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Zusammenfassung

Inhalt dieser Arbeit ist die Verwendung dipolarer Streuung zur Entmagnetisierungsküh-
lung von ultrakalten Dysprosiumatomen, sowie die Erforschung von dipolarer und
universeller Streuung anhand zweier breiter Feshbachresonanzen in 164Dy. In Gasen
ultrakalter Dysprosiumatome kann dipolare Streuung aufgrund des hohen magnetischen
Moments beobachtet werden. Dieses hohe magnetische Moment hat zur Folge, dass
die langreichweitige magnetische Dipol-Dipol-Wechselwirkung stärker ist als die von
Alkaliatomen bekannte kurzreichweitige Kontaktwechselwirkung.

Bei der Entmagnetisierungskühlung handelt es sich um eine Kühlmethode, die, im
Gegensatz zur herkömmlichen Verdampfungskühlung, theoretisch verlustfrei ist. Hierbei
werden inelastische Stöße, die mit dipolaren Relaxationen verbunden sind, verwendet
um einen Teil der Bewegungsenergie der Atome in potentielle Energie eines in einem
externen Magnetfeld energetisch höheren Spinzustandes umzuwandeln. Durch optisches
Pumpen zurück in den vollständig spinpolarisierten und dunklen Grundzustand, kann
die entsprechende Energie mit dem Lichtfeld der Atomwolke entzogen werden [1–3].
In Chrom konnte so bereits eine Kühleffizienz von χCr > 17 erreicht werden [4]. Im
Rahmen dieser Arbeit wurde Entmagnetisierungskühlung von Dysprosiumatomen mit
einer Effizienz von χdemag = 7.95± 1.58 demonstriert. Diese Effizienz übersteigt die
für Verdampfungskühlung übliche Effizienz von χevap ≈ 4, ist jedoch von der selben
Größenordnung wie die Effizienz des von uns an dieser Stelle zusätzlich verwendeten
Nachkühlens (χ626 ≈ 6.5 [5]).

In Dysprosium führt die langreichweitige anisotrope magnetische Dipol-Dipol-Wechsel-
wirkung und die ebenfalls anisotrope Kontaktwechselwirkung zu einem chaotischen
Hintergrund schmaler Feshbachresonanzen [6]. Trotzdem konnten wir zwei gebun-
dene Zustände, die mit breiten Feshbachresonanzen einhergehen, beobachten. Diese
Zustände bestehen über die Kreuzung mit vielen schwachen Zuständen hinweg und
sind vom chaotischen Hintergrund entkoppelt. Wir konnten mithilfe von Atomverlust-
spektroskopie, Magnetfeldmodulationsspektroskopie und der Analyse unserer Daten
mit gekoppelten Kanal-Berechnungen (engl. coupled channel calculations) und den
universellen Formeln die Streulänge als Funktion des Magnetfelds und eine Hinter-
grundstreulänge gewinnen. Wir fanden Anhaltspunkte, dass die Atomverluste in der
Nähe der Resonanzen mit der universellen Verlustdynamik vereinbar sind. Durch
den Vergleich unserer Daten mit der universellen Verlustdynamik konnten wir so die
Fallentiefe abschätzen. Außerdem konnten wir anhand der Temperaturabhängigkeit
der Dreikörperverluste im unitären Regime den Elastizitätsparameter ermitteln.
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CHAPTER 1
Introduction

In 1982 Feynman proposed the simulation of physics by universal computers [7]. Within
the last years, it could be demonstrated that many-body quantum systems, which are
usually used to describe condensed matter physics, may be simulated by ultracold
atomic gases [8, 9]. Compared to condensed matter, ultracold atomic samples offer an
exceptional possibility to control with high precision both, the external parameters,
such as the trapping potential, and the internal degrees of freedom, like the contact
interaction [10].

Laser cooling and trapping laid the groundwork for the study of quantum behaviour
of dilute atomic vapours at very low temperatures and was awarded in 1997 with the
Nobel Prize in Physics [11–13]. By combining laser cooling and evaporative cooling
methods, quantum degeneracy could be reached in 1995 [14–16]. Since then quantum
gases of alkali atoms with isotropic short-range contact interaction have been studied
extensively [8].

Recently, laser cooling and trapping of more exotic atomic species such as thulium [17]
and holmium [18] have been reported. In erbium and dysprosium even Bose-Einstein
condensation [19, 20] and Fermi degeneracy [21, 22] could be observed.
The complex electronic structure of those species gives rise to enriched interatomic

interactions. First, the magnetic dipole-dipole interaction adds an anisotropic long-
range interaction and furthermore, the short-range interaction becomes anisotropic.
Due to the multiplicity of interactions, even molecular potentials are hard to compute
and calculations generally attain a very high intricacy.
The wealth of interactions combined with the restrictions for calculations opens

the door to the observation of a bunch of interesting phenomena. For instance, in
the presence of anisotropic interactions the Fermi surface is no longer spherical. This
deformation of the Fermi surface due to the magnetic dipole-dipole interaction could
be observed in erbium [23]. Moreover, identical fermions do not collide at very low
temperatures. This hampers evaporative cooling in Fermi gases. However, Fermi
degeneracy could be reached in a dipolar gas due to universal dipolar scattering [ 21].
Besides, the observation of discrete, stable, and self-ordered droplets in a quantum
ferrofluid in close analogy to the Rosensweig instability [24], could not be predicted by
mean field calculations [25, 26] and poses a new riddle for theoreticians. Conceivably,
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2 1 Introduction

stabilizing quantum fluctuations leading to beyond mean-field effects [27] could be
the solution to the puzzle. In addition, erbium and dysprosium show an extremely
dense spectrum of narrow Feshbach resonances, which is characterized by a chaotic
distribution [28, 29].
This raises the question whether precise control of interactions is also possible in

a lanthanide such as dysprosium and the verification of simple universal expressions
becomes essential.

About this thesis
In chapter 2 we will have an insight into the intriguing properties of dysprosium.
We use dipolar scattering for demagnetization cooling and address this topic in

chapter 3. Here, we will at first concentrate on the magnetic dipole-dipole interaction
and subsequent dipolar relaxations which are the prerequisit for demagnetization
cooling. In the following, we will direct the attention to actual demagnetization cooling
excluding heating mechanisms due to optical pumping in section 3.3 and in the following
section 3.4, including the resulting experimental restrictions. In section 3.5, we will
discuss the experimental realization including the experimental setup and the analysis
of demagnetization cooling of ultracold dysprosium atoms.
In chapter 4, we show that two broad magnetic Feshbach resonances persist across

multiple narrow resonances. At first, we will concentrate on the common description
of magnetic Feshbach resonances. Second, we will address universal loss dynamics and
present rate equations for atom number and temperature. In section 4.3, we present
the characterization of the two broad Feshbach resonances by atom loss spectroscopy
and magnetic field modulation spectroscopy. Subsequently, we see that the universal
expressions are in good agreement with corresponding coupled-channel calculations
and the data. In the following, we use this knowledge in order to analyse the two broad
resonances in terms of universal loss dynamics in section 4.4.



CHAPTER 2
Properties of dysprosium

Dysprosium is a lanthanide with atomic number 66. Naturally occurring dysprosium is
composed of 7 stable isotopes. The by nature most abundant stable bosonic isotopes
are 164Dy (28%) and 162Dy (26%) and the naturally most abundant fermionic isotopes
are 163Dy (25%) and 161Dy (19%) [30]. Dysprosium in its groundstate 5I8 has the
electronic configuration [Xe] 4f10 6s2, which means that four open f -states lie beneath
a filled 6s-shell. This gives rise to an angular momentum L = 6 and a spin S = 2 and
thus a total angular momentum J = 8.
In figure 2.1 a part of the energy level scheme of dysprosium is shown. It contains

the 684 nm optical pumping transition, which was used in this thesis for continu-
ous demagnetization cooling. Further, the transitions used for Zeeman slowing and
transverse cooling of the atomic dysprosium beam (421 nm) [35] and atom trap-
ping in a magneto optical trap (626 nm) are displayed. The 421 nm transition has
a linewidth of Γ421/2π = 32.2MHz [36], which leads to a Doppler temperature of
TD,421 = ~Γ/2kB = 773 µK [32]. Here, ~ is the reduced Planck constant and kB the
Boltzmann constant. The 626nm transition is closed and due to its narrow linewidth
of Γ626/2π = 136 kHz, the Doppler temperature is TD,626 = 3.3 µK [32]. The 684 nm
optical pumping transition is a transition from the ground state [Xe] 4f10 6s2 5I8 to a
4f9(6H0)5d 6s2 5I8 excited state, where one of the ten 4f electrons is excited to a 5d
electron state. The linewidth of the 684 nm transition Γ684/2π = 95 kHz leads to a
Doppler temperature of TD,684 = 2.3 µK.
In contrast to the bosonic isotopes, the fermionic isotopes additionally have a finite

nuclear spin I = 5/2. Therefore, they exhibit a hyperfine splitting with quantum
numbers ranging from F = 11/2 to F = 21/2 due to the coupling to the total angular
momentum J [37].

Besides, the total angular momentum J = 8 of dysprosium in its groundstate together
with the Landé-factor of gJ = 1.24125 lead to a magnetic moment of µ = 9.93µB.
Therefore, dysprosium has (besides Terbium) the highest magnetic moment of all stable
elements naturally abundant on earth. From this high magnetic moment arises one
key property of dysprosium concerning the interatomic interaction in a dilute gas.
In comparison to alkali atoms, which have only one unpaired electron, the magnetic
dipole-dipole interaction is 100 times stronger.
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4 2 Properties of dysprosium

Figure 2.1: Part of the level scheme of Dysprosium [31]. The 421 nm transition is
used for Zeeman slowing and the 626 nm transition is used for magneto-optical trapping
[32], whereas the 684 nm transition is used for optical pumping. The 953 nm transition
could operate like a decay channel for the optical pumping transition, but is very narrow
[33, 34]. The gray line indicates the wavelength of 1064 nm which we use for optical
trapping.

Apart from this long-range dipole-dipole interaction, the high total atomic angular
momentum J = 8 leads to a multitude of non-degenerate molecular potentials and
a correspondingly large manifold of collision channels. Furthermore, the complex
electronic structure leads to an anisotropic van der Waals interaction. Due to the
anisotropy of the molecular potentials, collision channels with large relative angular
momentum l are coupled even for ultracold collisions with an initial s-wave channel
(l = 0) [29]. The corresponding spectrum of Feshbach resonances is presented in chapter
4 and [6].



CHAPTER 3
Demagnetization cooling

In this chapter, I will present the theoretical principle of and a first experimental
approach to demagnetization cooling of ultracold dysprosium atoms. At first, I will give
a short introduction on the magnetic dipole-dipole interaction, which is essential for
demagnetization cooling, as it is the prerequisite for dipolar relaxation collisions. In the
following, I will explain the most important theoretical aspects of dipolar relaxation and
optical pumping to give a first understanding of the nature of demagnetization cooling.
Subsequently, I will briefly review the derivation of dipolar relaxation cross-sections
[38, 39] and the resulting relaxation rate coefficients. Further, I will focus on the cooling
rate. Next, I will explain optical pumping, which includes experimental restrictions.
In order to understand the nature of light-assisted losses, we will consider molecular
potentials and extend the typical isolated atom optical pumping picture to atom-atom
interactions. Further, I will explain a mechanism to suppress light assisted collisions.
In the following, I will present our experimental realization. Therefore, I will briefly
explain how we prepare the atomic cloud and will focus on the laser system we use for
optical pumping. Finally, I will analyse the performance of demagnetization cooling
and show how we optimized it in this first dysprosium prove of principle experiment.
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6 3 Demagnetization cooling

3.1 Magnetic dipole-dipole interaction
In chapter 2, we have seen that dysprosium has a very high magnetic moment. Therefore,
the magnetic dipole-dipole interaction is important in scattering processes of dysprosium
atoms (see subsec. 3.4.1).
The interaction potential Udd of two magnetic dipoles with magnetic moments µ1

and µ2 is given by

Udd(r) = µ0

4π
µ1 · µ2 − 3 (µ1 · r̂)(µ2 · r̂)

r3 , (3.1)

where µ0 = 4π 10−7 N/A2 is the vacuum permeability, r is the interatomic separation
vector, r is the distance, and r̂ = r

r
is the normalized separation vector. When the two

dipoles have the same strength |µ1| = |µ2| = µ and are aligned parallel to each other
µ1||µ2 (see fig. 3.1) in an external magnetic field, the interaction potential simplifies
as follows

Udd(r) = µ0 µ
2

4π
1− 3 cos θ

r3 . (3.2)

Here θ = ](µi, r) is the angle between the interatomic separation vector and the
orientation of the two dipoles (see fig. 3.1). The dependence on this relative angle θ

r

q

0°

B
r

q

a) b)

90°

Figure 3.1: a) Sketch of two magnetic dipoles, which are polarized by a magnetic field
B and separated by a distance r. The angle between the interatomic separation vector
and the orientation of the polarized dipoles is called θ. b) Dipole-dipole interaction
potential. Yellow represent a positive sign and repulsive interaction and blue a negative
sign and attractive interaction. The anisotropic interaction potential depends on the
relative angle θ. In head-to-tail configuration it is attractive and if the atoms are oriented
parallel to each other it is repulsive. Besides, the interaction is proportional to r−3.
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shows that the potential is anisotropic. If the two dipoles are oriented in head-to tail
configuration (θ = 0◦), they attract each other and the interaction potential is negative.
If they are oriented parallel to each other (θ = 90◦), they repel each other and the
interaction potential is positive. Moreover, the interaction potential is proportional to
r−3. Potentials which scale with r−m, m ≤ 3 cannot be approxiamted by a contact-like
pseudo interaction potential (see subsec. 3.4.1) [40]. Atoms colliding in such a potential
are no longer reflected by the centrifugal barrier and thus all partial waves l ≥ 0
contribute even at zero temperature [41]. The dipole-dipole interaction potential is
thus a long-range potential.
Collisions due to dipolar interactions are characterized by the dipolar length [40]

D ≡ µ0 µ
2m

8π ~2
Dy= 196 a0 , (3.3)

which in turn characterizes the magnetic dipole-dipole interaction strength.
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3.2 Dipolar relaxations
Despite the fact that ultracold gases are very dilute, collisions are very important in
understanding them. The most prominent example is that collisions ensure thermal-
ization in trapped atomic gases, which is essential for evaporative cooling. The high
magnetic moment of dysprosium (see chapter 2 and subsec. 3.4.1) gives rise to enriched
collisional physics, as for example dipolar relaxation collisions, which are an integral
part of demagnetization cooling. Literature on collision physics is abundant [41–44]
and goes beyond the scope of this Master’s thesis. Here, I will show the connection
between dipole-dipole interaction and inelastic relaxation collisions and briefly review
the derivation of dipolar relaxation cross-sections [38, 39].
Due to the high magnetic moment of dysprosium, the atoms experience magnetic

dipole-dipole interactions. In eq. 3.1 the classical description of the interaction of two
magnetic dipoles is given. The corresponding quantum mechanical description of the
magnetic dipole-dipole interaction is obtained, if the classical magnetic moments µi in
eq. 3.1 are substituted by the quantum mechanical magnetic dipole moment operators
µ̂i = gJ µB J i

Ûdd(r) = µ0 (gJ µB)2 (J1 · J2)− 3 (J1 · r̂)(J2 · r̂)
4 π r3 , (3.4)

where, gJ is the Landé-factor, µB the Bohr magneton and J i = (Ji x,Ji y,Ji z) is the
operator of total angular momentum of the two magnetic dipoles which consists of
the spin matrices Ji x, Ji y and Ji z. By defining normalized directions and introducing
creation and annihilation operators for orbital and total angular momentum as well as
their projection on the magnetic field axis z,

r̂+ = x+ iy

r
, r̂− = x− iy

r
, ẑ = z

r
, (3.5)

J+ = Jx + iJy , J− = Jx − iJy , Jz , (3.6)

the dipole-dipole interaction (3.4) can be expanded to

Ûdd = µ0 (gJ µB)2

4 π r3 [J1z · J2z + 1
2 (J1+ · J2− + J1− · J2+)

− 3
4 (2 ẑ J1z + r̂− J1+ + r̂+ J1−)(2 ẑ J2z + r̂− J2+ + r̂+ J2−)] .

(3.7)

The first term is an elastic scattering term, the second term describes spin-exchange
collisions and the third term involves the conversion of orbital angular momentum into
spin angular momentum and vice versa, so called dipolar relaxation collisions.

In first-order Born approximation [45] the total cross-section for two identical colliding



3.2 Dipolar relaxations 9

bosonic (fermionic) atoms in the same internal state can be expressed as [38, 39, 46]

σ =
(

m

4π~2

)2 1
ki kf

[
∫
|Ũdd(k − k′)|2 δ(|k′| − kf)dk′

±
∫

Re
(
Ũdd(k − k′) Ũ∗dd(k + k′)

)
δ(|k′| − kf)dk′] .

(3.8)

Here, Ũdd(q) = 〈M ′
1,M

′
2| F(Ûdd) |M1,M2〉 is the Fourier transform of the dipole-dipole

interaction (3.4) that has already been contracted between the initial |M1,M2〉 and
final internal states |M ′

1,M
′
2〉 1 , k and k′ are the initial and final wavevectors and ki

and kf are the absolute values of the initial and final wave vectors.
The cross-section σ (3.8) averaged over all possible orientations of k reads in the

case of elastic relaxations [38, 39, 46]

σ0 = π

45

(
µ0(gJµB)2m

4π~2

)2

[C2
S · JS0 (M1,M2,M

′
1,M

′
2) (1 + h(1))

+ C2
A · JA0 (M1,M2,M

′
1,M

′
2) (1− h(1))]

(3.9)

and in the case of inelastic relaxations with ∆M = ∑
iM

′
i −Mi spin-flips

σ∆M =2π
15

(
µ0(gJµB)2m

4π~2

)2

[C2
S · JS∆M(M1,M2,M

′
1,M

′
2) (1 + h(kf/ki))

+ C2
A · JA∆M(M1,M2,M

′
1,M

′
2) (1− h(kf/ki))]

kf

ki
.

