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Abstract

The subject of this thesis is the creation of a dipolar quantum gas of dysprosium atoms
as well as the investigation of its two-body interactions. For this purpose we setup a
new experimental apparatus which allows us to study dipolar many-body systems with
ultra-cold bosonic 164Dy, 162Dy as well as fermionic 161Dy atoms. In this work I present
our developed cooling and trapping scheme to create a cold sample of dysprosium atoms
based on a magneto-optical trap operating at the 626 nm transition and forced evaporative
cooling in a crossed optical dipole trap. With our methods we can create Bose-Einstein
condensates with N ≈ 25 × 103 (N ≈ 30 × 103) atoms of the 164Dy (162Dy) isotope,
respectively. In addition, degenerate Fermi gases with N ≈ 10 × 103 and T/TF ≈ 0.5
can be realized. By comparing the experimentally obtained data with the prediction of
theoretical calculations we show that for both bosonic isotopes the dipole-dipole interaction
dominates the two-body interaction energy. Furthermore, we observe the effects of the
complex atomic structure of dysprosium as a dense and correlated distribution of narrow
Feshbach resonances. Despite many narrow resonances we also observe broad resonances
which are caused by universal s-wave halo states. These resonances offer the possibility to
tune the two-body interactions in dysprosium in a controlled way.
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Zusammenfassung

Gegenstand dieser Dissertation ist die Erzeugung eines dipolaren Quantengases aus
Dysprosium Atomen und die Untersuchung seiner interatomaren Wechselwirkungen. Für
diesen Zweck wurde eine neue Experimentierapparatur geplant und aufgebaut, welche die
Möglichkeit bietet, dipolare Vielteilchensysteme mit ultrakalten Dysprosium Atomen zu
untersuchen.

Die Entdeckung der Supraflüssigkeit und des Supraleiters zu Beginn des 20. Jahrhunderts
begründete ein neues Forschungsfeld, welches sich mit den Eigenschaften von stark wech-
selwirkenden Vielteilchensystemen beschäftigt. Das grundlegende Verständnis dieser
Systeme würde uns erlauben, neue Materialien zu entwickeln, welche unser tägliches Leben
revolutionieren könnten. In den letzten zwanzig Jahren wurden Bose-Einstein-Kondensate
(BEK)1 [15] sowie entartete Fermigase2 [25] aus neutralen Atomen als Modellsysteme
verwendet, um diese Phänomene genauer zu untersuchen [26]. Der große Vorteil bei
diesen Systemen besteht dabei in der Möglichkeit, systemrelevante Parameter, wie das
externe Potential als auch die interatomaren Wechselwirkungen, dynamisch und mit hoher
Genauigkeit einstellen zu können. Insbersondere die Änderung der interatomaren Wech-
selwirkungsstärke ermöglicht die Beobachtung des sogenannten BEK-BCS Überganges
eines BEKs zu einer fermionischen Supraflüssigkeit [27]. Darüber hinaus verdeutlicht die
Realisierung des Übergangs von der Supraflüssigkeit zum Mott-Isolator mit Atomen in
einem optischen Gitterpotential die Eignung ultrakalter Gase als Modellsystem für stark
wechselwirkende Festkörpersysteme [28–30].

Für die oben angeführten Beispiele wurden ultrakalte Alkali Atome verwendet, deren
Eigenschaften durch die kurzreichweitige und isotrope Kontaktwechselwirkung bestimmt
werden. Im Gegensatz dazu zeigen dipolare Systeme durch die zusätzliche langreichweitige
und anisotrope Dipol-Dipol-Wechselwirkung (DDW) eine höhere Komplexität. Mit der
Erzeugung eines Chrom-BEKs im Jahr 2005 wurde die experimentelle Untersuchung von
dipolaren Vielteilchensystemen möglich [10]. Hierbei konnten beeindruckende dipolare
Effekte wie die Magnetostriktion [31] und der d-Wellen Kollaps [32] beobachtet werden.
Obwohl das magnetische Moment von Chrom (µm = 6µB) bedeutend größer als das von
den Alkali Atomen (µm = 1µB) ist, trägt die DDW dennoch nur 16 % zur gesamten
Wechselwirkungsenergie bei [33]. Jedoch kann mittels einer Feshbach-Resonanz die
Stärke der Kontaktwechselwirkung reduziert werden und dadurch ein Quantengas mit
starker dipolarer Wechselwirkung erzeugt werden [34]. Ein Nachteil sind dabei die
wesentlich erhöhten Dreikörperverluste in der Nähe der Feshbach-Resonanz, welche die
für Experimente verbleibende Zeit auf wenige Millisekunden reduziert.

1Bisher konnten 13 Elemente kondensiert werden: Na [1], Rb [2], Li [3, 4], H [5], He [6], K [7], Cs [8], Yb
[9], Cr [10], Ca [11], Sr [12], Dy [13], Er [14].

2Ein entartetes Fermigas wurde bisher für folgene Elemente realisiert K [16], Li [17, 18], He [19], Sr [20],
Yb [21], Dy [22], Er [23], Cr [24].
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Kürzlich wurde mit der Erzeugung eines Dysprosium (µm = 10µB) [13] und Erbium
(µm = 7µB) [14] BEKs die Familie der dipolaren Quantengase erweitert. Dysprosium
ist neben Terbium das Element mit dem größten magnetischen Moment. Zudem wird,
entsprechend seiner großen Masse, die Wechselwirkung zwischen Dysprosium Atomen
durch die DDW dominiert. Neben den magnetischen Atomen sind heteronukleare Moleküle
im Rotations- und Schwingungsgrundzustand vielversprechende Systeme, um dipolare
Effekte zu untersuchen, da diese durch ihr induziertes elektrisches Dipolmoment eine noch
viel größere DDW aufweisen können. Die Herstellung ultrakalter Moleküle ist jedoch sehr
aufwendig, wobei kürzlich mit der Erzeugung bosonischer RbCs- [35, 36] und fermionischer
NaK-Moleküle [37] in ihren Rotations- und Schwingungsgrundzuständen auch hier Erfolge
erzielt werden konnten. Einen noch stärkeren dipolaren Charakter könnten Grundzustands-
atome mit schwach beigemischten Rydbergzuständen aufweisen, welche aber bisher noch
nicht realisiert werden konnten [38]. Diese neuen dipolaren Experimente eröffnen eine
Vielzahl neuer Möglichkeiten, dipolare Quantensysteme zu erforschen.

Seit der erstmaligen Erzeugung eines dipolaren Kondensates sind dipolare Vielteilchensys-
teme von großem theoretischen Interesse, da sie die Möglichkeiten bieten, neuartige Quan-
tenphasenübergänge und exotische Materiezustände zu untersuchen. Beispielsweise wurde
in einem dipolaren BEK ein sogenanntes Maxon-Roton Anregungsspektrum vorhergesagt
[39], welches eng mit dem Auftreten von selbstorganisierten Strukturen in einem dipolaren
Quantengas verknüpft ist [40, 41]. Desweiteren zeigen theoretische Studien, dass in Sys-
temen mit starker dipolarer Wechselwirkung kristalline Strukturen [42] als auch neuartige
Materiezustände auftreten können [43, 44].

Für mehr als 10 Jahre war die Stuttgarter Chrom-Apparatur das Aushängeschild für
die experimentelle Untersuchung von dipolaren Quantengasen, wobei viele faszinierende
dipolare Phänomene beobachtet und erforscht werden konnten. Für das Studium von
selbstorganisierten Strukturen sowie von neuen Quantenzuständen gelangte die beste-
hende Apparatur jedoch an ihre technischen Grenzen. Darüber hinaus gab es mit der
Realisierung eines Dysprosium-Kondensates ein weiteres dipolares System, das auch ohne
den Gebrauch von Feshbach-Resonanzen neuartige dipolare Effekte aufzeigen sollte. Um
auch in Zukunft herausragende Forschung an dipolaren Quantengasen betreiben zu kön-
nen, wurde Ende 2011 die Entscheidung getroffen, nicht nur eine neue Apparatur mit
zusätzlichen experimentellen Möglichkeiten aufzubauen, sondern auch von Chrom auf das
Element mit dem größten magnetischen Moment, Dysprosium, zu wechseln.

Für das Erzeugen eines Quantengases aus ultrakalten Dysprosium Atomen wurde ein
eigenes Verfahren entwickelt. Zuerst werden die Atome mittels eines Zeeman-Abbremsers,
wozu Laserlicht mit der Wellenlänge von 421 nm verwendet wird, verlangsamt und in einer
magneto-optischen Falle gefangen, wobei die Atome auf wenige Mikrokelvin abgekühlt
werden. Für den Betrieb der magneto-optische Falle wird ein optischer Übergang bei
626 nm verwendet. Die kalten Atome werden daraufhin in eine optische Dipolfalle umge-
laden und in eine 375mm entfernte Glaszelle transportiert. Die Atome in der Glaszelle
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können mittels eines hochauflösenden Abbildungssystems beobachtet werden. Desweiteren
besteht hier auch die Möglichkeit, die Eigenschaften der Quantengase mittels magnetischer
Felder und zusätzlichen optischen Potentialen zu beeinflussen. Schlussendlich werden
durch Verdampfungskühlung BEKs mit N ≈ 25× 103 (N ≈ 30× 103) Atome des 164Dy
(162Dy) Isotops erzeugt. Desweiteren können mittels dipolarer Stoßvorgänge entartete
Fermigase aus spinpolarisierten Dysprosium Atomen hergestellt werden. Bisher war es
möglich, Fermigase mit N ≈ 10× 103 Atomen und mit Temperaturen von T/TF ≈ 0.5 zu
realisieren.

Ein wichtiger Parameter, der die Stärke der Kontaktwechselwirkung charakterisiert,
ist die s-Wellenstreulänge a, deren Größe durch eine magnetische Feshbach-Resonanz
eingestellt werden kann. Durch Vergleich mit den im Experiment erzielten und durch
Simulationen vorhergesagten BEK-Atomzahlen für verschiedene Fallengeometrien konnte
die bis dato unbekannte Hintergrundstreulänge abg, die Streulänge abseits einer Feshbach-
Resonanz, für das 164Dy Isotop zu 86 a0 . a164

bg . 93 a0 abgeschätzt werden. Weiterhin
deutet die höhere Effizienz bei der Verdampfungskühlung mit Atomen des 162Dy Isotops
auf eine größere Hintergrundstreulänge als für das 164Dy Isotop hin. Zusätzlich konnte
mittels Stabilitätsuntersuchungen des BEKs aus Atomen des 162Dy Isotops dessen Hin-
tergrundstreulänge auf a164

bg . a162
bg . add = 134 a0 festgelegt werden. Daduch wurde

bestätigt, dass für beide untersuchten Dysprosium Isotope die DDW die dominierende
interatomare Wechselwirkung ist. Dies bedeutet, dass auch ohne die Verwendung einer
Feshbach-Resonanz neuartige dipolare Effekte eines stark wechselwirkenden Quantengases
mit Dysprosium Atomen untersucht werden können.

Um weiterführende Erkenntnisse über die Wechselwirkungen zwischen den Dysprosium
Atomen zu erhalten, wurden Feshbach-Resonanzen sowohl für das 164Dy als auch für das
162Dy Isotop in einem Magnetfeldbereich zwischen 0G und 600G gemessen und analysiert.
Daraus ergab sich, dass die große Anzahl von vier Resonanzen pro Gauß auf die komplexe
Wechselwirkung zweier Dysprosium Atome zurückzuführen ist. Desweiteren deutet die
statistische Auswertung der Resonanzpositionen auf Anzeichen von Quantenchaos im
Streuverhalten von Dysprosium Atomen hin. Zusätzliche theoretische Untersuchungen
zeigen, dass dieses Verhalten durch die Anisotropie in der kurzreichweitigen Wechselwir-
kung, welche von der anisotropen Elektronenverteilung des Grundzustandes herrührt,
als auch durch eine Zeeman-Kopplung zustande kommt. Neben der großen Anzahl von
Resonanzen, die nur eine Breite von wenigen Milli-Gauß aufzeigen, wurden im Feshbach-
Spektrum aber auch breite Resonanzen gefunden. Diese breiten Resonanzen wurden
im Detail untersucht, indem die Bindungsenergie ihrer dazugehörigen Molekülzustände
bestimmt wurde. Unerwartet war dabei, dass diejenigen Zustände, die zu den breiten
Resonanzen gehören, von den stark gekoppelten Zuständen, welche die große Anzahl von
schmalen Resonanzen erzeugen, entkoppelt sind und einen universalen Charakter über
einen großen Magnetfeldbereich aufzeigen. Die Eigenschaften dieser Resonanzen können
durch die bekannte Theorie einer s-Wellen-Resonanz beschrieben werden. Weiterhin konnte
die Breite zu ∆ = 31(6)G und die Hintergrundstreulänge abg = 91(15) abg der Feshbach-
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Resonanz bei B0 = 76.9G bestimmt werden. Damit kann diese Feshbach-Resonanz
in Zukunft benutzt werden, um die Kontaktwechselwirkung im dipolaren Quantengas
kontrolliert einzustellen. Der erhaltene Wert für die Hintergrundstreulänge stimmt mit
den oben genannten Werten und mit den kürzlich mittels Rethermalisierung gemessenen
Werten von abg = 92(8) a0 und abg = 112(10) a0 für das 164Dy und 162Dy Isotop überein
[45].

Die in dieser Arbeit beschriebenen Studien zeigen die Möglichkeiten, welche die neue
Dysprosium-Apparatur bietet, um neuartige Quantenphänomene zu erforschen. Das
entwickeltes Vorgehen, Dysprosium Atome zu kühlen und zu fangen, bietet gute Voraus-
setzungen für weitere experimentelle Untersuchungen von dipolaren Quantensystemen.
Besonders durch den Transport in die Glaszelle stehen eine Vielzahl zusätzlicher technischer
Möglichkeiten zur Verfügung, wie zum Beispiel ein hochauflösendes Abbildungssystem,
mit dem die Eigenschaften der dipolaren Quantengase untersucht werden können.

12



Abbreviations

Reference for abbreviations used in the text.
AOM acousto-optical modulator
ADI anisotropic dispersion interaction
BEC Bose-Einstein condensate
BO Born-Oppenheimer
DDI dipole-dipole interaction
EOD electro-optical deflector
EOM electro-optical modulator
GOE Gaussian-orthogonal ensemble
GPE Gross-Pitaevskii equation
IGBT insulated-gate bipolar transistor

MOSFET metal-oxide-semiconductor field-effect transistor
MOT magneto-optical trap
MT magnetic trap
NNS nearest-neighbor spacing
ODT optical dipole trap
PDH Pound-Drever-Hall
RF radio frequency

RMT random-matrix theory
TOF time-of-flight
TF Thomas-Fermi

ULE ultra-low expansion
vdW van-der-Walls
ZS Zeeman slower

Nomenclature of units and natural constants.
a0 5.3× 10−11 m Bohr radius
kB 1.38× 10−23 J/K Boltzmann constant
e 1.60× 10−19 C elementary charge
µ0 4π × 10−7 Tm/A permeability of free space
µB 9.27× 10−23 J/T Bohr magneton (µB/h ≈ 1.4 MHz/G)
~ 1.05× 10−34 Js reduced Planck constant
Eh 4.36× 10−18 J Hartree energy
1 G 10−4 T conversion from Gauss to Tesla
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1 Introduction

The observation in the early 20th century of superfluidity and superconductivity, both
characterized by an absence of viscosity, opened a completely new field of research in
physics of strongly-correlated many-body systems. Understanding the physics behind
these phenomena could allow us to design new materials, which would change our daily
life. In the past 20 years Bose-Einstein condensates (BEC)3 [15] as well as degenerate
Fermi gases4 [25] of neutral atoms have been used as highly controllable model systems
to investigate these phenomena [26]. The possibility to tune the interaction strength in
ultra-cold gases and altering the external confinement almost arbitrarily, even allowing to
change the dimensionality of the system, have extended the types of systems that can be
studied with ultra-cold atoms. In particular, tuning the interaction strength has allowed
to investigate the connection between a BEC and a fermionic superfluid through the study
of the so-called BEC-BCS crossover [27]. Another breakthrough was the observation of
the superfluid-Mott transition with atoms in an optical lattice showing the feasibility
of ultra-cold atoms to successfully model strongly-correlated solid-state systems [28–30].
These examples outline the importance of the interactions on the many-body state of
ultra-cold atoms.

In contrast to alkali atoms, which were used for the examples above, whose properties
are dominated by the short-range and isotropic contact interaction, dipolar systems show
additional complexity due to the long-range and anisotropic dipole-dipole interaction
(DDI). With the realization of a BEC of chromium (Cr) atoms in 2005 the experimental
investigation of strongly dipolar many-body systems was made possible [10]. Phenomena
which are due to the DDI have been observed such as magnetostriction [31], d-wave
collapse of the BEC [32], the stabilization of an attractive BEC in a 1-D lattice [46] and
spin relaxations in an optical lattice [47]. The magnetic moment of Cr (µm = 6µB) is
large compared to the alkali atoms (µm = 1µB), but it contributes only about 16 % to
the interaction energy in a BEC under normal conditions [33]. To be able to enter the
strongly dipolar regime a magnetic Feshbach resonance was used to reduce the contact
interaction and thereby enhance the relative contribution of the DDI [34].

Recently, the family of dipolar quantum gases has been extended with the condensation
of dysprosium (Dy) (µm = 10µB) [13] and erbium (Er) (µm = 7µB) [14] atoms. Dy is
beside terbium the element with the largest magnetic moment. In ultra-cold atoms the
interaction strength can be characterized by their length scales. By dimensional analysis
the corresponding length scale of the DDI is given by add ∝ mµ2

m/~2, with the atomic
mass m, the element’s magnetic moment µm and ~ the reduced Planck constant. In Figure
(1.1) the periodic table of elements with the product mµ2

m is shown. Thanks to the large

3So far there are 13 different elements where a BEC could be achieved: Na [1], Rb [2], Li [3, 4], H [5], He
[6], K [7], Cs [8], Yb [9], Cr [10], Ca [11], Sr [12], Dy [13], Er [14].

4A degenerate Fermi gas has been realized for K [16], Li [17, 18], He [19], Sr [20], Yb [21], Dy [22], Er
[23], Cr [24].
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Fig. 1.1, Periodic table of elements: The used color code indicates the element’s
dipolar character (∼ mµ2

m) in atomic units while the pink rectangles highlight
the elements which have been successfully condensed. Dysprosium (Dy) is
the element with the highest magnetic moment and due to its large mass it
shows the largest dipolar character beside the transuranic radioactive elements
berkelium (Bk), californium (Cf) and einsteinium (Es).

magnetic moment and the high mass of Dy the DDI is dominant even without reducing
the contact interaction strength.

In addition to magnetic atoms, also hetero-nuclear ground-state molecules are promising
candidates to show strongly dipolar effects, as they have an even stronger and tunable
DDI due to their induced electric dipole moments. One way to create ultra-cold molecules
is to associate the cold atoms via a Feshbach resonance. Subsequently, the weakly-bound
Feshbach molecules have to be transferred into their vibrational and rotational ground-
states via a two-photon transition, which was shown the first time for fermionic KRb
molecules [48]. Unfortunately, these molecules are unstable due to exothermic two-body
chemical reactions [49]. Recently, it was possible to create chemical stable bosonic RbCs
molecules [35, 36] and fermionic NaK molecules [37] in their rovibrational ground-state.
Furthermore, ground-state atoms with weakly admixed Rydberg states would show an
even stronger dipole moment than hetero-nuclear molecules [38]. The emergence of these
new systems opens many possibilities for the study and control of dipolar many-body
systems.

Since the first realization of a dipolar condensate strongly dipolar many-body systems
have been of great theoretical interest for the quest of new quantum phase transitions
and new states of matter. For example in quasi-2D geometries a particular excitations
spectrum, the maxon-roton excitation spectrum [39], is predicted, which is closely related
to self-organized structures in dipolar quantum gases [40, 41]. Furthermore, for strongly
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dipolar systems crystalline structures [42] and new exotic quantum phases are predicted
[43, 44].

This Thesis

For more than 10 years the Cr BEC apparatus was the "working horse" of the experimental
investigation of the physics of dipolar quantum gases and many fascinating phenomena
have been observed. However, to investigate self-organized density structures and other
novel quantum phases new technical capabilities were required. In addition, with the
realization of a Dy BEC in 2011 a new member of the dipolar family was present which
should show dipolar effects even without the use of a Feshbach resonance due to the larger
dipolar length. Therefore, at the end of 2011 we took the decision to switch from Cr to
Dy and to setup a new apparatus with state of the art experimental tools to be able to
do outstanding research on dipolar quantum gases.

In this thesis I present the experimental setup of the new apparatus and its cooling and
trapping scheme to create dipolar bosonic as well as fermionic quantum gases of Dy atoms.
The results of our scheme to create a cold sample of Dy atoms in a magneto-optical trap
(MOT) are published in [50]. The new apparatus contains a science cell composed of an
octagonal glass cell, which allows for sub-micrometer imaging resolution with a microscope
objective and a good magnetic field control to alter the interaction properties of the highly
magnetic Dy atoms.

In the framework of this thesis we perform a first study of the BEC properties which
allows to estimate the so far unknown background scattering length of Dy. Together with
further measurements we confirmed that Dy is in the strongly dipolar regime without the
usage of a Feshbach resonance.

Furthermore, we investigate the complex scattering properties of Dy by studying low
field Feshbach resonances. By statistical analysis of the resonance positions we can show
that the scattering of Dy atoms show indications of quantum chaos. This is studied in
detail within a collaboration together with the group of F. Ferlaino and S. Kotochigova
and the obtained findings have been published in [51].

By measuring Feshbach resonances for even higher magnetic fields we find that despite
the many narrow Feshbach resonances broad features exist. These broad Feshbach
resonances can be described by the standard formalism of a s-wave resonance and can
be used to control the two-body interaction. We have analyzed the broad resonances in
collaboration with the group of P. S. Julienne and the results have been published in [52].
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Outline

This thesis is organized as follows. After a short introduction to the element Dy in chapter
2, we review the theoretical descriptions of the scattering behavior of dipolar atoms in
chapter 3. In particular, we give a brief introduction to Feshbach resonances and how
they can be used to change the properties of a degenerate quantum gas. In addition,
we present the concepts of quantum chaos as it will be relevant for the interpretation of
the experimental obtained data. We end this chapter with a mean-field description of
a dipolar condensate and estimate its stability criterion which constrains the design of
our trapping potential. In chapter 4 we give a detailed description of our experimental
setup including vacuum chamber, the required laser systems, the feasibility to control
the magnetic fields and finally the setup of our high-resolution imaging system. Our
scheme to produce a BEC as well as a degenerate Fermi gas of Dy atoms is presented in
chapter 5. In chapter 6 our measurement of Feshbach resonances of 164Dy and 162Dy is
presented. The observed dense resonance spectrum is analyzed using statistical methods
based on random-matrix theory. Further theoretical analysis give insights in the origin of
the chaotic scattering behavior of ultra-cold Dy atoms. Broad loss features are analyzed
by measuring the binding energy of the underlying molecular state and are further studied
using a dipole-modified s-wave scattering model. Finally, in chapter 7 we summarize our
findings and give an outlook to the possibilities of further studies of dipolar phenomena
with Dy atoms.
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2 Dysprosium

The element dysprosium belongs to the group of rare earth elements5, also known as
lanthanides, which consists of 15 chemically similar elements, from atomic number 57
(lanthanum) to 71 (lutetium). The element Dy was first discovered by the French chemist
Paul-Emile Lecoq de Boisbaudran in a holmium sample in 1886 [53]. Since the development
of ion-exchange chromatography from Frank Spedding in 1950 it is possible to separate
Dy from other lanthanides in an efficient way. The Greek expression dysprositos, which
means "hard to get at", is the origin of its name and reflects the difficulty to isolate Dy
from holmium. Dy has a bright, silver color and can be easily machined. However, the
pure metal is not of great industrial importance as it oxidizes rapidly [54]. In contrast,
Dy is used together with neodymium, iron and boron to produce the strongest permanent
magnets [55].

2.1 General Properties

The nucleus of Dy has 66 protons and there exist seven stable isotopes. Table (2.1)
summarizes the mass and the natural abundance of the most common Dy isotopes.
Interestingly, besides the bosonic isotopes, also the fermionic isotopes have a high natural
abundance, which opens the possibility to study dipolar fermionic quantum gases. In this
thesis the results for the bosonic 162Dy and 164Dy isotopes are presented. Additionally, we
show first attempts to cool the 161Dy fermion to degeneracy. As many other lanthanide
elements Dy has a high melting temperature (1412◦C) and boiling point (2560◦C) [56].
Beside terbium, Dy is the element with the highest magnetic moment of all elements with
10 µB, where µB is the Bohr magnetron. The high magnetic moment alters the properties
of the quantum gases and give rise to new physics.

isotope 160Dy 161Dy 162Dy 163Dy 164Dy
mass [a.u.] 159.92 160.93 161.93 162.93 163.93
abundance [%] 2.3 18.9 25.5 24.9 28.3
statistics boson fermion boson fermion boson

Tab. 2.1, Natural abundance and statistical properties of the most common stable Dy
isotopes [53]

5The term rare earth elements is misleading, because these elements are not as rare as it indicates. For
example the most abundant lanthanide, the element cer, is as common as copper.
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2.1.1 Electron Configuration of the Ground-state

The 66 electrons of Dy are distributed over the possible energy orbitals following Madelung’s
rule and form the electronic ground-state

(1s22s22p63s23p63d104s24p64d105s25p6) 4f 106s2 . (2.1a)

The expression in brackets represents the electronic configuration of the noble gas xenon.
Notice that the 6s-orbital is completely filled, while the 4f -orbital is only partly filled
with 10 electrons. This configuration is known as a submerged-shell configuration. Using
Hund’s rules we can obtain the quantum numbers of the ground-state:

(i) Completely filled orbitals do not affect the ground-state quantum numbers. Thus,
only the electrons of the 4f -orbital have to be taken into account.

(ii) The 4f -orbital has seven sub-states with ml = −3, ...,+3, which have to be filled
such that the total spin S is maximized. This results in three ml states occupied
with two electrons with opposite spins and four states which are only singly occupied,
therefore we obtain the total electron spin quantum number S = 4 · 1/2 = 2.

(iii) Further, the electrons are distributed such that the angular momentum L is maxi-
mized which means that the unpaired electrons occupy the states ml = 0,+1,+2,+3,
resulting in an orbital angular momentum quantum number L = 6.

(iv) Finally, we have to take into account the spin-orbit (LS) coupling. As the 4f -
sub-shell is more than half filled the total angular momentum quantum number is
obtained by |J | = |L + S| = 8.

In summary, the ground-state of Dy, written in the usual term formalism, is a 5I8 state.
The high angular momentum of the ground-state is quite different to the usually used alkali
and alkaline earth metals. As we shall see later, this anisotropic electronic configuration
affects strongly the scattering properties of Dy.

2.1.2 Hyperfine Structure

In contrast to the bosonic Dy isotopes which have no nuclear spin I due to their even
numbers of protons and neutrons, fermions show a hyperfine structure as their nuclear
spin is |I| = 5/2. The coupling between the total angular momentum J and the nuclear
spin leads to a hyperfine splitting [57]:

∆EHFS = AK +B
3/2K(2K + 1)− I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1) , (2.2)

with K = 1/2(F (F +1)−J(J+1)−I(I+1)), A,B the hyperfine structure coefficients and
the total angular momentum quantum number F = |J + I| = 21/2. For the ground-state
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g.-s. A [MHz] B [MHz] νis [MHz] Refs.
161Dy -116.2322 1091.5748
163Dy 162.7543 1153.8684 [58]
e.-s. of 421 nm transition
161Dy -86.90 1747.4 1635
162Dy 913.2
163Dy 121.62 1844.9 616.3 [59]
e.-s. of 626nm transition
161Dy -187 -317 1727
162Dy 962
163Dy 261.7 -334 654 [60]
e.-s. of 684 nm transition
161Dy -108.84 2251 -2099
162Dy -1091
163Dy 152.56 2357 -823 [61]
e.-s. of 741 nm transition
161Dy -102.09 3883 -2320
162Dy -1214
163Dy 142.91 4105 -915 [62]

Tab. 2.2, Hyperfine A and B coefficients for the ground-state (g.-s.) and for the excited-
states (e.-s.) of the 421 nm, 626 nm, 684 nm, 741 nm transition, respectively. In
addition, the relative frequency shifts νis with respect to the transition of the
164Dy isotope are given.

and the needed excited-states the constants A,B are given in Table (2.2). In 163Dy the
maximal stretched state (mF = 21/2) of the ground-state is the energetically highest level,
in contrast to the 161Dy which shows an inverted hyperfine structure, see Figure (2.1)(b).

2.1.3 Magnetic Moment

The atomic magnetic moment µm in the direction of an external magnetic field in the
z-direction can be calculated by

µm = mjgjµB , (2.3)

where mj is the magnetic quantum number of the total electronic angular momentum. In
Dy its large magnetic moment is mainly due to the large angular orbital momentum L.
The Landé factor gj is calculated by following equation [63]

gj = 1 + J(J + 1)− L(L+ 1) + S(S + 1)
2J(J + 1) . (2.4)

However, the value calculated by Eq. (2.4) has to be corrected due to the deviation from
the pure LS-coupling, additional relativistic and also diamagnetic effects and a value of
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gj = 1.2370 is obtained [64]. Experimentally, a value of gj = 1.2415867(10) was measured
[58]. Finally, the magnetic moment of the fully polarized state with mj = −8 of bosonic
Dy can be calculated using Eq. (2.3) to µm = −9.93239µB. For the fermions one has to
replace in Eq. (2.3) mj and gj by mF and gF , accordingly and the Landé factor gF can be
calculated by [63]

gF = gj
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1) = 0.9459708 , (2.5)

and for the state mF = 21/2 the magnetic moment yields µm = −9.93239µB.

