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Abstract

In this thesis the investigation of superradiance in a thermal vapour of caesium atoms
is reported. The atoms are continuously pumped to the Rydberg state with principal
quantum number n = 32 via a two-photon excitation scheme. The superradiance is
indirectly observed via the investigation of the optical fluorescence. It was observed
that superradiance exhibits a threshold behaviour under continuous pumping. The
threshold behaviour was studied for varying ground state density, Rabi frequency and
excitation volume. It was shown that under certain conditions it is possible to influence
the superradiant dynamics via the variation of the excitation volume. In order to
describe the measurements a simple theoretical model was developed.

Zusammenfassung

In dieser Arbeit wird die Superradianz in einem Ensemble thermischer Zäsiumatome,
die durch kontinuierliches Pumpen in den Rydbergzustand angeregt werden, beobachtet.
Dabei werden die Atome über eine Zwei-Photonen-Anregung in den Rydbergzustand
mit der Hauptquantenzahl n = 32 gebracht und die Fluoreszenz detektiert. Anhand
von Änderungen in der spektralen Zusammensetzung des Fluoreszenzlichtes wird auf
die Eigenschaften der Superradianz geschlossen. Unter kontinuierlichem Pumpen der
Atome zeigt die Superradianz ein Schwellenverhalten. Das Schwellenverhalten wurde in
Abhängigkeit von der Grundzustandsdichte, der Rabifrequenz und des Anregungsvol-
umens untersucht. Es zeigte sich, dass es unter bestimmten Voraussetzungen möglich
ist die Superradianz über die Änderung des Anregungsvolumen zu beeinflussen.
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Chapter 1

Introduction

A wide range of the research activities in atomic physics deals with two fundamental
circumstances. The first is the interaction of atoms with electric, magnetic and elec-
tromagnetic fields. In particular lasers, as a coherent electromagnetic field, are used
to manipulate atoms in a controlled way making use of the atom-light interaction.
The second interaction is the interaction that the atoms experience among themselves,
referred to as atom-atom interaction. A possibility to investigate new effects owing
to atom-atom or atom-light interaction is to investigate their influence upon already
known optical properties of atoms. For example, broadening effects can be studied
via the linewidth of the signal in an electromagnetically induced transparency (EIT)
experiment [1]. In the last decades particularly Rydberg atoms have experienced an
enormous growth of interest in atomic physics. Rydberg atoms are atoms, where at
least one electron is excited to highly excited state (n � 1). Rydberg atoms experi-
ence strong inter-atomic interaction strengths arising from their large electric dipole
moment. Due to these interaction properties Rydberg atoms are expected to be ideal
for applications in quantum information processing [2]. However, because of their large
electric dipole moments Rydberg atoms strongly interact with long-wave radiation that
is resonant to transitions between Rydberg states. This can result in a coherent emis-
sion of radiation by the atomic ensemble. Characteristically, the optical response is a
short and intense pulse on time scales much shorter than the natural lifetime. Such an
enhanced spontaneous emission is called superradiance [3]. The concept of superradi-
ance was first introduced theoretically by Dicke in 1954 [4]. After the development of
pulsed dye-laser systems there has been extensive experimental studies on this effect.
The first superradiant pulses were observed in 1973 in HF vapour [5] followed by the
observation of superradiant cascading effects of alkali atoms excited to Rydberg states
[6, 7, 8]. In the case of superradiance the coherent emission of radiation is the result of
a phase-locking of the microscopic dipoles, which interact through a light field. Laser
amplifiers make use of the collective phase. A superradiant medium is in principle a
mirror-less laser with the difference that the threshold for amplification is far smaller
than for conventional lasers. In this context it has been demonstrated by Gross et al.
that superradiance can be exploited to develop coherent microwave sources [8]. They
demonstrated that it is possible to tune superradiance by filtering the microwave transi-
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Chapter 1. Introduction

Figure 1.1: Schematic illustration of a quantum module based on Rydberg
atoms in thermal vapour cells.

tion with a cavity. In this experiment an atomic beam was excited by two pulsed lasers
when it passed the cavity. With the development of cw-laser systems it is possible to
excite atoms under continuous pumping with high powers. With regard to future ap-
plications cw-systems could facilitate the realization of continuous microwave sources.
Recently, the first superradiant laser has been realized with cold Rubidium atoms [9]. A
big problem of such systems with cold atoms, however, is that they require a enormous
amount of space. This is a huge disadvantage regarding future applications in quantum
information processing or atomic clocks, since the integration potential of such systems
is limited. In contrast, thermal vapour cells of alkali atoms offer a promising chance
towards scalability of quantum systems. In the last years a lot has been done in this
field [10, 11, 12, 13]. Lately, superradiance has also been observed in a cw-pumped
vapour cell of caesium atoms [14]. This discovery motivates the development of quan-
tum networks (fig. 1.1), which are based on Rydberg atoms and are controlled via

Figure 1.2: Schematic illustration of a coherent microwave source based
Rydberg atoms in a vapour cell.
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customized superradiant properties. Furthermore, the superradiant properties could
be exploited to design coherent microwave sources in frequency regimes, which are
still not accessible with today’s commercially available coherent microwave sources.
A possible design is illustrated in fig. 1.2. However, only a few investigations have
been done on superradiant properties in cw-pumped thermal vapour. The first focus of
this thesis to demonstrate that superradiance can be observed in thermal cw-pumped
caesium vapour. This will provide the basis for exploration of superradiant properties.
The second focus is then to investigate possibilities to manipulate the superradiance,
i.e. to suppress or amplify its influences. As superradiance strongly shortens the life
time of Rydberg states it is, for example, a limiting factor for the observation of Rabi
oscillations to Rydberg states [15]. Optical coherence, however, is a basic requirement
for quantum information processing based on atomic systems [16].

This thesis consists of two three parts. The first chapter introduces the fundamental
theory, which is required to understand and interpret the measured data. In section 1
the basic principles of the atom-light interaction are presented. Section 2 introduces
a theoretical description of superradiance and its characteristics. The final section 3
presents the numeric simulation, that is used to simulate the superradiance.

The second chapter is devoted to the experimental setup. In this experiment, the
superradiance is observed in thermal caesium vapour via fluorescence spectroscopy.
The excitation scheme and the excitation setup, which was used to perform the mea-
surements, are presented in section 1 to 3. In section 4 a detailed overview of the
fluorescence spectroscopy setup and the relevant constituents is given.

The third chapter presents the results that were obtained during this thesis. The
first section outlines the observation procedure and describes how the superradiance
manifests itself in the atoms fluorescence. In the following second section the measured
data is analysed, discussed and compared to the simulation results. Finally, in the third
section a discussion of the simulation model is presented.
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Chapter 2

Theoretical foundation

This chapter outlines the fundamental theory required in this thesis. The first part
of this chapter deals with the atom-light interaction, where basic principles are intro-
duced on the basis of the simplified cases of a two-level and three-level atom. In the
second part the theory on superradiance, which is the optical effect that is the major
subject of the studies in this thesis. The last part of this chapter is devoted to the
numeric simulation, that was developed during this thesis with the purpose to explain
experimental results.

2.1 Atom-light interaction

In this section the theory of atom-light interaction is presented in the quantum mechan-
ical description under use of the density matrix formalism. In the quantum mechanical
approach a system of an atom interacting with a light field is described by the total
Hamiltonian

Ĥtot = Ĥatom + Ĥlight + Ĥint (2.1)

where, under definition of ωL := laser frequency, â†, â := creation and annihilation
operators of the light field, ~ωi := energies and |i〉 := eigenstates of the atom,

Ĥatom =
∑
i

~ωi|i〉〈i| (2.2)

Ĥlight = ~ωL

(
â†â+

1

2

)
(2.3)

are the Hamiltonians for the bare atom and light field respectively. Ĥint represents
the Hamiltonian accounting for the interaction between atom and light. The quantum
state of an atom can be written as a superposition of eigenstates |ψ〉 =

∑
i ci|i〉, ci ∈ C,

that motivates the definition of the density matrix operator

ρ̂ = |ψ〉〈ψ| =

|c1|2 c1c
∗
2 · · ·

c∗1c2 |c2|2
...

. . .

 =

ρ11 ρ12 · · ·
ρ21 ρ22
...

. . .

 . (2.4)
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Chapter 2. Theoretical foundation

Diagonal elements ρii represent the population of level i, while the off-diagonal elements
ρij contain the coherence between level i and j. The time evolution of the density
matrix operator is described by the Liouville-von-Neumann equation

∂ρ

∂t
= − i

~
[Ĥtot(t), ρ(t)] + L(ρ(t)). (2.5)

The Lindblad opterator L̂ accounts for the decay processes in the atom.