(3.10)

Here CS = 1√
2−δM1,M2

and CA = 1 − δM1,M2√
2 are the normalization coefficients of the

symmetric (antisymmetric) part of the total wave function of two bosonic atoms
[46], JS(A)

∆M (M1,M2,M
′
1,M

′
2) describes the transition probabilities between two properly

symmetrized (anti-symmetrized) two-particle spin states which change their magnetic

1 If an internal (spin) state of atom i = 1,2 is denoted by |M,J〉i, the symmetric internal states of
the atoms are defined as follows:
|M1,M2〉S = 1√

2 (|M1,J〉1 |M2,J〉2 + |M2,J〉1 |M1,J〉2)
The antisymmetric internal states are defined in close analogy:
|M1,M2〉A = 1√

2 (|M1,J〉1 |M2,J〉2 − |M2,J〉1 |M1,J〉2)
Here Mi is the projection of J on the quantization axis.
Having this in mind, the initial total wave function of two bosonic atoms including not only the
internal but also the spatial part reads
|ψ〉in =

√
2
V (CS cos (kr) |M1;M2〉S + CA sin (kr) |M1;M2〉A)

Here CS = 1√
2−δM1,M2

and CA = 1− δM1,M2√
2 are the normalization coefficients.
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quantum numbers fromM1 andM2 toM ′
1 andM ′

2
1 , ∆M = ∑

iM
′
i−Mi is the number

of spin-flips in one collision, and h(x) is defined as

h(x) =
−

1
2 if x = 1
−1

2 −
3
8

(1−x2)2

x(1+x2) ln (1−x)2

(1+x)2 if x > 1 .
(3.11)

To the alert eye it will become apparent that the scattering cross-section σ of dipo-
lar relaxations depends on the magnetic quantum numbers before M1, M2 and af-
ter the collision M ′

1, M ′
2 and thus a lot of different collision channels arise. How-

ever, in experiments we use optical pumping to ensure that the atoms are always
fully spin-polarized M1 = M2 = −J and thus the population of other states be-
comes negligible. This reduces the number of collision channels dramatically. The
dipole-dipole interaction can mediate direct spin-flips with maximal ∆M = 2. Here
we will therefore first focus on spin-flips from the fully spin polarized state to the
|M ′

1 = −J + 1, M ′
2 = −J〉 = |M ′

1 = −J, M ′
2 = −J + 1〉 and |−J + 1, − J + 1〉 states.

For a fully polarized initial state with magnetic quantum numbers M1 = M2 = ±J the
elastic scattering cross-section reduces to

σ0 = 16π
45 J4

(
µ0(gJµB)2m

4π~2

)2

(1 + h(1)) = 64π
45 D2 (1 + h(1)) (3.12)

and the inelastic scattering cross-section to states with ∆M = 1 becomes

σ1 = 8π
15 J

3
(
µ0(gJµB)2m

4π~2

)2

(1 + h(kf/ki))
kf

ki
(3.13)

and to states with ∆M = 2 respectively

σ2 = 8π
15 J

2
(
µ0(gJµB)2m

4π~2

)2

(1 + h(kf/ki))
kf

ki
(3.14)

If the sample is fully polarized in the M1 = M2 = −J state, the above mentioned
inelastic scattering cross-sections will lead to a cooling of the motional degree of freedom
(see fig. 3.2). Though not that probable, because of constant repumping of the atoms
back to the fully spin polarized state, also a heating due to dipolar relaxations from
energetically higher, e.g M1,M2 = −J + 1 states, back to the fully spin polarized
state is possible. In the case of a single spin-flip (∆M = −1) from |−J,− J + 1〉 to

1 The transition probabilities JS(A)
∆M for elastic (∆M = 0), single spin-flip (∆M = ±1) and double

spin-flip (∆M = ±2) transitions read [38, 46]:
J
S(A)
0 (M1,M2,M

′
1,M

′
2) = |S(A) 〈M ′1,M ′2| (4 J1zJ2z + J1+J2− + J1−J2+) |M1,M2〉S(A) |2

J
S(A)
±1 (M1,M2,M

′
1,M

′
2) = |S(A) 〈M ′1,M ′2| (J1,±J2z + J1zJ2±) |M1,M2〉S(A) |2

J
S(A)
±2 (M1,M2,M

′
1,M

′
2) = |S(A) 〈M ′1,M ′2| (J1±J2±) |M1,M2〉S(A) |2
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M  = –J          M            = –J + 1

DE ~ kBTZ

E

Figure 3.2: Spin-flips from the fully spin-polarized state to the neighbouring one lead
to a cooling of the motional degree of freedom, as in inelastic dipolar relaxation collisions
the Zeeman energy ∆EZ per spin-flip is transferred from the kinetic energy to the spin
energy reservoir. Image taken from [3].

|−J,− J〉 the corresponding scattering cross-section is

σ−1 = 4π
15 J

3
(
µ0(gJµB)2m

4π~2

)2

(1 + h(kf/ki))
kf

ki
(3.15)

It is reduced by a factor 1
2 compared to σ1 due to the different normalization factor

CS. This represents the fact that the initial state is not a fully spin-polarized state,
which means that there exist for one initial state no longer two relaxation possibilites
(here: |−J,− J〉 to |−J,− J + 1〉 and |−J + 1,− J〉) but only one possibility (here:
|−J,− J + 1〉 to |−J,− J〉 or |−J + 1,− J〉 to |−J,− J〉).
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3.3 Demagnetization cooling and optical pumping
In the previous section 3.2 dipolar relaxations, which couple motional and spin degree
of freedom, have been considered. During such relaxations, the sum of the quantum
numbers M1 and M2 of two colliding atoms is not conserved and the demagnetization
of the sample is allowed. If the particles are initially fully spin-polarized in the Zeeman
state M = −J , a part of the kinetic energy of the sample is transferred into Zeeman
energy during demagnetization. This involves a net cooling effect [3].

M  = –J           M  = –J + 1 M  = –J          M            = –J + 1 M  = –J                    M  = –J + 1

DE >> kBT

DE ~ kBT

E

E

s

a) c)

–

E
b)

Figure 3.3: Illustration of demagnetization cooling [3]. a) Initially, the atoms are fully
spin polarized in M = −J at a high magnetic field B. The Zeeman energy separation
∆E = gJµBB is much higher than the mean energy of the system kBT . b) When the
magnetic field is decreased such that kBT ≈ gJµBB, higher Zeeman sublevels become
energetically accessible and dipolar relaxations lead to a demagnetization of the system.
c) Optical pumping offers the possibility to polarize the atoms back to M = −J . This
cooling cycle may then be repeated several times.

In figure 3.3 demagnetization cooling is illustrated. Initially the particles are fully
spin-polarized in the Zeeman state M = −J at high magnetic field B. In this regime,
the mean energy kB T is well below the Zeeman energy separation ∆E = gJ µB B.
Reducing the external magnetic field until kB T ≈ gJ µB B, higher Zeeman-substates
become energetically accessible. Hence, dipolar relaxations lead to a demagnetization
of the system. During demagnetization a part of the energy of the sample is transferred
into Zeeman energy, which involves a heating of the spin energy reservoir and a cooling
of the kinetic energy reservoir. The big advantage of cooling an atomic cloud compared
to cooling solid state systems by demagnetization cooling, is the possibility to make
use of the transparency of an atomic cloud, which allows to cool not only the motional
degree of freedom, but also the spin degree of freedom by optical pumping into a
dark state. Therefore, the cooling cycle can be repeated several times 1. In fact, it is
possible to use optical pumping to polarize the atoms back to the fully spin-polarized

1 However, the cooling mechanism is much more efficient in a single circle in solid state systems
than in atomic physics. [3, 38, 47]
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Zeeman state M = −J , leaving the temperature nearly unchanged. This offers the
possibility to constantly recycle the atoms that were thermally excited to higher spin
states. Consequently the system does not reach thermal equilibrium in which back
and forth relaxations cancel out and hence cooling is possible over a wide temperature
range. This cooling scheme has been proposed in 1950 by A. Kastler [1].

In the following subsections 3.3.1 to 3.3.2 the dipolar relaxation rate and the cooling
effect of demagnetization are discussed assuming optical pumping which leaves the
temperature and the atom number unchanged.

3.3.1 Relaxation rate coefficients
The time-scale on which dipolar relaxation collisions happen is given by the dipolar
relaxation rate Γ = β n with atomic density n. In this subsection we will therefore
focus on the relaxation rate coefficient β.
The dipolar relaxation cross-sections which have been discussed in section 3.2 still

contain the relation kf/ki of the initial and final wave vectors. If we apply a magnetic
field B, the 2J + 1 substates of the atoms are no longer degenerate, but split by the
Zeeman energy. The energy difference between two neighboured Zeeman substates is

∆E = gJµBB . (3.16)

The energy difference between the final and initial states Ef, i is given by ∆Ez =
Ef − Ei = ∆E ·∆M . The final wavevector then reads

kf =
√
k2

i −m∆Ez/~2 . (3.17)

In order to obtain the relaxation rate coefficients the above mentioned scattering
cross-sections have to be averaged thermally.

If ∆M > 0 and the magnetic fields are finite, only atoms with a minimal initial energy
corresponding to a velocity v∆M,min =

√
4∆Ez/m =

√
4∆M gJµBB/m have enough

energy to reach the energetically higher Zeeman substate and thus can participate
in dipolar relaxations. Therefore, the relaxation rate coefficient that describes the
transition of atoms from M = −J to M ′ = −J + 1 reads

β+
dr = 〈(σ1 + 2σ2) vrel〉thermal =

∞∫
v1, min

σ1 v fv dv + 2
∞∫

v2, min

σ2 v fv dv , (3.18)

where vrel is the initial relative collision velocity and the Boltzmann distribution

fv = 4π
(

µred

2πkBT

) 3
2
v2 exp −µredv

2

2kBT
(3.19)

weights the initial relative collision velocities in the integral with their probability
to occur. The initial absolute wavevector ki reduces with the relative momentum
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prel = ~ krel = µred vrel and the reduced mass µred = m
2 to ki = mv

2~ . The factor of 2
in the case of double spin-flips accounts for the double loss of atoms with M = −J
compared to a single spin-flip.
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Figure 3.4: Dipolar relaxation rate coefficient of a) 164Dy and b) 52Cr dependent on
temperature and for different magnetic field values. B = 400mG and B = 200mG are
typical magnetic field values used in the experiment. β+

dr accounts for single and double
spin-flips from the fully spin-polarized to the adjacent energetically higher Zeeman-states.
β−dr accounts for single spin-flips to the fully spin-polarized state. The dipolar relaxation
rates of Dysprosium are enhanced by approximately one order of magnitude compared
to Chromium due to the higher mass and magnetic dipole moment of Dysprosium.

Clearly, the dipolar relaxation rate constant βdr depends on temperature as well as
on the magnetic field. In figure 3.4 it is shown a) for Dysprosium and b) for Chromium
for different magnetic fields in a temperature range from 0 to 50 µK. The higher mass
and magnetic moment of Dysprosium enhance its dipolar relaxation constant by about
one order of magnitude.
The dipolar relaxation rate constant β+

dr which promotes the atoms to energetically
higher spin states and thus cools the motional degree of freedom is suppressed when
lowering the temperature, since lowering the temperature lowers the velocity of the
atoms and hence the frequency of scattering events. The higher the magnetic field, the
earlier it is suppressed, as the Zeeman energy increases with the magnetic field and
thus less atoms have enough energy to be promoted to M = −J + 1 states. Therefore
a reduction of the magnetic field with decreasing temperature seems to be reasonable.
However, a reduction of the magnetic field results in a reduction of the Zeeman energy
and therefore in a reduction of the cooling effect per scattered atom. Consequently,
a theoretical and experimental investigation on optimal magnetic fields for certain
temperatures is necessary. A first step in order to investigate it theoretically, is to
evaluate the cooling rate, which includes not only the dipolar relaxation rate constant,
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but also the Zeeman energy, the shape of the trap and the density of atoms in the
state M = −J . This will be done in the next subsection 3.3.2 .
The reverse process of dipolar relaxations to energetically lower states leads to a

heating of the motional degree of freedom and corresponds to the dipolar relaxation rate
constant β−dr, which is also displayed in figure 3.4 (dashed line). In order to calculate
it, only single spin-flips with ∆M = −1 have been taken into account. Furthermore,
the integral for thermal averaging takes all velocities from 0 to ∞ into account, since
spin-flips to energetically lower states are allowed for all initial kinetic energies.

3.3.2 Cooling rate
Considering the relaxation rate coefficients, the two-body rate equations describing the
change of population in the different Zeeman substates due to dipolar relaxation can
be expressed as the following coupled differential equations [46]

dn−J
dt = −β+

dr n
2
−J + β−dr n−J n−J+1 (3.20)

dn−J+1

dt = +β+
dr n

2
−J − β−dr n−J n−J+1 , (3.21)

where nM = NM

V
denotes the number density of atoms in the Zeeman substateM . As

expected β+
dr is a source for atoms in the M = −J + 1 = −7 state, but constant optical

repumping of the atoms back into the fully spin polarized state withM = −J results
in number densities of fully spin-polarized atoms n−J that are much higher than the
number densities of atoms in the M = −J + 1 state n−J+1. Taking optical pumping
into account and assuming that the optical pumping rate Γop � β−drn−J+1, in these
rate equations 3.20 and 3.21 the term β+

dr n
2
−J stays bigger than the term β−dr n−J n−J+1

even if eventually β+
dr < β−dr. Therefore, the β−dr term can be neglected in order to

calculate the spin-flip rate due to dipolar relaxations:

Ṅ
∣∣∣
dr

= β+
dr n

2
−J V . (3.22)

For each ∆M = 1 relaxation the corresponding Zeeman energy is transferred from the
external to the internal degree of freedom. Consequently, the energy of the external
degree of freedom changes as following

Ė = −EZ Ṅ
∣∣∣
dr
. (3.23)

In order to calculate the cooling effect on a cloud of trapped atoms, the energy of the
gas in the trap is needed. A general trap potential which describes most traps is of the
form U(x,y,z) = a1 x

n1 + a2 y
n2 + a3 z

n3 . With α = Σi
1
ni
, the energy of the trapped

gas results in E =
(

3
2 + α

)
N kBT [38]. Neglecting atom loss (Ṅ = 0), the temporal
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evolution of the temperature arises [46]

dT
dt = Ė(

3
2 + α

)
N kB

= −EZ β
+
dr n

2
−J V(

3
2 + α

)
N kB

, (3.24)

where the number density in the trap is a space-dependent Gaussian distribution
n(r) = n0 exp

(
−U(r)
kBT

)
and the trap volume V is temperature dependent [38]. In order

to simplify calculations, the mean density

n̄ =
∫
n2(r)d3r∫
n(r)d3r

= 2−α n0 (3.25)

and the mean trapping volume

V̄ = N

n̄
= 2α V (3.26)

are used for further calculations. Here n0 = N
V

denotes the peak density.
Considering a harmonic trap (α = 3/2) and the constant repumping of the atoms

from M = −7 to M = −8, which results in N−J/N ≈ 1 and n̄2
−J V̄ ≈ n̄−J N−J ,

equation 3.24 reduces to

dT
dt = −EZ β

+
dr n̄−J

3 kB
. (3.27)

In figure 3.5 the cooling rate dT
dt divided by the mean density n̄−J is displayed

for different magnetic fields in a temperature range from 0 to 50 µK. As the density
n = N/V depends on temperature as well as the volume V of the cloud, the cooling rate
divided by the mean density n̄−J has been calculated here. This way the temperature
dependency of the density has not to be included in the calculation, but still the
calculation can be compared with experimental data. Obviously, there is no cooling
effect for a magnetic field close to zero (e.g. B = 1 µG), as no Zeeman energy
can be transferred from one energy reservoir to the other. In agreement with the
dipolar relaxation rate, the cooling effect is suppressed when lowering the temperature.
Furthermore, the higher the magnetic field, the higher the temperature at which the
cooling is already suppressed. Besides, the higher the magnetic field, the higher the
absolute value of the cooling rate can grow due to the Zeeman energy. However, the
temperature must be high enough in order to ensure that the cooling rate is still not
suppressed. Consequently, the magnetic field value at which demagnetization cooling
performs best changes with temperature.
In figure 3.6 the optimal magnetic field and the corresponding cooling rate divided

by the density n̄−J over temperature are shown. Both curves have been calculated
numerically comparing the value of 1

n̄−J

dT
dt for different magnetic fields. Interestingly,

the optimal magnetic field Bopt seems to increase linearly with temperature T by
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Figure 3.5: The cooling rate dT
dt divided by the mean density n̄−J of fully spin-polarized

atoms for different magnetic fields in a temperature range from 0 to 50 µK. A typical
experimental mean density is around n̄ = 5 · 1017 m−3, thus a theoretical optimal cooling
rate ranges from 0 to 40 µK

s depending on temperature. Moreover, it depends linearly on
the density of the cloud. Therefore, a higher density can also improve the cooling rate as
long as three-body losses are negligible.

approximately 18 mG
µK .

Experimentally, we can realize minimal magnetic fields of around 20mG. The cooling
rate is theoretically optimal for this magnetic field value at a temperature of T = 1.1̄ µK,
but already quite small with 0.03 · 10−17 m3

µK
s
· 1018 1

m3 = 0.3 µK
s

at a density of around
1018 1

m3 .
Atoms which are trapped in harmonic potentials undergo the phase transition to a

Bose-Einstein condensate (BEC) at a critical temperature Tc which is characterized by
[48]

kBTc ≈ 0.94 ~ω̄N1/3
tot (3.28)

Our maximal mean trapping frequency is ω̄ = 2π (132 ·783 ·905)1/3 Hz = 2π ·454Hz (in
the crossed optical trap, see sec. 3.5.1) and total initial atom numbers of Ntot = 0.5 ·106

are realistic in this trap. Therefore, at least a temperature of Tc = 1.6 µK should be
reached in order to observe the phase transition to a BEC.
In figure 3.7 the optimal temperature evolution for an optimal magnetic field value

is displayed for a realistic initial temperature of T0 = 27 µK and a constant mean
density of n̄ = 1018 m−3. The critical temperature is also shown as an orange line.
Under these conditions, the time it takes to reach quantum degeneracy can hence be
estimated to tBEC ≥ 4.8 s. However, this model is very simplified and neglects any
heating mechansim. In the following section we will therefore address this kind of
limitations.
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Figure 3.7: a) Temperature evolution (blue line) for b) optimal magnetic field values
and an initial temperature of T0 = 27 µK neglecting heating effects and assuming perfect
optical repumping to the fully spin-polarized state. Furthermore, a comparison with
Tc = 1.6 µK (orange line), reveals a time of tBEC ≥ 4.8 s to reach the phase transition to
a BEC.
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3.4 Optical pumping: experimental restrictions
In the previous section 3.2 demagnetization cooling has been discussed assuming optical
pumping which leaves the temperature and the atom number unchanged. However,
every absorbed photon causes a kick to the atoms with a total angular momentum
~kA, where kA = 2π/λA, due to the spontaneous emission of a single photon with
wavelength λA. Therefore, in every cooling cycle the atoms gain at least the respective
recoil energy.

In this section, I will briefly introduce molecular potentials and the contact interaction
before discussing optical pumping at low densities and the corresponding optical
pumping rate Γop. This rate ensures the possibility to constantly recycle the atoms
that were thermally excited to higher spin states and is also proportional to the loss
rate due to single atom recoil. Further, I will address additional heating and loss
mechanisms due to light assisted collisions (LAC) and the possibility to suppress LACs.

