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Zusammenfassung

In dieser Arbeit wird ein Einzelphotonen Transistor, der auf der Rydberg-Rydberg
Wechselwirkung basiert, vorgestellt. Mit dieser Methode ist es auch möglich den Blo-
ckaderadius um Rydberg-atome räumlich aufgelöst darzustellen. Dazu wurde ein Abbil-
dungssystem entwickelt und vermessen. Um das bestehende Experiment grundlegend zu
verbessern wurde eine Vorrichtung zum steuern elektrischer Felder in einer neuen Glas-
kammer entworfen, aufgebaut und getestet. Dies eröffnet die Möglichkeit externe Streu-
felder zu kompensieren, atomare Wechselwirkungen einzustellen und Rydbergatome auf
eine destruktive Weise zu detektieren, indem man sie ionisiert und daraufhin auf einem
Detektor nachweist. Außerdem wurde das Verfahren der Quantenzustands Tomographie
mithilfe der Maximum Likelihood Abschätzung aufgebaut und getestet. Dies sind alles
Schritte auf dem Weg zur Verwirklichung eines kontrollierten Phasengatters.

Abstract

In this thesis a single photon-transistor realized by Rydberg-Rydberg interaction is be-
ing presented. Using this method it is possible to spatially resolve the blockaded region
around Rydberg atoms. For this purpose an imaging system has been designed and tested
during the course of this thesis. As a major improvement of the current experiment setup
an electric field control has been designed, assembled and tested in a new glass chamber.
This opens up the possibility of compensating external stray fields, tuning atomic inter-
actions and detecting Rydberg atoms in a destructive way by ionization and subsequent
detection on an ion detector. Furthermore the method of quantum state tomography using
maximum likelihood estimation has been set up and tested. These are all steps towards
the future goal of realizing a controlled phase gate.
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1. Introduction
The topic of preparing, changing and detecting quantum states encoded in the state of light
is called quantum optics. In quantum mechanics the radiation field is not only regarded as
an electromagnetic wave, but light is considered to be consisting of single particles, the pho-
tons. The great challenge in engineering quantum mechanical states like Fock states, squeezed
states or "Schrödinger cat" states [1] is, that photons interact only very weakly among each
other. For this reason one needs a nonlinear medium on the few photon level, which could in
the simplest case be one single atom coupled to the light field. Unfortunately this is limited
by the finite scattering rate between photons and atoms [1].
Solid state systems like quantum dots and nitrogen vacancies in photonic crystal cavities were
able to proof, that it is possible to modulate the amplitude and the phase of some few pho-
tons [2, 3]. Drawback of such systems is still the low coupling efficiency and it is hard to
manufacture a large amount of systems in an indistinguishable way [4]. In optical cavities
with high finesse, interactions between single photons have already been realized by coupling
atoms to the electromagnetic mode inside the cavity [5, 6]. But these systems suffer from the
bad scalability and big technical challenges with which one has to cope. A different way to
increase the interaction of the atoms with the light field is by using single-mode hollow-core
fibers. In those systems, the strong confinement enables the interaction of the light field with
already a few atoms [7, 8].
Another promising approach to induce nonlinearities on a few photon level is to utilize ultra-
cold atomic gases with atoms excited to Rydberg levels [9]. Rydberg atoms are highly excited
atoms with principal quantum numbers n� 1 [10]. Therefore the Rydberg atoms have sim-
ilar properties like Hydrogen, making them a comparatively clean and predictable system.
They have exaggerated properties, which make precise engineering of the interaction strength
between the Rydberg atoms and ground state atoms feasible. For example the dipole-dipole
interaction scales with n4 and the radiative lifetime with n3. Moreover the strong polariz-
ability, which scales with n7 facilitates tuning of the interaction strength [11]. These systems
show a blockade effect, which prohibits the excitation of a similar second Rydberg atom in
the vincinity of the first one [9, 12]. Benefiting from this property it was possible to develop
atomic quantum gates [13, 14].
The nonlinear and tunable behaviour of Rydberg atoms makes them the ideal mediator be-
tween quanta of light. It is possible to map these strong atomic interactions on the light field by
electromagnetically induced transparency (EIT), where a photon gets transformed into a quasi-
particle, the polariton [15]. Polaritons propagating through the medium at distances smaller
than the Rydberg blockade radius will experience a shift of the susceptibility, which means a
change of the absorptive and refractive properties of the medium [16–18].
This opens the opportunity to realize for example a controlled phase gate. Such a gate
leaves one basis state |0〉 unchanged, whereas the perpendicular state |1〉 gets mapped onto
eiθ |1〉 [19]. With such methods at hand we are coming closer to the vincinity of the imple-
mentation of multi-photon entanglement, quantum feedback circuits, repeaters and comput-
ers [20–22].
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Structure of this thesis The work at hand is divided into four main parts, which pave the
way towards realizing a phase gate. In the first chapter the mechanism and the measurement
results of a single-photon transistor using strong Rydberg-Rydberg interactions are being pre-
sented [23]. This transistor offers the ability of switching the number of transmitted photons in
a controlled way. It proofs the strong interaction between Rydberg atoms and points towards
the possibility of realizing a controlled phase gate.
This scheme also offers the ability to spatially resolve the blockaded region around a Rydberg
atom. In the course of this thesis an imaging system has been designed and characterized,
which makes observation of the blockaded region around Ryberg atoms possible. This is topic
of the second chapter.
With regard to more possibilities of controlling the quantum state of Rydberg atoms, the ex-
perimental setup had to be improved. One approach was to include a construction for manipu-
lating electric fields. The design, assembly and characterization of the electric field control is
part of the third chapter. It consists of eight electrodes, which permit compensation of external
stray fields and manipulation of the interaction strength [10]. The construction includes also
the ability of detecting Rydberg atoms in a destructive manner, by ionizing them and detect-
ing the ions on a detector, namely a microchannel plate [11]. We also exchanged the vacuum
chamber with a new one produced out of quartz glass.
In the fourth chapter a possible way of actually measuring a phase shift caused by a controlled
phase gate is introduced. Quantum state tomography enables us to determine the full density
matrix of the quantum state of light encoded in the polarization of the light field. For this pur-
pose the scheme was thoroughly tested and characterization methods for the optics involved
in this measurement process are presented.
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2. Single-Photon Transistor Mediated by Interstate
Rydberg Interactions

2.1. Transistor scheme
2.1.1. Motivation

Collective 
nonlinearity

Single 
excitation

Single gate 
photon

Source photons Output field

Figure 1: Basic principle of the
transistor.

One main building block in realizing quantum computers and
communication is a controlled NOT gate [14]. We were able
to contribute to the ongoing developements by implement-
ing an all-optical transistor on a single photon level (Pub-
lication: [23], Viewpoint: [24]). With our setup we were
able to show attentuation of over 10 source photons by one
single gate photon. Although gain greater than one has al-
ready been demonstrated in cavity QED experiments [25],
we could show, that this is possible in free-space as well
using electromagnetically induced transparency (EIT) as the
underlying basic building block [26]. This is one path to-
wards enabling quantum memories, repeaters [27], generat-
ing Schrödinger cat states and improving the detection effi-
ciency for photons [28].
Similar results have been published by the quantum optics
group in munich [29].

2.1.2. Basics

Èg>=È5S1�2>

Èe>=È5P3�2>∆

Èr>=ÈnS�D>

Ε=780 nm

W=480 nm

Figure 2: Excitation
scheme.

Rydberg atoms are in our case excited via a two-photon process,
illustrated in figure 2. Interestingly, there occurs a transparency win-
dow for the probe field ε , if the probe field is tuned directly on res-
onance with the intermediate level |5P3/2〉. This is because there are
in theory two ways to excite the intermediate state |5P3/2〉. The one
path is obviously |g〉 → |e〉 excited by the probe field ε , the other
path is |g〉 → |e〉 → |r〉 → |e〉 done by the probe field and the con-
trol field Ω via stimulated emission. These two pathways have cer-
tain quantum mechanical probabilities, which interfere destructively.
The overall eigenstate is no longer coupled to the intermediate state,
which leads to transmission of the probe field. This phenomenon is
called electromagnetically induced transparency (EIT) [30]. If the
probe field is tuned offresonantly, then the 3-level system is effectively reduced to a 2-level
system and the probe field gets scattered at the intermediate state. The resulting transmission
as function of detuning δ of the probe field from the intermediate state can then look like it
is shown in figure 4 (rigth side, brown curve). The fit and the theoretical background can
be found in the review by Fleischhauer et al. [31]. The FWHM of the transparency win-
dow is given as ∆ =

Ω2
c

Γ·
√

OD
, where Γ is the decay rate of the intermediate state given as
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2.1 Transistor scheme

Γ = 2π · 6.0666(18) MHz [32], OD is the optical depth and Ωc/2π = µ·E
2π h̄ = µ

h·w0

√
Pε0cπ3

is the Rabi frequency with the transition dipole moment µ , which can be approximated by
µ(5P3/2 −→ nS1/2) = 4.4025 · n∗−3/2 · e · a0. P is the laser power with beam waist w0. Note,
that the height of the transparency window is also determined by the coherence decay rate.
The excitation travels then as a spinwave or polariton through the cloud and the probe light
gets effectively slowed down.
If one switches the control field off, while the major part of the probe field is still inside the
cloud, then the spinwave is not able to propagate any further and the excitation gets stored,
decaying only with the lifetime of the excited state [33].

0 50 100 150 200 250
0

10

20

30

40

Nin

N
o
u
t

Figure 3: Self-blockade. Outgoing number of
photons as function of the amount of in-
coming photons per delay time.

A Rydberg excitation interacts with all
atoms inside a sphere around it via dipole-
dipole interaction, which shifts their Rydberg
energy levels |r〉. This interaction can be
modelled in the non-degenerate case by a van
der Waals interaction. The van der Waals co-
efficient C6 giving the strength of the inter-
action U(r) = hC6

r6 can either be calculated
by numerically diagonalizing the interaction
Hamiltonian and by fitting the van der Waals
interaction U(r) = hC6

r6 to the resulting en-
ergy spectra or by the approximating equation
C6 = n11 · (11.97−0.8486 ·n+0.003385 ·n2)
[34]. A result of this interaction is, that a sec-
ond excitation can not be in the same sphere

as the first Rydberg atom, because the level scheme is shifted and the EIT condition is lost.
This is called the blockade effect and the blockade radius is given as rb = (C6/∆)1/6 [20, 35].
This effect is visible in the transmission of the probe photons, which will be scattered at the
intermediate level. The relation between incoming and outgoing probe photons is shown in
figure 3 and can be fitted with an exponential saturation function [36] (see section 2.2.3).

2.1.3. Mechanism

The excitation scheme and the transmission spectra are depicted in figure 4. The gate photons
are stored in the medium by coupling the ground state |g〉 = |5S1/2,F = 2,mF = 2 > to the
Rydberg state |rg〉 = |90S1/2,mJ = 1/2 > with the control field Ωg in a two-photon Raman
process. The probe field εg is detuned by δg = 40 MHz from the intermediate state |e〉 =
|5P3/2,F = 3,mF = 3 >. The source photons are tuned to the EIT resonance, δs = 0, by the
weak probe field εs and are coupled to the Rydberg state |rs〉 = |89S1/2,mJ = 1/2 > by the
control field Ωs. That means, in the absence of a gate excitation they are traveling through
the transparent medium at reduced velocity. If a gate excitation is present prior to the source
excitation, then the interaction between |rg〉 and |rs〉 shifts the energy levels of the source
excitation and therefore the EIT condition gets lost.
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2.1 Transistor scheme
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Figure 4: Left: Level scheme, Right: Transmission spectra of
source photons (brown) and gate photons (red), taken
from [23].

As a consequence the source pho-
tons εs get scattered from the interme-
diate state |e〉. This works only inside
the blockade sphere around the gate ex-
citation, where the interaction strength
U(rb)/h is greater than the EIT trans-
parency window ∆= 2 MHz and the op-
tical depth is high enough. One can
imagine, that the EIT transparency win-
dow gets shifted, the 2-photon reso-
nance gets lost and the source photons
end up in the transmission valley of the
spectrum.

2.1.4. Setup and choice of states

Figure 5: Schematic of our excitation and
detection setup.

Time [μs]
0

Trap

-2

detection

50

Figure 6: Pulse sequence, taken from [23].

Figure 7: Sample of transmitted source photons.
Black: Reference without gate excita-
tion, Red: Source photons with gate ex-
citation.

For our implementation we use a pairwise counter-
propagating configuration of the probe and coupling
beams of source and gate, like it is shown in picture
5. This has the advantage, that we are able to reduce
Doppler shifts and we minimize crosstalk of source
and gate probe photons at the beamsplitter. The cou-
pling and probe beams are separated by dichroic mir-
rors before coupling the probe beams into the fibers
to the single-photon detectors. Like this we can si-
multaneously detect transmitted gate and source pho-
tons with the single-photon detectors PDs and PDg,
which are the COUNT-250C-FC from Laser Compo-
nents. We use two different excitation states in order
to avoid an unwanted readout. One could use only one
excited state and one coupling laser as well and switch
polarization between gate and source excitation with
an EOM [37], thereby coupling to different hyperfine
levels. The disadvantage is, that the polarization will
never be rotated perfectly and a partial readout of gate
excitations will be unavoidable. For our choice of
state combination numerical simulations yield a van
der Waals coefficient of C6 =−4.70 ·107 MHz ·µm6.
Assuming a width ∆ = 2 MHz of the EIT transparency
window, the blockade radius is rb = 14.5 µm, which
is much larger than the extent of the excitation beams.
The 1/e2 radii of the gate and source probe lasers are
5 µm, assuring that the blockade radii will always be
larger than the excitation region in radial direction.
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2.2 Characterization

The power of the gate coupling laser is 240 mW, which is the maximum power of the lasers
and corresponds to a Rabi frequency of 12.3 MHz. The power of the source coupling laser
is 60 mW, which is a Rabi frequency of 6.3 MHz. We choose the larger power for the gate
excitation to increase the probability to store a gate photon. The power of the source coupling
laser was set such, that the EIT spectrum showed a narrow enough transparency window but
at the same time the largest peak height possible for this tradeoff. The optical depth OD = 25
of our system can be determined by a fit to the transmission valley of the source photons [31].
Our experiment cycle is shown in picture 6. After loading our atoms in a MOT, resulting in
a temperature of 40 µK and 107 atoms we transfer them in an optical dipole trap with trap
frequencies ωr = 2π · 3500 Hz and ωz = 2π · 3600 Hz, which corresponds to an extent of
σr = 25 µm radially and σl = 40 µm in the longitudinal direction. The dipole trap consists
of a crossed dipole trap with a dimple beam perpendicular to it (see also chapter 4.3.1). With
this trap setting we can make sure, that we have at maximum only three gate excitations inside
the cloud. The resulting temperature of the atoms determined by time-of-flight series is 40
µK. The traps are then switched off, to avoid level shifts due to the AC-Stark effect of the trap
lasers. Afterwards a coherent gate pulse containing on average one photon is sent in the cloud,
after a waiting time of 2 µs the source photons are sent through the medium.
The resulting transmitted signal of source photons can look like in figure 7. Clearly, the trans-
mission of source photons is being attenuated for about 100 µs, which corresponds to the
lifetime of the gate excitation. The reference signal without gate excitation is depicted in
black. The transmission increases due to the expanding cloud and consequently loss of optical
depth. The whole experiment cycle takes about 1.5 s.

2.2. Characterization
From many measurements like shown in figure 7 and an integration time of 30 µs we are able
to derive some characteristic quantities of our transistor. The integration time is chosen such,
that the expansion of the cloud is negligible but large enough to gather a significant amount of
statistical data.

2.2.1. Limits

There are several mechanisms limiting the overall performance of our transistor.

• We use coherent photon sources. That means, that our photon arrival will always be
governed by Poissonian statistics. The probability to emit k photons is given by PN̄ =
N̄k

k! e−N̄ .

