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Abstract

This thesis reports on a spectroscopic study of Rydberg atoms inside cesium vapor-filled
hollow-core fibers. The experimental apparatus designed and built in the scope of this work
allows for the application of radio-frequency (rf) electric fields to individual segments along
a fiber. This setup was employed to gain a spatial resolution of the spectroscopy signal along
the fiber and to study the formation of rf-induced sidebands in the spectra. The experimen-
tal results obtained in this context are discussed and explained theoretically. Furthermore,
simulations of the three-photon Rydberg excitation scheme are presented and the diffusion
of cesium vapor into hollow-core fibers is discussed on the basis of measurement results and
a theoretical model.

Zusammenfassung

In dieser Arbeit werden die Ergebnisse einer spektroskopischen Untersuchung von Ryd-
berg Atomen in mit Cäsiumdampf gefüllten Hohlkernfasern vorgestellt. Der experimentelle
Aufbau, der im Rahmen dieser Arbeit entworfen und gebaut wurde, erlaubt es hochfre-
quente elektrische Felder an einzelne Fasersegmente anzulegen. Dies wurde genutzt um eine
örtliche Auflösung des Spektroskopiesignals entlang einer Faser zu erzielen und die Formation
von Seitenbändern in den Spektren zu untersuchen. Die experimentellen Ergebnisse wer-
den diskutiert und theoretisch erklärt. Weiterhin werden Simulationen des Drei-Photonen-
Anregungsschemas vorgestellt und die Diffusion von Cäsium Dampf in Hohlkernfasern hinein
anhand von Messergebnissen und einem theoretischen Modell diskutiert.
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1 Introduction

The history of modern atomic physics finds its origin in the studies of Niels Bohr who pos-
tulated the existence of discrete energy states of atoms in 1913 [1]. His work did not only
explain the spectral emission lines of hydrogen but also contributed significantly to the devel-
opment of quantum mechanics. Nowadays, atomic physics constitutes a many-faceted field
of research, reaching from very fundamental aspects like the search for varying fundamental
constants [2] to possible future applications, for example in quantum information [3]. With
respect to applications, a seemingly trivial property of atoms is especially interesting: all
atoms of one kind have the exact same mass, size, energy structure and sensitivity to exter-
nal fields. It is therefore that atom-based metrology is highly promising and great effort is
being made to relate atomic properties to macroscopic quantities. An impressive example of
this field are atomic clocks with current instabilities on the order of 10−18 [4].
A special class of atoms is represented by highly excited atoms. These so-called Rydberg

atoms [5] possess exaggerated properties in comparison to ground state atoms such as high
sensitivity to external electric fields and large interaction strengths among themselves. The
latter can induce an excitation blockade [6] which has been exploited in ultracold experiments
to demonstrate non-classical light [7, 8] and quantum information processing [9]. Recently,
Rydberg atoms were employed to realize an all-optical transistor on the single-photon level
[10]. Thermal Rydberg atoms have been used to demonstrate coherent Rydberg excitation
in microscopic vapor cells [11], to study Rabi oscillations to a Rydberg state in a rubidium
vapor [12] and to accurately measure microwave electric fields [13]. These examples show
that coherent Rydberg physics is accessible at room temperature and suggest the feasibility
of miniaturized Rydberg-based devices such as microwave sensors.
Hollow-core photonic crystal fibers [14] which provide low-loss light guidance in a hollow

core paved the way to a new and interesting system: vapor-filled optical waveguides. A major
advantage of this system with respect to free space experiments is the large overlap of a single
light mode with the atomic ensemble over an effectively unlimited interaction length. More-
over, gas-filled hollow-core fibers provide a platform for miniaturized frequency standards [15,
16] and might be integrated into large scale optical networks due to the possibility to splice
them to standard single-mode fibers [15]. Atom-filled hollow-core photonic crystal fibers have
been employed in ultracold experiments to realize an all-optical switch [17] and for precision
spectroscopy [18]. In room temperature experiments, four-wave mixing [19], electromagnet-
ically induced transparency [20, 21] and an optical memory on the single-photon level [22]
was demonstrated. In 2014, Rydberg excitation in hollow-core fibers was reported for fiber
diameters down to 19 µm [23, 24]. This achievement is highly promising since it opens up
new possibilities for room temperature Rydberg-based applications and constitutes a major
step towards the study of quasi-one-dimensional thermal Rydberg vapors.
Within the scope of this thesis, thermal cesium Rydberg atoms in hollow-core fibers were

investigated and the action of radio-frequency (rf) electric fields on the atoms was studied.
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1 Introduction

Rf-dressed Rydberg states have been described in Ref. [25] and were used to phase modulate
light [26], to measure atomic polarizabilities [27, 28] and to observe Stückelberg oscillations
[29]. Especially interesting with respect to sensing applications is the fact that rf dressing
was found to enhance the sensitivity of Rydberg states to electric fields [30]. Due to the
large polarizability of Rydberg atoms, already small rf amplitudes on the order of V/cm
have profound impact on the behavior of the Rydberg state. Under appropriate conditions,
the latter acquires sidebands separated by multiples of the rf frequency. These Floquet
states lead to a modulation of the excitation light which in turn also acquires sidebands at
multiples of the rf frequency. The studied system of rf-dressed Rydberg states in hollow-core
fibers therefore has potential in possible future applications such as low-voltage atom-based
fiber modulators.
This thesis is structured in eight chapters. Chapter 2 provides a brief introduction to the

theoretical background of the experiment and especially discusses the interaction of atoms
with light fields. Chapter 3 gives a detailed description of the experimental setup. Chapter 4
discusses the Rydberg excitation scheme involving two intermediate states. Additionally, sim-
ulations of the atomic system are presented and compared to experimental results. Chapter
5 is devoted to the diffusion process of cesium vapor into hollow-core fibers which was stud-
ied both experimentally and theoretically. Spectroscopic results obtained with the employed
hollow-core fibers are discussed in Ch. 6 and interpreted in the light of previous findings [23,
24]. Rf-dressed Rydberg states are subject of Ch. 7, where both experimental results are
presented and a theoretical model is introduced. Subsequently, a conclusion and an outlook
are given in Ch. 8.
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2 Theoretical Foundations

The focus of this thesis is on the spectroscopy of cesium Rydberg atoms in hollow-core fibers
and on the influence of radio-frequency electric fields on Rydberg states. In the following, the
theoretical foundations of the described work are introduced. Basic properties of cesium and
Rydberg atoms are presented, and the Stark effect describing the action of electric fields on
atoms is discussed. The main part of the chapter is devoted to atom-light interaction which
is treated on the basis of a semiclassical model. Furthermore, light-guiding hollow-core fibers
are subject of the chapter.

2.1 Cesium

Cesium is a silvery-golden metal with a single stable isotope (133Cs). It belongs to the group
of the alkali metals in the periodic table, and therefore has one valence electron. Due to
their simple electronic structure, cesium and the other stable alkali metals lithium, sodium,
potassium and rubidium are often employed in atomic physics. The ground state 6S1/2 of
133Cs exhibits a hyperfine splitting of (exactly) 9.192 631 77 GHz [31] which provides the basis
of the current definition of the second. While cesium is a soft solid at room temperature, it
has a very low melting point of 28 ◦C and a high vapor pressure. For the liquid phase, the
latter is approximately given by [31]

Pv = 133.322 Pa× 107.046− 3830 K
T , (2.1)

where T is the temperature in Kelvin. At room temperature (20 ◦C), the given expression
results in Pv ≈ 1.28 × 10−6 mbar. A vapor pressure curve calculated with Eq. 2.1 is shown
in Ch. A. Using the ideal gas law, Pv can be used to estimate the atomic number density of
cesium

n(T ) = Pv
kBT

, (2.2)

where kB is the Boltzmann constant. At 20 ◦C, this results in a density of n = 3.2×1010 cm−3.
Additional physical properties of cesium can be found in Ch. A.

2.2 Rydberg Atoms

An atom is considered a Rydberg atom if one or more of its electrons are in a highly excited
state. In the case of cesium, the single valence electron is most loosely bound and can be
excited by means of laser excitation to high principal quantum numbers n. The large extent
of the electron wave function associated with high principal quantum numbers leads to an
extreme sensitivity of Rydberg states to electric fields. Also related to the large orbital size
is a hydrogen-like behavior of single electron Rydberg atoms. This behavior arises since the
excited electron experiences the Coulomb potential of an effectively singly charged ionic core,
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2 Theoretical Foundations

physical property scaling law
binding energy Eb n∗−2

orbital radius rorb n∗2

radiative lifetime τ n∗3

polarizability α n∗7

VdW coefficient C6 n∗11

Table 2.1: Scaling of selected physical properties of Rydberg atoms with the effective principal
quantum number n∗ [5, 6]. For this thesis, especially the large polarizability α which scales with n∗7

is of relevance.

if it is separated sufficiently far from the core. As a consequence, the binding energy can be
expressed by the phenomenological formula [5]

Enlj = − R

(n− δnlj)2 , (2.3)

where R is the Rydberg constant of the considered element (e.g. RCs = hc× 109 736.86 cm−1

[5]) and δnlj is the so-called quantum defect. The latter takes the interaction of the electron
with the inner structure of the ionic core into account and depends on the principal quantum
number n, the electronic angular momentum l and the total angular momentum j. Com-
monly, the quantum defect is given in terms of the Rydberg-Ritz coefficients δi which are
connected to δnlj by

δnlj = δ0 + δ2
(n− δ0)2 + δ4

(n− δ0)4 + δ6
(n− δ0)6 ... . (2.4)

Rydberg-Ritz coefficients for cesium nS, nP and nD states can be found in Ref. [32]. For
the 30P3/2 Rydberg state, often employed in the described experiment, the coefficients given
there result in a quantum defect of δ30P3/2 = 3.559. Due to the form of Eq. 2.3, it is useful to
define an effective principal quantum number n∗ = n− δnlj which can be used to give scaling
laws of the physical properties of Rydberg atoms. A selection of such scaling laws is given in
Table 2.1.

2.3 Dc Stark Effect

Compared to magnetic fields, electric fields have little influence on ground state atoms because
of their small polarizability. Due to the scaling of the polarizability with the effective principal
quantum number n∗ to the power of seven (see Sec. 2.2), Rydberg atoms however respond
highly sensitive to external electric fields. The interaction Hamiltonian of an atom placed
into a uniform electric field E is

He = −dE , (2.5)

where d is the electrical dipole moment of the atom. For small electric fields, He can be
treated as a perturbation and the energy shift of a specific state can be calculated using
perturbation theory. Since the quantum defect lifts the degeneracy of low-l states (see Sec.
2.2), the nP Rydberg states addressed in the described experiment (see Ch. 4) experience a
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2.4 Atom-Light Interaction

second order energy shift which is quadratic in E. If the quantization axis is assumed to be
parallel to the electric field, this shift is given by [33, 34]

∆ε = −1
2

(
α0 + α2

3m2
J − J(J + 1)
J(2J − 1)

)
E2
z = −1

2αE
2
z . (2.6)

Here J is the quantum number of the total angular momentum and mJ is the corresponding
magnetic quantum number. The polarizability α contains a scalar part α0 and a tensor
contribution α2 which vanishes in the case of J = 1/2. Scalar and tensor polarizabilities α0
and α2 of selected cesium Rydberg states can be found in Ref. [35]. The action of a rf electric
field on atoms is treated in Sec. 7.1.

2.4 Atom-Light Interaction

The interaction between atoms and light can be treated in several different ways each offering
distinct advantages [36, 37]. The theoretical framework presented in the following is based
on a semiclassical picture in which the atom is treated quantum-mechanically, while the
electromagnetic field modes are described as classical plane waves.1

Framework

The total Hamiltonian of the considered system consists of the atomic Hamiltonian Ha,
the Hamiltonian of the electromagnetic field Hl and the Hamiltonian Hint which covers the
interaction between atom and light field. Since we do not have to consider the photon
characteristics of the light field for our purposes, we can safely neglect Hl and the total
Hamiltonian reduces to

H = Ha +Hint . (2.7)
In most cases it is possible to describe the complicated electronic structure of an atom ade-
quately by a much simpler model consisting of only few energy levels which are coupled by
near-resonant field modes. A two photon excitation for example might be well described by a
three-level model consisting of a ground state and two excited states. Under the assumption
that the system of interest can be described by a n-level model, we can write the atomic state
of the system as

|Ψ(t)〉 =
n∑

m=1
cm(t)|m〉 . (2.8)

Here cm(t) determines the contribution of the energy eigenstate |m〉 to the state of the system
at time t. The atomic Hamiltonian then reads

Ha =
n∑

m=1
~δm|m〉〈m| , (2.9)

where ~δm is the energy of the state |m〉. To find an expression for the interaction Hamiltonian
Hint, we assume that each driven transition |i〉 → |j〉 in the system is driven by a single near-
resonant field mode2

Eij = 1
2E0,ij ε̂ij

(
eiωijt + e−iωijt

)
. (2.10)

1 This approach is well justified, if the photon characteristics of the light field is negligible.
2 Note that the given definition allows for the case that a single mode is resonant to several transitions. It is
then labeled differently for each transition.
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2 Theoretical Foundations

Here E0,ij is the electric field amplitude of the electromagnetic wave and ε̂ij is a normalized
polarization vector. We neglect the spatial dependence of the electromagnetic wave which
is well justified if the electromagnetic wavelength is large compared to the size of the atom.
In this case, the dipole-approximation is valid and the interaction Hamiltonian is given by
Hint = −dE, where d is the atomic dipole operator and E is the total electric field. The
interaction Hamiltonian then becomes

Hint =
∑
i 6=j

~Ωij
2
(
eiωijt + e−iωijt

)
|i〉〈j| . (2.11)

Here the coupling between the levels |i〉 and |j〉 is given by the Rabi frequency

Ωij = −E0,ij〈i|dε̂ij|j〉/~ (2.12)

determined by the electric amplitude of the electromagnetic field and the dipole matrix el-
ement of the transition. A detailed description of how to calculate dipole matrix elements
using the Wigner–Eckart theorem is given in Sec. 4.3.
If the atomic state is written in terms of a density matrix ρ = |ψ〉〈ψ|, the evolution of the

considered system is described by the Liouville-von Neumann equation

∂ρ

∂t
= − i

~
[H, ρ] + L(ρ) . (2.13)

The advantage of this master equation approach is that it allows for the incorporation of a
decay of the atomic levels described by the Lindblad operator [38]

L(ρ) =
∑
m

Γm(cmρc†m −
1
2c
†
mcmρ−

1
2ρc

†
mcm) . (2.14)

Here we sum over all decay channels which are characterized by a decay rate Γm. For a given
decay from |i〉 to |j〉, the operator cm is given by cm = |j〉〈i|.