3.4.1 Molecular potentials and contact interaction
The interaction of two approaching neutral atoms can be described by a molecular po-
tential. There are bound molecular and unbound quasi molecular states and respective
attractive and repulsive molecular potentials. Attractive molecular potentials can be
described by a Lennard-Jones potential. This molecular potential consists of a repulsive
r−12 potential, due to the electrostatic repulsion, and of an attractive van der Waals
potential, which scales with r−6 and describes the interaction between two induced
dipole moments. However, in the low energy limit (T → 0), for partial waves (l > 0)
the molecular potential is superimposed with the centrifugal barrier~2 l(l + 1)/(mr2),
where m is the atomic mass and r the interatomic distance [44] sec. 10.5 and [41]. The
atoms are reflected by the centrifugal barrier and do not "experience" the full potential.
Therefore, in this regime the scattered wavefunction is a spherical wavefunction that
does not depend on the actual potential and only s-wave scattering with zero relative
orbital angular momentum l = 0 has to be taken into account.
Consequently, at low temperatures the effect of this short-range potential is the

same as a hard-sphere potential, where only the scattering length as characterizes the
scattering. The corresponding contact interaction is the simplest interaction between
two particles and given by the potential [44] sec. 10.5 and [41]

Uc(r) ≡ g δ(r) , (3.29)

where δ(r) is the Dirac delta distribution and g the coupling strength,

g ≡ 4π~2

m
as , (3.30)

which is proportional to the scattering length as. Typical values for the scattering
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length in 164Dy and 162Dy are [6, 49]

as
162Dy= 112(10) a0 (3.31)

as
164Dy= 92(8) a0 , (3.32)

with the Bohr radius a0.
We can compare the contact interaction with the dipolar interaction by comparing the

background scattering length (eq. 3.31 and 3.32) with the dipolar length (D Dy= 196 a0,
eq. 3.3, [40]). In fact, the dipolar length is larger than the background scattering length
for both isotopes. Hence, the importance of the dipolar interaction in Dysprosium
becomes evident.

3.4.2 Low densities: optical pumping rate

10 2   5
g: 4f 6s I8

9 6 2   5e: 4f ( H )5d6s I8

0.89

0.11

-s � G sc

Gop

m = - 8J m = - 7J

E
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0

Figure 3.8: Visualization of the optical pumping scheme between the lowest Zeeman-
sublevels of the 164Dy groundstate and excited state 4f9 (6H0) 5d 6s2 5I8. The atoms
which have been thermally promoted to |g,M = −7〉 by inelastic dipolar relaxations are
excited by σ−-polarized light to |e,M = −8〉 with the scattering rate Γsc and decay to the
fully spin-polarized ground-state by spontanous emission. Altogther, they are transferred
from |g,M = −7〉 to |g,M = −8〉 with the optical pumping rate Γop. The numbers on
the two groundstate levels give the squares of the Clebsch-Gordan coefficients and thus
the probability for the respective transitions to |e,M = −8〉 and vice versa depicted as a
dotted line.

The fully spin-polarized ground state is a dark state for σ−-polarized light. σ−-
polarized light induces a change of the magnetic quantum number ∆M = −1. Further-
more, the total angular momentum does not change in the optical pumping transition
(∆J = 0). Therefore, a state to which an atom in the fully-spin polarized state could
be excited to by a σ− polarized photon does not exist.

Applying σ−-polarized light atoms in the ground state |g,M = −J + 1〉 are excited
to the fully spin polarized excited state |e,M = −J〉 before they decay back either into
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the fully spin-polarized ground state |g,M = −J〉 or into the state they were excited
from |g,M = −J + 1〉. The probablility of both events is given by the square of the
Clebsch-Gordan coefficients. As the atoms are not excited to another state from the
fully spin-polarized dark state, all the atoms will end up in this state after some time.
This way energy is transferred from the spin degree of freedom to the light field, as the
spontanously emitted photons have more energy than the optical pumping light.
Since atoms which are thermally excited to higher magnetic sublevels by inelastic

dipolar relaxations shall directly be optically repumped to the fully spin-polarized
state in order to avoid heating due to dipolar relaxations from energetically higher to
lower spin states, the optical pumping rate Γop should exceed the β−dr back relaxation
process and will be dicussed in this subsection. As there exists a bunch of literature
on light-matter interaction [44, 50, 51], I will only briefly dicuss the optical pumping
rate Γop, or rather scattering rate Γsc, and its dependence on the pumping power P .
As we are discussing the regime of low densities and other decay channels of the

excited state used for optical pumping are rare, we can restrict the atom-photon
interaction to a two-level system. The rate at which the two-level system scatters
photons reads

Γ̃sc = Γ

2
I/Is

4∆2/Γ 2 + I/Is + 1 . (3.33)

Here, Γ = 2π γ is the linewidth of the transition to the excited state, ∆ = ω − ωA
is the detuning of the laser frequency ω from the atomic resonance frequency ωA, I
is the intensity of the pumping light and Is = π

3
h c Γ
λ3 is the saturation intensity with

wavelength λ of the atomic transition. As actually the system is not a simple two-level
system, the rate at which a two-level system scatters photons has to be multiplied with
the relevant square of the Clebsch-Gordon coefficient to obtain the rate at which the
atoms are promoted from the |g,M = −J + 1〉 state to the |e,M = −J〉 state:

Γsc =J
J CG

−1
−J+1 · Γ̃sc = 0.11 · Γ̃sc (3.34)

Here the square of the Clebsch-Gordon coefficient J ′
J CG

p
M designs a transition from

|J,M〉 to |J ′,M + p〉, where p = −1,0, + 1 is the polarization of the photon. This
notation is similar to [46, 52]. The value of the Clebsch-Gordon coefficients have been
calculated in [53]. For large detunings, ∆� Γ , eq. 3.33 and 3.34 simplify to

Γsc
∆�Γ→ 0.11 · Γ2

I/Is

4∆2/Γ 2 (3.35)

In order to obtain the actual rate at which the atoms are pumped back to the fully
spin-polarized groundstate, also the Clebsch-Gordon coefficient for the transition from
|e,M = −J〉 to |g,M = −J〉 has to be taken into account:

Γop =J
J CG

0
−J · Γsc = 0.89 · Γsc (3.36)
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Together with the experimentally measurable power P = 1
2πwxwyI and beam waists of

a gaussian beam wx, wy in x and y direction [54] we can calculate the optical pumping
rates on the experiment.

Γop = 0.11 · 0.89
4π

P Γ 3

wxwyIs ∆2 (3.37)

As already explained, the optical pumping rate should exceed the rate of dipolar
backrelaxation collisions, which cause heating, in order to provide a steadily fully
spin-polarized sample. On the other hand, there should not be too much light in the
system as it causes loss processes by giving the atoms enough energy to escape the
trap [55]. Hence, an optimal optical pumping rate has to be found.

3.4.3 High densities: light assisted collisions
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Figure 3.9: a) Schematic diagram of molecular potential energy curves for a quasi-
molecule which comprises of two colliding atoms. With a red arrow the resonant excitation
by blue detuned light with frequency ω at the Condon point RC to a repulsive molec-
ular state and the atomic transition with frequency ωA at large distances are shown.
A resonant excitation to bound molecular states for red detuning is also possible at
sharply peaked distinct detunings. Both cases lead to heating as explained in fig. 3.10.
Suppression of light assisted collisions is possible when the detuning is chosen such
that the respective Condon point coincides with the position of the first node RN of the
groundstate wave function Ψg. b) There are different molecular potentials for the different
Zeeman-sublevels. Here, optical pumping with σ− polarized light to the energetically
lowest Zeeman-sublevel is shown.

In optical pumping at low densities, we can assume a picture of separated atoms. This
has been done in the previous subsection 3.4.2 and is depicted in fig. 3.9b. Whereas,
at higher densities the atoms start to interact (see subsec. 3.4.1). Hence, a distance
dependent potential has to be integrated into the model (fig. 3.9a). There are ground
state molecular potentials and excited state molecular potentials, as well as bound
molecular and unbound quasi molecular potentials. Light assisted collisions (LAC)
become possible, when photons can excite atoms to bound molecular or unbound quasi
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Figure 3.10: Schematic diagram of molecular potential energy curves for a quasimolecule
which comprises of two colliding atoms to explain heating by light assisted collisions. a)
Two atoms approach each other with a certain velocity (i) until they reach the distance
RC at which the blue detuned laser light is resonant to the excitation to an unbound
quasimolecular state (ii). b) After excitation to this molecular state the atoms move
apart and retain the energy of the detuning as kinetic energy (i). During spontanous
emission at a distance R > RC , the atoms keep the gained kinetic energy (ii).

molecular states with one atom in the ground and one atom in the excited state (fig.
3.9) [55–61].

Two approaching atoms are resonantly excited by either a blue or a red detuned
laser with frequency ω at a certain distance RC , which is called Condon point, to a
(quasi-)molecular state. In the case of red detuning only at sharply peaked distinct
frequencies this is possible, whereas in the blue detuned case resonant excitation is
possible over a large frequency range.
In both cases the atoms gain kinetic energy as depicted in fig. 3.10 for the blue

detuned case. After the excitation to a repulsive quasimolecular state, the atoms slow
down until they reach a turning point and accelerate into opposite directions gaining
kinetic energy. When they pass the Condon point before spontanous emission back to
the groundstate, their final kinetic energy has increased [62]. Applying red detuned
light, the atoms can be excited to discrete bound states of the attractive potential, if
the laser frequency is tuned near the position of a particular bound level. Next they
may decay mostly by spontanous emission to rovibrational states which are no longer
trapped or hot atoms are formed [55, 58].
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3.4.4 Suppression of light assisted collisions
This heating and atom loss mechanism due to light assisted collisions can be suppressed,
when the first node of the ground state wavefunction coincides with the Condon point.
Since, at the detuning which corresponds to the node of the ground state wavefunction
the Franck-Condon factor diminishs. The Franck-Condon factor fC is the overlap
between the ground ψg and excited vibrational wavefunction ψe. The probability of a
transition between the corresponding states in the case of weak excitations and s-wave
scattering is the following1 [46, 63]

Kloss = 2π~
µred k

[ΩR(RC)]2 · fC . (3.38)

It is proportional to the Franck-Condon factor. Hence the probability to excite the
molecular state depends also on the Franck-Condon factor [46, 63]. Here, k is the
relative collision wave vector of the atoms and ΩR(R) is the Rabi-frequency. The
Rabi-frequency can be rewritten as ΩR(RC) when ΩR(R) varies slowly [63]. Thus the
binary loss rate per atom

Γbin = n ·Kloss (3.39)

with density n of the atomic cloud diminishs also when the Franck-Condon factor
diminishs.
Here, we are focusing at an intermediate regime R > RB. In this regime the van

der Waals dominated groundstate molecular potential is almost constant in distance.
It scales with Vg(R) = −C6/R

6. However, the excited state interaction potential, a
dipole-dipole potential scaling with Ve(R) = C3/R

3, is still relevant. The characteristic
van der Waals length scale is RB =

(
µred C6
10 ~2

)1/4
. Hence the ground state wave function

varies much more slowly with R than the excited state wave function and in a reflection
approximation the excited state wavefunction can be seen as a Dirac delta function
δ(R − RC). Therefore, the Franck-Condon factor fC = | 〈ψg(E)|ψe(E + ~∆A)〉 |2 for
blue detuning with frequency ∆A and fC = (〈ψg(E)|ψν〉)2 for red detuning with
excitation to a state with vibrational quantum number ν and the vibration frequency
νν reduces to

blue: fC = 1
DC
|ψg(RC,E)|2 (3.40)

red: fC = h νν
DC
|ψg(RC,E)|2. (3.41)

Here, DC =
∣∣∣d(Ve−Vg)

dR

∣∣∣ R>RB≈
∣∣∣dVe

dR

∣∣∣ = 3C3
R4 |R=RC is the slope of the difference potential

1 Here, this probability is given for the case of zero BEC fraction. In order to get this probability in
a condensate with fraction x, Kloss has to be multiplied by a factor of 2−x

2 : Kx
loss = 2−x

2 Kloss.
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Ve − Vg at R = RC [63].
An approximation of the ground state wave function is [63]

ψg =
( 2µred

π ~2 k

)1/2
a(R) sin(k ρ(R)) (3.42)

where

a(R) = 1−
(
RB

R

)4
, (3.43)

ρ(R) = R− as −
2
3

(
RB

R

)4
R , (3.44)

with scattering length as of the ground state potential. Combining eq. 3.38, 3.39, 3.40
and 3.42 the binary loss rate per atom for blue detuning reads:

Γbin = 4n
~ k2 [ΩR(RC)]2 · a

2(RC) sin2(k ρ(RC))
DC

. (3.45)

As we are only interested in the area around the zero crossing of the wave function,
the small angle approximation can be applied leading to

Γbin
kρ�1
≈ 4n

~
[ΩR(RC)]2 · R

2
C

DC
· gC(RC) (3.46)

with

gC =
[(

1−
(
RB

RC

)4)(
1− as

RC
− 2

3

(
RB

RC

)4)]2

. (3.47)

Recalling DC ≈ 3C3
R4

C
and the fact that at the Condon point RC the energy of the

detuning ~∆ matches in the case of blue detuning and Vg(R > RB) ≈ 0 the difference
between Ve(RC) and Ve(R→∞), which leads to ~∆ = C3

R3
C
, the binary loss rate reduces

to

Γbin = 4n
~

[ΩR(RC)]2 · R
6
C

3C3
· gC(RC) (3.48)

= 4n
~

[ΩR(RC)]2 · C3

3 (~∆)2 · gC(RC) . (3.49)
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At the Condon point the Rabi-frequency is ΩR(RC) = bC ΩR,A with the atomic Rabi-
frequency ΩR,A = 2∆ (Γ̃sc/Γ )1/2. Furthermore, C3 = f3~Γ (λA/(2π))3, where λA is the
atomic wavelength of the optical pumping transition and 0 < bC < 2/

√
3, as well as

0 < |f3| < 1/2 are molecular structure factors [63]. This leads to a binary scattering
rate for blue detuning

Γ blue
bin = Γbin = 16 f3 b

2
C

3 ~2 n

(
λA

2π

)3

Γ̃sc gC(RC) , (3.50)

where only gC depends on RC and thus the detuning ∆. The function gC and hence
also Γbin have a minimum around the scattering length as, where the first node of the
ground state scattering wave function is located.
In the red detuned case, the binary loss rate per atom is modified due to the fact

that only at discrete levels a transition to a molecular state is possible [63]:

Γ red
bin = Γbin

∑
ν

νν Γν
(∆−∆ν)2 + (Γν/2)2 (3.51)

The normalized binary loss rate η ∝ Γ color
bin /(n(λ/(2π))3Γ̃sc) of reference [63] is plotted

for red and blue detuning for sodium in fig. 3.11. The red-detuned binary loss rate is
strongly modulated due to bound state resonances, but for both red and blue detuning
the suppression of binary loss when the Condon point coincides with the ground state
wave function is evident. Between resonances the binary loss rate for red detuning is
smaller than for blue detuning. Therefore the experiments of this thesis have been
performed with red detuned optical pumping light.

Figure 3.11: Normalized binary loss rate η ∝ Γ color
bin /(n(λ/(2π))3Γ̃sc) for red (dashed

line) and blue detuning (solid line) in a Bose-Einstein condensate compared to losses due
to photon scattering (horizontal dashed line). Image taken from [63].
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a) b)

Figure 3.12: The function gC, which is proportional to the binary loss rate Γ blue
bin , is

depicted a) in a double-logarithmic plot similar to fig. 3.11 and b) in a linear plot.
Parameters for the optical pumping transition in 164Dy and for an electric dipole-dipole
coefficient C3,e which varies from the analytical value of [63] (C3,e = 0.01 Eh a

3
0 (blue

curve)) to values corresponding to experimental and maximal theoretical values in 52Cr
[46] (C3,e = 0.103 Eh a

3
0 (red curve) and C3,e = 0.161 Eh a

3
0 (black curve)) have been

chosen. As the linewidth of the optical pumping transition is Γ = 95 kHz [34], a detuning
of ∆ = 10GHz corresponds to approximately ∆ = 105 000Γ .

In figure 3.12 the function gC, which is proportional to the binary loss rateΓ blue
bin , is

depicted in a double-logarithmic and in a linear plot for the optical pumping transition
in Dysprosium. Hence the chosen parameters are the following. The wavelength
of the transition is λA = 684 nm, the natural linewidth is γ = 95 kHz, the van der
Waals coefficient is C6 = 2003Eh a

6
0 [29], and the scattering length is the background

scattering length as the experiments are conducted far from any Feshbach resonance,
as = abg = 92(8) a0 [6, 49]. Here Eh = 4.360 · 10−18 J is the Hartree energy and
a0 = 0.05297 nm is the Bohr radius. Those are the parameters which have already been
measured in Dysprosium. However, the electric dipole-dipole coefficient CDy

3,e of the
excited molecule is not known in Dysprosium. Therefore, the function gC is plotted in
figure 3.12 for different electric dipole-dipole coefficients CDy

3,e in order to show the broad
range of possible node position with the given knowledge about the atomic constants.
According to reference [63] the maximal electric dipole-dipole coefficient should be
Cmax

3,e = f3~Γ (λA/(2π))3 = 1
2 0.02Eh a

3
0. The correspondig gC function is depicted

as a blue curve in fig. 3.12. In chromium CCr
3,e has been determined experimentally

to 1.46Eh a
3
0 < CCr

3,e < 1.9Eh a
3
0 and in an atom loss spectroscopy measurement to

determine the node position of the ground state wavefunction it has been fixed in a fit
to CCr

3,e = 1.53Eh a
3
0 [46]. As C3,e ∝ Γλ3

A [63], in dysprosium this would correspond to
CDy

3,e = 0.103Eh a
3
0. The corresponding gC function is shown as a red curve in fig. 3.12.

The maximal dipole-dipole coefficient estimated in chromium is CCr,max
3,e = 2.4Eh a

3
0.

It corresponds in dysprosium to CDy
3,e = 0.16Eh a

3
0. The corresponding gC function is

shown as a black curve in fig. 3.12.
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For this range of possible C3,e-coefficients the nodal position of the groundstate
wavefunction should be located at a detuning 0.5GHz < |∆/(2π)| < 8.4GHz .

The difference between the analytical value in reference [63] and the experimental and
theoretical values given in [46] is due to spin-orbit coupling which has been neglected
in [63]. In dysprosium, an even stronger spin-orbit coupling is expected as the inelastic
dipolar relaxation collisions which quantify this spin-orbit coupling are about one order
of magnitude higher in dysprosium than in chromium (see. section 3.2). This is a hint
that the node is localized at a larger detuning > 5GHz.
Furthermore, the validity of the assumption of s-wave scattering (see eq. 3.38) is

doubtful due to the strong spin-orbit coupling. Next, in 164Dy the background scattering
length abg = 92(8) a0 [6, 49] is smaller than the dipole length scale which characterizes
the magnetic dipole-dipole interaction strength D ≡ µ0 µ2 m

8π ~2
Dy= 196 a0 (see eq. 3.3) [24].

Hence, the nodal position of the groundstate wavefunction which is located around the
scattering length as = abg is still dominated by the magnetic dipole-dipole interaction.
Consequently, the approximation of a van der Waals dominated groundstate molecular
potential can also be questioned.