• The overall detection efficiency, including single photon counters and fiber coupling
efficiency is 0.31 for the source photons and 0.27 for the gate photons.

• The gate photons might be transmitted as a spinwave through the medium, because the
coupling light is switched on too long. The amount of transmitted gate photons can
be monitored by the single-photon counter PDg. On the other hand, if the coupling

6



2.2 Characterization

light is switched on too short, then the source gate photons get scattered away at the
intermediate level. The timing has been optimized on the efficiency of our transistor.

• There is still a finite probability, that the gate photons get scattered at the intermediate
level. We measured the finite absorption Age = 0.15 independently with no coupling
light at an OD of 25 and a detuning of 40 MHz.

The overall amount of stored gate photons N̄g,st is then given by

N̄g,st = (1−Age) · N̄g,in− N̄g,out , (1)

where N̄g,in denotes the average amount of gate photons going into the cloud and N̄g,out is the
average amount of photons coming out of the cloud. There may still be mechanisms removing
the gate excitation, but which cannot be large, as we will see in the next section.

2.2.2. Contrast
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Figure 8: Contrast as function of the number of in-
going gate photons. Left: Actual mea-
surement, Right: Contrast corrected for
finite storage efficiency. Taken from
[23].

We start by keeping the weak source input
photon rate fixed at Rs,in = 0.69(1) µs−1. In
figure 8 (left) we plot the optical switch con-
trast

C = 1−
(

N̄with gate
s,out /N̄no gate

s,out

)
(2)

as a function of the mean number of ingo-
ing gate photons N̄g,in, which have been de-
termined by reference measurements. The
contrast is mainly governed by Poissonian
statistics. In a perfect switch all gate photons
get stored perfectly and the interaction works
perfectly inside the blockaded region. In this
case the contrast is given by the probability
of emitting photons out of the coherent gate probe laser: Ccoh = 1− e−N̄g,in . This behaviour
is depicted as dashed line in figure 8. The number of actually stored gate excitations can be
measured and calculated with equation (1). Plotting the contrast as function of the number
of stored gate excitations together with the theoretical limit for a coherent light source shows
(figure 8), that other possible loss mechanisms must be very small, since we are already ap-
proaching the theoretical limit very closely.
The gate excitation acts on the source photons like a medium with some finite optical depth
ODsp and because at maximum three gate excitations fit into our cloud, the expected switch
contrast can be given by

C(N̄g,in) = 1−
∞

∑
k=0

N̄k
g,ine−N̄g,in

k!
e−min(k,3)·ODsp. (3)
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2.2 Characterization

Fitting this function to our data yields an optical depth ODsp = 0.75(5) of the gate excitation
acting on the source photons. Calculating the optical depth for the actually stored gate excita-
tions yields ODst = 2.2(7).
The expected contrast using a deterministic gate photon source with k photons can be calcu-
lated by

CFock(k) = 1− e−min(k,3)·ODsp. (4)

Correspondingly for actually stored Fock input states CFock,st(k) = 1− e−min(k,3)·ODst . These
data points are depicted black in figure 8.

2.2.3. Gain

Next, we keep the average number of ingoing gate photons fixed at N̄g,in = 0.75 and use
an integration time of tint = 90 µs, which is comparable to the fly-away time of the stored
gate excitations. For low source photon rates we can redo the contrast calculations and get a
contrast of Ccoh,90µs = 0.22(3), an optical depth of ODsp = 0.45(1) for a single Fock input
state and an optical depth of ODst = 0.94(10) in the case where the deterministic gate photon
is actually stored.
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Figure 9: Left: Optical gain as function of outcom-
ing source photons. Left: Number of out-
coming source photons as function of in-
going source photons. Taken from [23].

As another figure of merit we use the opti-
cal gain defined by

G = N̄no gate
s,out − N̄with gate

s,out , (5)

which is the amount of attenuated source
photons. This is shown in figure 9 (left,
blue). The maximum optical gain is G =
10(1). Further increase is limited by the
self-blockade of the source photons, which
is shown in figure 9 on the right in red with-
out any gate photons. Fitting to these data
points a function N̄s,out = a · (1− e−N̄s,in/b)
[36], yields a = 46 and b = 70. Multiply-
ing this fit with the extinction (1−Ccoh,90µs)
results in the blue line. This line fits very

well to the blue data points. This is evidence, that the transistor is mainly limited by the
self-blockade of the source photons, but could achieve a robust gain G� 1 for around 250 in-
coming source photons if the self-blockade of the source photons can be overcome. The other
lines result all from multiplying the red line with (1−C), with the contrasts Cin,Fock = 0.362(2)
and Cst,Fock = 0.61(3).
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2.3 Nondestructive Rydberg detection

2.3. Nondestructive Rydberg detection
In order to use our transistor scheme, we show, that it is possible to detect Rydberg atoms non-
destructively in one single shot. In figure 10 histograms of source photon counts are shown,
not corrected for the detection efficiency of the single-photon counters and obtained from 250
runs. If no gate excitation was present, N̄stored = 0, then the counting statistics of the coherent
source photons clearly follow a Poissonian curve (blue).
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Figure 10: Left: Histogram of source photon
events, Right: Decomposed histogram
with gated and not gated fractions.
Taken from [23].

When on average N̄stored = 0.61 excita-
tions are present, then this histogram is
shifted towards zero events and the Poisso-
nian characteristic is lost. From the consid-
erations in chapter 2.2.2 we know, that the
averaged storage events still consist of parts,
where no gate photon was present due to
the Poissonian statistics of the coherent gate
probe light. This part is given by the blue his-
togram weighted by the probability of having
no gate photons p(0) = e−N̄stored . The differ-
ence to the red histogram is the histogram of
gated events weighted by their probability.
In order to detect a Rydberg atom we are go-
ing to send some source photons inside the
cloud. We want to know, at what amount of transmitted source photons we can still claim to
have detected a Rydberg atom. Therefore we calculate the discrimination level (green line),
whether no or one and more gate excitations were present. The fidelity of this prediction is
given by the probability of successfully predicting zero gate excitations p0 and the probability
of predicting one or more gate excitations pg.

p0(x) =

(
∞

∑
k=x

h0(k)

)
/

(
∞

∑
k=0

h0(k)

)
(6)

pg(x) =

(
x

∑
k=0

hg(k)

)
/

(
∞

∑
k=0

hg(k)

)
(7)

F(x)≥min(p0(x), pg(x)) (8)

We are using h0(k) as the height of the histogram bar of a not gated event and hg(k) as the
relative number of gated events. Equation (8) is being optimized by taking the maximum of
F for all x [29, 38]. The resulting discrimination level is x < 1 and F = 0.79(4). (More about
fidelities in chapter 5.1.4).
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2.4 Improvements and outlook

2.4. Improvements and outlook
There are some improvements, which could be made:

• In order to lower the self-blockade effect one could reduce the size of the atomic cloud
to σl = rgs/2, without changing the overall OD.

• One can try to tune the interaction such, that rgs � rss by using dipole-coupled (in
first order) state combinations or Förster resonances, like the Förster resonance between
n = 69 and n = 67 [29]. Note, that for spatial detection, rgs must remain smaller than
half the distance between the gate excitations, which can be approximated by rgg/2.

The next step is to read out the stored gate excitations by switching the gate coupling light
on again after the transistor experiment. This requires long coherence times, which can be
achieved by using state combinations with lower principal quantum numbers and by elim-
inating electrical stray fields, which is the topic of chapter 4. This paves the way towards
multi-photon entanglement, quantum feedback circuits, nondestructive detection of gate pho-
tons and optical probing of Rydberg excitation dynamics [21, 22]. A possible application of
the transistor scheme presented here is the spatially resolved detection of the blockade sphere
around the Rydberg atoms, which is the topic of the next chapter.
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3. Imaging Setup

3.1. Detection proposal
Common imaging techniques used to detect single atoms measure the fluorescence or absorp-
tion employing strong optical transitions. In systems where a lot of decay paths exist this is no
longer possible. After a successful excitation the possibility, that the atom decays in a state,
which is no longer coupled to the imaging light is very high. Therefore only very few imaging
photons can be scattered. One can of course try to enhance the transition rate by placing the
atom inside a cavity in which transitions other than the imaging transition are not resonant,
but only by loosing spatial resolution.
A way out can be given by our transistor scheme introduced in chapter 2.1. In this case, the
imaging photons or, in the language of our transistor, the source photons are no longer scat-
tered at the imaging object itself, but at all the ground state atoms sitting inside the blockaded
region around the gate excitation. This greatly enlarges the impact of the Rydberg atom on the
imaging light field [21, 22, 39]. As explained in chapter 2.2, the amount of scattered imaging
photons is then mainly limited by the self-blockade.
The technical limitation of the low signal-to-noise ratio will still partly remain, since our
scheme will always suffer from photon-shot noise and from density fluctuations inside the
atomic cloud. One expects from this technique insights in dynamic processes, like for ex-
ample diffusion or the formation of lattices by self-assembly of Rydberg atoms. During this
thesis I designed and tested an imaging system consisting of three lenses, which will be used
to image the blockaded region around Rydberg atoms in the future.

3.2. Design
The imaging setup was developed using the ray-tracing program Zemax. I want to outline
briefly some parameters, which can give good indications about the quality of an optical sys-
tem.

3.2.1. Optical parameters

Airy radius: The Airy radius is the distance d at which two self illuminating objects can
still be distinguished

d = 1.22 ·λ/sin(α) (9)

with α being the angle of the cone of light that could possibly enter the imaging system. It sets
the maximum resolution of an imaging system [40]. In our case α is at most 32°and λ = 780
nm resulting in a minimal object size of 1.8 µm.

Modulation-Transfer-Function: The contrast or modulation is defined as:

Modulation =
Imax− Imin

Imax + Imin
(10)
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3.2 Design

For example the 1951 USAF resolution test chart, which consists of different sizes of three
horizontal and vertical bars, has a modulation almost equal to 1.0. By transferring such a
pattern through an optical system, it gets convoluted with all the imaging errors of the system
and the image will have reduced contrast. A function that makes a statement about the contrast
or the response of the system for all spatial frequencies is called the Modulation-Transfer-
Function (MTF). It shows for perfect contrast, Modulation = 1, in the object plane, what
contrast to expect in the imaging plane. High contrast becomes particularly interesting when
dealing with very low photon rates and a low signal-to-noise ratio. The MTF characterizes the
ability of a system to resolve objects depending on their size and it is therefore one of the most
important benchmarks of an imaging system [40].

Aberrations: In linear optics one normally makes an approximation of first order of the
kind sin(α) ≈ α , where α is the angle between the light ray and the optical axis. For light
rays with large angles to the optical axis this is no longer valid and one has to take higher
order contributions into account. The five image defects of third order are called spherical
aberration, coma, astigmatism, field of curvature and distortion. They are quantized by the so
called Seidel coefficients [40]. For designing an optical system they can give valuable hints
on which optics or surface is causing unwanted effects and what optics has to be exchanged.
They can also be measured with a so called Shack-Hartmann sensor, which was unfortunately
not available at the time of the design and characterization of the imaging system presented
here.

3.2.2. Elements

A drawing of the objective exported from Zemax is shown in figure 11. All lenses can be
bought from Thorlabs.

Assembly.ZMX
Configuration 1 of 1

Layout

26.03.2014
Total Axial Length:  109.14059 mm

Figure 11: Objective: From left to right: Image plane, LE1985-B, AL50100-B, Glass 5mm N-FK5,
object plane.

The objective consists of a sample glass plate made from the same quartz glass as the new
glass chamber. This glass plate sits in a distance of 54.9 mm away from the position of the
atomic cloud. In Zemax I chose the quartz glass type N-FK5 with a thickness of 5 mm, which
has similar properties like quartz glass. This glass wall causes spherical aberrations since the
rays have to go under a steep angle through the surfaces. Next to the glass wall in a distance
of 10 mm is a 2.0” aspheric lens AL50100-B. This lens has a numerical aperture of 0.240 and
focal length of 100 mm which is much too large. In order to reduce the focal length we use
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3.2 Design

the 2” meniscus lens LE1985-B in a distance of 15.2 mm from the front surface of the prior
lens. Meniscus lenses are designed such, that they cause a minimum of additional spherical
aberrations, because light rays are being bent equally on both sides of the lens. This kind of
assembly has a small focal length and at the same time induces a minimum of aberration into
the system. This was motivated by a publication of L. M. Bennie et al. [41]. Ideally the beam
should now be collimated.
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Figure 12: Spot diagrams through focus in the object plane.
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Figure 13: Picture of the 1951 USAF res-
olution test chart with group 8
element 3 (1.55 µm linewidth)
still being visible. Unit is pix-
els.

Shining in a collimated beam from the image plane
towards the object plane yields the through focus spot
diagrams shown in figure 12. The distances of the
lenses were optimized on the smallest rms radius,
which is just small enough to be diffraction limited.
The collimated beam is then focused down with a 2”
plano-convex lens LA1727-B with a focal length of
750 mm. This yields in theory a magnification of
8.66. The camera used for testing is a pco.pixelfly usb
camera with 1392x1040 pixels with a pixel size of
6.45x6.45 µm2. Therefore an object of 2 µm size will
be focused on 2.7 pixels, which will also roughly be
the pixel to object size ratio used later on in the exper-
iment, due to low intensity and signal to noise ratio.
The objective lenses are mounted in a cage system
from Thorlabs. The whole lens arrangement includ-
ing the cage system costs around 600 Euro. Note, that
commercial systems are magnitudes higher in price,
which of course always depends on the desired res-
olution and the circumstances, like distance from the
object or unavoidable aberrations from the glass walls
of the vacuum chamber.
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3.3 Characterization

3.3. Characterization
In order to see actual experimental results, we used the 1951 USAF resolution test chart
mounted on a 3D translation stage with approximately 10 µm precision. The lenses of the
objective were mounted in a cage system on the same rails. There is astigmatism in the sys-
tem, which is due to the fact, that the lenses were slightly tilted. Laser light at 780 nm was
used, dulled by a diffusor, which consists of a rough glass plate and a lab tissue mounted on a
fast rotating motor. This yields a homogeneous wavefront travelling towards the object. The
resulting light power was 1.9 mW. Unfortunately this motor also caused a lot of vibrations.
An exposure time of 100 µsec was used, which is long enough to average over local changes
in intensity due to the fast rotating diffusor but short enough to prevent a blurry picture.
An example picture of the test chart focused on the 8th group, 1st element can be seen in
picture 13. This corresponds to a distance of the bars of 1.95 µm. One can see, that the bars
of the 3rd element in group 8 are still easily distinguishable by eye and the contrast aver-
aged over both directions is (26.5±0.9)%. Therefore it is reasonable to claim a resolution of
(1.55±0.1) µm. This is almost diffraction limited as the Abbe limit is d = λ/NA = 1.5 µm,
which is valid for this kind of setup. The magnification is (8.53± 0.37), which is in good
accordance to the calculated magnification of 8.66.
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Figure 14: MTF over spatial frequency in the imaging plane: Black: Theoretical prediction, Blue and
red: Measurement taken by averaging 10 pixels in horizontal and vertical direction and
calculating the contrast.