2.1.1 Two-level atom

Figure 2.1: Scheme of two-level sys-
tem. With the laser frequency, transi-
tions frequency and decay rate.

Although the two-level system is a very sim-
plified model compared to the real nature of
an atom it’s well suited as a start to illus-
trate the basic principles of atom-light inter-
action. A system consisting of ground and
excited state

|1〉 ≡
(

1
0

)
and |2〉 ≡

(
0
1

)
, (2.6)

which are separated energetically by ~ω0 is
considered (see figure (2.1)). An atom excited
to |2〉 decays back to the ground state with the
rate Γ. The difference of the laser frequency
ωL compared to the transition frequency ω0 is
characterised by the detuning δ = ωL − ω0.
For a two-level system the interaction Hamiltonian exhibits the form

Ĥint = −~d · ~E =
~Ω

2

(
|2〉〈1| · â+ |1〉〈2| · â†

)
with Ω =

−d12E0

~
. (2.7)

The unknown arising quantity Ω is the Rabi frequency that is composed of the magni-

tude of the electric field E0 and the dipole matrix element defined as d12 =
∣∣∣〈1|~d~ε|2〉∣∣∣

with ~ε being the polarisation vector of the electric field and the electric dipole moment
~d. In the product basis {|1, n〉, |2, n − 1〉} with the zero level n~ωL ≡ 0, the total
Hamiltonian can be written as

Ĥtot =
~
2

(
0 Ω

Ω∗ 2δ

)
. (2.8)

Introducing additionally the density matrix and Lindblad operator

ρ̂ =

(
ρ11 ρ12

ρ21 ρ22

)
, L(ρ) =

(
ρ22 −ρ12

2

−ρ21
2
−ρ22

)
(2.9)
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2.1. Atom-light interaction

for the discussed two-level system one obtains with the help of equation (2.5) the
differential equations for the time evolution of each density matrix component

˙ρ11 = Γρ22 +
iΩ

2
(ρ12 − ρ21)

˙ρ12 = −
(

Γ

2
+ iδ

)
ρ12 +

iΩ

2
(ρ11 − ρ22)

˙ρ21 = −
(

Γ

2
− iδ

)
ρ12 +

iΩ

2
(ρ22 − ρ11)

˙ρ22 = −Γρ22 +
iΩ

2
(ρ21 − ρ12)

(2.10)

also known as the Optical Bloch equations (OBE). As the atoms are examined only
under continuous pumping in this thesis, only the steady state solution of the differ-

ential equations, i.e. ρ̇
!

= 0, is of interest. With the condition ρ11 + ρ22 = 1 the steady
state solutions are

ρ11 =
Ω2 + 4δ2 + Γ2

2Ω2 + 4δ2 + Γ2

ρ12 =
Ω(iΓ + 2δ)

2Ω2 + 4δ2 + Γ2

ρ21 =
Ω(iΓ− 2δ)

2Ω2 + 4δ2 + Γ2

ρ22 =
Ω2

2Ω2 + 4δ2 + Γ2
.

(2.11)

Optical properties

The response of an atom to a light field E is characterized by the susceptibility χ which
in case of a weak electric field is related to the polarisation by

P = ε0χE. (2.12)

The real part of χ corresponds to the dispersion, while the imaginary part is related to
the absorption properties. At the same time the polarisation P of an atom is given by
the product of the expectation value of the dipole moment 〈d〉 and the atomic density
n

P = n〈d〉 = n · (d12ρ
∗
12 + d∗12ρ12). (2.13)

Consequently, the information on optical properties is contained in the density matrix
element ρ12 and therefore yields

χ = nd12
Ω(iΓ + 2δ)

2Ω2 + 4δ2 + Γ2
. (2.14)

For small Rabi frequencies Ω the imaginary part of (2.14), which is related to the
absorption of the light field, is a Lorentzian function with half-value width Γ, the
natural linewidth with respect to varying the detuning δ.
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Chapter 2. Theoretical foundation

2.1.2 Three-level atom

Figure 2.2: Scheme of three-
level ladder system coupled to
two light fields.

Similar to two-level approach a theoretical model
for a three-level system can be constructed. This
is insofar useful as one additional level gives rise
to new phenomena which cannot be explained by
the two-level theoretical model. In the experi-
ment the excitation to a Rydberg level is per-
formed via an intermediate state. Therefore,the
modifications that arise when involving a further
coupled transition, are shortly mentioned in the
following. The three level scheme considered is
presented in figure 2.2. The system is represented
by the three states

|1〉 ≡

1
0
0

 |2〉 ≡

0
1
0

 |3〉 ≡

0
0
1

 (2.15)

and the density matrix ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33

 . (2.16)

The coupling of the two transitions are characterised by the Rabi frequencies Ω12 =
−d12E0,1

~ and Ω23 = −d23E0,2

~ . The total Hamiltonian and the Lindblad operator are of
the form

Htot = ~

 0 Ω12/2 0
Ω∗12/2 −δ12 Ω23/2

0 Ω∗23/2 −δ12 − δ23

 (2.17)

and

L(ρ) =

Γ12ρ22 + Γ31ρ33 −1
2
Γ21ρ12 −1

2
Γ32ρ13

−1
2
Γ21ρ21 −Γ12ρ22 + Γ32ρ33 −1

2
(Γ32Γ21)ρ23

−1
2
Γ32ρ31 −1

2
(Γ32 + Γ21)ρ32 −Γ32ρ33

 (2.18)

and lead with the Liouville-von Neumann equation (2.5) to the differential equa-
tions for the time evolution of the density matrix entries:

˙ρ11 = Γ21ρ22 − Im(ρ12Ω∗12)

˙ρ12 =

(
−Γ21

2
− iδ12

)
ρ12 +

i

2
(−(ρ22 − ρ11)Ω12 + ρ13Ω∗23)

˙ρ13 =

(
−Γ32

2
− i(δ12 + δ23)

)
ρ13 +

i

2
(ρ12Ω23 − ρ23Ω12)

˙ρ22 = −Γ21ρ22 + Γ32ρ33 + Im(ρ12Ω∗12) + Im(ρ23Ω∗23)

˙ρ23 =

(
−Γ21

2
− Γ32

2
− iδ23

)
ρ23 +

i

2
(−(ρ33 − ρ22)Ω23 − ρ13Ω∗12)

˙ρ33 = Γ32ρ33 − Im(ρ23Ω∗23).

(2.19)
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2.2. Collective atom-light interaction

The amount of fluorescence emitted by an ensemble of atoms with the atomic density
N is proportional to the Rydberg population ρ33:

F ∝ Γ32ρ33N (2.20)

Electromagnetically induced transparency

In the experiment presented in this thesis the optical properties of three-level systems
are studied by observing the absorption of the light coupling the transition |1〉 → |2〉,
which is therefore referred to as the probe field. The light field of the transition |2〉 →
|3〉 on the other hand is called the coupling field. One of the new phenomena that arise
in a three-level system with two light fields is namely the electromagnetically induced
transparency (EIT). Hereby an atomic transition (probe field) becomes transparent in
the vicinity of its resonance, i.e. the absorption is not a Lorentzian any more as for
a two level atom. The width of the transparency window depends on the strength of
the coupling field. A detailed discussion on this effect and various applications can be
found in [17].

2.2 Collective atom-light interaction

The model introduced so far treats the atoms in the single-atom frame, i.e. under
the assumption of each atom interacting with the light field individually. The effects
created by the single atoms are simply added together when considering a system of
many atoms. In contrast the theory presented in the following, however, deals with
atoms interacting with light as a collective. Indeed, considering atoms as group entails
besides new dynamic variables and collective states some interesting new properties.
The description of superradiance presented in this section is a quite simple approach
which is leaned on the description in [18, 4].

2.2.1 Collective atomic states

At first, we go back to the two-level system with the ground and excited states |1〉, |2〉
and introduce, in the same manner of creation and annihilation operators for the light
field, rising and lowering atomic operators b̂, b̂† with the properties

b̂|1〉 = 0 b̂†|1〉 = |2〉
b̂|2〉 = |1〉 b̂†|2〉 = 0.

(2.21)

In addition to that we introduce the traceless Pauli spin operators by

R̂1 =
1

2

(
b̂† + b̂

)
R̂2 =

1

2

(
b̂† − b̂

)
R̂3 =

1

2

(
b̂†b̂− bb̂†

) (2.22)
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Chapter 2. Theoretical foundation

with

R̂3|2〉 =
1

2
|2〉

R̂3|1〉 = −1

2
|1〉.