An answer could be found by further experimental, i.e. photoassociation spectroscopy,
and theoretical investigations, i.e. Movre-Pichler model, which go beyond the scope of
this Master’s thesis.
Moreover, a description of the system with one possible ground and one possible

excited state potential has to be reviewed. This is already the case for 52Cr [46] and
of course also for the even more complicated element dysprosium. Different ground
state wave functions of different ground state potentials have different node positions.
Likewise, different excited state potentials have different Condon-points for a fixed
laser detuning ∆. Thus, there is no excitation laser detuning where all Condon-points
coincide with the node position. As a result the binary loss rate does not go to zero
and the position of its minimum which corresponds to the node position of the ground
state wave function is washed out [46].
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3.5 Experimental realization

3.5.1 Preparation of the atomic cloud
Before demagnetization cooling several cooling steps are applied to reach starting
temperatures of around 30 µK. These initial cooling steps have already been explained
exhaustively in a Master’s thesis [5]. Furthermore, the basics of laser cooling, as well
as magneto-optical trapping are explained in several textbooks, e.g. [44]. Hence, we
will only give a short overview and then continue the explanations in the optical-dipole
trap (ODT), where we perform demagnetization cooling.

cooling
beams

Zeeman
slower
beam

probe
beam

transport
beam

Zeeman slower

anti-Helmholtz
coil

glass cell

z

x

effusion cell

transversal cooling
beams

Figure 3.13: Schematic view of the apparatus. Starting at the bottom, dysprosium
atoms are emitted by an effusion cell. Next, they are transversally cooled by two
retro-reflected beams and decelerated in a Zeeman slower (421nm, blue arrows). In the
following, the atoms are captured and further cooled to temperatures around 10 µK by a
narrow-line MOT (626 nm, orange arrows). Finally, they are loaded into an ODT (red
arrow) and transferred into the glass cell by moving the focusing lens (f = 1250mm) of
the ODT on an translational stage.

A schematic view of the whole apparatus is shown in figure 3.13. At first, the atoms
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are vaporized in a high-temperature effusion cell at temperatures of 1200− 1250◦C.
After being emitted from the oven, they are transversally cooled by two retro-reflected
beams which create a two-dimensional optical molasses and then enter the Zeeman
slower (ZS). For both cooling techniques we use the broad 421 nm transition with
Γ421 = 2π · 32.2MHz [36] and saturation intensity Is,421 = πhcΓ/3λ3 = 56.4mW/cm2.
For transversal cooling, the beams are red-detuned at ∆ = −0.3Γ421 and elliptically
shaped in order to increase the spatial overlap with the atomic beam (wz = 6.8mm and
wr = 1.7mm, where z- and r-direction are chosen with respect to the atomic beam).
Typically, we apply a total power of Ptrans = 200mW which leads to an intensity
Itrans = 4.5 Is,421 per beam. Thereby, we gain typically a factor of 2.5 in MOT atom
number. For the subsequent ZS, the beams are also red-detuned at ∆ = −17.5Γ421 and
focused into the effusion cell. At the MOT position its diameter is estimated to 18mm.
Together with a beam power of PZS = 90mW, we calculate the spread of velocity to be
600m/s, which allows us to capture around 75 % of the initially Boltzmann-distributed
atoms and decrease the velocity of the atoms to v ≈ 10m/s.

Now, the atoms are slow enough to be captured by the MOT, which is setup with three
retroreflected beams. Here, we use the narrow 626 nm transition with Γ626 = 2π·136 kHz
[64], saturation intensity I626 = 72 µW/cm2 and Doppler temperature TD,626 = 3.3 µK.
The beams have a diameter of 22.5mm and an intensity of IMOT ≈ 240 Is,626 per beam.
At a magnetic field gradient of ∇B = 3G/cm and a detuning of ∆MOT = −34Γ626,
we load typically 108 atoms with a temperature around 500 µK in 4 s into the MOT.
Next, we compress the MOT in order to achieve colder temperatures and decrease the
trapping volume. For this purpose, we decrease the intensity to IMOT ≈ 0.24 Is,626, the
magnetic field gradient to ∇B = 1.5G/cm, and the detuning to ∆MOT = −5Γ626 in
170ms. Thereby, the atomic cloud is spatially compressed and the final temperature is
lowered to 12 µK. Besides, the atoms are optically pumped to the energetically lowest
Zeeman state M = −8 by the MOT. This prevents inelastic relaxation collisions to
lower substates which would lead to a heating of the atomic cloud.
Next, the atoms may be transferred from the MOT chamber to the optical dipole

trap in the science chamber. This is done with an optical tweezer. In fact, we use a
single-beam optical dipole trap which is created by a broadband fiber laser1 operating
at 1070 nm. We measure a beam waist of w0 = (37.3±1.2) µm which implies a Rayleigh
length of zR = 4.1mm and estimate the maximal beam power in the glass cell to
72W. Since the atom cloud in the MOT is a factor of 10 larger than the trapping
potential created by the transport beam [5], we load it ∆x = 15mm ≈ 3 zR away
from the beam’s trap minimum ("funnel" method). Here, the trap depth is decreased
and the trapping area is increased, each by the same factor of 17.6 [5]. During the
compression of the MOT, we move the trap minimum of the transport beam to the
above-mentioned position by moving the f = 1250 mm lens2 which focuses the beam

1 Laser IPG YLR-100-WP-WC, λ = 1070nm, Pmax = 100W.
2 The lens is mounted on a computer-controlled air-bearing translation stage Aerotech ABL15040

with 40 cm translation range and 0.5 µm accuracy.
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on the atoms. After the compression of the MOT, we turn the transport beam on and
hold both traps for 120ms. Next, we turn off the MOT beams and field gradient. In
order to prevent the atoms from oscillating after being loaded in an out-of-equilibrium
position in the transport trap, we move the trap minimum rapidly to the prior MOT
center. However, the sample heats up to about 170 µK and contains typically 15 · 106

atoms in the transport beam.
Finally, we transfer the atoms from the MOT chamber over a range of 375mm to

the science chamber. As the laser we use for transport cannot be used for evaporative
cooling1, we load N = 5 · 106 atoms at a temperature of T = 120 µK with an efficiency
of 50% in ODT 1.

phase-contrast
imaging beam
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transport beam

High-NA
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imaging beam

post-cooling 
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Helmholtz
coils
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Figure 3.14: Schematic view of the science chamber. The transport beam (red arrow)
transfers the atoms from the MOT chamber to the glass cell. Here, they are loaded either
in an optical-dipole trap created by ODT 1 or in a crossed optical-dipole trap (cODT)
created by ODT 1 and 2. The optical pumping beam (red arrow) for demagnetization
cooling is applied in z-direction, parallel to the phase-contrast imaging beam. Alterna-
tively to demagnetization cooling, post-cooling with a laser beam which is red-detuned
to the 626 nm transition (orange arrow) and forced evaporative cooling can be applied.
For time-of-flight measurements, absorption imaging along the y direction (blue arrow) is
used. In addition, phase-contrast imaging (blue arrow) with the high-NA objective along
the z direction can be performed for in-situ images. Further, the objective can be used
to write tailored potentials with an electro-optical deflector (EOD) system (green arrow)
[5]. Above and beneath the glass cell, there are two coils in Helmholtz configuration for
generation of magnetic fields up to 600G.

1 The laser contains frequency modes which drive two-photon Raman transitions [5]
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In figure 3.14 a schematic view of the science chamber and the setup for optical
trapping, optical pumping, further cooling and imaging is displayed.

In the science chamber, ODT 1 and eventually a superimposed ODT 2 provide optical
trapping of the atoms. When ODT 2 is superimposed to ODT 1, they form a crossed
optical-dipole trap. For both traps, a single-mode laser 1 operating at λ = 1064 nm is
used. In order to form two traps, the beam is split into two paths. The maximum
power of ODT 1 in the glass cell is P = 9.7W. Together with a beam waist in x-
and y-direction respectively (wx, wy) = (35.7, 33.5) µm we obtain maximal trapping
frequencies of (fx, fy, fz) = (5.6, 783, 837)Hz. The maximum power of ODT 2 in the
glass cell is P = 7.75W. With beam waists (wx, wy) = (103.5, 39.5) µm and combined
with ODT 1 to a crossed optical-dipole trap we obtain maximal trapping frequencies
of (fx, fy, fz) = (132, 783, 905)Hz. After a first evaporation step in the cODT, in
which the power of the first ODT is reduced to 25% of the maximal power, we obtain
trapping frequencies of (fx, fy, fz) = (132, 392, 442)Hz. For further information on the
measurement of the trapping frequencies see [5].

Up to now we use post-cooling with the 626 nm transition, once the atoms are loaded
in ODT 1. Here, we illuminate the atoms in the trap with a beam with very low
intensity I = 0.035 Isat = 2.52 µW/cm2 and a frequency which is red-detuned to the
626 nm transition. This way the atoms are excited with less energy than the transition
energy and release in average the difference in energy during spontanous emission.
A maximal cooling efficiency of χ = 6.7 is reached by this post-cooling [5] (see sec.
3.5.4.6).

In all experiments described in this thesis, the atom number and temperature is
probed by standard time-of-flight absorption imaging.

1 Laser Coherent Mephisto MOPA 55W
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3.5.2 Optical setup of the optical pumping laser system
The full potential of demagnetization cooling may be released by using optical pumping
which constantly recycles the atoms from higher Zeeman states to the fully spin-
polarized state with mJ = −J . In this subsection, I will describe the laser system we
set up for optical pumping.

We use a 684 nm transition from the ground state [Xe] 4f10 6s2 5I8 with even parity to
a 4f9(6H0)5d 6s2 5I8 excited state (see fig. 2.1) for optical pumping. In the level scheme
of fig. 2.1, it can also be seen that there is a 953 nm transition which can act as a
decay channel for the optical pumping transition to the 4f10 6s2 5I7 state. However, this
953 nm transition is very narrow [33]. Nevertheless, the efficiency of optical pumping
could be restricted by it.
The 684 nm laser system has been set up and studied in a Bachelor’s thesis [65],

hence I will explain it only briefly and focus on the changes which have been made
since then. In figure 3.15 the current laser setup is shown schematically.
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Figure 3.15: Scheme of the 684 nm laser setup used for optical pumping.

For the 684 nm light we use a tuneable diode laser1 with a maximal power of 17mW.
It passes a pair of prisms to obtain a circular instead of an elliptical beam shape. Then,
a small fraction of the power is sent to a wavemeter. Next, the beam is split into two
main branches. One finally goes on to the experiment and the other branch is used for
active frequency stabilization.

1 Toptica DL 100 pro Design
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3.5.2.1 Optical setup to the experiment

Acousto-optic modulator (AOM) In the path for the experiment an AOM1 with an
operating frequency of 100MHz is used in double pass configuration (see fig. 3.15).
Two lenses ensure in this configuration a minimization of the beam shift when the
input frequency is changed. Thus, the coupling into the fiber is more stable.

laser table
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Figure 3.16: Scheme of the 684 nm laser system to the experiment.

Intensity stabilization On the experimental table the light passes a λ/2-waveplate and
a polarizing beamsplitter in order to ensure π-polarized light (see fig. 3.16). Then we
direct 8% of the outcoupled light by a pellicle beamsplitter2 to a photo diode3. In the
following, we use only the integrating part of a PID controller to stabilize the intensity
on the photodiode and thus also on the experiment at a certain value. The intensity is
controlled by the power of the rf-frequency for the AOM. As only π-polarized light is
used for intensity stabilization, it is guaranteed that the intensity of σ-polarized light
is stabilized.

After having passed the pellicle beamsplitter, the π-polarized light is converted into
σ−-polarized light by a λ/4-waveplate. The beamwaists are here wx = (1.26±0.02)mm
and wy = (1.30± 0.02)mm . Finally, the optical pumping beam is directed over two
coupling mirrors and a dichroic mirror4 to the science chamber. The dichroic mirror is
used, as for optical pumping (684 nm) and for phase-contrast imaging (421 nm) the
same optical access to the science chamber is used.

1 Crystal Technology, 3100-125
2 Thorlabs BP108, uncoated for 8 : 92 (R:T) split ratio
3 Thorlabs PDA36A-EC, switchabel gain detector (0− 70 dB, 8 steps), 10MHz bandwidth
4 Edmund Optics #47− 266, 45◦ red dichroic filter
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3.5.2.2 Optical setup to ULE cavity

We couple the 684 nm light to an ultra low expansion (ULE) cavity1 for active frequency
stabilization (see sec. 3.5.3). Here, I will describe the optical setup we use for this
purpose (see fig. 3.15 on the right-hand side).

After having passed a fiber EOM, we use a 50:50 beamsplitter to couple 50% of the
light to a self-made photo diode in order to measure the laser power in front of the
ULE. In the following, we utilize another 50:50 beamsplitter and a polarizing beam
splitter in order to couple not only the 684 nm, but also the 842 nm and 626 nm laser
beams into the ULE cavity. Finally, a power of 0.4mW of the 684nm laser is coupled
into the ULE cavity.

On the other side of the first 50:50 beamsplitter the back reflected light coming from
the ULE is measured with another self-made photodiode. This signal is used to create
the error signal for active frequency stabilization with the commercial Pound-Drever-
Hall module2 (see sec. 3.5.3.2).

3.5.3 Frequency stabilization and adressing of dysprosium atoms
3.5.3.1 Characterization of ULE cavity

In order to characterize the cavity which is used for frequency stabilization, we determine
its free spectral range (FSR) and linewidth by measuring the spectrum.

We record the transmission spectrum on a photodiode3 by scanning the laser frequency
continuously. Whenever the frequency is on resonance with the cavity, a signal is
transmitted and becomes visible as a resonance peak in the spectrum. In order to
determine the corresponding relative frequency, the frequency-axis is calibrated on
side peaks at ±25MHz from the main peak which have been created by a Toptica
Pound-Drever-Hall (PDH) module (see sec. 3.5.3.2).
In figure 3.17 a resulting spectrum with two main peaks and their respective side

peaks is displayed.
In order to determine the linewidth and the FSR of the cavity, we fit a Lorentzian

Iq(ν) = Aq
∆2

1/2

∆2
1/2 + 4 (ν − νq)2 (3.52)

to each resonance with frequency νq by adjusting the amplitude Aq and the full width
at half maximum (FWHM) ∆1/2. The difference in frequency between two main peaks
corresponds to the FSR. The fit in figure 3.17 reveals a FSR of νFSR = (1527± 1)MHz
and linewidth of ∆1/2 = (184.5± 0.2) kHz. However, this fit overestimates frequency,
because of the discrepancy between fit and data at the first resonance. In order to

1 Stable Laser Systems
2 Toptica PDD 110
3 Thorlabs PDA10A
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Figure 3.17: Measurement to determine the resonance frequency.

obtain a more accurate value, several images and fits are taken. The resulting mean
values with standard deviation are a FSR of ν̄FSR = (1505± 31)MHz and a linewidth
of ∆̄1/2 = (181.9± 3.7) kHz.

This value differs only by 0.5% from an expected FSR of νFSR = 1498MHz [65]. Yet,
the theoretical linewidth∆1/2 = 78 kHz of the resonator is about half the experimentally
measured linewidth. This is due to the fluctuation of the linewidth of the laser in time
∆L > ∆1/2, which leads to a broadening of the resonance peaks and a deviation from a
Lorentzian shape.

Determining the photon lifetime τp of a resonator offers the possibility to determine
its linewidth without interfering with the time-dependent laser’s linewidth. The
photon lifetime is the time it takes to form a standing wave in the resonantor. It
can be measured by switching off the frequency stabilized laser very quickly. The
decrease in intensity as a function of time is fitted by an exponential decay of the form
I(t) = A exp (−(t− t0)/τp) with the fitting parameters A, t0 and the photon lifetime
τp. We could estimate the photon lifetime by this method to

τp = (1.41± 0.13) µs ,

which corresponds to a linewidth of

∆1/2 = (113± 11) kHz .

3.5.3.2 Active frequency stabilization

The linewidth of the optical pumping transition has been determined in a Master’s thesis
[33, 34] to Γ684 = (95± 13) kHz. The linewidth of the laser should be narrower than
the linewidth of the transition in order to address the transition precisely. Therefore,
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active frequency stabilization of the laser is required.
For active frequency stabilization we couple the 684 nm light to an ultra low expansion

(ULE) cavity1 and use a Toptica Pound-Drever-Hall (PDH) module PDD110 to generate
smaller side peaks at ±25MHz from the main peak (see fig. 3.17). Moreover, we use
the PDH module to produce an error signal by multiplying in a mixer the reflected
signal of the ULE cavity with the frequency which is used to create the side peaks. A
typical error signal can be seen in figure 3.18.
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Figure 3.18: Typical errorsignal. Here a moving average over two neighbouring values
has been applied.

In the following, we use all three parts of the PID controller of a FALC module2 to
stabilize the laser on the steap slope of the main peak of the error signal.
By comparing the transmission signal of the frequency stabilized laser with the

resonance peak of the ULE cavity, the linewidth of the frequency stabilized laser
can be estimated. The transmission signal of the frequency stabilized laser is 0.57V
and varies ±0.2V. Comparing this with a resonance peak of the ULE cavity with a
linewidth of ∆1/2 = 113 kHz and a signal amplitude of 0.59V the laser linewidth is
∆ν = (35.9± 1.9) kHz. Consequently, the linewidth of the frequency stabilized laser is
narrower than the transition linewidth (Γ684 = (95± 13) kHz) as required.

3.5.3.3 Frequency tuning

Furthermore, in order to find an optimal detuning from the transition frequency to
suppress light assisted collisions (see sec. 3.4.3 and 3.4.4) we need to frequency tune
the laser in the GHz range. However, the resonances of the ULE cavity are fixed at
certain frequencies as the length of it is very stable and cannot be changed. Therefore,
we use a broad band fiber EOM in order to tune the laser frequency.

1 Stable Laser Systems
2 FALC 110 from Toptica
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Electro-optical modulator (EOM) In an EOM an optical medium1 which exhibits the
linear electro-optical effect is used. Crystals of this kind change their refractive index n
linearly in an external electric field. In EOMs the electric field is applied vertically to
the light propagation axis and induces a phase shift between light polarized in the same
direction and light polarized in the vertical direction. The voltage required for inducing
a phase change of π is called half-wave voltage Uπ. In a fiber EOM a polarization
maintaining fiber ensures the application of light which is polarized parallel to the
electric field. When we apply a sinusoidally varying potential voltage to the EOM,
the resulting sinusoidally varying phase shift produces sidebands at the corresponding
frequency and its higher harmonics. The strength of the sidebands depends on the
amplitude of the potential voltage U and is given by Bessel functions Jk(U) , where k
numbers the respective higher harmonic [54, 66].

The typical half-wave voltage of the EOM2 used in this thesis is Uπ = 6V. In order
to obtain first order side peaks which are approximately as strong as the main peak
and invisible second order side peaks, a power of 13 dBm, which corresponds to a peak
voltage of U = 1.4V, is applied to the signal input of the EOM (see fig. 3.19b for
the resulting errorsignal). At lower powers the side peaks vanish (see fig. 3.19a) and
at higher powers higher order side peaks appear and the main peak vanishs (see fig.
3.19c). A DDS-board provides frequencies between several MHz and 500MHz. Hence,
a tuning from 25MHz < f < 500MHz should be possible.
We use an EOM which has been designed for a wavelength of λ = (705 ± 25) nm.

We couple 6.7mW into the EOM and 1.6mW out of the EOM, which corresponds to
an insertion loss of −6 dB and to the value specified in the data sheet of the EOM.
We use the sidebands shown in figure 3.19b as a stable tunable frequency reference.