2.2 Atomic Energy Spectrum

Due to the submerged-shell configuration there are many possibilities to excite the electrons
to higher energy levels. Therefore, the atomic energy level structure is quite complex.
Figure (2.1)(a) shows a small section of the complete level structure, presented in Figure
(A.3). So far, 394 (346) levels with even (odd) parity have been observed [65, 66].

2.2.1 Useful Optical Transitions

As the energy level structure of the lanthanides is quite complex, which results in many
possible decay channels, it is not obvious to find a suited optical transition for laser cooling.
However, Er was the first lanthanide which could be cooled and trapped in a MOT6

[67]. The first successful method to laser cool Dy atoms used the J = 8→ J ′ = 9 broad
transition at a wavelength of 421nm, which has a transition rate of Γ = 2π· 32.2MHz
[68]. This transition was also used to slow the atoms in a Zeeman slower (ZS) and finally
trap them in a MOT [69]. Due to the broad linewidth many photons can be scattered by
the atoms, thus this transition is well suited for the operation of the ZS and to image the
atoms. On the contrary the high Doppler temperature of TDoppler = ~Γ/(2kB) = 773µK
requires further cooling steps before the atoms can be efficiently loaded into an optical
dipole trap (ODT) to finally perform forced evaporative cooling to degeneracy. One
possibility is to use the 741 nm transition, which has a transition rate of Γ = 2π· 1.8 kHz.
For this transition the Doppler temperature is even below the recoil temperature of
Trecoil = (~k)2/(mkB) = 213 nK. The capture velocity of a MOT operating at the 741 nm
transition is vcapture = Γλ/(2π) = 1.3mm/s which is too low to capture the Zeeman slowed
atoms. Hence, the atoms first have to be captured in a 421 nm MOT and cooled further
in the 741 nm MOT [13]. An alternative solution avoiding the two stage MOT phase and
the challenging laser stabilization below 1.8 kHz is to use the 626nm closed transition,
which has a convenient transition rate of Γ = 2π· 136 kHz [70]. This has the advantage

6Its large magnetic moment allows to magnetically confine the atoms in the trap region while the
excited-states recycles via many meta-stable states to the ground-state.
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Fig. 2.1, Level structure of Dy: (a) Energy states with even (odd) parity are shown
in black (red). Useful optically allowed transitions are indicated with arrows.
The thickness of the arrows corresponds to their linewidths. The broad 421 nm
transition is used to slow down the atoms in the ZS and for transverse cooling.
We use the closed cycling 626nm transition for our MOT. The even narrower
741nm transition can also be used for a MOT. With the 684nm transition
the atoms can be pumped to different Zeeman sub-states, which would be
necessary for demagnetization cooling. (b) shows the hyperfine splitting of the
ground-state for the two fermionic isotopes calculated with Eq. (2.2).

that the MOT capture velocity allows to directly capture the atoms from the ZS but
in addition the Doppler temperature TDoppler = 3.3µK is sufficiently low to transfer the
atoms efficiently into the ODT. This scheme is successfully used in Er [71] and Yb [72]
experiments. In section 5.2 we show the properties of our MOT operating at the 626 nm
closed transition.

The 684nm transition, which has a transition rate of Γ = 2π· 95 kHz, is a J = 8→
J ′ = 8 transition. This transition is applicable to optically pump the atoms in different
Zeeman sub-states, which is necessary if we want to apply demagnetization cooling. With
demagnetization cooling we could use a nearly lossless cooling procedure in the ODT,
which would be much more efficient than using the standard forced evaporative cooling
method [73]. To investigate the suitability of this transition for demagnetization cooling
we performed a high-resolution laser spectroscopy on the 684nm transition, see Figure
(2.2)(c). The resulting data have been published in [61]. In Table (2.3) the properties of
the before mentioned transitions are summarized.
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421 626 741 684
λ 421.291 nm 626.082 nm 740.963 nm 683.731 nm
Γ 2.02×108 0.85×106 11.2×103 0.60×106

τ 4.94 ns 1.17µs 89.3µs 1.68µs
∆ν 32.2MHz 136 kHz 1.78 kHz 95 kHz
Isat 56.3mW/cm2 72µW/cm2 0.57µW/cm2 39µW/cm2

TDoppler 773µK 3.3µK 43nK 2.3µK
vDoppler 198mm/s 12.9mm/s 1.5mm/s 10.7mm/s
Trecoil 659nK 298nK 213 nK 250nK
vrecoil 5.8mm/s 3.9mm/s 3.3mm/s 3.6mm/s
vcapture 13.6m/s 85mm/s 1.3mm/s 65mm/s
Refs. [62] [70] [62] [61]

Tab. 2.3, Relevant parameters of the important optical transitions in Dy including the
vacuum wavelength λ, transition rate Γ, lifetime τ = 1/Γ, natural linewidth
∆ν = Γ/(2π), saturation intensity Isat = 2π2~cΓ/(3λ3), Doppler temperature
TDoppler = ~Γ/(2kB), Doppler velocity vDoppler =

√
~Γ/(2m), recoil temperature

Trecoil = (~k)2/(mkB), recoil velocity vrecoil = 2π~/(λm) and capture velocity
vcapture = Γλ/(2π), where ~ is the reduced Planck constant, k = 2π/λ the
wavenumber and m = 162.5 a.u. the mean atomic mass of Dy.

The excited-state hyperfine splitting of the fermionic Dy isotopes can be calculated
using Eq. (2.2) and the hyperfine constants A and B presented in Table (2.2). Due to
the different atomic masses there is an additional isotope shift between the transition
frequencies of the different Dy isotopes [74]. The total transition frequency shifts relative
to the 164Dy isotope is shown in Figure (2.2). For the J = 8→ J ′ = 9 (J = 8→ J ′ = 8)
transitions the only observed transitions are the mF → m′F + 1 (mF → m′F ), respectively.
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Fig. 2.2, Laser spectroscopy: Spectrum of the most abundant Dy isotopes for the
421nm (a), 626nm (b) and 684nm (c) transition. The gray data points are
the results of the saturation absorption spectroscopy. The resonance positions
match nicely with the calculated positions using Eq. (2.2) for the hyperfine shift
of the ground- and excited-states. The positions of the 161Dy (163Dy) transitions
are shown in green (orange) lines and the position of the bosonic isotopes are
indicated in black. The small deviations from the measured positions are due to
the non linear scan ramps of the lasers. The dashed red lines mark the position
of the cavity resonances which are used to frequency stabilize the lasers. More
details on the laser stabilization scheme is given in section 4.3.3. 25





3 Theory of Dipolar Quantum Gases

In this chapter we briefly introduce the theory of dipolar quantum gases. In the first
section we start with the description of the scattering theory between two particles. We
will show that the interaction potentials can be approximated by simpler pseudo-potentials.
An important tool in cold atom physics are Feshbach resonances which allow to tune the
short-range interaction externally and thereby modifying the properties of the degenerate
quantum gas. In section 3.2 the theory of Feshbach resonances are discussed and in section
3.3 we give a brief introduction to the subject of quantum chaos as it is relevant for the
analysis of the obtained Feshbach spectroscopy data. We conclude this chapter with a
mean-field description of dipolar condensates, see section 3.4.

3.1 Few-body Scattering Theory

In the following we discuss the basic collision theory of two colliding Dy atoms. In section
3.1.1 we review the basic concepts of the scattering theory of two atoms interacting via a
short-range isotropic interaction potential. For dipolar atoms also the DDI has to be taken
into account. Additionally, due to the complex electronic structure of Dy the short-range
interaction potential is anisotropic. When accounting for the more complicated interaction
potential of dipolar Dy atoms we have to investigate if the basic descriptions for Dy
collisions are still valid, this is done in section 3.1.2.

3.1.1 Scattering Theory for Isotropic Short-range Potentials

Fig. 3.1, Basic scattering problem: (a) An incoming particle, described by a plane
wave with wave vector k, is scattered on an interaction potential U(r) and
detected in the shaded area dA under the solid angle dΩ. (b) The asymptomatic
behavior of the two-body wave-function ψ(r) determines the s-wave scattering
length a. Panel (b) is taken from [75].

We consider here elastic collisions of two atoms with mass m and position vectors r1,
r2 interacting via a finite-range potential U(r1, r2). Detailed descriptions can be found in
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Refs. [76–79]. For now we do not take the internal structure of the particles into account,
thereby we also neglect inelastic scattering processes. For simplicity we transform to
center-of-mass and relative coordinates resulting in the scattering of a single particle with
the reduced mass mµ = m/2, relative velocity v and relative momentum p = ~k at the
potential U(r1 − r2) = U(r), with U(r → ∞) = 0. Figure (3.1)(a) shows a schematic
drawing of two colliding atoms interacting via a short-range potential.

The stationary Schrödinger equation of the relative motion with eigenenergy E =
~2k2/(2mµ) yields the far-field (r →∞) solution

ψk(r) ∝ ψ0(r) + eikr

r
fk(r) , (3.1)

which represents an ingoing wave-function ψ0 superimposed with a spherical wave modu-
lated in amplitude and phase by the scattering amplitude fk(r). The scattering amplitude
can be calculated using the first Born approximation [79]

fk(r) = − mµ

2π~2

∫
d3r′ e−ik′ r′ U(r′)ψk(r′) . (3.2)

However, calculating the scattering amplitude iteratively is extremely complicated as
the potential U(r) contains the complete atomic structure. Therefore, we first restrict
ourselves to a finite-range central potential U(r) = U(r), which allows to express the
solution of the Schrödinger equation in a superposition of partial waves. This simplifies
Eq. (3.2) to

fk(θ) = 1
2ik

∑
l

(2l + 1)
[
(e2iδl − 1)Pl(cos(θ))

]
, (3.3)

where l = 0, 1, 2, ... is the contribution of the s, p, d, ... partial wave, δl the corresponding
phase shifts and Pl(cos(θ)) the Legendre polynomials. To determine the phase shifts δl
we can take advantage of the fact that in ultra-cold quantum gas experiments the atomic
samples are very cold. For decreasing temperature the thermal de-Broglie wavelength
λdB becomes larger and thereby the atoms resolve less details of the two-body interaction
potential. The thermal de-Broglie wavelength is defined as

λdB
def=
√

2π~2

mkBT
, (3.4)

where ~ is the reduced Planck constant, kB the Boltzmann constant and T the temperature
of the atomic sample. In addition, each particle wave with an orbital angular momentum
l > 0 sees a centrifugal barrier Ucb = ~2l(l + 1)/(2mr2

0) with r0 the characteristic range
of the two-body potential7. For temperatures typically below Ucb,l=2 ≈ 1mK (d-wave

7The characteristic range of a power-law potential U(r) = Cn/r
n can be estimated by using the

Heisenberg’s uncertainty principle ∆p ≈ ~/∆x and equating the kinetic energy (∆p)2/(2mµ) with the
molecular potential, resulting in r0 ≈ (2mµCn/~2)1/(n−2), with ∆x = r0. For most laser cooled elements
r0 ∼ 100 a0, with a0 = 0.05297 nm the Bohr radius [80].
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barrier), which defines the beginning of the ultra-low temperature regime, only the s-wave
(l = 0) can contribute to the scattering amplitude. Formally, for low energy collisions
(kr0 � 1), where the thermal de-Broglie wavelength is much larger than r0, the phase shift
for an interaction potential with U(r) ∼ 1/rn varies with δl ∼ k2l+1 if l < (n− 3)/2 and
δl ∼ kn−2 otherwise [76, ch. 132]. Thus for the usual short-range potentials with n = 6 all
scattering amplitudes with l > 0 are small compared with the scattering amplitude with
l = 0. This allows us to neglect all higher partial8 waves.

Usually to characterize a scattering process the total elastic cross-section is an important
quantity. For indistinguishable atoms, one has to take into account, that the wave-function
has to be completely symmetric (for boson) or completely antisymmetric (for fermions)
with respect to particle exchange. This results in the total elastic cross-section for identical
bosons (fermions)

σtot B(F )
=
∫
dΩ |fk(θ)± fk(π − θ)|2 = 8π

k2

∑
l even
(l odd)

(2l + 1) sin2(δl) . (3.5)

In the case of ultra-low temperature collisions we have seen that only the s-wave contributes
to the scattering and we get the well known isotropic and energy independent total s-wave
scattering cross-section for identical bosons

σtot = 8πa2 , (3.6)

where the s-wave scattering length is defined by

a
def= lim

k→0
−tan δ0(k)

k
. (3.7)

In contrast, the Pauli exclusions principle prohibits s-wave collisions between spin polarized
fermions leading to a vanishing of the elastic scattering cross-section for low temperatures
[81].

The scattered wave-function Eq. (3.1) becomes (k = 0) a simple spherically symmetric
form

ψ(r) ∝ 1− a

r
, (3.8)

which has the same asymptotic behavior as a wave-function taking the full knowledge of the
two-body interaction potential into account, see Figure (3.1)(b). Note that the scattered
wave-function is spherically symmetric even if the two-body potential is anisotropic, which
will be important in the next section.

Summarizing this paragraph, we found that for collisions in the ultra-cold regime the
actual small-scale structure of the two-body interaction potential is irrelevant as it can
be replaced by a much simpler model. It is usually called pseudo-potential having the

8This is not valid for the DDI (n=3), where all partial waves contribute, see next section.
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same effective interaction characterized by the s-wave scattering length a, which can be
determined experimentally.

3.1.2 Two-Body Interactions between Dipolar Atoms

In the former section we reviewed the basic collision theory of two atoms interacting via
a short-range interaction potential. In contrast to alkali atoms for dipolar atoms also
the DDI has to be taken into account. As the repulsive part of the molecular potential
is only important for very small distances r, the main contributions of the interaction
potential between two dipolar atoms is the short-range dispersion interaction Udisp and
the long-range dipole-dipole interaction Udd

Uint(r) = Udisp(r) + Udd(r) . (3.9)

In the following we study the modifications of the former concepts of two-body collisions
due to the more realistic molecular potential Uint(r) of two colliding dipolar atoms. In
addition, we introduce the concept of pseudo-potentials, which is necessary for studying
the properties of a dipolar quantum gas in the mean-field description, see section 3.4.2.

Dispersion Interaction

The attractive short-range part of the molecular potential is caused by induced electric
multipoles,

Udisp(r) = −C6

r6 −
C8

r8 −
C10

r10 − . . . , (3.10)

where r is the distance between the atoms and C6, C8 and C10 are the dispersion coefficients.
The first term in Eq. (3.10) is due to the induced dipole-dipole interaction and is known as
the van-der-Walls (vdW) interaction. The other terms represent higher-order contributions.
Usually only the first term is used to approximate the full dispersion interaction.

As most laser-cooled atoms have a symmetric electronic distribution of their ground-
state configuration also the vdW potential is usually spherically symmetric. The C6

coefficients can be calculated from spectroscopic data using the Born-Oppenheimer (BO)
approximation9. The resulting electronic interaction potentials are known as BO potentials.
In the case of lanthanide atoms, the calculation of the BO potentials is more difficult,
as the electronic ground-state configuration has an unfilled inner 4f -shell shielded by a
closed 6s-shell. Nevertheless, the group of S. Kotochigova pioneered in calculating the
BO potentials for Dy and Er [82]. In the ground-state of a lanthanide atom the electron
spin S is coupled to the electron orbital angular momentum L, forming a total angular
momentum j = S + L. The collision state of two colliding atoms is defined by the total
angular momentum J = j1 + j2 and its quantum number Ω = m1 + m2, which is the
9The electronic part of the wave-function is decoupled from the nuclear part.
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projection along the internuclear axis. During the collision the quantum numbers m1

and m2 can be changed as long as Ω = m1 + m2 = m′1 + m′2 stays conserved. Each
configuration of j1 relative to j2, illustrated in Figure (3.2), results in a separate BO
potential which means that the C6(m1,m2,m

′
1,m

′
2) coefficients depend on the quantum

numbers m1, m2, m′1, m′2. For each Ω there exists (J + 1)− Ω equivalent BO potentials.
For Dy (j1 = j2 = 8) there are 81 (72) gerade (ungerade) BO potentials. The dependence
of C6 on Ω is caused by the anisotropic coupling of the f -shell electrons of the two atoms.
This results in an anisotropic vdW interaction which depends on the relative orientation

Fig. 3.2, Anisotropic dispersion interaction: (a) The atomic total angular momenta
j1 and j2 form the total angular momentum J = j1 + j2 of two colliding atoms,
which processes around the internuclear axis. The quantum number Ω is the
projection of J onto the internuclear axis. (b) Possible relative orientations of
j1 and j2 results in different values of Ω. (c) Gerade (filled cicles) and ungerade
(open circles) vdW C6 coefficients for different Ω. Panel (c) is taken from [82].

of the atoms. The amount of anisotropy in the C6 coefficients is defined by its spread10,
see Figure (3.2)(c).

For the two-body collision, without coupling between different internal states, the
physics stays the same even with an anisotropic short-range potential. This is based on
our findings in section 3.1.1 where we have seen that independently of the details of the
short-range potential the scattered wave-function for ultra-cold collisions is spherically
symmetric and characterized by the s-wave scattering length a. The anisotropy of the
short-range interaction plays a major role in the context of anisotropy-induced Feshbach
resonances, see section 3.2.2.

10The recently updated values for 164Dy are C6 = 2003Eha6
0 and ∆C6 = 188Eha6

0 [51]. Where
Eh = 4.360× 10−18 J is the Hartree energy.
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A Contact Interaction Pseudo-potential

As it is possible to experimentally measure the s-wave scattering length a, it is not
necessary to know the real shape of the short-range interaction potential and we can
replace it by a spherically symmetric pseudo-potential, which is especially useful for the
mean-field description of a BEC. One of the simplest pseudo-potentials describing the
two-body short-range interaction is the so called zero-range contact interaction potential

Vcontact(r) def= g δ(r) (3.11a)

with the so called contact coupling strength

g
def= 4π~2

m
a (3.11b)

for indistinguishable particles of mass m.

Dipolar Interactions

Fig. 3.3, Dipole-dipole interaction: (a) The DDI of two polarized dipoles depend on
the relative orientation ϑ and on the relative distance r. (b) The DDI can be
attractive in the head-to-tail (ϑ < ϑ∗) or repulsive in side-by-side configuration
(ϑ > ϑ∗). At the magic angle ϑ∗ ≈ 55◦ the interaction vanishes. The Figure is
taken from [75].

In dipolar atoms the DDI adds an additional ingredient which leads to new fascinating
physics, like the d-wave collapse of a dipolar BEC [32]. In the following we introduce the
properties of the DDI. The long-range part of the interaction potential of two dipoles,
aligned by an external field, can be described as

Udd(r, ϑ) = Cdd
4π

1− 3 cos2 ϑ

r3 , (3.12)
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where r = |r| is the distance between the dipole and ϑ is the angle between r and
the external field. Due to the 1/r3 dependency the DDI is a long-range interaction11.
Additionally, the DDI is anisotropic as it depends on the angle ϑ. Thus, it can be
either attractive or repulsive, see Figure (3.3). The coupling constant Cdd is either
Cdd = µ0µ

2
m for magnetic12 or Cdd = d2/ε0 for electric dipoles13, where µm and d are the

corresponding dipole moments. Magnetic moments of atoms range from µm = 0 µB (e.g.
Sr) to µm = 10 µB (e.g. Dy). Whereas heteronuclear molecules can have induced dipole
moments on the order of a few Debye14. Therefore, the dipolar coupling constant of polar
molecules is much larger than for magnetic atoms. In this thesis we focus on atomic
magnetic dipoles polarized by an external magnetic field.

In the presence of DDI the elastic collisions between two atoms change fundamentally.
The scattering phase shift δl with l > 0 for potential with 1/rn varies as δl ∝ Ak2l+1+Bkn−2,
with A,B constants depending on the short-range details of the potential [76, 79]. The
first term is due to the short-range potential, while the latter is due to the scattering
outside of the centrifugal barrier [85]. For the DDI (n = 3) all partial waves have to be
considered and the phase shifts do not vanish for low energies. Rather, in the limit of
low energies they acquire finite values [86]. According to [85, 87] an universal scattering
behavior can be observed for low enough collision energies E < ED, where

ED = Cdd
4πD3 = 16π2~6

m3
µµ

2
0µ

4
m

(3.13a)

and D is the dipolar length

D
def=mµCdd

4π~2 . (3.13b)

For indistinguishable bosons the total elastic cross-section of two dipolar atoms is composed
of15

σB =32π
45 D2 + 8πa2 , (3.14a)

11There exist different methods [83] trying to define whether a potential has short-range or long-range
character, depending also on the dimensionality of the system. We simply define a long-range potential
if the potential decreases slower than 1/rn, with n ≤ 3.

12µ0
def= 4π × 10−7 T m/A is the vacuum permeability.

13ε0
def= 1/(µ0c

2) is the permittivity, where c is the speed of light.
14The unit Debye is defined in SI units as 1 D = 1/c · 10−21 C/m, where c is the speed of light. The
conversion factor between magnetic and electric dipole moment is 1µB ≈ 9.274× 10−3 D [84].

15This is not valid anymore if D � a as in general the scattering length depends on the dipolar length,
see next section.
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whereas for indistinguishable fermions it only depends on the dipolar length

σF =32π
15 D2 . (3.14b)

The non vanishing and temperature independent scattering cross-section allows to cool
polarized dipolar fermions by forced evaporative cooling to degeneracy, which was first
observed for fermionic Dy atoms in the group of B. Lev [22] and is used to cool down
fermionic Er to temperatures of T/TF = 0.2 with TF the Fermi temperature in the group
of F. Ferlaino [23]. In section 5.3.4 we present the first attempt to cool spin-polarized
fermionic Dy atoms in our apparatus.

A Pseudo-potential for Dipolar Atoms

Due to the long-range character of the DDI it is not possible to describe the DDI by a
pseudo contact interaction potential as it was done in section 3.1.2, but it is possible
to define a dipole-dipole pseudo-potential [88, 89]. Defining the pseudo-potential as
in Eq. (3.11a) would cause trouble if a wave-function does not vanish at the origin
(ψ(r = 0) 6= 0), because there the pseudo-potential would diverge. Hence, we have to
prevent this by adding an additional term proportional to µ2

mδ(r) [90], which has the same
characteristics as the pseudo contact interaction potential. This would not be necessary
from a physical point of view as for small distances the strong Coulomb forces ensure
that the wave-function has a zero amplitude at the origin. However, it is important for
mathematical treatments. The full pseudo-potential for contact and dipolar interactions
can be therefore written as

Vint(r, ϑ) = 4π~2

m
a(µm)δ(r) + µ0µ

2
m

4π
1− 3 cos2 ϑ

r3 , (3.15)

which consists of a short-range part and a long-range part. Notice that a(µm) is now
the effective scattering length, in general, it depends on the DDI. But the dependency is
usually week and as the scattering length a is determined experimentally it automatically
accounts for this additional small fraction [91, 92].

For further discussions of dipolar systems we now introduce some useful parameters. In
analogy to the scattering length a we can define a characteristic dipolar length16

add
def= µ0µ

2
mm

12π~2 (3.16a)

16Note that the relation between the dipolar length and the characteristic dipolar length is D = 3/2 add.
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and the dipolar strength

gdd
def= 4π~2

m
add = µ0µ

2
m

3 . (3.16b)

The characteristic dipolar length is defined such that a three-dimensional, homogeneous
dipolar condensate becomes unstable when a = add, see section 3.4.4. Finally, we define
the relative dipolar strength

εdd
def= gdd

g
= add

a
= µ0µ

2
mm

12π~2a
(3.16c)

for indistinguishable particles. To observe effects, which are dominated by the DDI, in
degenerate gases both interactions have to be equally strong such that εdd & 1. For
comparison the relative dipolar strength of Cr has a value of εdd ≈ 0.16 at its background
scattering length of abg ≈ 100 a0, whereas Dy has a value of εdd ≈ 1.3 at an assumed
background scattering length of abg ≈ 100 a0. An important tool in ultra-cold quantum
gas experiments are Feshbach resonances which can be used to tune the scattering length
and thereby modifying the two-body interaction potential. Hence, we briefly discuss in
the following section the theory of Feshbach resonances.

3.2 Theory of Feshbach Resonances in Ultra-cold Gases

Feshbach resonances were first theoretically studied independently by Feshbach, in the
context of nuclear physics [93], and by Fano, who approached the problem on the back-
ground of atomic physics [94]. Nowadays, Feshbach resonances are a standard tool to
control the interactions in ultra-cold quantum gas experiments. They are used to study
many-body systems, such as ultra-cold fermions in the BEC to BCS crossover [95] or
few-body physics like the Efimov effect [96]. Furthermore, Feshbach resonances can be
used to create Feshbach molecules, which open the way to produce ultra-cold ground-state
molecules [48, 97]. For dipolar atoms a Feshbach resonance can be used to alter the
contact interaction and thereby modifying the relative dipolar strength. For example
in Cr a Feshbach resonance was used to reduce the strength of the contact interactions
thereby it was possible to go from a regime where the DDI plays only a perturbative effect
[98] to a regime where strong dipolar effects can be observed [34].

3.2.1 Basic Concepts of Feshbach Resonances

In the previous sections we studied the ultra-cold collisions of two atoms. It was shown
that despite the complicated molecular interaction potential the scattering process can be
described by a simple s-wave collision, characterized only by the s-wave scattering length
a. So far we have taken into account only one single molecular potential. But there exist
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Fig. 3.4, Feshbach resonance: (a) Due to the coupling between different molecular
states a Feshbach resonance occurs when the energy E of the incident particles
matches with the bound-state energy Ec. The relative energy difference ∆E
between the closed channel (red) and open channel (black) can be controlled by
an external magnetic field. (b) Dependency of the scattering length (black) in
the vicinity of a Feshbach resonance, with its position B0 and width ∆. The
molecular binding energy (blue) shows a linear dependency far away from the
resonance and bends close to the pole due to the coupling.

more molecular potentials depending on the internal structure of the colliding particles.
If there is a coupling between different molecular potentials, the scattering behavior is
strongly modified. To understand the basic concepts of Feshbach resonances we assume
two molecular interaction potential Ubg(r) and Uc(r), where their molecular states differ
at least in one quantum number, see Figure (3.4)(a). The background potential Ubg(r)
connects asymptotically two free atoms and the energy E of the colliding atoms is close
to its threshold. This potential is usually known as the open channel. The potential Uc(r)
is called closed channel, since E is less than its asymptotic value, but it supports at least
one molecular bound-state near the threshold of the open channel. If the energy of the
incident particles (E ∼ 0) is close to the energy of the bound-sate Ec, the former weak
coupling gets resonantly enhanced, leading to a strong mixing between the channels and a
short-lived diatomic weakly-bound molecule is formed. This causes a divergence of the
scattering length and a so called Feshbach resonance occurs [99]. The energy difference
∆E between the two channels can be controlled via a magnetic field17 if the two channels
have different magnetic moments [101]. In the following we only consider magnetically
tuned Feshbach resonances in the limit of small kinetic energies (E → 0). Due to the
resonant coupling the s-wave scattering length a depends on the magnetic field B

a(B) = abg

(
1− ∆

B −B0

)
, (3.17)

17Also strong DC-electric fields can be used [100].
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where abg is the background scattering length, B0 the resonance position and ∆ the
resonance width [102]. The resonance width depends on the coupling strength and on
the difference in magnetic moments, furthermore the resonance position B0 = Bc + δB is
shifted due to the coupling. Figure (3.4)(b) shows the binding energy of the weakly-bound
molecular state. Far away from the resonance position the energy Eb = δµm(B − Bc)
depends linear on the magnetic field B with a slope given by the difference in magnetic
moments δµm = µatoms − µc of the closed and open channel18. The energy Eb would be
zero at a magnetic field equal to Bc, but due to the coupling of the two channels the
molecular state bends in the vicinity of the resonance. For large positive values of the
scattering length the binding energy is given by the universal expression

Eb = ~2/(2mµa
2) , (3.18)

with mµ the reduced mass, see inset of Figure (3.4)(b). In this region, where the binding
energy depends quadratically on the magnetic field, the state can be simply described by
an effective molecular potential having a scattering length a. The state is called a halo
state and its wave-function extends over a large size on the order of a, which is far beyond
the outer classical turning point of the potential. Feshbach resonances can be classified by
the dimensionless strength parameter [80]

sres = abg∆δµ
aE

, (3.19)

with a = 0.955978RvdW the mean scattering length and its corresponding energy scale
E = 1.09422EvdW

19. Resonances with sres � 1 are called entrance channel dominated
resonance. Here, the threshold scattering and bound-states have the spin character of the
entrance channel over a large fraction of the width. The bound-state energy follows the
universal Eq. (3.18). Usually these resonances have a large width and are conventionally
called broad resonances. Resonances with sres � 1 are called closed channel dominated
resonances. The universal regime lasts only over a small fraction of the resonance width.
Typically these resonances have a width ∆ < 1G and are known as narrow resonances20.

The coupling between the open channel and closed channel plays a fundamental role for
the appearance of Feshbach resonances. In the following we want to study the coupling
mechanism between different collision states. Formally, the elastic collision between two
atoms in the presence of an external magnetic field B can be described by preparing the
atoms at large distance in state q1 and q2, then let them collide (they interact with each
other) and afterward they end up again in the same state q1′,q2′=q1,q2 at large distances.
Hence, the scattering channels are defined by the internal states of the two atoms qi, their

18µatoms = 2µm is the magnetic moment of the separated atoms.
19The characteristic length scale of a Cp/Rp long-range potential isRp =

(
2µCp

~2

) 1
p−2 with its corresponding

characteristic energy scale Ep = ~2

2µR2
p
[103].