In order to extract the contrast, pictures of all elements in group 7 and of the first four
elements in group 8 in focus were taken. By averaging over 10 pixels for each horizontal
and vertical bar, the contrast was calculated. The resulting MTF including the theoretical
prediction from Zemax are shown in figure 14. The two imaging directions seem to have
different contrast, which is because of astigmatism caused by slightly tilted lenses. Moreover,
the contrast will also be distorted by having decreasingly less pixels per structure of interest.
Overall the contrast should in principle be much better, but is mainly limited by the interplay
of dynamical range of the camera, required exposure time and illumination of the testtarget.
But still it is possible to grasp the trend of the MTF and a contrast of (26.7± 0.5)% for the
8-1 element can be confirmed. The attempt to measure the depth of field with the test chart
failed, because the translation stage was not precise enough. I can only claim it to be in the
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3.3 Characterization

range (10±10) µm. The same applies to the field of view. The best way would have been to
look at the Airy disk of a pinhole and position it with a piezo stage. With this one could have
reconstructed the pointspread function. But there was neither a suitable pinhole at hand, nor a
translation stage with the required precision.
Nonetheless, the pictures show, that the setup serves our purposes. One has to keep in mind,
that for the actual experiment a much more sensitive camera has to be used, which will not
necessarily have the same pixel sizes. Therefore the magnification has to be set again.
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4. Electric Field Control

4.1. Motivation
The electric field control developed and built during this thesis enables us on the one side to
compensate external stray fields, resulting in a smaller linewidth of the Rydberg energy levels
and therefore a more stable frequency position thus yielding more stability for the whole
experiment. On the other hand one can also tune the energy levels of Rydberg atoms, in
order to use for example Förster resonances, which can have preferable interaction strength
and blockade radii [42]. This enables using lower principal quantum numbers, which have
longer coherence times and therefore we might improve the total performance of our transistor
experiment for instance.

Figure 15: Complete E-field con-
trol sitting inside the
glass chamber.

The option to ionize atoms opens furthermore a whole
new field of experiments. By applying electric field pulses
with high amplitude, Rydberg atoms can be ionized and
detected on an ion detector [11]. With this we are able to
verify the Rydberg detection scheme introduced in chapter
2.3 with the number of ions incident on the detector. An-
other very important application is the "cleaning" of atomic
states, which are no longer coupled to the light field but do
still interact with the surrounding atoms [20]. This can in
principle permit a much higher experiment rate, because
one can perform several measurements using only one sin-
gle cloud. Of course only when the switching time of the
high voltage can be realized fast enough. High experiment
rates are crucial for our measurements, since we need a lot
of cycles to gather a significant amount of statistical data,
which is not distorted by drifts of the setup.

4.2. Theoretic background
4.2.1. DC-Stark shift

Perturbation theory
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Figure 16: Polarizability α depending on the prin-
cipal quantum number extracted from
simulations und from equation (12).

The Stark shift of an atomic level caused by
a DC electric field can be calculated either by
diagonalizing the full Hamiltonian (atomic +
Stark) or by perturbation theory. For the non-
degenerate S-, P-, and D-states, second order
perturbation theory yields a quadratic Stark
shift

∆Stark =
1
2

αE2. (11)

The dependence of the polarizability α on
the effective principal quantum number n∗
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4.2 Theoretic background

was extracted from experimental data [43]:

α
[
MHz/(V/cm)2]= 2.202 ·10−9n∗6 +5.53 ·10−11n∗7 (12)

The calculated polarizability as well as data from a simulation are shown in figure 16. From
equations (11) and (12) one can calculate the Stark shift resulting from an applied electric
field. For example a single ion sitting in a distance of 30 mm will cause an electric field of
E(30mm) = e

4πε0·(30mm)2 = 1.6 · 10−9 V/mm at the position of the atomic cloud. This corre-

sponds to a Stark shift of ∆Stark = 4.9 ·10−7 Hz for n∗ = 90, which is vanishlingly small, since
we can observe shifts of around 10 MHz.

4.2.2. Electric field ionization

The potential between the valence electron and the Rydberg atom in a classical approxima-
tion is a superposition of the Coulomb potential VCoulomb(r)'−1/r and the external electric
potential Vf ield = −eE · z. This is depicted in figure 17. This classical approximation is valid
for large electric fields. The field required to ionize an atom in a given Rydberg state can be
estimated as [11]

|E|=
πε0R2

Ryd

e3n∗4
= 3.2136 ·105 kV

cm
· 1

n∗4
(13)

Vcoulomb>-1�r

VField>-E×r
VEff>-1�r-E×r

Energy>-1�n2

Distance

P
o
te

n
ti
al

Figure 17: Scheme of the discrete energy levels ly-
ing inside a Coulomb potential and the
superposition of this potential with an
external electric potential.

with RRyd being the reduced Rydberg con-
stant for the specific species. The depen-
dence of the ionization voltage on the prin-
cipal quantum number is shown in figure 25.
As one can see in the figures 17 and 25, it is
getting more and more difficult to ionize the
Rydberg atoms stateselective, because the
ionization voltage has to be set increasingly
accurate with no overshooting and as homo-
geneous across the atomic cloud as possible
with increasing principal quantum number.
For lower quantum numbers this is feasible,
but for higher ones, beginning at n=80 to
n=90, the ionization threshold is no longer
clearly distinguishable due to tunneling pro-
cesses for example.
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4.3. Design ideas
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Figure 18: Sketch of the beams pass-
ing the glass chamber. The
imaging/dimple beam is not
shown.

Several requirements on the electric field control have
to be met.

4.3.1. Optical access

One of the main requirements is to maintain optical
access to the atomic system. The beams, that use the
most space are the three MOT beams with a diame-
ter of approximately one centimeter. In between the
two MOT beams are the beams for the Raman side-
band cooling, the optical dipole trap and the excitation
lasers. Perpendicular to these beams must be space left
for either imaging or the dimple beam, which is used
to form a smaller cloud.

4.3.2. Shielding of charges

A major issue with glass surfaces near the atomic cloud is that glass is a dielectricum, which
cannot conduct charges. A charge, which was once created and got stuck on the surface will
only by chance move away. There are possibilities to get rid of charges on dielectric surfaces
like ITO-coating, which is not compatible with Rubidium, or shining in with UV-light, which
mostly worsens the problem. The same applies to all other dielectric objects, like ceramics,
such as Macor, or lenses near the atomic cloud. The best idea is to shield all those charges
thoroughly away by as many metal surfaces as possible.

4.3.3. Design of the electrodes

Since previous works [11, 42, 44] have shown, that a cloverleaf like configuration of the field
plates is able to provide a sufficient compensation for excitation of Rydberg levels up to n ≈
200, we decided to use a similar configuration. In this way we can compensate stray electric
fields in every direction and have at the same time optical access for the perpendicular MOT
beams. Small field gradients can mainly be achieved by placing the two cloverleafs as far apart
as possible, the remaining problem is the mounting and electric insulation from the rest of the
assembly. The electrodes were designed such, that the surfaces diverge towards the middle of
the cloverleaf. This was inspired by a previous work [45], although it had only minor impact
on the electric field, at least in the simulations. The idea is to guide the field smoothly into the
middle of the assembly and by this prevent large peaks of the field density.
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4.3 Design ideas

4.3.4. Mounting the electrodes

The company tectra offers split bushes made from high purity Alumina (Al2O3), like they are
shown in picture 30. Always two of those bushes are then used to guide a screw through the
grounded metal into the electrode, thereby keeping the electrode from touching the ground.
The bushes are sitting in half opened holes to enable venting and prevent virtual leaks.

4.3.5. Mounting the whole assembly

Figure 19: Baseplate sitting inside the
spherical octagon held by
Groove Grabbers.

The whole E-field control is held by long angled
plates. These plates are attached via a baseplate to
four so called Groove Grabbers from Kimball Physics
[MCF600-GrvGrb-C01]. These Groove Grabbers are
clamped into two notches inside a spherical octagon
from Kimball Physics [MCF600-SphOct-F2A8]. This
construction has the major advantage, that in the end
the glass cell can simply be slipped over the whole de-
vice, without having to tinker anything inside the cell
afterwards.

4.3.6. Choice of materials

There are two things to keep in mind when choosing a material. First it has to be suitable
for ultra high vacuum, that means it should have a very low outgassing rate and it should
be nonmagnetic, because every magnetic dipole near the atoms causes unwanted dephasing.
A third issue is, that Rubidium can react very aggressively with some materials, like gold
for example. A metal with nonmagnetic properties is Titanium. But like nearly all stainless
metals it builds up a passive layer of some metaloxide on the surface, which prevents further
corrosion of the material and which is a dielectricum. This layer can, in the case of Titanium,
be very thick, has a yellow colour and is an outstanding strong dielectricum with a dielectric
constant of ε = 111 to ε = 257, depending on the crystal orientation [46]. This material is
therefore unfeasible for our purposes. Our choice fell on the stainless steel AISI 316L, the
european DIN standard is 1.4404, this material can be bought in different sizes, for example
from fruechtl-kronos. It is an austenitic stainless steel, which is nearly not magnetizable. This
kind of steel is mostly used for vacuum parts and flanges [47]. It is for example also used
for the complete particle accelerator at CERN [48]. The disadvantage of this steel is the inner
tension inside the material, which makes machinig of precise and in particular large parts very
hard.

4.3.7. Glass cell

Our first glass cell was made from borosilicate glass from the company JapanCell, because
we wanted to evaporate Rubidium atoms from the glass surfaces by heating the glass with
UV-light, thereby enhancing the Rubidium background pressure in the glass cell. This could
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in principle lead to shorter MOT loading times [49]. Borosilicate is especially suitable for this
method, because it absorbs UV-light better than quartz glass. In the end it turned out, that
we leave the Rubidium dispensers switched on all the time and do not need additional UV-
light, since MOT loading times are nonetheless acceptable. However the borosilicate glasses
tend to show thermal lensing. If an intense highly focused beam hits the glass, the parallel
glass surfaces transfrom into small lenses with a focal length of approximately 11 mm. This
corrupts every stability effort, since one can no longer adjust with a cw-beam. Every ramp or
pulse pattern with the dipole trap will lead in the end to a displacement of the atomic cloud.
The effects of this thermal lensing were tested with sample glasses made from borosilicate and
quartz glass in different configurations using an Ytterbium broadband laser at 1064 nm from
IPG Photonics (PYL-20-M-CP), which has an output power of over 30 W. Below in the figures
20 we plot the beam diameter measured with our beammaster, which consists of a webcam
chip with appropriate evaluation software, versus the power of the laser. "f" denotes the focal
length of the used lens, "d" is the distance of the sample to the lens and α is the angle by
which the sample was rotated. A schematic sketch is shown in figure 21.
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Figure 20: Effect of thermal lensing on the beam diameter depending on the laser power. Left: Borosil-
icate, Right: Quartz. The two lines for each configuration denote the two different diameters
in x- and y-direction.
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Figure 21: Setup used to measure the influence of thermal lensing on the beam diameter.

The quartz glass shows, apart from small measurement fluctuations, no thermal lensing,
whereas the borosilicate shows tremendous dependence on the input power.

The new glass cell was manufactured again by JapanCell and is made from quartz glass.
In the front, where the whole experiment takes place, sits a glass box. This is followed by a
tube with a glass metal transition, which ends on a metal flange. This is necessary to steadily
adapt the different coefficients of thermal expansion of the glass and the metal flange. The
glass parts are bonded together with Epoxy. All glass surfaces have an antireflection coating
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4.3 Design ideas

optimized for the wavelengths 420, 480, 532 and 1064 nm with a reflectivity smaller than
1.5% and smaller than 1.0% for the wavelength 780 nm [50]. A picture of the cell is shown in
figure 30.

4.3.8. Ion detectors

Either the microchannel plate (MCP) F4655-13 from Hamamatsu or the channeltron Magnum
5901 from Photonis will be used to detect ions, see chapters 4.7.1 and 4.7.5.
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4.4 Simulations

4.4. Simulations
The program SIMION 8.1 was used to simulate electric fields and particle trajectories. The
resulting data sets were then imported to MATLAB. Below in figure 23, slices through the
position of the cloud in the assembly are shown for different voltage settings at the electrodes.
In all cases the voltages -2000 V and -500 V are applied to the front and back plate of the
MCP (-3000 V is applied to the channeltron respectively) and -0.05 V to the mesh in front of
the MCP. The mesh voltage was chosen such, that sufficient compensation of the fields can be
guaranteed while maintainig the ability to attract even very slow ions. In this way the most
general and practical statements can be made.
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Figure 22: Schematic drawing of the front part of the E-field control with numbering of the plates and
reference system. Electrodes 1-8: Electric field compensation, Electrodes 9-10: Steering
of the ionized atoms, Electrode 11: Mesh for compensation of the fields of the channel-
tron/MCP, Electrodes 12-13: Channeltron/MCP.

4.4.1. Influence of the MCP and the channeltron

The fields of the MCP shown in figure 23 have only small influence on the fields at the po-
sition of the cloud. This is mainly due to the mesh in front of the MCP. Simulations for the
channeltron at the place of the MCP show very similar behaviour.

Electrode Voltage [mV]
1, 5 0.16
2, 6 0.0
3, 7 0.1
4, 8 0.45

Table 1: Voltages required to com-
pensate the influence of
the MCP on the electric
field.

The voltages that need to be applied to compensate the
influence of the MCP are given in table 1. These volt-
ages are very small, although at least in theory the voltage
source USB3112 (see also chapter 4.6.4) should be able to
provide 10 V/216bits = 153µV/bit. We expect from previ-
ous works [11, 42, 44], that in the end some 10 mV to 100
mV will be necessary to compensate for Stark shifts. One
has to keep in mind, that an electric field on the order of
≈ 10−6 V/mm causes for a quantum state with n∗ ≈ 100
a shift of 10 Hz, which is no longer resolvable with our
excitation lasers, due to their linewidth of at least 50 kHz.
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Figure 23: First row: Fields generated by the MCP and the mesh with all other electrodes switched
off, Second row: Rough attempt to compensate the fields of MCP and mesh, Third row:
Fields generated by putting plates 1-4 on +10 V and plates 5-8 on -10 V, Fourth row: Plates
2 and 6 on +500 V. (From top to bottom). The white cross indicates the position of the
atomic cloud, which is due to the discrete grid and averaging slightly shifted. The colorbar
indicates the absolute value of the electric field.
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4.4 Simulations

4.4.2. Electric fields created by the electrodes

The pictures 23 show, that it is possible to generate in theory a very homogeneous electric
field across the atomic cloud with variations below 0.03 dB. From the pictures 23, the field at
the position of the cloud depending on the applied voltage can be calculated. These straight
lines are shown in picture 24. The relation between voltage and electric fields are as follows:

• Plates 1-4 positive, plates 5-8 negative: E(U)[ V
mm ] = 0.070 1

mm ·U [V]

• Plates 1 and 5 positive: E(U)[ V
mm ] = 0.021 1

mm ·U [V]

• Plates 2 and 6 positive: E(U)[ V
mm ] = 0.017 1

mm ·U [V]

4.4.3. DC-Stark shift

From the equations (11) and (12) one can calculate the electric field required for compensating
a specific Stark shift. A reasonable shift could be for example 10 MHz.
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Figure 24: Left: Electric field depending on the applied voltage, Right: Electric field and voltage re-
quired to compensate a Stark shift of 10 MHz depending on the principal quantum number.
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Figure 25: Electric field and voltage required to
ionize an atom depending on the prin-
cipal quantum number.

The voltage and the electric field needed
in the case where the plates 1-4 are positively
and the plates 5-8 are negatively charged de-
pending on the principal quantum number
for a shift of 10 MHz are shown in picture
24. As mentioned before, the required volt-
ages are in the range of some 100 mV, which
should be technically feasible with our volt-
age source, the USB3112.

4.4.4. Electric field ionization

We use again the relation between electric
field and applied voltage for the case where
only the plates 2 and 6 are positively charged.
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4.4 Simulations

Then the ionization voltage depending on the principal quantum number looks as shown in
figure 25. With 500 V we should be able to ionize every Rydberg state down to a principal
quantum number of n∗ = 44. This is a very good property, since we will not have to care about
for example suitable high voltage cables and connectors and we will have a lot of freedom to
easily ionize every Rydberg atom in the cloud.