(2.23)

States |1〉, |2〉 are eigenstates of R̂3, so that this operator represents a measure of the
atomic inversion. The atomic energy HA and single atom dipole moment d can then
be written as

ĤA = ~ω0R̂3 + E0

d̂ = d12|1〉〈2|+ d∗12|2〉〈1| = d12b̂ + d∗12b̂
†,

(2.24)

with the matrix element dij = 〈i|d̂|j〉. Considering now a group of N identical two-level
atoms, equivalently to the single atom case, the collective atomic spin operators

R̂1 =
N∑
j=1

R̂1,j

R̂2 =
N∑
j=1

R̂2,j

R̂3 =
N∑
j=1

R̂3,j

R̂2 = R̂2
1 + R̂2

2 + R̂2
3

(2.25)

and lowering and raising operators

R̂(−) =
N∑
j=1

b̂j

R̂(+) =
N∑
j=1

b̂†j

(2.26)

are defined as the sum of the operators for each atom j. These new defined operators
follow the same commutations relations as angular momentum operators, especially

[R̂l, R̂2] = 0, l = 1, 2, 3. (2.27)

With respect to this new operators the total atomic energy and total dipole moment
for N atoms, with the state |1〉 considered as the ground state, are

ĤA = ~ω0

(
R̂3 +

1

2
N

)
D̂ = d12R̂(−) + d∗12R̂(+).

(2.28)
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2.2. Collective atom-light interaction

Dicke states

Consider the product state Ψ as a representation of N atoms in which N1 atoms are
in state |1〉 and N2 atoms are in state |2〉, e.g.

Ψ = |1〉1|1〉2|2〉3|1〉4 · . . . · |2〉N . (2.29)

Defining the measure of the total atomic inversion

m =
1

2
(N2 −N1) (2.30)

it follows that

R̂3|Ψ〉 = m|Ψ〉, −1

2
N 6 m 6

1

2
N. (2.31)

|Ψ〉 is eigenstate of R̂3 with eigenvalue m and eigenenergy ~ω0(m + 1
2
N). Since the

energy eigenvalue is independent of the manner in which the N2 excitations are dis-
tributed over the N atoms, m has a degeneracy of

dm =
N !

N1!N2!
=

N !(
1
2
N +m

)
!
(

1
2
N −m

)
!

(2.32)

which is greatest for m = 0 for m = ±1
2
. To reduce this degeneracy new states |l,m〉

are defined, which are eigenstates of both R̂3 and R̂2 at the same time, are defined. By
considering m as the eigenvalues of R̂3 and denoting the eigenvalues of R̂2 in analogy
to angular momentum operators by l(l − 1) it states

R̂3|l,m〉 = m|l,m〉
R̂2|l,m〉 = l(l − 1)|l,m〉

with |m| 6 l 6
1

2
N.

(2.33)

It holds that

R̂(−)|l,m〉 = [(l +m)(l −m+ 1)]1/2|l,m− 1〉
R̂(+)|l,m〉 = [(l −m)(l +m+ 1)]1/2|l,m+ 1〉,

(2.34)

i.e. that the lowering and rising operators increase and decrease the value of m and
facilitate a generation of further Dicke states with m > −l by applying the raising
operator R̂(+) or m < l states by R̂(−). The states |l,m〉 are called Dicke states
and were first introduced by Dicke in 1954 in order to describe N atoms interacting
through an electromagnetic field. To the number l he referred to as the cooperation
number, that will be discussed later.
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Chapter 2. Theoretical foundation

2.2.2 Superradiance: Cooperative spontaneous radiation

Superradiance results from a coupling of multiple atoms through an electromagnetic
field. If these atoms are enclosed in a volume, whose dimensions are smaller than the
fluorescence wavelength, each of the atoms is not only stimulated by his own fields but
also by the fields of his neighbours. As a result, each atom radiates at an enhanced
rate and loses energy faster than a single atom.
Under the assumption that each atom senses the same electromagnetic field the total
atom-light interaction Hamiltonian states

ĤI = −D̂(t) · Ê(t) = −d12 · Ê(t)R̂(−)(t)− d∗12 · Ê(t)R̂(+)(t). (2.35)

Suppose the atomic system to be initially prepared in the Dicke state |l,m〉, while the
field resides in the vacuum state |vac〉. The probability to meet the total system in the
final state |Φ〉 after the time t is given by the matrix element,

− 〈Φ|d12 · Ê(t)R̂(−)(t)− d∗12 · Ê(t)R̂(+)(t)|l,m〉|vac〉. (2.36)

Rate of photon emission

As we are interested in transitions which lead to the emission of a photon, the matrix
element reduces to 〈Φ|d12 · E(−)(t)R̂(−)(t)|l,m〉|vac〉 with the negative part E(−)(t) of
the electric field. The rate of photon emission is then given by

Γemission ∝
∑
allΦ

∣∣∣〈Φ|d12 · Ê(−)(t)R̂(−)(t)|l,m〉|vac〉
∣∣∣2 , (2.37)

that can be separated into matrix elements for the atomic system and the light field
yielding the expression

Γemission ∝ 〈l,m|R̂(+)(t)R̂(−)(t)|l,m〉×
〈vac|d12 · Ê(+)(t)d∗12 · Ê(−)(t)|vac〉

(2.34)
= (l+m)(l −m+ 1) · A.

(2.38)

A can be identified in the case N = 1 which leads to m = 1
2

and l = 1
2
. This yields the

photon emission rate value of A which is identified as the Einstein A-coefficient in the
single atom case. For a system of N atoms being all in the ground state the m and l
numbers are −1

2
and 1

2
respectively. In that case the emission rate becomes zero, as

expected. On the contrary having all N atoms excited, with m = 1
2
N and l = 1

2
N ,

the emission is NA. This is exactly the photon emission rate for N independently
radiating atoms. An more interesting case opens up when the atomic system is exactly
half deexcited, i.e. when m = 0.1 Then photon emission rate for that case is

Γemission = l(l + 1)A (2.39)

1For which case the m degeneracy value (2.32) is greatest.
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2.2. Collective atom-light interaction

revealing a l dependent magnitude. This is why l is referred to as the cooperation
number. When l is largest, i.e. l = 1

2
N the emission rate exhibits N2 dependence

Γemission =
1

2
N

(
1

2
N + 1

)
A. (2.40)

On the account of this characteristic N dependence of the spontaneous radiation Dicke
named this cooperative atomic process superradiance.

Time development

A characteristic feature for superradiance is the appearance of a short light pulse, that
is ∝ N2 and occurs after a characteristic time [18]

t0 =
ln(N + 1)

AN
. (2.41)

Figure 2.3: Time development of superradiance. The left graph compares the time
dependence of the superradiant and spontaneous photon emission rate for a system of
N = 20 atoms. The superradiant emission rate reaches its maximum after the time t0,
when half of the atoms are deexcited. On the right the time development of the energy
is depicted. After the characteristic time t0 the system has lost half of its initially
stored energy.

This is due to the time dependent rate of photon emission, that reaches a maximum
value after the characteristic time t0. Figure 2.3 illustrates the time development of
the superradiant emission rate in comparison to the spontaneous emission rate, that
decreases linearly in time. The superradiant emission rate, as already mentioned,
exhibits for t = 0 the same magnitude as the spontaneous emission rate, i.e. for N
independently radiating atoms. A more detailed discussion on the time development
can be found in [18].
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Chapter 2. Theoretical foundation

property scaling

binding energy n∗−2

orbital radius n∗2

radiative life time n∗3

energy separation between adjacent Rydberg states n∗−3

dipole moment 〈nl|er|n′l′〉 between adjacent Rydberg states n∗2

Table 2.1: n∗ scaling of some properties of Rydberg atoms.

2.2.3 Rydberg atoms

The term Rydberg atoms denotes excited atoms which have one or more electrons in
a high excited state with a large principal quantum number n. The principal quan-
tum number n is associated with the binding energy of an electron in a hydrogen
atom insofar as EB ∝ −n−2. Rydberg atoms exhibit hydrogen like behaviour since the
highly excited electron experiences an effective potential of a singly positive charged
configuration, which equivalently to the hydrogen. Accordingly, Rydberg atoms can
be characterized with nearly the same binding energy relation except by a difference in
the principal quantum number. The principal quantum number is slightly modified by
a quantum defect δnlj to n∗ ≡ n− δnlj accounting for the inner structure of the single
charged ionized atom [19, 20].