20Exceptions exists, i.e. the resonance at 737 G in 7Li has a sres . 1 but its width is ∆ = 192G [80].
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relative orbital momentum l and its projections mF = mF1 +mF2 and ml. The scattering
process can be described by the following Hamiltonian

H = − ~2

2mµ

d2

dr2 + ~2l(l + 1)
2mµr2 +

2∑
n=1

(UHF
n + UZ

n ) + Uint(r) , (3.20)

where UHF is the hyperfine interaction, UZ is the Zeeman interaction and Uint = U el +USS

the two-body interaction, which has been described in section 3.1.2. In the following we
summarize the different interactions:

(i) Hyperfine interaction
The total angular momentum j is coupled to the nuclear spin i. Thus, the hyperfine
interaction is given by

UHF
n = aHF

n

~2 j · i , (3.21)

with aHFn the hyperfine constant.

(ii) Zeeman interaction
The Zeeman interaction is given by

UZ
n = gFµBmFnB , (3.22)

with gF the Landé factor.

(iii) Electronic interaction
The electronic interaction, also called Coulomb interaction, consists of the exchange
potential and the vdW potential. Usually it is isotropic and therefore it is diagonal
in l and ml, but it is off-diagonal in the atomic channel quantum number q1, q2. This
means, that only molecular potentials with ∆l = 0 and ∆ml = 0 can be coupled
together. The coupling due to the electronic interaction is often responsible for the
appearance of broad Feshbach resonances [80].

(iv) Spin-spin interaction
The spin-spin interaction includes the magnetic DDI as well as second-order spin-
orbit interactions. The two contributions are both anisotropic and off-diagonal in
q1, q2 and l, this means that the spin-spin interaction can also couple different partial
waves with ∆l = 2. Usually the spin-spin coupling is responsible for the existence
of narrow resonances [80]. The coupling due to the spin-spin and second-order
spin-orbit interactions induces the Feshbach resonances in Cr [104].

By analyzing possible coupling schemes one gets a qualitative understanding of the
origin of Feshbach resonances for different elements. Note that the Hamiltonian (3.20)
conserves the total magnetic quantum number Mtot = mF1 +mF2 +ml during collision
and is invariant under parity operation, thus only even or odd partial waves l are coupled
together.
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In alkali atoms (e.g. Rb), which have a hyperfine structure, the electronic interaction
is the dominant interaction leading to Feshbach resonances. In 52Cr this is not the case
as it has no hyperfine splitting. Since for the electronic interaction ∆ml = 0 has to be
fulfilled, resulting in ∆ms = 0, the electronic interaction can only couple molecular sates
with the same magnetic moment. As they shift in an external magnetic field equally,
the electronic interaction could not be used to induce magnetic Feshbach resonances.
Hence, Feshbach resonances in Cr are due to the spin-spin interaction as it is a factor 36
larger than for alkalis. The situation is more complex when we now consider lanthanide
atoms, like Er and Dy, which have an even stronger DDI, but in addition the electronic
interaction is anisotropic (not anymore diagonal in l), shown in section 3.1.2. Due to the
large number of BO potentials, which can be coupled by the DDI and the anisotropic part
of the vdW interaction to the open channel, the lanthanides have a dense spectrum of
Feshbach resonances. The next section discusses the origin of Feshbach resonances in the
lanthanides Er and Dy.

3.2.2 Anisotropy-induced Feshbach Resonances

So far we have studied the basic concepts of Feshbach resonances. We have seen that they
occur due to the coupling between different molecular states caused by the electronic and
spin-spin interactions. To explain the Feshbach resonances in alkali elements few molecular
potentials have to be taken into account. This is in strong contrast to lanthanide atoms
where many molecular potentials exist which can be coupled to the open channel due to the
anisotropy of the DDI as well as of the electronic interaction. In the following we present
an analysis of the occurrence of Er and Dy Feshbach resonances based on coupled-channels
and multichannel bound-state calculations done by the group of S. Kotochigova. More
details on the theoretical model can be found in [51, 105, 106].

The calculation assumes Dy atoms prepared in the lowest Zeeman sublevel with a total
angular momentum j1 = j2 = 8 and its projection along the magnetic fieldmj1 = mj2 = −8.
As the bosonic isotopes have no hyperfine structure the radial part of the Hamiltonian
(Eq. (3.20)), describing the scattering process can be simplified and is given by

H = − ~2

2mµ

d2

dr2 + ~2l(l + 1)
2mµr2 + gjµB(mj1 +mj2)B + Uint(r) , (3.23)

assuming a homogenous magnetic field B along the z-direction. The first two terms describe
the kinetic and rotation energy followed by the term of the Zeeman interaction energy.
The interaction Potential Uint(r) is anisotropic and consists of the dispersion interaction,
the magnetic dipole-dipole and the quadrupole-quadrupole interaction as introduced in
section 3.2.1. For B = 0 the total angular momentum Jtot = j1 + j2 + l, consisting of the
two atomic j1, j2 and the relative orbital angular momentum l, is conserved. In contrast,
for B > 0 only the projection Mtot = mj1 + mj2 + ml of Jtot along B is conserved. In
addition, the Hamiltonian (Eq. (3.23)) is invariant under parity operation so that only
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Fig. 3.5, Anisotropy-induced Feshbach resonances: (a) Potential energy curves
for two colliding 164Dy atoms for a magnetic field of B = 50G as a function
of internuclear distance r. For simplicity only one of the 81 even molecular
potentials (Ω = 16) for each value of l is shown. The red horizontal lines
indicate the bound-state energies of different molecular potentials, which can be
shifted in energy due to the Zeeman effect. A Feshbach resonance can appear
if the bound-state energy is equal to the energy of the incident particle. (b)
Predicted scattering length as a function of magnetic field. In the top panel
all anisotropic interactions are included, whereas in the middle the anisotropic
dispersion (ADI) and in the lower panel the DDI is switched off. Here, only
channels with l ≤ 10 are included. To observe the same density as in the
experiment channels up to l > 40 have to be included. Figures taken from [105]
with slight modifications.

even or odd l states are coupled. For ultra-cold bosonic spin-polarized gases only even-l
channels withMtot = −16 have to be considered. The coupling between the different states
is due to the anisotropic interaction potential Uint(r). In Figure (3.5)(a) the long-range
potential energy curves of interacting 164Dy atoms are shown. Whereas for interatomic
separation of r > 200 a0 the Zeeman interaction dominates the collisions dynamics, the
potential curves of higher partial waves overlap for r < 200 a0 indicating the possibility of
coupling between potentials with higher partial waves l [106].

The anisotropic DDI as well as the anisotropic part of the dispersion relation, character-
ized by the ∆C6-coefficient, contribute to the appearance of the Feshbach resonances. The
DDI can couple rotational states with ∆l = 2 and the anisotropic dispersion interaction
(ADI) with ∆l = 4. In the calculation it is possible to switch-off different parts of the
interaction. The results of the coupled-channels calculation including coupling to partial
waves up to l = 10 show that the Feshbach resonances observed in Dy are induced by the
anisotropy of the interaction potential [105]. Figure (3.5)(b) shows the dependence of
the resonance distribution on the DDI and on the ADI by switching on and off the two
parts independently. Note that the resonance density observed in the experiment, see
section 6.3.4, is much higher than the one shown in Figure (3.5)(b). In the calculations
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the couplings of partial waves up to l > 40 have to be included to resemble the same
density as observed in the experiment [51].

3.3 Quantum Chaos in Ultra-cold Collisions

Recently, a dense Feshbach spectrum has been observed for Er atoms in the group of F.
Ferlaino in Innsbruck. They could show using statistical arguments that Er collisions show
signatures of quantum chaos [107]. In a joint cooperation consisting of the theory group
of S. Kotochigova, the group of F. Ferlaino and our group we could demonstrate that
Dy shows similar chaotic behavior as Er. In addition, our theoretical and experimental
studies have provided more insights on the origin of this chaotic behavior. In the following
sections we first give a short introduction to quantum chaos (section 3.3.1) and random
matrix theory (section 3.3.2). Whereas the presentation of the results of our joint effort is
postponed to section 6.2.1 and section 6.2.2.

3.3.1 An Introduction to Quantum Chaos

The term chaos for deterministic dynamical systems is used in many different fields to
describe irregular, unpredictable and apparently random behavior. A classical deterministic
system is completely described by the differential equations of motion. The initial condition
of position and momentum determines uniquely the motion of a particle for all times in
the future as well as in the past. Although the motion is deterministic the solution of the
differential equations can be extremely sensitive on the choice of the initial conditions,
leading to an exponential deviation in time of former closely spaced trajectories. The
Lyapunov exponent characterizes the rate of separation of infinitesimally close trajectories
in phase space. For regular motion the Lyapunov exponent vanishes. Hence, the Lyapunov
exponent can be used to distinguish between the regular motion of an integrable system
and the chaotic motion of non-integrable systems [108].

Due to Bohr’s correspondence principle the quantum and the classical behavior should
coincide for macroscopic systems. In quantum systems the Lyapunov exponent cannot be
used as the notion of a phase-space trajectory looses its meaning. This is due to the fact
that the initial conditions can be only defined within the limit of the uncertainty relation.
For bound quantum systems neither the wave-function nor any observable quantity show
the extreme sensitivity to initial conditions that defines classical chaos [109]. Therefore, it
is challenging to define quantum chaos as a property of a quantum system which is related
to the description of chaos in the classical meaning. Note that often the term quantum
chaos is referred to the study and description of the properties of quantum systems for
which the corresponding classical system is chaotic.

A prominent example is the hydrogen atom in a strong magnetic field. Due to the
Zeeman interaction, the atomic energy levels split up with increasing magnetic fields.
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Usually this splitting is well described by quantum perturbation theory. However, in large
magnetic fields, where the magnetic forces on the electron become comparable to the
Coulomb interaction, perturbation theory breaks down and the energy level distribution
shows a quantitative difference to the low field region. The required magnetic field for
ground-state atoms to see a transition between regular and irregular behavior is very
large (≈ 108 G). But due to the 1/n3 dependency of the Coulomb interaction, magnetic
fields of approximately 6 × 104 G, which can be realized in laboratories, are sufficient
for highly excited atoms with principle quantum numbers of n = 30− 40. On the other
hand, this system can be also analyzed classically. In the same magnetic field range the
corresponding classical system changes its behavior from regular to chaotic [110, 111].
To get a quantitative measure to be able to distinguish between regular and irregular
behavior of a quantum system a statistical analysis was used, which was introduced for
the characterization of complex and irregular energy-level spectra of excited nuclei. These
statistical analysis methods are based on random-matrix theory which will be introduced
in the following section.

3.3.2 Basic concepts of Random-matrix Theory

Starting in the 1930s, experiments on neutron and proton scattering have shown many
narrow resonances in their cross-sections [112, 113]. For this complex and strongly
interacting system an exact theoretical description was not possible in the 1950s. To
describe the statistical properties of the system, Wigner and Dyson developed a theory
called random-matrix theory (RMT), where the resonance spectra are characterized by
their fluctuation properties [114, 115].

RMT suggests to substitute the actual complex Hamiltonian by an ensemble of randomly
generated Hamiltonians. The ensemble is defined by a certain probability distribution for
their matrix elements, which depends on the symmetry of the underlying system. In case
of a time-reversal system such as nuclei and neutral atoms, the Hamiltonians belong to
the Gaussian-orthogonal ensemble (GOE). As RMT only provides insights in the global
properties of the system it is a phenomenological theory like classical thermodynamics.
Similar to classical thermodynamics it has been applied to many different complex systems:
atomic physics [116], neural networks [117] and financial mathematics [118].

RMT provides measures to probe the statistical properties of the system by analyzing
their eigenenergy spectra [119]. The spectral fluctuations are connected to the level
correlations of the systems eigenstates. In the following we only discuss two of the most
important statistical analysis methods of RMT. The first measure is the analysis of the
nearest-neighbor spacing (NNS) distribution, which probes short-range correlations. The
dimensionless quantity s = δE/d is defined, where δE is the spacing between any two
adjacent energy levels and d = 1/ρ the mean level spacing. The NNS distribution P (s) of
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non-interacting levels is given by a Poissonian distribution

PP(s) = exp(−s). (3.24)

For strongly-correlated levels, e.g. for energy eigenvalues of the GOE, the NNS distribution
follows the so-called Wigner-Dyson distribution

PWD(s) = π

2 s exp(−πs2/4). (3.25)

Note that Eq. (3.25) is obtained for 2×2 matrices, however it is still a good approximation
with errors at the percent level for larger matrices. Both distributions are normalized with∫
dsP (s) = 1 and by definition have the same mean value of

∫
ds sP (s) = 1. To interpolate

between the Poissonian and the Wigner-Dyson distribution an empirical function, called
Brody distribution, was introduced and is defined by [120]

PB(s, η) = Asη exp(−αsη+1) , (3.26a)
A = (η + 1)α , (3.26b)

α =
[
Γ
(
η + 2
η + 1

)]η+1

, (3.26c)

where Γ is the Gamma function and η is a single fitting parameter. Notice that η quantifies
the tendency to the Poissonian (η = 0) or the Wigner-Dyson (η = 1) distributions but
not the degree of correlation.

The analysis of the fluctuations in the number of levels Σ2 within an energy level
interval ∆E is a further statistical measure. The number variance probes the long-range
correlation of the spectrum. For uncorrelated levels the fluctuations would grow linearly
with the interval Σ2

P = ∆E indicating large fluctuations around a mean value. In contrast,
if the system is strongly correlated the fluctuations are suppressed. This suppression
is often called spectral rigidity. For a GOE spectrum the number variance follows the
dependency of Σ2

WD = 2/π2 ln(∆E) + 0.442 [115]. The two signatures, on the one hand
the level repulsion and on the other hand the large spectral rigidity are central properties
of systems with strong correlations.

The statistical analysis of the energy levels of the hydrogen atom in a strong magnetic
field agrees with the prediction of RMT for GOE if the classical system is chaotic, see
Figure (3.6). Also other quantum systems which have a chaotic classical analog, e.g.
Stadium-Billiard or Sinai-Billiard, show the same correlation between RMT and classical
chaotic behavior [121]. Nuclear physicist have even proposed in the so called Bohigas-
Giannoni-Schmitt conjecture that statistical properties based on RMT, which indicates
level fluctuations should be used to define quantum chaos in general [122]. So far the
conjecture was not generally proven, but it is numerically well established. Ref. [119]
even proposed to speak of quantum chaos (or of chaos) whenever in a system the spectral
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Fig. 3.6, Hydrogen atom in a strong magnetic field: NNS distribution P (s) of
energy levels calculated for different values of scaled energy Ê. The solid line is
a fit to the Brody distribution with parameter qb, which interpolates between
the Poissonian (qb = 0) and Wigner-Dyson (qb = 1) distribution, see section
3.3.2. By decreasing the scaled energy Ê, which corresponds to an increase in
magnetic field strength, one can see clearly the transition from a regular (a) to
a chaotic system (d). The figure is taken from [110] with slight modifications.

fluctuation measure agrees with the RMT prediction of a GOE. For an introduction to
quantum chaos see Refs. [109, 111] and more details can be found in Refs. [108, 123, 124].
Note that also other quantum mechanical distinction criteria exist, which are based on
energy eigenvectors or temporal evolution of suitable expectation values, see Refs. [109,
111]. So far we have described the two-body interactions between dipolar atoms. Now we
are able to discuss many-body effects of dipolar quantum gases.

3.4 Dipolar Bose-Einstein Condensates

In this section we give a brief introduction to the physics of dipolar bosonic quantum
gases. The theoretical description allows us to predict properties of a Dy BEC, which
are important to consider during the designing phase of the apparatus. Furthermore, we
provide the formalism to describe our experimental findings. For more details on dipolar
many-body physics see the review articles [39, 86].

We start this section with a description of the phenomenon of Bose-Einstein condensation.
In section 3.4.2 we use a mean-field approach to solve the many-body problem, resulting
in the Gross-Pitaevskii equation (GPE) of a dipolar condensate. In general the GPE is not
analytically solvable, but for special cases exact expressions can be obtained, see section
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3.4.3. Finally, in section 3.4.4 we study the stability of a Dy condensate in different trap
configurations using a variational calculation approach.

3.4.1 Bose-Einstein Condensation

Bose-Einstein condensation was theoretically predicted by Einstein in 1925 [125], based
on the statistical arguments of Bose to describe the black-body radiation spectrum [126].
Bose-Einstein condensation is a purely statistical effect. In the last 35 years there has
been huge progresses in cooling and trapping of neutral atoms, especially of alkali atoms.
Finally in 1995 BECs of rubidium, sodium and lithium atoms were achieved21 [1–4].
The BEC region of a dilute-atomic gas lays in the thermodynamically forbidden regime
of the phase diagram. This means that the BEC in fact is metastable and can decay
via molecular recombination to the ultimately stable solid-state condition. Therefore,
low densities are necessary, where the two-body collision rate dominates the three-body
loss rate, hence the gas will reach kinetic equilibrium before it decays to the absolute
ground-state [135]. To get an intuitive picture of the formation of a BEC one uses the
following brief description:

We start with a gas containing N particles at room temperature and low densities
confined in an external potential with volume V , where the atoms can be described fully
classically. Cooling down the sample increases the thermal de-Broglie wavelength, which
is the coherence length of the wave packets. For temperature below a critical temperature
Tc the de-Broglie wavelength is on the order of the mean inter-particle distance and
overlapping wave packets are formed. To characterize the BEC phase transition one
defines the phase space density

D = nλ3
dB , (3.27)

where n = N/V is the particle density and λdB the de-Broglie wavelength. In a harmonic
trap it is given by

D = nλ3
dB = N

(
~ω̄
kBT

)3

, (3.28)

where ω̄ = (ωxωyωz)1/3 is the geometric mean of the trap frequencies. ForD > ζ(3/2) ≈ 2.6
the ground-state22 is populated macroscopically and the atoms loose their individual
properties [79]. Using this criterion we can define the critical temperature of bosonic
atoms in a harmonic trap to be

kBTc
def= ~ω̄

(
Ntot

ζ(3)

)1/3

, (3.29)

21There exist not only BEC of neutral atoms, but also of photons [127], excitons [128], polaritons [129,
130] and molecules: K2 [131], Li2 [132, 133] and Na2 [134].

22ζ(x) is the Riemann zeta function.
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where Ntot is the sum of the number of condensed and thermal atoms. In the experiment
we typically have Ntot = 105 atoms with a trapping confinement with ω̄ = 2π· 100Hz,
resulting in a critical temperature of Tc = 200nK.

3.4.2 Mean-Field Description of a Dipolar BEC

To solve the many-body problem of N interacting particles confined in an external potential
Vext we use a mean-field approach. Here, we only give a short review while a detailed
description can be found in [79, 136, 137].

The full many-body Hamiltonian is given by

Ĥ =
∫
d3r Ψ̂†(r)

[
− ~2

2m∇2 + Vext(r)
]

Ψ̂(r)

+ 1
2

∫
d3r

∫
d3r′ Ψ̂†(r)Ψ̂†(r′)Vint(r, r′) Ψ̂(r)Ψ̂(r′) ,

(3.30)

where Vint(r, r′) is the two-body interaction potential and Ψ̂(r), Ψ̂†(r) are the bosonic field
operators, creating or annihilating a particle at position r, respectively. In the mean-field
description a single particle interacts with a mean-field potential, which includes the
interactions of all other particles. Therefore, the condensate’s wave-function ψ(r) can be
defined as the expectation value of the field operator

〈
Ψ̂(r)

〉
= ψ(r), which is related to

the experimentally accessible condensate density distribution n(r) = |ψ(r)|2. Using the
Heisenberg equation we obtain the time-dependent GPE of a dipolar condensate

i~
∂

∂t
ψ(r, t) =

[
− ~2

2m∇2 + Vext(r)

+ g |ψ(r, t)|2 +
∫
d3r′ Vdd(r − r′) |ψ(r′, t)|2

]
ψ(r, t) .

(3.31)

We use the ansatz ψ(r, t) = ψ(r) exp(−iµt/~), where µ is the chemical potential, to
separate the time dependence in order to obtain the stationary GPE

µψ(r) =
[
− ~2

2m∇2 + Vext(r) + Φcontact(r) + Φdip(r)
]
ψ(r) , (3.32a)

with the mean-field potentials of the contact interaction

Φcontact(r) def= g |ψ(r)|2 (3.33a)

and dipolar interaction

Φdip(r) def=
∫
d3r′ Vdd(r − r′) |ψ(r′)|2 . (3.33b)
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In the following we discuss the possible solutions of the GPE for different cases.

3.4.3 Solutions of the Gross-Pitaevskii Equation

Due to the non-locality of the kinetic term and the non-local, non linear dipolar interaction
term the stationary GPE is only numerically solvable. But for special cases there exists
approximations, which will be discussed in the following. In general, the atoms are trapped
in harmonic potentials of the form

Vext(r) = m

2
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, (3.34)

depending on the trap frequencies ωi (i = x, y, z).

GPE for Non-interacting BEC

Neglecting the interaction terms the GPE becomes

ψ(r) =
[
− ~2

2m∇2 + m

2
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)]

ψ(r) . (3.35)

The solution of this equation is well known as it is the textbook problem of a three
dimensional quantum-mechanical harmonic oscillator. Therefore, the ground-state of a
non-interacting BEC is described by a Gaussian function

ψ(r) =
√

N

π3/2lxlylz
exp

[
− x

2

2l2x
− y2

2l2y
− z2

2l2z

]
, (3.36)

with the widths li =
√
~/(mωi) (i = x, y, z). The characteristic size, the so-called harmonic

oscillator length, of a non-interacting BEC can be defined as

aho
def=
√

~
mω̄

, (3.37)

where ω̄ = (ωxωyωz)1/3 is the geometric mean of the trap frequencies. For a non-interacting
BEC in a trap with a mean trap frequency of ω̄ = 2π· 100Hz the harmonic oscillator
length is aho ≈ 0.8µm ≈ 15000 a0.

GPE for Contact-interacting BEC

In the case of a contact-interacting BEC the kinetic term in the GPE can be neglected if
the condition Na/aho � 1 is fulfilled and we find a linear equation in the Thomas-Fermi

47



(TF) approximation [79]

µψ(r) =
[
Vext(r) + g |ψ(r)|2

]
ψ(r) . (3.38)

We finally obtain the well-known parabolic density distribution of a BEC with contact
interactions

nTF(r) = |ψ(r)|2 = µ− Vext(r)
g

= n0 · max
{(

1− x2

R2
x

− y2

R2
y

− z2

R2
z

)
, 0
}
, (3.39a)

where n0 = 15N/(8πRxRyRz) is the central density and

Rx,y,z =
√√√√ 2µ
mω2

x,y,z

(3.40)

the TF radii in the respective directions. Due to the normalization condition
N =

∫
dr |ψ(r)|2 the particle number and the chemical potential are related and we obtain

the chemical potential

µ = ~ω̄
2

(15Na
aho

)2/5
, (3.41)

which is only large compared to the harmonic oscillator energy if Na/aho � 1. The latter
condition defines the regime in which the TF approximation is valid and is in agreement
with our earlier assumption. The TF radius of a contact interacting BEC with N = 10000
atom in a spherical symmetric trap with a mean trap frequency of ω̄ = 2π· 100Hz is
around R = 3µm. To image the BEC in trap the resolution of our imaging system has to
be . 1µm, which requires a high-resolution microscope objective, see section 4.5.

TF Approximation for a Dipolar BEC

The non-local character of the DDI complicates the former situation. Nevertheless, Refs.
[138, 139] showed that it is possible to calculate the density distribution of a dipolar
BEC in the TF approximation. To simplify the problem we use cylindrical coordinates
r = (ρ, z), where the cylindrical symmetry is along the polarization direction of the dipoles.
In addition, we define the trap radio λ def= ωρ/ωz and the cloud aspect ratio κ def= Rz/Rρ

with the radial (axial) trap frequencies ωρ (ωz) and TF radii Rρ (Rz), respectively. The
dipolar mean-field potential reads

Φ(TF)
dip (r) = n0gdd

[
ρ2

R2
ρ

− 2z2

R2
z

− fdip(κ)
(

1− 3
2
ρ2 − 2z2

R2
ρ −R2

z

)]
, (3.42a)
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with the dipolar anisotropic function fdip(κ) given by

fdip(κ) = 1 + 2κ2

1− κ2 −
3κ2 artanh

(√
1− κ2

)
(1− κ2)3/2 . (3.42b)

The dipolar anisotropic function fdip(κ) decreases monotonically and it asymptotically
reaches f(κ→ 0) = 1, f(κ→∞) = −2 and vanishes for κ = 1. Remarkably, the density
distribution of the dipolar BEC still has a parabolic distribution but the TF radii now
depend on the contact interaction strength gdd as well as on the relative dipolar strength
εdd. But first the aspect ratio κ has to be calculated for a given trap ratio λ by solving
the transcendental equation [139]

3κεdd

[(
λ2

2 + 1
)
fdip(κ)
1− κ2 − 1

]
+ (εdd − 1)

(
κ2 − λ2

)
= 0 (3.43a)

and finally one can determine the TF radii

Rρ =
[

15gNκ
4πmω2

ρ

{
1 + εdd

(
3
2
κ2fdip(κ)

1− κ2 − 1
)}]1/5

(3.43b)

and the chemical potential

µ = gn0[1− εddfdip(κ)] , (3.43c)

with Rz = Rρ/κ. To get a more intuitive picture how the DDI alters the properties of a
BEC we assume a spherically symmetric contact-interacting BEC (κ = 1) and add some
weak DDI (εdd � 1). In this case the dipolar mean-field potential has the simple form [39]

Φ(TF)
dip (r) = εdd

mω2

5
(
1− 3 cos2 ϑ

){ r2 if r ≤ R

R5/r3 if r > R
. (3.44)

Due to the fact that the dipolar mean-field potential Φdip has a minimum along the
polarization axis and a maximum perpendicular to it a contact-interacting BEC with
additional weak DDI is elongated along the magnetic field axis, which is known as the
magnetostriction effect and has been observed with Cr condensates [31].

3.4.4 Stability of a Dipolar BEC

The stability criterion of a dipolar BEC was studied extensively within our group with Cr
atoms, see Refs. [46, 75, 140, 141]. In the case of Cr, and also in the recently condensed
dipolar atom Er, the DDI only plays a perturbative role and has to be enhanced using
a Feshbach resonance to study strongly dipolar physics. That is different for Dy, due
to the higher magnetic moment and higher mass, already at a background scattering
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length of around a ≈ 100 a0, resulting in a relative dipolar strength εdd > 1, the DDI
affects strongly the properties of a Dy BEC. In this section we will discuss the stability
diagram of a Dy condensate and we will see that it is only possible to condense Dy atoms
in particular trap configurations, which is not the case for Cr and Er.

The main instability mechanism for a dipolar condensate is due to long-wavelength
phonon excitations. The excitation spectrum of a homogeneous dipolar BEC is given by
[39]

E(q) = ~ω(q) =

√√√√(~2q2

2m

)2

+ ~2q2

2m 2n0[g + gdd(3 cos2 α− 1)] , (3.45)

with the quasi-momentum q and the angle α between the excitation and the polarization
direction of the dipoles. In the limit of low momenta Eq. (3.45) shows a linear dispersion
relation (sound waves) hence these low momenta excitations are called phonon excitations.
Due to the DDI the energy spectrum is anisotropic and it depends on the alignment of
the dipoles with respect to the traveling sound wave. The condensate is stable as long as
the excitations frequencies are real and positive, but for imaginary excitations the BEC
collapses. Therefore, the phonon instability occurs if εdd = gdd/g > 1, consequently if
a < add for excitations perpendicular to the alignment of the dipoles (α = π/2). For
excitations parallel to the alignment of the dipoles (α = 0) the condensate is stable as
long as a > −2add.

In the following we want to study the stability of a dipolar condensate confined in
an external trap. A convenient method to study this is to evaluate the GPE energy
functional, for simplicity we restrict ourselves to cylindrical symmetries. The total energy
for a wave-function ψ(r) def= 〈r|ψ〉 is given by

E[ψ] def= 〈ψ| Ĥ |ψ〉

=
∫
d3r

[
+ ~2

2m |∇ψ(r)|2 + Vext(r) |ψ(r)|2 + Φcontact(r) + Φdip(r)
2 |ψ(r)|2

]
.

(3.46)

A natural choice is a Gaussian trial function [142]

ψ(r) =
√

N

π3/2σ2
rσza

3
ho

exp
[
− 1

2a2
ho

(
r2

σ2
r

+ z2

σ2
z

)]
(3.47)

to evaluate the energy functional. Here, σr, σz are the radial and axial dimensionless
widths. In a trap with a trap ratio of λ = ωz/ωρ and the external field pointing in
z-direction we obtain the total energy per particle [140]

Ẽ(σρ, σz) def= E

N~ω̄

= 1
4

(
2
σ2
ρ

+ 1
σ2
z

)
+ 1

4λ2/3 (2σ2
ρ + λ2σ2

z) + Nadd√
2πahoσ2

ρσz

(
a

add
− f(κ)

)
,

(3.48)

50



which corresponds to the sum of the energies due to the quantum pressure, the external
trapping potential and a combination of the contact and dipolar interaction.