4.4.5. Ion guiding

Once the Rydberg atoms are ionized, the ions are guided to the MCP (or channeltron respec-
tively) with the steering plates 9 and 10. Ion trajectories have been calculated with SIMION
for the maximum ionization voltage of 500 V at the plates 2 and 6. The MCP front plate is set
to -2000 V, the back plate to -500 V and the steering plate 9 is set to -85 V. The Mesh in front
of the MCP, which should absorb most of the fields going out of the channeltron, is charged
with -0.05 V. The calculated trajectory for this parameter set is depicted in picture 26.

The starting points of the trajectories are normally distributed around the cloud position with
a variance of 0.75 mm. Note, that depending on the voltage of the MCP and the actual cloud
position, steering voltages of up to -100 V might be required. The round steering electrodes
lead to a very flat distribution of the ions, which can be expanded using the electrodes 4 and
8 at a negative voltage. This is shown in the pictures 27. The mesh acts in such a voltage
configuration (-0.05 V) on the ions like a lens with the focal point being in front of the MCP.
Therefore the particles get distributed over the MCP without burning always one single spot
on the MCP plates, see picture 27.

Figure 26: Trajectories of ions starting normally distributed around the position of the atomic cloud.

Remark I want to point out, that the presented values are only simulation data. In practice
small ripples on the surfaces, the previously mentioned passive layer of metaloxide, glass
and ceramics and the copper wires will influence the form of the electric field. It would be
surprising if the presented data could exactly be reproduced in the experiment. The shown
values should therefore give only a hint or estimation of the behaviour and the magnitude of
the expected fields.
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4.5 Assembly

Figure 27: Left: Top: Endpoints of ion trajectories on the MCP, Bottom: Endpoints on the MCP with
plates 4 and 8 on -40 V. Right: Lensing effect of the mesh. Cut through mesh and MCP.
One grid point corresponds to 0.2 mm.

4.5. Assembly

Figure 28: The test setup.

Since we wanted to test the electric properties of the as-
sembly and the characteristics of the ion detectors without
the glass cell, we mounted the whole E-field control on the
octagon and put several metal tubes and a small window
on the octagon instead of the glass cell. This is shown in
picture 28.

The assembly had to be done two times, since the de-
livered glass cell was over 5 mm too small in diameter.
Therefore some parts had to be manufactured twice.

4.5.1. Cleaning procedure

All parts were cleaned after the procedure proposed in [51]:

• 20 minutes ultrasonic bath in industrial strength cleaner (Branson, IS-Industriereiniger)

• Thorough cleaning with water

• 20 minutes ultrasonic bath in acetone

• Flushing with isopropanol

Commercial parts like the octagon are assumed to be delivered vacuum clean. The Kapton
insulated Copper wires were wiped clean with ethanol and lint free wipes (Kimwipes). All
parts were exclusively handled with gloves and wrapped in aluminum foil.
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4.5 Assembly

4.5.2. Baking

In order to burn remaining dirt away, for example oil or isopropanol, we decided to bake all
metal and ceramic parts in the test tube at a temperature of 300 °C. This conditioning helps
also to achieve faster a high vacuum after reopening the chamber. We used two heating wires,
five temperature sensors and the turbopump HiPace80 from Pfeiffer, which can get only in
the range of 10−8− 10−9 mbar. The pressure was measured with the gauge PKR251 from
Pfeiffer. Unfortunately we wrapped too much of the wires around the chamber, so that after a
while the smell of burnt plastic got so sickening, that we had to remove partly the aluminum
foil to get the ends of the wires out. This is why one can see a temperature and pressure dip
around the 5. June in the figures 29. The end pressure was 4.6 ·10−8 mbar, so one can claim,
that the E-field control shows no virtual leaks and assuming cleanliness should be suitable for
ultra high vacuum.
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Figure 29: Left: Pressure, Right: Temperature at different positions of the test setup over time.

4.5.3. Wiring

The wires we use to connect all electrodes and supply voltages for the ion detector are Kapton
insulated copper wires (FTAK10010) with a diameter of 1.1 mm from Kurt Lesker. Those
wires have a breakthrough voltage of 10 kV and can hold currents up to 10 A. The Kapton at
the tip of a wire was removed and wound around the screw of the corresponding electrode. The
wires are guided from the electrode to the electrical feedthroughs in the octagon via ceramic
tubes from tectra, which lie in half opened holes. Caution was taken, that at nearly no position
the atoms or ions will ever see the bare wires. The endtips of the wires are connected to
the feedthrough pins (EFT0542052) with Be-Cu barrel connectors (FTAIBC041) from Kurt
Lesker. The insulation of the tips was not stripped this time, because the risk to cause dirt or
damage on the knive edge with the scalpel inside the octagon was too high. Instead the screws
in the barrel connectors were tightened as fast as possible and the electrical connection was
tested with an ohmmeter with clean tips. Since only very small currents will flow through the
connections, this is no problem. Little Macor plates with four holes are used to hold the pins
of the feedthroughs apart.
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4.6 Characterization

Figure 30: From left to right: E-field control wired; Octagon with Be-Cu connectors and Macor spac-
ers; Finished assembly inside the glass cell.

Electrode Resistance [Ω] Capacity [pF] Breakthrough voltage [kV ]
1 0.4±0.1 31.3±0.1 3.6±0.2
2 0.6±0.1 33.4±0.1 3.7±0.2
3 0.6±0.1 30.7±0.1 3.6±0.2
4 0.4±0.1 30.8±0.1 3.7±0.2
5 0.2±0.1 29.1±0.1 3.6±0.2
6 0.8±0.1 31.9±0.1 3.6±0.2
7 0.4±0.1 30.6±0.1 3.6±0.2
8 0.6±0.1 31.5±0.1 3.6±0.2
9 1.4±0.1 32.3±0.1 3.5±0.2

10 0.7±0.1 26.4±0.1 3.6±0.2

Table 2: Characteristic electric properties of the electrodes.

4.6. Characterization
4.6.1. Resistance

The resistance was measured between the outer pins of the feedthrough to the corresponding
electrode with an ohmmeter and vacuumclean probes. It shows, that the contact at the barrel
connectors works. Measuring the resistance between the electrodes and the ground turned out
to exceed the range of the ohmmeter. So it must be way over 20 MΩ.

4.6.2. Capacity

For measuring the capacity of one electrode, all other electrodes were grounded. Using the
digital LCR/ESR-Meter Peaktech 2170 the capacity was measured. The measured capacities
are obviously very small, thus the rise- and falltimes of charging will be dominated by the
capacity and the inner resistance of the BNC cables, which are in the range of 200 pF and 50
Ω for a 2 m cable. In order to get a good prediction of the loading behaviour of the electrodes,
one has to characterize the specific BNC-cables as well.
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4.6 Characterization

4.6.3. Breakthrough voltages

For measuring the breakthrough voltages an AppliedKilovolts voltage supply with 10 kV and
a maximum curent of 4 mA was used. By turning up the control voltage very slowly and by
checking the monitor voltage at the same time, rough estimates of the breakthrough voltage
were gathered. It turned out, that nearly all electrodes showed breakthroughs at voltages be-
tween 1 kV and 2.2 kV, but by turning the voltage up again one can win one or two more
kilovolts. This is because small ripples on the metals get polished away by the electric spark,
which is also called high-voltage conditioning. The measured breakthrough voltages are ba-
sicly the breakthrough voltages at normal pressure in air. Assuming a distance of 2-3 mm at
the sockets of the feedthrough pins and a electric strength of air of 3.3 kV/mm, this confirms
this argumentation.
Note, that simply watching the monitor voltage is a very rough and even dangerous way to
measure the breakthrough voltage. A much better way would have been to take a voltage
source where the current can be limited manually. One can then limit the time of the break-
through and go much more precisely towards the critical voltage without having to risk dam-
age of the electric devices. Unfortunately no such device was available at the time of the
measurements.

The breakthrough voltage or electric strength respectively is given by the Paschen law [52]:
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Figure 31: Breakthrough voltage over distance
times pressure according to the Paschen
law 14.

Ub = (B · p ·d)/(Ln(
A · p ·d

K
)), (14)

where p is the pressure, d the distance,
and K = Ln(1+ 1/v), v, A and B are con-
stants. For air they are given as A =
1.2 mbar−1mm−1, B = 36.5 Vmbar−1mm−1

and v = 0.02, yielding, K = 3.39 [53]. A
plot of the relation (14) is shown in figure
31. For a distance of 3 mm and a pressure
of 1.0 · 103 mbar this yields a breakthrough
voltage of 16.1 kV. This is obviously much
higher than measured, which is because the
Paschen law is only valid for parallel and
smooth plates.

4.6.4. Rise- and falltimes

As mentioned in chapter 4.6.2, the loading behaviour will mainly be given by the capacity of
the BNC-cable. The signal generated by the Agilent 33500B function generator was measured
first with 50 Ω termination at the LeCroy 64Xi (600 MHz). Then traces were recorded one
time with 50 Ω termination at the feedthrough pin of electrode 2 and then completely untermi-
nated. The traces are shown in figure 32. A similar measurement was done using the USB3112
microcontroller also shown in figure 32. Because the rise time of the output of this function
generator is so slow, all ringing is suppressed and appropriate termination is not needed for
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4.6 Characterization

this measurement. In order to suppress high frequency noise a lowpass filter consisting of a
50 Ω resistor and a 2.2 µF capacity is soldered at the output ports of the controller. Attempts
have been made to measure the Allan deviation of the voltage over time, but it turned out, that
mostly only the fluctuations of the oscilloscope were measured. Nevertheless, major parts of
the reflections can be suppressed by using a 50 Ω termination directly at the feedthrough. The
best way would have been to put the resistor directly at the electrode, but that would again
result in thermal drifts, because inside the vacuum heat cannot be dissipated and the current
flowing through the resistor would therefore cause fluctuations of the resistance.
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Figure 32: Switching behaviour of Agilent 33500B (left) and of USB3112 (right).

4.6.5. HV-Switch

For achieving the high ionization voltages of up to 500 V in very short time, we use the NIM-
AMX500-3 from CGC Instruments. It consists of three separate channels where each has an
internal resistance of 11 Ω. The output can be switched by a TTL pulse between a high and a
low level. Using a 500 V voltage supply from Applied Kilovolts, presented in figure 36, and a
3 m BNC cable at electrode 2, which corresponds to a total capacity of 352 pF, the switch was
characterized. Results and the measurement setup are shown in figure 33. The trigger pulse
delivered by the Agilent 33500B is shown in red and black. For high voltages a crosstalk from
the output to the trigger channel is visible. This crosstalk can also be observed after a trigger
pulse in the output channel. The minimum trigger time is 330 ns and the lowest trigger voltage
is 2.7 V. The output signal shows large overshooting, which can be suppressed by using a 57
Ω resistor in series in the output path. This enlarges the initial rise time, although the time at
which a stable voltage level is achieved is similar to the time without resistor and is 500 ns.
The same applies to the falling time, which is even more crucial for our experiment, since this
sets the time when Stark shifts can again be compensated successfully.
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Figure 33: Left: Measurement setup, taken from [54], Right: Characterization measurements of the
NIM-AMX500-3.

4.7. Ion detectors
We have the possibility to use two different ion detectors, which have both advantages and
disadvantages. For both detectors housings and cables exist.

4.7.1. Microchannel Plate

Figure 34: Installed MCP with mesh in
front.

The first of our ion detectors is a so called microchan-
nel plate (MCP). These types of detectors consist of
two plates made from several millions ultra-thin glass
capillaries, which are fused together and sliced into
thin plates of an average thickness of 0.5 millime-
ters [55]. A sketch of such a plate is shown in the fig-
ure 35 below. From the front to the back of the plates
a high voltage in the kilovolts range is applied. Each
of the capillaries acts as an independent electron mul-
tiplier, multiplying the charge of an incident ion by a
gain of g = exp(α ·G), where α = L/d is the length

to diameter ratio and G is called the gain factor. The surface of these plates is covered by a
thin metal layer, for example Inconel, a Nickel alloy or Ni-Cr, designed such, that the surface
resistance is somewhere between 100 Ω and 200 Ω across the MCP’s surface.

The angle between the channel axis and the axis perpendicular to the plate surface is called
the bias angle and is in our case 12°. There are two reasons why one uses this bias angle.
The first is, that there is a higher probability for incident particles to hit a channel wall. The
other reason is more subtle. By enlarging the length to diameter ratio α one increases the gain,
but at the same time noise caused by ion feedback increases ultimately limiting the gain by
degrading the signal to noise ratio. Ion feedback is caused by residual gas atoms, which are
being ionized inside a capillary. The resulting ions travel back to the front of the MCP and
cause a wrong signal. This problem can be circumvented by using two alternately opposing
plates. The ions are then absorbed at the junction between the two plates [57]. Of course this
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4.7 Ion detectors

Figure 35: Left: Operating principle, Middle: Bias angle, Right: Wiring schematic. Taken from [55]
and [56]

works best, when the channels are really opposed to each other, like it is shown in figure 35.
The resulting signal is in our case then read out by a single anode, which is made in a way,

that only few parts of the resulting signal pulse gets reflected. This can be accomplished by
manufacturing the angle of the cone as well as the surface in tight tolerances.

Our MCP is the F4655-13 from Hamamatsu, which is wired like it is depicted in the figure
35 above.

We use the voltage supplies from AppliedKilovolts. Characteristics of the voltage supplies
are shown in the pictures 36. These were measured using the high voltage probe Agilent
N2771A. This device must be well grounded, every other operation imposes major safety
issues. This is why the voltage between the MCP plates (2kV) cannot be measured directly.

We use a voltage divider at the voltage supply for the MCP to get -2000 V at the front plate
of the MCP and -500 V at the backplate. The voltage ratio determines the resulting gain and
the voltage between front and back plate determines the so called strip current Is =

U
R1+R2

,
which is directly connected to the deadtime τdead of the MCP by τdead = Qout/Is. The voltage
supplies have the option to control the output voltage by a voltage between 0V and 10V,
furthermore the actual output can be monitored by a monitor voltage between 0V and 10V.
They need a supply voltage of 24V, which is delivered by a lab voltage supply.
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Figure 36: Top, Left: Voltage supply for the MCP, Top, Right: Voltage supply for steering plate 9,
Bottom: Voltage supply for ionization with plates 2 and 6.
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4.7.2. Assembly of the MCP

Figure 37: Assembled MCP.

The whole MCP is mounted inside a small metal
box, where the original baseplate has been replaced
by the backwall of the box of the same thickness.
On the backwall a BNC connector with the an-
ode is being mounted. A specially for vacuum de-
signed BNC cable [FTAKCBM2CM12] from Kurt J.
Lesker connects the MCP to a BNC-BNC feedthrough
[IFDBG012032M]. The two supply voltages are deliv-
ered by two Kapton insulated copper wires of 1.1 mm
thickness [FTAK10010]. These wires are clamped
with screws to the lashes of the MCP-In and MCP-Out leads and lead through two holes
in the back of the metal box. For protection two ceramic tubes are put between hole walls and
wires.

4.7.3. Mesh

Figure 38: The finished mesh.

In order to avoid unwanted strayfields from the MCP (or
the channeltron respectively) we constructed a mesh, which
is placed directly in front of the MCP. The mesh consists
of twelve wires made from the alloy 1.4404 (316L) with
a diameter of 0.25 mm [GoodFellow]. The wire can take
forces of around 5 kg. This was measured with a torque
wrench and a M6 screw. The force this wire can take is
surprisingly small, mainly due to the fact that the wire was
made by cold work and is therefore very brittle. The wires
were tightened with clamping jaws and some weights. Un-
derneath the clamping jaws a 0.3 mm thick copper band was placed, which helps to fix the
wires. Afterwards we tested the tension of the wires with an electrode in a distance of 6 mm
to the mesh and an applied voltage of 0-10 kV. In between the electrode and the mesh there
was a plexiglass plate of 6 mm thickness placed. As there was no visible bending of the wires
observable, we conclude, that the position of the wires should be unaffected by the electric
field of the MCP. During the assembly we decided to leave out two inner wires, which has
only a slight effect on the electric field compensation and the ion lensing but decreases the
amount of ions being absorbed on the wires. The whole mesh was cleaned afterwards again
with acetone and isopropanol.