As indicated by table 2.1 Rydberg atoms exhibit a couple of interesting features that
intensify with larger principal quantum numbers, for instance large spatial expansion
and long radiative lifetimes. However, the features of special interest with respect to
superradiance are the two lower ones in table 2.1. The oscillator strengths to nearby
states increase quadratically with the principal quantum number. Due to that Rydberg
atoms interact very strongly with radiation that is resonant to transitions that connect
nearby states. In addition to that the transition wavelengths, which might arise,

λnn′ ∝ n∗3 (2.42)

strongly increase with the principal quantum number. A larger wavelength increases
the number of cooperative atoms. That means, that for higher principal quantum
numbers less atomic density suffices to get superradiance. Therefore the superradiance
is strongly present for Rydberg states and can be a limiting factor for the lifetime of
Rydberg atoms [15].
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2.3. Simulation: Superradiance under continuous
pumping

2.3 Simulation: Superradiance under continuous

pumping

The theory on superradiance above describes the time evolution of an excited atomic
system. This approach considers that after the excitation the atomic ensemble decays
into the ground state without any interruption. In the experiment, however, the atomic
system is pumped continuously at a constant rate to the excited state. As soon as the
atoms return to the ground state they are excited again, while the superradiant process
is still in progress. Since the superradiance depends on the number of atoms in the
ground and excited state the continuous pumping modifies the evolution of the super-
radiant atomic system. In this case the superradiance exhibits threshold behaviour,
which can be demonstrated by simple deterministic and stochastic equations [21].

In this section the simulation on superradiance is introduced that was acquired in the
framework of this thesis. As already pointed out in the discussion on the three-level
model new effects arise as soon as a further coupled state comes

Figure 2.4: Level scheme of the simulation.

into play. To provide predic-
tions on the upcoming effects the
differential equations (2.19) have
to be solved, where the exper-
imental demands determine the
amount of effort that has to be
spent. For the steady state case
analytical expressions are avail-
able, whereas time dependent so-
lutions require numeric simula-
tions. However, numeric sim-
ulations generally hold a speed
up in any case and are therefore
utilised for the steady state case
as well. Since the excitation in
the experiment is performed via

two continuously pumping light fields the differential equations (2.19) in the steady
state case (ρ̇ = 0) form the basis for simulation on superradiance.

In figure 2.2 the basic dynamics are governed by the decay rates Γ32, Γ21 and the Rabi
frequencies Ω12, Ω23. To account for superradiance the three-level model is augmented
by one further level insofar as the population transfer from |3〉 to |4〉 is carried out
superradiantly (red decay in figure 2.4). Furthermore, a natural fluorescence decay
from |3〉 to |5〉 is added. This new level scheme involves the additional decay rates

• Γ31 is actually not dipole allowed, but serves here as an option to integrate
broadening effects like transit time broadening
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Chapter 2. Theoretical foundation

• Γ34,eff accounts for depopulation of state |3〉 through superradiance

• Γ35 accounts for depopulation of state |3〉 through natural fluorescence

• Γ51, Γ41 transfers the population back to ground state |1〉 to avoid losses of
population owing to accumulation in states |4〉 and |5〉.

Level |4〉 represents the collectivity of states where the population is distributed to
in reality. The deviations that arise when the real complex structure is simplified by
representation of one surrogate state are examined later in section 4.3.

2.3.1 Implementation

The basis of the whole simulation is formed by a standard linear solver method of
MATLAB which solves the system of linear equations of the form (2.19). The desired
populations are calculated for the given decay rates Γij and Rabi frequencies Ωij.
Superradiance is implemented by treating level |3〉 as the excited state and |4〉 the
ground state with respect to superradiant processes and setting the single atom decay
rate Γ34 to the corresponding value. The value of Γ34 is determined in the following
simple way

Γ34,eff = Γ34 + Γ34Ncoop = Γ34

ρ33 · N︸ ︷︷ ︸
NRyd

·Vcoop + 1

 , (2.43)

with the ground state densityN , the Rydberg densityNRyd and the cooperative volume
Vcoop. The cooperative volume Vcoop is either defined by the wavelength λcoop of the
radiation that induces the superrdiance

Vcoop =

(
λcoop

2

)2

(2.44)

or by a smaller volume depending on the experimental realisation, for example, a small
excitation volume. All atoms enclosed by this volume contribute in the cooperative
spontaneous emission. The number of cooperative atoms is in this thesis denoted by
Ncoop. The natural decay rate Γ34 is multiplied by the number of cooperative atoms
Ncoop. This leads to a decay rate that depends on the Rydberg populaiton: Γ34,eff(ρ33).

2.3.2 Evaluation process

Assuming Γ34,eff according to (2.43) results in a system of non-linear differential equa-
tions , as some equations now contain decay terms being proportional to

∝ Γ34,eff · ρ33 = Γ34 · ρ2
33, (2.45)

i.e. it is not possible anymore to treat the problem with linear solver methods. There-
fore, the solutions are determined via an iterative process, that is introduced in the
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2.3. Simulation: Superradiance under continuous
pumping

Figure 2.5: Scheme of matching process.

following. Figure 2.5 illustrates a schematic of the iteration process. The iteration
process is initiated with a start value ρ33(0) from which Γ34,eff is evaluated according to
(2.43). Γ34,eff is again linked to a corresponding Rydberg population ρ33 in the five-level
model. If the deviation of the new calculated ρ33(i = 1) compared to the last ρ33(0)
is larger than 0.1% the process returns to a new evaluation of the effective decay rate
Γ34,eff on the basis of the latest ρ33. This matching of ρ33 and Γ34,eff is repeated till the
condition, that ρ33(i) differs less than 0.1% from the previous calculated ρ33(i−1) after
the ith iteration step, is fulfilled. The resulting value of ρ33 and Γ34,eff are the wanted
solutions for the system of non-linear differential equations. In fact the matching pro-
cedure is not completely as simple as presented so far. Namely the calculation of a new
Γ34,eff out of the current solution can bear problems since too large values of Γ34,eff and
a corresponding too small ρ33 can induce oscillations which will not fulfil the condition,
even after an arbitrary long iteration time. Therefore, a damping mechanism in order
to prevent arising oscillations is integrated. Thereby the next Γ34,eff value is evaluated
out of a modified ρ33mod which is determined in the following way. First, an average
over the last four results is performed

ρ33mod =
1

4

i∑
k=i−4

ρ33(k). (2.46)

This rough procedure produces a reduction of the distance between the ρ33 value used
for determination of the new effective decay rate and ρ33(i− 1), in order to avoid too
large jumps. If the difference between modified ρ33mod and the reference value, which
is the pre-last result ρ33(i− 1), is still too large, namely if

|ρ33mod − ρ33(i− 1)| > |ρ33(i− 1)− ρ33(i− 1− 2)| , (2.47)

then ρ33mod is overwritten by

ρ33mod = ρ33(i− 1) + sgn (ρ33(i)− ρ33(i− 1)) · |ρ33(i− 1)− ρ33(i− 1− 2)| . (2.48)

In principle, this mechanism just allows small changes of ρ33, however in the right
direction, so that the solution is probed till the terminating condition is fulfilled.
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Chapter 2. Theoretical foundation

2.3.3 Stability

Figure 2.6: Dependence of the simulation on the start values. The figure shows
the iteration process for four different initial values of ρ33. The required times for the
matching procedure are depicted for each case.

Actually, this method proves to be insensitive with respect to the start values and
converges reliably. This is demonstrated in figure 2.6, where ρ33 approaches the same
end value independently of the actual given start value Γ34,eff(0) or ρ33(0) respectively.
The number of steps and the required iteration time is shorter the closer the initial
value is to the actual solution. Furthermore, it can be seen in figure 2.6, for the case of
the smallest start value, how quickly the damping mechanism eliminates the starting
oscillations of ρ33.
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Chapter 3

Experimental Setup

In this thesis the impact of superradiance on the decay dynamics is detected indirectly
via fluorescence spectroscopy. The purpose of this Chapter is to present the experi-
mental setup used to observe superradiance in thermal vapour of caesium atoms. It
is structured in four parts. The first part presents the excitations scheme, followed by
the second part which introduces the optical setup. The third part presents the laser
system that was used for the excitation. introducing the excitation scheme, the optical
setup and the used laser systems. At the end of this chapter the basic technical aspects
of the fluorescence spectroscopy are discussed.

3.1 Which excitation scheme is most suitable?

A significant demand on this experiment is to guarantee a preferably large Rydberg
population in order to investigate superradiance, since we know that superradiance
scales with the number of excited atoms. Figure 3.1 shows, with respect to the available
laser systems in our group, possible realizations of Rydberg excitations.