The rotating frame

To eliminate the fast rotating terms in Eq. 2.13 originating from the time dependence of the
electromagnetic field, it is advantageous to transform the system into a rotating reference
frame. In order to do so, we define the unitary transformation matrix

U =
∑
m

e−iηmt|m〉〈m| , (2.15)

where we assume that every energy level of the atomic system is reached by a single specific
excitation path. ηm is then defined as the sum of the photon frequencies ωn involved in this
excitation path: ηm = ∑

n qnωn . Here qn is +1 for absorbed photons and −1 for emitted
photons. Accordingly, ηm is zero for a ground state. With these definitions, the transformed
density matrix becomes

ρ̃ = U †ρU (2.16)

and the Hamiltonian transforms to

H̃ ′ = U †HU − i~U †∂U
∂t

. (2.17)
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2.4 Atom-Light Interaction

While the HamiltonianH in the laboratory frame contains terms oscillating at the frequencies
ωij and −ωij (see Eq. 2.11), H̃ ′ contains static terms and terms oscillating at 2ωij. Since the
dynamics at twice the optical frequency averages to zero on the timescale of observation,
we can apply the rotating wave approximation and neglect the rapidly varying terms. The
resulting Hamiltonian H̃ is widely used in literature to describe atom-light interaction. The
effect of the rotating frame and the rotating wave approximation is illustrated later, when
the example of a two-level system is discussed.
The Liouville-von Neumann equation is still valid in the rotating frame, if the Lindblad

operator L(ρ) is replaced by L(ρ̃). After solving Eq. 2.13, the populations of the different
states are given by the diagonal entries of the density matrix. The coherence between the
different levels is given by the off-diagonal elements. As described later, the imaginary part
of the coherence determines the absorption of the light mode resonant to the corresponding
transition. If the time evolution of the system is not of interest, ∂ρ

∂t in Eq. 2.13 can be set
to zero and the steady state solution can be obtained by solving the emerging system of
linear equations. In the following, the specific case of a two-level system is discussed. The
four-level system particularly relevant for the described experiment since Rydberg excitation
was achieved via two intermediate states, is described in Ch. 4.

Two Level System

To illustrate the effect of the rotating frame, we want to discuss the example of a two-level
system which is coupled by a near resonant laser. If we define ground and excited state as
|g〉 and |e〉 respectively and label the laser frequency ωge, we can write the Hamiltonian of
the system as

H = Ha +Hint = ~δe|e〉〈e|+
~Ωge

2
(
eiωget + e−iωget

)
(|g〉〈e|+ |e〉〈g|) . (2.18)

Here the Rabi frequency is assumed to be real, the energy of the ground state is set to zero
and the energy of the excited state is ~δe. A transform of the Hamiltonian into a rotating
frame according to Eq. 2.17 yields

H̃ ′ = ~(δe − ωeg)|e〉〈e|+
~Ωge

2
[(

1 + e−2iωget
)
|g〉〈e|+

(
1 + e+2iωget

)
|e〉〈g|

]
. (2.19)

If we drop the terms oscillating with ±2ωge according to the rotating wave approximation
and define the laser detuning as ∆ge = ωge− δe, we obtain the time independent Hamiltonian

H̃ = −~∆ge|e〉〈e|+
~Ωeg

2 (|g〉〈e|+ |e〉〈g|) . (2.20)

Absorption

While on the one hand resonant light fields influence an atomic system, on the other hand the
atomic system also influences the light fields. This simple fact can be used in the experiment
to probe an ensemble of atoms by means of absorption measurements. For a plane wave of
intensity I propagating through a homogeneous medium along the z-direction, the absorption
is determined by

dI = −αIdz , (2.21)
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2 Theoretical Foundations

where α is the absorption coefficient. If α does not depend on the intensity I, Eq. 2.21 can
be easily integrated to obtain the Beer-Lambert law

I(z) = I0exp(−αz) . (2.22)

The form of the latter expression suggests the definition of an optical density which is a
measure for the absorption ability of an atomic ensemble for a specific transition. Commonly
the optical density is defined as OD = α0l, where α0 = α(∆ge = 0) is the resonant absorption
coefficient of the considered transition and l is the interaction length of the light field and
the atomic ensemble.
Within the presented framework, the absorption coefficient corresponding to a specific

transition |i〉 → |j〉 is proportional to the imaginary part of the coherence ρ̃ji. For a two-level
system, α is given by [23]

α2-level = 2nωge
ε0E0,gec

dge Imρ̃eg . (2.23)

Here n is the number density of the atomic ensemble, ε0 is the vacuum permittivity, c is the
speed of light and dge = 〈g|dε̂ge|e〉. Combined with the steady state solution of Eq. 2.13 for
a two-level system [23], Eq. 2.23 leads to

α2-level = − 2nωge
ε0E0,gec

dge
ΩgeΓeg

2Ω2
ge + 4∆2

ge + Γ2
eg
. (2.24)

If this expression is interpreted as a function of the laser detuning ∆ge, it shows a Lorentzian
lineshape with a width of Γ′ = Γeg

√
1 + I/Isat, where I is the intensity of the light field

and the saturation intensity Isat is defined by I/Isat = 2Ω2
eg/Γ2

eg. For intensities much lower
than the saturation intensity, Γ′ equals the natural linewidth Γeg of the transition and α is
independent of the intensity. For higher intensities however, power broadening takes place
and the linewidth increases. In this case, α is not intensity independent anymore and the
Beer-Lambert law is not applicable.

Thermal Atoms

Due to the Doppler effect, the thermal motion in an atomic ensemble leads to a frequency
shift of electromagnetic waves in the reference frame of the moving atoms. For a plane wave
with angular frequency ω and wave vector k, this frequency shift is given by

ω′ = ω − kv , (2.25)

where v is the atomic velocity. For a spectroscopy setup in which all excitation beams are
parallel to each other, only the velocity component of the atoms in beam direction is relevant.
If the z-direction is defined accordingly, the relevant velocity distribution of the atoms is thus
given by a one-dimensional Maxwell–Boltzmann distribution [39]

n(vz)dvz = n0

√
m

2πkBT
exp

(
− mv2

z
2kBT

)
dvz . (2.26)

Here kB is the Boltzmann constant, T is the temperature, m is the mass of a single atom and
n0 is the number density of the atomic ensemble. As a consequence of the Doppler effect, the
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2.5 Hollow-Core Optical Fibers

absorption coefficient of a thermal atomic ensemble is given by the convolution of its velocity
distribution and the absorption coefficient of atoms at rest. This leads to

αtherm =
∫ ∞
−∞

α(∆− kvz)
√

m

2πkBT
exp

(
− mv2

z
2kBT

)
dvz , (2.27)

where ∆ denotes the detuning of the excitation light with respect to the considered transition.

Transit Time Effects

As a consequence of the thermal movement, a single atom only interacts for a limited amount
of time with the excitation light of a given spectroscopy setup. This interaction time is
determined by the flight time of the atom through the beam. In a theoretical model, the
limited interaction time can be accounted for by introducing an effective decay Γtt. While this
is a phenomenological approach, the consequences of a decay are similar to the situation that
an atom leaves the interaction region and another ground state atom enters. An expression
for the transit time decay given in Ref. [40] is

Γtt =
√

2
ln2

√
8kBT
πm

1
d
, (2.28)

where d is the 1/e2-beam diameter of the excitation beam and m is the atomic mass.

2.5 Hollow-Core Optical Fibers

Conventional optical fibers, nowadays widely used in telecommunication, consist of a solid
core surrounded by a cladding layer. The light-guiding mechanism of these fibers is based on
total internal reflection on the core-cladding interface and therefore requires the cladding to
have a lower refractive index than the core. For hollow-core fibers without adequate filling,
this guiding mechanism breaks down since no cladding material with a refractive index n < 1
is available. However, light is guided in hollow-core glass capillaries due to reflection at
gracing incidence if the wavelength of the light λ is much smaller than the inner radius of
the capillary [41].
In general, three different types of core modes are allowed in a cylindrical geometry such as

a capillary. These are transverse circular electric modes (TE), transverse circular magnetic
modes (TM) and hybrid modes (EH) [41, 42]. An illustration of the electric field distribution
of low order TE, TM and EH modes is shown in Fig. 2.1. For TE and TM modes, only
specific electric and magnetic field components are present. For example, the only electric
field component of the allowed circular TE modes is Eϕ, where ϕ is the azimuthal angle of
the cylindrical coordinate system defined by the geometry of the capillary. For the hybrid
modes, all electric and magnetic field components can occur.
If the in-coupled beam into the capillary is Gaussian, only a specific class of hybrid modes

labeled EH1m (or HE1m) can be excited [43]. The radial electric field profile of the lowest-loss
mode EH11 of this class can be approximated by [43]

E(r) = E0J0

(
u11

r

a

)
, (2.29)
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2 Theoretical Foundations

TE01 TM01 EH11

Figure 2.1: Electric field distribution of different light modes in a capillary. Shown are low-order
transverse circular electric modes (TE), transverse circular magnetic modes (TM) and hybrid modes
(EH). For a Gaussian input beam, the EH11 mode represents the lowest-loss mode inside a capillary.
The length of the drawn arrows corresponds qualitatively to the field intensity. The drawing is based
on a similar illustration given in Ref. [41].

where a is the core diameter of the capillary, J0 is the zero-order Bessel function of the first
kind and u11 is the first root of the equation J0(u11) = 0. The maximal coupling efficiency
of an incident Gaussian mode with beam waist w to the EH11 mode is given in Ref. [43] as
η = 98.1 % for a ratio of w/a ≈ 0.64.
In the late 1990s, a new class of light guiding hollow-core fibers was introduced, so-called

hollow-core photonic crystal fibers [44]. In contrast to capillaries, the guiding mechanisms
of these fibers rely on a periodic structure of the cladding surrounding the hollow core. A
specific class of photonic crystal fibers are bandgap fibers which possess a cladding consisting
of a periodic lattice of air holes separated from each other by thin silica walls. This air-glass
structure of the cladding creates a bandgap for a specific wavelength range and light with a
wavelength within this bandgap is confined to the hollow core. A SEM image of the cross
section of such a bandgap fiber which was employed in the described experiment (see Sec.
6.1) is shown in Fig. 2.2b. While bandgap fibers show low attenuation of the propagating
light (as small as ~1 dB/km [45]), the transmission is restricted to a narrow wavelength range
corresponding to the bandgap. In contrast, kagome-type hollow-core photonic crystal fibers
show a much broader transmission at the cost of a higher propagation loss. The kagome-
structured air-glass cladding of these fibers does not create a bandgap. Instead, the guiding
mechanism is based on the suppressed coupling of the core modes to the cladding modes [45].
A SEM image of a 60 µm core kagome-type fiber used in the experiment is shown in Fig. 2.2a.

(a) (b)

Figure 2.2: SEM images (provided by the Max Planck Institute for the Science of Light – Russell
division, Erlangen) of hollow-core photonic crystal fibers. Shown is a 60 µm core kagome-type fiber
(a) and a 12 µm core bandgap fiber (b).
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2.5 Hollow-Core Optical Fibers

While numerical methods are needed to model light guidance in kagome-type fibers [46], the
supported modes of both kagome fibers and bandgap fibers are very similar to the modes of
a capillary [45]. The fundamental mode of these fibers is therefore HE11-like and shows a
similar field distribution as illustrated in Fig. 2.1.

17



3 Experimental Apparatus

The experiment described in this thesis was built to investigate Rydberg atoms in hollow-
core fibers and is the successor of previous work [23, 47, 48]. The new setup features two
separate experiment chambers. While the one chamber (in the following referred to as CF-40
chamber) contains a variety of different fibers, the second chamber (in the following referred
to as e-chamber) allows to apply individual ac electric fields to different segments along a
fiber. The optical setup consists of three laser systems and a spectroscopy setup. The laser
systems were already in place at the beginning of this work and are detailed in Ref. [23]. In
the following, all components set up in the scope of this thesis are described in more detail.

3.1 Vacuum System

The vacuum system of the experiment is shown in Fig. 3.1. It consists of the two experiment
chambers and a pre-chamber. The three chambers are separated from each other with two
CF40 all-metal valves, which renders the experiment chambers independent from each other.
Due to the common pre-chamber however, the design allows for a single turbo pump (Pfeiffer
HiPace 80) and a single gauge (Pfeiffer PKR 261). The turbo pump is backed up by a
diaphragm pump (Pfeiffer MVP 040-2). A benchmark for the vacuum pressure required in
a system later used for the spectroscopy of cesium vapor, is the vapor pressure of cesium.
At room temperature, this corresponds to a pressure on the order of 10−6 mbar [31]. The
described vacuum system proved to reach pressures on the order of 10−8 mbar before it was
exposed to cesium and is therefore well suited for its purpose. The two experiment chambers
are described in more detail in the following sections.

3.2 CF40-Chamber

To allow for the investigation of Rydberg excitations in different fiber types and various core
diameters, the first experiment chamber is equipped with twelve different hollow-core fibers
with core diameters ranging from 4 µm to 62 µm. The fibers are mounted on a 85 mm long
stainless steel holder (manufactured in-house from the faculty mechanical workshop) which
lies in a CF40 vacuum cube. A photo of both the chamber and the fiber holder is shown in
Fig. 3.2 which also contains a list of the installed fibers in the caption. Both ends of the fibers
are optically accessible through standard glass viewports. Special care was taken during the
design to minimize the distance between the fiber ends and the vacuum windows. To prevent
the fibers from moving, they lie in V-grooves and are held in place by small polished copper
plates fixed to the holder. One flange of the chamber is connected through a valve to the
pre-chamber which in turn is connected to a turbo pump. The opposite flange connects the
chamber through a CF16 valve to a flexible metal bellow which can be heated independently
from the rest of the chamber and acts as cesium reservoir.

18



3.2 CF40-Chamber

During the assembly of the chamber, a small glass ampule containing cesium was deposited
in the reservoir bellow. The chamber was then baked out at 140 ◦C and pumped to a pressure
of 1.7× 10−8 mbar, before it was cooled down again and the valve to the pre-chamber was
closed. Subsequently, the cesium ampule inside the bellow was broken to expose the fibers
to a cesium atmosphere.

gauge

turbo pump

cs reservoir

CF16 valve

cs reservoir

CF40 valve

e-chamber

CF40-chamber

CF40 valve

pre-chamber

CF16 valve

3x BNC
feedthrough

3x BNC
feedthrough

Figure 3.1: CAD sketch of the vacuum system of the experiment. The two experiment chambers,
referred to as CF40-chamber and e-chamber share a common pre-chamber and a turbo pump. Only
all-metal valves are used in order to ensure the compatibility of all components with cesium. The
drawing contains CAD files kindly provided by Kurt J. Lesker Company Ltd., Pfeiffer Vacuum GmbH
and VACOM Vakuum Komponenten & Messtechnik GmbH.
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3 Experimental Apparatus

(a) (b)

to pump to reservoir

1  2      3 4  5         6      7        8  9 10   11 12         

Figure 3.2: (a) CF40-chamber with stainless steel fiber holder inside. The left flange is connected
through a valve and a pre-chamber to a turbo pump. The right flange is connected to a cesium
reservoir which can be heated independently from the chamber. (b) Fiber holder with different fiber
types and core diameters (respectively wall distances for kagome-type fibers): (1) mercedes-type solid
core fiber, (2) 27 µm kagome, (3) 12.5 µm kagome, (4) 19.7 µm kagome, (5) 61.6 µm kagome, (6)
20 µm capillary, (7) 60 µm capillary, (8) 36 µm kagome, (9) 43 µm capillary, (10) 6.5 µm capillary, (11)
4.2 µm capillary, (12) 12 µm hollow-core photonic bandgap fiber. All fibers except of (6) and (7) were
provided by the Max Planck Institute for the Science of Light (Russell division), Erlangen. Fibers (6)
and (7) were provided by MicroQuartz GmbH and IFSW-Institut für Strahlwerkzeuge (Stuttgart),
respectively. SEM images of fiber (5) and (12) are shown in Fig. 2.2.

3.3 E-Chamber

The e-chamber (see Sec. 3.1) was designed with the aim of addressing individual segments
along a hollow-core fiber by electric fields. To enable the application of ac electric fields (see
Ch. 7), an important design consideration was a bandwidth of the field modulation in the
upper MHz regime (>100 MHz). The apparatus consists of five individual field plates along
the fiber which can be modulated with a frequency of over 2 GHz. This versatile setup does
not only allow an individual tuning of the Rydberg resonance, providing a spatial resolution
along the fiber, but also allows the study of rf-dressed Rydberg states (see Sec. 7.3). While
the spatial resolution along the fiber enables a detailed study of diffusion processes, the latter
point is interesting because the setup allows to test the feasibility of miniaturized vapor-based
fiber modulators.