4.7.4. Characterization of the MCP

Remark: In order to avoid dangerous voltage peaks at the measurement devices caused by
malfunction of the MCP or the channeltron one should use two antiparallel diodes, which
break through at a specific voltage or use a simple operational amplifier, which breaks as soon
as a specific voltage is being exceeded.
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Before the MCP was operated the first time, the electric continuity was tested and the strip
current was measured at a pressure of 1.2 ·10−7 mbar by applying a voltage in small steps from
0 V to 500 V between the front and back plate and measuring the current with the Keithley
2701. A plot of the measurement is shown in figure 39.

Is,MCP @ΜAD= H0.01 + 0.01×Uin @VD L
R1+R2=H79.39±0.53LMW
Is,Channeltron @ΜAD= H0.73 + 0.04×Uin @VD L
RChanneltron=H22.46±0.07LMW
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Figure 39: Stripcurrent between front- and back-
plate of the MCP (Red) and of the chan-
neltron (Black).

The combined resistance of the two plates
is (79.4± 0.5) MΩ, which is different from
the specified value of 53 MΩ but still of the
same magnitude. Afterwards the MCP was
operated regularly and some hundred dark
counts were recorded with the LeCroy Wa-
verunner 640 Zi (4.0 GHz, 40 GS/s). It
could be observed, that the operation caused
a slight increase in pressure, since the MCP
is heating up during operation. In this
case from 1.0 ·10−7 mbar to 1.2 ·10−7 mbar.
Some randomly chosen traces of the dark-
counts recorded are shown in figure 40.
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Figure 40: Left: Some randomly chosen example traces, Right: Darkcount statistics of the MCP.

The average duration of the first pulse is (6.9±1.6) ·10−10 s with a rise time of (3.6±1.8) ·
10−10 s and a falling time of (3.4±1.6) ·10−10 s. The darkcounts are caused by electric field
emissions from the channel walls, ionization of residual gas, local discharge and photoelectron
emission caused by electric field scintillation of the MCP support paths [55].

The darkcount rate turns out to be extremly low: (0.038± 0.006) counts/s, compared to
0.44 counts/(s ·cm2)−→ 0.73 counts/s as specified in the datasheet, which is mainly because
of the magnitudes lower pressure being used [58]. A plot of the dark count statistics is shown
in figure 40. It will be interesting to see, whether this darkcount rate changes, when the Rb-
dispensers are in place and the MCP gets polluted with Rubidium. As can be seen in the time
traces, every count is followed by a comparatively long trace of oscillations, the so called
ringing. The period of this ringing is (5.2± 0.5) · 10−10 s and the decay time, to which the
amplitude of the oscillation has decreased to 1/e of the initial amplitude is (1.3±0.2) ·10−9 s.
Another characteristic plot of MCPs is the pulse height distribution, shown in figure 41.
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Figure 41: Pulse height resolution of the MCP.

This distribution depends heavily on the
type of MCP and on the correct angle be-
tween the two MCP plates. If the chan-
nels are aligned, then this distribution has
an exponential shape. For correct align-
ment, this exponential shape changes into a
quasi-gaussian shape. The reason for this is
the space charge saturation. It is not possi-
ble to achieve arbitrary high gains since the
electrostatic repulsion between the electrons
limits an arbitrary high production of sec-
ondary electrons. A measure for the pulse
height dispersion is the pulse height resolu-
tion PHR=FWHM/A, defined as the ratio between the full width half maximum of the pulse
height distribution to the maximum amplitude achieved for highest gain [55]. In our case this
is PHR . 50% compared to PHR=108% specified in the datasheet. A reason for this can of
course be the rather poor statistics, since only 400 counts could successfully be recorded.

4.7.5. Channeltron

Figure 42: Schematic of the twisted
channels in a channeltron
and technical outline of the
Magnum electron multiplier.
Taken from [59].

The second one of our ion detectors is the channel-
tron CEM 5901 Magnum from Photonis [60]. This
channeltron consists of six twisted channels, which are
each made from Burle glass coated with a conducting
and a semiconducting layer. The channels are twisted
to prevent ion feedback. Additionally the larger sur-
face area prolonges the lifetime of the device [59].
A schematic of this configuration is shown in figure
42. The channeltron has a small nonconducting ring at
about the middle of the device. Everything said about
the MCP applies similarly to channeltrons.
This channeltron is designed for pulse counting and
cannot be used for analog signal detection, not even
by turning the supply voltage down.

4.7.6. Assembly of the channeltron

The channeltron is mounted in a box, which consists of two parts in between which, the
channeltron is clamped at the nonconducting zone. Like in the case of the MCP, the supply
voltages for the channeltron are provided by two copper wires. The signal is fed to the core
of a stripped BNC cable by clamping the signal pin of the channeltron to the wire with a
barrel connector. The channeltron has been cleaned in acetone and isopranol. After the whole
assembly, we became aware, that it is adviced to bake it afterwards at 80 °C for at least 15
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minutes [59]. Missing this step may have led to increasing dark count rates, which should go
away after outgassing for long enough time.

4.7.7. Characterization of the channeltron
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Figure 43: Darkcount statistics of the channel-
tron.

We characterized the channeltron in the same
manner like the MCP. The stripcurrent is
shown in figure 39. The resistance of the
channeltron is (22.47±0.07) MΩ.
Some sample traces using no amplifier
and using the operational amplifier ZX60-
14012L-S+ from Mini-Circuits, which is a
broadband amplifier (300 kHz to 14 GHz)
with a gain of up to 10 dBm, are shown in
figure 44.
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Figure 44: Left: Some randomly chosen example traces with no amplifier, Right: Sample traces using
the ZX60-14012L-S+.

This signal is in either case suitable to be detected with our TimeTagger modules, which are
fast digital signal counters. The rise time of the first pulse is between 2.5 · 10−9 s and 11.3 ·
10−9 s, depending on the pulse height. The fall time is between 3.7 ·10−9 s and 15.4 ·10−9 s.
The full pulse has an average duration of (11.7±3.0) ·10−9 s. The decay time of the ringing
is (1.3±0.4) ·10−7 s with a period of (2.8±0.7) ·10−9 s, which is in this case not so crucial
compared to the MCP, since we can simply set a threshold level at the TimeTagger.
The dark count statistics are shown for the unamplified case in figure 43. The dark count
rate for the channeltron is very high: (1.426± 0.002) counts/s compared to one count per
minute given by the specsheet. This tremendous increase is very likely because of the cleaning
procedure. Further outgassing will reduce the dark count rate.
The pulse height distribution shows two peaks, which becomes even more obvious in the
amplified case. This could be either due to two dark counts, which would mean, that the
channeltron is suitable for analog counting though. Or it is because of ion feedback. The
two distributions are shown in figure 45. The pulse height resolution can be estimated to
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PHR≈ 54%. Below in table 3, all measured and specified characteristics are shown again for
the MCP and the channeltron.
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Figure 45: Left: Pulse height distribution without amplifier, Right: Distribution using the ZX60-
14012L-S+.

DataType MCP Channeltron
Measured SpecSheet Measured SpecSheet

Gain - 1.0 ·106 - 5.8 ·107

Resistance (79.4±0.5) MΩ 57.3 MΩ (22.47±0.07) MΩ 17.12 MΩ

Mean Pulse Height 9.42 mV - 14.12 mV -
Darkcount Rate (0.038±0.006) cts/s 0.73 cts/s (1.426±0.002) cts/s ≤ 1 cts/min

Pulselength (6.9±1.6) ·10−10 s ≈ 5 ·10−10 s (11.7±3.0) ·10−9 s -
Rise time (3.6±1.8) ·10−10 s - (2.5−11.3) ·10−9 s -
Fall time (3.4±1.6) ·10−10 s - (3.7−15.4) ·10−9 s -

Ringing: Period (5.2±0.5) ·10−10 s - (2.8±0.7) ·10−9 s -
Ringing: Decay (1.3±0.2) ·10−9 s - (1.3±0.4) ·10−7 s -

PHR ≈ 50% 108% 54% ≤ 70%

Table 3: Summary of all available characteristic values of the MCP and the channeltron.
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5. Quantum State Tomography
It was already mentioned in chapter 2.1, that the introduced transistor, which is still classi-
cal, aims towards the future goal of realizing a quantum gate. This could for example be a
controlled phase gate. So far we have only looked at the imaginary part of the nonlinear sus-
ceptibility. This part is responsible for the absorption, whereas the real part determines the
refractive properties of the medium [31]. On resonance the source photons do not experience
a phase shift, but with a gate excitation present prior to the source photons, the phase spectrum
will shift by some amount given by the interaction strength between gate and source excita-
tions. In this way a phase gate works similar to the transistor, but instead of watching the
change in transmission we try to observe the switching of an additional phase.
An experiment showing a conditional phaseshift has already been performed [18]. In this ex-
periment linearly polarized light |V 〉= (|σ+〉+ |σ−〉)/

√
2 is used for the source photons. The

trick is, that the |σ−〉 polarized light has a 15-times smaller Clebsch-Gordan coefficient than
the |σ+〉 light. It is therefore nearly not coupled to the Rydberg level, therefore non-interacting
with the medium and serves as a phase reference, whereas the |σ+〉 light is coupled strongly
to the Rydberg level and picks up some phase with respect to the |σ−〉 light. The phase differ-
ence of those two components translates directly into a rotation of the polarization, which can
be measured with quantum state tomography.
Quantum state tomography is the process by which a full mathematical description of the state
of a system can be obtained.
In classical mechanics it is always possible to find a set of measurements, which fully re-
constructs the state of a system, e.g. the position and momentum of a particle. Due to the
Heisenberg uncertainty relation and the no-cloning theorem this is inherently harder in quan-
tum mechanics. Every measurement will have some back-action on the system under obser-
vation inevitably changing the state of the system. It is also impossible to simply make perfect
copies of the system without knowing the state beforehand [19].
The only possibility to determine the quantum state is to prepare a large amount of identical
systems and to perform different measurements on each of them. With every measurement
being the projection of the state onto one of the eigenvectors of the state space, the state can
be reconstructed. This method is called quantum state tomography [61].
To proof the creation of a controlled phase gate one must even go one step further. It is not
enough to characterize one possible outgoing state, but one has to characterize the response
of the gate on every kind of ingoing state in order to reconstruct the linear map, which maps
an ingoing state on a different outgoing state. This is called quantum process tomography [62].
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5.1. Quantum States
5.1.1. Density matrix

For quantum states, which are not completely known or are mixtures of projectors onto pure
states |ψi〉 with a probability Pi, the description of the state with state vectors is no longer
convenient. Instead one uses the density matrix, defined as

ρ = ∑
i

Pi|ψi〉〈ψi|. (15)

Expectation values of an operator Ô can be retrieved from 〈Ô〉 = tr(Ôρ) and the probability
Pi of measuring state |ψi〉 is given by the expectation value of ρ:

Pi = 〈ψi|ρ|ψi〉= tr(|ψi〉〈ψi|ρ) (16)
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Figure 46: Depiction of the den-
sity matrix of the |φ−〉
state.

An operator is called a density matrix, if it fulfills the follow-
ing conditions:

• ρ† = ρ: Hermitian ⇐⇒ Time-reversability

• tr(ρ) = 1: Trace is equal to one ⇐⇒ Normalization

• ρ ≥ 0: Positive semidefinite ⇐⇒ Physicality

A pure state, which is a state that can be described by one
single state vector, fulfills the condition ρ2 = ρ and
consequently tr(ρ2) = 1. In this case the density matrix
ρ = |ψ〉〈ψ| is equal to the projector onto the state |ψ〉.

5.1.2. Entanglement, environment and decoherence

With this description of a quantum mechanical state one can easily give the full mathematical
description of a composite system in the Hilbert space HA⊗HB. A system is called separable,
if it is a product state, i.e. |ψ〉 = |ψA〉⊗ |ψB〉. A state, which is not separable is sometimes
also called entangled. For example the Bell states are fully entangled two-qubit states:

|ψ±〉= (|HV 〉± |V H〉)/
√

2 (17)

|φ±〉= (|HH〉± |VV 〉)/
√

2 (18)

Using |H〉=
(

1
0

)
and |V 〉=

(
0
1

)
, the density matrix for the |φ〉− state can be given as:

ρ = |φ−〉〈φ−|= 1
2


1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

 . (19)
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Although the trace of the density matrix squared is equal to one, the trace of the density
matrix of the subsystem ρ(1) = tr(2)(ρ)⇒ tr(ρ2

(1)) = 0.5 is not equal to one, but instead the
subsystem is completely mixed and therefore unknown.
From this consideration one can already conclude, that measuring a mixed state is like measur-
ing only one subsystem of a larger entangled state. In practice a system is always interacting
with the environment, which can be modelled as the system being entangled with a qubit to
which we do not have any access. From this point of view, decoherence and entanglement
with the environment are the same.

5.1.3. Polarization
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Figure 47: Plot of the
Poincaré sphere.

Throughout this work single qubits will be encoded in the elec-
tric field polarization of photons with horizontal polarization
|H〉 = |0〉, vertical polarization |V 〉 = |1〉. All pure polariza-
tion states can be constructed from coherent superpositions of
these two basis states:

|H〉= |0〉 (20)
|V 〉= |1〉 (21)

|D〉= (|H〉+ |V 〉)/
√

2 (22)

|A〉= (|H〉− |V 〉)/
√

2 (23)

|L〉= (|H〉+ i|V 〉)/
√

2 (24)

|R〉= (|H〉− i|V 〉)/
√

2 (25)

There is a very concrete illustration of the polarization by means of the Poincaré sphere.
The density matrix can be decomposed in the form [19]

ρ =
1
2

3

∑
i=0

Siσi (26)

with σ being the Pauli matrices

σ0 =

(
1 0
0 1

)
,σ1 =

(
0 1
1 0

)
,σ2 =

(
0 −i
i 0

)
,σ3 =

(
1 0
0 −1

)
(27)

and S being the Stokes vector

Si = tr(σiρ). (28)

The vector (S1,S2,S3) shows the direction of the polarization on the Poincaré sphere, like it is
shown in figure 47 and S0 is with the right normalization equal to one. The Si are given by the
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outcome of two projection measurements onto the states (20)-(25):

S0 = P|H〉+P|V 〉 = I|H〉+ I|V 〉 (29)

S1 = P|H〉−P|V 〉 = I|H〉− I|V 〉 (30)

S2 = P(|H〉+|V 〉)/
√

2−P(|H〉−|V 〉)/
√

2 = I|D〉− I|A〉 (31)

S3 = P(|H〉+i|V 〉)/
√

2−P(|H〉−i|V 〉)/
√

2 = I|L〉− I|R〉 (32)

The probability P|ψ〉 of measuring a state |ψ〉 corresponds classically to measuring an intensity
I|ψ〉.

5.1.4. Distance, fidelity and entropy

In quantum information a lot of different measures are known to characterize the quality of a
state or an operation. Some of the most used are introduced here.

Distance: The first is the trace distance between two states ρ and σ , defined as:

D(ρ,σ) =
1
2

tr(|ρ−σ |). (33)

For single qubits with Stokes vectors S and R, this is simply half of the Euclidian distance
D(ρ,σ) = 1

2 |S− R|. Therefore it can be interpreted as the distinguishability between two
states. The trace distance is a metric, which is convex on the space of density operators and
acts in general contractive under any quantum operation [19]. The absolute value of a matrix
is defined as |σ |=

√
σσ†.

