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Zusammenfassung

Die uns umgebende Welt ist aus Materie aufgebaut, welche wiederum aus diskreten Teil-
chen aufgebaut wird: den Atomen. Heute wissen wir, dass die Atome an sich aus noch
kleineren Teilchen zusammengesetzt sind: einem positiv geladenen Kern aus Protonen und
Neutronen und den, an den Kern gebundenen, Elektronen. Dieses Atommodell basiert auf
den berühmten Streuexperimenten von Rutherford [61] und wurde bis heute zu einer kom-
pletten quantenmechanischen Beschreibung des Atoms ausgebaut. Dabei können die Bin-
dungsenergien der Elektronen, die an den Kern gebunden sind, nur diskrete Werte anneh-
men. Sind mehrere Elektronen an einen Kern gebunden, so wird der energetisch günstigste
Gesamtzustand angestrebt, welcher durch die Besetzung der Energieniveaus gemäß der
Hund’schen Regeln [62] beschrieben wird. Die möglichen Energieniveaus eines Elektrons
im Atom werden an Hand mehrerer Quantenzahlen beschrieben, der Hauptquantenzahl n,
der Drehimpulsquatenzahl l und der magnetischen Quantenzahl m.
Mit Laserlicht ist es möglich ein Elektron (oder auch mehrere Elektronen) in einen hoch-
angeregten Zustand mit der Quantenzahl n, einem sogenannten Rydberg-Zustand, anzure-
gen. Dabei nimmt die Größe des Atoms deutlich zu, da der klassische Elektronenradius mit
n2 skaliert. Dadurch weisen Rydbergatome erstaunliche Eigenschaften auf. Zum Beispiel
wechselwirken sie so stark miteinander, dass durch die Präsenz eines Rydbergatoms die
Energieniveaus von benachbarten Atomen so weit verschoben werden, dass der Übergang
in den Rydberg-Zustand mit Hilfe des Laserlichts nicht mehr resonant stattfinden kann.
Dieser Effekt wird Rydberg-Blockade [63] genannt und kann dazu ausgenutzt werden um
nur einzelne Rydbergatome in einem Ensemble von Atomen anzuregen. Des Weiteren sind
die Elektronen in einem Rydberg-Zustand nur noch sehr schwach an ihren Kern gebunden,
sodass kleinste elektrische Felder ausreichen um sie zu ionisieren. Deshalb und aufgrund
des starken Stark-Effektes durch die hohe Polarisierbarkeit der Rydberg-Zustände ist es
notwendig die elektrischen Felder im Experiment sehr genau zu kontrollieren und abzu-
schirmen.
In dichten Atomwolken ist der mittere Teilchenabstand vergleichbar mit der Größe der
Rydbergatome, was zu einer Wechselwirkung zwischen dem Rydbergatom und den umlie-
genden Atomen im elektronischen Grundzustand führt. Dies wurde zuerst von Amaldi und
Segrè in Absorptionsspektren von hochangeregten Alkaliatomen in dichten Gaszellen eines
fremden Gases beobachtet [17]. Dabei sahen sie eine Verschiebung und eine Verbreiterung
der spektralen Linie des Übergangs, wobei beide Effekte vom Fremdgas, in dem sich die
Alkaliatome befanden, abhingen. Die Messergebnisse erklärte daraufhin Enrico Fermi als
einen Effekt der Streuung der quasi-freien Rydbergelektronen mit den neutralen Atomen
des fremden Gases die sich in der Wellenfunktion des Rydbergelektron befinden [18]. Dabei
wird die Streuung als Kontaktwechselwirkung mit einer Streulänge a0 beschrieben, welche
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dabei, abhängig vom Fremdgas, sowohl positiv als auch negativ sein kann. Dadurch kann
sowohl eine anziehende als auch eine abstoßende Wechselwirkung entstehen, genau wie es
von Amaldi und Segrè [17] gemessen wurde. Spätere theoretische Arbeiten zur Streuung
von Elektronen an neutralen Atomen, wie zum Beispiel [24, 27, 16], fürthen schließlich zum
Wechselwirkungspotential von Omont [19].
Mit den experimentellen Fortschritten im Bereich der Laserkühlung und der darauf folgen-
den Bose-Einstein Kondensation, wurde von Chris Greene et al. [28] darauf hingewiesen,
dass im Wechselwirkungspotential zwischen Rydbergelektron und Grundzustandsatom ge-
bundene Molekülzustände möglich sein sollten wenn die thermische Energie der Atome
klein genug ist. Diese langreichweitigen Rydberg-Moleküle wurden zuerst von Bendkow-
sky et al. [29] in Rubidiumatomen experimentell beobachtet. Seit dieser experimentellen
Entdeckung der Rydberg-Moleküle wurden viele Phänomene untersucht, wie zum Bei-
spiel Moleküle mit mehreren Atomen [30, 35], die kohärente Erzeugung und Brechung
der Molekülbindung [31], die Lebenszeit der Molekülzustände [32, 64], exotische Trilobite-
Zustände [33, 37], die Hybridisierung der Molekülorbitale in externen elektrischen Feldern
[36] und auch Rydbergatome eingebettet in Bereichen sehr hoher Dichte [4, 5]. Des Weiteren
wurden Rydberg-Moleküle auch für S-Zustände in Cs [38] und Sr [41, 64], für P-Zustände
in Rb [40] und Cs [3] und auch für D-Zustände in Rb [34, 36, 39] realisiert.
Für die Molekülbindung der Rydberg-Moleküle muss die Streuung von Rydbergelektron
und Grundzustandsatom zu einer anziehenden Wechselwirkung führen, was nur der Fall ist
wenn die Streulänge negativ ist. Der Streuprozess an sich hängt dabei von der Energie [57]
und der relativen Orientierung der beiden Spins [22, 23] der Streupartner ab. Für die Streu-
ung von Elektronen mit neutralen Rubidium Atomen ist die Streulänge nur negativ, wenn
sich die beiden Spins in einer symmetrischen Triplett Konfiguration befinden. Für den Fall
der anti-symmetrischen Singulett Konfiguration der beiden Spins, ist die Streulänge hin-
gegen positiv und somit sind keine gebunden Molekülzustände im Singulett-Streupotential
möglich.
Vor kurzem wurde von Anderson et al. [2] darauf hingewiesen, dass die Hyperfeinwech-
selwirkung im Grundzustand des neutralen Atoms zu einer Mischung von Streukanälen
mit reiner Triplett- und reiner Singulett-Streuung führt. Dies kann zu gebunden Mo-
lekülzuständen führen die durch gemischte Singulett-Triplett-Streuung gebunden sind. Die-
se Molekülzustände wurden zuerst von Saßmannshausen et al. [3] experimentell beobachtet.
Im Rahmen dieser Arbeit und der daraus resultierenden Publikation [1] wurden diese ge-
mischten Singulett-Triplett Rydberg-Moleküle ebenfalls untersucht. Dabei wurden die Mo-
leküle spektroskopisch für einen Bereich von Quantenzahlen, n = 36 − 45, beobachtet. In
den Spektren, gemessen in sub-µK thermischen Wolken, sind dabei deutlich unterscheid-
bare Linien zu erkennen, welche den gebundenen Molekülzuständen im Streupotential von
Rydbergelektron und Grundzustandsatom zugeordnet werden können. Dabei wurden die
Potentialkurven mit Hilfe eines einfachen Modells berechnet, welches nur die Unterzustände
des 5S Grundzustand von Rb und des nS Rydbergzustand berücksichtigen. Mit den ver-
wendeten Polarisationen der beiden Anregungslaser ist es möglich den Spin der zu Beginn
spinpolarisierten Atome während der Anregung umzudrehen, was dazu führt, dass nur ein
Teil der berechneten Potentialkurven für das Experiment relevant sind. Für die gemischten
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Singulett-Triplett Potentialkurven spielt sowohl die Singulett-Streuung als auch die Reso-
nanz in der p-Wellen Triplett-Streuung eine entscheidende Rolle, weshalb die beiden nicht
vernachlässigt werden können, wie dies in den meisten bisherigen Arbeiten zu Rydberg-
Molekülen der Fall war.
Ohne ein externes magnetisches Feld erhält man zwei Potentialfamilien: die reinen Triplett-
Potentiale und Potentiale mit gemischter Singulett-Triplett Streuung. Dabei treten diese
beiden Potentialfamilien sowohl für den F = 1 als auch für den F = 2 Hyperfeinzustand
des 5S Grundzustandes auf. Im Gegensatz zu der Arbeit von Saßmannshausen et al. [3]
wird in dem hier beschriebenen Experiment ein externes Magnetfeld dazu benutzt um die
Atome zu fangen. Das angelegte Magnetfeld führt dazu, dass die Potentialkurven zusätzlich
verändert werden. Durch das angelegte Magnetfeld sind die berechneten Potentialkurven
der einzelnen Unterzustände nicht mehr energetisch entartet und die Tiefe der jeweiligen
Streupotentiale ändert sich mit der Stärke des angelegten Magnetfeldes. Diese nicht-triviale
Abhängigkeit vom angelegten Magnetfeld wurde theoretisch für einen großen Bereich von
Feldstärken und experimentell für den Bereich 1.65 - 2.51 G untersucht. Im experimentell
untersuchten Bereich wurde herausgefunden, dass die erhaltenen magnetischen Momen-
te der Molekülzustände deutlich von denen des jeweiligen Rydberg-Zustandes abweichen.
Diese Abhängigkeit vom angelegten Magnetfeld kann im Prinzip dazu benutzt werden um
den Molekülzustand maßzuschneidern, ähnlich wie es schon für das elektrische Feld gezeigt
wurde [36, 37].
Durch Erhöhen der Atomdichte, was durch die weitere Abkühlung der Atome und die
darauf folgende Bose-Einstein Kondensation möglich ist, verschwinden die unterscheidba-
ren Linien in eine breite Spektrallinie. Dies wurde für den 53S Rydbergzustand sowohl
für die Anregung in einen Zustand mit reiner Triplett-Streuung als auch in einen Zustand
mit gemischter Singulett-Triplett-Streuung gemessen. Dabei ist zu sehen, dass die spektrale
Breite für den gemischten Zustand deutlich geringer ist als für den reinen Triplett-Zustand.
Dies kann dadurch erklärt werden, dass das experimentell zugängliche gemischte Poten-
tial durch das angelegte Magnetfeld schon deutlich schwächer ist als dies für die reine
Triplett-Streuung der Fall ist.
Die im Rahmen dieser Arbeit präsentierten Messungen und das theoretische Modell zum
Erklären dieser Molekülspektren, zeigen deutlich den Einfluss der Mischung von Singulett
und Triplett Streuung auf Rb2 Rydberg-Moleküle. Dabei können die gemessenen Spektren
in Zukunft als Referenz für die Berechnung des Elektron-Rubidium Streuproblems und
den daraus gewonnen Singulett und Triplett Streuphasen dienen. Messergebnisse in die-
sem Energiebereich waren zur Zeit dieser Berechnungen [22, 23] nicht verfügbar, weshalb
eine Extrapolation zu diesen Energien durchgeführt wurde. Durch die reichlichen Messda-
ten zu Rydberg-Molekülen und auch aufgrund der verbesserten Messgenauigkeit anderer
Eingangsparameter, wie z.B. der Polarisierbarkeit des 5S Grundzustandes von Rubidium,
kann dies zu einer deutlichen Verbesserung in der Berechnung der Streuphasen führen.
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1. Introduction

The idea that matter is made up by discrete particles has already been used by philosophers
in ancient Greece. These discrete particles, which are today called atoms, are made up of
a positive charged core and electrons bound to this core. This model of the atom was first
proposed by Rutherford, in order to explain the results of his famous α-particle scattering
experiment [61]. The model of the atom has since then been improved to a full quantum
mechanical description of the system. The electrons are attracted by the electromagnetic
force of the positive charged nucleus and in this potential they can populate only a discrete
number of orbitals. The electrons will populate the energy levels according to Hund’s rules
[62], which results in the ground state of the atom with the lowest total energy. The possible
energy levels of the electron are thereby labelled by the principal quantum number n, the
angular momentum quantum number l, and the magnetic quantum number m.
With laser light it is possible to excite a single electron (or even more electrons) to a state
with a high principal quantum number n, a so-called Rydberg state. The radius of the
electron wavefunction thereby scales with n2, leading to large sizes of such Rydberg atoms.
This leads to long-range interactions between different Rydberg atoms, which leads to the
Rydberg blockade effect [63]. This blockade can be used to create single Rydberg impurities
in an atomic sample as it is done in the experiment that will be described in the course
of this thesis. Due to the large distance between the Rydberg electron and the ionic core,
the electron is only loosely bound and as such the interaction with external electric fields
can remove the electron from the binding ionic core. Because of the sensitivity of Rydberg
states to electric fields, a good control of stray electric fields is necessary in order to observe
Rydberg atoms in the experiment, which is achieved with an electric field compensation
chamber that will be described in detail later on.
In a dense atomic sample, the interparticle distance can be comparable to the size of the
Rydberg atom, leading to an interaction between the Rydberg atom and the ground state
atoms. This was experimentally observed by Amaldi and Segrè in the absorption spectra
of alkali atoms excited to Rydberg states, which were immersed in a dense foreign gas [17].
They observed a broadening and a shift of the spectral line, that depends on the foreign
gas that was used and could as such not be explained by pressure broadening. Enrico
Fermi explained this as the effect of the scattering of the quasi-free Rydberg electron
with the neighbouring ground state atoms inside the electron wavefunction [18]. The
scattering is thereby described by the scattering length a0, which can either be positive or
negative depending on the foreign gas. This can lead to a repulsive as well as an attractive
interaction, which can lead to a broadening and a shift of the spectral line as it was observed
by Amaldi and Segrè. Further theoretical work on the scattering process of an electron
with the polarization potential of a neutral atom, e.g. [24, 27, 16], leads to the complete
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interaction potential given by Omont [19].
With the advances in laser cooling techniques and the subsequent realization of Bose-
Einstein condensates, it was pointed out by Chris Greene et al. [28] that it should be
possible to realize bound molecular states in the scattering interaction potential, due to the
small kinetic energy of the ground state atoms at these low temperatures. These ultralong-
range Rydberg molecules were for the first time experimentally observed by Bendkowsky et
al. [29] for Rubidium atoms excited to nS Rydberg states. Since the initial experimental
observation of Rydberg molecules, a variety of phenomena have been explored, such as
molecular states containing more than one ground state atom [30, 35], coherent creation
and breaking of the molecular bond [31], the lifetimes of the ground and excited molecular
states [32, 64], exotic trilobite states [33, 37], hybridization of the molecular orbitals in
electric fields [36] and also Rydberg atoms immersed in high densities [4, 5]. Rydberg
molecules have also been experimentally realized for for S-states in Cs [38] and Sr [41, 64],
for P-states in Rb [40] and Cs [3] and for D-states in Rb [34, 36, 39].
For the binding of the Rydberg molecules, the scattering of the Rydberg electron with the
ground state atom leads to an attractive interaction if the scattering length is negative. The
scattering process intrinsically depends on the scattering energy [57] and on the relative
spin orientation of the scattering particles [22, 23]. For the scattering of an electron with
neutral Rubidium atoms the scattering length is negative if the spins are in a symmetric
triplet configuration, while it is positive for the anti-symmetric singlet configuration. This
means that bound molecular states should only be possible if the spin of the Rydberg
electron and the spin of the ground state atom are in a triplet configuration.
Recently it was pointed out by Anderson et al. [2] that the hyperfine interaction in the
ground state of the neutral atom can lead to a mixing of singlet and triplet scattering
channels. This can lead to molecular states which are bound by mixed singlet and triplet
scattering. These mixed singlet-triplet Rydberg molecules were for the first time experi-
mentally observed by Saßmannshausen et al. [3] and studied in the course of this thesis
and the resulting publication [1]. In this thesis these mixed molecules were experimentally
observed for principal quantum numbers in the range of n = 36 − 45. Thereby a simple
theoretical model was used to explain the observed spectral lines, which will be discussed
in detail in the following thesis. Also it will be shown that for these mixed molecules the
dependence on the external magnetic field is not trivial, which can in principle be used to
engineer the molecular state. Furthermore it will be shown, that the experimental data
can be used as a reference in order to improve the theoretical calculations of the scattering
phase shifts.
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About this thesis

This thesis starts with a theoretical overview of Rydberg atoms and the interaction of
atoms with external electric and magnetic fields in chapter 2.
In chapter 3 the experimental setup and procedure that is used for the presented measure-
ments is discussed briefly. Also improvements made to some of the parts of the setup in the
course of this thesis, e.g. the new version of the experimental chamber that was designed
by Udo Hermann [10], are described.
Chapter 4 deals with the concentration of this thesis; namely the Rydberg molecules. In
the beginning of the chapter a theoretical overview of the photoassociation process and the
scattering process, which leads to the binding of the molecules, is described. In the following
section of this chapter a summary of the work done up to now with Rydberg molecules
bound by pure triplet scattering is given. Then the theory of the mixed singlet-triplet
molecules is explained in detail, such that it is possible to recreate the simple theoretical
model used to explain the observed molecular lines by reading this section of the thesis. The
last part of the chapter is devoted to the experimental realization and results, comparing
the observed molecular lines with the results from the previously presented theory.
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2. Theory

In this chapter the theoretical foundations needed in the course of this thesis will be de-
scribed. It will start with an introduction of Rydberg atoms and the interaction between
different Rydberg atoms leading to the Rydberg blockade effect. Then the hyperfine struc-
ture of atoms and the interaction of atoms with external magnetic and electric fields will
be discussed. The last part of the chapter deals with the process of field ionization used
to detect Rydberg atoms in the experiment.

2.1. Rydberg atoms

The smallest component of matter, that still has the same properties as the chemical
element as a whole, are the atoms. These atoms are made up by a positively charged
nucleus, consisting of protons and neutrons, and electrons bound in the potential of this
nucleus. Atoms with one valence electron, which is excited to a state with a high principal
quantum number n, can be described in a hydrogen-like manner: A single outer electron
is orbiting around a positively charged core, which is shielded by the inner electrons. This
shielding of the positive charge is different for different principal quantum numbers and
different angular momentum states, leading to some corrections from the situation of the
actual hydrogen atom. These corrections can be taken into account by introducing the
quantum defects

δnlj =
∑
i

δi
(n− δi)i

, (2.1)

which therefore also account for the fine structure and the penetration of the electron into
the ionic core. In this equation δi are the Rydberg-Ritz parameters that can, e.g., be found
in [48]. Taking the quantum defects into account, the binding energy Enlj of a Rydberg
state is given by

Enlj = −R
∗
∞

n∗2
= − R∗∞

(n− δnlj)2
. (2.2)

In this equation n∗ is the effective principal quantum number and R∗∞ is the Rydberg
constant with the reduced mass taken into account.