In addition to the modulation bandwidth, a major requirement on the apparatus was the
cesium compatibility of all parts. While some literature is existent on this topic [49, 50], the
knowledge gained from previous experiments of our research group were most beneficial [51,
52]. A detailed description of the relevant components of the device is given in the following.
All machined copper parts were manufactured in-house from the faculty mechanical workshop.
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3.3 E-Chamber

200  μm glass plate

60  μm kagome

1 μm evaporated silver

60 μm capillary

tungsten wire

copper mount

0.7 mm bore

(a)

(c)

(b)

Figure 3.3: Fiber holder which allows for the electrical addressing of five individual fiber segments.
(a) A 60 µm core kagome fiber and a 60 µm core capillary are mounted directly next to each other in
the central groove of the holder. A 11 µm core capillary is mounted on the left side of the holder (not
electrically addressable). Stainless steel pins provide a fastening option for coaxial cables. (b) A loop
of thin tungsten wire is fixed to a thicker V-shaped tungsten wire clamped into a 0.7 mm bore and
holds the fibers in place. (c) The five field plates (evaporated silver stripes on glass substrates) are
mounted above the recessed fibers.

� Chamber. The e-chamber consists of a stainless steel CF63 cube with an edge length of
114 mm. The upper flange of the cube is connected via a valve to the pre-chamber which
in turn is connected to the turbo pump (see Sec. 3.1). Two opposite viewports allow
for optical access. The other two flanges on the side of the cube lead to two electrical
feedthroughs (each offering three BNC connections on the air-side) and the cesium reservoir
in form a metallic bellow. Both the chamber and the reservoir can be heated independently.
As for the CF40-chamber, a glass ampule containing cesium was deposited in the reservoir
bellow and broken from the outside after the baking process.

� Fiber holder. The fiber holder illustrated in detail in Fig. 3.3 is made of a 10 mm copper
plate which lies in the circular openings of the vacuum cube (see Fig. 3.4). Accounting
for additional space in the viewports, the length of the holder is 116 mm, which is also the
length of all mounted fibers. In total, three fibers are mounted on the holder: a 11 µm core
capillary, a 60 µm core kagome fiber (see Fig. 2.2a) and a 60 µm core capillary.1 While the
11 µm capillary (which is not electrically addressable) is mounted at the side of the holder,
the other two fibers are mounted in a central groove of 6 mm×0.4 mm. The fibers are fixed
to the holder in 23 mm intervals using small loops of 42 µm tungsten wire which are held
in place by V-shaped 170 µm tungsten wires clamped into 0.7 mm bores (see Fig. 3.3b).

1 Both capillaries were provided by MicroQuartz GmbH, München. The kagome fiber was provided by the Max
Planck Institute for the Science of Light (Russell division), Erlangen.
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3 Experimental Apparatus

M2 threads on either side of the central groove provide a mounting option for the field plates
positioned above the fibers. 2.9 mm stainless steel pins screwed to the holder act as holder
for coaxial cables connecting the field plates to the feedthroughs. Since the coaxial cables,
the chamber and the fiber holder are on common ground, copper was chosen for its high
conductivity to minimize standing wave effects. It should be noted, that no oxygen-free
copper was used and the standard copper proved to be compatible with the demands on
the vacuum required for Rydberg spectroscopy in thermal cesium vapor. To avoid hollow
spaces in the mount which could cause virtual leaks in the vacuum chamber, all holes are
through-holes and only vented screws have been used.

� Field plates. The five field plates consist of evaporated silver stripes with a width of 2 mm
on glass substrates of 22.5 mm × 9 mm × 0.2 mm.1 To ensure a good bond between the
glass and the silver, an approximately 5 nm thick layer of chromium has been deposited
between the glass and the approximately 1 µm thick silver layer. The glass plates which
have a larger width than the central groove of the fiber holder are mounted with the silver
stripes centered over the fibers and facing up (see Fig. 3.3c). The fastening of the glass
plates with thin stainless steel brackets ensures that no excessive forces caused by thermal
expansion can destroy the field plates.

A main consideration while designing the field plates was to minimize the capacity formed
by the plate and the fiber holder to ensure a high modulation bandwidth. The capacity
of a single field plate above the fiber holder is on the order of 1 pF. For frequencies in the
MHz regime, such a small capacitance essentially constitutes an open end. The voltage
between the field plate and the fiber holder which is connected to ground, can therefore

(a) (b)

(c)

Figure 3.4: (a) Assembly of the self-built coaxial cables for three of the five cables installed on the
fiber holder. (b) Beryllium-copper contacts are used as a connection to the feedthroughs. To ensure
a continuous shielding of the cable, thin tubes of copper foil surround the contacts. (c) Coaxial cable
with copper mount which is used to install the cable to the fiber holder. The contact between the
central conductor and the field plates is ensured by thin copper stripes.

1 The evaporation was kindly performed by the 1st Institute of Physics of our university.
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3.4 Optical Setup

be estimated to be twice the applied voltage. Since the length of the silver stripes is small
compared to the wavelength of the applied electromagnetic waves, the resistance of the
evaporated layer due to the skin effect [53], can be neglected.

� Coaxial cables. To avoid unwanted cross-talk between the individual field plates, the latter
are connected through coaxial cables to the feedthroughs. Although vacuum compatible
coaxial cables are commercially available, almost all of these are not compatible with high
density cesium vapor due to the high reactivity of cesium. As a consequence, the cables
were self-built out of alumina beads lined up on a central conductor and surrounded by
a conductive braiding. The ends of the cables connected to the field plates are held in
copper mounts attached to the stainless steel pins screwed into the fiber holder (see Fig.
3.4c). As central conductor and braiding, 1 mm silver plated copper wire and nickel plated
copper braid was used respectively. The residual magnetization of the nickel coating was
measured to cause a magnetic field on the order of 100 mG at mm distances from the
cable. Considering that this corresponds to a Zeeman shift [54] on the order of kHz for
the involved atomic states in the experiment, the influence of the cables on the atomic
system can be neglected in the context of this work. Due to the specific size of the alumina
beads, the cable has an impedance of approximately 28 Ω. Since the BNC feedthroughs
have an impedance of 50 Ω, standing wave effects create a small frequency dependence of
the transmission of the cable. Although this effect was observed in the experiment, it did
not limit the modulation bandwidth up to 2 GHz which was the maximum frequency of
the employed radio-frequency generator (see Sec. 7.2).

� Field plate connection. The central conductors of the coaxial cables are connected to the
field plates through 30 µm thick copper stripes crimped to the slit end of the cables (see
Fig. 3.4c). The stripes are pressed on the field plates by small 5 mm×9 mm×0.2 mm glass
plates held in place by stainless steel brackets (see Fig. 3.3c). The assembly of the coaxial
cables is shown in Fig. 3.4a for three of the five cables installed on the fiber holder.

� Feedthroughs. The electrical feedthroughs used offer a BNC connection on the air-side and
a 2.39 mm connector pin on the vacuum-side surrounded by a grounded shield. In total,
six connections distributed on two feedthroughs are available, five of which are used. The
in-vacuum coaxial cables are connected with beryllium-copper contacts to the feedthroughs
(see Fig. 3.4b). A continuous shielding of the central conductor is ensured by thin tubes
of 30 µm copper foil which surround the beryllium-copper contacts. In contrast to the
coaxial cables themselves, the connection between the feedthroughs and the cables does
not have a well-defined impedance. However, the corresponding cable segment is short and
is expected to have little impact on the transmission characteristics for the modulation
frequencies considered here.

3.4 Optical Setup

Rydberg excitation is achieved via a three-photon process involving the wavelengths 895 nm,
1359 nm and 780 nm (see Sec. 4.1). The excitation light is delivered by means of optical
fibers to the setup. Following the notation used in Ref. [55], the lasers corresponding to
the three excitation wavelengths are in the following referred to as probe laser, dressing laser
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3 Experimental Apparatus
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Figure 3.5: Setup of the reference spectroscopy which uses a 5 mm vapor cell. The probe beam
(895 nm) which counter-propagates with respect to the dressing (1359 nm) and coupling (780 nm)
beams through the cell is detected with a photodiode (pd). Dichroic mirrors (DM) are used to
combine and split the three beams. Combinations of half-wave waveplates (λ/2) and polarizing beam
splitter cubes (PBSC) are used to adjust the beam powers. All beams are focused into the cell with
f = 200 mm lenses. To enable the use of a lock-in amplifier, the coupling beam can be amplitude
modulated with an acousto-optic modulator (AOM).

and coupling laser respectively. The setup itself consists mainly of three parts which can be
related to the two experiment chambers and a reference spectroscopy setup.

� Reference spectroscopy. To allow for the investigation of fiber-induced line shifts and
broadenings, a reference spectroscopy setup containing a 5 mm vapor cell is included in the
experiment (see Fig. 3.5). The cell consists of the actual cell body where the spectroscopy
takes place, and an attached reservoir. Cell and reservoir can be heated independently
from each other. The atomic number density of the cesium vapor inside the cell can be
controlled according to Eq. 2.1 by the reservoir temperature. The 895 nm probe beam
is focused into the spectroscopy cell with a 200 mm lens, subsequently collimated with a
second 200 mm lens and directed on a photodiode with a dichroic mirror. The 1359 nm
dressing beam and the 780 nm coupling beam counter-propagate with respect to the probe
beam in order to partly cancel the Doppler-effect. Dichroic mirrors are used to overlap
both beams with the probe beam. After passing the spectroscopy cell, they are separated
again from the probe beam. The 1/e2-radii of probe, dressing and coupling beam inside the
spectroscopy cell are approximately wp = 57 µm, wd = 71 µm and wc = 72 µm. All beam
powers can be adjusted with combinations of half-wave wave plates and polarizing beam
splitters. Typical beam powers employed in the experiment are pp = 300 nW, pd = 10 µW
and pc = 50 mW for probe, dressing and coupling beam respectively. To enable the use of
a lock-in amplifier, the 780 nm beam can be amplitude modulated with an acousto-optic
modulator (AOM).

� CF40-chamber. The spectroscopy setup for the CF40-chamber is shown in Fig. 3.6. The
three beams combined in the same way as in the reference spectroscopy, are focused into the
fibers with two achromatic lenses or 10×microscope objectives1 mounted on 3D translation
stages. For the 60 µm kagome fiber, coupling efficiencies of η895 ≈ 57 %, η1359 ≈ 60 % and

1 Nikon TU Plan Fluor 10×/0.30 A.
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3.4 Optical Setup

η780 ≈ 60 % were obtained with 40 mm lenses. The fiber ends can be imaged onto two
CCD cameras to enable optimization of the mode profile of the three beams inside the
fiber. A freespace 895 nm reference beam through the chamber allows for optical density
measurements outside of the fibers.

� E-chamber. The optical setup around the e-chamber closely resembles the spectroscopy
setup for the CF40-chamber shown in Fig. 3.6. Two 50 mm achromatic lenses on linear
translation stages are used to couple the three beams into the hollow-core fibers. For
the 60 µm kagome fiber, typical coupling efficiencies of η895 ≈ 54 %, η1359 ≈ 33 % and
η780 ≈ 55 % were obtained. For the 60 µm capillary, loss during the propagation of the
light through the capillary is expected to play a bigger role than for the kagome fiber. The
values of η895 ≈ 23 %, η1359 ≈ 6 % and η780 ≈ 32 % therefore must be interpreted as in-out
efficiencies.

PBSC

PBSC

to e-cham
ber

1359 nm 780 nm
895 nm

pd pd

/2λ

to e-cham
ber

PBSC 50:50

/2λ /2λ/2λ

f=150mm
f=40 mm
achrom.

f=150mm

f=40 mm
achrom.

CF40 cube

CCD

CCD

reference beam

RM RM DM DM

Figure 3.6: Setup of the fiber spectroscopy in the CF40-chamber which closely resembles the reference
spectroscopy (see Fig. 3.5). The beams are coupled into the fibers mounted in the vacuum cube by
means of two achromatic lenses or two 10× microscope objectives. Removable mirrors (RM) are used
to image the fiber ends onto CCD cameras in order to optimize the mode profiles. A 895 nm reference
beam split from the beam path with a fifty-fifty beam splitter (50:50) is used to monitor the optical
density in the chamber. Used abbreviations: DM (dichroic mirror), PBSC (polarizing beam splitter
cube, λ/2 (half-wave waveplate) and pd (photodiode).
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4 Three-Photon Rydberg Spectroscopy

In the described experiment, Rydberg excitation in thermal cesium vapor is achieved via
a three-photon process involving the intermediate states 6P1/2 and 7S1/2. The excitation
scheme and the characteristic lineshape of the corresponding spectroscopic signal is discussed
in the first part of this chapter. Subsequently, a theoretical model of the atomic system is
described and compared to experimental results in the last section of the chapter.

4.1 Excitation Scheme

The excitation scheme 6S1/2 → 6P1/2 → 7S1/2 → nP , where nP stands for a Rydberg state
with total angular momentum J = 1/2 or J = 3/2 is shown in Fig. 4.1 together with a
partial energy level diagram of cesium and the decay rates of the involved states. A major
advantage of the system is, that all three excitation steps correspond to near-infrared transi-
tion wavelengths for which inexpensive, high-power diode lasers are commercially available.
Additionally, all wavelengths correspond to energies below the work function of cesium [58]

Figure 4.1: (a) Excitation to the Rydberg state is achieved via the two intermediate states 6P1/2
and 7S1/2. The first two transitions correspond to transition wavelengths of 895 nm and 1359 nm.
The transition wavelength of the last excitation step depends on the main quantum number n of the
Rydberg state and ranges from 780 nm to 790 nm for n = 60 and n = 26 respectively (see Ch. A).
(b) Partial energy level diagram of cesium (5D states not included). Energy level spacings [31, 56]
rounded to MHz precision. (c) Decay rates of low lying states relevant for the experiment [31, 57].
The lifetime of the Rydberg state is on the order of several µs and its decay therefore dominated by
transit time effects in the experiment (see Sec. 2.4).
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4.2 Lineshape of the Three-Photon Signal

which presumably prevents the photo-ionization of cesium deposited on the glass windows of
the vacuum chamber and the fiber walls [25].
The first transition which corresponds to the D1 line is driven with a grating stabilized

895 nm diode laser (Toptica DL 100 pro). During the measurements, the laser was frequency-
stabilized to the transition |6S1/2, F = 3〉 → |6P1/2, F

′ = 4〉 by means of Doppler-free sat-
uration spectroscopy in a magnetic field [59]. The second transition is driven by a grating
stabilized 1359 nm diode laser (Toptica DL 100 pro) which is frequency stabilized to the tran-
sition |6P1/2, F

′ = 4〉 → |7S1/2, F
′′ = 4〉 via two-photon polarization spectroscopy [60]. The

transition wavelength between the 7S1/2 state and the Rydberg state lies between 780 nm
and 790 nm for main quantum numbers between n = 60 and n = 26 respectively (see Ch. A).
While both a J = 1/2 and a J = 3/2 state exists for the Rydberg P state, mostly the
J = 3/2 state was excited in the described work due to its greater coupling strength to
the 7S1/2 state. The corresponding transition is driven with the output of a tapered ampli-
fier1 which is seeded with a tunable, grating stabilized 780 nm diode laser (Toptica DL pro).
During the measurements, the laser was scanned across the Rydberg line. As a frequency
reference, the transmission signal of a Fabry-Perot interferometer with a free spectral range
of 988 MHz was used. In order to avoid temperature induced drifts of the interferometer, it
was actively length-stabilized using the transmission signal of the locked 895 nm laser [23].