Fidelity: The fidelity defined as

F(ρ,σ) = tr
(√√

ρσ
√

ρ

)
(34)

is not a metric on the space of density operators, as will become clear in chapter 5.4. This
monotonic and concave measure quantifies the quality of a state, but has no direct physical
meaning like the trace distance. Instead it has some mathematical properties, which are useful.
For example the following holds:

1−F(ρ,σ)≤ D(ρ,σ)≤
√

1−F(ρ,σ)2 (35)

Pure states satisfy the equation D(|S〉, |R〉) =
√

1−F(|S〉, |R〉)2. Note, that for commut-
ing states ρ = ∑

i
Pi|ψi〉〈ψi| and τ = ∑

i
Ti|φi〉〈φi|, the fidelity reduces to the classical fidelity

F(ρ,τ) = ∑
i

√
PiTi = F(Pi,Ti) [19].
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Von Neumann entropy: In order to quantify the uncertainty in the measurement of a state
ρ , one defines the von Neumann entropy as

S(ρ) =−tr(ρ · log2(ρ)) =−∑
i

ρi · log2(ρi), (36)

where the ρi are the eigenvalues of the density matrix ρ . The entropy is for a completely mixed
d-dimensional state at maximum log2(d). It is a measure for the mixedness or decoherence of
a state [19].

5.1.5. Measurement idea
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Figure 48: Measurement idea: The waveplates are set such, that |L〉 (black arrow) gets first rotated
by a π/2-waveplate into the |H〉− |D〉 plane (blue arrow) and then by a π-waveplate into
the |H〉 direction (brown arrow). The resulting state gets then projected onto the |H〉 and
|V 〉 axis (pink arrow). For an arbitrary state the same operation with the same waveplate
settings corresponds to determining S3 by measuring I|H〉− I|V 〉. The red arrows show only
the order of operations not the trajectory.

We recall that in the single qubit case the density matrix can be represented as ρ = 1
2

3
∑

i=0
Siσi.

That means, for determining ρ we need to make three complete measurements of S1,S2,S3 in
the |H〉, |D〉 and |L〉 bases. This can be done by rotating the k-th component of the incoming
state with π- and π/2-waveplates in the |H〉 direction and then by projecting the resulting
state with a polarizing beamsplitter onto the |H〉 and |V 〉 axis respectively. This is illustrated
in figure 48.
These rotations correspond in the mathematical sense to unitary operations U∆(θ)

U∆(θ) =

[
cos(θ)2 + ei·∆ sin(θ)2 cos(θ)sin(θ)− ei·∆ cos(θ)sin(θ)

cos(θ)sin(θ)− ei·∆ cos(θ)sin(θ) ei·∆ cos(θ)2 + sin(θ)2

]
, (37)

where θ is the angle of the waveplate to the horizontal with retardation ∆. The whole unitary
transformation for the ν-th measurement is given by

Uν =Uπ(θπ,ν)Uπ/2(θπ/2,ν) (38)
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For n qubits we procede like in the single qubit case, by projecting the state in a sequence of
separable bases. The unitary transformation is in this case given by

Uν =1 Uν ⊗2 Uν ⊗ . . .⊗n Uν (39)

The number of counts, that we actually measure for the ν-th measurement setting at the r-th
detector pair, which projects the incoming state into the canonical basis state |r〉 with initial
intensity I0 is given by [61]

nν ,r = I0 · tr(Mν ,r ·ρ) and (40)

Mν ,r =U†
ν |r〉〈r|Uν . (41)

5.1.6. Amount of measurements, n- vs. 2n-detectors

PBS D1HWPQWP

ÈH>

PBS D1

D2

HWPQWP

ÈH>

ÈV>

Figure 49: Top: Measurement apparatus for the n-
detector setup, Bottom: Measurement
apparatus for the 2n-detector setup.

A n-qubit state has 4n Stokes parameters,
which are given by 2n probabilities. There-
fore, 4n× 2n measurements are required to
determine a n-qubit state. These 4n×2n mea-
surements are of course linearly dependent,
since the density matrix consists of 4n pa-
rameters, from which one is already given by
the normalization constraint.

This is why 4n− 1 parameters have to be
determined by 2n measurements each. Hav-
ing a closer look at the actual parameters one
recognizes apart from the normalization fur-
ther redundancies, like:

S2,2 = P|RR〉−P|RL〉−P|LR〉+P|LL〉 (42)

S0,2 = P|RR〉+P|RL〉−P|LR〉−P|LL〉 (43)

One can also say, that from the additional constraint ρ† = ρ we only have to determine 3n pa-
rameters with 2n measurements. A measurement apparatus suitable for this is shown in figure
49. One can of course save qubits and therefore time by utilizing 2n detectors. This results
then in setting 3n times a new measurement basis with the retarders, but gaining everytime
2n values, just enough measurements to completely determine one parameter of the density
matrix.
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5.2. Algorithm
5.2.1. Maximum likelihood

Statistical errors in our measurements will in general lead to illegal density matrices, which do
not fulfill the requirements 5.1.1 for a physical density matrix, although the complete knowl-
edge about the quantum state is definitely increased. This is because we try to reconstruct the
quantum state from measurements done under different conditions, but on an equally prepared
ensemble of states. In the spirit of the probabilistic quantum theory we do not ask the ques-
tion [63]: "What state is determined by our measurement?" We rather ask: "What quantum
state seems to be most likely for our measurement?"
The method of maximum likelihood estimation is a procedure, which accounts for the con-
straints on density matrices, namely the unitarity, normalization and the positivity. By trun-
cating the whole Hilbert space it provides us with a physically possible quantum state.

5.2.2. Maximum likelihood algorithm

Let us assume some density matrix ρ and hence the number of photon counts n̄(ρ) we expect
to measure given this matrix. The probability density to actually measure n counts provided,
that we guessed n̄(ρ) is given by the conditional probability density p(n|n̄(ρ)). If we now
perform N measurements and record n1,n2 . . .nN independent counts, then the joint probability
density is accordingly given as product of the single conditional probabilities:

L (n1,n2 . . .nN |n̄(ρ)) =
N

∏
k=1

p(nk|n̄(ρ)). (44)

This function is called the likelihood function and quantifies the degree of belief that for a
measurement yielding nk counts, the system was really prepared in the state ρ [63]. The
maximum likelihood estimator of n̄(ρ) is given by the maximum of the likelihood function
L for all possible n̄ or ρ respectively. Equivalently one can maximize the logarithm of this
function as well:

L(n̄(ρ)) = ln(L (n̄(ρ))) =
N

∑
k=1

ln(p(nk|n̄(ρ))) (45)

According to the equations (40) and (41) the number of expected counts is given by n̄ν ,r(ρ)'
tr(U†

ν |r〉〈r|Uν ·ρ). Since we are dealing with coherent states, we assume for the conditional
probability density a Gaussian profile [61]

p(n|n̄)' exp
[
−
(n̄ν ,r(ρ)−nν ,r)

2

2σ2
ν ,r

]
= exp

[
−
(n̄ν ,r(ρ)−nν ,r)

2

2n̄ν ,r

]
. (46)

Inserting this equation in (45), we see, that we need to minimize

L(ρ) = ∑
ν ,r

[
(n̄ν ,r(ρ)−nν ,r)

2

2n̄ν ,r

]
(47)
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for all n̄ in order to find ρ .
Until now we have not taken the normalization and the positivity constraints on the density
matrix into account. For a non-negative definite matrix ρ , the following holds: 〈ψ|ρ|ψ〉 ≥ 0
∀|ψ〉. This constraint is satisfied by any matrix in the form ρ = T †T . This matrix is then also
hermitian. To fulfill the normalization constraint, we simply write ρ as [61]

ρ =
T †T

tr(T †T )
. (48)

As mentioned before, the density matrix ρ for a n-qubit system consists of 3n independent
parameters. In order to fit the intensity of the data as well, we will use 4n parameters and we
choose T in a tri-diagonal form, which makes inverting ρ easier. In the single qubit case T
has the form

T =

(
t1 0

t3 + it4 t2

)
(49)

and ρ = T †(t)T (t)
tr(T †(t)T (t)) . In our program we have to minimize a sum of squares in the form [61]

L (t) = ∑
x
[ fx(t)]

2 , (50)

fν ,r =
I0 · tr

(
Mν ,rT †(t)T (t)

)
−nν ,r√

2 · I0 · tr(Mν ,rT †(t)T (t))
. (51)

5.2.3. Quantum process tomography

The ultimate goal of our transistor experiment is to realize a phase gate. In order to character-
ize such a quantum gate sufficiently it is not enough to merely know the action of the gate on
one input state, but instead we want to know the complete linear map E which fully describes
the dynamics of our quantum system [62]

ρ −→ E(ρ)
tr(E(ρ))

(52)

and maps some input state on some other output state ρin −→ ρout by a linear mapping E(ρ).
One makes use of the operator-sum representation of E [19]. Let us assume, the input state in
our quantum mechanical black box P is a product state of ρ and a fictious second system ρenv,
which could be the environment. This system has the basis {|ei〉} and the initial state |e0〉.
The output state of the whole system is then P[ρ⊗ρenv]P† = P[ρ⊗|e0〉〈e0|]P†. Considering
only the system ρ , we have to take the partial trace:

E(ρ) = trenv

[
P[ρ⊗|e0〉〈e0|]P†

]
(53)

= ∑
i
〈ei|P[ρ⊗|e0〉〈e0|]P†|ei〉 (54)

= ∑
i

AiρA†
i , (55)
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where the Ai are given as Ai = 〈ei|P|e0〉.
In order to measure the Ai, we spectrally decompose them into Ai = ∑

m
aimÃm using a fixed

basis {Ãi} with some complex numbers aim. The linear map is then

E(ρ) = ∑
i

(
∑
m

aimÃm

)
ρ

(
∑
n

a∗inÃ†
n

)
(56)

= ∑
mn

ÃmρÃ†
nχmn, (57)

with the positive, hermitian error correlation matrix χmn = ∑
i

aima∗in.

Let us choose N2 linearly independent basis elements ρ j on the space of N×N matrices, for
example |n〉〈m|with |n〉, |m〉, |+〉= (|n〉+ |m〉)/

√
2, |−〉= (|n〉+ i|m〉)/

√
2 as input states into

our gate. We can determine the output states E(|n〉〈m|) and linear combinations of them by
measuring E(|n〉〈n|),E(|m〉〈m|),E(|+〉〈+|),E(|−〉〈−|) with quantum state tomography.
Because E is a linear map, the measurement result may be written as

E(ρ j) = ∑
k

λ jkρk. (58)

From this λ jk can be calculated. Furthermore, we are able to write down the following relation

Ãmρ jÃ†
n = ∑

k
β

mn
jk ρk. (59)

Using this equation and the relations (58) and (57) we can write

∑
k

∑
mn

χmnβ
mn
jk ρk = ∑

k
λ jkρk⇔ (60)

∑
mn

χmnβ
mn
jk = λ jk, (61)

which is true, due to the linearly independent ρk. Because we know λ and β , we are able
to calculate χ , which yields in the end E(ρ) from equation (57). Solving equation (61) is
not straight forward. Instead we have to use the generalized inverse κ of β , which can be
calculated with every common algebra program:

β
mn
jk = ∑

st,xy
β

jk
st κ

st
xyβ

xy
mn (62)

=⇒χmn = ∑
jk

κ
mn
jk λ jk. (63)

Let the unitary matrix U† diagonalize χ ,

χmn = ∑
i

aima∗in = ∑
xy

UmxdxδxyU∗ny. (64)
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Comparing to Ai = ∑
m

aimÃm yields

Ai =
√

di ∑
j

Ui jÃ j. (65)

As an example choose the Ãi as

Ã0 = σ0 (66)

Ã1 = σ1 (67)

Ã2 =−iσ2 (68)

Ã3 = σ3 (69)

for a single qubit system. In general we need to perform d4 measurements to determine χ ,
from which some are redundant, due to normalization. The resulting 12 parameters of χ in the
one qubit case may be determined by four measurements with the input states |H〉, |V 〉, |D〉, |L〉,
where each yields d2−1 values. The four matrices

ρ
′
1 = E(|H〉〈H|) (70)

ρ
′
4 = E(|V 〉〈V |) (71)

ρ
′
2 = E(|D〉〈D|)− iE(|L〉〈L|)− (1− i)(ρ ′1 +ρ

′
4)/2 (72)

ρ
′
3 = E(|D〉〈D|)+ iE(|L〉〈L|)− (1+ i)(ρ ′1 +ρ

′
4)/2 (73)

can then be determined by state tomography. Because of the choice of the basis, we can write

β = Λ⊗Λ, with Λ = 1
2

(
σ0 σ1
σ1 σ0

)
and therefore

χ = Λ

(
ρ ′1 ρ ′2
ρ ′3 ρ ′4

)
Λ. (74)

Like this we are able to completely characterize the action of a single-qubit gate onto an
incoming state [62].
This is just one of many other methods to characterize a quantum process [64]. Other schemes
are either technically not feasible yet or are not suitable for our type of experiment.

5.2.4. Error estimation

Estimating the overall errors for polarization processes is nontrivial, because the single errors
do not add up like in standard error calculation. An error made with a π/2-waveplate will not
add up to the error made with a successive π-waveplate, but will be amplified. Additionally,
the impact of an error of the retardation is depending on the position of the plate. For horizon-
tally polarized light passing the waveplate along the zero axis, the error of the retardation is
negligible, but will have a larger effect for a nonzero position. This is illustrated in figure 50.
For this reason, it is common not to theoretically calculate the errors, but to guess random
input states, counts and retardations distributed around the actually measured values and
to perform then a maximum likelihood estimation of many of those guessed states [61].
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∆D

Α

Figure 50: Section of the Poincaré
sphere. Impact of the er-
ror of retardation δ∆ on
the Stokes vector depend-
ing on the angle α of the
waveplate. Exaggerated
depiction.

It turns out, that the error of the measurement made in
the basis vector closest to the prepared state is the small-
est. This is because here the greatest intensity difference
can be measured in the two branches of the analysing
beamsplitter. The smallest total error can be achieved
by choosing the measurement basis such, that the pre-
pared state is diagonal in one of the new measurement
bases. If the first measurement yields ρ = λ1|ψ1〉〈ψ1|+
λ2|ψ2〉〈ψ2|, then we choose the next basis as |ψ3/4〉 =
1
2 |ψ1〉± |ψ2〉 and |ψ5/6〉 = 1

2 |ψ1〉± i|ψ2〉. Like this we
will always have a measurement, which yields the high-
est intensity difference between |ψi〉 and |ψ j〉 [65].
Concerning the state preparation it turns out, that preparing for example |R〉 is more error-
prone, than preparing |V 〉.

5.3. Characterization of the setup
In order to make a good estimate about the counts n̄ to be expected, we can take some prop-
erties of our setup into account. We recall, that the expected counts for the measurement in
the ν-th eigenstate at the r-th detector are given as n̄ν ,r = I0 · tr(Mν ,r ·ρ). A list of influences,
which can actually be taken into account is given here and the corresponding methods and
characterizations, that were performed are presented in the next chapters:

• Different detector efficiencies: n̄ν ,r = I0 ·E0 ·Er · tr(Mν ,r ·ρ)

• Accidental counts: n̄ν ,r = I0 ·E0 ·Er · tr(Mν ,r ·ρ)+nacc
ν ,r

• Imperfect waveplates: n̄ν ,r = I0 ·E0 ·Er · tr(M̃ν ,r ·ρ)+nacc
ν ,r

• Beamsplitter crosstalk: n̄ν ,r = I0 ·E0 ·Er · tr( ˜̃Mν ,r ·ρ)+nacc
ν ,r

• Intensity drifts: n̄ν ,r = I0 · Iν ·E0 ·Er · tr( ˜̃Mν ,r ·ρ)+nacc
ν ,r

5.3.1. Setup

In order to test the tomography scheme, the code and to see how crucial the characterization
of included devices and optics is, a test setup has been built to measure the classical polariza-
tion state of coherent light. The experiment consists of a DFB diode laser [EYP-DFB-0780-
00080-1500-SOT02-0000] at 780 nm with an output power of 86 mW. The wavelength can be
measured with a wavemeter to which the light is guided with a beamsampler and a multimode
fiber. The beamsampler is used only for this purpose and detached otherwise. An OD-filter
and a 50:50 beamsplitter set an appropriate laser power. In order to clean the spatial mode,
the light is coupled into a single-mode fiber with polarization matching according to [66]. The
output power is then 1.9 mW and the 1/e beamdiameter is 1.1×1.1 mm. The light is then re-
flected by a polarizing beamsplitter and sent through a Glan-Taylor prism to clean the vertical
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polarization even more accurate. Next to it stands a π- and a π/2-waveplate to prepare a polar-
ization state, which is then measured using another pair of π- and π/2-waveplates and another
Glan-Taylor prism. The measurement waveplates are both mounted in motorized rotational
mounts designed and built by the 3rd institute of physics at the university of Stuttgart. For the
state tomography, the waveplates for the state preparation are mounted in standard rotational
mounts and for the process tomography they are also mounted in motorized rotational stages.
The result is read out in the transmitted horizontal branch of the prism with a logarithmically
amplified photodiode and the oscilloscope Agilent DSOX2014A (100 MHz).
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Figure 51: Left: First part of the test setup, Right: Tomography part.