By stabilzing the laser on one of those sidebands and changing the EOM frequency, we
tune the laser frequency going on the experiment.

3.5.3.4 Determination of resonance frequency

The laser is stabilized on the blue detuned side peak of the resonance frequency of the
ULE cavity which is closest to the wavelength of the pumping transition in vacuum
(683.731 nm, [67]). Furthermore the laser frequency is further shifted with a double
pass AOM by +2 · 100MHz.

We aligned the optical pumping beam on the atoms in the ODT by maximizing the
atom loss at a power of roughly 800 µW before the λ/4-waveplate and an illumination
time of 100ms.

Further, the resonance frequency of the pumping transition has to be found. There-
fore, we apply at first a laser power of 400 µW, which corresponds to an optical pumping
intensity on the atoms of Iop = (47± 10) µW

mm2 for 50ms. Then we apply for a higher
resolution a laser power of 100 µW, which corresponds to an optical pumping intensity
on the atoms of Iop = (12± 3) µW

mm2 for 10ms. This way the frequency difference from

1 here: Lithiumniobat (LiNbO3)
2 phase modulator for λ = 705nm (PM 705) from Jenoptik
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Figure 3.19: Errorsignal including the additional sidebands created by the fiber EOM,
here at a frequency of ±200MHz and including a moving average over two neighbouring
values. a) The side peaks are very weak at a power of 10 dBm, which corresponds to
a peak voltage of U = 1.0V. b) At a power of 13 dBm, which corresponds to a peak
voltage of U = 1.4V, the first order side peaks are as strong as the main peak and higher
order side peaks vanish. c) The main peak vanishs and higher order side peaks appear at
a power of 16 dBm, which corresponds to a voltage of U = 2.0V.

the cavity resonance to the resonance of the optical pumping transition is determined
to 427.2± 5MHz (see fig. 3.20).
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Figure 3.20: Measurement to determine the resonance frequency.
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3.5.4 Analysis of demagnetization cooling
After having determined the resonance position, we can start with actual demagnetiza-
tion cooling. Therefore, we load the atoms into ODT 1 (see sec. 3.5.1) with trapping
frequencies ω̄ = 2π (5.6 · 783 · 837)1/3 Hz and wait tevap = 1.5 s in order to ensure that
the following temperature evolution does not interfere with residual evaporative cooling
(see sec. 3.5.4.6). After that, the sample contains approximately 1.3 · 106 atoms at a
temperature of roughly T0 = 27 µK and a mean density of n0 = 6 · 1017 m−3. These
are the starting conditions of all measurements presented in the next four subsections
3.5.4.1 to 3.5.4.4. Next, we apply optical pumping light with a certain intensity and a
certain magnetic field parallel to the optical pumping beam.
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Figure 3.21: a) Temperature and b) atom number evolution over time during de-
magnetization cooling with optical pumping rates of Γ h

op = (99 ± 13) 2πHz (green),
Γ l

op = (20± 3) 2πHz (orange), and no optical pumping light (blue) and for a magnetic
field of Bz = 385mG. The data is presented as dots. The temperature evolution due
to the theoretical cooling rate at B = 385mG which does not include any heating
mechanism, but the experimental densities is shown in a) as solid lines. Temperature
and atom number evolution are highlighted by guide to the eyes (dashed line).

In figure 3.21 the temperature and atom number evolution over time is shown for
two different optical pumping rates: Γ h

op = 2π (99± 13)Hz and Γ l
op = 2π (20± 3)Hz

and no optical pumping light. Here a magnetic field of 385mG has been applied in
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z-direction. The theoretical temperature evolution (see figure 3.21 a)), which has been
calculated taking an optimal cooling rate1 at the applied magnetic field B = 385mG,
are also displayed in the graph as solid lines. The difference between the two theoretical
temperature evolutions is due to different experimental densities, which have been
taken into account in the calculation. Even though we observe a first cooling effect in
the experimental data in comparison to no optical pumping light, there is a discrepancy
between experimental and theoretical optimal temperature evolution. There are also
some possibilities for optimization, which will be presented in the following sections.

3.5.4.1 Optical pumping rate

One possibility for improvement is to find an optimal optical pumping rate Γop. On the
one hand, too many photons lead to heating and atom loss from the trap by giving the
atoms energy, eventually enough energy to leave the trap [55]. On the other hand, the
optical pumping rate should exceed the rate of dipolar backrelaxation collisions, which
cause heating (see sec. 3.4.2). In figure 3.21 the evolution of temperature and atom
number over time is shown for two different optical pumping rates Γ h

op = (99±13) 2πHz
and Γ l

op = (20± 3) 2πHz and no optical pumping light. For the higher optical pumping
rate Γ h

op, one observes a loss of atoms of (−170± 20) · 103 atoms
s (see fig. 3.21 b)). In an

exponential fit the lifetime is estimated to τ = (6.67± 0.62) s. For the lower optical
pumping rate Γ l

op the atom number stays approximately constant and is comparable
to the case of no optical pumping light especially after 3 s of wait time. Due to higher
experimental densities for Γ l

op, one would expect a faster decrease in temperature as
depicted in the theoretical cooling rates in figure 3.21 a). Nevertheless, the experimental
data does not show a clear improvement in the case of the lower optical pumping rate Γ l

op
compared to the higher optical pumping rate Γ h

op. In order to compare the performance
of the cooling effect, we calculate the cooling rate dT

dt
, which estimates the time scale on

which cooling takes place. We extract it from the data by a linear fit to the temperature
evolution as a function of time. The cooling rate in the first tdemag = 2 s performs even
better for the higher optical pumping rate with dT

dt

∣∣∣
Γh

op, 2 s
= (−4.4± 0.5) µK

s
than for

the lower optical pumping rate ( dT
dt

∣∣∣
Γ l

op, 2 s
= (−3.7± 0.6) µK

s
). However, for tdemag = 3 s

of demagnetization cooling the cooling rates for higher and lower optical pumping
rate resemble each other with dT

dt

∣∣∣
Γ l,h

op , 3 s
= (−3.2 ± 0.3) µK

s
. Still, as the evolution of

the atom number is more favorable in the case of the lower optical pumping rate, the
following experiments in this trap configuration are performed with the lower optical
pumping rate Γ l

op = (20± 3) 2πHz.
At the end of subsection 3.5.4.5 heating and loss mechanisms due to optical pumping

light are discussed in the scope of a measurement which probes a range of different
optical pumping rates.

1 here optimal means that heating backrelaxations are neglected
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3.5.4.2 Magnetic field
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Figure 3.22: a) Temperature and b) atom number after tdemag = 2 s of demagnetization
cooling with an optical pumping rate of Γop = (20 ± 3) 2πHz (orange) and without
optical pumping light (blue) and for a magnetic field ranging from Bz = 25 to 385mG.
The shaded regions indicate the typical variations of the respective parameters.

Another parameter which can be optimized is the magnetic field in z-direction. As it
can be seen in figure 3.6, for each temperature there is a magnetic field for which the
cooling rate becomes optimal. At a temperature of roughly Ti = 27 µK, which was the
starting temperature in the measurement presented in figure 3.21, the optimal magnetic
field without taking any heating meachanism into account is around 400mG (see fig.
3.6). Therefore we chose a value close to this magnetic field in this first measurement
(see fig. 3.21). However, experimentally a lower magnetic field value seems to be
more favorable. In figure 3.22 the temperature and atom number after tdemag = 2 s of
demagnetization cooling with an optical pumping rate of Γop = (20± 3) 2πHz (orange)
and magnetic field in z-direction ranging from Bz = 25 to 385mG is shown. This graph
shows that around Bz = 200mG the temperature has decreased from approximately
Tf = 18 µK at 385mG to 16 µK and the atom number has increased from roughly
106 to 1.2 · 106 for the same magnetic field values. In comparison with the case of no
optical pumping light (blue), the atom number has only decreased marginally between
Bz = 100 and 350mG and the temperature is below the value of no optical pumping
light in this whole magnetic field range.
Another important parameter is the phase space density. In fact, the objective of a

cooling process is not only to decrease temperature or stay at high atom numbers, but
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Figure 3.23: Phase space density D of the atoms after tdemag = 2 s of demagnetization
cooling with an optical pumping rate of Γop = (20 ± 3) 2πHz (orange) and no optical
pumping light (blue) and for a magnetic field ranging from Bz = 25 to 385mG. The
cooling performs best aroundBz = 225mG. The shaded regions indicate typical variations
of the phase space density.

to increase the phase-space density

D = nλ3
dB, (3.53)

where n = N/V is the atomic density and

λdB =
√

2π~2

mkBT
(3.54)

is the de Broglie wavelength which depends on the atomic mass m, the Boltzmann
constant kB and the temperature T . Hence, the phase-space density unifies a decrease
in temperature and an increase in atom number in an increase in phase-space density.
In a harmonic trap, the phase space density is given by [68]

D = N

(
~ω̄
kBT

)3

(3.55)

where ω̄ = (ωxωyωz)1/3 is the geometric mean of the trap frequencies in x-, y- and
z-direction.
In figure 3.23 the corresponding phase space density D (3.53) is plotted over the

magnetic field in z-direction. It is higher than in the case of no optical pumping light in
the whole magnetic field range mentioned-above. Furthermore, it seems to be optimal
around Bz = 225mG. Hence, this value is chosen for the following experiments which
start at the same initial temperatures.
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3.5.4.3 Polarization

Figure 3.24: Level scheme of the lowest Zeeman levels of the optical pumping transition.
Not fully σ−-, but partially π and σ+-polarized light leads to an excitation to higher
Zeeman-substates. The backrelaxation to lower Zeeman-substates leads to a heating of
the atomic cloud and eventually to atom loss.

In order to optically repump the atoms in the fully spin-polarized Zeeman-substate,
σ−-polarized light has to be applied (see sec. 3.4). If the optical pumping light is
not fully σ−-, but partially π- and σ+-polarized, it will lead to an excitation of the
atoms to energetically higher Zeeman-substates (see fig. 3.24). In the following the
backrelaxation to lower Zeeman-substates leads to a heating of the atomic cloud and,
if this energy is high enough for the atoms to leave the trap, it leads also to atom loss.
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Figure 3.25: Temperature of the atoms after tdemag = 2 s of demagnetization cooling at
a magnetic field of Bz = 225mG and with an optical pumping rate of Γop = (20±3) 2πHz
(orange) and with no optical pumping light (blue) for different angles of the λ/4-waveplate
which converts the formerly π-polarized light to σ−-polarized light. The cooling performs
best around a waveplate angle of 50◦. In the previous measurements the waveplate angle
was 43◦.

Therefore, the polarization of the pumping light has to be optimized. In our
experimental setup, a λ/4-waveplate converts the formerly π-polarized light into σ−-
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polarized light before it is directed into the science chamber and on the atoms. In
figure 3.25 the temperature of the atoms after tdemag = 2 s of demagnetization cooling
is plotted over the angle of the λ/4-waveplate. Here, demagnetization cooling was
performed at a magnetic field of Bz = 225mG and with an optical pumping rate of
Γop = (20± 3) 2πHz (orange). For comparison the case of no optical pumping light
is also displayed (blue). A clear dependence of the cooling effect on the angle of the
λ/4-waveplate can be observed. The lowest temperature can be achieved at an angle
of around 50◦. It decreases by ∆T ≈ 0.5 µK at this waveplate angle of 50◦ compared
to the previous waveplate angle (43◦). Therefore, further measurements are performed
at this waveplate angle of 50◦.

3.5.4.4 Transversal magnetic fields

Figure 3.26: Sketch of the experimental optical pumping setup. The σ−-polarized
pumping beam should be oriented parallel to the magnetic field. If the magnetic field
is slightly tilted as in this figure, the atoms do not see fully σ−-, but partially π- and
σ+-polarized light. This leads to heating as depicted in figure 3.24.

As the magnetic field axis defines the quantization axis, the σ−-polarized pumplight
should be oriented parallel to it. If the magnetic field is tilted with respect to the
optical pumping beam (see fig. 3.26), the atoms see no longer fully σ−-, but elliptically
polarized light, which consists of partially π- and σ+-polarized light. This leads to
heating as explained in subsection 3.5.4.3.

Consequently, the magnetic field values perpendicular to the optical pumping beam
Bx and By have to be minimized. In order to do so demagnetization cooling at the
optical pumping rate Γop = (20 ± 3) 2πHz and a magnetic field in z-direction of
Bz = 225mG is performed. After tdemag = 2 s the cooling performance is compared.
In figure 3.27 the temperature after this demagnetization sequence is shown for

different cage coil currents. The cage coil current is responsible for the generation of the
magnetic field a) in x-direction and b) in y-direction. In x-direction a strong dependence
of the temperature on the cage coil current can be observed. Demagnetization cooling
seems to perform best at IBx = −0.68A which is chosen as new standard value. In
y-direction the temperature is mostly independent on the cage coil current in the
measured range. Therefore we stay at the previous value of IBy = −0.5A.
After the optimization of the magnetic field in z-direction, the polarization, and

the transversal magnetic fields, the temperature after tdemag = 2 s of demagnetization
cooling at a optical pumping rate of Γop = 2π (20±3)Hz has changed from around Tf =
17 µK to less than T2 s = 15 µK, whereas the atom number has stayed approximately
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Figure 3.27: Temperature of the atoms after tdemag = 2 s of demagnetization cooling at
a magnetic field of Bz = 225mG and with an optical pumping rate of Γop = (20±3) 2πHz
(orange) and no optical pumping light (blue) dependent on a) the cage coil current which
is responsible for the magnetic field in x-direction and b) in y-direction.

constant around N2 s = (1.3± 0.1) 106. However, theoretically temperatures beyond
T2 s = 7 µK should be possible. One reason for this discrepancy between theory and
experiment could be the confinement which we will address in the next subsection.

3.5.4.5 Confinement

The confinement in a trap ensures rethermalization of the atoms. The timescale on
which this rethermalization happens is given by the trapping frequency in the respective
direction.
The previous measurements have been done in the single ODT 1 (see sec. 3.5.1)

with the following trapping frequencies ω̄ = (ωx ωy ωz)1/3 = (5.6 · 783 · 837)1/3 2πHz.
As the beam propagates in x-direction the trapping frequency in this direction is fairly
low (ωx = 5.6 · 2πHz). We can compare this trapping frequency to the optical pumping
rate Γop and the dipolar relaxation rate Γdr. The optical pumping rate was set in the
previous measurements to Γop ≥ (20 ± 3) 2πHz and the dipolar relaxation rate was
Γdr = βdr n ≥ 2 · 10−18 · 5 · 1017 · 2πHz = 2πHz. Consequently, the trapping frequency
ωx is close to the dipolar relaxation rate and even lower than the minimal optical
pumping rates we applied. Having this in mind, we can assume that we are not limited
by the optical pumping rate, but rather the loose confinement in x-direction.

Accordingly, we also used ODT 2 producing a crossed optical dipole trap (cODT, see
sec. 3.5.1) in order to confine the atoms better in x-direction. The trapping frequencies
in this crossed trap are ω̄ = (ωx ωy ωz)1/3 = (132 · 392 · 442)1/3 2πHz and thus in neither
direction lower than the minimal optical pumping rate Γop. However, we perform a first
evaporation step in the cODT before the previously mentioned trapping frequencies
are reached. Therefore, we start at lower initial temperatures around Ti = 7.4 µK. As
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a consequence, an optimal magnetic field value has to be found for this temperature
(compare sec. 3.5.4.2 and fig. 3.6).
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Figure 3.28: Temperature of the atoms after tdemag = 3 s of demagnetization cooling
with an optical pumping rate of Γop = (20± 3) 2πHz (yellow points) and without any
optical pumping light (blue points) dependent on a magnetic field which ranges from
Bz = 0 to 385mG. The blue curve shows the prediction of the equilibrium temperature
in accordance with equation 3.56. This equilibrium temperature is obtained, if no optical
pumping light is applied and therefore the cooling of the motional degree of freedom is
only due to a transfer of energy from the kinetic to the spin energy reservoir.

In figure 3.28 the temperature T dependent on magnetic field Bz of the corresponding
measurement is shown. Here, tdemag = 3 s of demagnetization cooling with an optical
pumping rate of Γop = (20± 3) 2πHz (yellow points) and without any optical pumping
light (blue points) has been performed at magnetic field values ranging from Bz = 0 to
385mG.

If no optical pumping light is applied and the atoms are initially polarized in the
lowest magnetic sub-state, the kinetic and spin degrees of freedom of the atoms will
thermalize via dipolar relaxation. The equilibrium temperature Teq after a long time
depends on the magnetic field Bz, the initial temperature Ti and the total angular
momentum J (for dysprosium J = 8) and can be calculated using [2]

3 kBTi = 3 kBTeq + gJµBB

∑2J
j=0 j exp (−j gJµBB

kBTeq
)∑2J

j=0 exp (−j gJµBB
kBTeq

)
. (3.56)

Hence, the temperature should be reduced after a sufficiently long hold time, even if
no optical pumping light is applied (see e.g. figure 3.28).
However, in figure 3.28 a discrepancy between the data (blue points) and the

theoretical equilibrium temperature (blue curve) can be observed. Experimentally
a clear minimum in temperature can not be observed in contrast to the theoretical
equlibrium temperature which has a minimum at Bz = 20mG. On the contrary,
experimentally a heating can be observed in both cases with and without applied
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Figure 3.29: a) Atom number and b) phase space density D of the atoms after
tdemag = 3 s of demagnetization cooling with an optical pumping rate of Γop =
(20 ± 3) 2πHz (yellow points) and without any optical pumping light (blue points)
dependent on a magnetic field which ranges from Bz = 0 to 385mG.

optical pumping light at magnetic field values Bz < 100mG. Up to now, we could not
explain this heating at low magnetic field values, which we observe not only in the
cODT, but also in ODT 1 (see fig. 3.22).
The experimental temperature evolution with and without optical pumping light is

very similar. Even though a lower temperature can be reached if optical pumping light
is applied and thus, an effect of demagnetization cooling can be observed, there is not
a clear improvement compared to the case of no optical pumping light. Furthermore,
in figure 3.29 it can be seen that the loss in atom number is even higher with optical
pumping light. Consequently, the phase space density is lower in the case of optical
pumping light. In this measurement heating and atom loss mechanisms, e.g. due to
optical pumping photons [55], outperform the effect of dipolar relaxation collisions
which lead to a cooling. A possible reason is the fact that we start already at
a lower initial temperature than in the previous measurement in ODT 1 (see sec.
3.5.4.1 to 3.5.4.4). However, the frequency of dipolar relaxation collisions diminishs
at lower temperatures, as lower temperatures are accompagnied by lower velocities
and thus less collisions happen in a certain time interval (see sec. 3.3.1). Furthermore,
evaporative cooling makes a major contribution to the overall cooling effect and hence
demagnetization cooling can not be evaluated independently this way. In order to
circumvent those problems demagnetization cooling should be performed in the crossed
optical dipole trap without applying a first evaporation step (see sec. 3.5.1). This way
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the initial temperature should be higher which is favorable for demagnetization cooling
as explained before.
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Figure 3.30: a) Temperature, b) atom number and d) phase space density after
tdemag = 3 s of demagnetization cooling with two different opical pumping intensities
(blue points: Iop = (12± 2) µW

mm2 , yellow points: Iop = (35± 6) µW
mm2 ) and at a detuning

ranging from ∆ = −100 to −35MHz with a resolution of 5Γ . For comparison the
respective temperature and atom number without optical pumping light is plotted as a
blue, dashed line. c) Optical pumping rate for the same detuning range and intensities
(see eq. 3.37).

