in the center
and thus in a more dense region of the BEC. Whereas, for a small red detuning
the Rydberg excitation probability is increased in a shell further away from the
center of the BEC. As already predicted, it follows that for a specific detuning
from the atomic resonance, a specific density region is addressed. Regarding
the symmetry of the density distribution of the BEC, it is clear that different
density shells are assigned by the corresponding detunings δ from the atomic
resonance of the addressed Rydberg state.
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Fig. 2.21: Density plot of the xz-plane of a simulated BEC with 1.4×106 87Rb atoms
surrounded by a thermal cloud with a Gaussian distribution of 0.3×106 atoms and
a temperature of Tthermal = 300 nK, which is weighted with the spatial profile of the
excitation beam. The resulting distributions are displayed from left to right with a
focus position of xfocus = {0, 2.5, 5}µm of the infrared Rydberg excitation laser, with
respect to the center of the BEC. The beam waist along the z-axis is displayed in red.
The maximum values of the projection (x-axis) on top are rescaled to one.

In order to probe the density distribution, one can measure the ion count
for a certain detuning and move the tightly focused excitation laser beam with
respect to the center of the BEC. In figure 2.21 a created atom distribution
weighted with the spatial intensity profile of the infrared excitation laser, for a
focus position of xfocus = {0, 2.5, 5}µm, is depicted. The tightly focused beam
(w0 = 2.1 µm) cuts out a specific region of the created atom cloud. For a focus
position close to the edge of the BEC (e.g. xfocus = 5 µm), the thermal cloud
becomes apparent as a background offset. Whereas, for a focus position at
the center of the BEC, the contribution of the thermal atoms is imperceptible.
Additionally, the z-projection of the atom distribution shows the density profile
of a BEC, whereas the x-projection mimics the Gaussian intensity profile of
the excitation beam, for a focus position at the center. The tight focus of the
infrared excitation laser allows one to measure the excitation probability of an
nS Rydberg state for a specific detuning at different positions in the BEC and
thus for different density regions.
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Fig. 2.22: (a) Experimental results (dots) as well as the outcome of the simulation
for a waist w0 = 2.1 µm (lines) and w0 = 3.0 µm (dashed lines), for a detuning of
δ = {−55, −24, −12}MHz from the atomic resonance of the addressed 90S Rydberg
state. (b) Shows the parabolic density profile of the BEC, where in (c) the different
addressed density shells corresponding to the detuning δ are shown. The different colors
in (b) and (c) are associated with the different detunings in (a).

In figure 2.22a the experimental results as well as the simulation is depicted
for three different detunings, where the illustrations in (b) and (c) demonstrate
the mapping from a laser detuning onto a density shell of the BEC. As one can
clearly see from figure 2.22a the simulation and the experimental results do
match very well, especially, for a small red detuning. However, for a large red
detuning of δ = −55 MHz, the flank of the extracted experimental data and
simulated data (figure 2.22a lines) show a small discrepancy. By considering,
that the simulated spectral line shapes suggest an underestimated beam waist
(e.g. w0 = 4.2 µm in figure 2.18 and figure 2.19), one could argue that this
small discrepancy is due to the same reason. Since, with a larger beam waist
the signal from the corresponding density region is probed for larger distances
of the focus from the center of the BEC, which leads to a broader curve in
figure 2.22a. The effect of a slightly increased beam waist (e.g. w0 = 3 µm) is
depicted in figure 2.22a (dashed lines). The dip in the middle for smaller red
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detuning (green and blue curve) indicates a beam waist w0 of about 2 - 3 µm,
as the addressed density regions are well resolved for a focus position close to
the center (|x| . 3 µm in figure 2.22a). The good agreement in figure 2.22a also
demonstrates the validity of the detuning-density mapping for a large principle
quantum number (n = 90). However, one has to note that the additional
broadening mechanism of the spectra, for low principle quantum numbers,
which is discussed at the end of section 2.3.1, has a strong influence on this
detuning-density mapping. This becomes clear, by recalling that for low n the
number of perturber atoms inside the Rydberg electron orbit is of the order of 10
and thus the standard deviation is rather large and leads to an enlarged interval
of densities associated with the same detuning. A more detailed discussion of
the detuning-density mapping can be found in [S3]. Overall, the good agreement
of the experimental data and simulated data in figure 2.22a for the 90S Rydberg
state shows again the validity of the developed microscopic model from section
2.3.1 for the system at hand and the investigated principle quantum numbers.
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3
Simulation of Rydberg dynamics in a

Bose-Einstein condensate

In the previous chapter the static properties of a Rydberg excitation in a dense
ultracold gas were discussed. Whereas in this chapter, the resulting dynamics of
a Rydberg atom immersed in a BEC is studied. It turns out, that the resulting
collisional lifetimes are not only dominated by the ionic Rydberg core, but
also are strongly affected by the scattering induced interaction of the Rydberg
electron and the surrounding atomic cloud.