5.3.2. Photodetectors

A logarithmically amplified photodiode, designed and built in the electronics workshop, has
been used for most of the measurements. It contains the diode FND-100 from Thorlabs but
has also the ability to plug in every other diode with SO-5 housing. The signal is amplified
by the logarithmic amplifier AD8307. In this way one can measure intensities ranging over
seven to eight orders of magnitude without having to change load resistors at the output of the
photodiode. For the tomography this has a second advantage: All data points are recorded with
the same amount of bits and in the same measurement range of the oscilloscope. The power
supply was also designed by the electronics workshop and shows no distinct noise peaks, as
can be seen in figure 52.
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Figure 53: Allan deviation of the setup measured
with the logarithmically amplified pho-
todiode.

Allan deviation: The Allan variance [67]
is a measure of the frequency stability in the
time domain. It is defined as

σ
2
y (τ) =

〈
(ȳk+1− ȳk)

2

2

〉
, (75)

where ȳk is originally defined as relative fre-
quency error ȳk = 〈δν

ν
〉. We use instead sim-

ply ȳk = Ik as the intensity of the k-th data
point. This gives us then the stability of the
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Figure 52: Left: Characteristics of the logarithmically amplified photodiode with two different diodes,
Right: Fast Fourier transform of the recorded signal at a power of 12.5 mW.

intensity over time and can give good indications on what a suitable averaging time could
be. A measurement of the Allan deviation σy(τ) recorded with the logarithmically amplified
photodiode just after the Glan-Taylor prism is shown in figure 53. Care must be taken not to
use different amounts of bits per time unit or amplitude unit, because this has direct influence
on the Allan deviation. Also the last several points of the Allan deviation show an unphysical
increase due to a sampling error. On the timescale of 10 seconds longterm drifts are negligible.
A reasonable measurement time is one second and in this time also most of the noise on short
timescales is being averaged out. This is why for all future measurements an averaging time
of one second will be used.

5.3.3. Waveplates

In order to measure in a known measurement basis, one has to determine exactly the retarda-
tion of the used waveplates. The retardance of a waveplate is defined as

∆ =
2π ·∆n(λ ) ·L

λ
, (76)

with ∆n(λ ) being the difference between the ordinary and the extraordinary index of refraction
and L is the thickness of the material.
Also there are combinations of waveplates, which cannot be used at all, because an incoming
polarization direction cannot be rotated in every direction on the Poincaré sphere. It can be
shown [61], that for two waveplates with retardations 0 ≤ φ1 ≤ φ2 ≤ π two conditions must
be fulfilled:

2
∣∣∣π
2
−φ1

∣∣∣≤ π−φ2 (77)

φ1 +φ2 ≥ π. (78)

If the first condition cannot be met, then a state |H〉 cannot be rotated to the poles, if the
second condition is violated, then the Poincaré sphere has a slit in the equatorial plane. This
is illustrated in figure 54.
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Figure 54: Result of rotating an incident polarization vector |H〉 on the Poincaré sphere with wave-
plates with retardations: Left: 0.955π , 0.515π , Middle: 0.95π , 0.4π , Right: 0.6π , 0.33π .

The Jones matrices of a waveplate with retardation ∆ and of a polarizer are given by [61,68]

W (∆) =

(
exp(−i∆/2) 0

0 exp(−i∆/2)

)
, P =

(
1 0
0 0

)
. (79)

One has to transfer always in the correctly rotated frame of reference with the matrix

R(θ) =
(

cos(θ) sin(θ)
−sin(θ) cos(θ)

)
. (80)

The output electric polarization using one polarizer at an angle of Ω1, a waveplate at an angle
θ and a second polarizer at an angle Ω2 is given by

Eout = P ·R(Ω2) · (R(−θ) ·W (∆) ·R(θ)) ·
(

cos(Ω1)
sin(Ω1)

)
(81)

The output intensity is then [68]

Iout = E†
out ·Eout =

I0

2
(1+A+Bcos(∆)) with (82)

A = cos(2(Ω2−θ))cos(2(Ω1−θ)) (83)
B = sin(2(Ω2−θ))sin(2(Ω1−θ)). (84)

The equation (82) can be written as a linear equation of cos(2Ω2) by setting the waveplate
fixed to θ = π/4 and (Ω1−θ) = π/4, then the output intensity is

Iout =
I0

2
(1− cos(∆)cos(2Ω2)), (85)

and the retardation can be calculated from the slope m and the ordinate n of this line by [68](m
n

)
= cos(∆). (86)

With this method at hand several measurements were done. First of all, the retardation of
different available waveplates was determined. The measurements are shown in figure 55.
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The measurements were done with the DET100A photodiode from Thorlabs and varying load
resistors to cover the whole dynamic range. The wavelength of the laser at the time of these
measurements was 780.235 nm. From the results in figure 55 we chose to take the combination
HP1 and QP3 for the preparation of polarization encoded states and the waveplates HP2 and
QP4 for the state estimation, since those were the two pairs fulfilling the equations (77) and
(78) best.

DHHP1L= H0.941 ± 0.003L Π
DHHP2L= H0.956 ± 0.007L Π
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Figure 55: Left: Retardation of π-waveplates, Right: Retardation of π/2-waveplates.

In the case of a tilt of the waveplate with respect to the optical axis by an angle α , the
effective thickness L of the waveplate increases to L/cos(α) and therefore ∆0−→ ∆0/cos(α).
This is plotted together with the measurement points in figure 56. The measurement was
performed with the π/2-waveplate QP1 again at 780.235 nm. The deviation from the expected
behaviour for large angles results from the refractive index of the waveplate, which deflects
the beam and causes the thickness of the waveplate to be effectively smaller.
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Figure 56: Retardation depending on a a tilt
of the waveplate by an angle α

with respect to the optical axis.

Most of the waveplates consist of quartz glass,
which is in its crystalline form birefringent. The
material size has of course some dependence on
temperature, as does the birefringence ∆n. In the
most general case we can write the change of the
retardation with temperature as

d∆

dT
=

2π

λ
·∆n ·L ·

(
1
L

dL
dT

+
1

∆n
d∆n
dT

)
. (87)

Because a change of the birefringence with tem-
perature will effectivly have the same impact like
a change in the thickness of the plate [69], we can
write d∆

dT = ∆ ·δ and therefore

∆ = ∆0 · exp(T ·δ )' ∆0 · (1+T ·δ ). (88)

This relation was measured using a temperature controlled lenstube [SM1L10H] from Thor-
labs. The result for δ is δ = −0.005 1

°C , which is in the same order of magnitude like the
literature value δlit =−0.007 1

°C [70]. The data is depicted in figure 57.
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Figure 57: Left: Retardation depending on the temperature, Right: Retardation depending on the wave-
length.

The retardation depends also on the wavelength. By changing the temperature and the
current of the laser, the wavelength was changed and the retardation was measured. This is
shown in figure 57.

In this case the retardation itself and the birefringence, through the dispersion, depend both
on the wavelength. We write again the derivative of the retardance over the wavelength

d∆

dλ
=

2π

λ
·∆n ·L ·

(
1

∆n
d∆n
dλ
− 1

λ

)
= ∆ · (α− 1

λ
). (89)

Solving this differential equation yields

∆ = ∆0 ·λ0 ·
exp(αλ )

λ
' γ−βλ . (90)

γ and β are some constants. This is just a very rough derivation, but the intention is to show
merely the overall behaviour rather than a quantitatively derivation.

5.3.4. Beamsplitter

There a two types of errors, that can occur with beamsplitters. First of all they can absorb
one polarization direction more than the other and second they can mix up polarizations, so
that there is still a part of the |H〉 polarization coming out of the |V 〉 branch and vice versa.
The second is caused by scattering at the surfaces and causes depolarization in the outgoing
branches. We are using the Müller formalism, since this provides the possibility of taking
dephasing and loss into account. The Müller matrix for a polarizer can be given as [71]

T (0) = T


1+u+ v 1 0 0

1 1+u− v 0 0
0 0 0 0
0 0 0 0

 , (91)

where u and v are the ratios of copolarized and crosspolarized incoherent scattering and T is
the transmittance for unpolarized light. The measured transmittance is T ∗ = I/I0 = T (1+u+ v),
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which includes the pure transmittance and the unwanted influence of scattering. The ratio of
minimum to maximum transmission for linearly polarized incident light is called extinction
ratio

E =
Imin

Imax
=

u+ v
2+u+ v

. (92)

The first problem is, that the incident light is only partially polarized. Therefore we use two
polarizers. One is the polarizer P and the other is the analyzer A. It can be shown [71], that
the extinction of the whole assembly can then be given by

E =
I(0,90)+ I(90,0)
I(0,0)+ I(90,90)

=
uA + vA +uP + vP

2+uA + vA +uP + vP
, (93)

and the effects of partially polarized light is cancelled out.
The next problem are the imperfect polarizers itself. To counterbalance this effect one can
make three measurements with two of three polarizers, which are interchanged. The combined
cross scattering is given by [71]

uP + vP +uA + vA =
2(I(0,90)+ I(90,0))

I(0,0)+ I(90,90)− I(0,90)− I(90,0)
. (94)

With at total three sets of measurements for three pair combinations of polarizers one gets an
equation system, which can be solved for the combined cross scattering u+ v, which can then
be inserted in equation (92) to get the extinction of the polarizer. This procedure is called zone
average method [71]. Note, that the polarizers need to have extinction ratios of at least the
same magnitude, otherwise the worst polarizer will always degrade the resulting extinction of
the better polarizer.
We used three polarizers, two Glan-Taylor prisms, "GT1" and "GT2" (GT10-B) and one Wol-
laston prism "W" (WP10-B) all from Thorlabs. The Wollaston prism has the disadvantage,
that the beams leave the device under an angle of around 10°. Although the Wollaston prism
works extremly well, this beam deviation makes it very hard to align the outgoing beams. The
measurement was done with the photodiode DET100A and appropriate load resistors. The
incident light was "depolarized" by a π/2-waveplate, such that the transmitted intensities after
the first polarizer were independent of the angular position. The data looks like this:

GT2-GT1 W-GT2 GT1-W
I(0,0) [arb. U.] 414.8 432.8 436.4
I(90,90) [arb. U.] 443.5 495.6 481.2
I(0,90) [arb. U.] 0.005 0.004 0.004
I(90,0) [arb. U.] 0.005 0.004 0.003

From this result the extinctions

GT1 1 : 176029 7−→ (5.7±0.2) ·10−6

GT2 1 : 174985 7−→ (5.7±0.2) ·10−6

W 1 : 402162 7−→ (2.5±0.2) ·10−6

can be extracted, which are in agreement with the estimated extinctions given by the manu-
facturers.
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5.4. Test Results
5.4.1. Quantum state tomography

The tests for the state tomography were done at 780.242 nm and an input intensity of 1.83
mW. In front of all the preparation the prism GT 1 was standing. The state preparation was
done with waveplates with retardations (0.919± 0.01) π and (0.483± 0.001) π with a tem-
perature dependence of 0.005 π/°C, from figure 57. The two waveplates were mounted in
standard rotational mounts with an accuracy of 1°. The states were then characterized using
two waveplates with retardations (0.955± 0.015) π and (0.515± 0.001) π mounted in rota-
tional stepper motors with a step size of 0.06°. Several hundred measurements were done for
each state, from which each complete tomography takes about 50 seconds limited by the speed
of the steppermotors.
For the following discussion I will restrict myself on the measurements of the |V 〉 and the
|L〉 state, which serve as an example. Comparing these two states shows best the influence of
errors. |V 〉 shows minimal errors and |L〉 shows the largest possible errors.

Distance, fidelity and entropy From the recorded data the trace distance, the fidelity and
the von Neumann entropy were extracted. For comparison the data for the |L〉 state is shown in
figure 58 prepared once with only one π/2−waveplate and once prepared with a π/2− and a
π−waveplate. The fidelity of the quantum state is in both cases very large, although the trace
distances of the two |L〉 states indicate differences. This is because the fidelity is no metric
and therefore only limited suitable for comparative analysis.
The trace distance for the |L〉 state prepared with two waveplates is twice as large as the trace
distance for the state prepared with only one waveplate. This indicates a systematic error at
the preparation of the state. The trace distance is lowest for the |V 〉 state, which supports the
argumentation in chapter 5.2.4, that retardation errors have the lowest impact for states pre-
pared near the initial state, which is |V 〉 directly after the first Glan-Taylor prism.
Moreover, the von Neumann entropy as a measure for the decoherence of a state, is lower for
the state prepared with less waveplates and is lowest for states, which do not need much prepa-
ration like the |V 〉 state. The shorttime fluctuations result from the noise of the whole laser
setup and the photodetector. The longterm drifts can be a result of a temperature dependent
rotation of the initial polarization in the single mode fiber. The loss of perfect linearly po-
larized light incident on the polarizing beamsplitters could lead to increased crosstalk, which
results in decoherence.

Preparation errors The data in figure 58 indicates errors occurring at the preparation,
especially the comparison of states prepared with one and with two waveplates underlines this
argument. In order to quantify the source of those errors, error estimations were made.
By choosing values for parameters, like the setting of the polarizer or the retardation from a
limited range various presumably prepared states can be calculated from the Müller matrices
of the polarizer and the waveplates. In figure 59 the results are shown. In red is the Stokes
vector shown for the probably prepared state. The dots around it are the results for different
parameters of the preparation optics. A setting error of 0.05°of the polarizer has only minor
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Figure 58: Trace distance, fidelity and von Neumann entropy for: Top: |L〉 state, Left: π/2− and

π−waveplate (200 runs), Right: Only π/2−waveplate (200 runs), Bottom: |V 〉 state (900
runs).
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impact. The effect of 0.5°misadjustement of one or both of the waveplates is already larger.
Note that this estimate is very small since also the zero position of the waveplates could easily
be wrong by this amount. An error of 0.01π and 0.02π of the retardation of the π/2− and the
π−waveplate caused by a faulty characterization as well as a temperature drift of < 2 °C in
the lab has already a very large effect on the actually prepared state. The overall error taking
all those effects into account is shown in the last figure in 59.
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Figure 59: a): Black arrow: Measurement and error estimation of the measurement, Red arrow: Pre-
pared state and all possible preparation errors for the |V 〉 state.
b)-e): Black arrow: Measurement and error estimation of the measurement, Red arrow:
Prepared state and preparation errors for the |L〉 state. b): Errors by misadjustment of the
polarizing beam splitter, c): Errors by misadjustment of the waveplates, d): Errors by faulty
retardation, e): All possible errors together.