Fig. 3.7, Stability diagram of a Dy BEC: (a)-(c) Energy landscape Ẽ(σr, σz) with
a = (150, 125, 100) a0 for an isotropic trap (λ = 1), ω̄ = 2π· 100Hz and
N = 20000 atoms, resulting in acrit = 122 a0. (a) Well above acrit the energy
landscape has a global minimum. (b) Close to the instability point the cloud
is compressed radially and only a small barrier separates the local minimum
from the global one. (c) Finally, below acrit the BEC is collapsed. (d) The
solid lines show the critical scattering length acrit(λ) depending on the trap
ratio λ with a mean trap frequency ω̄ = 2π· 100Hz obtained by a variational
calculation. A Dy BEC is only stable in a trap with λ > 2 (vertical dashed
line). For comparison the critical scatting length of a Cr BEC is shown (orange
solid line). For Cr the situation is different as add = 15 a0 which is far below its
background scattering length of abg ≈ 100 a0. Thus, a Cr BEC can be created
in any trap configuration.

In Figure (3.7)(a)-(c) the energy landscapes Ẽ(σρ, σz) for different scattering lengths a
are shown. A stable condensate correspondents to a global minimum, which is found for a
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scattering length above add. If the scattering length is below add but well above a critical
value acrit the energy has a clear local minimum, which corresponds to a metastable state
at finite widths. By decreasing the scattering length further the barrier insulating the
metastable state gets smaller. At the value a = acrit the barrier vanishes completely
and the BEC shrinks towards the point-like ground-state. Thereby the density increases
dramatically and finally the BEC collapses.

Figure (3.7)(d) shows the critical scattering length acrit for different trap ratios λ. The
diagram can be separated into two regimes. For prolate traps (λ < 1) the DDI destabilizes
the condensate, because the dipoles mainly attract each other, lowering the total energy of
the system and a sufficient strong contact interaction is needed to stabilize the condensate.
In contrast, for oblate traps (λ > 1) the DDI stabilizes the condensate due to the repulsion
of the dipoles. In this regime it is possible to create a stable purely dipolar condensate
(a = 0) or even a condensate with negative contact interactions a < 0 [46]. For Dy
condensates the situation is different compared to other dipolar elements, like Cr, as the
characteristic dipolar strength has a value of add,Dy = 134 a0 � 15 a0 = add,Cr. If we
assume a background scattering length abg ≈ 100a0 for Dy, we find that a Dy condensate
is only stable in a trap which has a trap ration of λ > 2. This constraint has to be taken
into account during the cooling procedure of Dy atoms to degeneracy, see section 5.4.

Conclusion

In this chapter we have studied the scattering properties of Dy atoms. We have seen
that despite the complicated electronic structure of Dy the short-range potential can be
approximated by a pseudo-potential completely characterized by a single parameter, the
s-wave scatting length a. Using a Feshbach resonance the s-wave scattering length can be
tuned and thereby the balance between the contact interaction and DDI can be modified.
Additionally, we have seen by using the mean-field approximation that a dipolar BEC
shows also a bimodal density distribution like for a standard contact interacting alkali
BEC. By analyzing the stability criterion of a Dy condensate we found that there are
constraints on the trap configuration (λ > 2) for a stable BEC, which we have to take
into account during the cooling process. Note that the validation of the mean-field model
so far has been confirmed in many experiments with alkalies and also with Cr atoms. Due
to the strong DDI and its complex short-range interaction it could be that the GPE is
not suitable to describe the physics of Dy BECs in some situations23. Very recently we
have observed an effect that cannot be explained by the GPE [143].

23See Ref. [75] for a summery of the validation criteria of the mean-field model.
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4 Experimental Setup

In Stuttgart the experimental study of dipolar quantum gases started with the realization
of the first Cr BEC in 2005 [10]. Due to a complex cooling scheme, the optical access
was limited for further experimental tools, e.g for a high-resolution imaging system or to
confine the atoms in tailored optical potentials. To overcome this limitation a new Cr
apparatus including an attached science cell with high optical access was planned. During
the planning phase Dy, the element with the largest magnetic moment, was condensed in
the group of B. Lev mid of 2011 [13]. Additionally, beginning of 2012 a new member of
the dipolar quantum gas family was added by the condensation of Er in the group of F.
Ferlaino [14].

In Cr the dipolar interactions are weak and induce only perturbative effects. To enhance
the dipolar effects the contact interaction has to be reduced by using a Feshbach resonance.
However, inelastic three-body losses are also enhanced close to Feshbach resonances, which
limited the lifetime of the condensate and thereby the time available for experiments. Due
to its larger magnetic moment and its higher mass, Dy is in the strongly dipolar regime
(εdd > 1) even without using a Feshbach resonance.

Having this advantage in mind and the possibility to study dipolar fermionic systems,
at the end of 2011 the decision was taken to switch from Cr to Dy. In this section we
introduce our experimental setup, which allows us to study dipolar bosonic as well as
fermionic systems of Dy atoms.

Cr (Stuttgart) Dy (Stanford) Er (Innsbruck)
ZS (425nm, 5MHz) ZS (421nm, 32MHz) ZS (401nm, 27MHz)
MOT (425nm, 5MHz) bMOT (421nm, 32MHz) MOT (583nm, 190 kHz)

rMOT (741nm, 1.8 kHz)
Magnetic Trap (MT)
Doppler Cooling (425nm, 5MHz)
Evaporation in MT
Transfer to ODT Transfer to ODT Transfer to ODT
Optical Pumping (427nm, 5MHz) RF Transfer
Evaporative Cooling Evaporative Cooling Evaporative Cooling

BEC BEC BEC
[10], [75, ch. 3] [13], [144, ch. 9] [14], [84, ch. 7]

Tab. 4.1, Benchmark of different cooling and trapping methods of state of the art dipolar
quantum gas experiments.
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4.1 Experimental Requirements and Tools

When we started to think about the possibilities to bring Dy to degeneracy there were
different approaches available to cool dipolar atoms presented in Table (4.1). First of all
there was the already existing quite challenging approach of the Stanford group and the
more convenient way which was used to create an Er condensate by the Innsbruck group.
As we have worked for many years with Cr we wanted to use our elaborated knowledge of
cooling and doing experiments with Cr combining the most suited methods of the different
approaches. Based on this we summarize the following requirements to efficiently cool Dy
atoms to degeneracy:

(i) Effusion Cell
For Dy a temperature of around 1200 ◦C is needed to have high atomic flux with
an average velocity of around 500m/s. This is also the case for Cr, hence the same
high-temperature effusion cell can be used.

(ii) Zeeman Slower
To decelerate the atoms to reach the capture velocity of the MOT a ZS is needed.
Using the strong 421 nm transition (natural transition rate of 32.2MHz) ensures an
efficient slowing of the atoms. Additionally, this wavelength is close to the 425nm
wavelength which was used in Cr allowing us to recycle the laser system for the Dy
experiment.

(iii) Magneto-optical Trap
To cool and trap the atoms in a MOT we can use different approaches24. The
possible methods are adapted from the approaches presented in Table (4.1):

1. Cr approach
Using the 421nm transition we would be able to trap many atoms, but due
to the broad linewidth the Doppler temperature is around 700µK [145]. To
reach adequate temperatures to load the ODT the atoms have to be cooled
further in a magnetic trap (MT) using forced radio frequency (RF)-evaporative
cooling. In addition, the narrow 626 nm or 741 nm transition could be used to
Doppler cool the atoms in the MT [146]. The disadvantage of this method is
that many steps are required, which would increase the cycle time and influence
the stability of the system.

2. Stanford approach
Using a narrow transition (~Γ < Erecoil) the atoms can be cooled to the recoil
limit allowing an efficient direct loading in an ODT. A MOT operating at the
741 nm transition would be a good choice, but its low linewidth induces a too
low capture velocity to load the MOT directly from the ZS. Thus, atoms have
to be captured in a MOT working at the 421nm transition and then further

24The experiment is planned in a way such that we can use any of the mentioned approaches.
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cooled in the 741 nm MOT [13]. Advantageous is the availability of diode lasers
to generate the 741nm light, however stabilizing the laser below 1.8 kHz is
challenging.

3. Innsbruck approach
A transition with an intermediate linewidth would allow to capture efficiently
the atoms of the ZS by the MOT and the achieved low temperatures would be
sufficient to load directly the ODT. In Dy the closed transition at 626 nm with
a linewidth of 136 kHz leads to a Doppler temperature of around 3µK.

(iv) Optical dipole Trap
As the DDI does not conserve the magnetic quantum number mj , dipolar relaxation
processes are allowed, which heat up the sample [147]. To prevent dipolar relaxations
the atoms have to be prepared in the lowest magnetic sub-state, which is not
magnetically trappable. Hence, it is not possible to reach BEC temperatures in a
MT for dipolar atoms which makes the usage of an ODT necessary. The Er narrow-
line MOT automatically prepares the atoms in the lowest Zeeman sub-state [14]. If
the 626 nm MOT does not spin-polarize the atoms into the lowest magnetic sub-state
an optical pumping transition at 684nm is available. Note that the narrow-line
741nm MOT in Dy pumps the atoms to the highest magnetic sub-state and the
atoms have to be transferred to the lowest state using RF adiabatic rapid passage
[13].

In addition to the required experimental methods mentioned above we also planned for
further experimental tools which will allow us to do outstanding experiments on dipolar
quantum gases:

(v) Science Cell
To have better optical access and magnetic field control a science cell has to be
attached to the MOT chamber. The atoms have to be transported from the MOT
chamber to the science cell by an optical tweezer. In addition, the science cell shall
provide the possibility for a high-resolution imaging system.

(vi) High-resolution Imaging + Electro-optical deflector System
Taking time-of-light (TOF) absorption images are a standard method in quantum
gas experiments to extract properties of the ultra-cold gas. However, an in-trap
imaging provides the possibility to search directly for local density variations due
to the DDI which could indicate new physical phenomena, e.g. the Rosensweig
instability [148] or the supersolid phase. For this we have designed an imaging
system which consists of a high-resolution objective with a resolution below 1µm.
This objective will also be used together with an electro-optical deflector system
(EOD) to create time-averaged tailored potentials.

(viii) Frequency Stabilization
The stabilization scheme of all laser, especially the 421 nm and 626 nm laser system,
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are designed in a way such that different isotopes can be addressed easily. In addition,
it is possible to change the frequencies from the bosonic 164Dy to the fermionic 161Dy
isotope in the experimental sequence to be able to study Bose-Fermi mixtures.

The experiment was planed to fulfill the upper mentioned requirements. As the vacuum
chamber design was already in an advanced planning stage when we decided to switch
from Cr to Dy we only adapted the crucial parts, e.g. the ZS. We also installed the
cloverleaf coils for the MT as their fixtures were already integrated. We decided to follow
the approach using the MOT operating at the 626 nm transition. In parallel we setup the
741nm and 684nm diode lasers to be able to adapt our method if necessary to create a
cold sample mentioned above.

4.2 Experimental Apparatus

The Dy apparatus, shown in Figure (4.1), consist of three main parts: The oven chamber,
the MOT chamber and the science cell, which can be separated by vacuum valves to
pump them individually. The oven chamber (high vacuum section, pOven ∝ 10−9 mbar)
is connected by the ZS with the MOT chamber (ultra-high vacuum section (UHV),
pMOT < 10−11 mbar). The ZS tube serves as a differential pumping stage and bridges the
two pressure regimes. The low pressures in the MOT chamber and in the science cell
is required to reduce the collisions between Dy atoms and the background gas. In the
following sections we discuss the important technical parts of the setup.

Oven Chamber

The oven chamber can be separated from the UHV section by a pneumatic valve25. Thus
after refilling Dy only the oven chamber has to be pumped26. To heat up the Dy granulate27

to 1250◦C we use a high temperature effusion cell28. We fill 15 g of Dy granulate in a
molybdenum crucible29. To transversely cool the atomic beam the oven chamber provides
an optical access from two orthogonal directions. In addition, a shutter can block the
atomic beam. This is only necessary for experiments in the MOT chamber which require
long lifetimes in the ODT.

25MDC Vacuum Products: E-GV-1500M-P-03.
26Ion getter pump: Agilent Technologies: VacIon Plus 75 (Diode).
27Supplier: HMW Hauner.
28Createc Fischer: HTC-40-10-2000-WK-SHM.
29We tried different materials for the crucible: ZrO2, ZrO2 (stabilized by Y2O3), ZrO2 (stabilized by

CaO), Y2O3 and finally Mo. Before we found out that molybdenum is a suitable material we used
a tungsten crucible to hold the inner crucible to protect the effusion cell. Replacing it by a bigger
molybdenum crucible allows to increase the operation time. 8 g of Dy allows to operate the system for
around 3 months (Note, during this time we often measured day and night).
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Fig. 4.1, Experimental Setup: The vacuum apparatus consists of three main parts:
the oven chamber, the MOT chamber and the science cell.
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MOT Chamber

The atoms are slowed down in the ZS and enter the trapping region of the MOT. The
MOT chamber is pumped by a 75 l/s ion getter pump30. To reduce the pressure we have
an additional titanium sublimation pump. The chamber design provides optical access for
the MOT beams, the transport beam, a path to image31 the atoms and one to supervise32

the loading behavior of the MOT. The MOT chamber was designed to use clover leaf coils
to create a MT and it provides the possibility to perform RF evaporative cooling.

Science Cell

To cool atoms to ultra-low temperatures, advanced cooling methods are required, which
restrict the optical access for further experiments. To overcome this limitation a science
cell is attached to the MOT chamber. It can be separated from the MOT chamber by a
gate valve. An additional ion getter33 and Ti-sublimation pump allow to independently
adapt and pump the science cell to new experimental requirements. The atoms are
transported by an optical tweezer from the MOT chamber to the science cell. Figure
(4.2)(a) shows a schematic drawing of the science cell.

The octagonal glass cell combines both requirements of high optical access and the
reduction of magnetic parts around the highly magnetic atoms34. It consists of a blown
quartz glass frame35 onto which high quality windows36 are bonded. This allows to use an
anti-reflection coating on both sides of the window to avoid aberrations and stray light.
The two large main windows (clear aperture of 38.1mm) allow a large optical access for the
high-resolution imaging of the atoms with a theoretical numerical aperture of NA ≈ 0.76.
The length of the cell as well as the dimensions of the three side windows (clear aperture
of 25.4mm) are given by the demands of the optical transport: at the position of the MOT
the minimal beam waist of the transport beam should be approximately 35µm and the
maximal travel range of the transport translation stage is 400mm. Four additional small
side windows (clear aperture of 11.0mm) allow for further optical access, e.g. usable for an
optical lattice. Furthermore, the glass cell has to be suited for UHV and the glass-metal
transition37 has to be non-magnetic to ensure the possibility of transporting the atoms.
See appendix A.2 for a technical drawing of the octagonal glass. More details on the
design of the glass cell can be found in Ref. [149].

30Ion getter pump: Agilent Technologies: VacIon Plus 75 (Diode).
31PCO: pco.pixelfly.
32UniBrain: Fire-i 530b.
33Agilent Technologies: 8 l/s VacIon pump.
34Eddy currents limit the switch-off time of the magnetic fields, see Ref. [141].
35Precision Glassblowing (TechGlass).
36Gooch & Housego: surface roughness < 1 Å, flatness: λ/20.
37Only Pyrex glass and stainless steel (SS 316L) was used.
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Fig. 4.2, Science Cell: (a) Schematic drawing of the science cell. An optical tweezer
transports the atoms from the MOT chamber to the science cell, where they
are transferred to a crossed ODT. The atoms can be imaged using the high-
resolution objective with phase-contrast imaging or by standard absorption
imaging. In addition, the combination of objective and EOD system allows
to create time-averaged potentials. (b) Sectional view of the science cell. The
Feshbach coils and gradient coils are mounted in a plastic holder. The objective
has a working distance of 25mm, thus the margin between the objective and
the window surface is 2.63mm.

4.3 Laser Systems

Several laser systems are necessary to create a degenerate Dy quantum gas. The 421 nm
laser system is used to produce the light for the ZS, transverse cooling, absorption and
phase contrast imaging. The 626 nm laser system is used for the MOT. It was not clear at
the beginning that the MOT operating at the 626 nm transition would work. To be able
to use the other cooling approaches (mentioned earlier) we also setup the 684nm and
741 nm laser systems. As the 626 nm transition MOT works, these systems can be used for
future experiments or more efficient cooling procedures, e.g. demagnetization cooling [73].
All our lasers, except the dipole trap lasers, are stabilized to reference cavities using the
Pound-Drever-Hall (PDH) technique [150, 151] which allows us to switch between different
isotopes easily. In Figure (2.2) we show the measured spectra for the most abundant
isotopes together with the cavity resonances (red dashed lines) and the frequency difference
between the cavity resonances and the atomic resonances are indicated. Frequency shifter
can bridge the frequency gaps such that we can access the atomic transition with the
locked laser. The laser systems are planned such that we can easily access the needed
frequencies to cool and trap the 164Dy, 162Dy and 161Dy (mF = 10.5 → mF ′ = 11.5)
isotopes. In the following we present the setup of the 421 nm, 626 nm and the ODT laser
system.
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4.3.1 Blue (421 nm) Laser System

To create the blue laser light at a wavelength of λ = 421.291nm we use a multi-step
process. First we optically pump a Ti:sapphire crystal inside a ring cavity38 with 18W
of green light at a wavelength of λ = 532nm generated by a diode-pumped solid state
(DPSS) laser39. We get around 4.5W infrared light at a wavelength of λ = 842.582 nm at
the output of the Ti:sapphire system, which is further frequency doubled using a lithium
triborate (LBO) crystal inside a home-build monolithic ring cavity40. Finally, we obtain
1.5W of blue laser light at the output of the doubling cavity, which is mainly used for the
transverse cooling and for the absorption imaging. To have enough blue laser light for the
ZS we use a nearly identical second system41. The only difference between the master
and the slave system is that we use an optically pumped semiconductor laser (OPSL),
providing 20W of λ = 532nm light42 to pump the Ti:sapphire crystal and we obtain
6.5W of infrared light, resulting in 2W of blue laser light usable for the ZS.

The 421 nm master system is stabilized to a passively stable ultra-low expansion cavity
(ULE) with an electronic feedback to the external cavity of the Ti:sapphire system. To be
able to shift the frequency of the laser over a large range it is stabilized on a moveable
sideband created by a fiber-EOM43. The fiber-EOM is modulated with two frequencies.
The first frequency44 νPDH = 20MHz is used to obtained fixed sidebands needed for the
PDH scheme. Together with the second variable frequency45 νsweep three error signals
are created one at the position of the carrier frequency and two are shifted through
±νsweep. Locking the laser to one of them allows to shift the laser frequency by νsweep.
The shift of the locked laser is limited to νsweep = 60− 700MHz by the free-spectral range
of the ULE cavity of νFSR = 1.5GHz (TM00 mode), else counter propagating sidebands
would interfere and unlock the laser. To be able to study mixtures of the bosonic 164Dy
and fermionic 161Dy isotope we have to shift the frequency of the 421nm light in the
experimental sequence by 2168MHz, therefore an additional cavity46 (FPI), see Figure
(4.5)(b), was setup which has a free-spectral range of νFSR = 8GHz (TM00 mode). As we
currently only work with single species it is more convenient to lock the 421nm master
system to the ULE cavity. The needed frequencies47 to address the different isotopes are
shown in Figure (2.2)(a). The slave blue laser system is stabilized relative to the master

38Coherent: MBR 110.
39Coherent: Verdi V18.
40More detail to the master system can be found in Ref. [152] and to the slave system in Ref. [153]. The
length of the cavity is actively stabilized using the Hänsch-Couillaud locking scheme [154].

41Note that Ref. [145] reported the need of 1W blue laser light to operate the ZS.
42Coherent: Verdi G20.
43EOSPACE: PM-0K5-20-PFA-PFA-842 -S3mmFS.
44Toptica: PDD 110F is used to provide the νPDH = 20MHz and to generate the PDH error signal.
45Windfreak Technologies: Synthesizer v2.0, based on ADF4350 (137.5− 4400MHz)
46Toptica: FPI 100.
47Notice that the required frequencies in the blue have to be divided by two to calculate the needed
shifts in the infrared, this is due to the frequency doubling technique. An AOM shifts the frequency
additionally by −240MHz resulting in a frequency shift in blue by 2× (−240 + νsweep).
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Fig. 4.3, 421nm laser system: The 421nm light is generated by frequency doubling
the infrared light of two Ti:sapphire laser systems. The master system is locked
to the ULE cavity and the slave system is stabilized relative to the master by a
beat-note lock. The master generates the light for the transverse cooling and
for absorption imaging. The light of the slave laser system is used for the ZS
and for phase contrast imaging. On several occasions the frequency shift δ to
the atomic resonance is indicated. The absorption imaging light is resonant
(δ = 0) for zero magnetic field.

system by the offset-lock technique [155]. This is a convenient way to reach the 18 Γ421

detuning to the atomic resonance required for the ZS, see section 5.1. The ZS light is
coupled into an optical fiber to increase the pointing and polarization stability of the ZS
beam48. We not only use acousto-optic modulators (AOM) to shift the frequencies for
the transverse cooling, the ZS and the imaging, but also to actively stabilize the light
intensities improving the stability of the whole experiment49. In Figure (4.3) a schematic
drawing of the 421 nm laser system is shown. More details on the slave system and on the
offset-lock can be found in Ref. [153].

48Schäfter+Kirchhoff: Optical fiber: PMC-E-460Si-2.7-NA013-3-APC.EC-200-P.
49We operate the 421 nm system not at the maximum ratings. Usually we work with Pmaster = 700mW
and Pslave = 500mW, which is sufficient to stabilize the powers to PTC = 600mW and PZS = 300mW.
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4.3.2 Orange (626 nm) Laser System

When we started to think about the different methods to cool and trap Dy a curial point
was the generation of 626nm light. At that time no suitable commercial solution was
available. Fortunately the group of D. J. Wineland reported on the creation of 626nm
light, which they frequency double to achieve 313nm light to study 9Be+ ions [156]. We
use the same approach based on the sum frequency generation of a 1050nm50 and a
1550 nm51 fiber laser in a periodically poled lithium niobate (PPLN) crystal52. Both fiber
lasers have a maximal output power of 5W leading to 2W of 626 nm light. A more detailed
description on the creation of the 626nm light can be found in section A.1. The 626nm
laser system is frequency stabilized by coupling the orange light to the ULE cavity and
using the feedback signal to stabilize the 1050nm fiber laser, while the 1550nm system
is free running. We could estimate the linewidth to be less than 30 kHz for the locked
orange light.

We use an additional EOM53 to broaden the linewidth of the orange laser to approxi-
mately 70 Γ626 which increases the capture rate and the atom number of the MOT, see
section 5.2. To be able to cool and trap the bosonic 164Dy and the fermionic 161Dy isotope
sequentially we use two AOMs54 in double pass configuration, subsequently the light is
coupled into optical fibers and guided to the experimental chamber. The frequency of the
bosonic 162Dy isotope is accessible by locking the orange laser system to the next ULE
cavity resonance +1.5GHz apart and using the fermion AOM with a slightly different
center frequency. See Figure (4.4) for a schematic drawing of the orange system.

4.3.3 Laser Frequency Stabilization Scheme

In atomic physic experiments usually the cooling lasers are locked directly to atomic
transitions, therefore polarization spectroscopy on atomic vapor has to be performed. In
Dy this could be either done directly at the atomic beam before the entrance of the ZS, or
using a hollow cathode lamp to provide the atomic Dy vapor. As the optical access of our
oven chamber is limited the first option would be challenging for all required wavelengths.
Thus, we tried to use the hallow cathode lamp but due to pressure broadening the linewidth
of the transition lines were to broad to be used for laser stabilization, see Ref. [157] for
more details. Alternatively one can use reference cavities providing resonance lines with
their linewidth ∆1/2 given by the length of the resonator d and the reflectivity of the
mirrors R:

∆1/2 = νFSR

F
, (4.1)

50NKT Photonics: Koheras Boostik HPA Y10 System, Linewidth < 10 kHz (120µs).
51NKT Photonics: Koheras Boostik HPA E15 System, Linewidth < 1 kHz (120µs).
52Covesion: MSFG626-0.5-40.
53Qubig: EO-F0.1M3-VIS.
54We use DDS frequency sources (e.g. based on AD9959) for all AOMs of the 626 nm, 684 nm and 741 nm
laser systems.
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Fig. 4.4, 626nm laser system: We use a sum-frequency generation of two infrared fiber
lasers to create 626nm light. After the AOMs, which are necessary to bride
the gap between the ULE cavity resonance and the atomic resonance for the
different isotopes, the light is coupled into optical fibers for the axial and radial
beams of the MOT. A small fraction of light is used to further Doppler cool the
atoms after the atoms are transported to the science cell.

where νFSR = c/(2d) is the free spectral range and F = (πR1/2)/(1−R) the finesse. To
stabilize the 421nm, 626nm and 684nm laser system we use a ULE cavity55, see Figure
(4.5)(a). The mirror spacers are made out of ULE glass, which has a zero-crossing of the
linear thermal expansion coefficient around room temperature56. The cavity has to be
actively temperature stabilized to reach high thermal stability [158]. In addition, the
ULE spacer is inside a vacuum can (pressure below 10−8 mbar) to shield it from the
environment57. The cavity has one planar mirror and one mirror with a curvature of
500mm. Both mirrors are reflection coated for the wavelength of 626 nm (684 nm) with a
transmission of T = 0.013793 % (T = 0.016627 %) leading to a theoretical linewidth of
∆1/2 ≈ 66 kHz (∆1/2 ≈ 80 kHz), respectively. As the natural transition rate of 421nm
transition is Γ421 = 2π· 32.2MHz the requirements for the mirror coating at 842nm is

55Stable Laser Systems: cavity length d = 100.08mm → FSR = 1.498GHz (TM00 mode).
56In our case at T = 33.3◦C.
57Ion getter pump: Agilent Technologies: 2 l/s pump. We see a drift of ≈ 20 kHz/day of the atomic
resonance in respect to the locked laser. This could be due to an increase of pressure in the ULE can.
This could be solved using an ion pump with a higher pumping rate.
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not curial. Here, the transmission of T = 1.058415 % leads to a theoretical linewidth of
∆1/2 ≈ 5MHz.

Fig. 4.5, Laser stabilization: (a) The 421 nm (via the 842 nm maser laser), 626 nm and
684nm laser systems are locked to the passively stable ULE cavity using the
PDH technique. (b) In future a transfer resonator (FPI) will be used to stabilize
the 421 nm system, as its free spectral range FSR = 8GHz (TM00 mode) allows
to change the frequency between the bosonic and fermionic isotope using the
fiber EOM in the experimental sequence. The length of the transfer resonator
is actively stabilized by the 626 nm laser.

4.3.4 Optical Dipole Traps (1070nm + 1064 nm) Laser Systems

After the MOT phase the atoms are loaded into a single beam ODT. To efficiently transfer
the atoms from the MOT chamber to the science cell a deep potential is needed. Therefore,
we use a ytterbium fiber laser58 at 1070 nm with 100W output power59, see Figure (4.6)(a).
The transport beam has a measured beam waist of w0 = (37.3± 1.2)µm and an estimated
maximum power of 72W at the atoms. The last lens of the transport beam is mounted on
a computer-controlled air bearing translation stage60 allowing us to transport the atoms
from the MOT chamber to the science cell. More details on the transport can be found
in section 5.3.2. However, this laser is only used for the transport as the longitudinal
frequency modes of the laser drive two-photon Raman transitions, which heat up the
atomic sample and thus this laser cannot be used for evaporative cooling, see Figure
(4.6)(b-c).

In the science cell the atoms are transferred to a crossed ODT to be able to evaporatively
cool the atoms to degeneracy. The crossed ODT consists of ODT1, which is superimposed
58IPG Laser: YLR-100-LP-WC, linewidth ∆λ = 2.5 nm.
59Controllable by an analog signal between 100 % and 5 % of the output power and a TTL signal to
switch-off the laser in 25µs.

60Aerotech: Stage: ABL15040, 40 cm travel range, 0.5µm accuracy, Controller: ENSEMBLE HLE10-60-
A-MXH-B.
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Fig. 4.6, ODT Laser Setup: (a) We use a fiber laser (IPG) with 100W output power
to transport the atoms from the MOT chamber to the science cell. After the
transport the atoms are loaded into a crossed ODT, created by solid-state laser
(Mephisto MOPA). The powers of ODT1 (ODT2) are controlled and actively
stabilized by a Pockels cell (AOM), respectively. We use a high-power fiber to
guide ODT2 directly to the science cell. (b) Longitudinal mode structure of the
fiber laser with a spacing of 6.4MHz leading to two-photon Raman transitions
between different Zeeman levels which heats up the sample and causes atom
losses. (c) Atom loss of a thermal cloud in the transport beam depending on
the external magnetic field. An artificial fit function (gray) gives a period of
∆B = 3.75G corresponding to a Zeeman splitting of ∆f = 6.5Mhz.

with the transport beam and ODT2 being perpendicular to it. Both traps are created by
a 55W solid-state laser61 at a wavelength of 1064nm. The power distribution between
ODT1 and ODT2 can be adjusted by a motorized rotating waveplate62. The power of
ODT1 is actively intensity stabilized using a Pockels cell63 while ODT2 is controlled by
an AOM64. Furthermore, ODT2 is coupled into a high-power polarization-maintaining
optical fiber65. We have 28W (8W) of maximum power of ODT1 (ODT2) at the atoms
in the science cell. In order to reach the needed trap ratio the beam waists of ODT1 and
ODT2 have to be adjusted using cylindrical lenses. In addition, we use quartz lenses
to minimize the effect of thermal lensing. Figure (4.6)(a) shows the dipole trap setup.
Lately, also ODT1 is guided by a high-power fiber directly to the science cell and actively

61Coherent: Mephisto MOPA 55W, linewidth ∆ν = 1 kHz (100ms).
62UAB ALTECHNA: 8MRU-1.
63Pockels Cell: Qioptiq Photonics: DBBPC5; Controller: FLUDICON: RheCon 2.0. The controller limits
the bandwidth to 150Hz. To be able to switch-off ODT1 we use a high voltage Behlke switch, Model:
HTS 61-03-GSM.