The experimental realization presented in section 2.2 not only allows to
measure the spectral line shape of a Rydberg excitation in an ultracold and
dense gas, but also enables one to study the dynamics of such a system. For this
purpose, after the Rydberg excitation an additional delay time is implemented
before the ionization pulse is applied. The collisional lifetime of a Rydberg atom
can be extracted from the measured ion-signal for the different delay times,
while the flight time of the detected ions can be used to obtain the kinetic energy
released by the collision of a Rydberg atom and a neutral atom. Evaluating
the collisional lifetime and energy release, one can conclude, that the collision
leads to two reaction products, which are observed and studied by Schlagmüller
et al. [S2]. In figure 3.1 the two corresponding reaction channels are depicted.
The Rydberg atom is initially prepared in the (n, l) state and can react with
the surrounding neutral atoms of the BEC, resulting in either a deeply bound
molecular ion (Rb+

2 ) or an l-mixing reaction. For the latter one the Rydberg
atom changes its internal state during the reaction mechanism.This is due to the
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Fig. 3.1: The two observed reaction channels for a Rydberg atom (Rb∗) excited in
an ultracold and dense environment. For the upper sketched reaction channel (1), the
excited Rb∗ atom and the neutral atom (Rb) form a deeply bound Rb+

2 ion due to
chemi-ionization [37]. The lower channel (2) results in a l-mixing reaction, which leads
to a change of the angular momentum of the excited Rydberg atom. For this reaction,
the energy release of the collision is equally shared by both, the Rydberg atom and the
neutral atom. The two reaction mechanisms exhibit two reaction times τ1 and τ2.

presence of the p-wave shape resonance with a 3P o symmetry of the e−-Rb(5S)
scattering, which is introduced in section 2.1. The shape resonance gives rise
to a butterfly state, which in turn couples to the trilobite state of the lower
lying hydrogenic manifold and thus provides a possible path through the energy
landscape for the observed final (n−4, l > 2) state of the l-mixing reaction [S2].

A simple theory to describe the collision of the ionic Rydberg core and
a neutral atom is given by the Langevin model [38], which is based on the
polarization potential discussed in section 2.1.1. In principle, the Langevin
model describes the ability of the ion to capture the neutral atom due to the
long-range polarization interaction potential as the ion and the atom move
towards each other along classical trajectories. A theoretical study of ultracold
atom-ion collisions for alkali atoms [13] reveals, that the semi-classical approach
of the Langevin model is valid for a collision energy down to E ∼ kB × 10 nK.
For the Rydberg electron-neutral atom scattering, one has to consider the orbital
period of the electron (Tn = n3 1.5×10−16 s [39]) and the relative motion of
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the Rydberg atom and the neutral atom. The resulting collisional lifetimes
indicates, that the dynamics of the system is on the order of few microseconds.
By considering the orbital period Tn=150 ∼ 500 ps, it becomes clear that the
electron motion is much faster than the nuclear motion and thus the electron
can slowly adjust its wave function by scattering several times at the nearly
frozen neutral atom. Therefore, the nuclear motion and the electronic motion
can be treaded separately, meaning that the Born-Oppenheimer approximation
is valid. This suggest, that for both, the ion-atom interaction and the electron-
atom interaction, a classical dynamics simulation can be applied to model the
collision times. However, with this approach, quantum dynamical effects such as
quantum reflection are neglected. In order to simulate the collisional lifetimes,
the microscopic model of section 2.3.1 is applied to create configurations of
neutral atoms distributed inside the Rydberg electron orbit. The interaction
potential for the dynamics simulation is modeled by taking into account only the
ion-atom interaction in section 3.2 (polarization potential approach). Whereas in
section 3.3, the electron-atom interaction potential is modeled using an average
potential approach and both, the ion-atom interaction and the electron-atom
interaction is taken into account for the dynamics. The resulting collision times
of each potential approach are compared to the measured Rb+

2 formation times
and the l-mixing collision times for different principle quantum numbers.