4.2 Lineshape of the Three-Photon Signal

During measurements, both the probe laser and the dressing laser were frequency stabilized.
The coupling laser was scanned across the Rydberg line and the transmission of the probe
laser was monitored with a photodiode. In order to partly cancel the Doppler-effect, all
spectroscopy setups were built in such a way that the probe beam counter-propagates with
respect to the other two beams (see Sec. 3.4).
For a deeper understanding of the considered atomic system, it is helpful to change from

the bare atomic state picture to a semi-dressed state picture in which the two intermediate
states are replaced by the new eigenstates originating from the action of the dressing laser
on the atomic system [55]. If the dressing laser is resonant with respect to the intermediate
transition, the resulting dressed states |d+〉 and |d−〉 exhibit an energy splitting of Ωd/~,
where Ωd is the Rabi frequency of the dressing laser (see Fig. 4.2a). The resulting level
scheme can be interpreted as two three-level ladder-type systems with intermediate states
|d+〉 and |d−〉 respectively. Due to the action of the dressing laser, the probe laser is off-
resonant to the dressed states |d±〉. For thermal atoms however, the frequency of the probe
light is shifted in the rest-frame of the moving atoms due to the Doppler effect (see Sec. 2.4).
As a consequence, the probe laser drives the transition 6S1/2 → |d±〉 for two distinct velocity
classes v±.
In the considered atomic system, the absorption of the probe laser is determined by the

imaginary part of the coherence between ground state and first excited state Im(ρ21) (see
Sec. 4.3) and is therefore accessible in simulations based on a density matrix approach.
Fig. 4.2b shows Im(ρ21) obtained from the simulation of a four-level system (representing
the states 6S1/2, 6P1/2, 7S1/2 and the Rydberg state) based on the semiclassical approach

1 Eagleyard EYP-TPA-0780-01000-3006-CMT03-000.
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Figure 4.2: (a) Left: Bare atomic states coupled by Rabi frequencies Ωp, Ωd and Ωc. Right: Semi-
dressed state picture including the eigenstates |d±〉 originating from the action of the dressing laser
on the system. The image is based on a similar illustration in Ref. [55]. (b) Four level simulation of
the considered system for λd = 790 nm, Ωp = 2π × 5 MHz, Ωd = 2π × 20 MHz, Ωc = 2π × 10 MHz,
Γ21 = 2π × 4.6 MHz, Γ31 = 2π × 1.8 MHz, Γ32 = 2π × 1 MHz, Γ41 = 2π × 1 MHz. Top: Dependence
of Im(ρ21) (which determines the absorption of the probe laser) on the coupling laser detuning ∆c for
different velocity classes. Bottom: Doppler-average of Im(ρ21).

introduced in Sec. 2.4. Since the absorption of the probe laser depends both on the detuning
of the coupling laser ∆c and the one-dimensional velocity of the thermal atoms along the
laser axis, the result is shown in form of a velocity-detuning map (top of figure). For an
atomic ensemble, Im(ρ21) has to be averaged over all relevant velocity classes, weighted by
a one-dimensional Boltzmann distribution (see Sec. 2.4). The resulting quantity Im(ρd21) is
shown in the bottom of Fig. 4.2b.
The two distinct velocity classes v± which probe the dressed states |d±〉 are clearly visible

in Fig. 4.2b for large coupling laser detunings ∆c. As ∆c approaches zero, two avoided
crossings occur which are due to the coupling of the two dressed states |d±〉 to the Rydberg
state [61, 62]. The typical lineshape of the three-photon signal characterized by two off-
resonant features of enhanced transmission and an absorptive feature on resonance (∆c = 0)
is a direct consequence of this double avoided crossing.
If the magnetic substructure of the atom is taken into account (see Sec. 4.3), the features

visible in the top panel of Fig. 4.2b wash out due to different coupling strengths of the indi-
vidual sublevels. However, the qualitative lineshape of the Doppler-averaged signal remains
similar to the one obtained from the four-level system.

4.3 Simulations

While the four-level model introduced in the previous section is suited to describe the consid-
ered atomic system for a limited range of Rabi frequencies [23], the influence of the magnetic
sublevels is neglected. Moreover, the real atomic system possesses a dark state in form of
a hyperfine level which is not coupled to any excited state (see Fig. 4.1). In the following,
a theoretical model based on the semiclassical theory discussed in Sec. 2.4 is introduced
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4.3 Simulations

which accounts for the involved magnetic sublevels and pumping effects into the dark ground
state. The results of the theoretical model are compared to experimental data in the following
section.

Level Scheme

Fig. 4.3a shows the considered level scheme for the excitation pathway |6S1/2, F = 3〉 →
|6P1/2, F

′ = 4〉 → |7S1/2, F
′′ = 4〉 → |nP3/2〉 (excluding the dark ground state). For each of

the lower three involved states, two hyperfine states exist. For the Rabi frequencies relevant
in the described experiment, only one of these two states is coherently coupled to the rest
of the system by lasers (see Fig. 4.1). The whole manifold of these coupled hyperfine states
is included in the model. Since the system is coupled via incoherent decay processes to the
|6S1/2, F = 4〉 state, a dark state is included in the description. This state represents all
sublevels of the F = 4 state and allows an adequate modeling of pumping processes.
The considered Rydberg state nP3/2 possesses four nearly degenerate hyperfine levels which

can not be resolved in the experiment. An adequate description can therefore be given in
terms of the total angular momentum quantum numbers J andmJ. To simplify the theoretical
treatment, it is however advantageous to stay in the F , mF basis. Due to the selection rule
∆F = 0,±1, three of the hyperfine levels (F = 3, 4, 5) are coupled to the 7S state. Since
all three of these states can be regarded as degenerate, they can be represented by a single
state for each quantum number mF [62] which couples to the 7S state with an effective Rabi
frequency Ωeff. The coupling strength of the involved levels is discussed in the following.
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Figure 4.3: (a) Considered level scheme in the theoretical model. In addition to the shown levels,
also the dark ground state |6S1/2, F = 4〉 is included. The length of the drawn arrows represents the
relative coupling strengths of the levels for linearly, parallel polarized excitation beams. (b) Considered
decays in the system. In addition to the natural decays, also a transit time decay Γtt is included in
the model. (c) The hyperfine levels of the Rydberg state are nearly degenerate and are represented by
a single state for each quantum number mF. This can be justified by diagonalizing the Hamiltonian
of the shown four-level system in which the coupling of the lower state to the excited states can be
expressed in terms of an effective Rabi frequency Ωeff =

√
Ω2

1 + Ω2
2 + Ω2

3.
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4 Three-Photon Rydberg Spectroscopy

Couplings

From the Hamiltonian discussed in Sec. 2.4 it can be seen that the laser induced coupling
between two individual levels of a n-level system is given by the corresponding Rabi frequency
Ω. For a transition from state |i〉 with quantum numbers F andmF to state |j〉 with quantum
numbers F ′ and m′F, the Rabi frequency can be defined as

Ωij = −E
~
〈F,mF|dε̂|F ′,m′F〉 , (4.1)

where E and ε̂ denote the amplitude and the polarization vector of the coupling field re-
spectively. The dipole operator d = er is given by the elementary charge e and the position
operator r. For a given polarization, the product dε̂ can be expressed in terms of the com-
ponents rq of r in the spherical basis. This yields dε̂ = erq ≡ dq, where q = 0,±1 for π
and σ∓ polarization respectively. Using this notation and the Wigner-Eckart theorem, the
matrix element contained in Ωij can be factored into an angular part containing a Wigner
3-j symbol and an angular independent, reduced dipole matrix element 〈F‖ er ‖F ′〉 [31]:

〈F,mF|dq|F ′,m′F〉 = 〈F‖ er
∥∥F ′〉 (−1)F ′−1+mF

√
2F + 1

(
F ′ 1 F

m′F q −mF

)
. (4.2)

Since transition dipole matrix elements are commonly given in terms of reduced matrix
elements in the J basis, it is useful to further reduce this expression by employing the relation
[31]

〈F‖ er
∥∥F ′〉 = 〈J‖ er

∥∥J ′〉 (−1)F ′+J+1+I
√

(2F ′ + 1)(2J + 1)
{
J J ′ 1
F ′ F I

}
, (4.3)

which contains a Wigner 6-j symbol and the nuclear spin quantum number I. The reduced
matrix elements 〈J‖ er ‖J ′〉 relevant for this work are given in Ch. A. Since all beams are
polarized linearly and parallel to each other in the experiment, it is useful to define the
quantization axis of the problem in such a way, that q = 0. In this case, only transitions with
∆m = 0 are allowed.
For the Rydberg transition, the treatment described above is not suitable since the three

hyperfine levels which are coupled to the 7S state are represented by a single state for each
quantum numbermF. This can be justified by considering a four-level system in which a single
state is coupled to three degenerate states, as illustrated in Fig. 4.3c. If the Rabi frequencies
are Ω1, Ω2 and Ω3, it can be shown by diagonalizing the corresponding Hamiltonian that the
coupling of the lower state to the excited states is adequately described by an effective Rabi
frequency

Ωeff =
√

Ω2
1 + Ω2

2 + Ω2
3 . (4.4)

A similar approach was used in Ref. [62] to reduce a Y -type three-level system to a two-
level system. Using Eq. 4.4, the Rabi frequency for the transition |7S1/2, F = 4,mF〉 →
|nP3/2,mF〉 can be given as

|Ωeff| =
E

~

√ ∑
F ′=3,4,5

|〈F = 4,mF|d0|F ′,mF〉|2. (4.5)

The coupling strengths of the individual levels determined with the theoretical frame work
described above is illustrated in Fig. 4.3a. For the sake of clarity, it is desirable to characterize
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4.3 Simulations

the system by only three coupling strengths. Throughout the rest of this thesis, coupling and
dressing Rabi-frequencies Ωp and Ωd are therefore given in terms of the definition

Ωp,d = −E
~
〈F‖ er

∥∥F ′〉 (4.6)

and have to be interpreted accordingly. In the case of the Rydberg transition, the definition

Ωc = −E
~
〈J‖ er

∥∥J ′〉 (4.7)

is used. The electric field amplitude E appearing in both definitions can be determined in
the experiment by translating the measured beam power p into an intensity I and using the
relation I = 1/2cε0E

2. Here c is the speed of light and ε0 is the vacuum permittivity. The
resulting electric field amplitude is given by

E =
√

2p
πε0cr2 , (4.8)

where r is the 1/e2 radius of a Gaussian laser beam.

Decays

While the linearly polarized lasers only couple states with ∆m = 0, decay processes mix
states with different magnetic quantum numbers, since ∆m = 0,±1 in this case. The decay
rate of all magnetic sublevels of an excited state with quantum number J ′ into a lower state
with quantum number J , is equal and given by [31]

Γ = ω3
0

3πε0~c3
2J + 1
2J ′ + 1 | 〈J‖ er

∥∥J ′〉 |2 , (4.9)

where ω0 is the resonance frequency of the transition. This total decay rate, given in Fig. 4.1
for the relevant transitions, represents the sum of the decays into the individual sublevels of
the lower state. The decay into a specific sublevel of the lower state can be found using the
relation [31] ∑

q,F

|〈F,m′F + q|dq|F ′,m′F〉|2 = 2J + 1
2J ′ + 1 | 〈J‖ er

∥∥J ′〉 |2 , (4.10)

where the sum is taken over the lower state hyperfine levels and q = 0,±1. The combination
of the last two equations reveals that the excited state |J ′, F ′,m′F〉 decays into the state
|J, F,mF = m′F + q〉 with the decay rate

Γq,F = (2F + 1)(2F ′ + 1)(2J ′ + 1)
∣∣∣∣∣
(
F ′ 1 F

m′F q −(m′F + q)

)∣∣∣∣∣
2 ∣∣∣∣∣
{
J J ′ 1
F ′ F I

}∣∣∣∣∣
2

Γ . (4.11)

For an appropriate description of the experimental situation, not only the natural decays, but
also transit time effects have to be taken into account (see Sec. 2.4). The limited interaction
time of the atoms with the laser light can be treated as an isotropic decay of all states into
the sublevels of the two hyperfine ground states. This includes an effective decay between
the ground state sublevels themselves. The natural decay of the Rydberg state is on the
order of kHz and the transit time decay Γtt given by Eq. 2.28 is larger than 2π × 0.5 MHz
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4 Three-Photon Rydberg Spectroscopy

for all relevant beam sizes in the considered experiment. As a consequence, all natural decay
channels of the Rydberg state are neglected in the model and only a transit time decay into
the ground state sublevels is considered.
The 7S1/2 state is not allowed to decay directly to the ground state due to selection rules.

However, all indirect decay channels via the 6P1/2 and 6P3/2 state are allowed. While the
decay via the |6P1/2, F = 4〉 state can be easily included in the simulations, also the other
decay channels have to be accounted for. To do so, the combined decay branches via the
intermediate states were calculated and a decay of the 7S state into the ground state included
into the model. While this treatment adequately accounts for pumping effects within the
considered level scheme, the population in the dark intermediate states is neglected. All
considered decays are illustrated in Fig. 4.3, where the decay via the intermediate dark
states is labeled Γ6P3/2 , and Γ32 and Γ21 represent the total decay rates Γ7S1/2→6P1/2 and
Γ6P1/2→6S1/2 , respectively.

Absorption

In the framework of the semiclassical theory discussed in Sec. 2.4, the absorption coefficient
for a two-level system is proportional to d12Imρ21, where d12 is the transition dipole matrix
element of the transition and ρ21 is the coherence between the two levels.1 For the discussed
level scheme, the different coupling strengths of the magnetic sublevels have to be considered.
In this case, the absorption coefficient for the probe transition contains a contribution of all
driven transitions of the first excitation step:

α ∝
∑

dijImρji ≡ Imρ21 . (4.12)

Here dij and ρji are the dipole matrix elements and coherences of the corresponding transitions.
In the next section, the quantity Imρ21 is used to illustrate the results of the simulations.
In order to compare the theoretical results with experimental spectra, the thermal velocity
of the atoms has to be taken into account and Imρ21 has to be calculated for all relevant
velocity classes. In Eq. 4.12, Imρ21 then has to be substituted by the Doppler-averaged
quantity Imρd21 (see Sec. 2.4).