64AA Opto Electronic: AA.MT.15, 80MHz center frequency, 4 kHz bandwidth of the intensity stabilization.
In order to minimize the beam movement during the evaporation ramps, we use a two-frequency driver
for the AOM providing a constant RF driving power [159].

65OZ Optics: PMJ-A3HPC,A3HPC-1064-10/125-5AS-2-1-LMA.
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controlled by an AOM, which allows to decouple the transport beam from the ODT
improving the beam shape of ODT1 and the stability of the system.

4.3.5 Laser Light Distribution on the Apparatus

Figure (4.7) and Figure (4.8) show how the different laser lights are distributed around
the vacuum chamber. Most of the light is guided by optical fibers to the apparatus
and additionally, wherever it is possible, we actively control the laser intensity, which
improves the overall stability of the system. The atoms are imaged in the MOT chamber
by standard absorption imaging after TOF66. Using the transport beam the atoms are
moved from the MOT chamber to the science cell. Here, we have the possibility to
either do standard absorption imaging in the x-z-plane67 or high-resolution imaging in
the x-y-plane68.

Fig. 4.7, Experimental Setup (front view): Schematic drawing of the experimental
setup. Most of the different laser lights are coupled into optical fibers and
guided to the apparatus, which increases the stability of the system. For the
imaging telescopes we use achromat (AC) lenses to minimize lens aberration
effects.

66PCO: pco.pixelfly, pixel size: 6.45× 6.45µm.
67PCO: pco.pixelfly usb, pixel size: 6.45× 6.45µm.
68Andor Technology: Andor iXon 897, pixel size: 16× 16µm.
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Fig. 4.8, Experimental Setup (top view): Schematic drawing of the experimental
setup. A gate valve separates the MOT chamber from the science cell, such
that this part can easily be exchanged and pumped individually. In the science
cell the atoms are further Doppler cooled using the 626 nm transition.

4.4 Magnetic Field Control

Magnetic fields are an important experimental tool to trap and externally manipulate
ultra-cold atoms. On the other hand for atoms with large magnetic moments it is essential
to be able to compensate unwanted magnetic fields. Different magnetic field coils were
designed to achieve the needed requirements:

MOT Coils

The MOT chamber has the same magnetic field coils configuration as it was used in the
old Cr experiment [160]. As we did not know which cooling approach will work best we
also implemented an Ioffe-Pritchard MT in the clover leaf configuration consisting of the
clover leaf coils, the pinch coils and the offset coils [161]. The coils are water cooled and
can be operated with up to 300A, creating a MT with a maximum axial (y-direction)
curvature of 319G/cm2 and maximal radial gradient of 211G/cm. We do not use the MT
as the MOT at the 626 nm transition works.
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To produce the magnetic gradient field for the MOT we use the above mentioned offset
coils (5× 3 windings) in anti-Helmholtz configuration, giving an axial (radial) gradient
of 0.36G/(A cm) (0.18G/(A cm)), respectively. We typically operate the MOT coils
only with a current of up to 15A, thus a power supply with moderate output power is
sufficient69. We use an IGBT70 to be able to fast switch-off the trap before doing the
absorption imaging.

Compensation Coils

Around the MOT chamber we have installed magnetic field compensation coils71 in the z-
and y-directions, which produce almost homogenous offset fields. The z-compensation
coils (4× 10 windings) produce an offset field of 1G/A. These coils are also used to create
an offset field of 10G when we image the atoms in the MOT chamber. In the y-direction
the compensation coils (4 × 10 windings) produce an offset field of −0.4G/A. These
compensation coils are also used to slightly modify the MOT position with respect to the
transport beam to optimize the loading efficiency on a daily basis.

For many experiments with highly magnetic atoms, e.g. demagnetization cooling and
spinor physics with fermionic Dy, the magnetic field in the science cell has to be well
controlled or even compensated to approximately zero field. A magnetic field compensation
cage is implemented around the glass cell, consisting of three pairs of coils in x-, y- and
z-direction (each coil has 5 × 3 windings). The coils create a homogenous offset field
of 0.27G/A, −0.2874G/A and −0.35G/A in the x-, y- and z-directions72, respectively.
Within 10mm around the center of the glass cell the fields have a calculated homogeneity
of < 1µG/mm. We use self-build bipolar current sources73 for these compensation coils.
In combination with a self build magnetic field sensor we will be able to actively stabilize
the magnetic field to δB ≤ 500µG [162]. In addition, they can also be used to change
the magnetic field direction while the absolute value stays constant. This changes the
polarization direction of the magnetic dipoles which modifies the properties of the dipolar
quantum gas, see section 5.4.

Feshbach Coils

Feshbach resonances are an important tool in ultra-cold quantum gas experiments to
externally control the interaction properties. As we are working with magnetic Feshbach
resonances a homogenous magnetic field is required. The design of our science cell provides

69EA ELEKTRO-AUTOMATIK: EA-PS-3016-20-B (16V,20A).
70Insulated-gate bipolar transistor (IGBT).
71Power supplies: EA ELEKTRO-AUTOMATIK: EA-PS-3016-10-B (16V,10A).
72So far only the coils in y-direction were calibrated using RF transitions between two Zeeman sub-states
(calculated value: −0.2653 G/A).

73Based on OPA549.
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the possibility to have different coil configurations depending on the field direction and
the maximal needed absolute field value.

To study Feshbach resonances up to 100G we used Feshbach coils creating a field in
y-direction. It consist of two coils in Helmholtz configuration, both have a diameter of
around 78mm and 10×10 windings. The magnetic field created by the coils was calibrated
by RF-spectroscopy and results in the conversion factor of 20.13G/A. The current is
provided by a highly stable current source74. To estimate the magnetic field stability we
measured75 the relative noise (δI/I)rms = 2.2× 10−5 at 5A of the current source, resulting
in a magnetic field noise of δB < 2.2mG at the maximum field of 100G76. Due to the
high inductance of L ≈ 10mH of the coils the switch-off time is limited to around 4ms.

A second configuration allows to study Feshbach resonances up to 600G. The field of
this configuration points in z-direction which is essential for a stable BEC configuration.
The high field Feshbach coils have 3× 3 windings and are in a Helmholtz configuration
with a diameter of around 88mm, creating a magnetic field of 1.76G/A (calibrated by
RF-spectroscopy). Furthermore, the wires are water cooled, such that a maximum current
of 350A does not heat up the coil significantly. The coils are mounted in a plastic holder,
which still provides the optical access through all glass windows of the glass cell, see Figure
(4.2)(b). Small magnetic field gradients can expel the atoms from the trap. Therefore,
the coils have to be positioned within a volume of (1 cm× 1 cm× 1 cm) with respect to
the atoms, see Figure (4.9)(b). We use two power supplies77 in master-slave configuration
operating at a maximum voltage of 11V to guarantee a fast switch-off time. The current
is actively controlled by a high precision current transducer78, a home build PI controller
and an MOSFET79, see Figure (4.9)(a) [141]. The magnetic field resolution over the full
range up to 600G is less than 10mG (estimated by current noise measurement) and the
switch-off time with around 2ms is mainly limited by the settings of the PI controller80.

74HighFinesse: Bipolar Current Source BCS 6/12, Current stability and reproducibility: < 2.5× 10−5 ×
Imax.

75Using the same devices as in [141].
76The current source is controlled by an analog voltage 10 V ≡ 6A. The voltage provided by our computer
control (NI PCI-6713 card) has a limited resolution of 4.9mV, yielding a magnetic field resolution of
59mG. This could be increased by using two channels of the NI card, where the voltage of the second
one is attenuated by a factor of 49.9 and added to the first channel, resulting in a theoretical magnetic
field resolution of 1.2mG.

77Agilent: 6682A (21V, 240A).
78Danfysik: Ultrastab 860R.
79Metal-oxide-semiconductor field-effect transistor (MOSFET): Dynex: DIM 1200DDM12-E000; To limit
the dissipated power the maximum voltage of the power supplies was restricted to 11V.

80The current transducer measures the current and provides a proportional voltage, which is stabilized by
the PI in respect to the desired voltage given by the computer control adapting the variable resistance
of the MOSFET. The conversion factor is 68.4G/V. Using two channels of the NI card the theoretical
resolution is 6.34mG.
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Fig. 4.9, Feshbach coils: (a) Circuit diagram of the Feshbach coils. (b) If the highly
magnetic atoms are not centered to the middle of the Feshbach coil the resulting
magnetic field gradient can lead to atom losses.

Gradient Coils

An additional pair of coils (10× 10 windings) with a diameter of around 105mm and a
separation of 52.5mm in anti-Helmholtz configuration provides an axial (radial) gradient
of 3.6G/(A cm) (1.8G/(A cm)), respectively. These coils can be used to compensate
gravity, as any gradient strongly modifies the trapping potential created by the ODT
lasers, see section 5.3.1. In a controlled way this can be used to change the trap depth of
the crossed ODT without changing its confinement resulting in a more efficient forced
evaporative cooling process [163].
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4.5 High-resolution Imaging System

In our experiment the microscope objective is used to combine two important experimental
tools. On the one hand it is used to perform in-trap images of the quantum gas and on
the other hand together with an EOD system time-averaged tailored potentials can be
created. The typical size of a BEC is on the order of a few µm, thus the resolution of the
objective for the imaging light λ = 421 nm and also for the light which is used to trap the
atoms λ = 532 nm has to be around 1µm.

The diffraction-limited spot size d given by the Rayleigh criterion can be calculated by
[164]

d = 1.22 fλ
D

= 1.22
2

λ

NA
, (4.2)

where D is the lens diameter, f the focal length of the lens and NA = n sinα the
numerical aperture, calculated with the refraction index n and α the half of the opening
angle of the lens aperture. The clear aperture of the largest window of the glass cell limits
the maximum numerical aperture to NA ≈ 0.78 (assuming the atoms in the center of
the glass cell), resulting in a theoretical minimal spot size of d ≈ 350 nm (λ = 421nm).
Accounting for the possibility to move the objective in the lateral directions and for some
margin between the objective and the window surface (≈ 2mm) the aperture is limited
to D = 17mm and the focal length of the objective to f1 = 25mm, yielding a numerical
aperture of NA = 0.32 and a minimal theoretical spot size of d = 803 nm (d = 1014 nm)
for λ = 421 nm (λ = 532 nm), respectively. Figure (4.2)(b) shows a schematic drawing of
the glass cell including the Feshbach holder and the objective. Additionally, the objective
has to be corrected for the refraction of the glass window (6.35mm thick quartz glass) for
both wavelengths. To fulfill these requirements we use a diffraction-limited custom-made
microscope objective81, where the housing and spacers are made out of polyimide82 to
avoid any magnetic material. To be able to align the objective with respect to the atoms
and the glass window it is mounted in a brass tube, which is attached to translation stages.
For a rough alignment a home-made xyz-translation stage can be used. Fine adjustments
can be done by a piezo xyz-stage83 and a tilt stages84, see Figure (4.10).

For the high-resolution imaging we use an EMCCD camera which has a pixel size of
16µm, thus a magnification of M = 50 is sufficient to achieve high-resolution images of
the quantum gas. For this a second diffraction-limited objective85 with a focal length of
f2 = 1250mm is necessary. Both objectives are anti-reflection coated for the imaging light
(λ = 421 nm) and the EOD trapping light (λ = 532 nm).

81Special Optics: 54-17-25-532/421nm.
82Ultem 2300
83Physik Instrumente (PI): stage: P-563.3CD, travel range: 300× 300× 300µm, resolution: 2 nm (closed
loop), controller: E-725.3CDA.

84Newport Spectra-Physics: M-TTN80.
85Special Optics: 54-17-1250-532/421nm.
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To experimentally investigate the performance of the microscope objective for the two
wavelengths we used different test targets. A standard method to estimate the resolving
capacity is to illuminate an USAF resolution test chart86 and acquire an image with the
EMCCD camera. For both wavelength we were able to resolve the smallest pattern, which
gives us an upper limit of the resolution to 1.56µm [165]. In addition, we use a pinhole87

with a diameter of 500 nm to approximate a point source to extract the resolution of the
objective. We get a resolution according the Rayleigh criterion of (0.99± 0.03)µm for the
λ = 421 nm imaging light and (1.36± 0.05)µm for the λ = 532 nm trapping light [166].
More details on the performance testing of the microscope objective can be found in Ref.
[167]. In Ref. [166] the setup and the performance of the EOD system is described.

Fig. 4.10, Microscope objective: (a) Schematic drawing of the microscope stack.
Both objectives are mounted on translation stages to have an optimum of
alignment freedoms. A dichroic mirror separates the λ = 421 nm imaging from
the λ = 532 nm trapping light. (b-c) Examples of different intensity patterns
created by the EOD system. The images are recorded after the deflector with
a CCD camera. Images (b) and (c) are taken from [166].

86Edmund Optics: Positive target 58-198.
87National Aperture: 1-0.5HS.
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5 Cooling Dysprosium Atoms to Quantum
Degeneracy

In this chapter we describe our procedure to create BECs as well as degenerate Fermi
gases of Dy atoms. We first use a ZS to slow down the atoms longitudinally (section 5.1)
and subsequently they are trapped in a MOT (section 5.2). Afterwards, the cooled and
trapped atoms are transferred into an ODT which is used to transport the atoms from the
MOT chamber to the science cell. To cool the sample further the atoms are loaded into a
crossed ODT where a degenerate quantum gas is achieved by forced evaporative cooling
(section 5.3). Finally, in section 5.4 we present a first study of the Dy BEC properties
and a first in-situ image of a dipolar BEC is shown in section 5.5.

5.1 Creation of a Slow Atom Beam

To obtain a Dy beam with a high atom flux we have to heat up Dy granulate in an effusion
cell to 1250◦C. The atoms leaving this oven have a velocity distribution with a maximum
at around 500m/s. As the capture velocity of a typical MOT is on the order of a few m/s
a ZS is necessary to slow down the atoms.

To estimate the atomic flux at the MOT position the temperature dependence of the
saturated vapor pressure psat is required. Psat of Dy for different temperatures can be
found in Ref. [168] and approximated by the Antoine equation [84]

psat(T ) = 10A−
B

C+T , (5.1)

where psat is in mbar, T in ◦C and ADy = 6.92, BDy = 10169.5, CDy = 36.94 are empirical
constants. In Figure (5.1)(a) the vapor pressures of the magnetic atoms Dy, Er and Cr
are shown. These elements have in common that they require high temperatures to reach
the needed vapor pressures for ultra-cold quantum gas experiments. In the effusive regime
where the oven diameter is much smaller than the mean free path of the atoms inside the
oven, the longitudinal velocity distribution of atoms emitted inside a small solid angle of
azimuth θem can be calculated by [169]

fem(v, T ) =
(
πDem

2

)2 psat(T )
kBT

(
m

2πkBT

)3/2
v3 exp

(
− mv2

2kBT

)
sin2(θem). (5.2)

Here, v is the longitudinal velocity of the beam and Dem the diameter of the oven
aperture. Velocity distributions for different temperatures are shown in Figure (5.1)(b).
The maximum velocity is located at vmax =

√
3kBT
m

= 480m/s for a temperature of
Toven = 1250◦C.
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Fig. 5.1, Creation of an atom beam: (a) Saturated vapor pressure of the magnetic
atoms Dy, Er and Cr. For these elements a high temperature effusion cell
is necessary to reach the required vapor pressures. (b) Longitudinal velocity
distribution for different temperatures with Dem = 2mm and θem = 0.0076 at
the position of the MOT. The ZS capture velocity is around 650m/s which is
highlighted by the dotted line.

Slowing down Atoms by a Zeeman Slower

Only a small fraction (≈ 10−6 for vMOT
c ≈ 15m/s) of the atoms have a velocity such

that they can be directly trapped by the MOT. Thus, a ZS has to be used to reduce the
longitudinal velocity of the atoms. Atoms entering the ZS with a velocity smaller than its
capture velocity vZS

c are slowed down to a final value vf using strong light forces.

The maximum acceleration obtained by the radiation force due to a resonant laser beam
with a wavelength λ collinear and counter-propagating to the atomic beam is given by
[170]

amax = ~k
m

Γ
2 , (5.3)

where Γ is the transition rate of the used transition and k = 2π/λ the wave vector. It
assumes that the atom absorbs a photon with the maximal possible rate of Γ/2. For a
constant deceleration aZS the velocity at position x in the ZS can be calculated by

v(x) = vZS
c

√
1− x

l0
. (5.4)

Here, l0 is the required length of the slower to reduce the entrance velocity vZS
c to a final

velocity vf , given by

l0 =
(vZS

c )2 − v2
f

2aZS
. (5.5)

As the atoms are slowed down the resulting Doppler shift has to be compensated such that
the transition frequency ω0 at zero magnetic field matches the constant laser frequency ω.
This is done using the Zeeman shift induced by an external magnetic field. To fulfill the
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resonance condition over the full length of the ZS the magnetic field has to vary with

B(x) = Bbias +B0

√
1− x

l0
, (5.6)

where Bbias = ~δ
µ′

is the magnetic bias field and B0 = ~kvZS
c

µ′
the overall height of the

magnetic field profile. Here, δ = ω − ω0 is the detuning of the ZS laser light. The
difference of the magnetic moments between the ground- and excited-state is given by
µ′ = (geme − ggmg)µB with the magnetic quantum numbers mg = 8,me = 9 and the
Landé factors gg = 1.24, ge = 1.22.

In Dy a suitable transition to operate the ZS is the 421nm transition which has a
transition rate of Γ = 2π· 32.2MHz. This results in a high acceleration of amax =
5.9×105 m/s2. The difference of the magnetic moments between ground- and excited-state
is µ′ = 1.047µB. The maximal rate at which atoms can absorb photons and be cooled
imposes an upper limit on the field gradient [171]. To ensure that no atoms are getting
out of resonance on the way through the slower we use a security factor of αZS = 0.78,
resulting in lower acceleration of aZS = αZS · amax. To minimize the effect of the ZS light
on the MOT we use a large detuning of δ = −18 Γ421, which sets the magnetic bias field
to Bbias = −395G. Our ZS is designed for a capture velocity of vZS

c = 645m/s, resulting
in an overall magnetic field height of B0 = 1045G. To have a large capture velocity with
moderate absolute field values a spin-flip ZS is used. For a final velocity of vf = 13.5m/s
the length of the ZS can be calculated to x0 = 0.45m. Hence, the atom flux Φ at the
position of the MOT can be estimated by integrating Eq. (5.2) up to vZS

c , which results in
an atomic flux of around Φ = 1012 atoms/s.

The Dy ZS consists of two parts. The first part was already planned and built in 2008
for the new Cr experiment [172]. We decided to use this already existing part and adapt
it to be usable for Dy atoms by adding a second part. The first part consists of two
independent coils wound around a double-walled (for water cooling) CF16 tube. The
first coil has six layers disconnected from the second coil with ten layers. In addition, a
compensation layer over both coils is used to correct for all major imperfections. The first
part88 produces a positive decreasing magnetic field and has a length of 65.5 cm. The
second part89 has a length of 6.7 cm and creates a negative magnetic field to reach a final
velocity of vf = 13.5m/s. Due to the fact that we used the already existing part the ZS
is much longer than necessary. In Figure (5.2) the resulting magnetic field of the ZS is
shown.

In the inset of Figure (5.2) one can see that at some positions the gradient of the
measured field is slightly higher than the gradient of the calculated field with maximal
acceleration, but due to the broad linewidth of the 421nm transition the resonance
condition is still fulfilled.
88R1−6 = 1.38 Ω, R7−16 = 1.31 Ω, Rcomp = 0.14 Ω
89Rsmall = 0.28 Ω
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Fig. 5.2, Magnetic field of the Dy spin-flip ZS: The atoms are slowed down from a
capture velocity of vZS

c = 645m/s to a final velocity of vf = 13.5m/s. The MOT
position is situated at the origin of the graph. The measured magnetic field (blue
circles) is created by the first part consisting of three layers (I1−6 = 10.76A,
I7−16 = 5.66A and Icomp = −4.7A) and the second part (Ishort = 9.6A). The
dashed (solid) green line indicates the theoretical magnetic field for a maximal
(with a security factor of αZS = 0.78) acceleration. The inset shows the gradient
of the magnetic field (red) and of the maximal field (dashed green).

For the ZS we use positive circular polarized 421nm light (mJ = 8→ mJ = 9). The
light is focused on the aperture of the effusion cell and has an estimated diameter of
18mm at the position of the MOT. We use a power of PZS = 100W which results in a
light intensity of IZS = 0.75 Is,421. To achieve a higher stability we couple the ZS light in a
fiber and use an AOM for intensity stabilization. We have optimized the flux by adjusting
the different currents of the ZS coils90.

5.2 Magneto-optical Trap for Dysprosium Atoms

Magneto-optical traps are a standard tool in ultra-cold quantum gas experiments to
produce a sample of cold neutral atoms [173]. The lowest temperature achievable with
a MOT is the Doppler temperature TD = ~Γ

2kB
which depends on the transition rate

Γ of the used cooling transition. For example the cooling transition of Rubidium has
Γ = 2π· 6MHz resulting in a Doppler temperature of TD = 146µK. To reach quantum
degeneracy, further cooling methods have to be applied. A standard way is to use forced
evaporative cooling in a magnetic or optical trap. Due to dipolar relaxation processes

90I1−6 = 8.2A, I7−16 = 5.2A, Icomp = 0A and Ishort = 9.7A
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it is not possible to reach quantum degeneracy for dipolar atoms in a MT, therefore an
ODT has to be used. To efficiently transfer the atoms from the MOT into the ODT the
temperature of the atomic sample has to be on the order of a few microkelvin. Using
a transition with a small Γ offers a simple way to reach this temperature regime. For
example, MOTs in ytterbium (erbium) with Γ = 2π· 200 kHz (Γ = 2π· 190 kHz) have
Doppler temperatures of TD = 4.8µK (TD = 4.6µK) [71, 72]. It is even possible to reach
temperatures of a few hundreds of nanokelvin for example in strontium (dysprosium)
with Γ = 2π· 7.6 kHz ( Γ = 2π· 1.8 kHz) [13, 174]. In these cases the atoms cannot
be trapped directly from the ZS as the capture velocities of narrow-line MOTs are too
small, hence the atoms are first trapped in a standard MOT and then further cooled in
the narrow-line MOT.

To avoid this extra step we use the 626nm transition with a transition rate of Γ =
2π· 136 kHz (TD = 3.3µK) for trapping the atoms in the MOT, inspired by Er and Yb
experiments. The MOT beams are retroreflected and two beams are aligned under an angle
of 45◦ with respect to the horizontal and vertical axis. They have a diameter of 22.5 cm to
accomplish a large trapping volume and the light intensity is about IMOT = 370 Is,626 per
beam. See Figure (4.7) and Figure (4.8) for a schematic drawing of the MOT chamber.

In the following we mainly focus on the 164Dy isotope, while the other isotopes are
qualitatively similar. We load more than 1.5×108 atoms at a temperature of 500µK in 4 s
at a detuning of δ626 = −35 Γ626 and with an axial magnetic field gradient of∇B = 3G/cm.
As the cooling light is far red detuned, the obtained temperature is much higher than
the Doppler limit. To reduce the temperature the MOT is compressed in 170ms using
two linear ramps. The compression is done by decreasing the 626nm light intensity to
IcMOT = 0.15 Is,626 and the detuning to δcMOT = −2.75 Γ626. We note that we can avoid
atom losses during the compression ramp when we open the magnetic field gradient to
∇B = 1.5G/cm. Finally, we end up with 1.5× 108 atoms at a temperature of 6µK and
an atomic number density of about n = 8.6× 1010 cm−3, resulting in a phase-space density
of D = 1.5× 10−5. We are not able to reach the Doppler temperature as we have to be
further red detuned than the optimal detuning of δ = −0.5 Γ626 to hold the atoms against
gravity. We also have observed that MOT temperatures between 6µK . TcMOT . 20µK
don’t effect the loading efficiency of the ODT.

Figure (5.3) shows the atom number as a function of the MOT detuning. The atom
number increases for higher detunings as the capture volume gets larger. After reaching
its maximum the atom number decreases rapidly because of the finite size of the trapping
beams. In addition, we can broaden the 626 nm light with an EOM which has a resonance
frequency of 105 kHz. At a detuning of δ626 = −35 Γ626 the EOM provides frequency
components from 0 Γ626 to −70 Γ626, see inset of Figure (5.3)(a). The usage of the EOM
allows us to go to higher detunings resulting in a higher atom number in the MOT.
Between −28 Γ626 and −35 Γ626 the detuning curve shows a drop in atom number. This is
presumably due to stray magnetic fields restricting the cloud’s elongation.
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We are also able to create a MOT for the 162Dy isotope with N = 1.3 × 108 atoms.
The lower atom number in comparison to the 164Dy isotope is due to its lower natural
abundance. Additionally, we can trap N = 2.1× 107 atoms of the fermionic 161Dy isotope
without any additional repumpers. The reached atom number is even higher than one
would expect from taking into account its natural abundance and also the fact that only
the F = 21/2 hyperfine state is trappable by the MOT.

We can prove by state selective imaging using 626 nm light that most of the atoms are
automatically pumped by the MOT light to the lowest Zeeman sub-state mJ = −8. An
explanation can be found if one considers the fact that a narrow-line MOT is strongly
influenced by gravity. For higher detunings the cloud shifts downward in the direction of
gravity and increases its volume. This has been already seen in Er [71, 175] and strontium
[174, 176]. The MOT then stays at a finite magnetic field and there the natural optical
pumping of a red-detuned MOT to high-field seeking states takes place. A homogenous
magnetic field during the compression and also during the transfer to the ODT prevents
spin flips and keeps the sample spin-polarized.

Fig. 5.3, Dy MOT operating at the 626nm transition: (a) Atom number as a
function of the 626 nm light detuning. A spectral broadener allows us to achieve
higher detunings and consequently increases the atom number (squares). The
orange light frequency is broaden up to ≈ 70 Γ626 by an EOM (inset). (b) Due
to the natural abundance and also the fact that only one hyperfine state is
trappable, the reached atom number of the fermionic isotope is lower than for
the bosonic isotopes.

Before the atoms enter the ZS we provide a transverse cooling stage based on a two-
dimensional optical molasses. The 421nm beams are elliptically shaped (wx = 6.8mm
and wy = 1.7mm) to achieve a higher spacial overlap with the atomic beam. We typically
use a power of Ptrans = 100mW resulting in an intensity of Itrans = 9 Is,421. To analyze the
effect of the transverse cooling we fit a standard rate equation N(t) = Nss(1− e−γt) to the
measured loading curves, see Figure (5.4)(a). Here, Nss = R/γ is the steady-state value,
R the capture rate and γ the decay rate. For the maximum available transverse cooling
light power of Ptrans = 165mW ( Itrans = 15 Is,421) per beam, we obtain a steady-state
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value of Nss = 2.0 × 108 atoms, a capture rate R = 3.1 × 108 s−1 and a decay rate of
γ = 1.6 s−1. The transverse cooling increases the atom number by a factor of 5 and the
capture rate by a factor of 8, see Figure (5.4)(b-c).

Fig. 5.4, Properties of the 626 nm MOT: (a) Atom number as a function of the
loading time at δ626 = −35 Γ626. By fitting the standard loading rate equation
one can extract the atom number and the capture rate R shown in (b-c) for
different transverse cooling light intensities. Due to the transverse cooling the
capture rate is increased by a factor of 8 and the maximum atom number by a
factor of 5. (d) Atom number as a function of the holding time at a detuning of
δ626 = −35 Γ626. The fast decay is caused by the ZS light (diamonds). We use
Eq. (5.7) to extract the two-body loss rate. After the fast two-body decay, we
observe an one-body loss rate of around 1/γ = 12 s, still limited by one-body
scattering processes of the 626nm light.

We studied the decay rate of the MOT depending on the atom density and ZS light
by measuring the decay dynamics of our MOT. After loading the MOT for 4 s we block
the atomic beam. We observe that the maximum atom number is mainly limited by
losses caused by the ZS light. The fast decay of the atom number (γ = 1.4 s−1) is due to
off-resonant pumping of the ZS light to excited-states. To avoid this one has to spatial
separate the atomic cloud from the ZS light [71]. We observe the fast decay for any
detuning δ626 which means that in our configuration, where the ZS light propagates at an
angle of 20◦ with respect to gravitational direction, the spatially separation of the cloud
from the ZS in not possible.
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To further investigate the loss mechanism we switch-off the ZS light and field resulting
in a slower decay dynamic. Even without the ZS light we see a fast decay at the beginning,
which we attribute to two-body losses due to light-induced collisions. The two-body loss
rate β can be extracted using the following equation for the atom number evolution [177]:

N(t) = Nssγe
−γt

γ + βNssρee(1−ρee)
V̄

(1− e−γt)
, (5.7)

where Nss is the steady-state atom number, γ the one-body loss rate, ρee the relative
excited-state population and V̄ = 2

√
2π3/2σ2

xσy the effective volume with σy the axial and
σx the radial cloud size. To study the density dependence we took decay curves for three
different atomic number densities n = Nss/V̄ by changing the trapping volume with the
magnetic field gradient at a detuning of δ626 = −35 Γ626, see Figure (5.4)(d). Furthermore,
we investigated the decay rate of the compressed MOT, where we have a ten-times lower
relative excited-state population due to the smaller detuning and lower light intensity. As
a result we estimated the two-body loss rate to β = 3.0(3)× 10−9 which is independent of
the atomic number density and the relative excited-state population of ρee = 0.037.