3.1 Dynamics simulation method

Within the framework of the microscopic model (section 2.3.1), a method is
presented, which allows to determine configurations of neutral atoms distributed
inside the excited Rydberg atom, depending on the addressed nS Rydberg state
and the detuning from the atomic resonance. For the dynamics simulation, the
initial positioning of the neutral atoms inside the Rydberg orbit is obtained from
these configurations. Furthermore, the excitation process and the subsequent
time evolution of the system, are assumed to be independent of each other.
This approximation is necessary, since the excitation process is not taken into
account for the calculation of the applied potential energy curves.
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For a first rough estimate of the dynamics, one could argue to consider only
the nearest neighbor atom of the excited Rydberg atom. However, by regarding
the interaction range of the ionic Rydberg core interacting with the surrounding
neutral atoms, it becomes clear that this simple approach is insufficient. With
equation 2.15 the interaction range for the polarization potential of the ionic
Rydberg core is

r∗ = √µα ≈ 5000 a0, (3.1)

where the polarizability of the neutral atoms α = 318.8(14) a.u. [26] and the
reduced mass µ = mRb/2 of two 87Rb is used. This means, for the system at
hand, with a peak density of up to ρ ≈ 5.2×1014 atoms/cm3, on average the
ionic Rydberg core interacts simultaneously with more than 40 neutral atoms.
Thus, for the dynamics simulation all neutral atoms in the interaction range
are taken into account.

For the classical dynamics simulation the initial velocity of the neutral atoms
is assumed to be zero, as for a single atom of the BEC no individual velocity
is defined. Whereas, the initial velocity of the Rydberg atom is given by
the photon recoil of the Rydberg excitation laser as: Erecoil ≈ h × 15 kHz.
Furthermore, a Bose-Einstein condensate can be considered as a dilute gas,
if the scattering length of the neutral atoms is much smaller than the mean
inter-particle distance [33]. This is the case for the system at hand, as the
scattering length of the neutral 87Rb-atoms (aRb = 103 a0 [35]) is much smaller
than the mean inter-particle distance (rmean ≈ 1500 a0) for the peak density
ρ̂ =5.2×1014 cm−3 of the BEC. In turn, the interaction between the neutral
atoms of a dilute gas is dominated by the long-range tail of the dipole-dipole
interaction, which is more commonly known as the van der Waals interaction [33].
By regarding equation 2.14, using the van der Waals interaction (C6/R

6) instead
of the polarization potential it follows that the interaction range for the van
der Waals interaction is: r∗vdW = (µC6)1/4 ≈ 140 a0, with the reduced mass
µ = mRb/2 of two 87Rb and the C6-coefficient C6 = 4691 a.u. calculated by
Derevianko et al. [40]. Therefore, the mean inter-particle distance is much larger
than the range of the van der Waals interaction: rmean � rvdW. Consequently,
the neutral atoms are sufficiently separated and one can neglect the neutral-
neutral interaction for the dynamics simulation. This applies at least until
the first collision of the Rydberg atom with a neutral atom occurs, meaning
that the internuclear separation of the Rydberg core and the neutral atom falls
below 10 a0 and the atoms repel each other due to the Pauli exclusion principle
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(see section 2.1.1). After the first collision, the initial photon recoil is shared
between the collision partners and the collided neutral atom can scatter with
another neutral atom. However, a simple estimation of a geometric cross-section
(σgeo = πa2

Rb ≈ 100 nm2), using the scattering length of 87Rb, indicates that
this is improbable for the system at hand, as the peak density of the BEC leads
to a mean free path of about 20 µm.

The classical dynamics simulation for the system of a Rydberg atom interact-
ing with the surrounding neutral atoms is realized with a symplectic leapfrog
integration method, which can be found in every standard text book about
molecular dynamics simulation (e.g. in [41]). For each simulation the energy
conservation and the angular momentum conservation as well as the center
of mass motion of the system was reviewed. Since the aim of the dynamics
simulation is to estimate the time that elapses until the first collision occurs,
the simulation can be stopped shortly before the actual collision happens, in
order to avoid unnecessarily small integration time steps.

In the following sections (3.2 and 3.3) the results of two different approaches
are presented and compared to the collision times observed by Schlagmüller
et al. [S2]. For a first approximation of the collision times, one must at least
consider the interaction between the ionic Rydberg core and the surrounding
neutral atoms. The results of this estimate are shown and discussed in the
following section 3.2. However, for this first estimation, the interaction of the
Rydberg electron and the neutral atoms (perturber atoms) inside its electron
orbit, is neglected. Especially, the avoided crossing of the potential energies of
the butterfly state and the addressed nS Rydberg state, which is necessary to
explain the observed l-mixing collision [S2], is not considered. In order to take
into account the coupling of the butterfly state with the addressed nS Rydberg
state, the electron-atom interaction is also included in section 3.3 by using the
two-body potential energies, which are introduced in section 2.1 and afterwards
discussed in section 2.3.1. However, for the dynamics simulation the neutral
atoms are considered as point like particles with zero initial momentum and
thus, by taking into account the full potential energy curve, this results in a
non-physical quasi bound state, as most of the perturber atoms are classically
trapped in the oscillatory shape of the potential. In order to avoid this non-
physical effect, for the dynamics simulation, the PECs are radially averaged
such that the oscillatory shape vanishes. This means, for the electron-atom
interaction an instantaneous tunneling of the perturber atoms through the
potential wells is assumed.
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Fig. 3.2: (a) Histogram of the nearest neighbor distribution for a detuning of
δ = −48 MHz from the atomic resonance of the 50S Rydberg state (blue), as well
as the nearest neighbor distribution for a constant density corresponding to the ad-
dressed density (red). (b) Potential energy curves over the internuclear distance R,
which are relevant for the dynamics simulation in section 3.2 and 3.3.