Figure 3.1: Overview over the technically accessible excitation schemes. The wave-
lengths, the magnitudes of the dipole matrix elements as well as the accessible laser
powers for the particular transitions are displayed.

The first two excitation schemes illustrate two-photon transitions in Rb, where the
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Chapter 3. Experimental Setup

lower transitions from 5S1/2 to the 5P1/2 and 5P3/2 states are addressed by 780 nm
and 795 nm cw lasers, while the Rydberg transitions from the intermediate state are
driven by 480 nm and 474 nm cw light respectively. The third one depicts a Rydberg
excitation in Cs. Here the excitation to the Rydberg S state is carried out with a
455 nm cw laser coupling the states 6S1/2 and 7P3/2 and infrared 1070 nm cw laser
exciting further to the S state. The transition in Cs differs insofar from these of Rb
as the probe laser wavelength is shorter than the coupling laser wavelength: λc < λp.
This configuration is referred to as an inverted excitation scheme that leads to deviant
optical behavior in thermal vapour compared to usual excitation schemes. As these
effects are not fundamental for this work they shall not be discussed further here. With
the relevant experimental values given in figure 3.1 it’s now possible to estimate the
achievable Rydberg populations for each system. A three-level simulation according to
section 2.1.2 yields to Rydberg populations in Cs up to ρ3 = 0.0025 being 102 times
larger compared to the Rb systems. On this account the measurements in this thesis
were performed with caesium.

3.2 Optical setup

Figure 3.2 shows a schematic view of the setup. The two laser beams pass a 5 mm wide
vapour cell in counter propagating configuration. The spectroscopy cell is an at the
institute commonly used vapour cell with a reservoir, that contains droplets of Cs, at-
tached to it. The cell is placed in an electrical heater that provides separate heating of

Figure 3.2: Schematic of the setup used for the experiment.

the cell and reservoir to adjust the density of the vapour. A pinhole is used to minimize
one of the beam sizes and with it the effective illuminated volume in the cell in order
to afford measurements on volume dependent behaviour of the atoms that is discussed
more in detail below. The fluorescence is detected perpendicular to the direction of the
exciting beams. Hereby the fluorescence light is collected with a f = 50 mm A-coated
lens and mapped onto the one end a commercial M43L02 Thorlabs multimode fibre
with a core diameter of �105 µm. The multimode fibre provides a wavelength range
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3.3. Laser system

from 400 nm to 2400 nm. The other end of the fibre is attached to a spectrometer
of the model Andor Shamrock SR-303i. Further technical details concerning the fluo-
rescence detection with the Andor Shamrock SR-303i are discussed below. A further
laser beam with 852 nm wavelength passes the vapour cell and is detected by a pho-
todiode. This part of the setup is a absorption spectroscopy configuration and serves
for measurements of the ground state density, and verification of the vapour tempera-
ture respectively. In principle the optical setup, where the relevant measurements on
superradiance are performed, is simple and oversee-able. In fact the whole experiment
moreover also consists of the preceding laser system, that facilitates the two-photon
excitation in caesium, and of the successive fluorescence detection apparatus. As these
both are essentially for the entire experiment they will be discussed in the following.

3.3 Laser system

The experiment presented in this thesis makes use of an already existing laser system,
that was designed and arranged in the framework of a diploma thesis [22]. The system
accomplishes the two-photon transition 6S 1

2
→ 7P 3

2
→ nS, nD in caesium (figure 3.1).

This is realized with a commercial tunable frequency doubled amplified diode laser
(Toptical TA-SHG Pro) at 455 nm with an output power of ∼ 220 mW and a tunable
diode laser (External Cavity Diode Laser, Toptica DL100) at 1070 nm with output
power of 110 mW. The whole laser set-up is composed of two parts, shortly presented
below.

Set-up for 455 nm laser light

The first part deals with the 455 nm laser light and consists itself of two elements.
The first component is an optical configuration that makes it possible to detune the
frequency of the 455 nm light and the second a saturation spectroscopy set-up that
affords locking of the laser. The detuning is realized via two double passes with two
AOMs which select the ±1st diffraction orders (see left hand side of figure 3.3). After
that the light is guided to the laser lock set-up in saturation spectroscopy like configu-
ration. This realisation of a laser lock is referred to as DAVLL (Dichroic Atomic Vapor
Laser Lock) spectroscopy [23].

For the purposes of this experiment, i.e. to perform resonant excitation with respect
to the intermediate state, the 455 nm laser set-up has been slightly modified by two
removable mirrors and λ/4-waveplates right before the AOMs in order to bypass the
frequency detuning, when it is required. During measurements the laser was locked to
the hyperfine transition 6S 1

2
(F = 4)→ 7P 3

2
(F ′ = 5), the strongest (edge) of the error

signal.
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Figure 3.3: Set-up for the 455 nm laser and 1070 nm laser light. Image adapted
from [22].
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3.4. Fluorescence spectroscopy

1070 nm Rydberg laser set-up

The second part of the laser system is formed by the optical set-up for the infrared 1070
nm light, shown in the right hand side of figure 3.3 which drives the upper transition.
The optical arrangement with the spectroscopy cell enables observation of EIT in Cs.
Exactly this configuration can be used to implement a frequency locking procedure for
the Rydberg laser [17]. As the locking procedure is required, the spectroscopy set-up
was extended by a self made coil around the cell and further optical elements for EIT
detection. The magnetic field leads to a frequency shift of the σ+ and σ− components
of the probe beam and produces two shifted EIT signals whose differential signal is
used to lock the Rydberg laser to resonance.

Finally the 1070 nm light passes an ytterbium doped fibre, which facilitates an am-
plification of up to 15 W. This gives the possibility to Rabi frequencies great enough
to produce large Rydberg populations. However, measurements reveal that ∼ 1 W
completely suffices for our purpose.

3.4 Fluorescence spectroscopy

Figure 3.4: Spectrometer and a schematic view of its inside.

In this thesis the fluorescence light is coupled into a multimode fibre and guided to
the input slit of a grating spectrometer from Andor Shamrock. As illustrated in
figure 3.4 the light is mapped by the optics of the spectrometer onto the CCD chip
of the detector camera. A motorized slit at the side input makes it possible to drive
the slit width to the desired position. In order to improve the signal-to-noise ratio
the camera can be cooled down up to −70◦C by the integrated thermoelectric cooler
and up to −100◦C by additional use of water cooling. In the experiment the operating
temperature was −90◦C. Some specifications of the spectrometer are summarized in
Table 3.1.
The wavelength selective elements of the spectrometer are reflection gratings. These
are located on a grating turret which provides positions for up to three gratings so that
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Chapter 3. Experimental Setup

Spectrometer Andor Shamrock SR-303i-B-9FT

aperture f/4
focal length [mm] 303
input slit width range [µm] 10 to 2500
grating size [mm] 68×68
bandpass [nm] 138.86
Spectral resolution [nm] 0.308
maximum attainable wavelength [nm] 2825
maximum recommended wavelength [nm] 1730
Detector Andor iDus DU401A-BR-DD

active pixels 1024×127
pixel size 26 µm

Table 3.1: Some specifictions of the spectrometer. The resolution values are
given with respect to a reflection grating with a groove density of 600 lines/mm at the
center wavelength 500 nm. Specification values from Grating Resolution Calculator
[24].

the desired grating can be changed between the acquisitions by rotation of the turret.
Reflection gratings exhibit a wavelength dependent efficiency which should be checked
to meet as good as possible the experimental requirements. The reflection properties
are hereby specified by the blaze angle θB or blaze wavelength λB. A more detailed
discussion on diffraction gratings and the efficiency characteristics is given in appendix
A. The spectrometer used in the experiment has three reflections gratings mounted on
the grating turret:

• grating 1: G = 1
d

=235 lines/mm at λB =750 nm

• grating 2: G =600 lines/mm at λB =800 nm

• grating 3: G =600 lines/mm at λB =500 nm.

For the fluorescence measurements presented below grating 3 was used.

30



Chapter 4

Experimental Results and
Simulation

This chapter presents and discusses the observation of superradiance in a thermal
vapour of caesium atoms under continuous pumping. In the experiment the superradi-
ance is observed via fluorescence spectroscopy. Section 4.1 introduces the experimental
procedure of the measurements and the characteristics of the acquired fluorescence
spectra. Section 4.2 is devoted to the measured data. In this part the dependence on
the ground state density, Rabi frequency and excitation volume is investigated. The
analysis of the measured data is accompanied by the comparison to the simulation from
section 2.3. In section 4.3 the simulation and modifications are discussed in detail.