However, heating and atom loss due to optical pumping light can be analyzed
qualitatively in this trap configuration. Since the optical pumping rate Γop depends
not only on the applied intensity Iop, but also on the detuning ∆ from resonance (3.37),
different optical pumping rates can be probed, if one stays at a certain intensity and
changes the detuning. As depicted in figure 3.30c, we could probe an optical pumping
rate ranging from Γop = 20 2πHz up to over Γop = 500 2πHz by applying optical
pumping light once with an intensity of Iop = (12±2) µW

mm2 and second Iop = (35±6) µW
mm2

and by tuning the frequency of the optical pumping light from ∆ = −100 to −35Γ . In
figure 3.30a, b and d temperature, atom number and phase space density are plotted
for those two different optical pumping intensities (blue points: Iop = (12 ± 2) µW

mm2 ,
yellow points: Iop = (35± 6) µW

mm2 ) and the mentioned detuning range. For comparison,
we show the case of no optical pumping light as a dashed blue line. The discussed
data has been taken after tdemag = 3 s wait time, during which a magnetic field of
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Bz = 137mG was applied.
In figure 3.30 it becomes apparent that the atom number and the phase space density

is highest in the case of no optical pumping light. Solely, the temperature shows an
improvement when adding optical pumping light. For Γop < 100·2πHz the temperature
is lower with optical pumping light than without. Hence, an effect of demagnetization
cooling in terms of temperature can still be observed. This tendency has already
become apparent in the previous measurement in the confined trap (see fig. 3.28 and
3.29). Further, the higher the optical pumping rate, the lower the atom number and
phase space density. For Γop > 100 · 2πHz heating due to the optical pumping light
outperforms cooling due to dipolar relaxation collisions and the temperature is higher
with applied optical pumping light than without it. Further, for Γop > 60 · 2πHz the
higher the optical pumping rate, the higher the temperature.
As it can be seen in figure 3.30c and d, at two different detunings and the same

optical pumping rate (Γop = 100 · 2πHz), the phase space density is approximately the
same (D = 10−3). Hence, in this first prove of principle measurement a dependence
of the performance of demagnetization cooling on the detuning can not be observed.
However, systematic measurements have to be taken in order to confirm or disprove
this first guess. Furthermore, a larger frequency range has to be probed. In subsection
3.4.4, we have seen that suppression of light assisted collisions can be achieved at
the detuning which corresponds to the node of the ground state wavefunction. In
Dysprosium the corresponding detuning is |∆| > 0.5 · 2πGHz ≈ 5 000Γ (see fig. 3.12).
However, the maximal detuning in the measurements which have been taken in the
scope of this thesis is |∆| = 10 · 2πMHz ≈ 100Γ and thus at a much lower value. In
order to further optimize demagnetization cooling, systematic measurements of its
performance with constant optical pumping rate and a detuning which ranges up to
|∆| = 10·2πGHz ≈ 100 000Γ have to be taken. In order to localize the node position of
the ground state wavefunction blue detuning is favorable, as in contrast to red detuning
the binary loss rate is not modulated by bound state resonances (see fig. 3.11).

3.5.4.6 Efficiency

The most important figure of merit of any cooling technique is the efficiency. It is
defined as

χ = − log (Df/Di)
log (Nf/Ni)

(3.57)

and relates the gain in phase-space density to the loss in atom number. In a double
logarithmic plot of the phase-space density over the number of atoms, the efficiency
corresponds to the negativ slope of the curve which describes the evolution of the
phase-space density and the atom number.
In figure 3.31 phase space density and atom number evolution of two exemplary

measurements are plotted in a double-logarithmic plot. One measurement shows the
case of no optical pumping light (green points) and the other measurement shows
the evolution with an optical pumping rate Γop = (16.8 ± 2.2) 2πHz (blue points).
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Figure 3.31: Double logarithmic plot of phase space density over atom number evolution.
Both data sets show the temporal evolution during to t = 2 s in ODT 1 at a magnetic
field Bz = 385mG and at a detuning of ∆ = 20Γ . For comparison, there is one data set
without and one with applied optical pumping light (green and Γop = (16.8± 2.2) 2πHz,
blue points respectively).

Both have been performed in ODT 1, at a magnetic field Bz = 385mG, a starting
temperature of T0 ≈ 38 µK and at a detuning of ∆ = 20Γ .
The gain in phase space density is clearly higher for Γop = (16.8± 2.2) 2πHz than

for Γop = 0. However, during the first second both cases show a similar behaviour. The
slope of the case with optical pumping light is slightly higher, but the loss in atom
number is approximately the same. A possible explanation is that the cooling process is
dominated by evaporative cooling during the first second. Therefore, the measurements
presented in subsection 3.5.4.1 to 3.5.4.4 are taken after a wait time of tevap = 1.5 s in
order to ensure that the observed effect is dominated by demagnetization cooling. In
figure 3.31 we can see that after approximately one second the atom number and the
gain in phase space density saturates in the case of Γop = 0. This may be interpreted
as a saturation of evaporative cooling. In contrast, for Γop = (16.8± 2.2) 2πHz the loss
in atom number decreases after approximately one second, but a gain in phase space
density can still be observed. Here, the effect of demagnetization cooling becomes
visible. A fit to the data gives the efficiencies listed in table 3.1.

In evaporative cooling efficiencies of χ ≈ 4 can only be reached with substantial
effort [69]. Hence, demagnetization cooling clearly outperforms evaporative cooling

Efficiency χ t = 0...1 s t = 1...2 s
Γop = 0 1.22± 0.24 -
Γop = (16.8± 2.2) 2πHz 4.46± 0.54 7.95± 1.58

Table 3.1: Efficiencies obtained by a fit to the data presented in fig. 3.31 in the time
interval indicated in the first line of the table.



3.5 Experimental realization 53

already in this first dysprosium proof of principle experiment.
However, by a post-cooling step, which I mentioned at the end of section 3.5.1,

we can reach a maximal cooling efficiency of χ = 6.7 [5]. Hence, this post-cooling
has a similar cooling efficiency as our first proof of principle demagnetization cooling
experiment.





CHAPTER 4
Broad Feshbach resonances

Feshbach resonances are a very powerful tool in atomic and molecular physics in order
to control the interactions between the atoms [10]. Adjusting the interaction strength
in an ultracold Fermi gas of atoms led to the direct observation of a molecular Bose-
Einstein condensate and the cross-over from a Bardeen-Cooper-Schrieffer (BCS)-type
superfluid to a Bose-Einstein condensate (BEC) [70]. Furthermore, Efimov three-body
physics and related few-body phenomena could be observed by tuning the interactions
in the resonant and universal regime [71].
In this chapter, I will briefly explain the elementary properties of a Feshbach

resonance. Following this, I will report on our measurement of two broad Feshbach
resonances in Dysprosium and their characterization by atom loss spectroscopy and
magnetic field modulation spectroscopy. Furthermore, we analyzed the loss dynamics
on resonance using a universal model and the temperature dependence of the atom
loss, which I will present in the last section.

4.1 Feshbach resonance
The physical origin and theoretical details of Feshbach resonances are very well explained
and dicussed in [10]. Here, I will focus on the elementary properties of a Feshbach
resonance.

Magnetic Feshbach resonances can be understood in a simple picture of two colliding
atoms, which experience a molecular potential (see fig. 4.1). The molecular potential
can support discrete rovibrational bound molecular states. At finite magnetic field the
potential splits into Zeeman-substates. In order to understand the basic principle of a
Feshbach resonance, we can concentrate on two of those molecular potential curves
(see fig. 4.2). For collision processes with small scattering energy Esc, only one of
those potentials is energetically accessible. This potential represents the energetically
open channel, which is also called background potential Vbg(R). For large internuclear
distances R, it connects asymptotically to two free atoms. The other potential which
is energetically inaccessible for the atoms is referred to as the closed channel Vc. It
supports discrete rovibrational bound molecular states, which can eventually be located

55
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Figure 4.1: Exemplary explanation of the emergence of different potential curves.
a) Molecular potential curve which is experienced by two colliding atoms (b) at zero
magnetic field. The potential supports several rovibrational states. c) At finite magnetic
field B 6= 0 the Zeeman-substates at large interatomic separations R→∞ split as well
as the corresponding potentials.
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Figure 4.2: Basic two-channel model for a Feshbach-resonance. a) Molecular potential
curve of the closed Vc(R) and open channel Vbg with respective magnetic moments µc
and µbg. The open channel is in contrast to the closed channel energetically accessible
for two atoms colliding with energy Esc. b) A resonance occurs when two atoms colliding
with the energy Esc couple resonantly to a bound molecular state in the closed channel.
The coupling is symbolized by a green arrow.

A Feshbach resonance occurs when the energy one of those bound molecular states
is equal to the energy of the scattering state in the open channel. Then even a weak
coupling between closed and open channel can lead to a strong mixing between the



4.1 Feshbach resonance 57

scattering state and the bound molecular state. The energy difference between closed
and open channel can be tuned by a magnetic field, if the magnetic moments of closed
and open channel are different. We refer to this type of Feshbach resonance as a
magnetic Feshbach resonance.
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Figure 4.3: Properties of a Feshbach resonance. Graph taken from [10]. a) Comparison
of contact (grey sphere) and dipolar (green-red magnet) interaction, b) scattering length
as and c) molecular state energy E close to a magnetically tuned Feshbach resonance.
The binding energy Eb = −E is defined to be positive. In the inset E is shown in the
universal regime close to the resonance at large and positive scattering length as.

The energy E of a weakly bound molecular state near a magnetic Feshbach resonance
is shown in figure 4.3c relative to the threshold of two free atoms with zero kinetic
energy. It can be described in two different regimes. At magnetic field values away from
resonance, where the energy of the bound molecular state is lower than the threshold
of the open channel, the molecular state energy E increases linearly with the magnetic
field, where the slope is given by the difference in magnetic moments of the open
and closed channel δµ = |µbg − µc|. Closer to the resonance, the coupling of the two
channels mixes in contributions of the open channel and bends the molecular state:
Eb ∝ (B −B0)2.

In the vicinity of the resonance the scattering of two free atoms is greatly enhanced
due to the presence of the near-threashold bound state. It can be drawn an analogy
to resonances in other systems, which are characterized by a phase shift of π across
the resonance. The same phase shift in the wave-function appears across a Feshbach
resonance and enhances the scattering. Without going into further details of scattering
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theory [10], the tuning of interactions at a Feshbach resonance can be described by the
variation of the s-wave scattering length as as a function of the magnetic field B [72],

as(B) = abg

(
1− ∆B

B −B0

)
. (4.1)

This relation is visualized in figure 4.3b. As already explained in chapter 3.4.1, the
scattering length as characterizes the interaction strength. The scattering length which
is associated with the background potential Vbg(R) and therefore called background
scattering length abg represents its value far away from resonance. It is related to the
energy of the last-bound vibrational level. The resonance is located at the magnetic
field B0 where the scattering length diverges (a → ±∞). The resonance width ∆B

depends on the coupling strength between the open and closed channel. The zero
crossing of the scattering length is located at the magnetic field B = B0 +∆B.

The binding energy close to the resonance, where the scattering length diverges and
the two channels are strongly coupled, can also be expressed in terms of the scattering
length:

Eb = ~2

2µred a2
s

∝ (B −B0)2 , (4.2)

where µred is the reduced mass of the atom pair. The bend shown in the inset of fig.
4.3c reflects that the binding energy depends quadratically on the magnetic detuning
from resonance B − B0. Since in this region the details of the interaction become
irrelevant, it is called universal regime [10, 73].

As already outlined in chapter 2, in Dysprosium both the contact interaction and the
magnetic dipole-dipole interaction play an important role. Furthermore, we introduced
the dipolar length D in order to characterize the dipolar interactions (see eq. 3.3
and [6, 40]). Comparing the background scattering length with the dipolar length,
we saw that in the regime of the background scattering length, and hence away from
resonance, the interaction is dominated by dipolar interactions (see eq. 3.31, 3.32, and
3.3). However, tuning the scattering length with a Feshbach resonance allows one to
choose a contact- or dipolar-interaction-dominated regime (see fig. 4.3a).

4.1.1 Strength of a Feshbach resonance
In order to characterize the strength of a resonance, a dimensionless resonance strength
parameter

sres = abg δµ∆B

ā Ē
(4.3)

can be defined [10]. Here, ā = 4π
Γ 2(1/2)

(
5
4

)1/4
RB ≈ 1.01 082RB is the mean scattering

length [74], Ē = ~2

2µredā2 is a corresponding energy scale, and RB =
(
µred C6
10 ~2

)1/4
is the
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van der Waals length scale (see sec. 3.4).
There are two limiting cases. First, if sres � 1, the resonances are open-channel-

dominated. The bound state is universal over a large fraction of the resonance width
∆B and the binding energy EB can be well approximated by equation 4.2.
Second, if sres � 1, the resonance is closed-channel-dominated. The bound state is

universal only over a small fraction of the resonance width ∆B near B = B0 and the
binding energy EB needs to be modeled by a coupled-channel description [10].
The interaction strength can be described in both cases by the scattering length

given by equation 4.1.

4.2 Universal loss dynamics
Near a Feshbach resonance interactions are strongly enhanced, leading to an increased
collision rate. This increase in collision rate leads to an increase of atom losses by two
main mechanisms: three-body recombinations and 2-body evaporation.
Two- and three-body collision losses can be quantified by rate equations for atom

number and temperature. Those rate equations will be discussed in the following
subsections on the basis of [75].

4.2.1 Rate equation for atom number
4.2.1.1 Three-body recombination loss

In a three-body collision, two colliding atoms form a dimer and the binding energy is
transfered into kinetic energy of the dimer and the third atom. Usually the kinetic
energy is larger than the trap depth, which allows all three atoms to leave the trap.
Since three-body recombination processes occur more often at high densities and thus
at the center of the trap were the temperature is the lowest, atoms with small potential
energy are lost. Therefore, three-body losses lead to a net heating of the atomic cloud
[75].
The loss rate of atoms due to three-body recombination is given by [75]

dN
dt = −3

∫ L3n
3(r)
3 d3r = −L3 〈n2〉N , (4.4)

where L3n
3(r)/3 is the three-body recombination rate and the factor of 3 in front of

the integral reflects the fact that all three atoms are lost per recombination event [75].
At finite s-wave scattering length (ask � 1) in the universal regime, L3 can be

expressed in the form [76]

L3 = C(as)
~
m
a4
s , (4.5)
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where a general a4
s-scaling has been seperated from an additional dimensionless depen-

dence C(as), which is given in [76] and for three interacting bosonic dipoles in [77].
For a Boltzmann distributed gas in a harmonic trap:

〈n2〉 =
(

mω̄2

2
√

3πkB

)3
N2

T 3 (4.6)

and hence the rate equation for three-body losses of bosonic dipoles at finite s-wave
scattering length as in the universal regime reads

dN
dt = −γas

3
N3

T 3 , (4.7)

where

γas
3 = C(as)

~
m
a4
s

(
mω̄2

2
√

3πkB

)3

. (4.8)

L3 is proportional to a4
s, but when approaching the resonance, the scattering length

diverges and becomes larger than any other length scale (ask � 1, where k is the
relative wavenumber of the colliding particles). In this so-called unitary regime we may
express as by 1/k, where k ∝

√
T . Therefore, a naiv guess would be that L3 shows a

T−2 behaviour. Indeed, [75] showed that in the unitary regime L3 can be approximated
by

L3 ≈
~5

m3 36
√

3π2 1− e−4η∗

(kBT )2 = λ3

T 2 , (4.9)

where η∗ is the inelasticity parameter which characterizes the strength of the short
range inelastic processes, i.e. the efficiency with which three atoms in contact recombine
to a dimer and a free atom, and λ3 is a temperature-independent constant. Finally the
rate equation reads

dN
dt = −γu

3
N3

T 5 , (4.10)

where

γu
3 = λ3

(
mω̄2

2
√

3πkB

)3

. (4.11)

As the change of atom number in time scales with T−5 in temperature, three-body
atom loss in the unitary regime depends more strongly on temperature than for finite
scattering length. Finally, the dependence of atom loss on temperature and the
inelasticity parameter can be studied in the unitary regime.
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4.2.1.2 Two-body losses

If two atoms collide with the initial momenta p1 and p2, they emerge from the collision
with the momenta p3 and p4. If one of them acquires a momentum |p3| ≥

√
2mU ,

where U is the potential depth, it will leave the trap. This mechanism is called
evaporation.

The loss of atoms due to evaporation can be described by the following rate-equation
for the atom number [75, 78]:

dN
dt = −n2

0 σ v̄ e
−η Vev ≡ −ΓevN , (4.12)

Here, n0 = N/Ve is the peak density and Ve is the effective volume of the sample. In
a harmonic trap Ve is given by Ve =

(
2πkBT
mω̄

) 3
2 [75]. v̄ =

√
8 kBT
πm

is the mean velocity,
η = U/kBT is the ratio of potential depth and thermal energy, andVev is the effective
volume for elastic collisions which lead to evaporation. Its expression can be found in
[78]. The low-energy scattering cross section is given by

σ(k) = 8π
k2 + a−2

s

, (4.13)

where k is the relative momentum of the colliding partners. For ask � 1 it reduces to

σas = 8πa2
s . (4.14)

For a finite scattering length and additionally a finite dipolar length D 6= 0 the
scattering cross-section becomes [40]

σas,D = 8π
(
a2
s + 4

45 D
2
)
. (4.15)

At unitarity (ask � 1) the scattering cross-section reduces to

σ = 8π/k2 (4.16)

Note that as
unitarity→ 1/k applies here, too. The relative momentum of the colliding

partners is given by |k| = k =
√

mU
2 ~2 [75]. This results in the following collisional

cross-section at unitarity

σU = 16π~2

mU
(4.17)

which is independent of the energy of the colliding partners.
Combining in the unitary limit three-body (eq. (4.10) and (4.11)) and two-body
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loss, the total atom number loss rate equation can be expressed as follows

dN
dt = −γu

3
N3

T 5 − γ
U
2 e
−ηVev

Ve

N2

T
, (4.18)

where

γU2 = 16
π

~2ω̄3

kBU
. (4.19)

At finite scattering length and finite dipolar length taking into account three-body
recombination loss (see eq. (4.7) and (4.8)) and evaporative loss, the total atom number
loss rate equation can be expressed as

dN
dt = −γas

3
N3

T 3 − γ
as,D
2 e−η

Vev

Ve

N2

T
, (4.20)

where

γas,D
2 = 8

π

m ω̄3

kB

(
a2
s + 4

45 D
2
)
. (4.21)

4.2.2 Rate equation for temperature
4.2.2.1 Three-body recombination heating

Reference [75] points out that the lost energy per lost atom in a three-body recombina-
tion process at unitarity is

Ė

Ṅ

3b= 4
3kBT , (4.22)

whereas at finite scattering length it is higher

Ė

Ṅ

3b= 2 kBT . (4.23)

The mean energy per atom in the harmonic trap is 3 kBT . Therefore, in each three-
body recombination event a loss of an atom is associated at unitarity with an excess
of (3 − 4/3) kBT = 5/3 kBT and at finite scattering length [79] with an excess of
(3− 2) kBT = kBT of energy that remains in the sample.