Figure 3.2b shows the polarization potential of the ionic core of a Rydberg
atom (orange), as well as the two-body potential energy curve for the 50S + 5S
state (blue) and the corresponding average potential (red). The average potential
is obtained from the 50S + 5S potential by using a cubic spline function through
the inflection points with a negative slope, while the outer most potential well
stays unchanged. For both electron-atom interaction potentials, the polarization
potential is added. The same procedure is applied for all average potentials
using the corresponding nS + 5S two-body potential energy curve. As one can
see from figure 3.2b, the polarization potential takes over for an internuclear
distance smaller than ∼ 500 a0. In (a) the nearest neighbor distribution of
the corresponding simulated configurations for a detuning of δ = −48 MHz
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(50S Rydberg state), is depicted. The nearest neighbor distribution reflects
the influence of the crossing between the butterfly state and the addressed
Rydberg state. Since, the configurations are chosen with respect to the detuning
from the atomic resonance, the probability to observe a perturber atom in the
crossing region is reduced. Especially, for a negative detuning the probability to
find a perturber atom in the upper branch is suppressed. This becomes clear,
by comparing the nearest neighbor distribution for a constant density, which
corresponds to an energy mean shift according to equation 2.6, in figure 3.2a.
The simulated distribution shows an enhanced probability close to the crossing
in the lower branch, whereas the probability in the upper branch is reduced
next to the crossing. Far away from the crossing, the simulated nearest neighbor
distribution and the constant density distribution are equivalent. Since the
back-action of a single perturber atom on the Rydberg electron wave function
is neglected, the dynamics simulation of the average potential approach is
stopped when the first perturber atom enters the region of the avoided crossing.
Specifically, this means that the simulation ends, once a perturber atom enters
the region, where the S-character of the lower potential branch falls below 0.5.
With this, the potential resulting from the electron-atom interaction can be
treated as spherical symmetric, since the perturbation of the electron wave
function is small and thus the arising anisotropic shape of the butterfly state can
be neglected. This stop criteria leads to a systematic offset for the determined
collision times. However, the increase of momentum of the neutral atoms, which
are subject to a collision, is large enough to neglect this offset. For the system
at hand, the apparent systematic offset is on the order of few nanoseconds.
Nevertheless, the resulting collision time of each dynamics simulation has been
checked to be unaffected by this stop criteria. The lower potential branch
denotes the outer part of the potential, down to the crossing of the butterfly
state, which is at about R ≈ 1400 a0 in figure 3.2b. For the upper potential
branch, denoting the inner part of the potential, the dynamics simulation ends
for an internuclear distance R < 100 a0. The second condition is also applied
for the polarization potential approach in section 3.2. The probability to find a
perturber atom either close to the ionic Rydberg core (R < 100 a0) or close to
the center of the crossing is suppressed, due to the energy limitation given by
the detuning from the atomic resonance. This is also apparent in figure 3.2a,
where the nearest neighbor distribution of the calculated configurations shows a
dip near the avoided crossing (R ≈ 1400 a0). Finding a perturber atom initially
placed deep in the butterfly potential is most likely for a large red detuning.
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Fig. 3.3: Minimal S-character of the perturber atoms inside the Rydberg orbit for
a detuning of δ = −48 MHz from the atomic resonance of the addressed nS Rydberg
state.

In figure 3.3 the minimal S-character of the perturber atoms of 5000 possible
Rydberg excitations, for a detuning of δ = −48 MHz, is shown. By considering
the minimal S-character, depicted in figure 3.3, and the mean number of
perturber atoms inside the p-wave shell (see figure 2.10 in section 2.3.1), it
follows that, not only the mean number of perturber atoms close to the crossing
is below one, but also that the minimal S-character of the initially occupied
state is on average much larger than 0.5. Thus, the number of configurations,
which lead to an immediate collision due to the stop criteria of a present
S-character below 0.5, is negligibly low. In the following sections 3.2 and
3.3 the cumulative collision probability is used to define the lifetime τ for
different principle quantum numbers and detunings from atomic resonance of
the addressed nS Rydberg state. For each obtained lifetime more than 1000
trajectories are calculated for the Rydberg atom-neutral atom system. In turn,
for each trajectory the initial distribution of neutral atoms inside the Rydberg
orbit is randomly picked out of a larger sample of the simulated configurations
for the corresponding detuning of the addressed nS Rydberg state.