The slow decay (1/γ = 12 s) at longer times is caused by one-body scattering processes
of the orange light for all densities. To investigate this we reduced the intensity after the
loading phase to different intensities between 1 Is,626 ≤ I626 ≤ 18 Is,626. At low intensities
we are able to achieve decay rates of 1/γ = 35 s.

To summarize, with our MOT operating at the 626 nm transition we reach atom numbers
N > 108 for the bosonic 164Dy and 162Dy isotopes at a temperature of 6µK. These are
good starting conditions for transferring the atoms into the ODT and creating a BEC.
In addition, the atom number of the fermionic 161Dy isotope N = 2.1× 107 is sufficient
to reach a degenerate Fermi gas. The results presented in this section have also been
published in [50].

5.3 Dysprosium Atoms in Optical Dipole Traps

Optical dipole traps are an important tool in ultra-cold quantum gas experiments. For
dipolar atoms an ODT is essential as this technique allows to trap atoms in the lowest
Zeeman state where dipolar relaxation is suppressed. The atoms are transferred from
the compressed MOT in the first ODT created by the high-power transport beam. By
moving the focusing lens of this beam the atoms are transported from the MOT chamber
to the science cell. In this ODT forced evaporative cooling is not possible because its
mode structure causes heating. To circumvent this limitation once in the science cell the
atoms are transferred into a crossed ODT created by a narrow-linewidth laser and finally
a degenerate Dy quantum gas is achieved.
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5.3.1 General Description and Trap Properties

Optical dipole traps for neutral atoms are based on the electric dipole interaction with
a far-detuned light field. In this section we give the needed expressions to discuss the
properties of our ODTs. A detailed description can be found in Ref. [178]. The strong
electric field E(t) created by a laser induces a dipole moment p(t) = αE(t) with α the
scalar complex polarizability of the atom. The dispersive interaction energy Udip of the
induced dipole moment with the light field can be calculated by

Udip(r) = −1
2 〈p(t)E(t)〉 = − 1

2ε0c
Re {α} I(r) , (5.8)

where I = 2ε0c |E|2 is the intensity of the field. On the other hand, the light field can
also induce heating of the atomic sample as photons are absorbed and spontaneously
re-emitted. The rate of the scattering events is given by

Γsc(r) = Pabs

~ω
= 〈ṗ(t)E(t)〉

~ω
= 1

~ε0c
Im {α} I(r) . (5.9)

This means that the interaction potential Udip and also the scattering rate Γsc depend on
the complex polarizability α(ω) and the intensity distribution I(r) of the light field.

The polarizability α(ω) can be calculated using the Lorenz model which describes a
neutral two-level atom in an oscillating electric field. Thereby, the following expressions
for the interaction potential and the scattering rate can be obtained [178]:

Udip(r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+ Γ
ω0 + ω

)
I(r), (5.10a)

Γsc(r) = 3πc2

2~ω3
0

(
ω

ω0

)3
(

Γ
ω0 − ω

+ Γ
ω0 + ω

)2

I(r) , (5.10b)

with Γ the spontaneous decay rate of the exited state, ω0 the transition frequency and
ω the laser frequency. For real atoms which have more than only one optical transition
the dipole potential and the scattering rate can be estimated by summing over all (Γi/ωi)
terms of the possible transitions and from this the polarizability α(ω) can be obtained
using Eq. (5.8)91. Usually the laser is tuned relatively close to the resonance at ω0 such that
the rotating wave approximation can be used (δ � ω0) and one can simplify Eq. (5.10a)
and Eq. (5.10b) to

Udip(r) = 3πc2

2ω3
0

Γ
δ
I(r) , (5.11a)

Γsc(r) = 3πc2

2~ω3
0

(
Γ
δ

)2

I(r) , (5.11b)

91The spectroscopy data of most elements can be found in the NIST database.
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where δ = ω − ω0 is the laser frequency detuning. If the laser frequency is below the
transition frequency (δ < 0) the potential energy Udip is negative and the atoms are
trapped in the region of higher intensities. Comparing both equations one finds that it is
better to use higher intensities than smaller detunings to keep the scattering rate low and
still achieve a sufficient trapping potential. Note that the presented equations are only
valid for a two-level atom.

Single Beam Trap

Usually ODTs are created by a tightly focused laser beam at a far-red detuned wavelength
of around λ ≈ 1µm. A focused laser beam with power P is well described by a Gaussian
intensity distribution:

I(r, z) = 2P
πw(z)2 exp

(
− 2r2

w(z)2

)
. (5.12)

The waist w(z) can be obtained by

w(z) = w0

√
1 +

(
z

zR

)2
, (5.13a)

with the minimum beam radius w0 and the Rayleigh length zR = πw2
0

λ
.

The trapping potential can be calculated by inserting the intensity distribution Eq. (5.12)
in Eq. (5.8). For low temperatures the atoms are trapped in the harmonic regime of the
potential and we can approximate the potential to

Udip ≈ −U0 + m

2 (ω2
r + ω2

z) , (5.14a)

where the trap depth is defined as

U0 = Re {α}P
ε0πcw2

0
(5.14b)

The polarizability Re {α} can be either calculated using spectroscopy data (see section
above) or by measuring the trap frequencies (see the following section). By determining
the radial and axial trap frequencies

ωr =
√

4U0

mw2
0

ωz =
√

2U0

mz2
R

(5.15)

the trap is fully characterized.
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Crossed Beam Configuration

A higher forced evaporative cooling efficiency can be reached if the local density of the
atoms is increased. This we can obtain using a crossed ODT created by two perpendicular
crossed laser beams. To be able to obtain different trap geometry it could be necessary to
use elliptical beams. Thus, we have to extend Eq. (5.12) to obtain the intensity distribution
for the k’th beam [166]:

Ik(x, y, z) = 2Pk
πwx,k(z)wy,k(z) exp

[
−2

(
x2

wx,k(z)2 + y2

wy,k(z)2

)]
(5.16)

along the optical axis z. Our crossed trap is created by ODT1 (I1(y, z, x)) pointing along
the x-direction and by ODT2 (I2(x, z, y)) perpendicular aligned to the first beam along
the y-direction92. The trapping potential created by both beams can be described in the
harmonic approximation by

Utrap(x, y, z) ≈ − Re {α}
ε0πc

(
P1

w1,yw1,z
+ P2

w2,xw2,z

)
︸ ︷︷ ︸

U0

+m2 (ω2
x + ω2

y + ω2
z) , (5.17)

with the adapted trap frequencies in the corresponding directions ωx, ωy, ωz. See Ref.
[166] for their exact expressions. For a non-radially symmetric trap two trap ratios can be
defined along the x and y axis λx,y = ωz/ωx,y.

In general, the trapping potential is modified by gravity and by any magnetic gradient
which results in an additional force acting on the strongly magnetic atom. Especially, the
potential in z-direction is lowered by gravity. We have installed additional gradient coils
to be able to compensate for gravity, see section 4.4. The effective trapping potential Utrap

created by the optical dipole potential Udip is superimposed by the gravitational potential
Ugravity and modified by any further magnetic gradient Umag. It can be calculated as

Utrap(x, y, z) = Udip(x, y, z) + Ugravity(x, y, z) + Umag(x, y, z). (5.18a)

In the z-direction one obtains:

Utrap(z) = Udip(z) +mgearthz + µmBgrad(z) , (5.18b)

with the magnetic moment µm of the atom, the earth gravitational constant gearth and
magnetic gradient field Bgrad created by the gradient coils. For low laser powers gravity
tilts the trapping potential and the effective trapping depth is strongly reduced. The
gradient coils can be used to compensate gravity as shown in Figure (5.5). On the other
hand the gradient coils can also be used to lower the trap depth in a controlled way

92in Lab coordinates, see Figure (4.2).
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without changing the trap frequencies significantly. This can be used for a more efficient
forced evaporative cooling process [163].

Fig. 5.5, Effective trapping potential in the vertical direction: Gravity strongly
modifies the trapping potential and lowers the trap depth to Ueff . Using the
gradient coils we can externally control the trap depth while only changing
weakly the trap frequencies.

In our experiment we use different dipole traps for different purposes. To transport
the atoms from the MOT chamber to the science cell we create an ODT by a fiber laser
operating at a wavelength of λ = 1070 nm. Subsequently, we perform evaporative cooling
in a crossed ODT, created by two laser beams at a wavelength of λ = 1064nm. And
finally a laser operating at a wavelength of λ = 532 nm is used to create tailored potentials
together with the EOD system. As the polarizability for Dy was not known, we first used
Eq. (5.11a) to calculate the trap depth based on spectroscopy data, summarized in Table
(5.1). Due to its complex electronic structure the energy level spectrum of Dy is quite rich.
In addition, many transition properties are not known, hence the obtained polarizability is
only a rough estimate. Furthermore, we experimentally determined the trap frequencies of
the different traps and used the above mentioned equations to estimate the polarizabilities
for the different wavelengths. We obtained a value of Re {α} = (102 ± 20) a.u.93 for
the polarizability of 164Dy at 1070nm by measuring the trap frequencies in the single
transport beam [166]. Note that the measured polarizability depends strongly on the
measured beam waist (Re {α} ∝ w−4). To determine the polarizability at 1064nm we
measured the trap frequencies for different powers of ODT1 and ODT2 in the crossed
trap. By minimizing the standard deviation of the fitted polarizability we obtain the
polarizability of Re {α} = (136± 15) a.u at 1064 nm. For the polarizability at 532 nm we
only have one trap frequency measurement, therefore we can only roughly estimate the
polarizability to Re {α} ≈ 11 a.u.

93Atomic unit of electric polarizability is 1 a.u. = 1 (e2a2
0)/Eh, with Eh = 4.360 × 10−18 J the Hartree

energy, a0 = 0.05297 nm the Bohr radius and e = 1.602× 10−19 C the elementary charge.
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wavelength calculated measured relative deviation
1070 nm 167 a.u. (102 ± 20) a.u. 39%
1064 nm 167 a.u. (136 ± 15) a.u 19%
532 nm 350 a.u. 11 a.u. -

Tab. 5.1, Comparison of measured and calculated polarizabilities for different trapping
wavelengths.

5.3.2 Optical Transport

The transport beam is created by the tightly focused light of a fiber laser to a minimal
waist of 37.3µm. Due to thermal lensing the waist is increased to w0 = 40.5µm for laser
powers P > 40W. The maximum laser power at the atoms is P = 72W which results in
a maximal trap depth of

U0 = Re(α1070)P
ε0πcw2

0
≈ 640µK . (5.19)

While the potential of the ODT is deep enough to trap the atoms, the spacial overlap
between the compressed MOT (1/e2 radius around 400µm) and the ODT is too small
to efficiently transfer the atoms to the ODT. As the last lens of our transport beam is
mounted on an air bearing translation stage we can slightly move the focal position of
the transport beam by ∆x = 15 mm ≈ 3 zR which leads to an increase of the waist to
w(∆x) ≈ 170µm. Hence, the trapping area is enlarged by a factor (170/40.5)2 ≈ 17.6, but
also the potential depth is decreased by the same amount. After the compression stage
the MOT and the ODT are superimposed for 120ms to transfer the atoms to the ODT.
To optimize the transfer efficiency the position of the compressed MOT can be slightly
shifted with respect to the ODT position by using the compensation coils. In addition,
the transferred atom number depends strongly on the polarization direction of the linear
polarized trapping light. A possible explanation for this behavior is the dependency of the
heating rate Γsc on the light polarization with respect to the quantization axis as it was
theoretically shown for Er atoms [179]. After the transfer we switch-off the MOT fields
and beams. As the atoms are trapped in an out-of-equilibrium position of the optical
potential we have to move the focus position of the transport beam in 47ms back to the
zero position such that the potential minimum is at the prior MOT position. Due to the
initial potential energy at the loading position and due to the compression the sample
heats up94. In average we can load around 15× 106 atoms into the transport beam.

By moving the last lens (f = 1292mm) of the transport beam we transport the
atoms over a range of 375mm from the MOT chamber to the science cell within 1.9 s.
The full laser power of the fiber laser is needed to achieve a transport efficiency close
to 100 %. The trapping frequency in the axial direction is only 8Hz which limits the
maximum acceleration of the translation stage. In Figure (5.6)(a) we show the trapezoidal
94Another method to increase the loading efficiency without showing strong heating effects is to enlarge
the ODT potential temporally by fast scanning the laser beam horizontally using an AOM [180].
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acceleration profile of the translation stage. This results in a velocity profile consisting of
two linear ramps smoothed by a quadratic behavior at the beginning and at the end. The
efficiency of the transport strongly depends on the magnetic offset fields applied during
the transport. The Zeeman splitting has to be larger than the thermal energy of the atoms
to prevent dipolar relaxation processes. We get the highest efficiency when we apply a
magnetic offset field of 1.4G in the y-direction. We typically end up with N = 10× 106

atoms at a temperature of T = 120µK in the science cell. This is mainly limited by the
lifetime of the atoms in the trap. A faster transport would increase the atom number but
also induces sloshing of the atoms in the trap. We also see that during the transport the
atoms undergo plain evaporation, see Figure (5.6)(b)

Fig. 5.6, Optical transport: (a) To transport the atoms we choose a trapezoidal
acceleration profile (blue) with a maximum acceleration of 535 mm/s2. The
maximum velocity (green) of 390mm/s is reached after 0.95 s and results in
a s-curved position profile (red). (b) Lifetime measurement of the trapped
atoms in the MOT chamber (red) and in the science cell (blue). The lifetime
in the MOT chamber and in the science cell is 20 s and 16 s, respectively. The
temperature dependence on the holing time is shown in the inset. During the
transport time the atoms undergo plain evaporative cooling.

After the atoms are transported to the science cell, forced evaporative cooling has
to be performed to reach quantum degeneracy. Unfortunately this is not possible in
the transport beam as the mode structure of the laser induces heating. Thus, we have
to transfer the atoms from the transport beam in a second ODT created by a laser
with a narrow linewidth. Both beams use the same path (see Figure (4.6)) and have
approximately the same beam waists to maximize the spacial overlap. The transfer process
is done by linearly ramping down the power of the transport beam to 20 % of its initial
power in 100ms and afterwards ramping up the ODT1 power in 100ms. Thereby we can
transfer about 90 % of atoms from the transport beam into ODT1. The lifetime in ODT1
is increased to 25 s, which is still shorter than we expect from our background pressure
< 10−11mbar. One possible loss mechanism could be the micro motion of the translation
stage, thus in a new setup also ODT1 is guided via a high-power fiber to the science cell
and overlapped with the transport beam directly in front of the glass cell.
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5.3.3 Doppler Cooling in the Dipole Trap

For evaporative cooling, a high collision rate is essential. We use a second dipole trap
ODT2 superimposed perpendicular to ODT1 to create a crossed ODT. Here, the density
and thus the collision rates are increased. We ramp up ODT2 simultaneously with ODT1.
But the atoms are too hot to be trapped in the crossed region. By applying a further laser
cooling step using σ− polarized 626 nm light we can cool the atoms in the crossed trap.
Our approach is inspired by the Doppler cooling phase which was applied for magnetically
trapped Cr atoms [146].

Fig. 5.7, Doppler cooling in the ODT: (a,d) Atom number, (b,e) temperature and (c-
f) phase-space density of ODT1 (a-c) and of the crossed ODT (d-f) as a function
of the 626 frequency detuning δ after the Doppler cooling. At δ = −Γ626/2
the atom number of the crossed ODT has its maximum and its temperature
is minimal without loosing many atoms from ODT1. The increase in atom
number in (a) is caused by the fact that the atoms which are far out in the
wings of the ODT (not recordable by the image) move to the center of the trap
and the reduction of evaporation due to the cooling.

To perform Doppler cooling in the crossed ODT the atoms are illuminated for 500ms
with the cooling light (beam waist w0 = 3.0mm) along the y-direction and a magnetic
offset field of 2.3G is applied. The atoms are Doppler cooled by the light only in one
direction, but due to the collisions the whole sample equilibrates at a lower temperature.
In Figure (5.7) the effect of the cooling light for the ODT1 (a-c) and for the crossed ODT
(d-f) for different cooling powers is shown95.
95We also actively stabilize the 626 nm Doppler cooling power which increases the stability of the system.

87



Without the cooling light we have N = 4× 106 atoms in ODT1 at around T = 30µK.
By applying the additional Doppler cooling procedure we reach temperatures below 20µK
without loosing many atoms. The lowest temperature is obtained at a frequency detuning
of δ = −Γ626/2, which is in nice agreement with the textbook prediction of Doppler
cooling [170]. But even more important is that due to the Doppler cooling the atom
number in the crossed ODT is increased to NcODT = 700× 103 atoms.

The efficiency of a cooling method can be analyzed using the factor

χ = − log(Dk+1/Dk)
log(Nk+1/Nk)

, (5.20)

which compares the increase in phase-space density Dk+1/Dk per atom number loss
Nk+1/Nk in the cooling step k → k + 1. For the Doppler cooling the used intensity and
the frequency detuning has to be chosen in a trade-off between an increase in phase-space
densities and loss of atoms. Using Eq. (5.20) we can estimate a cooling efficiency of χ ≈ 15
for the Doppler cooling in ODT1. The lowest temperature we can reach is around 16µK
which is far above the Doppler limit of TDoppler = 3.3µk. We found that the light shift of
the excite-state of the 626 nm transition is reversed to the ground-state shift which means
that we can cool the hot atoms in the wings but by decreasing the frequency detuning we
heat up the atoms trapped in center of the potential. Hence, to further cool the atoms we
have to use the standard approach of forced evaporative cooling described in the next
section.

A cooling method, which has a higher efficiency than forced evaporative cooling and
no Doppler temperature limit, is demagnetization cooling. Here, due to inelastic dipolar
collisions the atom can transfer its thermal energy into Zeeman energy by populating a
higher Zeeman level, thereby the sample cools down. Using an optical pumping transition
(in Dy the 684 nm transition would be a good choice) the atoms can be transferred back
to the initial stage, leaving the temperature nearly unchanged. If the temperature of the
sample is lower than the Zeeman energy the cooling stops and the Zeeman splitting has
to be lowered using an external magnetic offset field and the cooling cycle can start again.
This was already studied in Cr where a cooling efficiency of χ > 11 was observed and will
be soon implemented in our setup [73, 181].

5.3.4 Forced Evaporative Cooling of Bosonic and Fermionic Dy

To finally reach a degenerate quantum gas we have to use the well established method of
forced evaporative cooling [15]. The basic idea of forced evaporative cooling is to remove
the high-energy atoms from the thermal cloud which results in a lower temperature of the
sample due to elastic collisions among the remaining atoms. An atom in an ODT can leave
the trap if its total energy Ekin + Epot exceeds the trap depth U0 ∝ P (see Eq. (5.14b)).
For a constant trap depth the evaporation rate however stagnates and the trap depth has
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to be lowered. In a dipole trap evaporative cooling can be forced by reducing the laser
power slowly. Unlike in MTs where the trap depth can be lowered by a RF-knife also
the trap frequencies decrease as they are related to the trap depth, see Eq. (5.15). Hence,
density and the elastic collision rate are reduced for lower trap depths.

Fig. 5.8, Forced evaporative cooling: The trap parameters (a-c) and the evolution
of the atom number (d), the temperature (e) and the peak density (f) of the
evaporation ramps are presented. The shaded area indicates the Doppler cooling
phase. After 9.4 s we obtain a BEC in a radially symmetric trap with a trap
ratio of λ = 2.7.

The presented results in this section are for traps created by ODT1 with (w0,y, w0,z) =
(40, 35)µm and ODT2 to (w0,x, w0,z) = (105, 36)µm. Typically we start with NcODT ≈
900 × 103 atoms at a temperature of TcODT ≈ 20µK in the crossed region and still
NODT ≈ 4000 × 103 atoms are present in the wings of ODT1. By forced evaporative
cooling we have to increase the phase-space density from D = 9 × 10−4 four orders of
magnitude to finally reach the BEC transition (D = 2.6). We reduce the power of ODT1
in an exponential-like piecewise linear ramp. After the second ramp we also decrease
the power of ODT2 to reduce the trap depth. The time duration of each linear ramp is
optimized by maximizing the cooling efficiency χ (Eq. (5.20)). During the evaporation
ramp we apply a magnetic offset field of B = 1.25G pointing in the z-direction. With
this field we are not in the vicinity of any Feshbach resonance (see section 6.1). In Figure
(5.8) the experimental sequence in the science cell with the typical trap parameters and
achieved values of the atom number, temperature and peak density are shown. For the
last ramps the powers of ODT1 and ODT2 have to be adjusted such that a trap ratio of
λ > 2 is obtained to be in the stable region of the stability diagram of a Dy BEC (see
section 3.4.4). After around 9 s we observe the onset of the phase transition in a oblate
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trap with a final trap ratio λ = fz/
√
fxfy = 2.7. Here, the symmetry axis is defined by

the external magnetic field, which points in z-direction.

Figure (5.9) shows the increase of the phase-space density. The cooling efficiency can be
analyzed using a double-logarithmic plot of the phase-space density over the atom number.
The slope of the graph is directly related to the efficiency χ. The overall efficiency is
indicated by the linear fit resulting in an efficiency of χ = 2.9. The sudden initial increase
of the phase-space density is due to the Doppler cooling in the crossed ODT with 626 nm
light.

Fig. 5.9, Cooling efficiency: (a) Increase of phase-space density (PSD) of each cooling
step. (b) To analyze the cooling efficiency the phase-space density is plotted
over the atom number. The slope of a linear fit according Eq. (5.20) (blue line)
gives the overall efficiency χ = 2.9 of the cooling process.

Evaporative cooling of Spin-polarized Fermionic Dy Atoms

The elastic cross-section of two colliding dipolar atoms is modified by the DDI as we
have seen in section 3.1.2. For fermions, in contrast to non-dipolar gases the elastic
cross-section does not vanish for low temperatures, it even tends to a constant value. This
opens the possibility to evaporative cool polarized dipolar fermions. In the following we
present the first attempts of forced evaporative cooling of the fermionic 161Dy isotope in
our apparatus. To have a high collision rate we need a tighter trap, which we can realize
by changing the minimal waist of ODT1 to (w0,y, w0,z) = (40, 35)µm and of ODT2 to
(w0,x, w0,z) = (30, 30)µm.

When the thermal energy (kBT ) of the fermionic gas, reaches the Fermi energy EF
a smooth crossover to quantum degeneracy appears. The corresponding temperature is
called Fermi temperature [25]

TF = EF
kB

= ~ω̄(6N)1/3

kB
, (5.21)
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with ω̄ the mean trap frequency and N the particle number. For temperatures T < TF
the gas is quantum degenerated.

In an optimized sequence we start with 30× 106 161Dy atoms in the compressed MOT
and we transport in 1 s N = 1500× 103 atoms to the glass cell. The cooling procedure
in the science cell is the same as for the bosons. We first apply the Doppler cooling and
further cool the atoms by forced evaporative cooling. In Figure (5.10) we present the
obtained values. In summary, we can reach a degenerate Fermi gas with T/TF ≈ 0.5 and

Fig. 5.10, Cooling efficiency of the fermionic 161Dy isotope: To cool the fermionic
isotope we use in principle the same methods as for the bosons. The trap
parameters are shown in panel (a,b). In panel (c-f) one can see that at the
beginning the cooling efficiency is sufficient but as soon as the density drops
the elastic collision rate decreases and the cooling becomes very inefficient.

N ≈ 10× 103 atoms. The overall cooling efficiency is at the moment not very good as the
collision rates are already very small at the beginning. To increase the collision rate one
has to use a even tighter trap. For example the Innsbruck group uses a crossed ODT with
beam waists of 15µm and 33µm for the trapping beams and obtains cooling efficiencies
of χ = 3.5. They are able to reach T/TF = 0.11 with N = 3× 104 Er atoms [23].

91



5.4 Bose-Einstein Condensation of Dysprosium Atoms

Using the evaporative cooling method we finally reach the phase transition to a Dy
BEC. At temperatures < 200 nK we see the first indication of Bose enhancement, which
is a slight increase in the density distribution caused by the shift from the Maxwell-
Boltzmann distribution towards zero energy close to the critical temperature. Reducing
the temperature further we observe the appearance of a narrow peak in the center of the
density distribution which we extract from TOF images taken after tTOF = 20ms96. The
density distribution is well described by a bimodal distribution consisting of a Gaussian
background accounting for the thermal atoms and the quadratic behavior within the TF
approximation of the condensed atoms. Figure (5.11) illustrates the phase transition to a
164Dy BEC.

Fig. 5.11, Phase transition to a 164Dy BEC: Optical density profiles (top) and cor-
responding horizontal cuts (bottom) extracted from absorption images taken
after 20ms of expansion. (a) At a temperature of 240 nK the density profile of
the atom cloud (Nth = 270× 103) is well described by the Maxwell-Boltzmann
distribution. (b) Decreasing the temperature further (T = 180 nK) the onset
of the condensation appears (Nth = 170× 103). The density distribution can
now be described by a bimodal distribution (red). (c) Finally, we obtain
NBEC = 14 × 103 condensed atoms with still Nth = 30 × 103 in the thermal
cloud. The temperature of T = 50 nK is obtained by a Gaussian fit to the
wings of the distribution (blue).

96The cycle time to produce the Dy BEC is around 16 s.
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By lowering the trap depth we can increase the BEC atom number as expected. But
the condensed atom number saturates at a value of around N = (10− 15)× 103 despite
the fact that many atoms are still present in the thermal cloud. The calculated trap
frequencies after the last ramp are (fr, fz) = (48, 132)Hz, which corresponds to a mean
trap frequency of ω̄ = 67Hz and a trap ratio of λ = fz/fr = 2.75.

To study the limitation of the BEC atom number we change the trap to be more oblate.
This we can do be changing the waists of the ODT1 to (w0,y, w0,z) = (36, 36)µm and
ODT2 to (w0,x, w0,z) = (150, 30)µm. A higher BEC atom number N ≈ 22× 103 can be
obtained using a trap with a calculated trap frequencies of (fr, fz) = (50, 248)Hz leading
to a trap ratio of λ ≈ 5.

In section 3.4.4 we estimated the stability of a Dy BEC using the Gaussian ansatz.
Figure (5.12) shows a zoom of the stability diagram. In addition, the results of a numerical
calculation is shown97. Here, the stability border is shifted to higher trap ratios. Our
finding of the reduced BEC atom numbers in a trap with λ = 2.75 compared to a trap with
λ = 5 can be explained by the fact that the background scattering length abg is smaller
than 100 a0. Based on our obtained BEC atom numbers for different trap geometries we
can estimate the background scattering length of the 164Dy isotope to 86 a0 < abg < 93 a0.

Fig. 5.12, Stability diagram of a 164Dy BEC: Critical scattering length acrit as a
function of the trap ratio λ and for different atom numbers. The solid lines
show the results of a variational calculation for a mean trap frequency of
ω̄ = 2π· 67Hz. The colored dashed lines represent the solutions of a full
numerical simulation of the GPE. The trap ratio of λ = 2.75 is highlighted by
the vertical black dashed line.

Recently, we were also able to condense the 162Dy isotope. For this isotope we used
the same trap configuration and cooling procedure as descried in the previous sections

97 GPE simulations were done by Damir Zajec.
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only the final evaporation ramp is slightly different. The final trap frequencies in the
crossed ODT are fx = fy = 42Hz and fz = 143Hz resulting in a mean trap frequency
of ω̄ = 2π· 63Hz with a trap ratio of λ = fz/

√
fxfy = 3.4. In this configuration we

obtain up to NBEC = 30× 103 condensed atoms with Nth = 30× 103 thermal atoms at
a temperature of T = 60nK. Furthermore, using similar evaporation ramps as for the
164Dy isotope we observe a more efficient forced evaporative cooling behavior of the 162Dy
isotope. Both the higher BEC atom number and the more efficient evaporative cooling
indicate a larger scattering length a of the 162Dy compared to the 164Dy isotope which
was also observed in Ref. [182].

We further studied the stability of a Dy condensate by changing the polarization
direction of the dipoles. Recalling Eq. (3.16c) a quantum gas is strongly dipolar if the
dipolar length add is larger than the scattering length a. As mentioned earlier we can
observe a 162Dy condensate with NBEC = 30× 103 atoms in a trap with a trap ratio of
λ = fz/

√
fxfy = 3.4. Here, the dipoles are aligned by an external magnetic field B along

the z-direction. If we tilt the magnetic field by 90◦ such that the field points in y-direction
the trap ratio along the new polarization axis changes to λ = fy/

√
fxfz = 0.54 and we

are in the instability region for a strongly dipolar BEC. In concordance to this prediction
we cannot observe a condensate if the magnetic field is tilted in the y-direction, only
Nth = 15× 103 thermal atoms are left. This has been also observed for the 164Dy isotope
in Ref. [13].

Based on our previous analysis we can estimate the background scattering length
of the 164Dy and the 162Dy isotope within some limits. The background scattering
length of 164Dy isotope is between 86 a0 . a164

bg . 93 a0 and of the 162Dy isotope it is
a164

bg . a162
bg . add. Most recently the background scattering length abg = 92(8) a0 for

164Dy and abg = 112(10) a0 for the 162Dy isotope were measured by cross-dimensional
rethermalization [45]. The measured values are in good agreement with our findings
presented in this section. Using the measured values for the background scattering length
together with the dipolar length of add,Dy = 134 a0 we can calculate the relative dipolar
strength for both isotopes to ε164

dd = 1.47(14) and ε162
dd = 1.20(10). Hence, the element

Dy is well suited to study strongly dipolar effects even without the usage of Feshbach
resonances.