R∗∞ =
R∞

1 + me

MRb

(2.3)
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The radius of the classical orbit of the Rydberg electron around the positive charged core
scales with n∗2. This large distance for Rydberg states leads to interesting scalings with
the principal quantum number for several physical properties. A list of properties of the
Rydberg atoms and their respective scaling with the principal quantum number can be
found in table 2.1.

Property Scaling Example for 40S

Binding energy n∗−2 10 meV

Orbital radius n∗2 0.14µm

Natural lifetime n∗3 68.75µs

Polarizibility n∗7 10.57 MHz(V/cm)−2

Blockade radius (∆f = 500 kHz) n∗11/6 3.55µm

Table 2.1.: Interesting properties of Rydberg states, their scaling with the effective prin-
cipal quantum number n∗ and examples for the value of each property for the
40S state.

Two close-by Rydberg atoms interact strongly, even though they have no permanent dipole
moment. Fluctuations of the electron density can create temporary dipole moments, which
then induce a second temporary dipole moment inside of a neighbouring atom. This process
is described by the Van-der-Waals potential

V (r) = −C6

r6
, (2.4)

where C6 is the Van-der-Waals coefficient and r is the distance between the two interacting
Rydberg atoms.
If one atom is excited to a Rydberg state, this interaction shifts the energy levels of all
neighbouring atoms. If this shift is larger than the linewidth ∆f of the excitation laser it is
not possible to excite a second Rydberg atom. This effect is called the Rydberg blockade.
The radius rB of the blockade sphere around the Rydberg atom is given by

rB = 6

√
C6

∆f
. (2.5)

This blockade radius scales with the quantum number n∗, because the Van-der-Waals
coefficient C6 scales with the principal quantum number n∗. With this effect it is possible
to create a single Rydberg excitation in a sample of many atoms, if the sample is smaller
than the blockade sphere or if the excitation laser is focused down to a smaller size.
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2.2. Hyperfine Structure

The different orbital and spin angular momenta in an atom can couple and lead to energy
shifts of the electron energy levels calculated by equation (2.2).
The interaction of the magnetic moments of the electron spin S and the orbital angular
momentum L of the electron is known as spin-orbit coupling and is one contribution of the
fine structure of the atom. The energy shift of the electron energy levels introduced by the
fine structure are already included in equation (2.2) in the form of the quantum defects.
With this interaction the basis of uncoupled states |L,mL〉⊗|S,mS〉 is not the eigenbasis of
the system anymore, but still remains an orthonormal basis of the system. Because of this
coupling of the angular momenta, the total angular momentum J = L + S is introduced.
The eigenbasis is now built up from the states |J,mJ, L, S〉, which are obtained from a
linear combination of the states in the uncoupled basis. The amplitude of J is given by
~
√
J(J + 1), where the quantum number J can take the values from L + S to |L− S|.

The effect of the fine structure can be included in the quantum defects for different total
angular momentum states.
The atomic core also has a nuclear magnetic moment µI which can interact with the
magnetic field generated by the electrons. This leads to the so called hyperfine structure,
which is typically orders of magnitude smaller than the fine structure. The Hamiltonian
describing the hyperfine interaction is given by

ĤHF =
AHF

~2
I · J (2.6)

with the hyperfine constant AHF. For the 5S1/2 ground state of 87Rb the hyperfine constant
takes the value of AHF = h/2 · 6.835 GHz. For Rydberg states the electron is further away
from the core and as such the coupling between the electron and the nuclear magnetic
moment is weaker [49, 68, 69]. This leads to a n-dependency of the hyperfine constant,
described by the following extrapolation formula given by Mack et al. [49].

AHF =
h

2
· 34(3) GHz · (n− δnjl)−3 . (2.7)

For the 40S Rydberg state, for example, the hyperfine constant is AHF = 339 kHz.
Again the basis of the uncoupled states |I,mI〉⊗|J,mJ, L, S〉 is not the eigenbasis any more
and a new total angular momentum F = I + J has to be introduced. The eigenbasis of the
system can again be constructed from the uncoupled states by forming linear combinations:

|F,mF, I, J〉 =
∑
mI,mJ

〈I,mI, J,mJ|F,mF, I, J〉 · |I,mI, J,mJ〉

=
∑
mI,mJ

cI,mI,J,mJ
· |I,mI, J,mJ〉 .

(2.8)

Here cI,mI,J,mJ
are called the Clebsch-Gordon coefficients. With the quantum number F it

is possible to rewrite the Hamiltonian in equation (2.6) by using 2 I · J = F2 − I2 − J2.
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ĤHF =
AHF

2
(F (F + 1)− I(I + 1)− J(J + 1)) (2.9)

In the experiment 87Rb atoms are excited from the 5S1/2 ground state to the nS1/2 Rydberg
state. The nuclear spin I of 87Rb is 3/2 and for the studied S-states the total angular
momentum of the electron is given by J = S = 1/2. With this we get two possible values
for the total angular momentum: F = 2 or F = 1. The energy levels of the F -states are
then shifted by ∆E from the uncoupled value calculated by equation (2.2).

∆E =

{
3
4
AHF, F = 2

−5
4
AHF, F = 1

(2.10)

These hyperfine states also have sub-states, which are labelled according to their magnetic
quantum number mF. The magnetic sub-states are degenerate in zero magnetic field.
An applied external magnetic field lifts this degeneracy as the different sub-states shift
differently in the magnetic field.

2.3. Atoms in an external magnetic field

In the absence of an external magnetic field, the 2F+1 magnetic sub-states of the hyperfine
energy levels are degenerate. By applying an external field this degeneracy is lifted because
the mF sub-states have a different projection of the angular momentum on the magnetic
field direction and as such different interaction strengths. The Hamiltonian describing the
interaction with the magnetic field is given by

Ĥ =
µB

~
(gs S + gL L + gI I) ·B . (2.11)

Here µB = 9.274 J/T is the Bohr magneton and all the g’s are the Landé g-factors of the
respective angular momenta. The values of the g-factor for the different angular momenta
are gL = 1 for the orbital angular momentum, gS = 2.002319 [47] for the spin and gI =
−0.000995 [47] for the nuclear spin.
If the magnetic field is small enough compared to the hyperfine coupling, it can be treated
as a perturbation of the |F,mF, I, J〉 states. In this case F stays a good quantum number
and the Hamiltonian can be simplified to

Ĥ =
µB

~
gF F ·B = µB gFmFBz , (2.12)

with the quantization axis along the z-axis. In this equation gF is the Landé g-factor of
the total angular momentum F , which can be calculated according to [47]

gF = gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
+ gI

F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)
. (2.13)
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Figure 2.1.: Hyperfine structure of the 40S state of 87Rb in an external magnetic field. For
low magnetic fields the states are grouped according to their quantum number
F and for higher fields they are grouped according to their value of mJ .

Since the second term in this equation is only on the order of 0.1% it is neglected in
most cases. As such, small magnetic fields lead to a linear shift of the mF sub-levels in
an external magnetic field. This is the case for the 5S1/2 ground state of 87Rb with the
achievable magnetic fields in the experiment.

For the Rydberg states already a small magnetic field, like the offset field in a magnetic
trap, is strong compared to the hyperfine splitting. This means that the interaction with
the external magnetic field dominates and the hyperfine splitting can be treated as a
perturbation of the |I,mI, J,mJ〉 states. In this case J stays a good quantum number as
long as the interaction with the magnetic field stays smaller than the splitting of the spin-
orbit coupling. This is called the Paschen-Back or strong B-field regime of the hyperfine
interaction, for which the Hamiltonian in equation (2.11) can be written as

Ĥ =
µB

~
(gJ J + gI I) ·B = µBB (gJmJ + gImI) . (2.14)

The Landé-g-factor for the total angular momentum of the electron in this equation is
given by
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gJ = gL
J(J + 1)− S(S + 1) + L(L+ 1)

2J(J + 1)
+ gS

J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)

' 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
.

(2.15)

The approximate expression above is obtained by using gS = 2 and gL = 1.
The complete dependency of the magnetic field for the hyperfine structure of the 40S
Rydberg state is shown in figure 2.1. As can be seen, only for very small fields, the
hyperfine basis is the correct description of the system, as already the necessary offset field
of roughly 1 G in a magnetic trap is enough to be in the strong B-field or Paschen-Back
regime. This means that the hyperfine structure can be neglected in most cases when
dealing with Rydberg states.

2.4. Atoms in an external electric field

External electric fields also have an influence on the electronic level structure of atoms.
The interaction with an external electric field E is described by the Hamiltonian

Ĥ = −p · E , (2.16)

with the electric dipole moment p. If an electronic state of an atom has an electric dipole
moment the energy level therefore shifts linearly with the electric field amplitude. Spher-
ically symmetric S-states, as studied in this thesis, however, do not have a permanent
electric dipole moment. For these states the electric field first has to induce a temporary
dipole moment in the atom, which is described by the polarizibility α of the atomic state.
The electric dipole moment is then given by

p = αE . (2.17)

With this induced dipole moment the shift of the energy levels is then given by

∆E = −1

2
αE2 . (2.18)

For Rydberg states the polarizibility scales with n∗7 as can be seen in table 2.1 and as
such, small electric fields can induce a large electric dipole moment and shift the electronic
energy levels considerably.
In figure 2.2a the theoretically calculated energy levels close to the 40S Rydberg state in an
external electric field are shown. It can be seen that the states of the nearest hydrogenic
manifold (labeled as 37L in the figure) show a linear shift with the electric field. The
quadratic shift of the S-state is not visible on the scale shown in the figure, but it is clearly
visible in the measurement shown in figure 2.2b. There, already a small electric field leads
to a shift of the atomic resonance of several MHz. This shift is even stronger for states
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with a higher principal quantum number n due to the strong scaling of the polarizibility
with n∗7. In figure 2.2b it is also visible that the parabola is not centered perfectly around
zero electric field, due to the presence of stray electric fields in the experimental chamber
leading to the necessary compensation field.
So in order to measure Rydberg states in the experiment, good electric field control and
compensation of electric stray fields is necessary. This is achieved with electric field plates
close to the atomic cloud. It is also important to have a homogeneous electric field over the
whole atomic cloud, as gradients in the electric field lead to a broadening of the transition
line in the spectrum. Since the shift and the broadening of the atomic resonance depends
strongly on the principal quantum number, these effects are more pronounced than the
other broadening mechanisms in the experiment, e.g. the Doppler broadening due to the
finite temperature of the atomic cloud or the broadening due to the finite lifetime of the
Rydberg state, for high principal quantum numbers. This puts a limit to the principal
quantum number of the Rydberg state that can be observed in the experiment. In the
described experiment this is about n ≈ 149, for which it is already necessary to compensate
the electric stray fields on a hourly basis.
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Figure 2.2.: Theoretical energy level structure of the Rydberg states close to the 40S state
in an external electric field (a) and measured quadratic Stark shift of the
studied S-states, shown exemplary for the 44S state (b)
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2.5. Field Ionization

Applying even stronger electric fields can be used in order to ionize the Rydberg atom by
removing the electron from attractive Coulomb potential of the ionic core. This can be
used to detect Rydberg states by field ionization and subsequent detection of the positive
ion with an ion detector, such as a multi-channel plate (MCP) or a Channeltron. The
basics of the field ionization process will be discussed purely classically in the following.
The potential V (x,y,z) describing the system can be obtained through the sum of the
Coulomb-potential of the core and the potential of the electric field.

V (x,y,z) = − e2

4πε0
√
x2 + y2 + z2

+ eE z (2.19)

In this equation r =
√
x2 + y2 + z2 is the distance from the core, z is the coordinate in

the direction of the electric field and E is the amplitude of the electric field.
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Figure 2.3.: Electric field potential (red dashed line), Coulomb potential (blue line) and
combined potential (red line) shown as function of the distance from the ionic
core in arbitrary units. For the Coulomb potential three possible bound states
of the electron are shown by the black lines in the potential well. For the
combined potential one of these states is not bound anymore and is therefore
ionized.
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In figure 2.3 these potential energy curves are shown separately as well as combined. There
one can see, that the combined potential shows a local maximum. The position of this
local maximum is given by

zmax =

√
e

4πε0E
. (2.20)

Only states with a binding energy Enlj lower than the potential at the local maximum
V (0,0,zmax) are classically bound. This is also shown schematically in figure 2.3: Only the
two lower of the shown bound states are still bound in the combined potential while the
highest one is not bound anymore and is therefore ionized. In order to ionize a state with
the binding energy Enlj an electric field of

E =
πε0
e3

R∗2∞
n∗4

(2.21)

is necessary. This expression for the necessary electric field is only correct for states with
mL = 0. For states with a higher orbital angular momentum a centrifugal barrier is added
to the Coulomb potential, which increases the necessary electric field. For states with a
high angular momentum this can lead to electric fields necessary for the ionization, that
are up to a factor of 2 higher than the one calculated in equation (2.21) [65].
In these equations the Stark shift of the electronic energy levels was not considered up
to now. For states in the hydrogenic manifold there are red Stark states, for which the
binding energy increases in the electric field, as well as blue Stark states, for which the
binding energy decreases. Blue and red Stark state of the same hydrogenic manifold often
have a necessary ionization field which differs by a factor of 2 [65].
Up until now this whole consideration of the field ionization was done purely classical.
Quantum mechanically the electron can tunnel through a potential barrier with a finite
probability. This can lead to field ionization for smaller electric fields than given in expres-
sion (2.21) of this section [65].
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3. Experimental Setup

In the experiment Rydberg states are excited in an ultra-cold thermal gas or a Bose-Einstein
condensate (BEC) of 87Rb atoms. In order to achieve these dense atomic samples an ultra-
high vacuum is necessary to reduce the interaction with the background gas leading to
heating and loss of the atoms.
To get reasonable repetition rates of the experiment a two chamber setup is used: A
magneto-optical trap (MOT) is prepared in a chamber with higher pressure, while the
actual experiments with the cold thermal cloud or the BEC are done in an ultra-high
vacuum chamber. The two chambers are connected by a small tube which allows differential
pumping, resulting in a pressure difference on the order of two magnitudes between the
two chambers. In between the two chambers the atoms are transported through the tube
using the principle of magnetic transport.
In this section the experimental setup is described briefly (for more information see [8,
9, 10, 11, 12, 13]). To achieve a better stability of the electric field compensation and in
order to study new aspects of Rydberg physics, a new electric field compensation box was
designed in the course of the master thesis from Udo Hermann [10]. In the scope of this
thesis a lot of work was done towards a setup for testing this new box and as such the
changes between the new and old field compensation boxes will be discussed.

Figure 3.1.: Engineering drawing of the two-chamber setup of the experiment with the
different section designated below
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3.1. Setup

3.1.1. MOT chamber

The first step in order to obtain an ultra-cold atomic gas in the experiment is the prepa-
ration of a MOT [51]. This is done in the first of the two chambers, the so called MOT
chamber. The Rubidium atoms are obtained from a reservoir connected to the MOT
chamber with a valve mounted in between to control the flow of Rubidium atoms into the
chamber. The emerging equilibrium of the flow of new atoms and the atoms lost through
the vacuum pump leads to a background pressure of Rubidium of approximately 10−9 mbar
inside of the MOT chamber.

In order to create a MOT, it is necessary to have a magnetic quadrupole field together
with three orthogonal pairs of counter-propagating laser beams. To cool the atoms, the
laser beams have to be red detuned from the atomic transition that is used for the cooling.
The atoms are moving with their thermal velocity and due to the Doppler effect they
see different frequencies if they are moving in the direction of the beam or in the opposite
direction. Because of the red detuning of the laser beams, the atoms moving in the opposite
direction of the beam absorb a photon with a higher probability. When an atom absorbs a
photon it is excited to a higher laying state and its momentum in this direction is reduced
by ~k, where k = 2π/λ is the the wavenumber of the laser. The excited state has a
finite lifetime and the subsequent spontaneous emission returning the atom to the ground
state occurs in a random direction. The emission of a photon leads to a recoil, which
adds a momentum of ~k to the momentum of the atom. As such, after many scattering
events, the sum of all the momenta from the spontaneous emission is zero, due to the
random direction of the emission. The momentum from the absorption on the other hand
always occurs in the same direction and therefore always reduces the momentum in one
direction. By applying red detuned laser beams from all six spatial directions it is possible
to decelerate the atoms and cool them down.

For this cooling process, the 5S1/2, F=2−→ 5P3/2, F=3 transition is used in the experiment.
Due to off-resonant excitation there will also be some population in the 5P3/2, F=2 state,
which can spontaneously decay to the 5S1/2, F=1 state. Atoms undergoing this transition
would be lost to the cooling process. To avoid these losses to the cooling cycle a second
laser is used as a repumper in order to optically pump the atoms back.

In order to spatially trap the atoms as well as cooling them a slightly different process
has to be done. Adding a magnetic quadrupole field leads to a linear splitting of the mF

sub-levels of the 5P3/2 state as a function of the distance from the trap center. Due to
the red detuning of the laser beams the transition will become resonant as an atom moves
away from the center of the trap. By choosing the appropriate σ±-polarization for the
counter-propagating laser beams, the atoms will receive a ’kick’ with a higher probability
towards the center of the trap when they absorb a photon. This leads to a force acting on
the atoms which is always pointing to the trap center, effectively trapping them.

In the experiment the loading of the MOT takes roughly 6 s and results in a few billion
trapped atoms with a temperature of roughly 200µK. To further cool down the atoms
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the magnetic field is switched off and the optical molasses technique [51] is used. This
decreases the temperature down to approximately 50µK. As a last step all the atoms in
the MOT chamber are optical pumped to the 5S1/2, F=2, mF=2 sub-level, in order to get
all the atoms in the low-field seeking state necessary to trap them in a magnetic trap used
in the next step to transport the atoms to the experiment chamber.