The maximum trace distance among the presumably prepared states is already 0.10 and 0.06
for the |L〉 and the |V 〉 state.
In order to calculate the errors of the state measurement in a similar manner a set of possible
characteristic values was randomly chosen from normal distributions of the characteristic val-
ues centered around the actually measured value. For example the retardation was perturbed
randomly with a Gaussian distribution with a standard deviation equal to the error. Then the
likelihood estimation was performed again with those slightly changed parameter settings.
The error of the waveplate setting was set to 0.05°, which corresponds to the step size of the
steppermotors, the total error of the retardation of the waveplates was set to 0.015π and the
voltage error of the photodiode was set to 0.002 V. The resulting data points are shown in
figure 59 at the end of the actually measured black Stokes vectors, which is the average of all
tomographic measurement runs. The corresponding trace distances of the estimated errors are
maximally 0.01 and 0.02 for |V 〉 and |L〉 states.
The real measured fluctuations are normally a bit smaller, than the estimated errors. For the
|L〉 states the average trace distance is 0.002 compared to 0.005 for the estimated errors, the
trace distances between two measurements of the |V 〉 states is on average 0.003 compared to
0.004 for the estimated errors.
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In general, the error estimation of the measurement process is able to predict the amplitude of
the measurement fluctuations. But the error estimation is not able to make a statement about
the quality of the state estimation. This is visible in the huge mismatch between the trace
distances of the error estimation and the actually measured trace distance between prepared
and measured state, which indicates, that either the determined retardation has a larger error
than assumed or temperature drifts must have taken place inbetween the characterization of
the waveplates and the tomography, since the trace distances of the actual measurements is not
fluctuating by this amount.
Note, that temperature changes of 1− 2 °C are common in our labs, especially during the
change of seasons.
Altogether the tomography seems to work better than the preparation of the states. In general
state estimation with accuracies of more than 95% are possible. This can be further improved
by using zero order waveplates, which are designed such, that retardation changes due to tem-
perature drifts are compensated. Additional monitoring of the temperature can help to identify
error sources even better.

ÈL>

Figure 60: Errors: Blue: Measurements, Red: Simulated measurement outcomes for perturbed initial
values.

Minimal phase shift The phase of the components of a state are in general given by
arg(ρ). In order to calculate the minimal resolvable phase shift we assume an input state
|ψ〉 = |H〉 = 1√

2
(|R〉+ |L〉) in the manner of [18]. This state experiences a phase shift φ and

is therefore |ψ ′〉= 1√
2
(eiφ |R〉+ |L〉). Calculating the trace distance of those two states yields

D(φ) = 1
2tr(||ψ ′〉〈ψ ′|− |ψ〉〈ψ||) = |sin(φ/2)|. For states near to |H〉 the trace distance to

the shifted state, which is distinguishable from |H〉, is given by the estimated errors, which
was 0.004. This corresponds to a minimal phaseshift of 0.5°. The phaseshift between the
presumably prepared |L〉 state and the actually measured state is 2.3°. At total the error of
the phase shift is between 0.5°and 2.3°, depending on the state under observation. The actual
error of the measurement will be much smaller, since we cannot circumvent taking the error of
the state preparation into account as well. Similar error ranges are presented in [18]. Here the
errors were between 1.7°and 3.6°. By making use of a local oscillator in a homodyne detection
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scheme one can achieve errors between 0.7°and 1° [72]. The most accurate way to measure a
phase shift is by using a stabilized interferometer [73]. By using this method accuracies below
0.5°can be achieved, although only the phase shift and not the whole density matrix is being
measured. Those publications are all works in the context of measuring phaseshifts of single
photons caused by single atoms.

Average quality In order to derive a mean trace distance, several hundred randomly cho-
sen states were prepared using another pair of steppermotors. For this, angles were randomly
selected and the presumably prepared states were calculated. In total a mean trace distance
of (0.031±0.012) can be achieved with a minimum of 0.002 and a maximum of 0.064. The
average error of the phaseshift is (3.53±0.02)°.

Comparison between maximum likelihood and linear tomography A compara-
tive depiction of the results of the maximum likelihood estimation and the linear tomography
is shown in figure 61. In all cases the maximum likelihood estimation beats the linear calcu-
lation. For example for the |L〉 state prepared with two waveplates the average distance of the
estimation to the presumably prepared state is (0.049±0.001), whereas the linear tomography
yields a distance of (0.052±0.002).
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Figure 61: Blue: Linear estimation, Red: Maximum likelihood estimation, Black: Presumably pre-
pared state. Left: Real part of the density matrices, Right: Imaginary part.

5.4.2. Quantum process tomography

For the test of the the quantum process tomography, waveplates with retardations (0.973±
0.014)π and (0.468± 0.0005)π were used for preparing the input states |H〉, |V 〉, |D〉 and
|L〉 and waveplates with retardations (0.939±0.009)π and (0.510±0.0004)π were used for
analyzing the state. Three tests were made. The first without any optical device inbetween the
preparation and the analyzation, next with a π−waveplate with retardation (0.94±0.01)π and
last with a polarizing beamsplitter, which is specified with an extinction ratio of < 1 : 1000.

No optics In this case, the "gate" acts like an identity matrix on the incoming state, apart
from measurement errors. 260 measurement runs yield an average distance between input
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state and measured state of (0.043± 0.021). This is slightly larger, than the distance error
obtained in the previous section, which is due to an erroneous setting of the input states. In
fact, the input states have never been perfectly polarized, like it would have been necessary
for the algorithm presented in 5.2.3.

Waveplate A π-waveplate at an angle of π/4 acts like a Pauli X-gate
(

0 1
1 0

)
[19], which

swaps |H〉 and |V 〉 or |L〉 and |R〉 respectively. The average measured phaseshift between
|H〉 and |V 〉 (|L〉 and |R〉) is (0.96± 0.02)π , which is in accordance to the retardation of the
waveplate obtained with the method presented in 5.3.3.

Polarizing beamsplitter A polarizer
(

1 0
0 0

)
is not a quantum gate, since it is not a uni-

tary matrix, that means, it is not energy conserving. The trace distance between the measured
|H〉 and the input states |H〉, |D〉 and |L〉 is (0.005± 0.003) as expected. The |V 〉 state will
vanish completely and a tomography of this state should yield a completely mixed state. This
becomes visible by calculating tr(ρ2) 6= 1 for all |V 〉 input states and can be quantified by look-
ing at the von Neumann entropy, which is (0.10±0.05). Note, that this way of proceeding is
questionable, since the method of quantum state tomography will more likely produce a pure
state. For random results of the state estimation, the process tomography will still yield im-
pure states, although the quantization of the mixedness by means of the von Neumann entropy
shows clearly an underestimation of the impureness.

5.5. Guide to the program
The Matlab code for the tomography was originally written at the group of Paul Kwiat at the
university of Illinois. During this thesis the code was completely revised, filled with comments
and adapted to our purposes. Without going into too much detail I will outline the major parts
of the program and explain how to insert data and configurations. Along with the program
come sample code snippets and sample data files, which contain much more comments and
information about the functions.

5.5.1. Main program parts

The tomography begins by initializing a Tomography object, whereby data and configura-
tions are loaded and checked for obvious errors. By calling the basic routine
state_tomography(obj), the program starts calculating the state |r〉 in which we project
the input state and the corresponding transformation matrix ˜̃Mν ,r. For example different de-
tector efficiencies, beamsplitter crosstalk, accidental counts and the retardations can be taken
into account.
This is then followed by a deterministic calculation of the density matrix in the class
LinearTomography. The resulting density matrix is used as a starting point for the max-
imum likelihood algorithm and it can also be used to compensate for different intensities of
the measurements for different bases.
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The main class is MLTomography, where the equation (50) gets optimized using the Matlab
internal routine lsqnonlin.
Furthermore there is a whole bunch of measurements available, like the entropy, the fidelity
or the trace distance as well as several options to write the results.
Commands for controlling the scope and the motors can be found in @ExperimentControl.
The commands for the motors just call functions from a python script made by the 3rd insitute
of physics at the university of Stuttgart.

5.5.2. Configuration and raw data

The configuration file and the file with the raw measurements have to be saved in the form
NAMEconf.txt and NAMEraw_counts.txt. The files are of the form:

s t r u c t
c o n f i g p a r a m e t e r : v a l u e

e n d s t r u c t

It is possible to run the program without setting any options, in this case some preset options
will be used. The following configurations can be set:

• NDetectors: Set to 1 for n detectors or 2 for 2n detectors.

• NQubits: Number of qubits.

• QuditSizes: Size of each Qudit.

• StateDimension: Dimension of the HilbertSpace.

• DoDriftCorrection: 1:yes, 0:no, Uses the result of LinearTomography for
drift correction.

• PDC: 1:yes, 0:no, Calculates accidental counts, only meaningful for parametric down-
conversion.

• DarkCounts: 1:yes, 0:no, Correction of dark counts.

• DarkCountRates: [counter1, counter2], Dark count rates for every counter in nanosec-
onds.

• Window: Coincidence window in nanoseconds.

• Crosstalk: [C0→0,C0→1;C1→0,C1→1], Crosstalk matrix of Beamsplitters.

• Efficiency: [counter1, counter2], Efficiency for each counter.

• Angles: 0: Use settings in raw_counts.txt, 1:Angles in units of Pi are given
in raw_counts.txt.

• Retardation: [WPπ,qubit1,WPπ/2,qubit1;WPπ,qubit2,WPπ/2,qubit2], Retardation of wave-
plates in units of Pi, only required, when Angles=1.
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• ProjectState: [1,0], Projecting channel in which the detector is standing; e.g.
[1,0] = |H〉, [0,1] = |V 〉. Only required for the n-detector case.

• PowerError: Error in the power measurement, use only for coherent light source,
otherwise set to 0, then a poissonian distribution is assumed.

• SettingsError: Error in waveplate setting in degrees or error in settings in units of
π .

• TempDependence: Temperature dependence of the retardation of the waveplates in
π/°C.

• UseDerivatives: 1:yes, 0:no, Use derivative of maximum likelihood function to
increase speed of calculation.

• Measurements: 1:yes, 0:no, Do several measurements at the end.

• EstimatedCounts: 1:yes, 0:no, Show actually estimated counts at the end, only
possible if Measurements=1.

• ErrorEstim: Number of cycles for error estimation, 0: No error estimation.

• Write: 1:yes, 0:no, Write results.

• Overwrite: 1:yes, 0:no, Overwrite previous file or make backup.

• PDF: 1:yes, 0:no, Create .pdf with results and plots.

The raw data has to be given in the following form:

• time: [msrm1; ...; msrmN], Time of each complete measurement in nanoseconds

• singles: [msrm1 ctr1, msrm1 ctr2; ...; msrmN ctr1, msrmN ctr2], Amount of nonin-
tended or nontriggered counts, used to calculate amount of accidental counts.

• coincidences: [msrm1 ctr1, msrm1 ctr2; ...; msrmN ctr1, msrmN ctr2], Amount of
counts in counter r for the ν-th measurement.

• settings: [msrm1 qubit1, msrm1 qubit2; ...; msrmN qubit1, msrmN qubit2], Each
qubit gets projected in a state of the form α|H〉+β |V 〉. α and β have to be written for
each measurement and qubit in the corresponding space.

• angles: [msrm1 qubit1, msrm1 qubit2; ...; msrmN qubit1, msrmN qubit2], Like
settings but with the angles of the two waveplates instead of α and β .

• intensities: [msrm1, ..., msrmN], Total intensity of the ν-th measurement.
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5.6. Concluding remarks
Although the method of reconstructing a quantum state presented here is already quite sophis-
ticated, there are some remarks to make.

5.6.1. Pitfalls

It is undoubtly dangerous to edit the acquired data in order to get physical results. But in
most cases this is necessary, because the deterministic calculation of the density matrix yields
negative eigenvalues.
The problem is, that in maximum likelihood estimation, the state often lies directly on the
boundary of the n-dimensional Poincaré sphere and has therefore eigenvalues which are equal
to zero. While this is no violation of the physicality constraint it is still implausible. This
is similar to throwing a coin N times. If by chance head is lying ontop N times, it is still
not justified to set the probability of getting tails equal to zero. Moreover, the errorbars get
restricted. Since there cannot be a negative probability of getting tails we have to say, the
probability is zero or maybe larger but certainly not smaller. This is a implausible restriction
of the error bounds [74].
The underlying problem is, that observed intensities are being interpreted as probabilities,
with which one wants to predict every possible outcome of an arbitrary measurement on the
system. This will not work, since an interpretation of intensities as probabilities is only valid
for an infinitesimal large amount of samples. As an extreme example, assume an experiment,
where a coin is only thrown once and heads is ontop. The result of a maximum likelihood
estimation based on this one experiment will yield, that heads must be lying ontop in every
subsequent experiment [74].
A method, which tries to avoid these pitfalls is bayesian mean estimation [75], which is not
part of this thesis.
Fitting theory curves to datapoints is normally no problem, but it is questionable whether
showing only the fit without the data is a good way to go. Of course no one is really showing
the results of a linear inversion of the data, because it is in the most cases unphysical and it is
hard to visualize the data and the fit together in a meaningful way.

5.6.2. Other methods

There exist other methods to reconstruct the quantum state of a system, like permutationally
invariant tomography and compressed sensing, which rely on assumptions made on the prop-
erties of the density matrix [76]. If it comes to special properties of the density matrix, like
showing entanglement or a violation of the bell inequalities, there are other methods, which
require much less measurement settings.
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6. Summary
In this thesis the results of the single-photon transistor [23] have been presented. For a source
photon rate of Rs,in = 0.69(1) µs−1 and on average 1.04(3) incoming gate photons an optical
contrast of 0.39(4) could be measured. We predict a contrast of 0.53(2) for a single deter-
ministic gate photon. For 0.75(3) gate photons a gain of 10(1) could be achieved. With our
method we were able to predict the presence of a Rydberg atom with a fidelity of 0.79(4).
In order to apply the transistor scheme for spatially resolved imaging of the blockade sphere
around Rydberg atoms, an imaging system has been designed with Zemax and characterized
yielding a resolution of at least (1.55±0.1) µm and a magnification of (8.53±0.37).
During the course of this thesis an electric field control was put inside the experiment chamber.
Therefore the complete design, assembly and testing was done. The field control is in theory
able to compensate electric stray fields down to≈ 10−6 V/mm, much beyond the resolution of
our laser linewidth. Atoms with principal quantum number down to n∗= 44 are ionizable with
500 V at two electrodes. Among other electronics, like voltage supplies, two different kinds
of ion detectors were tested and characteristic values are presented here. To further improve
the total experimental setup, we chose to exchange the current glass cell with a chamber made
from quartz glass, where the tendency of thermal lensing is no longer so strongly pronounced.
Preparatory work for realizing a controlled phase gate has been done by setting up and thor-
oughly testing the method of maximum likelihood estimation. For this purpose all involved
optics and electronics were characterized. For example the Allan deviation of the logarithmi-
cally amplified photodiode or the extinctions of the polarizing beamsplitters have been deter-
mined. Furthermore the effect of temperature and wavelength differences on the retardation
of waveplates have been investigated. It was shown, that quantum states encoded in the po-
larization of the radiation field can be determined with an error minimum corresponding to
a phaseshift of 0.5°. For random states the average accuracy corresponds to a trace distance
of (0.031± 0.012), which corresponds to a phaseshift of (3.53± 0.02)°. With this method
quantum gates can be characterized. As an example, the effect of a π-waveplate acting like a
pauli X-gate on the incoming state was measured and a retardation of (0.96±0.02)π could be
retrieved, which fits well to the retardation of the waveplate of (0.94±0.01)π quantified with
another method presented in chapter 5.3.3.
With this work some more steps have been achieved towards the realization of a controlled
phase gate in free space. The next major step will be to realign the whole experiment around
the new chamber and to test and calibrate the electric field control together with the atoms.
Also the imaging setup has to be adjusted together with the atoms and one has to see, whether
the contrast is sufficient to observe the blockade radius.
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