5.5 High-resolution Image of a Dipolar BEC

To extract the density profile n(x, y, z) of the atomic cloud we expose the atoms with
421 nm light and register the intensity profile I(x, y, z) by a CCD camera. A standard
method in quantum gas experiments is the absorption imaging technique. Here, the
intensity of the probe light with frequency ωp passing through the atomic cloud is reduced
by

I(x, y, z) = I0e
−σ(ωp)

∫ x

−∞ n(x′,y,z)dx′
, (5.22)
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which is equal to Beer’s law I(x) = I0e
−ODx for a constant density n and with the optical

density OD. For low intensities (I � Isat) the light scattering cross-section of resonant
imaging light can be estimated with

σ(ωp) = 6πc2

ω2
p

. (5.23)

As a result the registered intensity distribution by the CCD camera after passing the
atomic cloud contains information on the column density of the atoms

n(y, z) =
∫ ∞
−∞

n(x′, y, z)dx′ = 1
σ(ωp)

OD . (5.24)

To be independent of the CCD camera properties we take three different pictures. The
first image with the intensity profile Ĩ1 is taken with atoms, the second one with Ĩ2 without
atoms and finally the third one with Ĩ3 without the resonant probe light. Based on this
the optical density can be calculated by [166]

OD = ln
(
Ĩ2 − Ĩ3

Ĩ1 − Ĩ3

)
. (5.25)

Due to the limited dynamic range of the CCD camera low intensity absorption imaging is
limited to OD ≈ 3. To extract the density profile of a BEC we usually take an image after
a long TOF of around tTOF = 20ms, such that the remaining thermal cloud is expanded
and the bimodal distribution is clearly visible. Thus, the optical density is usually on the
order of OD ≈ 1.

Because of the much higher in-trap densities absorption imaging cannot be used to take
in-trap images. However, we can use the so called phase-contrast polarization imaging,
which was first introduced in Ref. [183]. It relies not on the absorption of the atoms but
on the dispersive phase shift to extract the optical density. Here, the atoms are exposed
with linear polarized light. In addition, an external magnetic field parallel to the imaging
axis is applied which splits the linear polarization into equal parts of σ+ and σ− light.
Due to the different Clebsch-Gordan coefficients only the σ− part is affected by the atoms.
After the atomic cloud a linear polarizer with an angle θ to the initial linear polarization
combines the different circular polarizations and the resulting intensity depends on the
dispersive phase shift caused by the atoms. To extract the optical density also three
images are taken and one can calculate [166]

OD = 8
(
δ

Γ

)θ − arccos


√√√√ Ĩ1 − Ĩ2

Ĩ2 − Ĩ3
+ 1 · cos (θ)


 , (5.26)

where δ is the frequency detuning from resonance of the imaging light and Γ the natural
transition rate of the used transition.
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Fig. 5.13, In-situ image of a Dy BEC: (a) Phase-contrast polarization image of a
nearly pure BEC with NBEC = 17× 103 atoms. Here, the imaging detuning
is δ ≈ 35 Γ and the angle of the polarizer is θ = 15◦. In (b-c) we show the
integrated density distribution in y- and x-direction, respectively. From the
bimodal fit (red) one can see that the thermal fraction (blue) is quite small
and the condensate shows the well known parabolic behavior.

Figure (5.13) shows an in-situ image of an almost pure Dy BEC with NBEC = 17× 103

atoms98. In-trap images allow to extract directly the BEC properties like the TF radii from
the pictures, which can be compared to full numerical simulations of the GPE. Ongoing
measurements try to extract the scattering length a from the TF radii. This would be a
direct method despite the standard technique of cross-dimensional rethermalization where
the elastic scattering cross-section is determined. Furthermore, the possibility to take
in-trap images is currently used to study the formation of self-organized density patterns.
So far the phase-contrast imaging is destructive, however using further detuned imaging
light of around δ ≈ 300 Γ would allow to take multiple images from the same atomic
sample to investigate dynamic processes of the degenerate quantum gas.

Conclusion

In this chapter we presented our procedure to create a degenerate strongly dipolar quantum
gas of Dy atoms. We start with a MOT operating at the 626 nm transition which provides
good starting conditions to load the atoms in our ODT. After transporting the atoms
to the science cell we perform forced evaporative cooling to quantum degeneracy. By
analyzing the saturation of the BEC atom number together with a full numerical simulation
of the GPE we could estimate the background scattering length of the 164Dy isotope
to be between 86 a0 . a164

bg . 93 a0 and of the 162Dy isotope a164
bg . a162

bg . add. This
constrains the final trap ratio to λ > 4 to be able to create a stable condensate with
N ≈ 20× 103 of 164Dy atoms. Furthermore, we are able to cool fermionic 164Dy atoms to
quantum degeneracy by dipolar collisions. The cooling efficiency of the fermions could be

98To have a higher BEC atom number the image was taken in the vicinity of a Feshbach resonance at
65.5G, see section 6.3.
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increased by using tighter beams of the ODT such that the collision rates are higher. In
addition, we have shown a first in-situ picture of a dipolar condensate which allows to
study directly new interesting dipolar phenomena like the Rosensweig instability. To have
additional control of the internal properties of the dipolar atoms we study in the next
chapter Feshbach resonances.
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6 Feshbach Spectrum of Dysprosium

Two-body interactions play an important role in the properties of a degenerate quantum
gas. In the case of magnetic Dy the interactions consist of the long-range DDI and the
short-range dispersion interaction. We have seen in section 3.1.2 that at low temperatures
the short-range potential can be replaced by the contact interaction pseudo-potential,
which is fully determined by the scattering length a. Magnetically tunable Feshbach
resonances, introduced in section 3.2.1, are an important tool to externally control the
contact interaction strength and thereby changing the properties of the dipolar system. In
this chapter we present the study of Feshbach resonances of the 164Dy and 162Dy isotopes
based on atom-loss spectroscopy (section 6.1). The complexity of the molecular potentials
are reflected in the observation of a dense Feshbach spectrum. In section 6.2 we apply
a statistical analysis of the spacing between resonances which shows that the resonance
positions are strongly correlated and coupled to each other. In addition, we observe broad
loss features in this dense set of narrow resonances. The states corresponding to the broad
features are decoupled from the states causing the many narrow resonances. Further
analysis allows us to assign the broad features to textbook-like s-wave halo states, see
section 6.3.

6.1 Feshbach Spectroscopy for Dysprosium Atoms

Due to the high number of BO potentials of Dy, theoretical calculations are so far not able
to predict the positions and widths of its Feshbach resonances. However, the calculations
show that the resonances are induced by the anisotropic interactions of Dy, see section
3.2.2. Feshbach resonances in Dy have been already studied in the group of B. Lev up to a
magnetic field of 6G [184]. In this section we present Feshbach spectroscopy measurements
in a magnetic field region from 0G to 600G.

6.1.1 Field Calibration

To study magnetic Feshbach resonances the magnetic field has to be known precisely,
thus we have to calibrate our Feshbach coils using RF-spectroscopy99. This is done by
applying a constant RF radiation for 500ms with a frequency between 25 and 1000MHz
and varying the magnetic field value by changing the current of the coils. If the Zeeman
splitting ∆EZ = gJµB = 1.7377MHz/G matches the energy of the applied radio-frequency,
the atoms are transferred to higher mJ states. In the energetically higher states they
undergo dipolar relaxation processes which heat up the sample and the atoms are lost
from the trap. In Figure (6.1) we show the measured data for the calibration of the high
field coils. We find that the field up to 600G depends linearly on the applied current with

99RF source: Keithley Instruments, Inc: 3390 Function Generator, Amplifier: Mini-Circuits: ZHL-2-W
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a slope of 1.76G/A. The same method was used to calibrate the second pair of Feshbach
coils, which we used to do the high-resolution spectroscopy up to a magnetic field of 70G.

Fig. 6.1, Feshbach field calibration: We perform RF-spectroscopy on an atomic
sample of typically N = 8 × 105 atoms at a temperature of T = 3.5µK to
calibrate the homogenous magnetic field created by the Feshbach coils. (a)
A linear fit (solid line) to the measured data points (cycles) gives a slope of
1.76G/A. If the applied RF radiation matches the Zeeman splitting the atomic
sample is heated up (b) and strong atom losses occur (c). To extract the
resonance value we fit a Gaussian (solid line) to the temperature and atom loss
feature.

6.1.2 Atom-loss Spectroscopy

To detect the position of the Feshbach resonances we used the well-established method of
atom-loss spectroscopy [80]. This is done by studying atom losses for given wait times as
a function of an applied magnetic field. Locally, the time evolution of the density n is
given by

ṅ = −L1n− L2n
2 − L3n

3 , (6.1)

with L1, L2 and L3 the one-, two-, and three-body loss coefficients, respectively. The one-
and two-body losses are in general very slow and can be neglected for the holding times
needed to perform atom-loss spectroscopy to detect Feshbach resonances. To describe
atom losses we have to integrate Eq. (6.1) over the trap volume:

Ṅ = −L3
〈
n2
〉
N , (6.2)

where 〈n2〉 = 1/N
∫
n3(r) d3r is the mean square density.

On a Feshbach resonance the three-body losses are amplified due to the coupling between
the atomic-threshold state and a molecular state. In general the three-body loss rate scales
as L3 ∼ a4, with a being the s-wave scattering length [80]. Because of the divergence of
the scattering length close to the pole of a Feshbach resonance, see Figure (3.4)(b), the
field location of maximum atom loss can be identified as the position of the Feshbach
resonance.
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We perform atom-loss spectroscopy in the crossed ODT in the science cell. To prepare
a sample of Dy atoms at a temperature of choice we use the methods described in the
previous chapter 5. The final temperature is controlled by adjusting the beam powers. We
recompress the trap to reduce residual evaporation induced by increased elastic collisions.
This also minimizes a weakening of the trap confinement caused by a residual field gradient
created by our Feshbach coils. The recompression is done by increasing the ODT beam
powers by a factor of approximately 2 in 100ms. Finally, we increase the bias magnetic
field in 15ms to the desired target value. After a given wait time at a constant magnetic
field we record the atom number by standard TOF absorption imaging. See Figure (6.2)
for an example of the atom-losses in dependence of applied magnetic field close to a
Feshbach resonance.

Fig. 6.2, Atom-loss spectroscopy: The normalized atom number is plotted versus
the magnetic field with a resolution of ∆B = 14.5mG. To detect a Feshbach
resonance we record the atom number for a given wait time at different magnetic
field values. Due to the resonantly increased three-body loss rate at a Feshbach
resonance we can identify the field with maximum atom loss as the Feshbach
resonance position (indicated with red arrows). For the Feshbach spectroscopy
we average the data of three different measurements (blue, red, green circles).
Data points are taken in a random order. In this scan we can clearly observe
three loss features.

We use different starting conditions and wait times for the Feshbach spectroscopy
data sets presented throughout this chapter. The initial conditions for the 164Dy isotope
are N0 = 1.8 × 105 atoms at a temperature of T0 = 2.4µK. For the 162Dy isotope the
initial conditions are N0 = 1.0 × 105 and T0 = 1.5µK. In Figure (6.3)(a) we show the
atom-loss spectroscopy data for the 164Dy as well as for the 162Dy isotope with a magnetic
field resolution of ∆B = 500mG and a wait time of 2 s. Figure (6.3)(b) shows the
high-resolution atom-loss spectroscopy of the 164Dy isotope as a function of magnetic field
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between B=0 to 70G with ∆B = 14.5mG resolution and a wait time of 500ms. Here,
the starting conditions are N0 = 250× 103 atoms and temperatures of T = 600 nK.

In the presented spectra of both isotopes we see an irregular pattern of several broad
features appearing on top of a dense set of narrow resonances. For the 162Dy isotope we
can identify distinct broad loss features at a magnetic field of around 141G and 160G and
for the 164Dy isotope at 80G and 180G. In the high-resolution scan of the 164Dy isotope
we can observe 309 resonances up to a magnetic field of 70G. Most of the features have a
width of only a few mG. In the following sections we study these narrow resonances in
more detail using a statistical approach based on the RMT which is well known in the
framework of nuclear physics. The analysis of the broad features is presented in section
6.3.

6.2 Quantum Chaos in Ultra-cold Er and Dy Collisions

In this section we present the results of our joint cooperation with the theory group of
S. Kotochigova and the Er group of F. Ferlaino to get more insights in the scattering
behavior of ultra-cold Er and Dy atoms. The element Er also belongs to the lanthanides
and has a similar anisotropic electronic configuration as Dy. It has a magnetic moment of
7µB and a large electronic and total angular momentum of L = 5 and J = 6, respectively.
Their bosons have no hyperfine structure, whereas the fermion have additional hyperfine
levels due to a nuclear spin of I = 7/2 [84]. Our investigation is based on the statistical
analysis of the Feshbach resonance positions for magnetic fields from B = 0G to 70G for
both elements. In addition, the theoretical study of a microscopic coupled-channels model
leads to an understanding of the origin of the observed resonance distribution.

6.2.1 Statistical Analysis of the Resonance Position

In this section we present the analysis of the Feshbach spectrum observed experimentally
as well as obtained from theoretical calculations of Dy and Er collisions according to RMT.
Note that we modify the RMT methods presented in section 3.3.2 to be able to analyze
the Feshbach resonance spectra as it was introduced in [84, 107]. To use the universal
statistical methods suggested by RMT we first have to adimensionalize the spectra using
the mean resonance density ρ. Therefore, we construct the staircase function [119]:

N (B) =
∫ B

0
dB′

∑
i

δ(B′ −Bi) , (6.3)

which counts the number of resonances below a magnetic field value B. In Figure (6.4)(a)
the staircase functions for both elements are shown. Both species are fitted by a linear
dependence. Their slopes correspond to the resonance densities of ρ = 4.3 G−1 for
164Dy, ρ = 2.7 G−1 for 168Er at T = 350nK, ρ = 3.4 G−1 for 168Er at T = 1, 4µK and
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ρ = 25.6 G−1 for 167Er. The density ρ of Dy is about 50 % higher than for Er caused by a
larger number of collision channels, due to its larger total angular momentum. The much
larger density ρ for the fermionic 167Er isotope is due to its additional hyperfine structure.
The temperature dependence and also the higher density for fermionic than bosonic
isotopes have also been observed in Dy for magnetic fields up to 6G [184]. Recently, the
temperature dependence of the resonance density for 168Er could be explained using a
theoretical model describing the three-body recombination via the formation of a trimer.
It cannot be simply explained in terms of high-partial wave two-body collisions since
the d-wave barrier height Ul=3 ≈ 250µK is well above the temperature of the sample.
Rather, the origin of temperature-dependent resonances lies in the "partial wave" of the
corresponding three-atom entrance channel. Three-body channels with a total orbital
angular momentum of N = 0 show a decreasing recombination rate with temperature,
whereas those with N = 2 show the opposite behavior and are responsible for the vanishing
of resonances with decreasing temperature [51].

Fig. 6.4, Statistical analysis according to RMT: (a) Staircase function for the
number of resonances as a function of magnetic field for 164Dy, 168Er at two
different temperatures and for fermionic 167Er. The dashed lines show linear fits.
The slopes correspond to the mean resonance densities ρ. (b) Number variance
calculated from the experimental Feshbach spectra for 168Er at T = 350nK
(orange line) and 164Dy (blue line) as a function of the scaled magnetic field
interval N = ∆Bρ. The number variance of both species lies between the
variances of an uncorrelated Poissonian (dashed line) and the correlated Wigner-
Dyson (dot-dashed line) distribution.
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To probe long-range correlations we first study the fluctuations in the number of
resonances within a magnetic field interval ∆B. We use a dimensionless description of
the number variance such that we are able to compare both elements with the RMT
prediction, see section 3.3.2. Formally, the number variance is defined by

Σ2 = N2 −N2
, (6.4)

where N = ∑M−1
i=0 Ni/M is the mean value of resonances in a normalized field interval

and N2 = ∑M−1
i=0 N2

i /M its corresponding quadratic mean value. Ni is the number of
resonances in the magnetic field interval [i∆B, (i+ 1)∆B] with i = 0, · · · ,M − 1, such
that M∆B = Bmax = 70G. Thus, the dimensionless value N ≡ ∆Bρ is the magnetic field
interval ∆B rescaled by the mean resonance density ρ. In Figure (6.4)(b) we show the
number variance for Er and Dy as a function of N . For both elements the fluctuations
increase monotonically with ∆B, but less than one would expect for uncorrelated levels
(Σ2 = N). This behavior has already been observed in Er [107], but it is the first evidence
of correlations in Dy and indicates similarities between the species.

To calculate the NNS distribution of the resonance positions one generates a histogram of
the number of resonances within a spacings s between iδs and (i+ 1)δs, where i = 0, 1, · · ·
and the bin size δs ≈ 0.35 . It is usually calculated by δs = ∆imax/(

√
Nres d), where ∆imax

is the maximum difference in position between two neighboring resonances and Nres the
number of observed resonances [84]. Figure (6.5) presents the NNS distribution of the
experimental data for both elements, which have a clear deviation from the Poissonian
PP(s) as well as from the Wigner-Dyson distribution PWD(s). The intermediate behavior
of both species is also indicated by the fitted Brody parameter η, see Eq. (3.26a). The
fitted value is η = 0.45(7) (η = 0.68(9)) for Dy (Er), respectively. In Figure (6.5)(c,d)
we show the magnetic field resolved Brody parameter η(B). For this purpose we fit the
NNS distribution of resonances located in moving intervals [B −∆B/2, B + ∆B/2] with
∆B = 20G. In the case of Dy we find that the Brody parameter η increases linearly with
fields for small B until a saturation value of η ≈ 0.5 for B > 30G is reached. In the
case of Er the Brody parameter fluctuates around ≈ 0.5. Interestingly, the resonance
spectrum obtained from theoretical scattering calculations, see next section, show the
same statistical behavior in the NNS distribution, shown as gray data points and lines in
Figure (6.5). Also the slow increase of the Brody parameter η with increasing magnetic
fields is reproduced by the theory. This indicates that a sufficiently strong magnetic field
is needed to change from an uncorrelated to a correlated system.

6.2.2 Emergence of Chaotic Scattering in Ultra-cold Er and Dy

In the following we use the possibility offered by the calculations to tune the anisotropy
of the interaction potentials to study their effects on the level distribution of the most-
weakly-bound energy levels at B = 0. The full potential can be separated in an isotropic
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Fig. 6.5, Analysis of the NNS distribution: (a) NNS distribution of the Dy Feshbach
resonance spectra (blue markers). The dashed and dot-dashed curves are the
Poissonian and Wigner-Dyson distribution, respectively. The solid line is a
fitted Brody distribution with η = 0.45(7). (b) NNS distribution for different
Er spectra. The solid line is a Brody distribution with η = 0.68(9) fitted to the
Er data at T = 350 nK. (c-d) Magnetic field resolved Brody parameter η(B) as
a function of magnetic field for Dy and 168Er at T = 350 nK. Gray markers and
lines in all four panels are results from the coupled-channels calculation. The
1σ error bars correspond to Poissonian counting errors and the shaded band
are 1σ statistical uncertainties of the fits to the data.

part Ui(r) and an anisotropic part Ua(r):

Uint(r) = Ui(r) + Ua(r) , (6.5)

where the anisotropic part consists of the anisotropic dispersion U∆C6(r) and the magnetic
dipole-dipole UMDD(r) contribution. Thus, we can define

Ua(r) = λ∆C6 U∆C6(r) + λMDD UMDD(r) . (6.6)

The strength of the anisotropic parts can be tuned independently by the parameter λ∆C6

and λMDD. For λMDD = λ∆C6 = 1 the potential corresponds to the real physical potential.
In Figure (6.6)(b) and (d) the energy levels for B = 0 of the most-weakly-bound levels of
164Dy2 with Jtot = 16 as a function of λMDD and λ∆C6 are shown. For λMDD = λ∆C6 = 0
the binding energies are regularly structured and correspond to the ro-vibrational levels
of the isotropic centrifugal potential. For small λMDD and λ∆C6 the degeneracy of the
energy levels is lifted and the levels shift linearly. The linear dependence for increasing
strength of the DDI is approximately valid up to a value of λMDD = 1. Hence, the DDI
does not lead to the observed level distribution. This is confirmed in Figure (6.6)(a) as
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the NNS distribution of the energy levels at λMDD = 1 and λ∆C6 = 0 follows a Poissonian
distribution.
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Fig. 6.6, Anisotropy induced chaos of B = 0 near-threshold bound-states: (b)
Bound-state energies of 164Dy2 with Jtot = 16 as a function of the anisotropy
scale parameter λMDD with λ∆C6 = 0. (a) NNS distribution (red circles) of
the energy levels in panel (b) at λMDD = 1. The solid red line is a Brody
distribution fit to the data and agrees well with a Poissonian distribution. (d)
Bound-state energies of 164Dy2 with Jtot = 16 as a function of the anisotropy
scale parameter λ∆C6 with λMDD = 0. (c) Analysis of the NNS distribution
of energy levels in panel (d) at λ∆C6 = 1. The Brody fit (solid green line) is
close to a Wigner-Dyson distribution. (e) Brody parameter η as a function
of λ∆C6 (green squares) and λMDD (red squares) with ∆λ = 0.2 obtained by
fitting the NNS distribution of the bound-states in panel (b) and (d) to a Brody
distribution, respectively. The horizontal lines at η = 1 and η = 0 correspond to
the Brody parameter for a Poissonian and Wigner-Dyson distribution. The 1σ
error bar contains the statistical and fitting uncertainties. (f) NNS distribution
P (s) of the normalized energy spacing s for individual-J (blue squares) and
combined-J (red circles) at λ = 1. Here, the error bars reflect the 1σ statistical
uncertainties. The gray shaded areas in panel (a), (c) and (f) indicate the
Wigner-Dyson distribution.

On the other hand, for a relatively small anisotropic dispersion strength λ∆C6 ≈ 0.1
levels start to avoid each other. At λ∆C6 = 1 and λMDD = 0 most levels have undergone
multiple avoided crossings and the levels can not be described by a single dominant partial
wave. Analyzing the NNS distributions of the energy levels confirms the non-Poissonian
level spacing, see Figure (6.6)(c). The situation for λMDD = λ∆C6 = 1 has also been
computed and the level distribution is similar to the one shown in Figure (6.6)(c). Note
that similar results have been also obtained for 168Er2.
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In Figure (6.6)(e) we quantify our observation so far by showing the Brody parameter
η extracted from the NNS distribution of the B = 0, Jtot = 16 164Dy2 levels as a function
of λMDD and λ∆C6 . For increasing DDI strength λMDD and no anisotropic dispersion
(λ∆C6 = 0) the Brody parameter is always zero indicating the prevalence of small level
spacings. On the other hand, in the absence of the DDI an increase of λ∆C6 leads to
an increase of η starting for values of λ∆C6 & 0.4. For λ∆C6 = 1 the Brody parameter
saturates at a value of η ≈ 0.7 indicating a depopulation of small energy spacings but a
Wingner-Dyson distribution with η = 1 is not reached.

So far we have analyzed the NNS distribution of the energy levels for a single Jtot = 16.
To obtain the same resonance density as measured experimentally also the coupling to
higher partial waves l, resulting in high Jtot, has to be taken into account. Thus we
compare now the NNS distribution for λMDD = λ∆C6 = 1 and B = 0 of individual Js with
that obtained by combining all bound-states (|E/h| < 3GHz) with Jtot = 16, · · · , 25. For
Jtot > 25 the number of bound-states are too small to calculate the NNS distribution.
Figure (6.6)(f) shows that the NNS distribution of an individual J is non-Poissonian (as
we have seen before). However, the combined-J distribution does follow a Poissonian
distribution indicating that the energy levels of different Js are uncorrelated. This means
that even the Hamiltonians of different Js have the same coupling strength the coupling
between the individual Js leads to uncorrelated eigenenergies.

With increasing magnetic field B the energy levels shift upwards due to the Zeeman
effect and when they reach the threshold at E = 0 Feshbach resonances appear. We
observe that for both species the level structure differs quantitatively in the low field
region (0G to 10G) from the larger field region (50G to 60G), see Figure (6.7). For small
fields the avoided crossings are substantially narrower than for larger B. In addition, at
small fields the levels cluster whereas at higher fields they are more uniformly distributed.
This is caused by the linear increase of the coupling between vibrational levels with
different J as a function of B. This change can also be observed by analyzing the B-field
resolved Brody parameter for the Feshbach resonance locations obtained from the coupled-
channels calculation, see Figure (6.5)(c-d). For 164Dy the theoretical Brody parameter
η(B) increases linearly from zero for small fields and saturates at η(B) ≈ 0.5 for magnetic
fields higher than B = 35G. It shows excellent agreement with η(B) obtained from the
experimental data. For 168Er we see a much faster increase of η(B) at small fields, which
saturates at η(B) ≈ 0.5 for fields B > 20G. Furthermore, the NNS distribution of the
Feshbach resonance location from 0G to 70G agrees nicely with NNS distribution of the
experimental data, shown in Figure (6.5)(a-b). The initial rise of η(B) for both species
is due to the Zeeman interaction which couples the primary uncoupled and randomly
distributed weakly-bound molecular vibrational levels at B = 0 with increasing strength
for increasing magnetic fields. The reason for the saturation of the Brody parameter at
η(B) ≈ 0.5 is not yet explained and is probably determined by the complex interplay
between the Zeeman shifts and anisotropic inter-atomic interaction.
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Fig. 6.7, Near-threshold-bound-states of Dy and Er: Panels (a,c) show the region
between B = 0G to 10G while panels (b,d) show the region between B = 50G
to 60G. The calculations have been performed with λ = 1 for 164Dy2 and for
168Er2. Red crosses indicate the position of Feshbach resonances.

In this section we have experimentally and theoretically studied resonant collisions of
Dy and Er atoms in a magnetic field. By analyzing the NNS distributions as well as
the number fluctuations of the Feshbach resonance positions we could show that both
species show signatures of quantum chaos. The theoretical simulations could show that
the chaotic distribution of resonances emerges due to the anisotropy of the molecular
dispersion interaction caused by their large electron orbital angular momenta. This
finding is unique to colliding magnetic lanthanides and has not been observed in any
other ultra-cold system. Furthermore, we found that a sufficiently strong magnetic field is
necessary to fully develop the chaotic behavior. We could show that the NNS distribution
for Er and Dy is very similar, as it can be expected from their similar ratio between
anisotropic to isotropic dispersion interaction of ∆C6/C6 ≈ 10%.
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6.3 Broad Feshbach Resonances

The atom-loss spectra of the 164Dy and 162Dy isotope (see Figure (6.3)) show both a
few distinct broad loss features with a width of several Gauss. Usually, these broad
features correspond to single broad Feshbach resonances, as it is known for instance for
the elements Na [101], Cs [185] and for the interspecies sample of 6Li-133Cs [186, 187].
However, this is not obvious in Dy due to the dense chaotic Feshbach spectrum. To
analyze the broad loss features in more detail we perform magneto-association to measure
the binding energy of the weakly-bound dimer in dependence of the magnetic field.

6.3.1 Binding Energy Measurements

Our binding energy measurements are focused on the two broad loss features of the 164Dy
isotope around a magnetic field of B ≈ 80G and B ≈ 180G. The binding energy of
the weakly-bound Feshbach dimer is experimentally obtained based on the method of
magneto-association which was first used by Thompson et al. to produce shallow dimers
composed of 85Rb atoms [188]. An oscillating magnetic field with frequency νass induces
a stimulated emission of an atom pair to emit a low frequency photon while forming a
lower energy weakly-bound molecule if the modulation energy matches its binding energy
Eb = hνass. By colliding with an additional single atom the newly formed molecule relaxes
to a deeply-bound-state which releases sufficient kinetic energy for the atom and the
molecule to be lost from the trap [189], see the schematic drawing in Figure (6.8).

Fig. 6.8, Measurement of the binding energy: By modulating the magnetic field
we stimulate an atom pair to emit a photon while forming a lower energy
weakly-bound molecule. This molecule relaxes to a deeply-bound molecular
state if it collides with an additional atom. Its binding energy is converted in
kinetic energy and both are lost from the trap.

The modulation of the magnetic field around its bias value is done by applying an
additional RF field along the magnetic field direction100. The antenna consisting of 8
windings with a diameter of 5 cm is placed close to the bottom window of the glass cell.

100RF source: Keithley Instruments, Inc: 3390 Function Generator, Amplifier: RFPA: AP 001220-10
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With an oscillating current in the antenna we can induce an oscillating magnetic field
with a typical amplitude between 100mG and 500mG. The modulation time lies between
100ms and 500ms. This spectroscopy is done with a thermal cloud at a temperature T of
400 nK ≤ T ≤ 700 nK.

Fig. 6.9, Measurement of the binding energy: (a)We use magnetic-field modulation
spectroscopy to measure the binding energy of the weakly-bound dimer. The
normalized remaining atom number is plotted as a function of magnetic field
and modulation frequency. By changing the modulation frequency for constant
bias magnetic fields we observe one narrow, slowly varying feature and many
localized broad features. The former is the signature of the weakly-bound-
state creating the broad Feshbach resonance at 180G. The broad features are
responsible for the narrow Feshbach resonances. At B ≈ 170G and B ≈ 174G
we observe avoided crossings. Additionally, one can observe a weak association
feature at low frequencies which is a sub-harmonic of the main association
line. For magnetic fields B < 169G and B > 177 we loose the signal of the
weakly-bound dimer. (b) Zoom of the magnetic-field modulation spectroscopy
of the 76G resonance. The association line of the broad resonance is clearly
visible. Most of the states with a high energy-vs.-magnetic field slope crosses
the former line without showing any coupling behavior.