3.1.2. Magnetic transport

As described in the theory section, the energies of the mF sub-states of an atom are shifted
in an external magnetic field. This energy shift is linear with B if the magnetic field is
small compared to the hyperfine splitting, which is the case for the 5S1/2 ground state and
the magnetic field used in the experiment. Therefore an extremum of the magnetic field
can lead to a trapping potential for atoms prepared in the right sub-state: a minimum in
the magnetic field for low-field seeking states and a maximum for high-field seeking states.
In the experiment a local minimum is used and as such the atoms have to be in a low-field
seeking state, for which the energy decreases with decreasing magnetic field. A low-field
seeking state is for example the |F = 2,mF = 2〉 of 87Rb in which the atoms were prepared
using optical pumping as a last step inside the MOT chamber.
The atoms are transferred from the MOT into a magnetic trap generated by coils in an
anti-Helmholtz configuration. To transport the atoms from the MOT chamber to the glass
cell with the electric field compensation chamber the position of the local minimum of the
magnetic field is moved by turning on and off the coils along the path of the magnetic
transport. This shift in the position has to be slow enough in order for the atoms to follow
adiabatically.
To achieve this shift of the position in the experiment twelve pairs of coils in an anti-
Helmholtz configuration are mounted below and above the tube connecting the two cham-
bers. With the right sequence of current through these coils the minimum of the magnetic
field can then be shifted along the tube.
During the 1.4 s of the transport process about 50% of the atoms are lost by the efficiency
of the loading into the magnetic trap and then through the transport itself. Still roughly
2 · 109 atoms with a temperature of about 400µK arrive in the experimental chamber.

3.1.3. Experiment chamber

The actual Rydberg excitation experiments are done in an experimental chamber, consist-
ing of the electric field compensation plates and the ion detectors, which is placed inside
the glass cell. The glass cell allows for good optical access and also a more compact design,
which means that less current is needed in the coils used for generating the magnetic trap.
After the magnetic transport the atoms are loaded into a QUIC-trap [50], consisting of a
quadrupole field made by two coils in an anti-Helmholtz configuration and a Ioffe coil. The
setup of these coils is shown in figure 3.2a.
The coils in the QUIC-trap configuration generate a nearly harmonic trap with a non-
zero trap bottom, at a slightly different position than the anti-Helmholtz configuration.
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Figure 3.2.: a) Engineering drawing of the QUIC trap consisting of two coils in an anti-
Helmholtz configuration (coils on top and bottom) and the Ioffe coil positioned
on the front side of the shown glass cell. b) Amplitude of the magnetic field
plotted against the position for coils in an anti-Helmholtz configuration (blue)
and then with the added Ioffe coil resulting in the QUIC trap configuration
(orange). The red line shows a harmonic fit function, coinciding with the
magnetic field in the important part of the trap close to the center.

The magnetic fields of the QUIC-trap compared to the anti-Helmholtz configuration is
shown in figure 3.2b. The non-zero magnetic field of the trap bottom is necessary to
prevent majorana spin-flip transitions to states that are not trappable, which would lead
to atom loss from the trap. Since the current needed for the trap configuration used in
the experiment is 40 A, all coil holders for the QUIC-trap are water cooled in order to
transport the heat away.

Furthermore, offset coils consisting of a pair of coils in Helmholtz configuration for each
spatial direction, are mounted around the glass cell. With these coils it is possible to move
the trap position in all spatial directions.

The QUIC-trap configuration used in the experiment results in a cigar-shaped trap, with
trap frequencies of ωx,z = 2π · 200 Hz and ωy = 2π · 15 Hz. A measurement of the trap
frequency in the x-direction is shown in figure 3.3. For this measurement a BEC was
prepared in the trap and then a short magnetic field pulse, created with one of the offset
coils, pushed the atoms about 100µm in the x-direction. Subsequently the atoms were
oscillating inside of the trap. In order to measure this oscillation, the atoms were left alone
for a wait time and then the trap was switched off and the atoms imaged in time-of-flight.
In order to obtain the points shown, the hold time in the trap was varied from cloud to
cloud and the center position determined from a bimodal fit (Thomas-Fermi + thermal
density distribution) to the density distribution of the imaged BEC. In addition each point
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Figure 3.3.: Measurement of the trap frequency along the x-direction in the QUIC trap.
For the measurement the BEC was pushed to the side of the trap with a small
magnetic field pulse and then it was allowed to oscillate freely in the trap for a
certain wait time. The trap was then switched off and the cloud imaged after
28 ms time of flight. The center position of the BEC was determined from a
bimodal fit to the imaged density distribution of the BEC. The trap frequency
of 200.4 Hz is then obtained with a sinusoidal fit (red line).

was averaged for several atomic clouds and the error from the mean value is shown in the
error bars. An oscillation with a frequency of 200 Hz is clearly visible in the measured
center position of the imaged condensates, directly corresponding to the trap frequency
along the measurement axis.

The atoms arriving in the magnetic trap after the magnetic transport still have a temper-
ature of roughly 400µK. So in order to get ultra-low temperature thermal gases or even
BECs an evaporative cooling technique is applied. The principle behind this technique is
the removal of the hot atoms of the atomic cloud with a radio-frequency (RF) so that after
a re-thermalization, the temperature of the cloud is reduced. To do this the radio-frequency
has to transfer the atoms from the low-field seeking |F = 2,mF = 2〉 state to a state that
is not trapped anymore, so either one of the following |F = 2,mF = 0,− 1,− 2〉. A high
frequency will remove the atoms which are furthest away from the trap center, which are
also the hottest atoms, because there the magnetic field is higher and as such also the split-
ting between the magnetic sub-states. By ramping down the evaporation frequency the
remaining atoms in the trap get cooled down and at the same time the density increases.
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Figure 3.4.: Electric field compensation chamber of the experiment, consisting of six electric
field plates made of titanium separated by Macor pieces. The micro-channel
plate (right side) and Channeltron (left side) for the ion detection are also
mounted to the Macor pieces.

In the experiment the evaporation cooling is done with three linear ramps, starting with
a frequency of 45 MHz and depending on the trap bottom ending at roughly 1 MHz. In
the experiment the evaporation cooling process takes about 16 s, which is roughly half the
time of a complete cycle.
In order to do Rydberg excitation experiments, a good control of the electric field in the
experiment chamber is necessary. Due to the Stark-effect, which was discussed in the
theory section 2.4, the atomic energy levels shift in the presence of an electric fields. This
is especially important for Rydberg states because of the strong scaling of the polarizibility
with the principal quantum number n. For this the electric field compensation chamber
(see picture in figure 3.4) is placed inside the glass cell with its center coinciding with the
position of the magnetic trap. This electric field control box was designed in the course
of the master thesis of Christph Tresp [11] and consists of six electric field plates used to
compensate electric stray fields and also for the ionization of the created Rydberg atoms.
Every field plate has a hole in the middle to either provide optical access for the excitation
and imaging lasers or to allow the produced ions to hit the ion detectors mounted on the
left and right side of the box shown in figure 3.4. The electric field plates are made of
titanium and titanium wires are placed across each hole in order to shield electric stray
fields from the outside. The individual plates are separated by isolating Macor pieces.
Missing in the picture is the RF-coil for the evaporative cooling, which is mounted around
the Channeltron.
After compensating the electric stray fields by applying compensation voltages to the field
plates, it is possible to do high resolution spectroscopy of the Rydberg states. To excite
the atoms to a Rydberg state the inverted excitation scheme is used1, meaning that we

1For more information see appendix A.2
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Figure 3.5.: Excitation scheme of the Rydberg excitation used in the experiment. The
atomic cloud in the magnetic trap is spin polarized in the F = 2,mF = 2
ground state. From there the excitation to the nS1/2 Rydberg state is done via
the stretched state mF = 3 of the 6P3/2 state with σ+-polarized 420 nm light
and σ−-polarized 1020 nm light. With this scheme the Rydberg electron has
the same spin direction as the ground state atoms, resulting in pure triplet
scattering interactions between the Rydberg electron and neighboring ground
state atoms.
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excite the atoms from the 5S1/2 ground state with a 420 nm laser to the 6P3/2 intermediate
state and then with a 1010-1020 nm laser to the nS1/2 Rydberg state. The scheme of the
Rydberg excitation is shown in figure 3.5. The polarization of the laser beams are chosen
such that the atoms are always in the stretched state, which conserves the spin of the
Rydberg electron with respect to the spin-polarized ground state atoms.
For the Rydberg excitation in the experiment, the 420 nm laser illuminates the whole
atomic cloud, while the 1020 nm laser is focused down into the atomic cloud using an
aspheric lens (Asphericon A15-12HPX-S-U). This aspheric lens is mounted to one of the
electric field plates close to the atoms. With this it is possible to excite a single Rydberg
atom inside the atomic cloud if the blockade-radius rB is larger than the size of the focus.
In the direction of the focused beam it is still possible to excite multiple Rydberg atoms,
however, the excitation probability decreases because the intensity of the laser decreases
away from the focus. The focused excitation also ensures a good localization of the Rydberg
atom inside the cloud, since it can only be excited in the volume illuminated by both laser
beams. A schematic drawing of the atoms in a BEC with the excitation laser beams is
shown in figure 3.6. There the blockade radius for two different Rydberg states (53S and
111S) is also drawn to show that it is possible to only excite a single Rydberg atom in the
whole BEC.

Figure 3.6.: Experimental setup of the BEC in the magnetic trap together with the two
excitation laser. The 420 nm laser (blue arrow) has a beam waist of 2 mm and
therefore illuminates the whole atomic cloud. The 1020 nm laser (red gaussian
beam profile) is focused down to about 2.3µm into the BEC using a high-NA
aspheric lens.

In the course of this thesis the size of the focus after the high-NA aspheric lens was measured
using a 500 nm pinhole. For this a test setup was built using the same optical elements as
in the actual experiment, except for the glass cell and the wires placed over the lens. The
measurement of the focal size is shown in figure 3.7. It is important to note that the lens
is optimized for a wavelength of 780 nm, which is used for in-situ imaging of the atomic
cloud. As such the 1020 nm beam shows a lot of aberrations after the lens. In order to
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Figure 3.7.: Measurement of the focal size of the 1020 nm beam after the A15-12HPX
aspheric lens in a test setup

get rid of these aberrations and to be able to move the position of the focus in the atomic
cloud, it is planned to implement a spatial light modulator in the near future.

In order to detect the excited Rydberg atoms they are subsequently field ionized and the
positive ions detected with an ion detector. For this a micro-channel plate (MCP) and
a Channeltron are mounted to the electric field control box as can be seen in figure 3.4.
Both detectors are built like an electron multiplier, with two electrodes connected by a
glass tube. Between the two electrodes a high voltage on the order of 1-3 kV is applied.
If a single electron or ion hits the wall of the glass tube, this leads to the emission of
secondary electrons. These secondary electrons are accelerated due to the high voltage
and will produce even more electrons if they hit the glass tube. This leads to an avalanche
of electrons that can be measured, caused by a single initial electron or ion. This avalanche
process leads to a dead time of the multiplier tube in which no other electron or ion can be
detected. The Channeltron used in the experiment consists of six such electron multiplier
channels, each with a diameter of about 1 mm. The built in Channeltron has a efficiency
of about 90%. The MCP on the other hand consists of 106 channels with a diameter of
10µm. This allows for the detection of many ions if they are spatially spread. In the
presented measurements later in the thesis the MCP was used for the ion detection, which
has an detection efficiency of 70%. Both ion detectors have a dark count rates of about
1 s−1, which is negligible compared to the detection time of the ionized Rydberg atoms,
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which is on the order of a few µs.

The process of excitation and ionization is repeated up to 5000 times in a single atomic
cloud. Subsequently the magnetic field is switched off and the atomic cloud imaged after a
certain time of flight, using absorption imaging tuned to the 5S1/2 −→ 5P3/2 transition. It
is also possible to take in-situ images of the atomic cloud using phase-contrast imaging [52]
instead of the absorption images in time of flight. The method of phase contrast imaging
makes use of the different refraction index of the atomic cloud for different atomic densities.
The different refractive index delays the light passing through, leading to a phase shift that
is proportional to the density of the cloud. The whole experimental cycle takes around 30 s
and is then repeated, starting again with the preparation of a MOT inside of the MOT
chamber.

3.2. New experimental chamber

To improve the stability of the experiment and in order to study new aspects of Rydberg
physics the experimental chamber has to be modified. For this reason a new electric field
compensation box, with some additional features not described in the previous section,
was designed in the course of the master thesis of Udo Hermann [10]. During this thesis
a considerable work was done towards a test setup for this new box, as well as improving
several other aspects of the experimental chamber. Another limiting factor of the stability
of the experiment are fluctuations of the trap bottom. These fluctuations of the trap
bottom can be caused by fluctuations in the current or the temperature of the coils of the
QUIC-trap during one cycle or by a drift of the temperature over a longer time. For this
reason a new setup of coil holders was designed to achieve better temperature stability. In
the following section the major changes and improvements of the experimental chamber
will be discussed.

As previously mentioned the electric field compensation box currently used in the experi-
ment is made from titanium, which is non-magnetic and a good electrical conductor. The
problem with this is that titanium oxidizes when it comes in contact with air, leading to
the creation of titaniumoxide which is a semiconductor. This means that electrical charges,
which are created by photo-emission caused by the 420 nm light used for the Rydberg ex-
citation, can stick to the electric field plates, leading to unwanted perturbations of the
electric field inside the box. These electric fields caused by the charges on the surface
can not be compensated since they are changing randomly over time, leading to drifts of
about 1-10 mV per hour for the necessary compensation voltage. For this reason the new
electric field compensation box was made from stainless-steel (DIN 1.4404, AISI 316L).
This stainless steel is a good electrical conductor, which does not oxidize and is nearly
non-magnetic.

Another improvement for the electric field plates is that the holes in the direction of the ion
detectors are not shielded by wires anymore, but only by cylinders around the hole of the
field plates. These cylinders shield the high electric fields caused by the high voltages of
the ion detectors even better than the shielding wires. Also no ions can be lost on the way
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Figure 3.8.: New electric field compensation chamber with three additional tubes for the
ion lensing in order to spatially spread the ions arriving on the MCP (left side,
not mounted in the picture).

to the detectors in the new setup, by hitting one of the wires used for shielding the electric
field. With these changes of the electric field plates, the stability of the electric field inside
the chamber should improve. This should allow the excitation of Rydberg states with an
even higher principal quantum number than n ≈ 150, which we were limited to up to now.

For the new box, two of the electric field plates are connected with 50Ω cables (and
feedthroughs) in order to switch the voltage on a nanosecond time scale. With this it is
possible to create fast electric field pulses, which can be used to generate circular Rydberg
states. Circular Rydberg states are states with a high angular momentum mL. For these
states the electron orbital is nearly classical. This means that the electron moves only on
a torus far away from the ionic core. Increasing the size of the torus by increasing the
principal quantum number n means that the electron orbits only outside of the atomic
cloud if the principal quantum number n is high enough, leading to the possibility to study
the effect of a single ion inside the atomic cloud.

Around the cylinder for the shielding on the electric field plate close to the Channeltron,
the coil for the radio frequency of the evaporative cooling was placed in the new design
instead of around the Channeltron like in the old design. This means that less RF-power
is necessary for the evaporative cooling, since the coil is already placed inside of the metal
cage and the radiation will not have to get through the metal cage to reach the atoms.
the metal cage of the field plates will also shield the RF radiation, so that outside the RF
power will be a lot lower and as such not influencing other electronic devices anymore.

Another new feature are the three additional metal tubes between the MCP and the
respective electric field plate, which are set up in an ion lensing configuration. With this it
is possible to spatially spread the ions flying towards the MCP so that they hit the whole
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area of the detector. In the old setup the MCP was placed directly after the field plate,
which actually led to a focussing of the ions to a small area on the MCP. This means that
only very few channels of the MCP were actually hit by ions, which is bad for the life time
of the channels since they can only detect ions up to a certain point, which is given by the
doping of the glass tubes. If this point is reached the detection efficiency of the channel
decreases dramatically. This actually happened to the channels of the MCP that were hit
by ions in the course of the thesis. In order to still use the MCP to efficiently detect ions an
additional deflection voltage was used so that the ions hit a different spot on the detector.
In the new design of the experiment box an ion lensing configuration was added, which
spreads the ion so that an area roughly 100 times larger than for the old setup is hit on
the MCP. This spatial spread also causes a spread in time, which means that if there are
two ions at the same time the probability that they overlap becomes less likely. With this
the detection of ions and as such the Rydberg atoms will become even more efficient than
up to now.

The MCP built into the old setup was disassembled and a self-made backplate was used in
the reassembling, because the space in the glass cell was not big enough for the standard
backplate. As a result of this the impedance is not perfectly matched anymore, leading to
reflections of the electric signal [66, 67]. This causes ringing on the signal of the detected
ion, which can be seen for about 50 ns. In this time no other ions can be detected even if
they hit another channel and should in principle be visible. For the new setup Hamamatsu
offered a custom-made backplate, which means that the MCP did not have to be disas-
sembled and modified by us. This means that for the new MCP the impedance is matched
and there should be no ringing on the signal.

The position of the field compensation chamber inside the glass cell is adjusted by fixing

Figure 3.9.: Photo with a detailed view of the shielding wires. Stainless stell wires with
a diameter of 25µm are attached to the shown field plate to screen surface
charges.
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the cables with clamps. This is a tedious work since the cable clamps used in the current
setup are hard to get to. For this purpose a new setup of cable clamps was designed. With
this it should be easier to position the electric field compensation chamber inside the glass
cell.

Before the new electrical field control box can be built into the experiment all the parts
have to be tested. For this all the separate parts were cleaned for ultra-high vacuum and
then assembled to the field compensation chamber. Also shielding wires (stainless steel
DIN 1.4404, 25µm diameter) were put over all the holes for the optical access, as can be
seen for one of the field plates in figure 3.9. As a next step a vacuum test setup has to be
built in order to test the electrical connections and the functionality of the MCP and the
Channeltron.

To further improve the stability of the experiment the thermal stability of the coils for the
QUIC-trap had to be improved. For this reason new coil holders for the quadrupole and
Ioffe coils were designed during this thesis. The new coils are now split into different layers
separated by a copper plate for better cooling. The quadrupole coils therefore consist of 2
times 2 layers each with 21 windings and the Ioffe-coil of 4 times 2 layers with 9 windings.