The equations (4.22) and (4.23) combined with the fact that for a non-interacting
gas E = 3N kBT and eq. (4.10) at unitarity and (4.7) at finite scattering length
respectively can be transformed into the rate equation for the rise of temperature per
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lost atom. At unitarity, it is given by [75]:

dT
dt = 5

3
T

3 γ
u
3
N2

T 5 , (4.24)

whereas for finite scattering length, we obtain

dT
dt = T

3 γ
as
3
N2

T 3 . (4.25)

4.2.2.2 Evaporative cooling

In two-body collisions, mostly atoms with a high potential energy leave the trap. This
mechanism is used in forced evaporative cooling, where the trap depth is decreased
in order to remove high-energy atoms from the thermal cloud, which leads to a net
cooling effect after thermalization [80].
In reference [75] the temperature rate equation is derived as follows

dT
dt = −Γev (η + κ̃− 3) T3 , (4.26)

where in a harmonic trap [78]

κ̃ = 1− P (5,η)
P (3,η)

Ve

Vev
(4.27)

and P (a,η) is the incomplete Gamma function. Γev depends on the scattering cross
section σ (see eq. (4.12)). If the respective scattering cross-section is plugged in, the
temperature rate equation can be expressed either in the unitary regime or for finite
scattering and dipolar length. Presented in a similar manner as in the previous section
the temperature rate equation reads

dT
dt = −γ2 e

−η Vev

Ve
(η + κ̃− 3)N

T

T

3 , (4.28)

where

γ2 =
γ

as,D
2 if ask � 1
γU2 if ask � 1

. (4.29)

Combining the process of recombination heating and evaporative cooling at unitarity
(eq. 4.24 and 4.28) the temperature rate equation reads [75]:

dT
dt = T

3

(
5
3γ

u
3
N2

T 5 − γ
U
2 e
−ηVev

Ve
(η + κ̃− 3)N

T

)
, (4.30)
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whereas at finite scattering and dipolar length we get (eq. 4.25 and 4.28)

dT
dt = T

3

(
γas

3
N2

T 3 − γ
as,D
2 e−η

Vev

Ve
(η + κ̃− 3)N

T

)
. (4.31)

The atom loss dynamics are described at unitarity by the set of coupled rate equations
(4.18) and (4.30) and at finite scattering and dipolar length by the set of coupled rate
equations (4.20) and (4.31).
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4.3 Characterization of two broad Feshbach resonances in
dysprosium

In dysprosium, the complex electronic structure leads to a large magnetic dipole
moment (see chapter 2), which in turn gives rise to a complex molecular spectrum.
Figure 4.4 shows an example of the potential energy curves of 164Dy + 164Dy collisions
which dissociate to the six energetically lowest Zeeman states. The high number of
potentials indicates the high number of possible Feshbach resonances [81].
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Figure 4.4: Longrange potential energy curves of collisions of two 164Dy atoms in a
magnetic field B = 50G as a function of internuclear separation. Image taken from
[81]. The red dashed line at zero energy indicates the energy of the open channel. A
resonance occurs when a bound state has the same energy as the open channel. Here mj

is the projection of the sum of the total angular momentum of the two colliding atoms
j = J1 + J2 on the quantization axis The graph shows the channels with even l ≤ 10.
The value of l is indicated for the mj = −16 curves.

In alkali atoms the coupling between open and closed channel is hyperfine induced
[10]. However, the bosonic dysprosium isotopes have a nuclear spin I = 0. The complex
electronic structure of dysprosium leads not only to a large magnetic dipole moment,
but also to a strong anisotropy of the van der Waals interaction. Similar to Erbium,
this gives rise to a very dense spectrum of narrow Feshbach resonances. The nearest
neighbour distribution can be attributed to a chaotic distribution commonly observed
in multi-level systems with strong inter-level interactions [28, 29].
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Further, we could observe two broad Feshbach resonances in the fully spin-polarized
ground state of 164Dy, J = 8, M = −8. In this section, I will present our respective
inelastic loss spectroscopy measurements up to a magnetic field B = 600G, which
reveals loss features with widths of several Gauss. Besides, we did magnetic field
modulation spectroscopy in order to measure the binding energy Eb, which I will
present in the second subsection.

4.3.1 Atom loss spectropsopy
The most frequently observed signature of Feshbach resonances are resonant losses.
These losses may be induced by three-body collisions and occur as internal energy of
the colliding atoms is released into kinetic energy. This happens when the colliding
atoms end up in a lower internal state or when molecules are formed. The frequency
of inelastic collisions and thus inelastic loss is strongly enhanced close to Feshbach
resonances. This is due to a strong coupling of the Feshbach bound states to inelastic
outgoing channels. Therefore, near a Feshbach resonance, the probability that the
atoms gain kinetic energy due to inelastic collisions is strongly enhanced [10].
Consequently, atom loss spectroscopy permits to determine the position and width

of Feshbach resonances.

4.3.1.1 Experimental procedure

We prepared the atomic cloud in the crossed optical dipole trap as explained in
subsection 3.5.1 and [29, 32]. By evaporation at a magnetic field close to 1G we
reached temperatures of T ≈ 0.6 µK. Then, we recompressed the trap by increasing
the power of the beams by a factor of approximately 2 in 100ms. This was done for
two reasons: First, we suppressed additional atom loss due to residual evaporation,
which may be induced by increased elastic collisions. Second, we created a strong bias
magnetic field with a pair of coils in Helmholtz configuration (see fig. 3.14), which
created a gradient field weakening the trap confinement. Recompression minimizes
this weakening of the trap confinement. In order to calibrate the magnetic field,
we performed radio-frequency (RF) spectroscopy between the two lowest Zeeman-
substates of 164Dy. For this purpose, we applied electromagnetic radiation in the
radio-frequency range to a sample of atoms in the lowest Zeeman substate at a certain
unkown magnetic field value. If the applied frequency matches the Larmor frequency,
we drive the excitation between the two lowest Zeeman-substates and observe this
resonance as an increase in atom loss. As a consequence, the energy difference between
the two lowest Zeeman-substates is determined by the resonance. Furthermore, we
know the Zeeman-splitting as a function of the magnetic field. Therefore, we could
deduce the applied magnetic field value by this measurement.
The magnetic field was ramped up in 15ms to the target value. If we turned

on the magnetic field, we observed a residual heating. This heating was partially
due to an unintentional change of the magnetic field direction when we ramped to
high magnetic fields. When the magnetic field changes its sign, the cloud is in a
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magnetic field B = 0, which allows the atoms to slightly depolarize. When the field is
increased inelastic dipolar relaxation collisions cause a heating of the cloud. Probably,
the residual magnetic field gradient contributed to this heating as well. Finally, we
obtained typically samples which contained 105 atoms in their lowest Zeeman sublevel
M = −8 at a temperature of T = 2.4 µK.
For atom loss spectroscopy, the atoms are now held in the optical dipole trap at a

constant magnetic field value during a certain wait time. During this time the atoms
undergo elastic and inelastic collisions. The latter leads to atom loss from the trap as
explained at the beginning of this subsection 4.3.1.

4.3.1.2 Feshbach resonance spectrum
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Figure 4.5: Feshbach resonance spectrum of 164Dy in J = 8, M = −8 with 100mG
resolution by atom loss spectroscopy at a temperature of 2.4 µK. The atom number is
normalized with respect to a reference atom number Nref which was taken at low field
every 30 images. [6]

Feshbach resonance spectrum of 164Dy at T = 2.4 µK In figure 4.5 the final atom
number is plotted for magnetic field values ranging from B = 60 to 580G with a
resolution of 100mG. In the corresponding measurement the wait time in the dipole
trap at the respective constant magnetic field value was t = 2 s, the initial temperature
of the atoms was 2.4 µK and the starting atom number was N0 = 1.8 · 105.
We can observe a very high energy-level density as it was observed in [29, 82].

However, several broader features form an irregular pattern on top of the narrow
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resonances. Two especially broad features appear in 164Dy around 80G and around
180G.

In the next sections, we focus on investigation techniques to determine typical
parameters of Feshbach resonances. Magnetic field modulation spectroscopy is a tool
to map weakly bound molecular states. By this method, we show in the next section
that the broad loss features can be attributed to a single molecular state and hence
the losses can be analyzed in terms of universal scattering behaviour.
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4.3.2 Magnetic field modulation spectroscopy
In order to address the question whether those broader features correspond to single
resonances with a large magnetic field width, we performed magnetic field modulation
spectroscopy [83, 84].

B

Eb

Ekin

Figure 4.6: Scheme of molecular association by magnetic field amplitude modulation.
If the oscillation of the magnetic field amplitude is on resonance with the binding energy
of a dimer, the respective molecules form.

In magnetic field modulation spectroscopy molecules are associated by modulating
sinusoidally the magnetic field amplitude. The energy of the oscillating magnetic field
stimulates an atom pair to lose energy emitting a photon with very low frequency and
thereby decay to a bound molecular state at a lower energy. However, molecules can
only be associated by this technique, if the frequency of the oscillating magnetic field is
near the binding energy of the dimer [83]. Either the molecules are no longer trapped
or they induce increased three-body losses (Dy2 +Dy → 3Dy+ energy). Therefore,
a decay in atom number indicates that molecules have been formed and hence, the
energy of the oscillating magnetic field is close to the binding energy of the respective
molecules.
Consequently, we can measure the energy of the bound states as a function of the

magnetic field by this technique of molecular association by magnetic field modulation.
We are especially interested in the broader features around 80G and 180G. We

focus for magnetic field modulation spectroscopy on the regions 55G ≤ B ≤ 75G and
160G ≤ B ≤ 180G.

Experimentally, we realize this technique by modulating the magnetic field around
its bias value B at the respective radio frequencies during a time between 100ms
and 500ms and with a modulation amplitude between 100mG and 500mG. The
modulation is applied with an additional single coil which is placed near the atom
cloud and an oscillating current.
In figure 4.7 exemplary magnetic-field modulation spectra are shown for different

magnetic field values. In those spectra the final atom number is plotted over the
applied radio-frequency. The kinetic energy distribution of the associated atoms leads
to a broadening of the spectrum and is given by a Maxwell-Boltzmann distribution.
Therefore, by fitting a Maxwell-Boltzmann distribution we can extract the binding
energy of the weakly bound molecular state Eb at the chosen magnetic field value. The
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Figure 4.7: Exemplary magnetic-field modulation spectra at two different magnetic
field values around each broad resonance. We extract the binding energy Eb by a fit with
the Maxwell-Boltzmann distribution (solid line) to the data.

width of the distribution is in qualitative agreement with our temperature.
In figure 4.8 several of those spectra are plotted over a magnetic field range

B ∈ [72.0G, 72.6G] and a modulation frequency range νRF ∈ [−200kHz, − 10 kHz].
The normalized atom number is visualized by a blue colour bar. Typically, we observe
two kinds of features, which are exemplarily depicted in this figure. First, a spectrally
narrow feature, which varies slowly in binding energy when the magnetic field is changed
and second, spectrally broad features which are localized at a certain magnetic field.
We associate very broad spectra to bound states with a high slope of the binding energy
versus the magnetic field. Those bound states are responsible for narrow resonances.
The slow variation of the narrow feature in binding energy may be associated with the
weakly bound state which is responsible for the broad resonance.

As explained in figure 4.7, we extract the binding energy Eb(B) of this weakly bound
state and show it in figure 4.9b (red dots).
Additionally, we focus on those two broad features with atom loss spectroscopy. In
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Figure 4.8: Part of the magnetic field modulation spectroscopy data for
B ∈ [72.0G, 72.6G]. The atom number N normalized by the atom number with-
out field modulation N0 is depicted as a function of frequency modulation νRF and
magnetic field B. We observe a signature which varies slowly in frequency with magnetic
field and another signature whith high frequency-vs.-magnetic field slope. The former
is associated to a weakly bound state responsible for the broad Feshbach resonance at
76.9G and the latter to a bound state which creates a narrow resonance.

figure 4.9a the respective two data sets with a magnetic field resolution of 20mG are
presented. Those atom-loss spectra were obtained at a temperature of 500nK and an
initial atom number of N0 = 1.0 · 105 after a wait time of 500ms.
Comparing the atom loss spectrum with the magnetic field modulation spectrum,

it becomes apparent that the binding energy appears only on the low-field side of
the two broad resonances. Besides, for both broad resonances, the binding energy
Eb(B) varies very slowly with the magnetic field (< 1 MHz

10 G ). Furthermore, it shows a
quadratic behaviour over a range of several gauss. As explained in section 4.1 this
quadratic behaviour implies a coupling of the bound state with the open channel [10].
The bound state seems to have an open-channel dominated character over a broad field
range. Despite many crossings with a dense sea of narrow resonances, the molecular
bound state remains clearly visible. In fact, in figure 4.10 the signatures of avoided
crossings with other bound states become apparent and are highlighted by a blue
background. They reveal a coupling of the weakly bound dimer to another state which
is stronger than usual. Furthermore, they can be associated to certain corresponding
"broader-than-usual" narrow resonances.

By theoretical analysis in cooperation with Paul S. Julienne and Krzysztof Jachymski
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Figure 4.9: Focus on the two broad Feshbach resonances of 164Dy. a) Atom loss
spectroscopy at 500 nK with a resolution of 20mG. We observe two broad resonances
that overlap with a sea of narrow resonances. b) The binding energy of weakly bound
dimers extracted from the spectra of magnetic field modulation spectroscopy (red circles).
The solid (dashed) lines are obtained by fitting the coupled-channel calculations (universal
expression (4.2)) to the data. We extract abg∆bg from these fits (see table 4.1). c) The
scattering length as(B). The red circles have been obtained by converting the binding
energy data of b) using coupled-channel calculations for as(Eb). The solid lines are a fit
to this data using the universal formula (4.1). The dashed lines represent the scattering
length which results from the fit of the binding energy Eb(B) by the universal formula
(4.2) assuming abg = 91 a0.

we could get further insight into the properties of the two broad Feshbach resonances.
First, we could extract a high lower bound of the pole strength sres ≥ 10 for both broad
resonances by this analysis. This large sres value indicates that the corresponding
resonance is open channel dominated and shows a universal behaviour (see subsec.
4.1.1) [10]. Second, this analysis provides evidence that the open-channel dominated
character of the broad Feshbach resonance persists across many narrow resonances
and that away from them we can express the scattering length simply by equation
(4.1). Furthermore, up to binding energies Eb ≤ 1MHz, the binding energy may be
approximated by the universal expression (4.2). Next, Paul S. Julienne and Krzysztof
Jachymski deduced the binding energy dependence on the scattering length Eb(as) and
abg ∆B by coupled channel (CC) calculations. In figure 4.9c the consequent scattering
lengths corresponding to the experimental measured binding energies are plotted as
red circles. Additionally, we can extract abg ∆B by a fit of the universal formula (4.1)
to the scattering lengths (see fig 4.9c, solid line). The parameters obtained by fitting
both the universal expressions and CC calculations to the data are depicted in table
4.1. The fits to our binding energy data by coupled channel calculations and the
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Figure 4.10: Focus on the atom loss spectrum and the binding energy on the low-field
side of the resonance at B0 ≈ 80G. In the blue areas, we observe strong avoided crossings
in the binding energy and quite strong narrow Feshbach resonances. In those regions,
we do not know the scattering length, whereas appart from these areas there are only
narrow resonances which modify as only locally.

resonance 1 resonance 2
B0 abg ∆B B0 abg ∆B

universal 76.9(5)G 2810(100)G a0 178.8(6)G 2150(150)G a0
numerical CC 76.8(5)G 2700(100)G a0 179.1(6)G 2540(110)G a0

Table 4.1: Resonance parameters which were obtained by fits of the binding energy to
the universal expression (4.2) and to a numerical coupled channels calculation.

universal quadratic dependence Eb = −
(
B−B0
abg ∆B

)2
are represented in figure 4.9b by a

solid line and a dashed line respectively. Comparing the extracted parameters in table
4.1 and the fits of the binding energy, we see that the coupled-channel theory and the
universal fit are in close agreement with each other for the lower-field resonance and in
reasonable agreement for the higher-field one.
However, we can only extract the product abg∆B. Therefore, a second method is

required in order to determine the background scattering length abg and the resonance
width ∆B independently (see sec. 4.3.2.1).

Assuming the value of abg ∆B which was obtained by the universal fit, we obtain
the following scattering length for the lower-field resonance:

as(B) = abg −
2810G a0

B − 76.9G (4.32)
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and for the higher-field resonance:

as(B) = abg −
2150G a0

B − 178.8G . (4.33)

This scattering length is also plotted in figure 4.9c as a dashed line (here: abg = 91 a0,
see subsubsec. 4.3.2.1). It is in close agreement with the CC results. However, it is
only valid at magnetic field values away from the narrow resonances (see fig. 4.10) as
they perturb the scattering length locally. In figure 4.10 the regions were the extracted
scattering length as(B) does not hold are highlighted by a blue background.
More information on the theoretical analysis of the broad Feshbach resonances is

given in reference [6] and its supplemental material.

4.3.2.1 Localization of the zero crossing

With the methods presented up to now, we could only extract the product abg∆B from
the data. By determining the zero-crossing of the scattering length, we can derive
independently the resonance width ∆B = B(as = 0)−B0 and thus also the background
scattering length abg from the universal model (4.1).
Therefore, in this section several methods are explained in order to indicate the

localization of this zero crossing.
In order to do so, we will at first focus on an exemplary Feshbach resonance (fig. 4.11b)

Here, we can see that at one side of the resonance the atom number shows a local
maximum. This peak in atom number corresponds to the zero-crossing of the scattering
length. If the scattering length is zero as = 0, the collision and thus also the loss rate is
minimal1. This leads to the asymmetry of the lineshape. The fact that the zero-crossing
is located at a magnetic field B > B0 indicates that the background scattering length
is positive abg > 0 (see fig. 4.3). For a negative scattering length abg < 0 this zero
crossing would be on the other side of the Feshbach resonance B < B0.
Hence, the asymmetry of the lineshape of narrow resonances gives a hint on the

localization of the zero-crossing of the scattering length . The scattering length which
orginates from a broad feature can be interpreted as a "local" background scattering
length ãbg of a narrow resonance. If the local zero-crossing is on the high- (low-) field
side of the resonance, ãbg > 0 (ãbg < 0).
In figure 4.11, we see several resonances that are sufficiently broad to extend over

several data points. Here the asymmetry of their lineshapes can be observed. In figure
4.11a and b the lineshape corresponds to ãbg > 0. Both corresponding resonances are
located on the low-field side of the broad resonance at B0 = 76.9G. Figure 4.11c and
d show resonances on the high-field side of the broad resonance. Here, the symmetry

1 The two-body collision rate is proportional to the elastic scattering cross-section (4.12), which is
given in a dipolar gas by σas,D = 8π

(
a2
s + 4

45 D
2) (4.15). Therefore, the dipolar interaction still

induces collisions even when as vanishes. However, as D is independent of the magnetic field, a
minimum in scattering length as corresponds to a minimum in scattering cross-section and thus
also a minimum in collision rate.
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Figure 4.11: Focus on narrow resonances [6]. (a) and (b) are examples of resonances
at magnetic fields B < B0 = 76.9G which show a zero-crossing on their high-field side
(ãbg > 0). (c) and (d) show resonances with inverted asymmetry (̃abg < 0), which occur
for B > B0. Thereafter, at 109G (e) we observe a resonance with symmetric lineshape
which corresponds to a ãbg close to zero.

of the lineshape is inverted, which corresponds to ãbg < 0. In figure 4.11e, we see a
resonance at B = 109G with a very symmetric lineshape, which suggests that ãbg
is close to zero. We conclude that the zero-crossing occurs in this magnetic field
region. Between B = 110 and 120G we do not observe sufficiently large resonances to
conclude on the symmetry of the lineshape. Higher fields are so close to the other broad
resonance at 178.7G that it might provide the background for the narrow resonances.
Therefore, we cannot withdraw any information on the broad resonance at 76.9G in
this magnetic field region.
Another hint on the localization of the zero-crossing of the scattering length give

the final background atom number and temperature in between narrow resonances in
the magnetic field range, where we expect the zero-crossing of the scattering length to
occur. As already pointed out, the zero crossing corresponds to a minimal collision rate.
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Figure 4.12: Focus on the atom number and temperature after a wait time of 500ms
around the area where a zero-crossing of the scattering length of the lower Feshbach
resonance is expected [6]. A maximum in atom number is visible at Bmax,N = (109±5)G.
Likewise, a maximum in temperature can be located at Bmax,T = (107 ± 5)G. The
corresponding area is highlighted by a gray background.