4.1 Experimental procedure

The measurements presented in the following are performed with the grating 3 (section
3.4) 600 lines/mm at λB =500 nm blaze wavelength. The exposure time of the CCD
camera was kept constant at texp = 60 s throughout the entire measurements. The
measured wavelength area ranges from 490 nm to 1050 nm and is divided into five
acquisition intervals.1 Typical fluorescence spectra for the five intervals are presented
in figure 4.1. The CCD camera detects the fluorescence in full vertical binning (FVB)
mode. Without superradiance only the spectral lines (i), (iv) and (v) (see figure 4.1)
are visible. The spectral lines (i), which in the following are referred to as the Rydberg
lines, correspond to Rydberg decays from the 32S state to 6P (32S1/2 → 6P1/2 at 497.8
nm and 32S1/2 → 6P3/2 at 511.9 nm). The quite broad spectral lines (iv) at 852 nm
and 895 nm result from decays from the 6P3/2 and 6P1/2 states to the ground state.
These two lines are also visible when only the 455 nm excitation laser is switched on.
They are the result of the following decay processes: 7P→7S→6P and 7P→5D→6P.
The spectral line (v) at 911 nm is the second order grating diffraction of the 455 nm
excitation light. The peaks not mentioned so far, like in blocks (ii) and (iii), result

1The wavelength range of detection is basically limited by the efficiency of the grating.
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Figure 4.1: Typically measured fluorescence spectra. The fluorescence spec-
tra for the five wavelength intervals of acquisition are illustrated in (a)−(e). (f)
Visible decays (i) and (iv) without superradiance. (g) Additional visible decays
(ii) and (iii) due to superradiance. For illustration purposes the y-axis in (a)−(e)
is normalised to the strongest fluorescence of the interval (b) and the background
counts are subtracted. In actual counts the y-axis ranges from ∼ 1040 (background
counts) to 2100 counts.
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4.1. Experimental procedure

transition highest lowest wavelength visible
group n n range [nm]
nF7/2,5/2 → 5D5/2,3/2 27 4 597 - 1014 x
nD 5/2,3/2 → 6P3/2,1/2 29 6 498 - 921 x
nS1/2 → 6P3/2,1/2 31 7 498 - 1470 x
nS1/2 → 7P3/2,1/2 31 8 1051 - 4177 -
nP 3/2,1/2 → 5D5/2,3/2 31 7 596 - 1380.8 x
nP3/2,1/2 → 6S1/2 31 6 319 - 895 -
nP3/2,1/2 → 7S1/2 31 7 785 - 3119 -
nP3/2,1/2 → 6D5/2,3/2 31 8 1153 - 3206 -
nD5/2,3/2 → 7P3/2,1/2 29 7 1052 - 2424 -
nD5/2,3/2 → 4F7/2,5/2 29 7 1472 - 6292 -
nF7/2,5/2 → 6D5/2,3/2 27 4 1134 - 5474 -
nF3/2,1/2 → 4G5/2,3/2 27 6 >1133 -

Table 4.1: Overview over some groups of transitions. The dipole allowed
transitions are combined in blocks of spectral lines. The wavelength range is given
for each block. The blocks that can be detected with the spectrometer are marked
with an x.

from superradiant cascading. In the following these are referred to as the superradiant
lines. Table 4.1 presents an overview over the dipole allowed transitions, which could
be observed in the fluorescence. As indicated in the table only transitions which end
up in the 5D5/2,3/2 and 6P3/2,1/2 states can be detected by the spectrometer, when
grating 3 is used. Other transitions are not detected as the transition wavelengths are
either too large or too small. The assignment of the superradiant lines to the transition
groups listed in table 4.1 is presented in the figures B.1 to B.5 in appendix chapter B.
The superradiant lines will be used for the analysis to conclude on the superradiant
properties. From the Rydberg lines only the 498 nm Rydberg (32S → 6P1/2) line is
used for the analysis below. The Rydberg line at 512 nm (32S → 6P3/2) is not suited
for analysis as there are superradiant lines nearby. When these superradiant lines be-
come large they cannot be distinguished from the 32S → 6P3/2 transition any more.

The fluorescence was measured in dependence of the ground state density N , the Rabi
frequency ΩP of the 455 nm exciting light and the excitation volume. The excitation
volume is defined as

Vexcitation =
λcoop

2
· π
(
dbeam

2

)2

. (4.1)

In the experiment the excitation volume is changed by changing the beam size dbeam

of the 455 nm laser beam with the aperture of a pinhole, i.e. by changing the diame-
ter of the pinhole opening. λcoop is the wavelength that corresponds to the transition
32S→31P and is of the size λcoop ≈ 1.8 mm. Spontaneous radiation resonant to this
transition is most likely to induce a cooperative spontaneous emission in the ensemble
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of excited atoms. The cooperative volume Vcoop(λcoop = 1.8 mm) according to equation
(2.44) is in the following referred to as the maximum cooperative volume.

During the measurements the Rabi frequency of the coupling beam was kept constant
at Ωc/2π = 10.9 MHz. Only the probe Rabi frequency Ωp was varied.
The ground state density was varied via the reservoir temperature (see section 3.2). For
the analysis the ground state density was calculated from the temperature dependent
atomic density function of caesium in gas phase [25, 22]

n(T ) =
1.0133 · 109.165− 3830

T

kB
. (4.2)

T denotes the absolute temperature and kB is the Boltzmann constant. The ground
state density in the measurement ranges from 2.0 to 7.5×1011cm−3.
In general, the excitation of atoms to the Rydberg state is limited by the Rydberg
blockade [26]. For the conditions of the experiment presented in this thesis the Rydberg
blockade is expected to be present for Rydberg densities NRyd & 1012cm−3. Hence, the
Rydberg blockade has not to be taken into account in the analysis.

4.2 Effects of the superradiance on the decay

dynamics

Superradiant cascading causes a distribution of the initially excited population over
various states, which gives rise to several additional fluorescence lines (see figure 4.1
and section 4.1 above). Figure 4.2 shows an example of how the fluorescence in the
vicinity of the Rydberg lines changes when the Rabi frequency is increased. As can be
seen from (b) to (c), some kind of phase transition takes place [14, 21]. The initially
quite large Rydberg line shrinks in relation to the superradiant lines until it gets com-
paratively insignificant.
In the analysis procedure the intensity of the spectral lines is evaluated via determina-
tion of the maximum value of each fluorescence peak.

4.2.1 Dependence on ground state density

Figure 4.3 illustrates the density dependence of the Rydberg line and the superradiant
lines for different beam diameters. For completeness also the intensities of the transi-
tion groups from table 4.1 are shown to illustrate their contribution.
To provide a basis for interpretation of the data one should shortly recapitulate the
optical response for independent atoms. When increasing the number of atoms the in-
tensity of the Rydberg line is expected to grow linearly with the atomic density N . The
fluorescence from the excited state is given by (2.20) and ρ33 is constant with respect
to N . Figure 4.3, however, shows that the Rydberg line intensity is rather decreasing
when the ground state density is increased. This clearly indicates that ρ33, which refers
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Figure 4.2: Characteristic transformation of detected fluorescence. Fluo-
rescence spectra in the vicinity of the Rydberg line (highlighted area) under sys-
tematic change of ΩP. The Rabi frequency ΩP is increased from top to bottom:
(a) ΩP/2π = 2.1 MHz (b) ΩP/2π = 2.97 MHz (c) ΩP/2π = 3.64 MHz and (d)
ΩP/2π = 4.7 MHz. Experimental parameters: pinhole truncated beam size diam-
eter dbeam = 1.0 mm and ground state density N ∼ 3× 1011cm−3.

to the population of the 32S state, no longer remains constant but changes with the
total number of atoms, as is expected for superradiance (see section 2.2.2). Further-
more the data shows that the intensity of the superradiant lines increases strongly. As
the decrease of the Rydberg line intensity starts when the intensity of all superradiant
lines increases these two processes seem to be correlated. The experimental data in
figure 4.3 clearly show a threshold behaviour around 4−5×1011cm−3.

In figure 4.4 the intensity of the Rydberg line and the superradiant lines for beam size
dbeam = 1 mm from figure 4.3 are illustrated again. The data is normalized and rescaled
with N in order to extract the density dependence of the Rydberg population ρ33(N ).
This data is compared to the theoretical simulation from section 2.3. As can be seen,
the simulation on density dependence also exhibits a phase transition from higher to
lower Rydberg population of the 32S state. The population ρ33 is transferred to level
4 so that the population ρ44 has a phase transition from lower to higher population.
Although the simulation also exhibits a phase transition it does not reproduce the
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threshold behaviour from the measurements. The phase transition of the simulation
is broader than in the measurement. Possible reasons for the discrepancy between
simulation and reality are discussed in section 4.3.