Figure 3.10.: Engineering drawing of the new coil holder for the Ioffe coil. The different
layers of the coil holder are separated for better visibility.
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Also the distance of 3.01 cm between the Ioffe-coil and the center of the trap was reduced by
1 mm, so that less windings were necessary. Calculations of the magnetic field generated
by this configuration of coils lead to slightly changed trap frequencies of about ωx,z =
2π · 280 Hz and ωy = 2π · 16 Hz. These trap frequencies are larger than the ones of the
current setup, but it was already seen for the old setup that the calculation always results
in slightly higher trap frequencies than the actual experiment. This could be because the
actual coils are not perfectly constructed and also that the mounting most likely does not
result in exactly the same distances as used in the calculation.
All in all the described changes should lead to an overall improvement of the stability of
the experiment and at the same time allowing the study of new topics, like Rydberg states
with an even higher quantum number or circular states.
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4. Rydberg Molecules

Scattering experiments can provide valuable information about the interaction of the scat-
tered particles. The electron of an atom in a Rydberg state is far away from the ionic core,
which means that it can interact with neighbouring particles of a dense atomic sample. The
scattering of the quasi-free Rydberg electron with neighbouring ground state atoms can
lead to an attractive or repulsive interaction, depending on whether the electron-neutral
atom scattering length is negative or positive. If the electron-atom scattering leads to an
attractive potential, it is possible that the arising potential can sustain bound molecular
states: the ultra-longrange Rydberg molecules.
The scattering process depends on the kinetic energy of the two particles [57] and on the
relative spin configuration of the Rydberg electron and the electron of the ground state
atom. For the Rubidium atoms used in the experiment, only the triplet scattering leads
to an attractive potential. For this case the Rydberg molecules were first observed by
Bendkowsky et al.[29]. However if the spins of the electron of the Rydberg state and the
ground state are in a singlet configuration the arising potential is repulsive and therefore
no bound molecular states can be sustained.
Recently it was pointed out by Anderson et al.[2] that the hyperfine coupling of the ground
state of the neutral atom leads to a mixing of singlet and triplet scattering channels.
This leads to changes of the pure triplet and singlet scattering potentials, resulting in the
emergence of molecular states bound by mixed singlet-triplet scattering.
This chapter starts with the theory of Rydberg molecules, namely the process of photoas-
sociation used to create the molecules in the experiment and the electron-atom scattering
leading to the binding of the Rydberg molecules. Then the work done with Rydberg
molecules up to this date will be presented briefly. In the next section the theory of the
mixed singlet-triplet molecules will be discussed in detail. The chapter ends with the pre-
sentation of the spectroscopic observation of the molecules, comparing the experimental
results to the presented theory.

4.1. Theory of Rydberg molecules

4.1.1. Photoassociation

The formation of a diatomic molecule from two separate atoms under the influence of
resonant light is called photoassociation. During this process the distance between the
two atoms does not change (Frank-Condon principle). For diatomic molecules made up
of two ground state atoms, the bond length is on the order of 10 a0 ≈ 0.5 nm, which is
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Figure 4.1.: Molecular potential curves in the region of interest. The interaction for two
Rb 5S ground state atoms is really short range (. 10 a0) and is not shown
here. In a dense atomic sample a configuration of two atoms with the right
internuclear separation can be photoassociated into a nS-5S Rydberg molecule
via the shown two photon transition. The atomic transition to the nS Rydberg
state (dotted line) acts as the dissociation limit of the molecular potential.

considerably smaller than the interparticle distance in a dense atomic cloud. Because of
this only high vibrational molecular states, with a large internuclear separation, can be
photoassociated in these samples.

For Rydberg molecules this is different since the electron is far away from the core, with
the orbital radius scaling as n∗2. The scattering of the Rydberg electron with ground state
atoms can lead to an attractive potential and as such bound molecular states are possible.
The bond length for these molecular states is on the order of 1000 a0. This means that it is
possible to directly excite the vibrational ground state of Rydberg molecules in cold atomic
samples. As an example, figure 4.1 schematically shows the photoassociation process from
two 5S ground state atoms to a nS-5S Rydberg molecule for Rubidium. The interaction
between the two ground state atoms plays a role for distances on the order of 10 a0, which
is negligible for the interparticle distances of the cold atomic samples, and is as such not
shown in the figure. An exemplary wavefunction of the molecular ground state in the nS-5S
potential is also shown.

With photoassociation spectroscopy it is possible to measure absolute binding energies as
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all molecular states appear red detuned from the atomic resonance of the respective Ryd-
berg state with quantum number n, which is the dissociation limit of the nS-5S molecular
potential. Thereby the molecular ground state corresponds to the peak with the highest red
detuning in a spectrum, as it has a higher binding energy than the excited vibrational states
which therefore appear closer to the respective atomic resonance. More atomic molecules,
e.g. triatomic molecules, can appear for an even higher detuning from the dissociation
limit.
The experimental resolution of the photoassociation spectroscopy is limited by three fac-
tors: the linewidth of the excitation laser, the Doppler broadening [58] and the population
of different rotational states due to the thermal energy. The laser linewidth of the 420 nm
and 1020 nm excitation laser used in the experiment are both below 20 kHz [12]. The next
factor is the Doppler broadening of the transitions due to the movement of the atoms in the
atomic cloud. For the temperature of roughly 1µK used in the thermal cloud experiments,
the Doppler broadening is about 25 kHz. The last factor is the population of different
rotational molecular states due to the thermal energy of the atoms, which is transferred
to an angular momentum J in the moment of the photoassociation of the molecule. The
spectral spacing between different rotational states is quite small (on the order of 10 kHz)
due to the large bond length, which gives a small rotational constant B. The intensity of
the different rotational states in the spectrum is proportional to the degeneracy (2J+1) of
the rotational states and the Boltzmann distribution (for more information see [53]). For
the parameters in the experiment, only the few lowest rotational levels are populated. All
in all the resolution of the photoassociation spectroscopy should be better than 100 kHz,
which was used as the step size for the excitation laser frequency in most of the measured
spectra presented later in the chapter.

4.1.2. Electron - Atom Scattering

In absorption spectroscopy of alkali atoms excited to Rydberg states in an environment of a
foreign background gas, Amaldi and Segrè found that the transition line was broadened and
simultaneously shifted from the expected position [17]. This shift could not be explained
by pressure broadening, as it also depends on the foreign gas itself. This density shift
of the Rydberg line was explained by Fermi as the effect of the low-energy scattering of
the Rydberg electron and the foreign gas atoms [18]. This is expressed in the famous
Fermi-pseudopotential

V (r) = 2π a0 δ
(3)(r−Rẑ) , (4.1)

in which the scattering is treated as contact interaction described by the scattering length
a0. In this equation r is the position of the Rydberg electron and R is the internuclear dis-
tance measured along the ẑ-axis. For the contact interaction in the Fermi-pseudopotential,
the neutral atom as the perturber is treated as a point-like particle. Averaged over many
electron-neutral atom scattering events, the arising potential is then proportional to the
electron density |ψ(r)|2 of the Rydberg state.
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V (r) = 2π a0 |ψ(r)|2 (4.2)

The assumption of many scattering events is valid because of the different time scales of the
movement of the Rydberg electron compared to the neutral atoms. As it was pointed out
by Chris Greene et al.[28], this potential can sustain bound molecular states if the thermal
energy of the ground state atom is lower than the scattering interaction. The theory of
the electron-atom scattering leading to these Rydberg molecules will be discussed in this
section on the basis of [15] and [14]. If not stated otherwise atomic units (~ = m = e = 1)
will be used throughout the whole section.
In order to quantum mechanically study the scattering of a particle by a potential V (r),
one has to solve the time-independent Schrödinger equation

Ĥ ψ(r) =

(
−1

2
∇2 + V (r)

)
ψ(r) = E ψ(r) (4.3)

for the motion of the particle in the potential V (r). In this equation Ĥ is the Hamiltonian
of the system, E is the total energy and ψ(r) is the wavefunction of the particle. For
the discussion of the scattering process we will start with short-range potentials that are
spherical symmetric and are vanishing faster than r−1 for r → ∞. For the potential of
interest for us, namely the polarization potential describing the interaction of a charged
and a neutral particle, this discussion has to be slightly changed, because the potential
asymptotically vanishes as r−4 and is as such considered as a long-range potential. The
necessary changes for the long-range polarization potential will be described later on in
this section.
For a spherically symmetric, short-range potential V (r) = V (r) the solution of the Schrödinger
equation (4.3) can be written as

ψ(r) '
r→∞

eikz + f(θ, φ)
eikr

r
. (4.4)

In this equation the incoming wave is treated as a plane wave along the z-direction with
the amplitude of the wavevector k given by k2 = 2E and the scattered wave as a spherical
wave with an angular dependent scattering amplitude f(θ, φ). The scattering problem is
shown schematically in figure 4.2.
With this ansatz for the solution of the Schrödinger equation the differential cross section

dσ

dΩ
= |f(θ,φ)|2 (4.5)

and the total cross section

σtot =

∫ 2π

0

dφ

∫ π

0

dθ sin(θ) |f(θ,φ)|2 (4.6)

can be calculated from the scattering amplitude. The total cross section σtot is given in
units of a20, where a0 is the Bohr radius, which is the unit of length in atomic units. In
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Figure 4.2.: Schematic illustration of the scattering process of a plane wave eikz by the
spherical symmetric interaction potential V (r) resulting in the scattered spher-
ical wave eikr/r.

order to obtain the scattering amplitude f(θ,φ), we have to solve the Schrödinger equation
(4.3) with the correct boundary conditions for ψ(r). The Schrödinger equation can be
solved for low energy scattering by a partial wave analysis [20, 21].

ψ(r) =
∞∑
l=0

Bl(k)
ul(r)

r
Pl(cosθ) (4.7)

In this equation l is the quantum number of the angular momentum of the scattered
particle, Pl(cosθ) are the Legendre polynomials, ul(r) are the radial wave functions and
Bl(k) are the coefficients, which are obtained from the boundary conditions. Substituting
this ansatz into equation (4.3), it is possible to separate the radial and angular dependency.
With this we get the radial Schrödinger equation for the radial wavefunction ul(r).(

1

2

d2

dr2
− l(l + 1)

2r2
− V (r) +

k2

2

)
ul(r) = 0) (4.8)

In this equation l(l+ 1)/2r2 is the centrifugal potential barrier and the energy was written
as E = k2/2. It can be shown (see, e.g., [15]) that the scattering amplitude can then be
written in terms of one set of parameters, the scattering phase shifts δl(k).

f(θ,φ) =
∞∑
l=0

(2l + 1)
sin(δl(k))

k
Pl(cosθ) (4.9)

Since we are discussing spherically symmetric potentials, V (r), the scattering amplitude
does not depend on the azimuthal angle φ. The scattering phase shifts δl(k) are a measure
of the asymptotic deviation of the wavefunction from the wavefunction without the external
potential. The phase shifts depend on the scattering energy and on the structure of the
scattering potential. As such these phase shifts are unique for each combination of different
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scattering particles and as such experimental input of the real potentials and possible
bound states is necessary in order to obtain the correct values of these phase shifts. For
alkali atoms the scattering phase shifts were calculated by Fabrikant in a non-relativistic
calculation [22], as well as a relativistic calculation [23]. For low-energy scattering only the
first few terms of equation (4.9) contribute, as the phase shifts δl(k)→ 0 for l→∞. This
can be understood as the effect of the centrifugal barrier due to the angular momentum: If
the scattering energy is lower than the centrifugal barrier, the higher angular momentum
channels do not contribute to the scattering.

With expression (4.9) for the scattering amplitude, the total cross section from equation
(4.6) can then be written as

σtot = 4π
∞∑
l=0

(2l + 1)
sin2(δl(k))

k2
=

4π

k
= (f(θ = 0, φ)) . (4.10)

The last equality is known as the optical theorem [24], which is a general law for wave
scattering theory. The analysis presented here is a good procedure for low energies as the
number of partial waves that have to be included is small. For higher scattering energies
this analysis breaks down, as you have to include more and more partial waves. For the
case studied in this thesis, and also for the early measurements done in a vapour cell, only
the lowest partial waves have to be included, because the thermal velocity of the neutral
atoms is really small compared to the velocity of the Rydberg electron. However, due to the
small mass of the electron, the momentum and therefore the kinetic energy of the electron
is really small. This means that for the Rydberg electron-neutral atom scattering studied in
this thesis, only the s- and p-wave scattering (l = 0,1) has to be taken into account. Before
focussing on this long-range scattering process, we will finish the discussion of short-range
potentials.

It can be shown in the effective range theory that the scattering phase shifts obey the
‘effective-range expansion’ [25, 26]:

k2l+1 cot (δl(k)) = − 1

al
+

1

2
relk

2 +O(k4) . (4.11)

In this expansion al is the scattering length for the corresponding angular momentum l and
rel is the effective range, which depends on the scattering potential V (r). To understand
how the scattering length is connected to the strength of the scattering potential, we will
briefly discuss the square well potential (for a complete discussion see [15]). In figure 4.3 the
connection between the s-wave scattering length a0 and the potential depth of a square well
potential with a unitary range is shown. There it can be seen, that the scattering length
vanishes as the potential vanishes. For a repulsive potential, meaning positive potential
strengths in the figure, the scattering length tends towards the range of the potential,
which is marked by the dashed line in the figure. For attractive potentials the scattering
length diverges for several potential strengths, each corresponding to an emergence of a
new bound state (dotted lines) that is sustained in the potential.
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Figure 4.3.: Dependence of the s-wave scattering length on the potential strength for an
exemplary square well potential with an unitary range. The scattering length
tends towards the range of the potential (dashed line) for repulsive potentials
and divergences for each occurrence of a new bound state (dotted lines), that
is sustained in an attractive potential.

The s-wave scattering dominates the scattering process for low energies if there is no
resonance for the higher partial waves. For Rubidium there is a p-wave shape resonance at
about 20 meV, which means that the p-wave scattering has to be included if the scattering
energy is in this range.

Now let us look at the situation that is of interest in the scope of this thesis, namely
the scattering interaction of a Rydberg atom with an atom in the ground state. The
Hamiltonian describing this interaction can be written as the sum of the three different
contributions:

Ĥ = Ĥion-e− + Ĥion-atom + Ĥatom-e− . (4.12)

The first term is the unperturbed Hamiltonian of the Rydberg state, with the known
energy levels and wave functions of the electron. This describes the electronic states and
as such the dissociation limit of the molecules bound by the scattering interaction. The
second term represents the interaction of the ionic core and the ground state atom. This
interaction only contributes at internuclear distances that are much smaller than the size
of the Rydberg molecules discussed here and can as such be safely neglected. The last term
describes the interaction of the Rydberg electron and the neutral ground state atom, which
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is described by the polarization potential given in equation (4.13). This is a spherically
symmetric potential that asymptotically only depends on the polarizibility α of the neutral
ground state atom.

V (r) =
r→∞

− α

2r4
(4.13)

Since the Rydberg electron is far away from the ionic core it can be considered as quasi-
free, which means that the interaction can be treated as a scattering process with the
polarization potential as the scattering potential. As already discussed above, this potential
is a long-range potential and as such the discussion of the scattering process from above
has to be adjusted because the effective range approach is not valid any more. It can be
shown, e.g. [15], that the scattering length as defined by equation (4.11) is only valid if
the exponent s of a r−s-potential satisfies s > 2l + 3. Similarly the effective range rel is
not defined any more if s ≤ 2l + 5. As such an effective range is not defined for s-wave
scattering in the case of the polarization potential and a scattering length is only defined
for s-wave scattering.
For the partial waves with l ≥ 1 the Schrödinger equation (4.3) with the polarization po-
tential can be solved by only looking at the asymptotic behaviour. Instead of the ’effective-
range expansion’ in equation (4.11), this leads to

k2 cot(δl(k)) =
8(l + 3/2) (l + 1/2) (l − 1/2)

πα
+O(k2) . (4.14)

As expected from the conditions discussed above, a scattering length is not defined for
partial waves with l ≥ 1. For s-wave scattering this asymptotic behaviour analysis can not
be done. For this reason O’Malley et al.[16] introduced a modified effective range theory
for the case of the polarization potential.

k cot(δ0(k)) = − 1

a0
+
πα

3a20
k +

4α

3a0
k2 log

(√
α k

4

)
+O(k2) (4.15)

The obtained expressions can be connected to the total cross section in equation (4.10) by
using sin(δl)/k ' tan(δl)/k. For this the expressions (4.14) and (4.15) have to be rewritten,
as they can be found, e.g. in [27].

−tan(δl(k))

k
= − πα

8(l + 3/2) (l + 1/2) (l − 1/2)
k +O(k2) (4.16)

−tan(δ0(k))

k
= a0 +

πα

3
k +

4α a0
3

k2 log

(√
α k

4

)
+O(k2) (4.17)

The expansions (4.16) and (4.17) can be used as expressions for an energy dependent
scattering length a0(k) and al(k) for finite scattering energies. Substituting (4.17) into
equation (4.10) for the total cross section we obtain the energy dependence of the s-wave
cross section.
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σtot, l=0(k) = 4π ·
(
a0 +

πα

3
k + . . .

)2
(4.18)

For the scattering of the Rydberg electron with a neutral ground state atom at the position
R, the influence of higher partial waves was first studied by Omont[19], who obtained the
following pseudopotential

V pseudo(R) = 2π
∞∑
l=0

(2l + 1) al(k)

(
Pl

(∇r′ · ∇r

k2

)
ψ∗(r′)ψ(r)

)
r=r′=R

. (4.19)

In this equation the wave number is given by k(r) =
√

2(Enl + 1/r) and the energy depen-
dent scattering length by

al(k) = −tan(δl(k))

k2l+1
. (4.20)

Using only the first term of the sum in equation (4.19) and only the zero-order contribution
in k, results in the famous Fermi-pseudopotential already given in equation (4.1). Only
taking into account the p-wave contribution (l = 1) of the sum in equation (4.19) results
in

Vl=1(R) =
6π

k2
a1(k) |∇R ψ(R)|2 . (4.21)

All higher partial waves can be safely neglected for the range of the scattering energy
leading to the Rydberg molecules. As can be seen from Greene’s formalism in equation
(4.2) the molecular potential shows the same oscillatory behaviour in an s-wave scattering
treatment as the electron wave function of the Rydberg state.
Quantum mechanically there is another degree of freedom that influences the scattering
process: the relative spin orientation of the two scattering particles. For the nS Rydberg
states as well as the ground state of 87Rb, that are considered in the scope of this thesis,
there is one valence electron which has a spin of S = 1/2. The combination of the two
spins can form a symmetric (triplet) or an antisymmetric (singlet) spin-wavefunction. The
influence of these spin configurations on the scattering process can be taken into account
by introducing different scattering lengths for the two cases, or by including the spin from
the very beginning by solving the time-independent Dirac equation 4.22[54] instead of the
Schrödinger equation (4.3).(

cα · p + β′c2 + V (r)
)
ψ(x) = E ψ(x) (4.22)

Here x = (r,σ) includes the space (r) and spin (σ) coordinates, c is the speed of light,
β′ = β−14 is chosen such that the rest mass of the electron is not included in the equation
and the entries of the vector α and β are the 4×4 Dirac matrices defined by

αx,y,z =

(
0 σx,y,z

σx,y,z 0

)
and β =

(
12 0

0 −12

)
. (4.23)
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Thereby σx,y,z are the Pauli spin matrices [55]. Solving the scattering problem with the
Dirac equation leads to a dependency of the scattering phase shifts δl(k) on the spin
configuration of the particles (for further information see pages 45-55 in [15]). Due to the
spin-orbit coupling it is also possible for a spin-flip to occur during the scattering process,
which can also be described by this formalism.
As already mentioned above, the combination of two spin 1/2 particles can lead to ei-
ther a triplet or a singlet configuration of the spins. There are three possible symmetric
combinations of the two spins

|↑↑〉 , |↓↓〉 and
1√
2

(|↑↓〉+ |↓↑〉) , (4.24)

leading to a triplet configuration and one anti-symmetric singlet combination

1√
2

(|↑↓〉 − |↓↑〉) . (4.25)
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Figure 4.4.: Scattering potential for pure singlet and triplet scattering of an atom in a 40S
Rydberg state and an atom in the 5S ground state of 87Rb calculated from the
zero-energy Fermi-pseudopotential given by equation (4.1) (dotted lines) and
from a full diagonalization method including the neighbouring Rydberg states,
the energy dependence of the scattering and the p-wave scattering contribution
(solid lines). In the attractive potential arising from the triplet scattering an
exemplary wavefunction of a bound molecular states is shown.