58



Chapter 3 Simulation of Rydberg dynamics in a Bose-Einstein condensate

3.2 Polarization potential approach

For the system at hand, the interaction range of the polarization potential is
larger than the mean inter-particle distance. Consequently, for a first estimate
of the collision time, only the interaction of the ionic Rydberg core with the
surrounding neutral atoms, is considered for the classical dynamics simulation,
which is displayed in figure 3.2b (orange). This means, in particular, that the
electron-atom interaction between the Rydberg electron and a neutral atom
is neglected for the simulated time evolution of the system. However, for the
initial positioning of the neutral atoms and the single ionic Rydberg core, the
atom distributions based on the microscopic model are utilized. Therefore, it
is expected that the resulting collision times depend on the detuning from the
atomic resonance of the addressed nS Rydberg state.
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Fig. 3.4: Collision probability and the resulting cumulative collision probability, ob-
tained from the classical dynamics simulation of 1000 different starting positions for a
detuning of δ = −48 MHz from the atomic resonance of the addressed 60S Rydberg
state. The cumulative collision probability is modeled with pcsum(t) = (1− e−t/τ ) in
order to obtain the lifetime τ of the Rydberg atom excited in the BEC.

As an exemplary evaluation, the normalized collision probability and the
resulting cumulative collision probability of 1000 simulated collision times, for
a 60S Rydberg atom excited with a detuning of δ = −48 MHz, is depicted in
figure 3.4. The cumulative collision probability is calculated by the cumulative
sum of the time-dependent collision probability and gives the probability of a
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collision after the system has evolved a certain time t. In order to obtain a typical
lifetime τ of the Rydberg atom for a specific detuning δ and a certain principle
quantum number n, the cumulative collision probability of the simulated collision
times is modeled with pcsum(t) = (1−e−t/τ ). This means, each obtained lifetime
corresponds to an evolved time t = τ , for which the probability of collision is
1− 1/e ≈ 0.63.

In figure 3.4 a step is apparent in the cumulative collision probability at the
time t = 0.8 µs. This step has its origin in the simulated initial neutral atom
distributions. The reduced probability to excite a Rydberg atom with a neutral
atom close to the avoided crossing of the butterfly state and the nS Rydberg
state leads to a dip in the nearest neighbor distribution of the simulated neutral
atom distributions. Since, the polarization potential is monotonically decreasing
for a decreasing internuclear distance, in most cases the Rydberg atom will
collide with the nearest neighbor of the initial atom distribution. In some
cases the photon recoil can lead to a collision with the next nearest neighbor.
However, the latter case is very unlikely, as the displacement of the Rydberg
atom due to photon recoil is negligible. Consequently, the step occurs due to a
lowered probability of a Rydberg atom excited with a neutral atom close to the
avoided crossing of the butterfly state and the addressed Rydberg state. For
the following evaluation, all the obtained lifetimes were checked to be mainly
unaffected by this step (see appendix A.1).

In figure 3.5 the obtained lifetimes of the classical dynamics simulation, using
the polarization potential approach, are compared with the experimentally
determined l-changing collision time and the Rb+

2 formation time measured by
Schlagmüller et al. [S2] in a double logarithmic plot. The results of the classical
dynamics simulation are slightly above the experimentally obtained lifetimes of
the initially prepared Rydberg state for a principle quantum number of n . 100.
For n & 100 the observed l-changing collision times are largely increased. So
far the reason of the increased l-changing collision time is unexplained. For
the estimated lifetimes of the classical dynamics simulation no threshold be-
havior is observed. Thus, one can conclude, that the experimentally observed
threshold is not a direct consequence of the detuning selected neutral atom
distributions. The resulting lifetimes depend not only on the detuning, but also
on the principle quantum number n. This is not surprising, since the starting
configurations used for the dynamics simulation depend on both, the detuning
and the principle quantum number n.
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Fig. 3.5: Results of the classical dynamics simulation using the polarization potential
(lines), as well as the l-changing collision time and the Rb+

2 formation time measured
by Schlagmüller et al. [S2] (triangles) for three different detunings from the addressed
nS Rydberg state. The cumulative collision probability as well as the corresponding fit
for each data point of the simulation is shown in section A.1.

However, to explain the observed l-changing collision, the coupling of the
Rydberg S-state to the butterfly state is essential [S2]. Therefore in the following
section, the electron-atom interaction of the Rydberg electron and the neutral
atoms is also taken into account.