A low collision rate includes a low evaporative two-body collision rate and hampers
thermalization. Therefore, at the zero-crossing a maximum in both the atom number
and the temperature is expected.
In figure 4.12 the atom number and temperature are displayed as a function of

magnetic field in the atomloss measurement. It becomes apparent that neglecting
narrow resonances the background value of those observables varies slowly with magnetic
field and shows a maximum. The maximum in atom number can be located at a
magnetic field of Bmax,N = (109± 5)G. Likewise, a maximum in temperature can be
located at Bmax,T = (107± 5)G.
Together with the analysis of the maximum in background atom number and

temperature, we conclude that the scattering length in between narrow resonances
varies slowly and crosses zero at a magnetic field B = (108± 5)G.

Consequently, the universal model (4.1) implies a background scattering length of
abg = 91(15) a0 and a width of ∆B = 31(6)G for the broad resonance at B0 = 76.9G.
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4.4 Evidence of universal loss dynamics
In the previous section, we have characterized two Feshbach resonances and we have
seen that sres � 1. Therefore, we expect to observe effects which are characteristic for
broad resonances (see subsec. 4.1.1). One of those effects are universal loss dynamics,
which can be observed at the center of broad resonances (see sec. 4.2). In this section,
we show evidence that our observations of atom loss close to the poles of the resonances
are indeed compatible with universal loss dynamics.

4.4.1 Estimation of the trap depth
In order to analyse the data on universal loss dynamics, the trap depth is an essential
parameter. It can be expressed by the trap ratio η = U/kBT and estimated analytically
by estimating the optical dipole trapping potential Udip = ~Γ

8
Γ
∆

I
Is

[44], where the
knowledge of the beam waists enters with the intensity I = 2P

π wx wy
. Further the effect

of gravity has to be estimated. However, the accuracy of the analytical estimation
depends strongly on the knowledge of the trapping potential and since dysprosium is a
strongly magnetic element, the residual magnetic field gradients may change the trap
depth.

Statistical analysis using loss dynamics We improved our estimation of the trap depth
by statistically analysing the respective Feshbach resonance spectrum in terms of final
atom number and final temperature. For this purpose we used the rate equations for
temperature and atom loss which we derived in section 4.2 by using loss dynamics
equations adapted from [75] for finite s-wave scattering and including universal dipolar
scattering. This was done by taking final experimental temperature and atom number
in a certain magnetic field interval and checking the overlap with the final temperature
and atom number obtained by solving numerically eq. (4.20) and (4.31) for different
η = U/kBT . As the initial temperature and atom number are not known with certainity,
they are chosen arbitrarily within a gaussian distribution around the estimated values.
For 164Dy around the broad resonance at lower magnetic field, we estimated the

scattering length by as(B) = abg
(
1− ∆B

B−B0

)
(4.1) with abg = 115 a0, B0 = 76.8G, and

∆B abg = 2752.3 a0 G. Around the broad resonance at higher magnetic field, we chose
abg = 115 a0, B0 = 179.5G, and ∆B abg = 2752.3 a0 G. These values were estimated to
our best knowledge before the characterization of the broad resonances was complete.
However, the slight deviation from the values we obtained finally should not have a
considerable influence on the estimation of the trap depth. Taking the uncertainity of
the initial temperature and atom number and the fluctuations in final temperature and
atom number into account, we obtain finally a knowledge of η with an uncertainity of
20%.
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4.4.2 Temperature dependence of atom loss
In order to study the temperature dependence of the universal losses, we do atom-
loss spectroscopy at different temperatures. In figure 4.13, the respective atom loss
spectra are shown. The data presented in green is the same as in figure 4.5 and
was taken at an initial temperature of T0 = 2.4 µK. The data presented in blue was
taken at T0 = 500 nK and the one in red at T0 = 300 nK. Further information on the
experimental conditions for the atom loss spectra are summarized in table 4.2.

50 100 150 200
0.01

0.05
0.10

0.50
1

B (G)

N
/N

0

T = 2.4 µK

T = 0.5 µK
T = 0.3 µK

Figure 4.13: Atom loss spectroscopy for different experimental starting conditions and
wait times. The atom number N is normalized by the initial atom number N0 and shown
as a function of the magentic field B, with a resolution of 100mG. The experimental
starting conditions are given in table 4.2. The temperature dependence is well reproduced
by the model of universal loss dynamics of a unitary Bose gas (see [75]) (solid horizontal
lines). The shaded areas represent the uncertainity of the results of the model. Here a
one-standard deviation enters the model on all experimental parameters (temperature,
atom number, trap frequency and depth).

data set N0 [105] n0 [1018 m−3] T0 [nK] νx,y,z [Hz] η twait [ms]
green 1.8(2) 6.1(2.0) 2400(200) 70(10) 7.0(1.5) 2000

123(15)
263(25)

red 0.46(2) 4.6(1.6) 500(100) 44(5) 4.0(1.0) 500
87(10)
145(15)

blue 1.0(2) 3.7(1.3) 450(100) 52(5) 5.0(1.0) 500
23(5)

260(25)

Table 4.2: Experimental conditions under which the atom-loss spectra presented in
figure 4.13 and 4.14 have been taken. N0 and T0 are the initial atom number and
temperature respectively. η = U/kBT , where U is the trap depth, is estimated as
explained in 4.4.1. νx,y,z = ωx,y,z/2π are the trapping frequencies in the three dimensions
and twait is the wait time before we record the final atom number N .
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In figure 4.13, we observe that the final atom number reaches a minimum that is
the same on the two broad resonances. Furthermore, for a lower temperature, the
saturation is reached in a narrower field region and at a lower final atom number.
At first, we compare our findings with the loss dynamics model of a Bose gas in

the unitary regime where ask � 1, which has been developed in [75]. The respective
coupled rate equations for atom number (4.18) and temperature evolution (4.30)
predict the final atom number taking into account two-body evaporation and three-
body recombination. In order to obtain the expected final atom numbers, we solve
numerically these coupled equations using the parameters given in table 4.2. These
observables are calibrated on our experiment and the only unknown parameter of the
model is the inelasticity parameter η∗ (see eq. (4.9)), which describes the recombination
efficiency for three atoms in contact to recombine to a dimer and a free atom. We
then compare the final atom numbers obtained by this model with a certainη∗ to the
three data sets shown in figure 4.13. The shaded area represents the range of final
atom number, which we obtain by varying the input parameters of the model by one
standard deviation. The respective uncertainities are given in table 4.2. Since the
saturation level is similar for the low- and high-field resonance at the same temperature
T0 = 2.4 µK, η∗ appears to be identical for both broad resonances. Therefore, we
choose a fixed η∗ to compare the model to the three data sets. Thereby, we find that
this model reproduces well our final atom number at resonance within experimental
uncertainities, when the following inelasticity parameter is chosen:

η∗ = 0.07+0.17
−0.05 . (4.34)

This value is comparable to the lowest reported values for alkali-metal atoms [76, 85–89].
This implies that lifetimes in dysprosium are comparable to alkalis in the unitary
regime. This experimental estimate of the inelasticity parameter is valuable, since no
theoretical prediction is available. However, a more precise measure could be obtained
by a systematic study of L3(T ) at resonance.

4.4.3 Loss traces
Subsequently, we compare our findings not only with the loss dynamics model of a
Bose gas in the unitary regime, but also at finite scattering length as. In this combined
model, we decide whether either the conditions of the unitary regime (coupled rate
equations (4.18) and (4.30)) or of finite scattering length are fulfilled ((4.20) and (4.31)).
For this purpose, we decide, whether γU2 (eq. (4.19), unitary regime) or γas,D

2 (eq.
(4.21), finite scattering length) is smaller and plug the respective value into the coupled
rate equations in order to describe evaporative two-body losses. Similarly, we analyze,
whether γu

3/T
2
0 (eq. (4.11), unitary regime) or γas

3 (eq. (4.8), finite scattering length)
is smaller and choose either coupled rate equations for a Bose gas at unitarity or for
finite scattering length respectively in order to describe three-body recombination.

This way, the model represents that the atom losses depend on the scattering length.
However, for a diverging scattering length in the vicinity of the resonance pole the
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atom losses are limited within the unitary regime.
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Figure 4.14: Atom loss spectroscopy for the same experimental starting conditions and
wait times as in figure 4.13 (see table 4.2). The loss traces in between narrow resonances
are in good agreement with the model of universal loss dynamics for finite scattering
length and at unitarity respectively (see ref. [75] and section 4.2) using the scattering
length which was obtained by fitting the binding energy data to the universal formula
(4.2) (dashed lines) or to a numerical coupled channels calculation (solid lines) (see table
4.1).

Despite the somewhat sharp transition between unitarity and the regime of finite
scattering length, the experimental data is in good agreement with the final atom
numbers calculated numerically using this model (see fig. 4.14). Since we compare
this model to the green and blue data sets of figure 4.13, we use also the parameters
depicted in table 4.2 for the respective numerical calculation. Furthermore, we use
the inelasticity parameter η∗ = 0.07 (see subsec. 4.4.2) and the scattering length
as(B), which was obtained by fitting the binding energy data to the universal formula
(4.2) ("universal scattering length", dashed lines) or to a numerical coupled channels
calculation ("CC scattering length", solid lines) (see table 4.1 for the respective scattering
length parameters).
At the lower resonance the difference between the universal scattering length and

the CC scattering length is small, for the higher resonance, it is somewhat stronger
pronounced.
On the low-field side of the resonance, the calculated final atom numbers are lower

than on the high-field side of the resonance, since we assume the zero-crossing of the
scattering length to be on the high-field side of the resonance (see subsubsec. 4.3.2.1
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and 4.3.1.2). For the higher resonance these calculated final atom numbers reproduce
well the experimentally observed final atom numbers in between narrow resonances for
B ≥ B0± 10G. On the high-field side of the lower resonance the loss traces in between
narrow resonances are also well reproduced by the model, whereas on its low-field side
the above described tendency is not that clear. The calculated loss traces lie beneath
the normalized experimental atom numbers. However, unphysically normalized atom
numbers N/N0 > 0 can be observed in this region. This is probably due to the fact,
that the estimated initial atom number N0 is too low in this magnetic field region.
Moreover, the smaller the relative trap depth η, the lower the final calculated atom

number on the low-field side of the resonance. This is due to enhanced evaporative
loss in the energetically more shallow trap.
A signature of the formation of Effimov trimers [76] would be the experimental

observation of the dip in atom number on the high-field side of the resonance, which
can be observed in the calculated loss traces. However, this could not yet be observed
in the data.
Last but not least, the experimental observation that for a lower temperature the

saturation is reached in a narrower field region is well reproduced by the combined
model we used here.
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Conclusion and outlook

Conclusion
In this thesis, we have seen the experimental realization of demagnetization cooling of
ultracold dysprosium atoms. We could observe a cooling rate of dT

dt = −(3.2 ± 0.3) µK
s

during 3 s of demagnetization cooling at an initial temperature of T0 = 27 µK. The
atom number stayed approximately constant during this time. Consequently, we could
cool the sample down to approximately 17 µK within 2 s in this first proof of principle
measurement. After the optimization of the magnetic field amplitude parallel to the
optical pumping beam to 225mG, a temperature of around 16 µK could be reached
after 2 s of demagnetization cooling. Subsequently, we optimized the polarization and
minimized the magnetic field amplitude perpendicular to the optical pumping beam.
Thereby, we reached a temperature close to 15 µK within 2 s. However, theoretically
temperatures beyond 7 µK could be possible within 2 s of demagnetization cooling. In
order to ensure a fast rethermalization and hence a large trapping frequency compared
to the optical pumping and dipolar relaxation rate, we adjusted the confinement from
a single optical dipole trap to a crossed optical dipole trap. However, as the initial
temperatures were quite low around T0 = 7.4 µK after a first evaporative step in this
trap configuration, only a little cooling effect of around 1 µK could be observed and
atom loss outperformed the effect of demagnetization cooling. Nevertheless, we could
qualitatively probe the dependence of temperature and atom number on the optical
pumping rate and the detuning in this trap configuration. We observed a decrease
in atom loss and temperature when coming to larger detunings and lower optical
pumping rates. Finally, we compared the efficiency of non-optimized demagnetization
cooling with evaporative cooling. We obtain at an initial temperature of 38 µK an
efficiency of demagnetization cooling of χdemag = 7.95± 1.58 within 1 s, which clearly
outperforms the efficiency of evaporative cooling of χevap ≈ 4 that can only be reached
with substantial effort. However, our actual cooling scheme includes post-cooling with
the 626 nm transition in the single ODT 1. By this cooling step we reach a similar
cooling efficiency of χ626 = 6.7 [5]. It might be possible to improve our efficiency of
demagnetization cooling further by the measures substantiated in the outlook. However,
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this might imply some effort.
Moreover, we have presented two broad Feshbach resonances, which emerge from a

background of an apparent chaotic distribution of Feshbach resonances. We character-
ized both broad resonances by atom loss spectroscopy and magnetic field modulation
spectroscopy. In cooperation with Paul S. Julienne and Krzysztof Jachymski we ana-
lyzed the data in terms of coupled channel calculations and the universal expressions.
Thereby, we deduced for both resonances and by both methods the position of the
resonance B0 and the product of background scattering length and resonance width
abg∆B. The respective values are given in table 4.1. For the lower field resonance, CC
calculations and the universal expressions are in close agreement and for the higher
field resonance in reasonable agreement. Furthermore, we evaluated the symmetry
of the lineshape of the lower field Feshbach resonance in terms of temperature and
atom number in order to localize the zero-crossing of the scattering length and derive
the resonance width and background scattering length independently from that. We
supported our analysis additionally by considering the symmetry of the lineshape
of neighbouring narrower Feshbach resonances. Thereby, we could localize the zero-
crossing of the lower field Feshbach resonance at a field B = 108(5)G, which implies a
width ∆B = 31(6)G and abg = 91(15) a0. Assuming the same background scattering
length for both Feshbach resonances, the scattering length as(B) in between narrow
resonances could be approximated by the following universal expression for the lower
field resonance

as(B) = 91 a0 −
2810G a0

B − 76.9G (5.1)

and for the higher field resonance

as(B) = 91 a0 −
2150G a0

B − 178.8G . (5.2)

Moreover, we obtained an sres � 1 for both resonances. Therefore, we expected effects
which are characteristic for broad resonances and saw indeed evidence that the loss
traces we observed by atom loss spectroscopy in the vicinity of the resonances are
compatible with universal loss dynamics (see figure 4.14). We could even extract an
estimate of the trap depth η = U/kBT with an uncertainity of 20% by comparing
the model of universal loss dynamics with our Feshbach spectrum in terms of final
atom number and temperature. The estimated values are given in table 4.2 for the
different data sets. By evaluating the temperature dependence of three-body losses
in the unitary regime, we could additionally estimate the elasticity parameter, which
characterizes the efficiency with which three atoms in contact recombine to a dimer
and a free atom: η∗ = 0.07+0.17

−0.05. This value is close to the lowest values, which have
been reported for alkali-metal atoms [76, 85–89] and implies similar lifetimes in the
unitary regime. Last but not least, we could use the universal description of our broad
resonances presented here, in order to create pure Bose-Einstein condensates with up
to 25 · 103 atoms and lifetimes > 1 s.
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Outlook
In order to optimize demagnetization cooling the following steps can be taken. First,
the optical pumping rate Γop can still be optimized systematically. Next, an optimal
magnetic field ramp can be found by analyzing the effect of demagnetization cooling
subsequently at different starting temperatures and magnetic field values. Furthermore,
the effect of demagnetization cooling in the confined trap, but without an initial
evaporative cooling step can be evaluated. This would permit a higher initial tem-
perature and thus a higher initial cooling rate. Moreover, in chromium the efficiency
of demagnetization cooling could be improved from χCr ≈ 6 to > 17 by localizing
the node position of the groundstate wavefunction and thus suppressing light assisted
collisions (see sec. 3.4.4) [4, 46]. Therefore, probing the dependence of the performance
of demagnetization cooling on the detuning up to approximately 8GHz ≈ 84 000Γ
might help to improve the efficiency of demagnetization cooling. Up to now, our
maximal detuning from resonance was ∆ = −100MHz.
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Figure 5.1: Microscopic droplet crystal growth. a) Representative droplet patterns
with droplet numbers ranging from two to ten. b) Scheme of the experimental procedure:
We prepared a stable BEC at as ≈ 3/2D. When decreasing the scattering length to
as ≈ abg, the atoms clustered to droplets in a triangular pattern. c) Mean number of
atoms in dependence of visible droplets, with the standard deviation as error bars. Image
taken from [24].

Recently, we could observe discrete and stable droplets arranging in a triangular
structure (see figure 5.1a) by creating a BEC and then tuning the scattering length
as with a magnetic Feshbach resonance such that as < 2/3D (see figure 5.1b) [24].
The number of the droplets we observe is growing with increasing atom number (see
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figure 5.1c). Therefore, we might be able to observe some kind of droplet crystal
increasing the atom number by means of demagnetization cooling.
Besides, the estimate of the scattering length, which we obtained by analyzing the

two broad Feshbach resonances, can be improved by the measurement of the density
distribution of Bose-Einstein condensates. Furthermore, in the analysis of the loss
traces in section 4.4.3 the prospect of studying the few-body physics of bosonic dipoles
discernibled. Conceivably, it might be possible to investigate for example the impact
of the magnetic dipole-dipole interaction on the energy of Efimov states [77].
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