36



4.2. Triplet spectroscopy: Work up to now Fabian Böttcher

Theoretical calculations of the zero-energy s-wave scattering length lead to predictions of
a0,T = −16.1 a0 [23] for the triplet scattering length and a0,S = +0.63 a0 [23] for the singlet
scattering length. Looking at the Fermi-pseudopotential in equation (4.1) this leads to an
attractive potential for the case of triplet scattering and a repulsive potential for singlet
scattering. These potentials are shown schematically for the 40S Rydberg state in figure 4.4.
The dotted lines in the figure are the potentials calculated with the Fermi-pseudopotential
using only the zero-energy scattering lengths. The solid lines are the potentials obtained
from diagonalizing the scattering Hamiltonian [42] using the scattering phase shifts from
[22], including all Rydberg states in the range of ∆n = ±15. It can be seen in figure
4.4 that the neighbouring Rydberg states, the p-wave scattering and the k-dependence
of the scattering strongly influence the potentials. The triplet scattering potential bends
down for the small internuclear distances shown, due to the shape resonance of the triplet
p-wave scattering, which does not exist for singlet p-wave scattering. In these pure singlet
and triplet potentials bound molecular states are only possible in the attractive potential
arising from the triplet scattering,as shown schematically by the calculated wavefunction
of the molecular ground state. The binding energies and the respective wavefunctions are
calculated by solving the Schrödinger equation using Numerov’s method [59, 60].

Only recently it was shown that the hyperfine structure of the ground state atom mixes
singlet and triplet scattering channels, leading to mixed singlet-triplet potentials that are
able to sustain bound molecular states. These mixed singlet-triplet molecules will be
considered in detail later on.

4.2. Triplet spectroscopy: Work up to now

Since the prediction of ultralong-range Rydberg molecules in 2000 by Greene et al. [28],
these molecules have gained a lot of experimental and theoretical attention, because they
represent a new mechanism of chemical bonding and because of their surprising properties,
like e.g. a permanent electric dipole moment in a homonuclear molecule. The Rydberg
molecules were for the first time spectroscopically observed by Bendkowsky et al.[29] for
87Rb atoms in the range of n = 35 − 37. In this work the diatomic ground state as
well as several excited vibrational states were observed. Later on also more atomic states
[30, 35], like trimer states consisting of one Rydberg atom and two ground state atoms,
and excited states bound by quantum reflection [30] were observed. The molecules with
multiple ground state atoms bound to the Rydberg atom by the electron-neutral scattering
are possible because the neutral-neutral scattering length and as such the range of the
neutral-neutral scattering interaction, is significantly smaller than the mean interparticle
distance in the atomic cloud. Because of this, different ground state atoms inside the
same Rydberg wavefunction do not interact with each other, leading to molecular states
containing more than one ground state atom. Because the different ground state atoms
do not interact with each other the binding energy is additive, meaning that the triatomic
molecule has twice the binding energy of the diatomic molecule and so on [35].

In figure 4.5 a spectrum of the 40S Rydberg state, measured in a thermal cloud with a
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Figure 4.5.: Molecular spectrum of the 40S Rydberg state measured in a thermal cloud.
The atomic transition from the 5S, F=2, mF=2 to the 40S, mS=1/2 state cor-
responds to the zero of the frequency axis. This corresponds to the dissociation
limit of the molecular states and as such the relative frequencies in the figure
correspond to the binding energies of the molecular states. On the left side
of the atomic transition the dimer state is visible at -9.3 MHz and the trimer
state at -18.6 MHz. Several excited states of both the dimer and the trimer
states are also visible as smaller peaks. The standard error of the measured
mean ion counts are shown exemplary for some of the data points. The grey
line is a multiple-Lorentzian fit to the data, shown for better visibility.

temperature of about 1µK, is shown. There the diatomic molecular ground state is visible
as a peak at -9.3 MHz, with several excited states visible in between this state and the
peak of the atomic transition at zero, which corresponds to the dissociation limit of the
40S-5S Rydberg molecules. In the spectrum the trimer state is also visible at -18.6 MHz,
corresponding to twice the binding energy of the dimer state.

The ground state of the diatomic Rydberg molecule is bound in the outermost well of the
triplet scattering potential shown in figure 4.4. As the depth of this potential well changes
with the principal quantum number n∗, so does the binding energy of the molecular states.
Because of the scaling of the classical electron orbit as n∗2, the volume of the electron
wavefunction scales as n∗6. Since the wavefunction has to be normalized, the amplitude
of the wavefunction has to decrease accordingly if the volume increases. From this size
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argument of the Rydberg wavefunction one would expect that the depth of the scattering
potential scales as n∗−6 with the principal quantum number. Experimentally an exponent
of −6.26± 0.12 was found by Gaj et al.[35], matching the predicted value quite well.
Since the initial experimental observation of Rydberg molecules, a lot of phenomena have
been explored, such as the coherent creation and breaking of the molecular bond [31] and
exotic trilobite states [33, 37]. Also the lifetimes of the molecular ground and excited states
[32] were studied, where it was found, that the decay rate of the molecular states depends
on the lifetime of the Rydberg state as well as on collisions with the background gas, which
lead to the dissociation of the molecule. The collisional lifetime is of course dependent on
the density of the atomic cloud and the thermal energy of the atoms. The p-wave shape
resonance in the electron-Rubidium scattering potential leads to shorter lifetimes of the
molecular states than it is the case for systems which do not show such a shape resonance,
e.g. strontium [64]. In systems with no p-wave scattering resonance the lifetime of the
molecules is only limited by the lifetime of the Rydberg state, if the density and therefore
the collisional decay rate is small enough.
Diatomic Rydberg molecules were also realized for S-states in Cs [38] and Sr [41, 64], for
P-states in Rb [40] and Cs [3] and for D-states in Rb [34, 36, 39]. For the D-state molecules
it was shown that it is possible to control the hybridization of the molecular orbitals by
tuning the strength of an external electric field [36]. Rydberg molecules in Rb have also
been used as a probe of the phase transition from a Mott-insulator to a superfluid phase
in an optical lattice [43].
With Rydberg molecules it is also possible to study the transition from a two-body to a
many-body system by simply increasing the principal quantum number n and with that
the number of atoms inside the electron wave function [35]. By doing this, one can see the
transition from distinguishable molecular lines to an inhomogeneously broadened spectral
line, which can be described by a mean-field model. In this mean-field model, taking only
s-wave scattering into account, the shift of the spectral line is given by

∆E =

∫
dRV (R) · %(R) = 2π a0 %̄ . (4.26)

In this equation %(R) is the density distribution and %̄ the mean density of the atomic cloud.
The same transition can be observed by increasing the density instead of the principal
quantum number. This was done by exciting single Rydberg atoms inside a BEC and
showing that the center of gravity of the obtained spectra is more or less independent of
the quantum number [5]. For the higher densities of a BEC, the inter-particle distance
decreases and the p-wave shape resonance plays an important role for the broadening
of the observed spectra [4]. This is because even a single particle close to the p-wave
shape resonance contributes a lot to the overall shift of the spectral line. A 40S Rydberg
spectrum measured inside a BEC is shown in figure 4.6. In this figure one can see a broad
spectral line coming from the Rydberg atoms excited inside the high density fraction and
distinguishable molecular peaks from the thermal fraction. The model used to simulate
the spectra (red line) is discussed in detail in [4].
The shift of the spectral line in the BEC spectrum can be used to study density dependent
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Figure 4.6.: Spectrum of the 40S Rydberg state measured in a BEC with a peak density
of about 5.5 · 1014 cm−3. The spectrum consists of a broad line coming from
Rydberg atoms excited in the high density region and the atomic and molecular
lines coming from the thermal fraction of the atomic cloud. The red line is a
simulated spectrum taking into account the bimodal density distribution and
the full scattering potential, which includes the p-wave shape resonance [4].
The atomic transition once again corresponds to the zero of the frequency
axis. For some data points the standard error of the mean ion counts is shown
exemplary in the spectrum. The grey line acts as a guide to the eye that
connects the data points.

phenomena inside the BEC, as each detuning from the atomic resonance corresponds to a
number of configurations of atoms, which sum up to give exactly this shift of the spectral
line. These configurations of atoms can be seen as different local densities inside the cloud.
As such there is a correspondence between the detuning from the atomic resonance and
the local density. This can be used to study the density distribution of the BEC with the
Rydberg atom acting as a local probe [6]. Also the dynamics of the Rydberg atom inside
the atomic cloud can be studied for different detunings from the atomic resonance and
as such different density distributions. There it can be observed that the Rydberg atoms
inside the BEC undergo l-changing collisions on a time scale that depends on the principal
quantum number, ranging from 1µs for 53S up to about 10µs for 149S [7].

Also the interaction of the Rydberg electron with the BEC has been studied [44] showing
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that it is possible to set the whole condensate into a collective oscillation by exciting a
single Rydberg atom. Furthermore it should be possible to imprint the scattering potential,
and as such more or less the electron wavefunction, onto the density distribution of the
condensate [45, 46]. This imprint of the scattering potential on the density distribution
should occur after the Rydberg excitation because the particles want to minimize their
energy and as such they want to ‘flow’ into the potential wells of the scattering potential.
This increase of particles in the potential wells of the scattering potential should then be
visible in the density distribution of the BEC, which can directly be imaged after a few
microseconds following the Rydberg excitation using in-situ phase contrast imaging.
All the work presented in this section has been done by taking only triplet scattering into
account, which is correct if the Rydberg atoms are excited using the excitation scheme
shown in figure 3.5. By using an unpolarized atomic sample or by changing the scheme
of the Rydberg excitation by using different polarizations of the laser beams, leading to
a spin-flip during the excitation, it is possible for the singlet scattering channel to play a
role as well. As seen in the previous section, the pure singlet scattering leads to a repulsive
potential and as such no molecular states. Since the atoms can never be prepared in a pure
singlet state in the experiment described in this thesis, and due to the hyperfine coupling
in the ground state of the atoms, the singlet and triplet scattering channels mix, leading
to mixed singlet-triplet molecular potentials able to sustain bound states. The theory of
these mixed singlet-triplet Rydberg molecules will be discussed in the following section.

4.3. Theory of mixed singlet-triplet Rydberg molecules

Looking at the pure singlet and triplet scattering potentials in figure 4.4, it can be seen
that no bound molecular states are possible for singlet scattering. However it was pointed
out by Anderson et al.[2] that the hyperfine coupling in the ground state of the neutral
atom leads to mixing of some triplet scattering channels with the singlet channels. This
mixing leads to mixed singlet-triplet potentials, which Anderson et al. called ‘shallow’
potentials, that are able to sustain bound molecular states. These mixed singlet-triplet
molecular states were first observed by Saßmannshausen et al.[3] for nP states in Cs in
the range of n = 26 − 34. In the course of this thesis the naming convention of triplet
and mixed potentials will be used, instead of deep and shallow potential as it was used by
Anderson et al.[2].
The Hamiltonian of the system, including the hyperfine coupling in the 5S ground state of
the neutral atom is given by

Ĥ(r, R) = Ĥ0 + AHF Ŝg ⊗ Îg +
∑
i=S,T

2π ail=0(k) δ(3)(r−Rẑ) P̂i

+
∑
i=S,T

6π ail=1(k) δ(3)(r−Rẑ)∇ · ∇ P̂i .
(4.27)

In this equation Ĥ0 is the Hamiltonian of the unperturbed Rydberg state, r is the position
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of the Rydberg electron, R is the distance between the ionic core of the Rydberg atom
and the neutral atom along the ẑ-axis, AHF = h/2 · 6.835 GHz is the hyperfine constant
of the 5S ground state, Ŝg is the operator of the electron spin and Îg the operator of the
nuclear spin of the ground state. The third term is the s-wave scattering term with the sum
covering both singlet (S) and triplet (T) scattering and the last term the p-wave scattering
interaction. There al(k) is the energy dependent scattering length for the first two partial
waves, the s-wave (l = 0) and the p-wave (l = 1), as it was introduced by equation 4.20.
In the two scattering terms, P̂T and P̂S are the projection operators defined by

P̂T = Ŝr ⊗ Ŝg +
3

4
1 and P̂S = 1− P̂T . (4.28)

The molecular potential energy curves are then obtained by diagonalizing the Hamiltonian
(4.27) as a function of the internuclear distance R.
The Hamiltonian given by 4.27 conserves the total quantum number M = mI,g+mS,g+mS,r.
As such the matrix given by equation 4.35 can also be written as a block diagonal matrix, by
re-arranging the basis vectors. The Hilbert space as such can then be seen as a combination
of sub-spaces with a fixed quantum number M .
To better understand the underlying physics, we will look at the matrix representation of
the Hamiltonian. For this all the parts building up the Hamiltonian (4.27) will be explained
separately before combining them to the Hamiltonian.
Considering a system of two spin 1/2 particles, the Hilbert space used to describe the
system is 4-dimensional. In this Hilbert space the two spins can either be in a triplet
configuration, which is symmetric with respect to a permutation of the two spins, or in
an anti-symmetric singlet configuration. These singlet and triplet states are then the
eigenstates of the system. In the basis of two independent spins the three triplet states are
given by

|↑↑〉 = (1,0,0,0)

|↓↓〉 = (0,0,0,1)

1√
2

(|↑↓〉+ |↓↑〉) =
1√
2

(0,1,1,0)

(4.29)

and the singlet state by

1√
2

(|↑↓〉 − |↓↑〉) =
1√
2

(0,1,− 1,0) . (4.30)

In order to get the projection operators, one has to calculate the tensor product of the
two spin operators Ŝ1 ⊗ Ŝ2. The spin operator of the spin 1/2 system is defined by the
Pauli spin matrices Ŝ = 1/2 (σx,σy,σz). With this the projection operator for the triplet
and singlet states are then given by
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P̂T =


1 0 0 0

0 1/2 1/2 0

0 1/2 1/2 0

0 0 0 1

 and P̂S =


0 0 0 0

0 1/2 −1/2 0

0 −1/2 1/2 0

0 0 0 0

 . (4.31)

As a next step we have to get the matrix representation of the hyperfine Hamiltonian in
the uncoupled |L, S, I〉-basis. For the 5S ground state of 87Rb, the quantum numbers take
the values of L = 0, S = 1/2 and I = 3/2. The Hilbert space of this system then has a
dimension of (2S+1)(2I+1) = 8. For the electron with spin 1/2, the spin-operator is again
given by the Pauli matrices Ŝ = 1/2 (σx,σy,σz). The matrix representation for the nuclear

spin of I = 3/2 is given by Î = (Îx,Îy,Îz), with the following three spin operators[56].

Îx =
1

2


0
√

3 0 0√
3 0 2 0

0 2 0
√

3

0 0
√

3 0



Îy =
i

2


0 −

√
3 0 0√

3 0 −2 0

0 2 0 −
√

3

0 0
√

3 0



Îx =
1

2


3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3



(4.32)

With this the matrix representation of the hyperfine Hamiltonian for the 5S ground state
of 87Rb can be calculated.

ĤHF = AHF Ŝg ⊗ Îg = AHF (Ŝx ⊗ Îx + Ŝy ⊗ Îy + Ŝz ⊗ Îz)

= AHF ·



3/4 0 0 0 0 0 0 0

0 1/4 0 0
√

3/2 0 0 0

0 0 −1/4 0 0 1 0 0

0 0 0 −3/4 0 0
√

3/2 0

0
√

3/2 0 0 −3/4 0 0 0

0 0 1 0 0 −1/4 0 0

0 0 0
√

3/2 0 0 1/4 0

0 0 0 0 0 0 0 3/4


(4.33)
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This matrix has two different eigenvalues: 3/4AHF and −5/4AHF, corresponding to the
F = 2 and F = 1 hyperfine states respectively. Thereby the eigenvalue for the F = 2 state
is five times degenerate and the eigenvalue for F = 1 three times degenerate.
Together with the expressions for the pure singlet (S) and triplet (T) scattering interaction
obtained from the scattering theory we have all the parts needed to build up the matrix
representation of the Hamiltonian in equation (4.27). The pure scattering potentials will
be treated as known functions VS,T(R) of the internuclear distance R and are as such
simple numbers for a fixed value of R. In order to get the Hamiltonian, the matrices
of the hyperfine Hamiltonian in equation (4.33) and the triplet and singlet projection
operators in (4.31) have to be adjusted to the system of interest to us: the Rydberg
electron with two possible states mS = ±1/2, interacting with the electron of the 5S
ground state atom, which has 8 states due to its coupling to the nuclear spin. This is
a simplification of the real process, in order to work with the lowest number of states
as possible to reduce the computational complexity. The spacing between neighbouring
Rydberg states is on the same order of magnitude as the hyperfine splitting of the ground
state and in the full diagonalization method used to calculate the pure singlet and triplet
scattering potentials these neighbouring states were included, as they have an influence on
the scattering potentials. However including all necessary states in the calculation would
lead to huge matrices and in order to reduce the computational complexity, this two-step
approach was used. The Hilbert space of this system is 16-dimensional and in order to get
the matrix representation of the full Hamiltonian one has to take the tensor product of the
respective operators with the identity operator 1.