4.4 Spectroscopic Results

The spectroscopic results presented in the following were obtained with the reference spec-
troscopy setup described in Sec. 3.4, using the excitation scheme detailed in Sec. 4.1. For all
presented measurements, the Rydberg state was 28P3/2 and the three laser beams were polar-
ized linearly and parallel to each other. As described in the previous section, both the probe
laser and the dressing laser were frequency stabilized, while the coupling laser was scanned.
The measured spectra thus represent the transmission of the probe laser as a function of the
coupling detuning ∆c. As detailed in the previous section, all Rabi frequencies given were
determined using reduced dipole matrix elements.
Fig. 4.4 shows the spectra obtained for three different combinations of the involved Rabi

frequencies Ωp, Ωd and Ωc. Also shown are the corresponding velocity-detuning maps of
Imρ21 obtained from simulations, based on the theoretical model described in the previous

1 Note that the tilde on top of the coherence (see Eq. 2.23) is omitted in this expression.
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4.4 Spectroscopic Results

section. Here Imρ21 referrers to the coherence between the ground state and the first excited
state, averaged over the involved magnetic sublevels. All relevant simulation parameters,
including the Rabi frequencies and the quantum numbers of the Rydberg state, were taken
to correspond to the experimental situation. In order to compare the simulations with the
experimental data, the Doppler-averaged coherence Imρd21 was fitted to the transmission
curves, using the relation (see Sec. 2.4)

t = a · exp(b Imρd21) . (4.13)

Here a and b constitute fitting parameters and the subscript d indicates the Doppler average.
The experimental data shown in Fig. 4.4 represents three different regimes in terms of the
Rabi frequencies Ωp, Ωd and Ωc. For probe Rabi frequencies Ωp small in comparison with
the dressing Rabi frequency Ωd (left panel of Fig. 4.4), the dressed states |d+〉 and |d−〉
are well resolved by the probe laser and the double avoided crossing causes two off-resonant
features of enhanced transmission and one absorptive feature on resonance. However, the
velocity-detuning map of Imρ21 reveals that the avoided crossings are strongly washed out
due to the different coupling strengths of the magnetic sublevels. For large Rabi frequencies
Ωp in comparison with Ωd (middle panel of Fig. 4.4), power broadening leads to an overlap
of the outer wings of the signal and the absorptive feature on resonance shrinks. Eventually,
this leads to a Gaussian shaped peak of enhanced transmission on resonance for extremely
large Ωp [61]. If the dressing Rabi frequency Ωd is increased sufficiently, the different coupling
strengths of the magnetic sublevels are directly resolved by the probe laser and a splitting of
the outer features of the signal can be observed (right panel of Fig. 4.4).
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Figure 4.4: Upper half: Simulated coherence between ground state and first excited state, averaged
over the involved magnetic sublevels. The result is shown for different velocity classes and coupling
laser detunings ∆c. Lower half: Relative transmission amplitude of the probe laser (with respect
to the background absorption). The experimental data (blue, averaged over ten traces) is compared
to simulations (red) for Rabi frequencies (left to right) Ωp = 2π × {5.2, 30.6, 16.6}MHz, Ωd = 2π ×
{17, 17, 126}MHz and Ωc = 2π × {13.8, 13.8, 12.5}MHz.
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4 Three-Photon Rydberg Spectroscopy

While the simulations fit qualitatively well to the experimental data, discrepancies are obvi-
ous, especially for high probe and dressing Rabi frequencies. At least to some extend, this can
be attributed to the Gaussian intensity profile of the laser beams which is not incorporated
in the simulations [23]. Additionally, the attenuation of the probe laser over the length of
the cell might contribute to the encountered mismatch.
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5 Diffusion of Cesium Vapor into Hollow-Core
Fibers

For any potential application of vapor-filled hollow-core waveguides (e.g. fibers), the filling
process of these waveguides is of special interest. The understanding of the underlying dy-
namics of this process allows to estimate if the required filling time constitutes a limiting
factor for a given experiment or application. In this chapter, a theoretical model for the
diffusion of cesium into hollow-core fibers is presented and compared to experimentally mea-
sured diffusion curves. The employed model takes the adsorption and desorption of cesium
on the fiber walls into account and is based on a treatment described in Ref. [23].

5.1 Theoretical Diffusion Model

The flow dynamics of gases within thin tubes is determined by the dimensionless Knudsen
number Kn = λ/d, where λ is the mean free path length of a molecule or atom in the gas
and d is the diameter of the tube. A small Knudsen number Kn << 1 implies that the gas
molecules undergo mainly intermolecular collisions. This hydrodynamic regime is adequately
described by the Navier-Stokes equations [63]. By contrast, a large Knudsen numberKn >> 1
corresponds to the free molecular flow regime where the molecules almost exclusively collide
with the walls of the tube. In this case, it was shown that the dynamics can be described as
a one dimensional diffusion process [63–65].
The mean free path length of cesium atoms in a thermal vapor at pressures corresponding

to the vapor pressure pv(T ) (see Sec. 2.1) is given by [63]

λ = kBT√
2π d2

a pv(T )
. (5.1)

Here kB is the Boltzmann constant, T is the temperature and da = 5.9Å is the atomic diam-
eter of cesium [66]. For a temperature of 45 ◦C (which was approximately the temperature of
the cesium reservoir in the diffusion measurement described later), Eq. 5.1 gives a mean free
path length of λ ≈ 2 m which corresponds to Knudsen numbers of Kn > 104 for typical fiber
diameters on the micrometer length scale. For the conditions present in our experiment, the
migration of cesium vapor into hollow-core fibers therefore takes place in the free molecular
flow regime and can be described with the one dimensional diffusion equation [67]

∂n

∂t
= D

∂2n

∂x2 . (5.2)

Here n(x, t) is the atomic number density at the space coordinate x and time t, and D is
the diffusion constant. For the diffusion of cesium vapor in hollow-core fibers, the diffusion
constant does not only depend on the ambient temperature and the geometry of the fiber
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Figure 5.1: Illustration of two solutions of the diffusion equation (see Eq. 5.2) for constant boundary
conditions (marked as red dots). (a) The complementary error function in Eq. 5.6 fulfills the boundary
condition n(x = 0, t) = n0. (b) For the boundary conditions n(x = ±l/2, t) = n0, a solution can be
found in terms of a superposition of complementary error functions (see Eq. 5.7).

but also on adsorption and desorption processes of cesium on the fiber walls [23]. For a thin
tube, Ref. [68] gives a diffusion constant of

D = 4
3

r2

τ + (2r/v) . (5.3)

Here r is the radius of the tube and v =
√

8kBT/(πm) is the the mean velocity of the gas
atoms with mass m.1 The adsorption time τ can be interpreted as the mean time an atom
stays at the fiber wall after a collision. For a given wall temperature Tw, the adsorption time
is expected to be given by [66, 69]

τ = τ0(θ) exp
(
Ea(θ)
kBTw

)
, (5.4)

where the characteristic time τ0 and the adsorption energy Ea are functions of the surface
coverage θ.
In the diffusion measurement presented in Sec. 5.2, the temperatures of the reservoir and

of the rest of the chamber were approximately Tres = 45 ◦C and Tc = 80 ◦C respectively. Due
to this large temperature difference, the surface coverage θ can be expected to be low.2 It
therefore seems reasonable to assume no interactions between individual adsorbed cesium
atoms and to assume D to be a constant. In this case, Eq. 5.2 becomes a linear second order
partial differential equation which is identical to the one dimensional heat equation. The
solutions of the diffusion equation depend on the boundary conditions of a given problem and
can often be found with the method of separation of variables or by a Laplace transform [67].
In our experimental setup (see Sec. 3.2), the fibers are mounted inside a vacuum chamber
and as soon as the cesium vapor was released into the chamber, it diffused from both ends
of the fibers into the open core. If the vacuum chamber is assumed to constitute an infinite

1 An expression which deviates slightly from the one given in Eq. 5.3 is derived in Ref. [64].
2 Based on an estimation given in Ref. [66], the surface coverage is below the one percent level for the considered
temperatures.
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5.1 Theoretical Diffusion Model

reservoir of cesium vapor at a constant number density n0 and the length of a specific fiber
is l, the boundary conditions corresponding to the experimental situation can be written as

n(x, t = 0) = 0 , −l/2 < x < l/2 , (5.5)
n(x = l/2, t) = n(x = −l/2, t) = n0 .

To find a solution for these boundary conditions, it is beneficial to first consider the case of
a semi-infinite medium which extends from x = 0 to x = ∞ for the boundary conditions
n(x > 0, t = 0) = 0 and n(x = 0, t) = n0. The well-known solution of this problem is given
by [67]

n(x, t) = n0 erfc
x

2
√
Dt

, (5.6)

where the complementary error function is defined as erfc(x) = 1− erf(x) (see Fig. 5.1). The
solution for the originally considered boundary conditions given in Eq. 5.5 can then be found
as a superposition of solutions of the semi-infinite case:

n(x, t) = n0

∞∑
q=0

(−1)qerfc x+ (2q + 1)l/2
2
√
Dt

+ n0

∞∑
q=0

(−1)qerfc −x+ (2q + 1)l/2
2
√
Dt

. (5.7)

An illustration showing that this expression leads to a constant density of n0 at x = ±l/2
is shown in Fig. 5.1. The density profile inside the fiber predicted by Eq. 5.7 is shown in
Fig. 5.2 for different values of the dimensionless time tr = Dt/l2. Also shown is the filling
factor n/n0, where n is the mean density in the fiber. Following the definition given in
Ref. [23], the filling time of a fiber is defined in the following as the duration after which the

Figure 5.2: Diffusion into a hollow-core fiber of length l as predicted by Eq. 5.7. The infinite series
was truncated at q = 100. Shown are normalized quantities and time is given as a dimensionless
variable tr = Dt/l2. (a) Spatial density profile at different dimensionless times tr. The fiber ends at
x = −l/2 and x = l/2 are held at constant density n0. (b) Filling factor n/n0 as a function of tr. The
filling time t85% as defined in the text is marked as a grey line.
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atomic number density at every position of the fiber exceeds 85 % of n0. With Eq. 5.7, the
filling time for a given diffusion constant and fiber length can be approximated to be

t85% ≈ 0.217 l
2

D
. (5.8)

In terms of the dimensionless time introduced previously, the filling time is therefore tr85% =
0.217. Even if for most applications the filling process seems more important than the venting
process, it should be mentioned that the venting process is complementary to the filling
process in the free molecular flow regime [63]:

nvent(x, t) = 1− nfill(x, t) . (5.9)

5.2 Experimental Results

Since the absorption coefficient α of a ground state transition is directly proportional to the
atomic number density n of a vapor, optical density (OD) measurements can be utilized to
determine the density of a uniform vapor (see Sec. 2.4). In case of a partly vapor-filled fiber,
the optical density is proportional to the filling factor n/n0 which implies that absorption
spectroscopy can be used to measure the diffusion of an atomic vapor into a fiber. Following
this strategy, the 895 nm probe beam was coupled into the 85 mm long 60 µm kagome fiber
(coupling efficiency ∼57 %) mounted in the CF40 cube (see Sec. 3.2). The filling was then
monitored by scanning the laser over all four absorption dips of the D1 line (see Sec. 4.1)
continuously. At the same time, the optical density in the chamber around the fiber was
probed with a freespace beam. The optical density was then extracted from the measured
data by fitting a theoretical absorption profile to the spectra [70]. As an example, a fitted
spectrum is shown as inset in Fig. 5.3. The laser power (measured at the output end of
the fiber and before it was exposed to cesium) was p895 = 40 nW. Inside the fiber, this
corresponds to light intensities below the saturation intensity.
When the cesium ampule inside the flexible metal bellow was broken (see Sec. 3.2), both

chamber and reservoir were held at room temperature. Although, this approach omits in-
accurate temperature measurements of the system, it was discarded, since no cesium could
be detected in the main chamber after one day. Reservoir and chamber were subsequently
heated to approximately Tres = 45 ◦C and Tc = 80 ◦C respectively. The measured time evo-
lution of the optical density after the heating was switched on is shown in Fig. 5.3. In both
the fiber and the chamber, no cesium could be detected for over 10 hours. After the first
detection of cesium, the optical density however increased rapidly within the chamber and
saturated around three days after the heating was switched on. The delayed appearance of
cesium vapor in the chamber can most probably be attributed to the deposition of cesium on
the stainless steel walls of the vacuum chamber [71]. Such a coating process is expected to
prohibit a pressure build-up in the chamber, until the walls are saturated.
From Fig. 5.3 it is apparent that even after a filling time of 400 hours, the optical density

in the fiber did not reach the value measured in the chamber. To get a rough estimate of the
corresponding diffusion constant D, the filling curve was compared to the theoretical model
introduced in Sec. 5.1. A reasonable agreement between experiment and theory could be
found for a diffusion constant of Dest = 8× 10−10 m2/s and an optical density in the chamber
of ODfreespace = 35 (see dashed line in Fig. 5.3). To account for the delayed appearance of
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Figure 5.3: Measured time evolution of the OD in vacuum chamber and 85 mm long 60 µm kagome
fiber. At t = 0 h, reservoir and chamber were heated to approximately Tres = 45 ◦C and Tc =
80 ◦C respectively. Dashed line: theoretical model (see Eq. 5.7) for Dest = 8× 10−10 m2/s and
ODfreespace = 35. The time axis was shifted in the theoretical model by 32 hours to account for the
delayed appearance of cesium in the chamber which can be attributed to the deposition of cesium on
the stainless steel walls of the chamber. The OD was extracted by fitting a theoretical absorption
profile to the spectra. The inset shows an exemplary spectrum (blue, averaged seven times) and the
fit (red).

cesium, the time axis in the theoretical model was shifted by 32 hours. Since the optical
density in the chamber reached equilibrium on a much faster time scale than in the fiber, the
error introduced by assuming constant boundary conditions in the theoretical model can be
expected to be small.
According to Eq. 5.3, the diffusion constant Dest corresponds to an adsorption time of

τest ≈ 1.5 s which can be used to compare the given estimate with results of adsorption time
measurements. The factor τ0 and the adsorption energy Ea which determine the adsorption
time τ (see Eq. 5.4) are given in Refs. [66, 69] for the case of cesium atoms adsorbing on
quartz glass.1 The adsorption times corresponding to these values are directly compared
to the estimate τest in Table 5.1. To illustrate the influence of the adsorption time on the
diffusion process, also the corresponding diffusion constants according to Eq. 5.3 and filling
times t85% according to Eq. 5.8 are given for the conditions present in our experiment. It
is apparent that the given adsorption times are not compatible with each other and differ
orders of magnitude from each other. It is important to note that all three values of τ were
measured with different methods. While τ was roughly estimated from a diffusion curve in
this work, surface conductivity measurements and evanescent spectroscopy were employed in
Ref. [66] and Ref. [69] respectively. The encountered discrepancy might therefore be a result
of different theoretical models used to extract the adsorption time from the experimental

1 The inner walls of the kagome fiber are made of quartz glass.
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τ0 [s] Ea [eV] corr. τ [s] corr. D [m2/s] corr. t85% [h] reference
- - 1.5 8 · 10−10 544 this work

10−13 0.66± 0.05 2.6 · 10−4 4.6 · 10−6 0.095 Ref. [66]
10−8 0.2 7.1 · 10−6 1.6 · 10−4 0.0027 Ref. [69]

Table 5.1: Comparison of the estimated adsorption time τest with values calculated with Eq. 5.4
and Ea and τ0 taken from Refs. [66, 69]. To illustrate the influence of the adsorption time on the
diffusion process, the corresponding diffusion constant D and filling time t85% for the experimental
circumstances in our experiment are given.

results. This also raises the question about the validity of the treatment introduced in
Sec. 5.1. Additionally, the exact conditions of the studied surfaces are expected to have a
strong influence on the adsorption time. This includes impurities on the surface and especially
the duration how long the surface was exposed to cesium. The latter point was shown to be
crucial and suggests a migration of cesium atoms into the quartz on the order of a few atomic
diameters [69]. The different adsorption times might therefore also be attributed to different
experimental circumstances.
The evolution of the optical density shown in Fig. 5.3 exhibits strong fluctuations for both,

the fiber and the freespace case. A striking feature of the curves is, that the fluctuations in
fiber and chamber seem to be correlated. Since the beam powers were found to be stable,
this behavior can not be attributed to saturation effects. To examine if the optical density
variations are temperature induced, the temperature of the vacuum chamber was actively
modulated after the diffusion measurement presented above was completed. The temperature
of the reservoir was not changed. Fig. 5.4 shows the temporal evolution of the chamber
temperature (measured with a Pt100 temperature sensor fixed to the outside of the chamber)
and the optical density measured in chamber and fiber. The data qualitatively reveals a strong

Figure 5.4: Short-term influence of the chamber temperature on the OD in chamber and fiber. The
strong temperature dependence of the OD can be attributed to the temperature dependent adsorption
process of cesium on the chamber and fiber walls (see Eq. 5.4).
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5.2 Experimental Results

short-term influence of the chamber temperature on the optical density in the chamber as
well as in the fiber. The decrease of optical density with decreasing temperature is consistent
with Eq. 5.4 which predicts more atoms to be adsorbed on chamber and fiber walls for
lower temperatures. While the evolution of the optical density is delayed with respect to
the temperature curve, this can be explained by the heat transfer between the outside and
the inside of the vacuum chamber. Given the strong temperature dependence observed in
this measurement, it seems likely that the fluctuations observed in the diffusion measurement
were caused by temperature variations in the laboratory which were determined to be on the
order of a few degrees Celsius. It should be noted that the optical density in the temperature
measurement presented here, is much lower than in the case of the diffusion measurements,
despite the fact that the heating of the reservoir was not changed. This suggests either
a temporary failure of the reservoir heating (which later failed completely) or the sudden
appearance of a presumably virtual leak. The possibility of a contamination during the
temperature measurements can therefore not be excluded. However, it seems unlikely that
this would have influenced the qualitative behavior of the system.
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6 Spectroscopy in Hollow-Core Fibers

Rydberg excitation in hollow-core fibers was first demonstrated in 2014 in our institute [23,
24]. As in the work described here, thermal cesium vapor was used and main quantum
numbers up to n = 40 and n = 30 were reached in kagome-type hollow-core photonic crystal
fibers with core diameters of 60 µm and 19 µm respectively. In this chapter, spectroscopic
results obtained in the new experimental setup (see Ch. 3) are presented. To study the
impact of the confining environment of hollow-core fibers on Rydberg atoms under different
experimental conditions, spectra were measured at different temperatures, optical densities
and probe laser powers. The spectra were then compared to reference spectra simultaneously
obtained in a vapor cell.