3.3 Average potential approach

The observed l-changing collision [S2] as well as the specific spectral line
shape [S1] reveals the importance of the p-wave shape resonance for a Rydberg
excitation in a 87Rb Bose-Einstein condensate. In order to take into account
the p-wave contribution of the electron-atom scattering, in addition to the
interaction of the ionic Rydberg core with the neutral atoms, the interaction of
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the Rydberg electron with the neutral atoms inside the Rydberg orbit (perturber
atoms), is considered. However, for a proper classical dynamics simulation,
an average potential of the actual potential energy curve (PEC) is used. In
figure 3.2 the PEC and the corresponding average potential is depicted. The
introduction as well as the motivation of the used average potentials is given in
section 3.1. Basically, an average of the oscillatory shape of the PEC is applied
with the aim to avoid a non-physical trapping of the perturber atoms in the
potential wells. The purpose of this section is the presentation of the results of
the classical dynamics simulation for the average potential approach, as well
as the comparison with the results of the previous section and the measured
collision times [S2]. By using the average potential, it is expected that the
resulting lifetimes are reduced in comparison to the simulated collision times of
the polarization potential approach and to the experimentally observed collision
times. This is the case, as on the one hand the polarization potential is applied
in both cases and on the other hand the average potential approach is equivalent
to an instantaneous tunneling of the perturber atoms through the oscillatory
shape of the actual PEC towards the ionic Rydberg core. Consequently, the
simulated dynamics of the system is accelerated and thus the resulting lifetimes
of the simulation can be understood as a lower limit for a Rydberg atom in
the Bose-Einstein condensate. In general, the configurations of neutral atoms
inside the Rydberg orbit are determined by detuning and not by density (see
chapter 2). As the mean energy shift for a high density is increased due to
a large number of perturber atoms inside the Rydberg orbit, for a large red
detuning the probability is enhanced to excite a Rydberg atom in a region
of high density. Rarely, even for a small red detuning a configuration in the
high density region of the BEC can be addressed. Since, this configuration is
unlikely to occur, the probability to excite a Rydberg atom in a high density
region with a small red detuning is reduced. Thus, for a given detuning, the
Rydberg excitation is more probable in a specific density region of the BEC.
However, this specific region can be quite large. Especially for the system at
hand, for a detuning of δ & −6 MHz the addressed density region extends over
the complete illuminated area of the focused excitation laser in the BEC. For
a small red detuning the Rydberg excitation at the edge of the BEC is more
probable. However, the excitation in the center is increased due to the tightly
focused excitation laser. Thus, for a small red detuning δ→0, the probability
to excite in the focus and to excite in a low density region becomes equivalent
and as a result the density shell approach (see section 2.3.3) is no longer valid.
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In this case, different lifetimes of a Rydberg atom can occur simultaneously in
the system.
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Fig. 3.6: Collision probability and the resulting cumulative collision probability, ob-
tained from the classical dynamics simulation of 1000 different starting positions for a
detuning of δ = {−6, −48}MHz from the atomic resonance of the addressed 60S Ryd-
berg state. The cumulative collision probability is modeled with pcsum(t) = (1− e−t/τ )
in order to obtain the lifetime τ of the Rydberg atom excited in the BEC.

The collision probability for a detuning of δ = −6 MHz (60S Rydberg state),
depicted in figure 3.6, reflects that the dynamic of the system is dominated
by two lifetimes. The Rydberg atoms excited in the center of the BEC lead
to a fast time scale, whereas the Rydberg atoms close to the edge of the BEC
provide a slow time scale for the dynamics of the system. This is also reflected
by the fraction of the neutral atoms, which are subjected to a collision, starting
in the inner region (R < Rcrossing) of the averaged potential. In the case of
a Rydberg excitation with a low red detuning in a high density region, only
few neutral atoms in the inner region of the potential have to compensate the
large mean shift of the neutral atoms in the outer region of the potential. Thus,
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for these specific configurations the probability of neutral atoms close to the
avoided crossing in the inner potential is increased. For the dynamics simulation,
this results in an enhanced probability of colliding neutral atoms starting in
the upper branch of the potential due to the steep gradient in this region
(see figure 3.2 800 a0 < R < 1400 a0). A comparison of the fraction of inner
neutral atoms and outer neutral atoms for the collision probability is depicted
in figure 3.6, for a large red detuning (−48 MHz) and a small red detuning
(−6 MHz). As predicted, for the case of a small red detuning, the fraction of the
colliding neutral atoms, starting in the inner potential region, is increased in
comparison to a large red detuning. At this point, it should be noted, that the
step in the cumulative collision probability in figure 3.4 (polarization potential
approach) occurs due to the reduced probability of perturber atoms close to the
avoided crossing, whereas the step in figure 3.6 (average potential approach)
for δ = −6 MHz mainly results from addressing different density regions. As
is apparent from figure 3.6, the modeling with pcsum(t) = (1− e−t/τ ) of the
cumulative collision probability is insufficient for a small red detuning, since two
different time scales occur in the system. In general, for the examined principle
quantum numbers, no lifetimes are extracted for a detuning of δ & −10 MHz
due to the appearance of different time scales.