Ĥ(R) = 12 ⊗ ĤHF + VS(R) · (P̂S ⊗ 14) + VT(R) · (P̂T ⊗ 14) (4.34)

This equation now includes the scattering interaction of the two valence electrons of the
two possible Rydberg states and the hyperfine states of an atom in the 5S ground state.
The 16×16 matrix representing the Hamiltonian of this system is then given by equation
(4.35). In this matrix the index of the hyperfine constant AHF and the dependency of the
scattering potentials on the internuclear separation R, are omitted for simplicity.
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Diagonalizing this matrix as a function of the internuclear distance R results in the molec-
ular potential energy curves. The matrix representation of the Hamiltonian results in
4 different eigenvalues, which are given in equations (4.36)-(4.38). In the equations for
the eigenvalues, the R-dependency of the scattering potentials VS,T was again omitted for
simplicity.

3

4
AHF + VT 6× degenerate (4.36)

−5

4
AHF + VT 2× degenerate (4.37)

−1

4
AHF +

1

2

(
VT + VS ±

√
4A2

HF + AHF · VS + V 2
S − AHF · VT − 2VS · VT + V 2

T

)
each 4× degenerate

(4.38)

For the obtained eigenvalues, 8 eigenvalues contain only the triplet scattering interaction
(given by equation (4.36) and (4.37)), while the other 8 contain both singlet and triplet
scattering (given by equation (4.38)). The 8 eigenvalues that contain both singlet and
triplet scattering, form the mixed molecular potentials as they were pointed out by Ander-
son et al.[2]. Without the scattering interaction, the eigenvalues are split apart to form the
hyperfine F = 2 and F = 1 states with their respective degeneracy. With the scattering
interaction there are 6 molecular potentials formed by pure triplet scattering for F = 2
and only 2 for F = 1, while there are 4 mixed singlet-triplet potentials for both hyperfine
levels.
The obtained molecular potentials are shown in figure 4.7 as a function of the internuclear
separation R for the 40S Rydberg state. In this figure the pure triplet potentials are
shown in red, while the mixed potentials are shown in green. The pure singlet and triplet
potentials used in the calculation of these potentials are again calculated with the full
diagonalization method already shown in figure 4.4. In the figure it is clearly visible that
the mixed potentials for F = 1 are deeper than the ones for F = 2. This was already
pointed out by Anderson et al.[2] in their initial paper about mixed molecules and then
also experimentally observed by Saßmannshausen et al.[3].
In order to explain the measurements done in the described experiment, it is necessary to
include the interaction with an external magnetic field, since the experiment is done in a
magnetic trap with a non-zero offset. The interaction of the electronic sub-states of an
atom with an external magnetic field is described by the Hamiltonian in equation (2.11).
This interaction was already described in detail in chapter 2.3.

Ĥ(R) = ĤB + ĤHF + VS(R) · P̂S + VT(R) · P̂T (4.39)

The Hamiltonian of the interaction of the electron spin with the magnetic field ĤB has to
be included in the Hamiltonian given by equation 4.27. This interaction only appears if
both spins are pointing in the same direction, because the Zeeman shift of each spin cancels
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Figure 4.7.: Potential energy curves for the 40S-5S Rydberg molecules. Shown are the
triplet (red) and the mixed singlet-triplet (green) potential energy curves for
both hyperfine levels F = 1 and F = 2 of the 5S ground state of 87Rb. The
triplet potentials are the same for both hyperfine levels and also the same as
shown in figure 4.4. The mixed singlet-triplet potential for the F = 1 hyperfine
state is deeper than for the F = 2 hyperfine state. Zero on the vertical axis
corresponds to the energy of the respective hyperfine state in zero magnetic
field.

out if they are pointing in opposite directions. This Zeeman shift than enters the matrix
representation of the Hamiltonian given in equation (4.35) only on the diagonal terms if
both mS,g and mS,r are the same. The structure of the Hamiltonian is shown schematically,
with each interaction corresponding to a different color, in figure 4.8. In this figure the
interaction of the nuclear spin with the magnetic field was neglected, because it is only
a small effect since the magnetic moment of the nucleus is almost negligible compared to
the magnetic moment of the electron. This interaction can also be included in the matrix.
This Hamiltonian still conserves the total quantum number M and as such the system can
in principle be reduced to smaller sub-spaces.

To obtain the new molecular potentials, including the interaction with the magnetic field,
the Hamiltonian given by equation (4.39) has to be diagonalized. The new eigenvalues are
no longer given by the eigenvalues given in equations (4.36)-(4.38), as the magnetic field
leads to further mixing of the states. As such the obtained eigenvalues can in principle
not be labelled as triplet and mixed potential as we did for the eigenvalues without the
magnetic field. In this thesis however we will stick to the notation in zero magnetic field,
where the potentials could be grouped into two families: the triplet and the mixed family.
In the appendix A.1 the dependency of the obtained potentials on the strength of the
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hyperfine |g>
magnetic field
triplet scattering
singlet scattering

|m = 3/2,↑ ,↑ >I g r

|m = 3/2, , >I g r↓ ↓

|m =-3/2, ,↓ >I g r↓

|m = 1/2,↑ ,↑ >I g r

|m =-3/2, , >I g r↑ ↓

|m = 3/2,↑ , >I g r↓
|m =-3/2,↓ ,↑ >I g r

Figure 4.8.: Schematic illustration of the structure of the matrix representation of the
Hamiltonian (4.39). The respective terms of the interactions are marked in
different colors. Blank square indicates a zero in the Hamiltonian.

magnetic field is discussed for all obtained potential energy curves.

As can be seen in figure 4.8, the outermost states of the matrix are the only states that
do not couple to other states and as such are the only ones affected purely by triplet
scattering. All the obtained potential energy curves are shown in figure 4.9 for a magnetic
field of 2.35 G, which was the magnetic field used for most of the measurements that
will be presented later. In this figure the potentials belonging to the mixed family are
drawn in green, while the potentials of the triplet family are drawn in red. An exemplary
wavefunction calculated for a bound state in the experimentally accessible triplet potential
is shown in blue. The uppermost and the lowermost state for F = 2, are the states
that do not couple to other states and are as such the only pure triplet states. In the
measurements presented in the previous section, the Rydberg atoms were always excited
to the state corresponding to the highest potential energy curve of the F = 2 state and
were therefore purely triplet.

In the described experiment not all of the potential energy curves shown in figure 4.9
are accessible, because the atoms are prepared to be spin polarized inside the magnetic
trap. In order to obtain the potentials that are of interest, the overlap |〈ψex|ψeig〉|2 of the
calculated eigenstates with the atomic state, that can be excited, has to be calculated.
For the measurements done in this thesis this is the |mI,g = 3/2,mS,g = 1/2,mS,r = −1/2〉
state. The overlap of the calculated eigenstates with the state that is excited in the
experiment of course also depends on the internuclear distance, as the scattering that mixes
the states depends on the internuclear separation. The calculated overlap |〈ψex|ψeig〉|2 as
a function of the internuclear distance is shown in figure 4.10. For the ground state of
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Figure 4.9.: Molecular potential energy curves for the 40S-5S Rydberg molecules as a func-
tion of the internuclear distance R calculated by diagonalizing the Hamiltonian
given in equation (4.39), using the pure singlet and triplet potentials obtained
with the full diagonalization method. The inclusion of the hyperfine interac-
tion of the 5S ground state atom leads to the mixing of singlet and triplet
scattering channels. In zero magnetic field the molecular potentials can be
grouped in two different families: triplet (red) and mixed (green) potential
energy curves. The applied magnetic field of B=2.35 G leads to further mix-
ing and also splits the potentials apart by the Zeeman shift of the asymptotic
atomic energy levels. In the experiment we address the triplet and mixed
molecular states of F=2 which are indicated with thick red and green lines,
respectively. The substate of F=1 plotted with a thick green line has a very
small overlap with the initial state and thus was not observed in the experi-
ment. As an example a bound state inside the accessible triplet potential is
shown in blue. Zero on the vertical axis corresponds to the asymptotes of the
respective degenerate hyperfine state (F = 1,2) in zero magnetic field.
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Figure 4.10.: Calculated overlap of the eigenstates |ψeig〉 of the Hamiltonian given by equa-
tion (4.39) with the state |ψex〉 = |mI,g = 3/2,mS,g = 1/2,mS,r = −1/2〉 that
is excited in the experiment as a function of the internuclear distance for a
magnetic field of 2.35 G. For the ground state of the Rydberg molecules only
the overlap for the outermost well of the potentials is decisive. Another state
also has a non-zero overlap with the state that is excited, but this overlap is
very small compared to the two states shown here and is as such not visible
in the figure.

the Rydberg molecules only the overlap |〈ψex|ψeig〉|2 in the outermost well of the potential
energy curve, where the ground state atom is bound by the electron-neutral scattering, is
crucial. This overlap depends not only on the scattering, but also on the amplitude of the
external magnetic field. This dependency on the magnetic field is shown in figure A.3 of
the appendix. For the state that is excited in the experiment there are three eigenstates
that have a non-zero overlap. These three eigenstates are the potentials that are shown in
a thick line in figure 4.9. However the eigenstate corresponding to the potential at F = 1
has such a small overlap that it was not observed in the experiment. This is because the
scattering interaction is small compared to the hyperfine splitting, leading only to small
perturbations.

The dependency of the bound molecular ground state in the two potentials of interest
(thick lines for F = 2 in figure 4.9) is shown in figure 4.11. The zero of the vertical axis
in this figure is the transition to the atomic |mI,g = 3/2,mS,g = 1/2,mS,r = 1/2〉-state. For
this state the energy level of the ground state and the Rydberg state are shifted by the
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0 5 10 15 20 25

−80

−60

−40

−20

0

40S

Magnetic Field (G)

R
el
at
iv
e
F
re
q
u
en
cy

(M
H
z)

Mixed
Triplet

Figure 4.11.: Dependence of the relative frequency of the bound molecular states that
are accessible in the experiment on the amplitude of the magnetic field.
Zero on the vertical axis corresponds to the transition to the atomic
|mI,g = 3/2,mS,g = 1/2,mS,r = 1/2〉-state, for which the relative laser fre-
quency stays the same. This atomic state is the asymptote of a pure triplet
potential, for which the binding energy (black line) of the molecular ground
state does not depend on the magnetic field. The range that was measured
in the experiment is shown in light blue.

same amount in an external magnetic field and as such the relative laser frequency used
to excite the Rydberg state stays the same. Hence, this transition is always used as a
reference in the experiment. Furthermore the molecular potential corresponding to this
atomic state is not changed by the magnetic field and as such the relative frequency of
the bound molecular ground state in this pure triplet potential also stays at the same
frequency, which is shown by the black line at -9.4 MHz. The non-linear behaviour that
can be seen in figure 4.10 can be explained by the dependence of the potentials on the
magnetic field. For small magnetic fields the mixed potential becomes deeper and the
triplet potential gets more shallow. This effect saturates after a certain magnetic field and
the potential depth stays the same. From this point on, only the linear Zeeman effect of
the asymptote of the potentials is observed. This dependency on the magnetic field is also
shown in the appendix A.1 in figure A.1 for all potentials and in figure A.2 for the binding
energies of the molecules for the other principal quantum numbers.

Up to now only the hyperfine structure of the 5S ground state was included in the calcu-
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Figure 4.12.: Molecular potential energy curves for the 40S-5S Rydberg molecules with
mixed singlet-triplet scattering, interaction with an external magnetic field
and the hyperfine structure for both the 5S ground state and the Rydberg
state. For the Rydberg state the magnetic field is large enough to be in the
strong B-field regime and as such there are always 4 potentials following more
or less the same behaviour. The potential energy curves that are accessible
in the experiment are shown in green for the mixed potentials and in red for
the triplet potential. By changeing the nuclear spin of the Rydberg atom
during the excitation, it is also possible to end up in the potential shown in
blue, which was not accessible without the inclusion of the nuclear spin of the
Rydberg atom. The zero of the vertical axis again corresponds to the energy
of the degenerate hyperfine state (F=1,2) in zero magnetic field.

lation. For the Rydberg state there is also a coupling of the electron and the nuclear spin,
which is, as described in chapter 2.2, considerably weaker due to the large electron orbit,
but still on the order of the measurement resolution. As such the hyperfine structure of the
Rydberg state was also included in the calculation of the mixed potential energy curves.
In order to do this, one has to include the 8 hyperfine states for the nS Rydberg state
instead of only the two electron spin states. With this the Hamiltonian is then given by

Ĥ(R) = ĤB + ĤHF,g + ĤHF,r + VS(R) · P̂S + VT(R) · P̂T , (4.40)

with the hyperfine interaction for both the ground state ĤHF,g and the Rydberg state

ĤHF,r. The Hilbert space is then 64-dimensional, which leads to a 64×64 matrix as the
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representation of the Hamiltonian. This Hamiltonian now conserves the total quantum
number M ′ = mI,g +mS,g +mS,r +mI,r, meaning that the Hilbert space can be divided up
into sub-spaces of fixed M ′.

The molecular potential energy curves obtained by diagonalizing this matrix are shown in
figure 4.12. The potentials that are accessible in the experiment are again shown in green
for the mixed family and in red for the triplet family of potentials. For the used magnetic
field we are already in the strong B-field regime for the hyperfine structure of the Rydberg
state. As such each potential shown in figure 4.9 splits apart into 4 potentials, that are
only separated by about 200 kHz depending on the principal quantum number [49, 68, 69].
For the different potentials there are some crossings and some anti-crossings, that are
not visible in the figure. To see which states can be excited, the overlap |〈ψex|ψeig〉|2 of
the calculated eigenstates with the state that is excited by the lasers is again calculated.
With the inclusion of the hyperfine interaction of the Rydberg state, there is now a fourth
potential energy curve (shown in blue in figure 4.12), which has a non-zero overlap with the
state that is excited in the experiment. This will become clear by looking at the excitation
scheme used in the experiment, which will be done in the next section.

4.4. Experimental realization and results

With the scheme of the Rydberg excitation as it was shown in figure 3.5 on page 19,
the spin of the electron in the Rydberg state will be conserved, with respect to the spin
of the electron in the 5S ground state, during the excitation. This leads to a pure triplet
scattering interaction of the Rydberg electron with neighbouring ground state atoms, where
the valence electron is in the 5S ground state. This pure triplet state does not couple to any
other states, as it can be seen in the matrix shown in figure 4.8 where this state corresponds
to the first row of the matrix.

In order to observe mixed singlet-triplet Rydberg molecules, it is necessary to change the
polarization of the two excitation laser beams, so that the spin of the Rydberg electron is
flipped during the excitation. For this the polarization of the 420 nm laser was changed to
σ−, so that the intermediate state is not a stretched state anymore. With this polarization
the atoms will be excited to a mF = 1 intermediate state, which consists of states with
different values of mJ. Using π-polarized 1020 nm light, the excited Rydberg state will then
also be a state with mF = 1. This excitation scheme is shown schematically in figure 4.13a.
The experiment is conducted in the strong B-field regime for the hyperfine interaction of
the Rydberg state, due to the magnetic offset field which is necessary for the magnetic trap
in the experiment. This means that the atoms will be excited to a state with mS,r = 1/2 as
well as a state with mS,r = −1/2, corresponding to the second highest and the lowest line
for large magnetic fields in figure 2.1 on page 8. With this the atoms will end up in a pure
triplet state as well as a state with mixed singlet-triplet interaction. The state with pure
triplet scattering interaction is the |mI,g = 3/2,mS,g = 1/2,mS,r = 1/2,mI,r = 1/2〉-state,
for which the molecular potential was already shown in blue in figure 4.12.

Increasing the two-photon detuning of the two excitation laser from the intermediate state
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Figure 4.13.: Excitation scheme used for the excitation of the mixed singlet-triplet Rydberg
molecules. The atoms are initially prepared in the 5S, F = 2,mF = 2 state
and then excited with σ−-polarized 420 nm and π-polarized 1020 nm light
to the two mF = 1 sub-states of the nS Rydberg state (a). By increasing
the detuning to the intermediate state it is possible to neglect the hyperfine
splitting of the 6P3/2-state, so that the excitation can be looked at in the
J-basis. With this the atoms are only excited to the mS = −1/2 Rydberg
state (b).
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sufficiently, that the hyperfine structure of the 6P3/2 state can be neglected, it is possi-
ble to excite the atoms mainly to the Rydberg state with mS,r = −1/2. This is shown
schematically in figure 4.13b. In the experiment a two-photon detuning of 1.58 GHz to the
intermediate state was used.
With this excitation scheme shown in figure 4.13b, the state of interest for the two-body
scattering interaction is then the |↑g↓r〉-state, where the electron of the Rydberg atom
has spin down and the electron of the ground state atom spin up. This state is not an
eigenstate of the system of two spin 1/2 particles and it can be written as a superposition
of the singlet and triplet eigenstates.

|↑g↓r〉 =
1√
2

(
1√
2

(|↑g↓r〉+ |↓g↑r〉) +
1√
2

(|↑g↓r〉 − |↓g↑r〉)
)

triplet state singlet state

(4.41)

Already by looking at this state, the mixing of singlet and triplet scattering channels can be
explained. By including the nuclear spin of both the ground state and the Rydberg state,
the resulting excited state is the |mI,g = 3/2,mS,g = 1/2,mS,r = −1/2,mI,r = 3/2〉 state.
The molecular potentials with a non-zero overlap with this state were already shown in
different colors in figure 4.12.

4.4.1. Molecular spectroscopy in a thermal cloud

For the measurements of the Rydberg molecules, a spin polarized atomic sample of approx-
imately 3.2·106 87Rb atoms, at a temperature of about 800 nK, in the magnetically trapped
5S, F = 2,mF = 2 state was prepared with the experimental cycle as it was described in
chapter 3. With the parameters of the magnetic trap this leads to a peak density of about
5.5 ·1013 cm−3 for the thermal cloud. The atoms are then excited with 20µs laser pulses via
the two-photon excitation shown in figure 4.13b. The excitation pulses are repeated with
a repetition rate of 2 kHz. After each excitation pulse the Rydberg atoms are field-ionized
within 500 ns and the ions are subsequently detected with a micro-channel plate. In a sin-
gle atomic cloud, 4000 excitation and ionization pulses are applied. Thereby the frequency
of the excitation laser is fixed and only changed from cloud to cloud. The obtained ion
signal is then averaged over a number of atomic clouds per frequency, in order to get a
better signal-to-noise ratio. Over the course of the 4000 excitation pulses the temperature
of the atomic cloud increases up to about 1.8µK and the atom number decreases to about
2.8 · 106, which leads to a decrease of the peak density to about 1.5 · 1013 cm−3. For the
evaluation of the spectra in the thermal cloud, only the first 1000 excitation pulses are
used, as the molecular peaks vanish if the density of the cloud decreases too much.
The applied magnetic field is calibrated by the frequency separation of the two atomic
transitions to the mS,r = 1/2 and mS,r = −1/2 Rydberg state. The magnetic field can also
be measured by looking at the atom number for different frequencies of the evaporative
cooling. Both methods to determine the magnetic field match within a maximal deviation
of about 15%.