Figure 4.3: Density N dependence of detected fluorescence. Fluorescence is
measured for three different beam sizes: 1 mm, 1.5 mm and 2 mm. The upper graph
(a) shows the intensity of the Rydberg line and the lower one (b) the intensity of all
superradiant lines against the ground state density. From (c) to (e) the intensity
of the fluorescence blocks (table 4.1) is illustrated for each beam size. The Rabi
frequency of the probe beam is Ωp/2π = 2.1 MHz.
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Figure 4.4: Comparison of the dependence of the measurement and sim-
ulation on the ground state density N . Measurement and simulation for a
probe Rabi frequency of Ωp/2π = 2.1 MHz and a beam diameter of dbeam=1 mm.
The measurement data is rescaled with N to clarify the superradiant modification
on the Rydberg population. For illustration purposes both datasets are normalized
to 1. The blue highlighted area in the simulated graph indicates the density range
of the measurements.

4.2.2 Dependence on the Rabi frequency

The measured intensities are plotted against the Rabi frequency in figure 4.5. For
small Rabi frequencies the intensity of the Rydberg line increases linearly while the
intensity of the superradiant lines stays almost at zero. As the Rabi frequency reaches
∼3 MHz the spontaneous emission from the 32S state collapses, while the intensity of
the superradiant lines increases. Similar to the density measurement the decrease of
the Rydberg line intensity and the increase of the superradiant lines intensity are very
likely to be correlated and exhibit a threshold behaviour.

37



Chapter 4. Experimental Results and Simulation

Figure 4.5: Dependence of the detected fluorescence on the Rabi fre-
quency Ωp. (a) illustrates the measured intensity of the Rydberg line and the
superradiant lines against the Rabi frequency Ωp. (b) shows the decomposition of
the intensity of the superradiant lines into the transitions groups from table 4.1.
Experimental parameters are: beam size diameter dbeam = 1.0 mm and ground
state density N ∼ 3.1× 1011cm−3.

Figure 4.6(a) presents the results of the simulation from 2.3 for varying Rabi frequency.
Obviously, the simulation does not reproduce the measured results. ρ44 and ρ33 rise
and decrease nearly for the same Rabi frequency. The measured Rydberg population
decreases clearly faster than the simulation. For comparison, the results of the 5-
level model without superradiance are depicted in figure 4.6(b). In the model without
superradiance ρ44 and ρ33 also increase and decrease at the same Rabi frequency. The
difference to the simulation with superradiance is that ρ44 is 104 times smaller in
magnitude than ρ33. On the contrary, in the simulation with superradiance ρ44 is two
times larger than ρ33.

In the experiment the rise of emission from neighbouring states, and therefore the rise
of their population, is shifted to higher Rabi frequencies with respect to the Rydberg
line whereas in the simulated ρ44 rises right from the beginning on and is larger than
ρ33 in magnitude almost all the time. Besides that, the superradiant curves in Figure
4.6 are much broader than the curves of the non-superradiant five-level simulation.
Possible reasons for the discrepancy between the simulation and the measurement are
discussed in section 4.3.
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Figure 4.6: Simulated dependence on Rabi frequency Ωp. The graph (a)
shows the results of the simulation with superradiance approximation for the beam
diameter dbeam = 1.0 mm and a ground state density of N ∼ 3.1× 1011cm−3. For
comparison (b) shows the simulation without superradiance.

4.2.3 Dependence on the excitation volume

The purpose of varying the excitation volume is to examine whether it has an influence
on the superradiant dynamics. The number of cooperative atoms decreases when the
excitation volume (4.1) is smaller than the maximum cooperative volume. On the
assumption that two beam sizes d1 and d2 with d2 > d1 produce excitation volumes V1

and V2 according to (4.1) which are smaller than the maximum cooperative volume,
the critical threshold density is higher for V1 than for V2. The critical densities for
different excitation volumes are related to each other by

Ncrit,d1
· V1 = Ncrit = Ncrit,d2

· V2 (4.3)

with Ncrit being the critical number of atoms, or with equation (4.1) by the ratio

Nd1

Nd2

=
d2

2

d2
1

. (4.4)

If V2 is larger than the maximum cooperative volume Vcoop then the ratio is

Nd1

Nd2

=
Vcoop

V1

(2.44)
=

λ2
coop

d2
1π

. (4.5)

The fluorescence is measured from 1 mm to 2 mm in steps of 0.1 mm and an additional
measurement at 0.6 mm. The experimental results are depicted in figure 4.7. Figure
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Figure 4.7: Beam size dbeam dependence of the fluorescence. (a) illustrates
the dependence of the Rydberg line intensity and the intensity of the superra-
diant lines on the beam size. (b) shows the decomposition of the intensity of
the superradiant lines into the transitions groups from table 4.1. The experimen-
tal parameters are: Rabi frequency ΩP/2π = 2.1 MHz and ground state density
N ∼ 3.65× 1011cm−3.

4.7(a) shows that the Rydberg line intensity first increases linearly and then remains
constant from 1.2 mm to 2 mm. In parallel the intensity of the superradiant lines
increases rapidly with increasing beam size. The intensity of the superradiant lines
shows a threshold behaviour which is similar to the behaviour for varying ground state
density and Rabi frequency. The Rydberg line intensity, however, does not show the
decrease that is observed in the previous measurements at threshold.

The increase of the signal in figure 4.7(a) results from the fact that varying the beam
size can change the experimental conditions. This is demonstrated in figure 4.8(a).
The size of the detection area is approximately of the size of a few hundred microm-
eters ∼ 100 − 200 µm.2 In the case that the fluorescence detection area is located at
the center of the beam cross-section, an increasing beam does not change the detected
fluorescence intensity. If, however, the fluorescence detection area is located at the
edge of the beam cross-section then a larger beam size causes more illuminated atoms
in the detection area. The detected fluorescence increases with the beam size. As a
result the changes for different beam sizes in figure 4.8(a) are a mixture of both the
contribution of the superradiance and of the experimental conditions.

2This value was estimated via calculating the image size of the multimode fibre core for a f = 50
mm lens.

40



4.2. Effects of the superradiance on the decay
dynamics

Figure 4.8: Fluorescence detection and demonstration of the proper-
ties of the intensity curves. In (a) a schematic of two possible configu-
rations of the detection volume relative to the laser beams is illustrated. (b)
Illustration of the fluorescence intensity in dependence of ground state density
for two different beam diameters. For illustration purposes the fluorescence
signal is represented by error functions. (c) depicts the ratio between the two
curves from (b).

As mentioned above the critical threshold density is expected to be higher for a smaller
beam sizes. As a result the intensity curves for varying density, which in the following
are denoted by the expression density curves, are shifted with respect to each other,
as demonstrated in figure 4.8(b). An additional contribution due to experimental
conditions results in a constant factor of the curve for the larger beam size with respect
to the curve with the smaller beam size. Indeed, figure 4.3(b) reveals that there seems
to be such a factor between the 1 mm density curve and the 1.5 mm and 2 mm density
curves. This leads to the conclusion that in this measurements the detection area is
located near the edge of the beam cross-section. A shift, which indicates an influence
of the excitation volume on the superradiant dynamics, however, is not really visible
in figure 4.3(b). To get the information, whether there is a shift, one has to calculate
the ratio between the density curves for two different beam sizes. If there is a shift the
resulting curve has a form like the one presented in figure 4.8(c). If there is no shift
the ratio is constant for all ground state densities.
In order to extract more information from the density curves in figure 4.1 a fit of the
form

Ifl(N ) = a · erf

(
(N − b)

c

)
+ d (4.6)

is applied for each beam size. The fitted density curves are presented in figure 4.9(a).
The fitting parameters b and d with the fitting errors are displayed in table 4.2. The
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beam size b [1011cm−3] d [105 counts]
1 mm 4.85 (±0.11) 0.42 (±0.02)
1.5 mm 4.61 (±0.23) 0.74 (±0.07)
2 mm 4.89 (±0.31) 0.99 (±0.11)

Table 4.2: Fitting parameters according to equation (4.6). The table presents
the values of the fitted parameters b and d for the curves in figure 4.9(a) with the fit
errors.