6.1 Guiding Properties

For our investigations, we focused on two kagome fibers with core diameters of 60 µm and
12 µm and a bandgap fiber with a core diameter of 12 µm (see Ch. 3). The 12 µm fibers were
chosen since the achievement of Rydberg excitation in such small fiber cores would constitute
a major step towards the study of Rydberg-induced optical nonlinearities.
The employed Rydberg excitation scheme detailed in Sec. 4.1 is based on a three-photon

transition at the wavelengths 895 nm, 1359 nm and 780 nm. Unexpectedly, it was found that
the kagome fiber does not guide at 1359 nm at all and is therefore inadequate for the used
excitation scheme. The bandgap fiber (see Fig. 6.1a) was found to guide a small part of
the incoupled 1359 nm light in the fundamental mode before the fiber was exposed to cesium
vapor (see Fig. 6.1c). After several weeks of exposure to cesium however, the fiber did
not guide at 1359 nm anymore and showed a strongly reduced guidance at 780 nm. Similar
observations are described in Ref. [72], where rubidium was shown to alter the guidance
properties of a bandgap fiber. As a consequence, the 60 µm kagome fiber which guides well
at all three excitation wavelengths was used for all measurements carried out in the CF40-
chamber. An image of the fundamental mode of the probe beam in the 60 µm kagome fiber
is shown in Fig. 6.1d.

6.2 Spectroscopic Results

As presented in the following, the Rydberg spectra measured in the employed hollow-core
fibers show line shifts and lineshape distortions with respect to simultaneously taken spectra
in a reference cell. Line shifts of Rydberg signals in hollow-core fibers were previously found
and mainly attributed to static electric fields inside the fibers [23, 24]. These shifts were shown
to vanish after exposing the fibers long enough to cesium. In the experiment described here,
it was found that in addition to the exposure time of the fibers to cesium, also the chamber
temperature has great influence on the lineshape of the spectroscopy signal. Fig. 6.3a shows
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(a) (b)

(c)

(d)

Figure 6.1: (a)-(c) Employed 12 µm bandgap fiber. (a) SEM image (provided by the Max Planck
Institute for the Science of Light – Russell divison, Erlangen). Also shown is the mode of 895 nm (b)
and 1359 nm (c) light before the fiber was exposed to cesium. While a small fraction of the 1359 nm
light was guided in the fundamental mode before the fiber was exposed to cesium, the guiding was
lost in a cesium atmosphere. (d) Fundamental mode at 895 nm in the 60 µm kagome fiber guiding
well at all three excitation wavelengths.

two spectra (see Ch. 4) obtained at different chamber temperatures Tch and a constant
reservoir temperature of Tres = 22 ◦C. Both spectra were measured more than six months after
the cesium reservoir was broken in the 60 µm kagome fiber mounted in the CF40-chamber (see
Sec. 3.2). The chamber had been heated continuously since the fibers were exposed to cesium
and the optical density inside fiber and surrounding chamber was measured at the chamber
temperature Tch ≈ 63 ◦C to be ODkagome = 2 and ODchamber = 2.6 respectively. The optical
density of the short segments between the fiber ends and the vacuum windows was determined
to be ODcladding ≈ 0.09 by coupling the probe laser into the cladding of the fiber. The
spectroscopy signal originating from outside the fiber is therefore expected to be very small.
Since the lineshape of the three-photon signal was found to be heavily deformed at chamber
temperatures higher than the reservoir temperature (see upper spectrum in Fig. 6.3a), the
chamber was cooled down to room temperature (22 ◦C). The corresponding spectrum in
Fig. 6.2a was measured one day after the cool-down process and exhibits only a slight
deformation. Figure 6.2b shows a probe spectrum measured after the chamber was held at
room temperature for one month. As a comparison, also a simultaneously taken reference
spectrum (measured in the reference cell, see Sec. 3.4) is shown. All Rabi frequencies
in reference cell and fiber were comparable. While the spectrum taken in the fiber does
not exhibit severe lineshape distortions, it is clearly visible that the spectroscopic signal is
broadened and shifted slightly with respect to the reference spectrum.

Considering the results presented above and the findings of previous work [23, 24], it seems
reasonable to attribute the observed lineshape deformations to inhomogeneous electric fields
inside the fiber. To see, that this explanation is in agreement with the vanishing lineshape
deformation at low chamber temperatures, the adsorption of cesium atoms on the glass walls
of the fiber has to be considered. As discussed in Ch. 5, the surface coverage of cesium
atoms on the glass is expected to increase with decreasing temperature. Such an increase
in surface coverage was shown to be accompanied by an increasing electrical conductivity of
the surface layer in Ref. [66]. The charges causing the assumed electric field could therefore
drain off more easily at low temperatures. While the observed lineshape deformations might
be explainable by an inhomogeneous field alone, results presented in the following suggest
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Figure 6.2: Probe spectra obtained in the 60 µm kagome fiber exposed more than six months to
cesium for the Rydberg state 28P3/2. (a) Spectra (averaged 500 times) for different chamber tem-
peratures Tch and constant reservoir temperature Tres = 22 ◦C. The lineshape of the upper spectrum
is severely deformed. The zero point of the frequency axis (marked by grey line) was determined
from a reference spectrum. The beam powers (measured at off-resonant frequencies after the fiber)
were pp = 0.4 − 0.5 µW, pd = 4.86 µW and pc = 18 − 20 mW for probe, dressing and coupling beam
respectively. (b) Spectrum (averaged 500 times) obtained one month after the chamber was cooled
down to room temperature. Also shown is a spectrum obtained simultaneously in the reference cell
for comparable Rabi frequencies. The beam powers were pp = {0.1, 0.75} µW, pd = {4.8, 60} µW and
pc = {3.55, 38}mW for fiber and reference cell respectively. The OD in chamber and kagome fiber
was measured to be ODchamber = 2.2 and ODkagome = 1.1.

that the Rydberg population has a significant influence on the electric field experienced by
the atoms in the fiber. The encountered lineshapes might therefore be the result of a local
electric field which is influenced by the coupling laser detuning ∆c.
To gain a better understanding of the observed line shifts and deformations, also spectra

obtained with the 60 µm kagome fiber and 60 µm capillary mounted in the e-chamber (see
Sec. 3.3) were compared to reference spectra. In contrast to the measurements presented
above, the fibers were only exposed for two months to cesium and both reservoir and cham-
ber were heated (Tres ≈ 45 ◦C, Tch ≈ 90 ◦C). The measured optical densities for the kagome
fiber (ODkagome = 8.6) and for the capillary (ODcapillary = 11) are both smaller than the
optical density measured in the chamber (ODchamber = 19.5). As discussed in Ch. 5, this
indicates that the diffusion process of the cesium atoms into the fibers had not reached equi-
librium at the time of the measurements. For both fibers no severe lineshape deformations
were observed. Given the fact that the chamber temperature was higher than the reservoir
temperature, this seems to be inconsistent with the results presented previously. However, it
is important to note again that the optical density was much higher than in the previously
considered case and that the fibers were exposed for only two months to cesium. Although
no severe lineshape distortions were found, a clear shift of the signal with respect to a si-
multaneously taken reference signal could be observed. As an example, a probe spectrum
obtained with the 60 µm kagome fiber is shown in Fig. 6.3a. Strikingly, an influence of the
probe laser power on the shift was found for both, the kagome fiber and the capillary. In
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Figure 6.3: Line shifts observed at high optical densities (ODkagome = 8.6, ODcapillary = 11) for
the Rydberg state 28P3/2. (a) Spectrum in 60 µm kagome fiber and simultaneously taken reference
spectrum. Beam powers: pp = {2, 3}µW, pd = {67, 8.2}µW and pc = {6, 8.9}mW for reference cell
and fiber respectively. (b) Dependence of the line shift on the probe power pp (upper panel) for pd
and pc as in (a). As a measure of the saturation of the probe transition, the absorbed fraction of the
probe power is plotted in the lower panel. pout was estimated from a photodiode signal.

Fig. 6.3b (upper panel), the encountered line shifts are plotted as a function of the probe
power pp for the Rydberg state 28P3/2. Both, the data obtained with the kagome fiber and
with the capillary qualitatively show a decrease of the shift with increasing probe power. It
is worth to note that the largest gradient in the shown curves appears at the transition from
unsaturated absorption to saturated absorption of the atomic ensemble. As a measure of the
saturation, the absorbed fraction of the probe power (1− pout/pin) is shown in the lower panel
of Fig. 6.3b. While the distinct behavior of the shift remains unexplained (e.g. the probe
dependence at low pp in the capillary, see Fig. 6.3b), the curves suggest that the increas-
ing Rydberg population which is associated with increasing probe power has a significant
influence on the system.
In summary, the observed lineshape deformations and shifts indicate the influence of a local

electric field on the atoms inside the fibers. While the origin of the electric charges causing
this field is not known, it is promising that the encountered deformations vanish at low fiber
temperatures and the line shifts were shown to disappear if the fibers are exposed to cesium
long enough [24].
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7 Rf Dressing of the Rydberg State

The experimental apparatus described in Sec. 3.3 allows for the application of radio-frequency
(rf) electric fields to individual segments of a hollow-core fiber. In this chapter, experimental
results are presented and compared to a theoretical model which describes the action of an
ac electric field on Rydberg atoms. As detailed in the following, the experimental setup was
used to gain a spatial resolution of the spectroscopy signal along the fiber and to study the
formation of rf-induced sidebands of the Rydberg state.

7.1 Theoretical Framework

This section discusses the theoretical framework later used to interpret the experimental spec-
tra of rf-dressed Rydberg atoms. Due to the small polarizability of the lower three states of
the excitation scheme (see Sec. 4.1) on the order of Hz/(Vcm−1)2 [31, 73], the influence of the
considered electric fields on these states can be safely neglected. The Rydberg state, however,
is highly sensitive to external fields since the polarizability α scales with the effective princi-
pal quantum number to the power of seven (see Sec. 2.2). For the 30P3/2 state for example,
the scalar polarizability was experimentally determined to be α0 = 24.57 MHz/(Vcm−1)2

[35]. The theoretical treatment presented in this chapter describes the action of a rf field on
the Rydberg state and is based on a Floquet approach employed in Ref. [29]. Very similar
descriptions can also be found in Refs. [5, 27, 30, 62].
The Hamiltonian of the considered system can be written as H = Ha + Hef, were Ha is

the Hamiltonian of the unperturbed atom and Hef contains the interaction with the electric
field. If we account for a dc offset and assume the field modulation to be sinusoidal (as in
the measurements described later), we can write the rf field as

E(t) = Edc + Eac cosωt . (7.1)

For modulation frequencies ω much smaller than all relevant transition frequencies in the
system, the electric field can be treated as quasi-static. If the field is sufficiently weak,
perturbation theory is applicable and the Rydberg state exhibits the quadratic Stark effect
discussed in Sec. 2.3. The energy shift caused by the electric field can be written as

εef = −1
2αE

2 = −1
2α
[
E2
dc + 1

2E
2
ac + 2EdcEaccosωt+ 1

2E
2
accos 2ωt

]
, (7.2)

where α is the polarizability of the Rydberg state and we assume the dc field and the ac field
to be collinear. In order to solve the time-dependent Schrödinger equation

i~
∂Ψ
∂t

= HΨ , (7.3)

we separate the wave function of the considered state into a spatial and a temporal part. While
this is in general not permissible for a time-dependent problem, it was shown in Ref. [29]
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that the spatial dependence of the wave function remains to a good approximation unaltered
under the action of the external fields considered here. We can thus write

Ψ(r, t) = ψ(r)Φ(t) , (7.4)

where ψ(r) is a stationary state of the static part Hs of the Hamiltonian [27]. From Eq. 7.2
we can see, that Hs does not only include the atomic Hamiltonian Ha and a part accounting
for the dc field, but also a contribution caused by the ac field. With the energy ε0 of the
unperturbed state and the definition

Hsψ(r) =
[
ε0 −

1
2α(E2

dc + 1
2E

2
ac)
]
ψ(r) = εsψ(r) , (7.5)

the Schrödinger equation takes the form

i~ψ(r)∂Φ(t)
∂t

=
[
εs − αEdcEaccosωt−

1
4αE

2
accos 2ωt

]
ψ(r)Φ(t) . (7.6)

We can now eliminate ψ(r) and obtain the temporal part of the wave function Φ(t) by
integrating the differential equation. This yields

Φ(t) = exp
(
− i
~

∫ [
εs − αEdcEaccosωt−

1
4αE

2
accos 2ωt

]
dt
)

= exp
(
− i
~
εst

)
exp

(
iαEdcEac

~ω
sinωt

)
exp

(
iαE2

ac
8~ω sin 2ωt

)
.