Figure 3.7 shows the resulting lifetimes of the polarization potential approach
(lines) of the previous section and the average potential approach (dashed
lines) of the current section, as well as the experimentally observed l-changing
collision times and the Rb+

2 formation times, observed by Schlagmüller et al. [S2]
for different principle quantum numbers. As predicted, the average potential
approach leads to a shorter lifetime in comparison to the polarization potential
approach and the experimentally observed formation and collision times. From
figure 3.7, it is apparent, that the polarization potential approach provide a
fairly good estimation. However, for this approach the electron-atom interaction
is neglected for the dynamics of the system, which in turn is essential to explain
the observed l-changing collision times [S2]. In general, the simulated nearest
neighbor distributions show an enhanced or reduced probability close to the
Rydberg core, depending on whether the crossing position is closer or further
away in comparison to the peak of the nearest neighbor distribution of the
corresponding constant density (see figure 3.2b). This results in an enhanced
or reduced lifetime of the simulated collisions for the polarization potential
approach, as the neutral atom, which is subject to the first collision, is equal to
the nearest neighbor.
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Fig. 3.7: Results of the classical dynamics simulation using the polarization potential
(lines) and the average potential approach (dashed lines), as well as the l-changing
collision time and the Rb+

2 formation time measured by Schlagmüller et al. [S2] (triangles)
for three different detunings from the addressed nS Rydberg state. The cumulative
collision probability as well as the corresponding fit for each data point of the simulation
is shown in section A.1.

Thus, the simulated lifetimes of the polarization potential approach in fig-
ure 3.7, show an enhanced lifetime for an increasing principle quantum number
for a small red detuning. For a large red detuning (δ = −48 MHz) the crossing
position is closer to the Rydberg core than the peak of the nearest neighbor
distribution for a constant density, which results in a faster collision for smaller
principle quantum numbers (n . 70). A comparison of the simulated lifetimes of
the polarization potential approach and the average potential approach, reveals
a strong influence of the avoided crossing of the butterfly state and the addressed

65



Chapter 3 Simulation of Rydberg dynamics in a Bose-Einstein condensate

Rydberg state on the dynamics of the simulated system. Especially, the latter
approach leads to lifetimes, which show the same trend as the experimentally
observed collision and formation times for principle quantum numbers n . 100
(see figure 3.7).

To conclude, the threshold behavior of the l-changing collision time indicates
the importance of a quantum mechanical treatment of the dynamics. In fact,
two main effects are not covered by this semi-classical approach of the dynamic
of the system, which can increase the collision time significantly and withal
depend on the principle quantum number. On the one hand, the finite tunneling
rate for the actual oscillatory shape of the potential energy curve slows down the
dynamics of the system in comparison to the assumption of an instantaneous
tunneling in the average potential approach. On the other hand, for a steep
potential, as it is the case close to the avoided crossing, quantum reflection
can arise due to the wave nature of the ultracold neutral atoms, leading to an
increased lifetime of a Rydberg atom in a Bose-Einstein condensate. Both effects
can be covered with a quantum dynamics simulation. However, for a system of
many neutral atoms coupled through a Rydberg atom, this can be extremely
complex and computationally intensive. The realization and discussion of such a
simulation is beyond the scope of this work, but a further investigation, using e.g.
a full wave packet simulation, can give a deeper understanding of the threshold
phenomena, which in turn could be important for future studies on the system
under consideration.
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4
Conclusion and Outlook

Within the framework of this master thesis, a microscopic model has been
developed to simulate the experimentally observed spectral line shapes of a single
Rydberg atom excited in a 87Rb Bose-Einstein condensate. The simulation
reveals a strong dependence on the calculated potential energy curves, in
particular, the PECs neglecting the p-wave contribution, describe the overall
line shape of the measured spectra, but by including the p-wave contribution
the resulting line shapes are improved significantly. The simulated spectra,
with and without the p-wave contribution, in comparison to the measured
spectra, gives evidence for the butterfly state coupling to the addressed Rydberg
state. Prior methods [8–12] were only able to predict the broadening and
an overall line shift for different principal quantum numbers. The presented
simulation method, based on the microscopic model, gives access to the full
spectral line shape and can be used to test predicted potential energy curves.
Furthermore, with the developed model, the influence of an increased beam waist
and a different focus position of the excitation lasers has been tested against
experimental results. The former one suggests an enlarged overlap of the spatial
excitation beam profile with the BEC, but the latter limits the beam waist
of the focused excitation laser to w0 = 2 - 3 µm, which is in good agreement
with the measured beam waist [36]. Moreover, the developed model gives the
perspective to predict either the density profile for a given spatial intensity
distribution of the excitation laser or by knowledge of the density profile, the
opportunity to review the beam waist and thus can be used as a theoretical
model for the density probe method presented by Cubel Liebisch et al. [S3].