55



Masterarbeit 4. Rydberg Molecules

M
ea
n
Io
n
C
ou

n
ts

0

0.1 mixed singlet-triplet
40S

−20 −16 −12 −8 −4 0
0

0.1

0.2
40S
pure triplet

Relative Frequency (MHz)

Figure 4.14.: Comparison of a spectrum of the 40S Rydberg state using the normal ex-
citation scheme shown in figure 3.5 and the far detuned excitation scheme
shown in figure 4.13b. In the pure triplet spectrum the molecular dimer and
trimer lines are visible, as they were already discussed in section 4.2. The
mixed singlet-triplet spectrum has a peak of the atomic transition to the
mS,r = −1/2 Rydberg state at -6.5 MHz and a small leftover peak of the
atomic transition to the mS,r = 1/2 state at zero. There are two peaks at -
7.4 MHz and -12.6 MHz, that correspond to the bound molecular ground state
in the mixed singlet-triplet and the triplet potential that are accessible with
the mixed excitation scheme (see figure 4.9 or 4.12). Also two peaks corre-
sponding to excited molecular states in the triplet potential are visible in the
spectrum. The grey lines are Lorentzian fits plotted for better visibility.

In figure 4.14 the measured spectrum of the 40S Rydberg state is shown for the pure
triplet excitation scheme shown in figure 3.5 and for the excitation scheme shown in figure
4.13b, which leads to the spin flip during the excitation. The zero of the frequency axis
is the same for both spectra, but it can be seen that for the mixed spectrum the highest
peak, which corresponds to the atomic transition, is at -6.5 MHz. This is the expected
Zeeman-shift of the atomic transition to the spin down Rydberg state in a magnetic field
of 2.35 G. There is also some leftover signal at zero, due to the polarization of the laser
beams, which is not perfect in the inhomogeneous magnetic field, and due to the fact that
the hyperfine structure of the intermediate state can not be neglected completely. The
grey lines are Lorentzian fits to the data, which are plotted for better visibility. In the
pure triplet spectrum several molecular states are visible: the ground state of the dimer
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at -9.3 MHz, the ground state of the trimer at -18.6 MHz and also several excited states.
In the mixed spectrum there are no peaks visible that directly correspond to the peaks
in the pure triplet spectrum. In the mixed singlet-triplet spectrum shown in figure 4.14b
there are two molecular peaks, which are higher than all the others, that correspond to the
molecular ground states bound in the two accessible potentials shown in figure 4.9. The
peak corresponding to the molecular ground state in the triplet potential is at -12.6 MHz
and the peak corresponding to the ground state in the mixed potential is at -7.4 MHz.
For the triplet potential there are also excited molecular states visible at -11.3 MHz and
-10.0 MHz. From these binding energies it can already be seen, that the accessible triplet
potential is not the same as the pure triplet potential anymore, as the binding energy of the
molecular ground state measured to the respective asymptotic atomic transition is clearly
smaller than the binding energy of the ground state in the pure triplet potential. This shift
of the triplet potential is due to the influence of the magnetic field, which is discussed in
appendix A.1.
The measured spectra for various principal quantum numbers in the range of n = 36− 45
are shown in figure 4.15. In this figure the zero of the frequency axis again corresponds to
the atomic transition to the spin up nS Rydberg state. The large peak at -6.5 MHz again
corresponds to the spin down Rydberg state, which is shifted by the Zeeman effect due to
the applied magnetic field of 2.35 G. The outermost peak at the lowest frequency in each
spectrum is attributed to the molecular ground state in the accessible triplet potential.
The peak at higher frequencies with similar signal strength is attributed to the ground
state bound in the mixed singlet-triplet potential. The peaks in between these peaks are
attributed to excited states bound in the triplet potential. However, the observed excited
states will not be further discussed in the scope of this thesis.
In figure 4.15 also the calculated peak positions, using the pure scattering potentials from
a full diagonalization method as well as an effective zero-energy s-wave scattering length
approach, are shown. For the effective s-wave scattering length approach, the triplet scat-
tering is extracted from previous measurements of pure triplet Rydberg molecules done
in the institute, which include states with the principal quantum number ranging from
n = 34− 71 [29, 36]. The zero-energy triplet scattering length is thereby adjusted to these
experimental data sets in a least-square fit, leading to a value of a0,T = −15.7 a0. With this
fixed value there is only one free parameter in an effective scattering length approach that
can be adjusted to fit the experimental data shown in figure 4.15: the zero-energy singlet
scattering length. The singlet scattering length is therefore fitted to the experimental data
in a least-square fit, obtaining a value of a0,S = −0.2 a0. The peak position obtained using
these effective scattering lengths and the Fermi-pseudopotential are shown as red and green
lines in figure 4.15, corresponding to the molecular ground state in the accessible triplet
and mixed potential, respectively. To show the sensitivity of this approach on the singlet
scattering length the obtained values of the peak position are also shown as dashed lines
for a change of ±0.5 a0 in the singlet scattering length. The change in the peak positions
for the triplet potential, given by changing the singlet scattering length, is so small, that
it is not shown in the figure. It is important to note, however, that a change of the triplet
scattering length strongly influences both the triplet and mixed potentials. This simple
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Figure 4.15.: Spectra of Rydberg states for different principal quantum numbers in the
range of n = 36 − 45. The zero of the frequency axis corresponds to the
atomic transition to the spin up nS Rydberg state. The highest peak at
-6.5 MHz corresponds to the atomic transition to the spin down Rydberg
state in the applied magnetic field of 2.35 G. Red detuned from the atomic
transitions several peaks corresponding to bound molecular states are visible.
The shaded red and green areas show the calculated binding energies for the
triplet (red) and mixed (green) potential shown in figure 4.12, using the full
diagonalization method for the calculation of the pure scattering potentials.
The shaded region thereby corresponds to the sensitivity of the calculation
on the boundary conditions of the potential used to solve the Schrödinger
equation. The red and green straight lines correspond to the calculation
using an effective zero-energy s-wave scattering length approach. For this
we take a fixed value for the triplet scattering length a0,T = −15.7 a0, while
the singlet scattering length is fitted to the data. The green dashed lines
indicate the sensitivity of the peak positions on a change of the obtained
singlet scattering length a0,S = (−0.2± 0.5) a0.
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perturbative approach allows the prediction of the molecular peaks with a good accuracy
and can be used to estimate the peak positions for future experiments.
It could already be seen in figure 4.4 that the p-wave contribution and the energy depen-
dence of the scattering (especially for the singlet scattering) have a strong influence on the
shape of the scattering potentials. Because of this the binding energies of the molecules
were also calculated for the mixed potentials shown in figure 4.12, in which the pure sin-
glet and triplet scattering potentials obtained from a full diagonalization of the scattering
Hamiltonian were used. The energy dependence and the p-wave scattering lead to an out-
ermost lobe of the mixed potential, that is not as deep as it is for s-wave scattering only. As
such the outermost lobe becomes comparable with the second last lobe, leading to bound
states that are delocalized over multiple potential wells. This effectively lowers the bind-
ing energy of these delocalized molecular states. The calculation of the binding energies
with this method, however, depends somewhat on the boundary conditions that are used
for solving the Schrödinger equation. To reflect this sensitivity in the calculation of the
binding energies, a shaded range is shown in figure 4.15 for the calculated peak positions.
The calculated peak positions using this method, including the p-wave scattering contri-
bution and the energy dependence of the scattering, deviate at most by 2.5 MHz, which
is quite good as there are no free parameters in the calculation. This also shows that the
electron-Rubidium scattering phase shifts [22] that are used in the calculations are quite
accurate. Nonetheless the deviation that can be seen in between the high resolution data
and the calculated peak positions could in the future be used to refine these phase shifts.
It is important to note that there are already more recent calculations for the scattering
phase shifts [23] which include relativistic effects, that were, however, not available for the
calculations done during this thesis. In the future the shown data, together with a better
precision of other input parameters, like e.g. the polarizibility of the 5S ground state of
Rubidium, can lead to a significant improvement of the calculation of the scattering phase
shifts.
What can not be seen in figure 4.15, is that the peak of the atomic transition to the spin
down state appears to be asymetrically broadened. Thereby a ‘shoulder’ is visible for
frequencies closer to zero, that is more pronounced for the lower quantum numbers and
is not visible anymore for the high quantum numbers that were measured. This can be
explained by the inhomogeneous magnetic field caused by the magnetic trap, which means
that the polarization of the laser beams is not perfect at every position of the trap. Because
of this it is possible to also excite different hyperfine states with a finite probability.
To test this a high resolution measurement was done for the 36S Rydberg state, which is
shown in figure 4.16. Here a smaller magnetic field than in the previous measurements
of roughly 1.2 G was used, in the hope to see a bigger effect of the hyperfine structure.
However, even for the lower magnetic field that was applied, we are still in the strong
B-field regime with respect to the hyperfine splitting of the 36S Rydberg state. For the
measurement 50µs excitation pulses were used, in order to use a smaller frequency step
size. In figure 4.16 a double structure of the atomic transition peak is clearly visible.
Fitting a double Lorentzian function to the data yields a separation of 265 kHz of the two
peaks. This separation agrees quite well with the expected splitting of about 220 kHz of
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Figure 4.16.: High resolution measurement of the atomic transition to the spin down Ry-
dberg state. It can be seen that the line is broadened asymmetrically, which
can be explained by the different hyperfine states that might be excited due
to imperfect polarizations of the excitation laser beams. A double Lorentzian
fit gives a spectral separation of 265 kHz, which agrees quite well with the
expected separation of the different hyperfine levels of the 36S Rydberg state
in the strong B-field regime. The grey line is a double-Lorentzian fit plotted
for better visibility.

two neighbouring hyperfine levels in the applied magnetic field.

As a next step, the dependency of the observed molecular states on the magnetic field
was studied. In the experiment the magnetic field was varied in a small range from about
1.5 G up to 2.5 G by applying an offset field. By applying an offset field in the direction
of the Ioffe coil only the trap bottom changes and not the position of the atomic cloud.
However, by doing this the number of atoms in the thermal cloud changed, which is most
likely due to the RF ramps used for the evaporative cooling. By adjusting these ramps
further than just changing the frequency at the end, it should be possible to measure at
even higher (and also a bit lower) magnetic offset fields. The measured spectra of the
40S Rydberg state for different amplitudes of the magnetic offset field are shown in figure
4.17. It can be seen that the peak at zero frequency, which corresponds to the transition
from the 5S, F = 2,mF = 2 ground state to the spin up Rydberg state, does not move by
changing the applied magnetic field. This is because the energy level of the ground state
and the Rydberg state are shifted by the same amount due to the Zeeman-effect and as
such the relative laser frequency necessary to excite the atoms to the Rydberg state stays
the same. For the transition to the spin down Rydberg state, this is not the case and it can
be seen in the figure that the highest peak, corresponding to this transition, shifts from
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Figure 4.17.: Spectra of the 40S Rydberg state for different amplitudes of the applied mag-
netic field. The zero of the frequency axis corresponds to the atomic transition
to the spin up nS Rydberg state, for which the relative laser frequency remains
unchanged as the energy level of the ground and the Rydberg state are shifted
by the same amount. The highest peak, which corresponds to the atomic
transition to the spin down Rydberg state is shifted due to the Zeeman-effect
in the applied magnetic field. For this the peak position changes from about
-4.7 MHz to about -7.1 MHz for the measured range of the magnetic field.
The peaks corresponding to the bound molecular states are also shifted by
the applied magnetic field. The shaded red and green areas show the calcu-
lated binding energies for the triplet (red) and mixed (green) potential, using
the full diagonalization method for the calculation of the pure scattering po-
tentials. The shaded region thereby again corresponds to the sensitivity of
the calculation on the boundary conditions of the potential used to solve the
Schrödinger equation. The red and green straight lines correspond to the
calculation using an effective scattering approach, with a0,T = −15.7 a0 and
a0,S = (−0.2 ± 0.5) a0. The green dashed lines again show the sensitivity of
the calculation on a change of the singlet scattering length.
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about -4.7 MHz to about -7.1 MHz for the range of applied magnetic fields. It can also
be seen that the peaks corresponding to molecular states are also shifted in the magnetic
field. Again the calculated peak positions are shown in the spectra as red and green lines
for the effective scattering length approach and as shaded red and green areas for the full
diagonalization approach.
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Figure 4.18.: Experimentally observed peak positions of the atomic spin down Rydberg
state (black), the triplet molecular ground state (red) and the mixed molec-
ular ground state (green) for the asymptotic 40S Rydberg state versus the
amplitude of the applied magnetic field. The straight lines correspond to
the calculated peak positions using the effective scattering length approach
and the red and green shaded areas correspond to the calculation using the
scattering potentials obtained from a full diagonalization method. The black
dashed line shows the theoretical Zeeman shift of the atomic spin down Ry-
dberg state, that was used to calibrate the magnetic field. The errorbars
shown correspond to the 95% confidence bound of the Lorentzian fits used to
obtain the peak positions. The grey dots correspond to the measured peak
positions of the excited molecular states in the triplet potential.

It can be seen that the shift of the molecular peaks differs from the shift of the peak
corresponding to the atomic transition. This is clearly visible for the mixed molecular
state, because the separation to the atomic peak decreases and for the highest magnetic
field that was measured the lines are not separated any more. The extracted positions of
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Atomic Triplet Mixed

Experiment 1.92± 0.28 1.23± 0.24 1.04± 0.17

Eff. Scattering Length 2 1.40± 0.07 1.05± 0.05

Full Diagonalization 2 1.27± 0.46 1.05± 0.27

Table 4.1.: Comparison of the experimentally obtained magnetic moments of the atomic
state, the triplet and the mixed molecular states with the theoretically predicted
values. The values are obtained from the slope of a linear fit, with the given un-
certainties corresponding to the 95% confidence interval of the fit. The magnetic
moments are given in units of the Bohr magneton µB. The magnetic moments
are measured with respect to the transition from the 5S, F = 2,mF = 2 ground
state to the spin up Rydberg state, for which the relative laser frequency does
not change, but the actual energy levels are shifted by the Zeeman-effect.

the peaks visible in figure 4.17 are shown as a function of the magnetic field amplitude in
figure 4.18. In this figure the peak positions (dots) obtained from the shown Lorentzian
fits (grey lines in figure 4.17) are shown for the transition to the atomic spin down Rydberg
state in black, for the triplet molecular ground state in red and for the mixed molecular
ground state in green. The dashed black line corresponds to the theoretical Zeeman-shift
of the atomic spin down Rydberg state. The shaded red and green areas are the calculated
peak positions using the full diagonalization approach, and the straight red and green lines
are the calculated positions using the effective scattering length approach. In the case of the
full diagonalizaton method the calculated peak positions differ from the measured positions,
which was already seen in the spectra for the different principal quantum numbers.

For the effective scattering length approach the calculated peak positions were already
shown in figure 4.11 for a wider range of magnetic field amplitudes. In the measurement
the non-linear behaviour that can be seen in figure 4.11 is not observed, because the
measured range of the magnetic field was to small. Because of this reason a linear function
can be fitted to the data in order to extract the magnetic moments of the different observed
states for the small range of measured magnetic fields. The magnetic moments obtained
by this method are of course only valid in the small range of the applied magnetic field
and are different for another range of magnetic fields. The values of the magnetic moments
obtained from the slope of the linear fit are given in table 4.1 in units of the Bohr magneton
µB. They are thereby measured with respect to the transition from the 5S, F = 2,mF = 2
ground state to the spin up Rydberg state, for which the relative laser frequency does not
change with the magnetic field. However the actual atomic energy level of this transition
are both shifted by the Zeeman-effect. The obtained values from the experiment and the
two theoretical values agree within the given uncertainties, even for the mixed molecules
for which the calculation done with the full diagonalization method clearly differs in the
peak positions. We find that the shift of the mixed as well as the triplet molecular peaks is
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weaker than the Zeeman shift of two isolated atoms. This is due to the mixing of different
spin orientations due to all contributions in the Hamiltonian given by equation (4.40). This
dependency of the binding energy of the observed mixed singlet-triplet molecules on the
magnetic field can in principle be used to engineer the molecular state.

4.4.2. BEC spectroscopy

To further study the effect of the mixed singlet-triplet scattering, a spectrum of the 53S
Rydberg state was measured in a BEC. For this reason the frequency of the evaporative
cooling was ramped down even further, until the temperature of the atoms is low enough
and the density high enough for the phase transition to the condensed phase to happen.
With this a spin polarized BEC of roughly 1.5 ·106 87Rb atoms in the magnetic trapped 5S,
F = 2,mF = 2 ground state with an initial temperature of about 0.65 · Tc was prepared.
With the trapping frequencies of the magnetic trap, this leads to a peak density of about
5.5·1014 cm−3, which means a mean interparticle separation of about 1200 a0. The prepared
BEC is shown schematically in figure 3.6 on page 20. For the evaluation of the BEC spectra
only the first 50 excitation pulses are used, as the density of the BEC decreases by about
5% in the course of these 50 excitation pulses. By looking at the other excitation pulses
that were measured, the melting of the BEC into a thermal cloud can be studied [5, 6].
A measurement of the 40S Rydberg state, using the excitation scheme which only yields
triplet scattering interaction (shown in figure 3.5), was already shown in figure 4.6. For
the 53S Rydberg state the pure triplet spectrum is shown in blue in figure 4.19, with the
simulated spectrum [4] shown by the dotted blue line. Changing the polarization of the
two excitation lasers in order to excite the spin down Rydberg state (excitation scheme
shown in figure 4.13b), the observed spectra changes completely as can be seen by the red
data points in figure 4.19. It is important to note, that the zero of the frequency axis is the
same for both data sets. The atomic transition to the spin down Rydberg state is shifted
by the Zeeman-effect due to the applied magnetic field of about 1.65 G and is visible as
the beginning of the red spectrum at about -4.5 MHz. The signal at zero is again some
leftover signal from the excitation to the spin up Rydberg state. It is clearly visible that
the density shift and the broadening of the spectral line is not as pronounced for the mixed
singlet-triplet excitation, as it is for the pure triplet scattering.
The molecular potential energy curves for the 53S Rydberg state in the applied external
magnetic field are shown in the appendix A.3 in figure A.5. For the 53S Rydberg state
the overlap of the molecular potentials with the state that is excited in the experiment is
quite different than for the 40S Rydberg state, for which it is shown in figure 4.10. In the
applied external field more or less only the triplet potential has a significant overlap, which
can be also seen from the magnetic field dependence in figure A.3 in the appendix A.1.
Also the depth of the accessible triplet potential is clearly reduced compared to the pure
triplet potential. Another important point is that with the decrease of the depth of the
potential, also the p-wave scattering contribution is changed compared to the pure triplet
potential. It was shown in [4] that the crossing of the potential with the butterfly state
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Figure 4.19.: Pure triplet (blue) and mixed singlet-triplet (red) spectrum of the 53S Ryd-
berg state measured in a BEC with a peak density of about 5.5 · 1014 cm−3.
The dotted blue line is a simulated spectrum for the case of pure triplet scat-
tering [4]. The atomic transition to the spin up Rydberg state corresponds
to the zero of the frequency axis for both spectra. The transition to the spin
down Rydberg state is at roughly -4.5 MHz, since it is shifted by the Zeeman-
effect in the external magnetic field of about 1.65 G. For some data points the
standard error of the mean ion counts is shown exemplary in the spectrum.