In Figure (6.9) we show the remaining atom number left after the field modulation
as a function of frequency and bias field. We observe two kinds of spectra, either the
losses are in a narrow or in very broad frequency band. As for the latter the frequency is
resonant over a large frequency range but only for distinct magnetic fields the responsible
bound-states have a high energy-vs.-magnetic field slope. On the opposite, the center
frequency of the narrow loss feature evolves slowly with the magnetic field. The line
shapes of the narrow loss features are caused by the relative kinetic energy of the two
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associated atoms. By fitting a Maxwell-Boltzmann distribution to the narrow loss features
we can extract their corresponding binding energies Eb(B), see Figure (6.10).

Fig. 6.10, Measurement of the binding energy: Examples of magnetic field mod-
ulation spectra of both broad resonances. By fitting a Maxwell-Boltzmann
distribution (solid line) we extract the binding energy shown in Figure (6.11).

In Figure (6.11) (b) the obtained binding energies (red circles) are plotted as a function
of magnetic field combined with a high-resolution (∆B = 20mG) atom-loss spectra. One
can see that inside the broad features the dense background of narrow resonances remains.
We can assign some of the states with high energy-vs.-magnetic field slope to narrow
loss features in the atom-loss spectroscopy. For both broad resonances we observe a slow
variation of the binding energy with magnetic field (< 1MHz over 10G) and a quadratic
behavior over several Gauss, which indicates the coupling of the bound-state with the
two-atom continuum, which is usually termed open channel [80]. This is a strong evidence
that the observed bound-state is in both cases the s-wave halo state that is found in the
vicinity of Feshbach resonances.

6.3.2 Theoretical Analysis of the Broad Resonances

In section 6.2 we have seen that the anisotropic dipolar and vdW interactions mix
many different electronic symmetries and partial waves leading to strongly coupled levels.
Therefore, the appearance of a broad feature showing the properties of an universal state
which is decoupled from all the other states is quite surprising. In the following section
we present the theoretical analysis to support the assumption of a long-range s-wave
halo state creating a broad resonance embedded in a "sea" of chaotic levels which are
responsible for all the narrow resonance. This analysis was done with theory support of
K. Jachymski and P. S. Julienne. Here, we only give a brief summary of the theoretical
findings. More details on the applied theoretical models can be found in Ref. [52].

First we analyze the influence of the many narrow resonance on the properties of the
broad resonance. There exist also alkali atom systems which have broad s-wave resonances
superimposed with one ore more much narrower resonances of higher partial waves. This
is the case for example in Cs + Cs [190] or in Rb + Cs collisions [191]. Our collaborators
have developed an analytic treatment based on multichannel quantum defect theory to
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Fig. 6.11, Broad Feshbach resonances of 164Dy: (a) Atom-loss spectroscopy at T =
500µK with a magnetic field resolution of ∆B = 20mG. The spectra show
that the two broad features are overlapped with many narrow resonance. (b)
Binding energy measurement (red cirles) of a weakly-bound dimer. The solid
(dashed) lines are obtained by fits of our measured data to the coupled-channel
calculation (universal quadratic expression). Form these fits we can extract
abg∆ (see Table (6.1)). (c) The circles are obtained by converting the Eb(B)
data using the results of the coupled-channels calculation for a(Eb). The solid
lines are fits using Eq. (3.17). The dashed lines are the scattering length using
the values obtained from the fit of Eb(B) by the universal quadratic expression
and assuming abg = 91 a0.

characterize overlapping resonances [192]. They found that a broad resonance provides
the local background scattering length for all the narrow resonances. The range over
which a narrow resonance perturbs the underlying background due to the strong resonance
depends on their widths. In the binding energy measurement (see Figure (6.9) and Figure
(6.12)) we observe some avoided crossings that modify the halo dimer binding energy.
This is due to the stronger-than-usual coupling between the halo dimer and another state,
which influence the scattering length and thereby show a stronger effect in the atom loss
spectroscopy. Apart from these stronger resonances all others are very narrow (. 20mG
in the atom-loss spectrum) and perturb the scattering length only very locally. With this
analysis we can conclude that the narrow resonances only locally perturb the properties
of the universal state which allows us to use the universal equation for the magnetic field
dependency of the scattering length (Eq. (3.17)) in the vicinity of the broad resonance.

To describe the collisions of two Dy atoms in the same Zeeman level the methods
introduced by Ref. [85] were used. Here, only a single s-wave entrance channel with
its off-diagonal coupling to d-wave channels is required. The many other electronic and
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partial wave channels only generate a dense set of threshold-crossing levels with very
different magnetic moments that are weakly-coupled to the s-wave halo state. The dipolar
interaction vanishes in the diagonal s-wave potential. But due to the off-diagonal coupling
between the s-wave and the d-wave an effective adiabatic potential, which varies at long
range as −C4/R

4, is induced. To account for this a hybrid interaction potential consisting
of the vdW and the effective adiabatic potential was used in the calculations.

Fig. 6.12, Zoom on the 77G resonance: The region with strong avoided crossings in
the binding energy as well as stronger-than-usual narrow Feshbach resonances
are highlighted in blue. In these regions the scattering length is unknown.
Away from these regions, resonances are very narrow and modify the scattering
length induced by the broad one only very locally. The solid (dashed) lines
are obtained by fits of our measured data to the coupled-channels calculation
(universal quadratic expression), respectively.

We analyze the broad resonance using a coupled-channels approach. As a fully coupled-
channels model is too complicated due to the many electronic potential and the couplings
to higher partial waves, we use a simplified two-channel description neglecting the influence
of the narrow resonances. This assumption is valid as the experimental binding energy
measurement shows that the universal s-wave state seems to be decoupled from the states
which are responsible for all the narrow resonances. Our two-channel model is based on
the methods described in Refs. [193–195].

In Figure (6.13) we compare the results of the coupled-channels calculation with the
measured binding energies for the two broad resonances. As we do not clearly observe the
linear increase of the measured binding energies with magnetic field we cannot extract
δµ from the measurement. Therefore, the fit to the data is not unique as sres and δµ

are not independent. The figure shows fits with different assumed δµ and sres values.
Assuming a reasonable minimum value of δµ = gµ with g = 1.24159 a resonance strength
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parameter of sres = 16.17 can be obtained from the fit for the 76G resonance. As the ratio
sres/(δµ) = (abg∆)/(aE) is constant we can extract abg∆ from the fits. A second method
to obtain abg∆ is to convert the measured binding energy data Eb(B) to a(B) using
the results of the coupled-channels calculation for a(Eb) and to fit the usual expression
Eq. (3.17) to the converted data, shown in Figure (6.11)(c). For the 76G resonance
the obtained value of abg∆ agrees with the value extracted from the fit to a(B). Good
agreement with the data can be also obtained for the 180G resonance using the same sres

values for the fit and assuming δµ to be 6 % larger. This shows that both resonances have
similar pole strength.

Fig. 6.13, Analysis of the broad resonances with coupled-channels calculation:
Comparison of the coupled-channels model with the experimental obtained
binding energies for the 76G (a) and the 180G (b) resonance. Fits with
different combinations of sres � 1 and δµ such that sres/(δµ) is constant are
possible.

In addition, we fit our measured data Eb(B) by the universal quadratic expression
(Eb(B) = −(B −B0)2/(abg∆)2) in the vicinity of the pole (B > 66G and B > 173G for
the two resonances respectively) to extract abg∆. The fit results (dashed line) are shown
in Figure (6.11)(b). Interestingly, the results of the coupled-channels theory and the
universal theory are in close agreement with each other for the lower-field resonance and in
reasonable agreement for the higher-field one. We further assume a background scattering
length of abg = 91 a0 (will be justified in the next section) to calculate a(B) using Eq. (3.17)
with abg∆ given by the universal fit. The resulting curve (dashed line in Figure (6.11)(c))
is in close agreement with the result from the coupled-channels calculation (solid line). In
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universal B0 universal abg∆ numerical CC B0 numerical CC abg∆
76.9(5) G 2810(100) G a0 76.8(5) G 2700(100) G a0
178.8(6) G 2150(150) G a0 179.1(6) G 2540(110) G a0

Tab. 6.1, Resonance parameters obtained from fitting the binding energy data to the
universal expression (Eq. 3.18) and to numerical coupled-channels calculation.

Table (6.1) we summarize the results of the universal expressions and coupled-channels
calculation.

We can conclude that the observed broad resonances strongly modify the scattering
properties over a large magnetic field range, although multiple couplings to other states
can be found in the data. Our analysis show that the binding energy of the s-wave halo
dimer is well approximated in the pole vicinity by the universal quadratic expression
(Eq. (3.18)). Furthermore, we can use the usual expression of an isolated magnetically
tunable near threshold Feshbach resonance given by Eq. (3.17) to calculate the scattering
length as a function of the magnetic field.

6.3.3 Localization of the Zero-crossing

To calculate the background scattering length based on the obtained abg∆ value we have to
estimate the width ∆ of the Feshbach resonance. Therefore, we have to find the magnetic
field position where the scattering length a is zero, see Figure (3.4)(b). A convenient
method to locate the zero-crossing is to analyze the evaporative cooling efficiency as it
depends on the elastic cross-section. For a non-magnetic gas the elastic collision cross-
section goes to zero for a vanishing a resulting in an ineffective evaporation [196]. In case
of magnetic atoms due to the dipolar collisions the total scattering cross-section does not
vanish for a→ 0, rather reaches a constant value for low temperatures, see Eq. (3.14a).
Nevertheless, when a = 0 the total elastic cross-section and thus the thermalization is
minimal, leading to a slower evaporation which is characterized by a maximum in the
background (between narrow resonances) atom number and temperature after a holding
time in a constant trap. In Figure (6.14) we show the temperature and atom number on
the higher magnetic field side of the B = 76.9G resonance. We observe that the maximum
atom number and temperature varies slowly with magnetic field. The maximum in atom
number and in temperature can be located at Bmax,N = 109(5)G and Bmax,T = 107(5)G,
respectively.

A second method to locate the zero-crossing is to examine the asymmetric line shapes of
the narrow Feshbach resonances. The line shape and in particular its symmetry depends
on the sign of its "local" background scattering length ãbg [192]. The sign of the local
background scattering length determines the side on which the local zero-crossing takes
place, if ãbg > 0 (ãbg < 0) it is on the high- (low-) field side of the resonance. As the
zero-crossing corresponds to a minimum in the three-body recombination the atom number
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Fig. 6.14, Analyzing evaporation efficiencies to locate the zero-crossing: The
background atom number (a) and temperature (b) show a maximum at
Bmax,N = 109(5)G and Bmax,T = 107(5)G, respectively, indicating the zero-
crossing of the scattering length a.

has a maximum in its vicinity leading to an asymmetric line shape in the loss feature, see
Figure (6.15). For magnetic fields up to the position of the broad resonance at B = 76.6G
all the line shapes of the isolated narrow resonances correspond to ãbg > 0. On the other
side of the broad resonance the line shapes are inverted. At a magnetic field of B = 109G
we observe a resonance with a very symmetric line shape, which suggests that ãbg ≈ 0. We

Fig. 6.15, Line shape analysis: For magnetic fields B < B0 = 76.9G (a,b) the loss
features show a maximum in atom number (zero-crossing, indicated by red
arrows) on their high field side (ãbg > 0). On the other side of the broad
resonance (B > B0) their line shape is inverted, for example in (c), implying
ãbg < 0. (d) At a magnetic field of B = 109G we observe a resonance with a
symmetric line shape corresponding to ãbg ≈ 0.
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do not clearly observe distinct resonances between 110G and 120G and for even higher
fields the local background scattering length could be already influenced by the second
broad resonance at B = 178.7G. In addition, the observation of a zero-crossing of the
background scattering length near B = 109G corresponds with the finding of the first
method. Combining both methods we estimate the zero-crossing to be at B = 108(5)G.

If we assume that the broad s-wave halo resonance provides the local B-dependent
background to the narrow resonances, the universal model then implies a width of
∆ = 31(6)G and a background scattering length of abg = 91(15) a0 for this resonance.
This justifies the assumption we made above. While the data suggests the persistence
of such a strong s-wave halo state across the dense set of narrow resonances, further
experimental and theoretical work has to be done to explore this effect in more detail. The
extracted background scattering length agrees within the errors with the value obtained
by thermalization measurements of Ref. [45]. It also agrees with the estimated value
based on the study of the atom number limitation of Dy condensates in different trap
geometries, see section 5.4. In Figure (6.16) we compare the 77G resonance with Feshbach
resonances of other elements.

Fig. 6.16, Classification of Feshbach resonances: Comparison of the 76G resonance
with other Feshbach resonances in terms of the pole strength sres and the width
∆. We used the lowest value obtained from the fits for the lower boundary of
the sres parameter, whereas the upper boundary is obtained using the largest
possible value of δµ = 16gjµB. Values for the other resonances are taken from
[80].
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data set N0 [105] T0 [nK] νx,y,z [Hz] η twait [ms]
green 1.8 (2) 2400 (200) 70 (10) 7.0 (1.5) 2000

123 (15)
263 (25)

red 0.46 (2) 500 (100) 44 (5) 4.0 (1.5) 500
87 (10)
145 (15)

blue 1.0 (2) 450 (100) 52 (5) 5.0 (1.5) 500
23 (5)

260 (25)

Tab. 6.2, Summary of the experimental conditions used for the atom-loss spectroscopy.
N0 and T0 are the initial atom number and temperature, η the trap ratio, νx,y,z
the trapping frequencies in the three directions and twait the holding time of
the atoms in the final trap.

6.3.4 Universal Loss Dynamics

So far we could prove that our broad resonances have resonance strength parameters of
sres � 1 and that their properties are well described by the universal expressions of the
binding energy Eq. (3.18) and scattering length Eq. (3.17). Thus, we expect to observe
further characteristics for broad resonances. In this section we show strong evidence that
our observation of atom losses in the vicinity of the pole are indeed comparable with
universal loss dynamics found at the center of broad resonances, for example observed in
133Cs [197] and 39K [198].

For this we study atom-losses around the broad resonances at different temperatures.
We observe that close to the poles the final atom number reaches a minimum which
is the same for both resonances, see Figure (6.17). Furthermore, we find that at lower
temperature the saturation is reached in a narrower magnetic field region and at a lower
level.

The change in atom number for a given wait time is described by Eq. (6.2) and depends
on the three-body loss coefficient L3. For small scattering lengths (|a| � λdB) the loss
coefficient scales as L3 ∼ a4. Since a diverges close to the pole of a Feshbach resonance
it is no longer a relevant parameter and another length scale is necessary to describe
L3. This is the thermal wavelength λdB resulting in a scaling of the loss coefficient as
L3 ∼ λ4

dB ∼ 1/T 2. An exact expression for the temperature dependent three-body loss
coefficient in the unitary regime (a/λdB � 1) was calculated by Ref. [199] and is given by

L3 = ~5

m3 36
√

3π2 1− e−4η∗

(kBT )2 , (6.7)

where η∗ is the loss coefficient when three atoms are close to each other. For η∗ = 0 there
is no three-body loss whereas in the limit of η∗ →∞ all particles are lost.
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Fig. 6.17, Universal loss dynamics: Atom loss spectroscopy for different initial con-
ditions. Final atom number N normalized to the initial N0 as a function of
magnetic field with a resolution of ∆B = 100mG. See Table (6.2) for the ex-
perimental conditions of the different data sets. The temperature dependence
of the saturation is well reproduced by the model of universal loss dynamics of
a Bose gas of Ref. [200] (solid horizontal lines). The shaded regions represent
the uncertainty on the result of the model given a one-standard deviation on
all experimental parameters.

We analyze our data with the model developed in Ref. [200]. This model predicts the
final atom number taking into account two-body evaporation and three-body recombination.
The model requires the knowledge of the trap depth, trap frequencies, initial atom number
and temperature.

We use forced evaporation to cool the atomic sample down to the required temperatures
T . The trap depth U can be expressed through the trap ratio η = U/(kBT ). It can be
estimated with the knowledge of the beam waist of the crossed ODT and the effect of
gravity. The trap ratio strongly depends on the knowledge of the trapping potential. In
addition, since Dy is strongly magnetic any residual magnetic field gradient can change
the trap depth. We improved our estimations of this parameter using a statistical analysis
of final temperature and atom number in our atom-loss spectroscopy. For this we used loss
dynamics equations adapted from [200] for a finite s-wave scattering length and including
universal dipolar scattering. Doing this we obtained a knowledge of η with an uncertainty
of 20 %. In Table (6.2) we summarize the initial conditions and parameters for the three
different data sets presented in Figure (6.17). Using these parameters we obtain the
expected final atom number for unitary-limited two- and three-body losses in a Bose gas.
These predictions are compared to our measured data in Figure (6.17). The shaded areas
represent the range where the calculated final atom number is obtained by varying the
input parameters of the model by one standard deviation. The only unknown parameter
of the model is η∗. By comparing the model with a fixed η∗ to our measured three data
sets we obtain η∗ to be

η∗ = 0.07+0.17
−0.05. (6.8)

120



Since the saturation levels of both resonances are similar, also η∗ takes the same value.
Further systematic studies of L3(T ) at the resonances would yield a more precise measure
of η∗, which would indicate the possibility to observe Efimov states in the vicinity of the
two broad resonances [201].

Conclusion

In this chapter we presented the Feshbach spectroscopy data for the 164Dy and 162Dy
isotope in a magnetic field range from 0G to 600G. We could show that the dense spectrum
of 4 resonances per Gauss is caused by the complex molecular structure. The anisotropic
DDI as well as the ADI induce the Feshbach resonances but only the anisotropic dispersion
interaction is responsible for the chaotic scattering behavior. It is remarkable that despite
the many narrow resonances isolated states can decouple from this background and form
broad resonances at B0 = 76.9(5)G and B0 = 178.8(6)G for the 164Dy isotope. In
addition, these broad resonances maintain their universal properties, with sres � 1 over a
large magnetic field range. For the 77G resonance we could obtain a width of ∆ = 31(6)G
and a background scattering length of abg = 91(15) a0. The simple universal description
allows us to control the scattering properties of the dipolar gas in a controlled way [34] and
we can obtain pure BECs at a magnetic field of B = 63G (between narrow resonances)
with up to N = 25× 103 atoms with & 1 s lifetimes. The broad resonances are promising
candidates to allow the study of few-body physics like Efimov states [202]. Additionally,
the observed bound-states of the broad resonances have magnetic moments of µm ≈ 20µB
close to that of two free atoms, which is the highest reported magnetic dipole moment
[203].
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7 Summary and Outlook

Summary

The main subject of this thesis was the creation of a dipolar quantum gas of Dy atoms and
the investigation of its two-body interactions. For this purpose we setup a new experimental
apparatus which allows us to study dipolar many-body systems with ultra-cold bosonic
164Dy, 162Dy as well as fermionic 161Dy atoms.

Our cooling and trapping scheme to create a degenerate gas of Dy atoms consists of a
ZS operating at the 421 nm transition and a MOT using the 626 nm transition. Following
this, we use an ODT to transport the atoms over a range of 375mm to a science cell.
Here, we have the possibility to take in-trap images as well as to manipulate the atoms
with magnetic fields and further optical potentials. In the crossed ODT we employ a
further Doppler cooling stage to increase the phase space density and finally we perform
forced evaporative cooling to reach degeneracy. With our system we can produce BECs
with N ≈ 25× 103 (N ≈ 30× 103) atoms of the 164Dy (162Dy) isotope, respectively. In
addition, we can create degenerate Fermi gases of spin-polarized Dy samples thanks to
dipolar scattering. So far a degenerate Fermi gas with N ≈ 10 × 103 and T/TF ≈ 0.5
could be realized.

By comparing the saturation of the BEC atom number for different trap ratios with
the predictions of GPE simulations we could estimate the hitherto unknown background
scattering length of the 164Dy isotope to be between 86 a0 . a164

bg . 93 a0. The more
efficient evaporative cooling and the higher obtained BEC atom number indicate a larger
scattering length of the 162Dy than the 164Dy isotope. We also investigated the stability of
a 162Dy condensate by changing the magnetic field direction which effectively transforms
an oblate (λ > 1) to a prolate (λ < 1) trap. As the condensate was not stable we could
conclude that the scattering length of the 162Dy isotope is a164

bg . a162
bg . add = 134 a0.

This means that for both isotopes the DDI compared to the contact interaction at
background scattering length is the dominant interaction (εdd = add/a > 1). This allows
to study strongly dipolar effects with Dy atoms without the necessity to reduce the contact
interaction by a Feshbach resonance.

To investigate the scattering properties of Dy we measured and analyzed Feshbach
resonances for the 164Dy as well as for the 162Dy isotope in a magnetic field range from
0G to 600G. We could show that the dense spectrum of four resonances per Gauss is
caused by the complex molecular structure. Using statistical methods to analyze the
resonance positions based on RMT we found signatures of quantum chaos in the scattering
behavior of Dy atoms. Further theoretical simulations could indicate that the joint effect
of anisotropy of the dispersion interaction and the Zeeman coupling is responsible for
the chaotic behavior. Despite the many narrow resonances we found for both isotopes
broad distinct features in the Feshbach spectrum. By measuring the binding energy of
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their molecular-state we could prove that the loss-features correspond to broad Feshbach
resonances showing universal behavior with a resonance strength sres � 1 over a large
magnetic field range. It is quite surprising that states which are responsible for the broad
resonances decoupled from the strongly coupled states causing all the narrow resonances.
By estimating the zero-crossing of the scattering length we could calculate the width
∆ = 31(6)G and the background scattering length abg = 91(15) of the resonances located
at B0 = 76.9G. The obtained value for the background scattering length agrees with our
estimations above and with the recently by cross-dimensional rethermalization measured
values of abg = 92(8) a0 for 164Dy [45].

The studies presented in this thesis show the possibilities of our new Dy apparatus.
Our developed scheme to create ultra-cold fermionic as well as bosonic Dy samples
provides good starting conditions for further experiments on dipolar many-body systems.
In particular, the transport of the atoms to the science cell allows the usage of the
in-trap imaging system as well as the possibility to create tailored time-averaged trapping
potentials using the EOD system, which will be of great benefit for further studies.

Ongoing Work

Very recently we were able to directly observe, using our high-resolution imaging system
a spontaneous transition from an unstructured superfluid to an ordered arrangement
of long-lived droplets in a Dy condensate [143]. Structure formation has been studied
with classical ferrofluids and is known as the normal-field instability or the Rosensweig
instability [148, 204]. For example, a magnetized ferrofluid forms stable droplet patterns
on a super-hydrophobic surface due to a competition between gravity, surface tension
and magnetic forces [205]. The analysis of the dispersion relation of surface excitations
displays a minimum at finite momentum. In a quantum ferrofluid like a Dy condensate
a similar competition between the harmonic trapping, contact interaction and dipolar
interaction exists. For a large relative dipolar interaction the excitation spectrum shows
also a minimum at finite momentum which can lead to a periodic perturbation of the
atomic density distribution, known as the roton instability [206]. So far it was believed
that these rotonic structures would be unstable due to an instability of the forming
droplets [207].

To investigate the droplet formation in a 164Dy condensate we use the Feshbach resonance
at B0 = 7.117(3)G. We create an almost pure BEC with N = 15 × 103 atoms at a
scattering length of a ≈ add in a radially symmetric trap with trapping frequencies of
(fx, fy, fz) = (46, 44, 133)Hz and the magnetic dipoles are aligned in z-direction. By
reducing the scattering length to a = abg < add we likely induce an angular roton
instability [41] and trigger the transition to an ensemble of droplets mostly arranged in a
triangular lattice, presented in Figure (7.1).
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Fig. 7.1, Microscopic droplets in a quantum ferrofluid: (a) Schematic of the
experimental sequence: We create a Dy condensate at εdd = add/a ≈ 1. By
increasing the relative dipolar strength (εdd > 1) we induce a roton instability
and subsequently the atoms cluster to droplets in a triangular lattice. (b)
High-resolution single-shot in-situ image of the droplets pattern. Figure with
small modifications taken from [143].

The coexistence of superfluidity and spatial long-range order defines the supersolid
state [208–210]. The observation of this state has been claimed for the first time in helium
[211], but had to be withdrawn recently [212]. So far we could not probe the superfluidity
in the structured states, but if we can show in further experiments that the droplets have
a common phase this system is a very good candidate for a supersolid ground-state. Note
that so far GPE simulations could not explain the stability of the droplets, which means
that our observation represents a novel state of matter.

Future Perspectives

With our system we may be able to observe further self-organized structures of dipolar
quantum gases in different trapping geometries. To create time-averaged tailored optical
potentials we can use our microscope objective together with an EOD system. With this
combined system it is possible for example to study dipolar condensates in a toroidal trap.
By alining the dipoles in the plane of the trap the DDI is breaking the rotational symmetry
of the system and the atoms may accumulate at two opposite sites of the ring-trap and a
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self-induced Josephson-junction is created. For an imbalanced population the atoms may
coherently tunnel though the weak links analog to Josephson oscillations [213].

Additionally the investigation of a dipolar quantum gas in multi-well potentials could
show interesting dipolar effects. For example a system of three wells could be able to
support non-trivial phases in its ground-state depending on the interplay between tunable
on-site and inter-site interaction as well as a tunable tunnel coupling between the wells
[214]. For a system with a linear arrangement of the three wells the repulsive DDI can lead
to a depopulation of the middle well. This would not be observable if only short-range
interactions are present [215].

Here, I have only presented a small selection of possible dipolar many-body effects that
can be studied with our new apparatus. In addition, the observed broad resonances provide
the possibility to observe few-body phenomena like Efimov states [202]. Furthermore,
we are not restricted to only investigate bosonic quantum gases. With our cooling and
trapping scheme we can also create ultra-cold fermionic samples to study for example
universal three-body physics [216] or it may be even possible to study dipolar Bose-Fermi
mixtures.
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A Appendix

A.1 Sum-frequency Generation of 626nm Light

To create 626nm light we setup a home-build laser system as it was introduced in Ref.
[156]. We create a 626 nm photon by sum frequency generation (SFG) of two infrared
photons at 1550 nm and 1050 nm in a periodically poled lithium niobate (PPLN) crystal.
To mix three different electromagnetic waves second nonlinear processes are required.
Therefore, usually nonlinear crystals where the dielectric polarization P response nonlinear
in the electric field E of the light field are used.

To efficiently generate 626nm photons the phase matching condition ~k626 ≈ ~k1050 +
~k1550 has to be fulfilled over the whole crystal length. Otherwise the generated photons
will destructively interfere with each other, which limits the total number of photons
leaving the crystal. The PPLN crystal is designed in a way such that quasi-phase matching
is achieved. Lithium niobate is a ferroelectric crystal meaning that each unit cell has a
small electric dipole moment. The quasi-phase matching is engineered by the periodically
inversion of these dipole moments by strong electric fields during the crystal production.
The inverted regions of the crystal generate photons that are 180◦ out of phase with
respect to the generated photons in the non-inverted regions. With the right periodicity
the newly generated photons will mostly interfere constructively with the previous ones.
By changing the temperature of the crystal the periodicity of the poling can be altered
slightly to adjust the phase match condition to account for slight frequency changes.

As the PPLN crystal is a nonlinear material the highest conversion efficiency is obtained
for high light intensities. This is usually done by focusing the light into the center of the
crystal. For a laser beam with a Gaussian beam profile good conversion efficiencies are
obtained for the condition z0 = 1/2 l, where z0 is the Rayleigh length and l the length
of the crystal101. This results in high light intensities over the full length of the crystal.
Our used PPLN crystal has dimensions of (l × w × h) = (40× 10× 0.5)mm and three
gratings with 11.12, 11.17 and 11.22µm periods. We use the 11.22µm period and optimize
the conversion efficiency by adjusting the temperature to T = 172.22◦C. The input as
well as the output facets are anti-reflection coated with reflectivity < 1% for all three
wavelengths. To realize the condition for high conversion efficiency we have to focus the
1050 nm (1550 nm) light to w0 = 55µm (w0 = 66.6µm), respectively102. The used lens
system is shown in Figure (4.4). An optimum of the sum frequency generation is achieved
for vertical polarization of both infrared beams. In Figure (A.1) we show the SFG output
power as a function of the product of the pump and signal input power. We fit the data
by a linear function forced to go through the origin and from the slope we can estimate

101This condition was recommended by Covesion, whereas the Boyd-Kleinman model predicts l/(2z0) =
2.84.

102Refractive index of the crystal: n1550 = 2.222, n1050 = 2.203.
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the SFG efficiency to be

ηSFG = P626

P1050 P1550 l
= 2.07(3) % W−1cm−1, (A.1)

which is approximately 20% smaller than the efficiency obtained in Ref [156]. Typically,
we operate the system at a lower output power of P626 = 1W, which is sufficient to run
the Dy quantum gas experiment.
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Fig. A.1, Sum-frequency generation of 626nm light: SFG output power as a func-
tion of the product of the powers of the 1050nm and 1550nm light.
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A.2 Octagonal Glass Cell

Our octagonal glass cell consist of a blown quart glass frame with nine bonded high quality
windows to provide optimum optical access to the atoms. In Figure (A.2) we show a
detail technical drawing of the glass cell.

Fig. A.2, Octagonal Glass cell: Technical drawing of our glass cell. All dimensions
are given in millimeter.
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A.3 Full Level Diagram

In Figure (A.3) we show the full level diagram of Dy consisting of 394 even and 346 odd
partity states [65, 66].

Fig. A.3, Full level diagramm of Dy: The levels are ordered by their total angular
momentum quantum number J . States with even (odd) parity are shown in
red (black).
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