Chapter 4 Conclusion and Outlook

In the second part of this master thesis, the dynamics of the presented system
has been reviewed using a semi-classical approach, which is expected to be
appropriate for the collision of the ionic Rydberg core and the surrounding
neutral atoms [13]. Regarding the experimentally observed reaction channels [S2],
it turns out that the collisional lifetime of a Rydberg atom, excited in an
ultracold and dense environment, is not only dominated by the ionic Rydberg
core-neutral atom interaction, but also is strongly affected by the scattering
induced interaction of the Rydberg electron and the surrounding atomic cloud.
The experimentally observed collisional lifetimes and the here presented results
of the dynamics simulation, indicates that a quantum mechanical treatment is
necessary in order to describe the measured threshold behavior of the collisional
lifetimes for larger principle quantum numbers (n & 100) [S2], which in turn
could be important for future studies. A promising application of the presented
system is an imaging technique, which can be used to image the Rydberg
electron wave function [23]. The scattering induced attractive interaction of the
Rydberg electron results in an atom flow into the scattering potential and thus
the wave function gets imprinted onto the atom distribution of the surrounding
atomic cloud. However, for this technique, a sufficiently long lifetime of the
Rydberg atom in the quantum gas is necessary for an observable impact and
thus the enhanced lifetime for larger principle quantum numbers [S2] is very
promising. Furthermore, the presented study of the dynamics can be seen as
a motivation for a theoretical work about quantum reflection, which has been
already observed for excited states of Rydberg molecules [16], and to not only
describe the static properties [4], but also the resulting dynamical properties of
this system, using a theoretical tool-set for many-body physics.
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A
Classical dynamics simulation

A.1 Curve fitting of collisional lifetimes

In this section the cumulative collision probability, which is obtained from the
classical dynamics simulation, using either the polarization potential approach or
the average potential approach, of 1000 different starting positions for a detuning
of δ = {−48, −24 − 12}MHz from the atomic resonance of the addressed nS
Rydberg state, are shown. The cumulative collision probability of each set
of trajectories is modeled with pcsum(t) = (1− e−t/τ ) in order to obtain the
lifetime τ of the Rydberg atom excited in the BEC. The results of the obtained
lifetimes are presented in section 3.2 (figure 3.5) and 3.3 (figure 3.7).
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Fig. A.1: Cumulative collision probability, obtained from the classical dynamics
simulation (polarization potential approach) of 1000 different starting positions for a
detuning of δ = −48 MHz from the atomic resonance of the addressed nS Rydberg
state. The cumulative collision probability is modeled with pcsum(t) = (1− e−t/τ ) in
order to obtain the lifetime τ of the Rydberg atom excited in the BEC.
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Fig. A.2: Cumulative collision probability, obtained from the classical dynamics
simulation (polarization potential approach) of 1000 different starting positions for a
detuning of δ = −24 MHz from the atomic resonance of the addressed nS Rydberg
state. The cumulative collision probability is modeled with pcsum(t) = (1− e−t/τ ) in
order to obtain the lifetime τ of the Rydberg atom excited in the BEC.
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Fig. A.3: Cumulative collision probability, obtained from the classical dynamics
simulation (polarization potential approach) of 1000 different starting positions for a
detuning of δ = −12 MHz from the atomic resonance of the addressed nS Rydberg
state. The cumulative collision probability is modeled with pcsum(t) = (1− e−t/τ ) in
order to obtain the lifetime τ of the Rydberg atom excited in the BEC.
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Fig. A.4: Cumulative collision probability, obtained from the classical dynamics
simulation (average potential approach) of 1000 different starting positions for a
detuning of δ = −48 MHz from the atomic resonance of the addressed nS Rydberg
state. The cumulative collision probability is modeled with pcsum(t) = (1− e−t/τ ) in
order to obtain the lifetime τ of the Rydberg atom excited in the BEC.
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Fig. A.5: Cumulative collision probability, obtained from the classical dynamics
simulation (average potential approach) of 1000 different starting positions for a
detuning of δ = −24 MHz from the atomic resonance of the addressed nS Rydberg
state. The cumulative collision probability is modeled with pcsum(t) = (1− e−t/τ ) in
order to obtain the lifetime τ of the Rydberg atom excited in the BEC.
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Fig. A.6: Cumulative collision probability, obtained from the classical dynamics
simulation (average potential approach) of 1000 different starting positions for a
detuning of δ = −12 MHz from the atomic resonance of the addressed nS Rydberg
state. The cumulative collision probability is modeled with pcsum(t) = (1− e−t/τ ) in
order to obtain the lifetime τ of the Rydberg atom excited in the BEC.
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