(due to the p-wave shape resonance) leads to a broadening of the spectral line. Since the
p-wave scattering contribution for the accessible triplet potential is different, this will also
influence the broadening of the spectral line.

All in all the measurements shown in this section clearly show the effect of the mixing
of singlet and triplet scattering channels on the spectroscopy of Rydberg states. For the
spectra in the thermal atomic clouds, distinguishable molecular lines are visible in the
spectrum, that can be attributed to bound molecular states in the calculated mixed singlet-
triplet potential energy curves that are accessible in the experiment. These molecular
states were shown for a range of principal quantum numbers n = 36 − 45 and also the
dependence of these molecular states on the external magnetic field was shown for a small
range magnetic field amplitudes. It could also be shown that the experimental data can
be explained quite well by the theoretical model described in section 4.3. By measuring
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in a BEC and as such by increasing the density of the atomic cloud, the distinguishable
molecular lines disappear into a broad spectral line. For this case the effect of the mixing
of singlet and triplet scattering is even more apparent as can be seen in the spectra shown
in figure 4.19. The observed mean field shift and the broadening of the spectral line are
clearly different for the two different cases.
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5. Summary and Outlook

In the course of this thesis Rydberg molecules and in particular Rydberg molecules bound
via mixed singlet-triplet scattering, were studied. These mixed singlet-triplet Rydberg
molecules were spectroscopically observed in the range of 36−45 of the principal quantum
number n. For the measured Rydberg spectra in a sub-µK thermal cloud, distinguishable
molecular lines are visible in the spectrum. These spectral lines can be attributed to bound
molecular states in the potential energy curves caused by the Rydberg electron-neutral
atom scattering. These potential energy curves were calculated using a simple theoretical
model, which only takes the magnetic sub-states of the two atoms in the ground state
and the nS-Rydberg state into account. It was shown that by choosing the polarization
of the two excitation beams appropriately, it is possible to flip the spin of the Rydberg
electron during the excitation, which leads to two accessible potential energy curves in
the experiment. For the calculated potential energy curves, the mixing of the singlet and
triplet scattering channels can not be neglected, as it was done for all the previous work
done with pure triplet scattering, that was discussed in section 4.2.
In zero magnetic field, the obtained potential energy curves can be grouped into two
families: pure triplet potentials and mixed singlet-triplet potentials. This results in two
potential energy curves: one pure triplet and one mixed singlet-triplet, for both hyperfine
states F = 1,2 of the 5S ground state. In contrast to previous works studying mixed singlet-
triplet Rydberg molecules [2, 3] the applied magnetic field, which is used to trap the atoms
in our experiment, further alters the potential energy curves. The applied magnetic field
leads to increased mixing and the depths of the different potential energy curves change as
a function of the magnetic field amplitude. This leads to a non-trivial dependence of the
binding energy of these mixed singlet-triplet molecular states on the magnetic field and
the respective magnetic moments also change as a function of the magnetic field. This
dependence was studied theoretically for a wide range of magnetic field amplitudes (shown
in figure 4.11) and also experimentally observed for a range of 1.65 - 2.51 G in section
4.4.1. In the experimentally observed range it could be seen that the obtained magnetic
moments of the molecular states differ significantly from the respective asymptotic atomic
energy level. This dependence on the magnetic field can in principle be used to engineer
the molecular state, similar to what was already shown for the electric field [36, 37].
By increasing the density of the atomic sample, which is done by condensing the atoms
into a BEC, the distinguishable molecular lines in the spectrum disappear into a broad
spectral line. The effect of the high density was measured for the 53S Rydberg state
for the Rydberg excitation leading to a pure triplet scattering interaction as well as the
excitation leading to mixed singlet-triplet scattering and is shown in section 4.4.2. The
pure triplet scattering interaction leads to a broad feature in the spectrum with a width of
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about 60 MHz, while the excitation leading to mixed singlet-triplet scattering only leads
to a feature with roughly 20 MHz width. For the 53S Rydberg state, only the calculated
mixed singlet-triplet potential energy curve, belonging to the triplet family, is accessible
in the experiment. For this relevant potential energy curve, the depth of the potential is
already significantly decreased due to the applied magnetic field, which can explain the
decrease of the observed density shift and the broadening of the spectral line.
The measurements presented in this thesis, and the simple theoretical model used to explain
these measurements, clearly show the effect of the mixing of singlet and triplet scattering
channels in Rb2 Rydberg molecules. Another important aspect to note is that the shallow
bound states in the mixed singlet-triplet potentials are strongly influenced by the p-wave
shape resonance of 87Rb. Furthermore, the presented high resolution spectra can in the
future serve as a reference for the calculation of the electron-Rubidium scattering phase
shifts. Experimental data was not available in this energy regime during the time these cal-
culations [22, 23] were done. With the variety of experimental data as a reference, together
with the improvement of the accuracy of the other input parameters, like the polarizibility
of the 5S ground state of Rubidium, this could lead to a significant improvement in the
calculation of the scattering phase shifts.

Outlook

There are many aspects of Rydberg physics that can be studied in the future using the
experimental setup described in this thesis. However, in order to improve the stability
of the electric field compensation and the temperature of the coils for the magnetic trap
in the experiment, some changes have to be made to the experimental chamber. These
changes were described in detail in chapter 3. During this thesis a lot of effort was put into
the implementation of the new electric field control chamber and the improvement of the
temperature stability of the coils for the QUIC-trap. Unfortunately, this implementation
of the improved parts could not be finished during the thesis and is a project for the near
future. With the improved experimental setup a lot of new aspects of Rydberg physics,
like Rydberg states with an even higher principal quantum number, n & 200, or circular
Rydberg states, can be studied.
The main goal for the future is the in-situ imaging of the imprint of the scattering po-
tential onto the density distribution of the BEC [45, 46], which should occur after some
time, because the particles want to the minimize their energy and therefore ‘flow’ into the
potential wells of the scattering potential caused by the Rydberg electron. This increase of
particles at the positions of the potential wells of the scattering potential should be visible
in the density distribution of the BEC, which can be directly imaged using phase contrast
imaging. As the scattering potential is in first order directly proportional to the square of
the absolute value of the electron wavefunction of the Rydberg state, this would be a direct
observation of the electron orbital of the atomic state. For this ‘wavefunction imaging’,
the setup of an in-situ phase contrast imaging system with a good spatial resolution is
necessary. This was already built into the setup and is at the time of writing this thesis
being optimized. In order to get the best possible pictures it is necessary to have the
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wavefunction as big as the BEC and at the same time still have a deep enough scattering
potential. For this a BEC with a smaller radial diameter would be preferable, but up to
now the atom number is not stable enough to realize this. The experimental realization of
the ‘wavefunction imaging’ would therefore also greatly profit from the improvements of
the experimental chamber.
Another requirement of the imaging of the scattering potential is that the Rydberg atom
stays in the target nS- or nD-state for a long enough time, in order for the imprint to
become visible in the density distribution. This was also a main point of study during
the time of this thesis, which led to the discovery that the Rydberg atom is subject to
l-changing collisions on a time scale ranging from about 1µs up to several tens of µs,
depending on the principal quantum number of the Rydberg state and the density of the
atomic cloud. The effect of these l-changing collisions can be seen by detecting the Rydberg
atoms via state selective field ionization for different waiting times after the excitation. In
these measurements it can be observed that the Rydberg state evolves from the original
state with a known ionization voltage to a state, for which a higher voltage is necessary to
ionize the Rydberg atom. The increase of the ionization voltage corresponds to Rydberg
states with a higher angular momentum. It is interesting to note, that the time scale of
the l-changing collisions shows some kind of threshold behaviour at around n = 100: the
state change always happens on a time scale of about 1µs for n < 100, while for principal
quantum numbers with n > 100, the collision time increases up to several tens of µs.
The experimental results of these l-changing collisions will be discussed in detail in future
publications [7, 8]. Selected measurements are also shown in appendix A.4.
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A.1. Magnetic Field Dependency of the Mixed
Singlet-Triplet Molecular Potentials

The interaction with the magnetic field included in the Hamiltonian as given by equation
(4.39) on page 46 leads to further changes in the mixed potentials, as was already discussed
in chapter 4.3. The dependency of the obtained potentials on the magnetic field is shown in
figure A.1. There the potential strength, which is defined as the depth of the outermost well
of the potentials, together with the Zeeman-shift of the asymptotic atomic energy levels is
plotted against the amplitude of the magnetic field. Thereby the potentials are calculated
by including the pure singlet and triplet potentials obtained from the full diagonalization
method into the Hamiltonian and subsequent diagonalization of this Hamiltonian.

0 5 10 15 20 25
−100

−80

−60

−40

−20

0

20

40

60

F=1

40S

Magnetic Field (G)P
ot
en
ti
al

S
tr
en
gt
h
+

Z
ee
m
an

S
h
if
t
(M

H
z)

0 5 10 15 20 25

F=2

40S

Magnetic Field (G)

Figure A.1.: Dependence of the potential strength, which is defined as the depth of the out-
ermost well of the potentials, together with the Zeeman-shift of each asymp-
totic atomic energy level on the amplitude of the external magnetic field. The
potentials are grouped into a triplet (red) and a mixed (green) family, accord-
ing to the situation in zero field. The zero of the vertical axis corresponds to
the respective atomic hyperfine state (F = 1,2) in zero magnetic field.
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For zero magnetic field there are two different values both for F = 1 and F = 2, corre-
sponding to the triplet and mixed potentials shown in figure 4.7 on page 47. There are
some potentials, e.g. the two outermost triplet potentials for F = 2, that only show a linear
dependency on the magnetic field. As such the magnetic field only appears in the linear
Zeeman-shift of the asymptotic atomic energy level and does not change the depth of the
potential as it does for the other potentials. For large magnetic fields all the lines shown in
figure A.1 show a linear dependency, meaning that there is a transition to a regime where
the magnetic field does not influence the depth of the potentials anymore.
Calculating the binding energies of the molecules from the potentials, it is also possible
to see this dependency on the magnetic field. This is done in figure A.2 for the binding
energies of the triplet and mixed potentials that are accessible in the experiment. These
binding energies are calculated from the potentials using the effective s-wave scattering
lengths aS = −0.2 a0 and aT = −15.7 a0 for the principal quantum numbers that were
observed in the experiment. In order to compare the different quantum numbers the
binding energies of the bound states were normalized to the binding energies of the pure
triplet dimer molecules.
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Figure A.2.: Calculated binding energies from the effective s-wave scattering potentials,
normalized to the binding energy of the pure triplet dimer molecule, plotted
against the prinicipal quantum number n and the amplitude of the magnetic
field. The obtained binding energies for the triplet potential are shown on the
left side and the binding energies for the mixed molecules on the right.
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It can be seen that for zero magnetic field the binding energies of the triplet molecules
(left side of figure A.2) match the pure triplet binding energy, while the binding energy
for the mixed molecules (left side of figure A.2) is smaller. For higher magnetic fields the
binding energy of the triplet molecule decreases, which can be explained by the decrease
of the potential depth (compare with figure A.1). At the same time the mixed potential
becomes deeper and as such the binding energy increases. This effect saturates after a
certain magnetic field, which agrees with what can be observed from figure A.1. There is
also a dependency with respect to the principal quantum number visible in the binding
energies shown in figure A.2.
Another important quantity that depends on the magnetic field is the overlap of the calcu-
lated eigenstates with the atomic state that is excited in the experiment. This dependency
is shown in figure A.3 for the range of principal quantum numbers that were studied in
the experiment. The shown number for the overlap is the overlap in the middle of the
outermost well of the potential (compare with figure 4.10 on page 50).
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Figure A.3.: Calculated overlap |〈ψex| ψeig〉|2 of the eigenstates of the Hamiltonian with the
experimentally accessible atomic state as a function of the principal quantum
number n and the amplitude of the magnetic field. The overlap is thereby
obtained as the value in the middle of the outermost well of the molecular
potentials.
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The overlap to the triplet potential (left side of figure A.3) is relative small for small
magnetic fields and then increases until it reaches the maximum value of 1 for high magnetic
fields. The overlap for the mixed potential however is strong for small fields and then
decreases. This means that for strong magnetic fields only the triplet potential is accessible
in the experiment, for which the potential depth at that point is already relative small
(compare to figure A.2). Also for the calculated overlap there is a similar dependency on
the principal quantum number as was already seen in figure A.2.

A.2. Inverted Excitation Scheme
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Figure A.4.: Simplified level scheme to the illustrate the two-photon Rydberg excitation
for 87Rb. The blue and red arrows indicate the ‘inverted scheme’ used in the
experiment, which uses a 420 nm for the lower transition to the 6P3/2 state
and a 1020 nm laser to the subsequent excitation to the nS Rydberg state.
In grey the ‘normal excitation scheme’ is shown, which uses the 5P3/2 state
as the intermediate state. The wavelengths for the necessary laser are then
780 nm and 480 nm.
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A.3. Molecular Potential Energy Curves for the 53S
Rydberg State
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Figure A.5.: Molecular potential energy curves for the interaction of a 5S ground state
atom with an atom in the 53S Rydberg state as a function of the internuclear
distance R. For the calculation the pure singlet and triplet potentials obtained
with the full diagonalization method were used. The inclusion of the hyperfine
interaction of the 5S ground state atom and the external magnetic field of
B=1.65 G leads to the mixing of singlet and triplet scattering channels. The
potentials are grouped into two families, corresponding to the case of zero
magnetic field: triplet (red) and mixed (green) potential energy curves. In
the experiment only the triplet and mixed molecular potentials of F=2, which
are indicated with thick red and green lines, respectively, can be excited. Zero
on the vertical axis corresponds to the asymptotes of the respective degenerate
hyperfine state (F = 1,2) in zero magnetic field.
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A.4. L-Changing Collisions
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Figure A.6.: State selective field ionization analysis of the detected ions for the 121S state.
Thereby the electric field is linearly ramped up within 3µs after a 500 ns
excitation pulse. From the measured arrival time on the ion detector, the
necessary electric field for the field ionization can be extracted out of an ion
trajectory simulation. The delay time between the excitation and ionization
ramp is changed in between 0µs and 53µs. For the immediate ionization
most of the ions are ionized at around 2 V/cm, corresponding to the initial
121S state. With a delay time between excitation and ionization, it is possible
that the Rydberg atom collides with a neighbouring ground state atom. This
collision can lead to a change of the angular momentum l and therefore the
required ionization field can increase by a factor of 2− 4, corresponding to a
high l-state [65]. The dashed black line indicates an ionization field, that can
be used in a two-step ionization process to separate the initial and the final
state.
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Figure A.7.: Measurement of the l-changing collision time of the 53S state in thermal clouds
with a different temperature and atom number. For this measurement a two-
step ionization is used, as it is indicated schematically by the dashed black
line in figure A.6. The average density in the excitation volume (overlap of the
two excitation beams with the atomic cloud) is 2.5 · 1013 cm−3, 9.6 · 1012 cm−3,
4.8 · 1012 cm−3 and 2.4 · 1012 cm−3, respectively for the 2µK, 5µK, 10µK and
the 20µK thermal cloud. The shown ion counts are the detected ions on
the MCP for the second ionization step, meaning only Rydberg atoms that
underwent a state change. The data points are averaged over 500 excitation
pulses in one atomic cloud and over 14 different clouds, with the error bars
indicating the deviation from the mean value. The overall ion counts, meaning
the sum of both ionization steps, is constant in the range of the errorbars for
all ionization delay times. To the data an exponential function of the form
P (t) = 1 − exp(−t/τ) is fitted in order to extract the collision time τ . The
extracted collision times and their respective confidential bound of the fit are
given in the legend.
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Figure A.8.: Experimentally observed l-changing collision times for different principal
quantum numbers n. The different colors correspond to measurements done
at a different detuning from the atomic resonance in a BEC, while the black
points correspond to measurements done in a thermal cloud with a varying
temperature and atom number. The shown collision times were extracted
from measurements as exemplary shown in figure A.7, which corresponds to
the thermal data points for the 53S state. The thermal data for the 90S state
was measured in thermal clouds with similar experimental parameters. The
error bars indicate the confidential interval of the fit used to obtain the col-
lision times and also take into account several measurements for each data
point. The different detunings in the BEC correspond to different configu-
ration for the distribution of the atoms in the cloud, which corresponds to
different density distributions. For the data measured in the thermal cloud
the same parameters were used for 53S and 90S as shown in figure A.7, with
the densities significantly lower than in the BEC. As expected the collision
takes more time for a lower density, which corresponds to a larger internuclear
separation. At around n ≈ 100 a threshold is reached, that leads to signif-
icantly longer collision times, independent from the excited density range of
the BEC.
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� Prof. Dr. Tilman Pfau, der mir die Möglichkeit gegeben hat meine Bachelor- und
Masterarbeit am Institut zu schreiben.

� Prof. Dr. Peter Michler in seiner Funktion als Mitberichter dieser Arbeit.

� Tara Cubel Liebisch, Michael Schlagmüller, Karl Magnus Westphal, Kathrin
Kleinbach und Felix Engel für die tolle Atmosphäre bei der Arbeit am Experiment
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