(7.7)

A more instructive representation of this result can be obtained by employing the Jacobi-
Anger expansion [74]

exp(iϕ sin θ) =
∞∑

n=−∞
exp(inθ)Jn(ϕ) , (7.8)

in order to expand Eq. 7.7 in terms of Bessel functions Jn. If we expand both appropriate
exponential functions and additionally define the variables

x = αEdcEac
~ω

and y = αE2
ac

8~ω (7.9)

connected to a modulation at ω and 2ω respectively (see Eq. 7.7), the full wave function
including the spatial dependent part becomes

Ψ(r, t) = ψ(r) exp
(
− i
~
εst

) ∞∑
n=−∞

exp(inωt)
∞∑

m=−∞
Jn-2m(x)Jm(y) . (7.10)

For the further analysis, it is helpful to rewrite Eq. 7.10 in a slightly different form by
introducing the coefficients

An(x, y) =
∞∑

m=−∞
Jn-2m(x)Jm(y) , (7.11)

later shown to characterize the spectra of rf-dressed Rydberg states. The resulting represen-
tation

Ψ(r, t) =
∞∑

n=−∞
An(x, y) exp

(
− i
~
εst+ inωt

)
ψ(r) (7.12)
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Figure 7.1: (a) Under the action of a rf electric field, the Rydberg state turns into a manifold of
Floquet states. Even if no dc field is present, the carrier state (n = 0) is Stark-shifted with respect
to the original unperturbed state at an energy of ε0. (b) Sideband amplitudes |An(x, y)|2 for different
values of x and y. For x = 0 (no dc field), odd-order sidebands are forbidden and the spectrum is
symmetric. With increasing field amplitude more sidebands are populated. For x 6= 0, also odd-order
sidebands are allowed and the spectrum gets asymmetric.

suggests two effects of the electric field on the bare atomic state. Firstly, the original state is
shifted in energy by εs − ε0 = − 1/2αE2

dc − 1/4αE2
ac. While the first term of this expression

corresponds to the quadratic Stark effect induced by the dc field, the second term corresponds
to a dc-like shift induced by the ac field which scales quadratic with the root mean square
of the field amplitude. Secondly, Eq. 7.12 suggests the formation of an infinite number
of sidebands separated by energies n~ω from the carrier state with an energy of εs (see
Fig. 7.1a). Since the Bessel functions in An(x, y) approach zero for large n and arguments
smaller than |n|, only a limited number of these Floquet states significantly contribute to
the wave function [5]. Already from Eq. 7.2 it is obvious, that an energy modulation at
the driving frequency ω only occurs if a dc electric field is present. As a consequence, no
odd-order sidebands exist without dc field.
In the experiment described in this thesis, the Rydberg state is excited from the 7S1/2

state by means of a scanning coupling laser. In this case, the sidebands predicted by Eq. 7.12
occur in the probe spectrum (see Sec. 4.1) and can be interpreted as multiphoton excitation
processes involving one laser photon and n rf photons. For red detunings of the coupling
laser with respect to the Stark-shifted Rydberg state, these excitations can be attributed
to the absorption of one laser photon and one or more rf photons. Excitations occurring
at blue detunings of the coupling laser correspond to the absorption of one laser photon
and the stimulated emission of one or more rf photons. Since the probability to excite
the n-th sideband is proportional to |An(x, y)|2, this factor is expected to reflect the relative
magnitude of this specific sideband in the spectrum [27]. The sideband amplitudes |An(x, y)|2
are illustrated for four exemplary values of x and y in Fig. 7.1b. If no dc field is present, x
is zero and the amplitudes |An(x, y)| of the sidebands do not depend on the sign of n. The
resulting spectrum is symmetric [62] and does not show odd-order sidebands. If, however,
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7.2 Electrical Addressing of Fiber Segments

a dc field is present, the sideband spectrum gets asymmetric and also odd-order sidebands
are allowed. For an increasing amplitude of the ac field, the number of populated sidebands
grows.
In analogy to the process described above, stimulated emission involving a distinct number

of rf photons takes place if the coupling laser is not scanned, but instead locked resonantly
with respect to the Stark-shifted Rydberg state. Due to the fixed phase relationship between
the different sidebands (see Eq. 7.12) this leads to a modulation of the excitation light which
acquires sidebands at ±nω.
The validity of a Floquet approach as presented above was determined in Ref. [62] for

Edc = 0 to be limited to cases, where∣∣∣∣∣ΩcJ0
(
αE2

ac/(8~ω)
)

2ω

∣∣∣∣∣ << 1 . (7.13)

Since the Bessel function is restricted to values smaller than one, this implies that the dy-
namics of the rf field must be much faster than the atomic evolution, determined by the Rabi
frequency Ωc. In the opposite limit, where the evolution of the atomic system is faster than
the rf modulation, the system can follow adiabatically and no Floquet states can develop.
It should be noted that in both cases a modulation of the excitation light is expected. In
addition to the condition given in Eq. 7.13, the development of Floquet states requires a
coherence time 1/Γryd of the Rydberg state which is longer than the modulation period [62].
This requirement which can be expressed as

Γryd << ω (7.14)

implies that the system has to interact with the rf field coherently for several modulation
periods in order for the Floquet states to develop. In frequency space, the same condition
implies that the line width of the states is sufficiently small so that the individual states do
not overlap. The experimental results presented in the following were obtained in a regime
where both above-mentioned requirements are met. While no dc field was applied, a small
dc component (<0.5 V/cm) was encountered due to local electric fields inside the fibers. The
presented theoretical treatment proved to describe this situation adequately.

7.2 Electrical Addressing of Fiber Segments

The field plates integrated into the e-chamber detailed in Sec. 3.3 allow for the application of
electric fields along a 60 µm kagome fiber and a 60 µm capillary. Due to the arrangement of
the five individually contacted plates, the Stark effect can be employed to shift the Rydberg
state in selected segments out of resonance. For large enough electric fields, the addressed
segments cause a distinct spectroscopic signal which is well separated from the unshifted
Rydberg line. By addressing different fiber segments, it is therefore possible to gain a spatial
resolution of the probe spectra.

Fundamental Aspects

While dc electric fields have been employed to tune Rydberg resonances in thermal vapors [52,
75, 76], this approach requires field plates located inside the excitation volume to circumvent
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7 Rf Dressing of the Rydberg State

charge screening effects [25]. The latter arise due to the unavoidable presence of charges in
the system (e.g. caused by excited state collisions) which effectively screen dc fields. However,
charge screening can be circumvented if an ac field is used and the field direction is switched
faster than the charges can follow [51]. The charge relaxation time can be roughly estimated
by considering the time a positively charged cesium atom needs to cross the excitation cross
section for a given electric field. For a fiber diameter of 60 µm and electric fields on the order
of 5 V/cm, this estimate leads to a required modulation frequency in the lower MHz regime.
As a consequence, the electric field was modulated sinusoidal at a frequency of typically
500 MHz in the measurements described in the following. At this frequency and the typical
field amplitudes employed in the experiment, the population of the Floquet states discussed
in Sec. 7.1 is small. The main effect of the electric field is therefore a Stark shift of the carrier
state.
This shift was used in the measurements presented in the following to address individual

segments along the fibers. Rf-induced sidebands occurring at sufficiently large modulation
amplitudes for a given modulation frequency are subject of Sec. 7.3. For all measurements
presented in the following, the Rydberg state 30P3/2 was employed. While the polarizability
of this state depends on the absolute value of the magnetic quantum numbermJ (see Eq. 2.6),
only |mJ| = 1/2 states are coupled to the 7S1/2 state for π-polarized excitation light. As a
consequence, the polarizability of the mJ = 1/2 state α30P1/2 = 26.93 MHz/(Vcm−1)2 [35]
was used to estimate the applied electric fields. In this context, it is important to note
that the employed hollow-core fibers are not intrinsically polarization maintaining. However,
since no splitting of the magnetic sublevels could be observed for the kagome fiber, it was
concluded that the fiber can be regarded as polarization maintaining for short fiber lengths.
This assumption could not be confirmed for the capillary. The emerging error in the estimated
field strength is however small, since the polarizability of the |mJ| = 3/2 states α30P3/2 =
22.21 MHz/(Vcm−1)2 [35] does not deviate significantly from α30P1/2 .

Addressing

A schematic sketch of the field plate configuration is provided in Fig. 7.2. As discussed
in Sec. 3.3, the plates generate an electric field perpendicular to the fibers if a potential
with respect to the fiber holder (which acts as electrical ground) is applied. To simplify the
theoretical treatment of the system, all laser beams are polarized linearly and parallel to the
electric field. The modulation amplitudes given in the following have to be interpreted as

895 nm

780 nm
1359 nm

plate 1
plate 2

plate 3
plate 4

plate 5

Figure 7.2: Schematic sketch of the field plate configuration. For reasons of clarity, only one of the
two fibers is shown. Each plate consists of a glass substrate on which an electrically contacted silver
stripe is evaporated (see Sec. 3.3). The fiber mount which holds the fibers is made of copper and acts
as electrical ground plane.

50



7.2 Electrical Addressing of Fiber Segments

pr
ob

e
 tr

an
sm

. [
ar

b.
 u

.]
pr

ob
e

 tr
an

sm
. [

ar
b.

 u
.]

−500 −250 0 −500 −250 0 −500 −250 0 −500 −250 0 −500 −250 0
∆c/2π [MHz] ∆c/2π [MHz] ∆c/2π [MHz] ∆c/2π [MHz] ∆c/2π [MHz]

plate 1 plate 2 plate 3 plate 4 plate 5

(a) →

(b) → x3

Figure 7.3: Probe spectra obtained in the 60 µm kagome fiber for the Rydberg state 30P3/2 and a
modulation frequency of 500 MHz. Only one plate was modulated for each spectrum (indicated as
defined in Fig. 7.2). (a) Spectra (averaged between 200 and 500 times) obtained after the fiber was
exposed for thirteen days to cesium (ODchamber = 3.8, ODkagome = 0.4). The field amplitude of the
ac field (estimated from the encountered shifts) was between 4.6 V/cm and 5 V/cm for a rf amplitude
of 141 mV. The shifted signal (or the expected position of the latter) is marked by a black circle. (b)
Spectra (averaged 200 times) obtained for high optical densities after the fiber was exposed almost
two months to cesium (ODchamber = 21.6, ODkagome = 8.2). The rf amplitude was Urf = 225 mV and
the estimated ac field amplitude (below the fifth plate) Eac = 7.6 V/cm.

the output voltages of the employed rf generator. Due to the transmission properties of the
coaxial transmission lines (see Sec. 3.3), these voltages do not correspond to the voltages
applied to the field plates. As a consequence, also the electric field amplitudes estimated
from the encountered Stark shifts are given.
Figure 7.3a shows five spectra (see Ch. 4) obtained in the 60 µm kagome fiber for the

modulation of a single plate at 500 MHz and a rf amplitude of Urf = 141 mV. The modulated
plate is indicated as defined in Fig. 7.2. All shown spectra were taken after the fiber was
exposed for thirteen days to cesium at reservoir and chamber temperatures of Tres = 33 ◦C
and Tch = 84 ◦C respectively. For the two outermost plates two distinct three-photon signals
are clearly visible. While the resonant signal (∆c = 0) corresponds to all unmodulated
parts of the fiber, the red-shifted signal is caused by atoms below the modulated segment.
The fact that no shifted signal is present for the inner three plates can be attributed to
the slow diffusion process of cesium atoms into the fiber (see Sec. 5.2) and is consistent
with the measured optical densities (ODchamber = 3.8, ODkagome = 0.4). From the shift of
the signals, the amplitude of the ac electric field can be estimated to be Eac = 4.6 V/cm
and Eac = 5 V/cm below the first and the fifth plate respectively (see Sec. 7.1). Due to the
relatively small optical density during the measurements, the probe beam was not significantly
attenuated over the length of the fiber which is reflected in the similarity of the outer spectra
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Figure 7.4: Probe spectra (averaged 500 times) obtained in the 60 µm capillary (ODchamber = 18.5,
ODcapillary = 6.2) for the Rydberg state 30P3/2. For each spectrum, one field plate was modulated at
500 MHz and a rf amplitude of Urf = 225 mV for the first four plates and Urf = 141 mV for the fifth
plate. The estimated field amplitudes are Eac = {6.7, 6.6, 5.7, 5.2}V/cm for the first and last two field
plates respectively.

in Fig. 7.3a. A comparison of the spectra with a typical three-photon signal obtained in the
reference cell (see Fig. 4.4) reveals a slight lineshape deformation which might be attributed
to local electric fields inside the fiber (see Ch. 6).
Since no signal below the inner field plates of the fiber could be observed for more than one

month, the reservoir temperature was increased. Fig. 7.3b shows probe spectra obtained al-
most two months after the cesium reservoir was broken at optical densities ofODchamber = 21.6
and ODkagome = 8.2 in chamber and fiber respectively. The spectra still do not show a signal
below the middle plate which is consistent with the measured optical densities, suggesting
that the diffusion process still did not reach equilibrium. For the other two inner plates how-
ever, a small signal is visible. In contrast to the measurements taken at low optical densities,
the spectra clearly reflect the attenuation of the probe beam. While the high probe power
on the one side of the fiber caused a Gaussian like transmission lineshape (see Sec. 4.4), the
attenuated probe power on the other side of the fiber caused a typical three-photon signal
showing enhanced absorption on resonance. The qualitative change of the signal over the
length of the fiber is particularly visible in the spectrum corresponding to the fifth plate.
Fig. 7.4 shows spectra measured in the modulated 60 µm capillary after it was exposed for

one and a half months to cesium. The optical densities were determined to be ODchamber =
18.5 and ODcapillary = 6.2 for chamber and fiber respectively. Similar to the kagome fiber, a
shifted signal is visible for the four outer field plates. While the encountered shifts for a given
rf power were slightly larger than in the case of the kagome fiber, the difference is on the few
percent level. It is remarkable that the signal corresponding to the fifth fiber segment is by
far the largest one. However, a quantitative prediction of the cesium densities corresponding
to the spectroscopic signals is difficult due to the qualitative change of the signal along the
fiber. Additionally, the attenuation of the laser beams due to the guiding properties of the
capillary are unknown and local electric fields might have significant influence on the signal
heights. With respect to the latter point, it is worth to note that the asymmetry present in all
of the five spectra seems to originate mainly from the end of the fiber where the strong 780 nm
beam is coupled in (see right spectrum in Fig. 7.4). While this observation does not allow
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for in-depth conclusions, it might be explainable by charge productions during light-induced
atomic desorption processes [77].
The presented results suggest that the employed design is well suited to gain a spatial

resolution of the spectroscopic signal along a hollow-core fiber. It can therefore be employed
to study the diffusion of atoms into hollow-core fibers in a much more detailed way than it
is possible with plain absorption measurements (see Sec. 5.2). The results also suggest
that diffusion measurements should be carried out at low optical densities to ensure an
insignificant attenuation of the probe beam. To avoid lineshape deformations as encountered
at high chamber temperatures (see Ch. 6), it is furthermore advantageous to work at low
temperatures. A significant drawback of such conditions is however, that the diffusion process
is expected to last much longer than in the case studied in Sec. 5.2, where a filling time of
three weeks was estimated. For a systematic study, it is therefore highly beneficial to employ
much shorter fiber lengths.

Performance of the Experimental Design

In the following, the performance of the employed experimental setup is briefly discussed. As
described in Sec. 3.3, the individual field plates are connected with self-built coaxial cables
to the feedthroughs. While the coaxial cables have an impedance of approximately 28 Ω, the
feedthroughs have an impedance of 50 Ω and the connections to the feedthroughs constitute
short segments on which the impedance is not well defined. As a consequence, standing wave
effects are expected. To determine if the latter limit the transmission of power to the field
plates, the Stark shift of the signal was measured as a function of the rf voltage Urf for the
Rydberg state 30P3/2. Figure 7.5a shows the result for one of the field plates and a modulation
frequency of 500 MHz. Due to the small geometry of the design, shifts of up to 1 GHz were
achieved for rf voltages below 400 mV and a polarizability of α = 26.93 MHz/(Vcm−1)2 [35].
By fitting a curve of the form −1/4α(const ·Urf)2 to the data (see Sec. 7.1), the electric field
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Figure 7.5: (a) Observed Stark shift for the 30P3/2 Rydberg state and the modulation of a single plate
at 500 MHz at different rf voltages Urf. By fitting a curve of the form −1/4α(const ·Urf)2, the electric
field amplitude was determined (see upper axis) and the transfer efficiency of the rf input voltage
was estimated to be 70 %. (b) Frequency behavior of the coaxial transmission line for modulation
frequencies up to 2 GHz and a rf amplitude of Urf = 150 mV. Given is the absolute value of the
encountered line shift of the 30P3/2 Rydberg state.
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7 Rf Dressing of the Rydberg State

amplitude corresponding to the rf voltage was extracted (upper axis of Fig. 7.5a). Based
on the distance between the field plates and the fiber holder and the assumption, that every
field plate essentially constitutes an open end of the coaxial transmission line (see Sec. 3.3),
the transfer efficiency of the input rf voltage Urf was estimated to be approximately 70 % at a
frequency of 500 MHz. While the quadratic fit in Fig. 7.5a fits well to the experimental data,
charge screening effects depend on the amplitude of the applied field. For small modulation
frequencies at which screening effects get relevant, deviations from the theoretical expected
shift are therefore expected and could qualitatively be observed in the experiment.
To evaluate the frequency behavior of the transmission line, and especially if the modu-

lation bandwidth is limited to the MHz regime, spectra were taken for different modulation
frequencies at a constant rf voltage. Figure 7.5b shows the absolute value of the encountered
shifts of the Rydberg line for modulation frequencies up to 2 GHz (which was the limit of
the employed rf generator). While a frequency dependence of the Stark shift is clearly ob-
servable, the decrease of the shift at high frequencies does not constitute a limiting factor in
terms of the bandwidth. However, the frequency behavior of the transmission efficiency is
undesirable and might well be improved by an impedance matching circuit installed outside
of the vacuum chamber.

7.3 Rf-induced Sidebands of the Rydberg State

While the last section focused on the electric field induced shift of the Rydberg line, the
theoretical model discussed in Sec. 7.1 also predicts the formation of sidebands under the
action of an ac field. Such sidebands were observed in the experiment and found to be
well described by the employed theory. In the following, experimental results obtained in
the 60 µm kagome fiber are presented and the influence of the modulation frequency and
modulation amplitude is discussed. Subsequently, the experimental findings are compared to
the theoretical model. In all measurements presented here, the Rydberg state was 30P3/2,
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Figure 7.6: Probe spectra obtained (averaged 500 times) at a rf modulation frequency of 250 MHz
and modulation amplitudes Urf of 150 mV and 250 mV in (a) and (b) respectively. Only one field
plate (plate 5) was modulated. At higher modulation amplitudes, the number of populated sidebands
increases. The existence of the minus first order sideband in (b) can be attributed to local electric dc
fields inside the fiber (see Ch. 6).
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Figure 7.7: Frequency behavior of the observed sideband spectra (averaged 500 times) at a constant
rf amplitude of Urf = 250 mV. The modulation frequency is indicated in the spectra. Note that
the position of the carrier state is slightly frequency dependent due to the transmission properties
of the coaxial cable (see Sec. 7.2). With decreasing modulation frequency, the number of populated
sidebands increases. This is consistent with the theoretical sideband amplitudes |An|2 determined by
Eq. 7.11.

only one plate (plate 5, see Sec. 7.2) was modulated and the optical density in the fiber was
ODkagome = 4.4.
Figure 7.6a shows a spectrum taken at a modulation frequency of frf = 250 MHz and a rf

amplitude of Urf = 150 mV. As in the spectra presented before (see Fig. 7.3), the biggest
two signals correspond to the unshifted Rydberg line (respectively the unadressed segments
of the fiber) and the red-shifted carrier state (respectively the modulated part of the fiber).
Additionally, two sidebands at ±2frf with respect to the carrier state are clearly visible. Since
no dc electric field was applied, the non-existence of the first order sidebands is expected.
From the discussed theoretical model, it is expected that the number of populated sidebands
increases with the modulation amplitude (see Fig. 7.1b). Qualitatively, this can be seen in
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7 Rf Dressing of the Rydberg State

Fig. 7.6b, showing a spectrum taken at a rf frequency of frf = 250 MHz and a modulation
amplitude of Urf = 250 mV. Due to the increased ac field, the carrier state is shifted further
to the red and more sidebands can be observed. Strikingly, not only fourth order sidebands
appear in the spectrum, but also the minus first order is visible. As discussed in Sec. 7.1,
odd-order sidebands as well as asymmetries in the sideband spectrum are induced by dc
electric fields. Since no offset field was applied in the measurement, the observations must be
attributed to a local electric field inside the fiber. While such a field was previously assumed
(see Ref. [24] and Ch. 6), this finding constitutes an independent confirmation of its existence.
It is interesting to note that the carrier state which is by far the most populated state at low
modulation amplitudes, depopulates at higher modulation amplitudes. This can be clearly
observed in the shown spectra and is a direct consequence of Eq. 7.11 which determines the
amplitude of the sidebands.
To determine if the frequency behavior of the sideband spectra is adequately described

by the employed theoretical model, spectra were taken at constant rf amplitude and various
modulation frequencies. Fig. 7.7 shows the experimental results for Urf = 250 mV and rf fre-
quencies between 90 MHz and 500 MHz. It is clearly visible that the effect of the modulation
frequency is complementary to that of the modulation amplitude. While a rich spectrum of
sidebands is observable at low modulation frequencies, the number of populated sidebands
decreases with increasing modulation frequency until the carrier state is by far the most
populated state. The red-shift of the latter is slightly frequency dependent which can be
attributed to the frequency behavior of the coaxial transmission line (see Sec. 7.2). As a con-
sequence, a definite assignment of the carrier state in the shown spectra can not be given for
modulation frequencies lower than 200 MHz. For the spectra taken at modulation frequen-
cies between 200 MHz and 300 MHz, the position of the carrier state was estimated from the
frequency dependent Stark shift at lower field amplitudes (see Fig. 7.5b) and confirmed by a
comparison of the sideband amplitudes with theoretical predictions (see Sec. 7.1). From the
shown spectra, the relative amplitude of the second order sidebands (averaged over the pos-
itive and negative order) was estimated to be approximately 5 % at a modulation frequency
of 500 MHz and 29 % at a modulation frequency of 250 MHz.
In the following, the experimental results are compared to theoretical predictions based on

the model discussed in Sec. 7.1. In this context, it is important to note that the dc field and
the ac field were assumed to be parallel in the theoretical treatment. Due to the unknown
nature of the local electric dc field in the fiber, this assumption is most probably not met in
the experiment. However, the dc field is expected to be small in comparison to the applied ac
fields, and the anisotropy of the polarizability of the employed P3/2 Rydberg state is small.
This can be seen by comparing the polarizabilities of the magnetic substates |mJ| = 1/2 and
|mJ| = 3/2 which are α1/2 = 26.93 MHz/(Vcm−1)2 and α3/2 = 22.21 MHz/(Vcm−1)2 respec-
tively [35]. The simplified theoretical treatment therefore constitutes a good approximation
of the experimental situation. The amplitude of the experimentally observed sidebands was
determined by fitting a quadratic function to the maxima and minima of the corresponding
three-photon signal. To account for asymmetries, the amplitude was determined using the
average of the two transmission maxima of each signal. The theoretically expected sideband
amplitudes are given by the coefficients |An|2 defined by Eq. 7.11. For a given modula-
tion frequency, the only free parameters in these coefficients are the ac and dc electric field
amplitudes. Accordingly, |An|2 was fitted to the experimental data, treating Edc and Eac
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Figure 7.8: Relative amplitude of the sidebands at different modulation frequencies. The experi-
mental results are shown together with the fitted theoretical amplitude |An|2 (see Eq. 7.11). Both
Eac and Edc were treated as free fit parameters and determined to be Eac = {8.24 ± 0.03, 8.36 ±
0.08, 10.05±0.19, 10.20±0.16}V/cm and Edc = {0.03±0.22, 0.1±0.2, 0.41±0.1, 0.41±0.07}V/cm at
modulation frequencies of {500, 400, 300, 250}MHz. The ac field amplitudes have to be compared
with an estimation based on the Stark shift of the carrier state and the assumption Edc = 0:
Eac = {8.58, 8.66, 10.43, 10.08}V/cm. The fitted ac field amplitudes agree with these estimated
amplitudes to a precision better than 4 %.

as fit parameters. The experimental results are shown together with the fit in Fig. 7.8 for
modulation frequencies between 250 MHz and 500 MHz. It can be seen that especially for
high modulation frequencies, the theoretical model is in excellent agreement with the exper-
imental data. To ensure that the fit provides realistic values for the electric fields, the ac
field amplitude Eac was estimated from the shift of the carrier state under the assumption
that the dc field can be neglected. It was found that the fitted field amplitudes agree with
the estimated amplitudes to a precision better than 4 %. The fitted field amplitudes of the
dc field Edc are between (0.03 ± 0.22) V/cm at frf = 500 MHz and (0.41 ± 0.07) V/cm at
frf = 250 MHz. These values suggest that the local electric field inside the fiber might de-
pend on the modulation frequency. This could be explained by the influence of the applied
ac fields on the charge distribution inside the fiber. Considering the good agreement between
the theoretical and experimental sideband spectra, the employed theory seems to describe
the experimental situation adequately.
With respect to potential applications, the achievable sideband amplitudes are of great

interest. A particular simple expression for the latter can be given in the absence of a dc
field. Under these conditions, the infinite sum in Eq. 7.11 reduces to a single term. For the
second order sidebands (which are of particular interest), the amplitude is then given by

|A2(y)|2 = |J1(y)|2 , (7.15)

where the argument of the Bessel function is defined by y = αE2
ac/(8~ω) and ω is the angular

frequency of modulation (ω = 2πfrf). While the assumption Edc = 0 was not met in the
experiment, it was found that the qualitative behavior of the sidebands is still well described
by Eq. 7.15 for the small dc fields which were present in the experiment and the parameter
range examined. Figure 7.9 shows a plot of |A2(y)|2 together with experimental data obtained
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Figure 7.9: For the case of a vanishing dc field, the sideband amplitude only depends on the parameter
y = αE2

ac/(8~ω), where ω is the (angular) modulation frequency. Shown is the theoretical amplitude
of the second order sidebands for Edc = 0 together with experimental data (see Fig. 7.7). For the
latter, y was determined by fitting the full sideband spectrum (see Fig. 7.8). Fitting errors are within
the marker size. The asymmetry of the plus and minus order sidebands present in the experimental
data is due to a small dc field. For the examined parameter range, the average sideband amplitude
can be seen to match qualitatively to the case where Edc = 0 . For Edc = 0, a maximum relative
sideband amplitude of approximately 33.9 % at y ≈ 1.842 is theoretically predicted.

from the spectra shown in Fig. 7.7. For the experimental results, the ac field amplitude Eac
was determined by fitting the full theoretical model to the sideband spectrum (see Fig. 7.8).
In contrast to the predictions of Eq. 7.15, an asymmetry of the positive and negative order
sidebands is visible due to the dc field present in the experiment. The average amplitude,
however, is well approximated by Eq. 7.15. From the theory curve, a maximum relative
sideband amplitude of approximately 33.9 % at y ≈ 1.842 can be extracted. Within the
limits of validity of the employed theoretical model (see Sec. 7.1), this optimal sideband
height can be achieved for all modulation frequencies if an according ac field amplitude is
chosen. As reflected in the shown experimental data, higher amplitudes can be achieved in
the presence of a dc field which induces an asymmetry of the plus and minus order sidebands.
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8 Conclusion and Outlook

While the study of Rydberg physics in hollow-core fibers is in its early stages, this field of
research is promising. However, the understanding of the observed line shifts and broadenings
(see Sec. 6 and Ref. [23, 24]) is crucial for the further development of the system. While
in this work 60 µm hollow-core fibers have been employed, it is of fundamental interest if
Rydberg excitation can be achieved in few-micrometer core diameters. Rydberg-Rydberg
interactions over distances on the order of the fiber diameter would then correspond to a
sufficiently large energy scale to induce optical nonlinearities. As a consequence, the system
might allow for the generation of non-classical light in a thermal vapor.
In the scope of this thesis, rf-dressed Rydberg states inside of hollow-core fibers have been

investigated (see Ch. 7). The results obtained in this context (see Sec. 7.3) suggest that
the design of the built apparatus (see Sec. 3.3) is well suited for its purpose. Due to the
small geometry of the fiber-field plate assembly and the high polarizability of Rydberg atoms,
the setup allows for an energy modulation of Rydberg states and with this a modulation of
the excitation light at low rf powers. Rf-induced sidebands separated up to 1 GHz from the
carrier Rydberg state could be observed at rf powers and amplitudes of 1 dBm and ~10 V/cm
respectively. A relevant improvement of the design could be achieved by replacing the field
plates by conductive wires directly integrated into the fiber [78] or by the evaporation of the
field plates onto the fiber cladding. Such a design would allow for even lower modulation
powers and essentially constitute an ultra-low power Rydberg-based fiber modulator.
Not only with respect to possible future applications it is desirable to omit a bulky vacuum

setup and close the employed hollow-core fibers vacuum tight by splicing standard step-index
fibers to the open ends [15]. A filling of these fibers with alkali vapor might then be achieved
through microscopic holes through the side of the fiber cladding [79, 80] which can be sealed
after an appropriate amount of time determined by the diffusion process of the vapor into
the fiber (see Ch. 5). Such an assembly would both make the experimental setup much more
compact and constitute a major step towards miniaturized integrated devices.
The employed three-photon excitation of the Rydberg state (see Ch. 4) is advantageous

in the sense that only infrared wavelengths are used, for which high power diode lasers and
amplifiers are commercially available. Moreover, a narrow spectroscopic feature (~10 MHz)
can be achieved on resonance. As a consequence of the resonant three-photon transition
however, this feature is of absorptive nature. For quantum-optics experiments, it is therefore
beneficial to change to a two-photon excitation scheme in which enhanced transmission on
resonance and slow light can be achieved due to electromagnetically induced transparency
[81].
The results of this thesis and of previous work [23, 24] suggest that Rydberg atoms inside

hollow-core fibers are a promising system in two ways. On the one hand, the reduction of the
employed fiber core diameters could allow for the investigation of quasi-one-dimensional Ryd-
berg systems. On the other hand, the results suggest that room temperature Rydberg-based
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applications such as ultra-low power fiber modulators or miniaturized microwave sensors [13,
24] are technically feasible and within reach in the near future.
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A Physical and Atomic Properties of Cs
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Figure A.1: Vapor pressure of liquid cesium according to Eq. 2.1.

property value
number of protons Z 55
nuclear spin I 7/2
atomic mass m 2.20694657(11)× 10−25 kg
melting point Tm 28.5 ◦C
boiling point Tb 671 ◦C
vapor pressure Pv at 25 ◦C 1.983× 10−4 Pa

Table A.1: Selected physical properties of 133Cs [31].

transition 〈J‖ er ‖J ′〉 reference
6S1/2 → 6P1/2 2.7020(50)× 10−29 Cm [31]
6P1/2 → 7S1/2 (3.590 /

√
2)× 10−29 Cm [82]

7S1/2 → nP3/2 0.8165× 3.390 ea0 (n− δ)−3/2 [23]

Table A.2: Reduced dipole matrix elements for selected transitions in cesium. Note that a factor of√
2 appears in the matrix element of the 6P1/2 → 7S1/2 transition due to different conventions used.

For the Rydberg transition, the matrix element was determined from the radial dipole matrix element
given in Ref. [23]. e is the elementary charge, a0 is the Bohr radius and δ is the quantum defect of
the Rydberg state (see Sec. 2.2).
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n 7S1/2 → nP1/2 7S1/2 → nP3/2

25 791.672 791.627
26 790.364 790.324
27 789.225 789.189
28 788.224 788.193
29 787.343 787.315
30 786.560 786.536
31 785.863 785.842
32 785.239 785.220
33 784.680 784.663
34 784.174 784.159
35 783.717 783.703
36 783.303 783.290
37 782.925 782.913
38 782.579 782.569
39 782.263 782.254
40 781.986 781.964
41 781.706 781.698
42 781.461 781.453
43 781.233 781.226
44 781.022 781.016
45 780.826 780.820
46 780.645 780.639
47 780.476 780.470
48 780.317 780.312
49 780.170 780.165
50 780.032 780.027
51 779.902 779.898
52 779.781 779.777
53 779.667 779.663
54 779.560 779.556
55 779.458 779.455
56 779.363 779.360
57 779.273 779.270
58 779.188 779.185
59 779.108 779.105
60 779.031 779.029

Table A.3: Rydberg transition wavelengths (in nm) for the transition 7S1/2 → nP for main quantum
numbers n between 25 and 60 [23]. The transition wavelengths are given for both existing J states.
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