parameter d describes the offset due to experimental conditions and parameter b holds
the information on the shift, i.e. it corresponds to the critical density. The ratio, which
was calculated from the data points and from the fitted curves, is illustrated in figure
4.9(b). The ratios I1.5mm/I1mm and I2mm/I1mm have a form that is similar to the curve
in 4.8(c). This reveals what cannot be seen clearly in figure 4.3(b), namely that the
threshold for 1 mm density curve is shifted with respect to the 1.5 mm and 2 mm
density curves. The shift proves that the decrease of the beam size from 1.5 mm to
1 mm has influence on the superradiant dynamics. The ratio I2mm/I1.5mm, however,
is nearly constant for all densities. The increase from dbeam = 1.5 mm to dbeam = 2
mm does not influence the superradiant dynamics. This implies, that with the beam

Figure 4.9: Modification of detected fluorescence intensity with different
beam sizes. (a) shows the data from figure 4.3(b) with the fitted error functions.
(b) illustrates the ratios, which were calculated from the data points and from the
fitted curves.
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size dbeam = 1.5 mm the excitation volume is larger than the maximum cooperative
volume.
As there is a significant difference in the superradiant dynamics between the beam sizes
dbeam = 1 mm and dbeam = 1.5 mm beam sizes, one could check relation (4.4) for the
two beam sizes. The fitted b parameters for these beam sizes correspond to the critical
threshold density. The ratio of the critical densities is

Ncrit,1 mm

Ncrit,1.5 mm

=
4.85

4.61
= 1.05. (4.7)

In comparison the ratio of the beam sizes is

d2
2

d2
1

=
1.52

1
= 2.25. (4.8)

The ratio of the beam sizes (4.8) is two times larger than the ratio of the densities
(4.7). The relation (4.4) is not true for these beam sizes. However, as recognized above
the excitation volume that corresponds to the beam size dbeam = 1.5 mm is larger than
the maximum cooperative volume (I2mm/I1.5mm = const. in figure 4.9(b)). Therefore
the calculated ratio of densities (4.7) should fulfill the equation (4.5)

λ2
coop

d2
1π

=
1.82

12 · π
= 1.03. (4.9)

This value is very close to the ratio (4.7), which confirms the assumption that the
maximum cooperative volume is completely illuminated.
Furthermore the analysis procedure, as performed above, allows to calculate the actual
maximum cooperative volume. From the calculated maximum cooperative volume it
could be possible to draw conclusions on the actual cooperative wavelength λcoop and
the corresponding transition that stimulates the superradiant process.

The beam size dependent measurements were mainly performed for beam sizes from
1 mm to 2 mm. The ratios (4.8) and (4.9), however, show that these beam sizes are
almost at the truncation point, which is characterized by the maximum cooperative
volume. If one is interested in imaging the modification of superradiant dynamics
through the beam size, one has to repeat these measurements for smaller beam sizes.

Figure 4.10 shows the simulated dependence on the beam size. It can be seen that
the simulated ρ33 decreases until the truncation point (indicated by vertical line) and
reaches a constant value. Similarly ρ44 first increases and then reaches a constant value
at the truncation point. At the truncation point the excitation volume in the simula-
tion becomes larger than the maximum cooperative volume.
As discussed above, the measured beam size dependence is a mixture of the contribu-
tion from superradiance and the experimental conditions. Although the d parameters
contain some information about the experimental parameters, three points are too
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Figure 4.10: Comparison of the simulated dbeam dependence and rescaled
measurement data. Depicted are measurement and simulation for a probe Rabi
frequency of Ωp/2π = 2.1 MHz and ground state density N ∼ 3.65 × 1011cm−3.
For comparison, the measurement data is rescaled with 1/dbeam.

unprecise to determine the modification due to experimental conditions. However, in
order to compare the simulation to the measured data, the measured beam size de-
pendence is rescaled with (dbeam)−1. This corresponds to the assumption, that the
modification due to experimental conditions goes linearly with the beam size. When
the measured data is rescaled the Rydberg line intensity shows a decrease, as is also
predicted by the simulation and the previous measurements at threshold.
In figure 4.11 on the contrary the simulated data is rescaled with dbeam and compared
to the measured data. The rescaled ρ33 then also increases at the beginning like the
measured data.
The comparison of measured and simulated data after rescaling one of them confirms
again, that the measured dependence of the fluorescence on the beam size results from
a mixture of superradiance and the experimental conditions.

4.2.4 Disucussion of the problems

During the measurements several problems occurred, which limited the accuracy of
measurements. These are discussed in the following.
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Figure 4.11: Comparison of the measured dbeam dependence and the
rescaled simulation data. Depicted are measurement and simulation for a
probe Rabi frequency of Ωp/2π = 2.1 MHz and ground state density N ∼
3.65× 1011cm−3. For comparison, the simulated results are rescaled with dbeam.

Stable laser powers

For the Rabi frequency dependence the laser power of the 1070 nm Rydberg laser was
kept constant at ∼ 900mW while the power of the 455 nm ground state laser was varied
from 1 mW to 60 mW. From figure 4.5 is visible that the interesting region, i.e. the
region of phase transition, lies between 2 and 5 MHz of Rabi frequencies of the probe
beam. This corresponds approximately to laser powers from 2-10 mW. The drifts of
the laser power, however, could be from time to time of the magnitude of 2-5 mW
within a few tens of seconds. This is a quite large drift, if one intends to measure to an
accuracy of 0.5 mW, which obviously is required to resolve the phase transition. Hence
the laser power had to be continuously checked and readjusted during the running
measurements. This could result in inaccuracy of the data.

Locking of the Rydberg laser

Although the EIT spectroscopy set-up of the 1070 nm light was accomplished for
a locking procedure of the Rydberg laser, a locking of the laser actually failed due to
peculiar problems with the used PID controllers. This causes a detuning with respect to
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the 32S state, which can drift during a fluorescence measurement. A varying detuning,
however, changes the Rydberg population. As the fluorescence is very sensitive to the
Rydberg population at the threshold this could also result in inaccuracy of the data.
Due to the detuning drifts is has been observed that the Rydberg population is larger
when the 1070 nm laser is red-detuned (δ1070,nm < 0) with respect to the resonance
(δ = 0) and smaller when the laser is blue-detuned (δ1070,nm > 0). This asymmetry
has also been observed by [14, 27].

Fluorescence detection

As explained above, the fluorescence detection area seemed to be located at the edge
of the exciting beams during the experiments. This circumstance causes an annoying
additional influence, when measuring the dependence on the excitation volume (see sec-
tion 4.2.3). For future measurements the fluorescence detection should be readjusted,
so that the detection area is located at the center of the beam cross-section. This also
leads to a larger signal in the detected spectra and enable analysis of the spectra in
the regime, where the detection signal is at the moment too small for analysis.

4.3 Simulation

As discussed above the 5-level simulation with superradiance proves to be stable in
terms of sensitivity to initial conditions and exhibits a threshold behaviour similar to
the one discovered in the measurements. However, there is still a noticeable discrepancy
to the behaviour observed in the experiment. This section is intended to discuss the
assumptions that were investigated in order to explain these disagreements.

4.3.1 Additional levels and superradiant decays

The 5-level simulation is a very simplified model that considers superradiant effects
with barely one superradiant decay, which affects the population of the initially ex-
cited state 32S. In reality, superradiant cascading occurs. States that are populated by
superradiance are depopulated again by superradiance. This procedure continues for
the next populated state until the superradiance condition breaks down. In order to
analyze whether and how successive superradiant decays affect the Rydberg population
of 32S state the 5-level simulation is extended by two further superradiant decays in
two steps. The resulting 5-, 7- and 8-level simulations consist of the levels described in
4.12. Note that the fixed decay rates have to be matched among the single simulations
in order to keep them comparable. For instance, the fixed decay rate from state 4 in
the 5-level simulation should contain the sum of all decay paths after level 4 in the
8-level simulation.

Figure 4.13 demonstrates for each population the modification of the dependence on
the ground state density. As can be seen the Rydberg population ρ33, which represents
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Figure 4.12: Overview on the simulated level scheme. The primary 5-level
includes levels 1 to 5. In the 7-level scheme one superradiant and one natural
fluorescence decay, which depopulate level 4, are added. The 8-level simulation
contains one additional superradiant decay, which depopulates level 7. Curly ar-
rows with a red S denote superradiant decays. Curly arrows without a red S denote
natural decays.

the population of the 32S state, exhibits the same behaviour in the 5-, 7- and 8-level
simulation. Successive superradiant decays do not influence ρ33. In contrast, ρ44 differs
from 5- to 7-level simulation but not from 7- to 8-level simulation and ρ77 differs from
7- to 8-level simulation. ρ44 reveals a different behaviour in the 7-level simulation in
comparison to the 5-level simulation because level 4 no longer suffers from a constant
depopulation but from a density dependent depopulation. As a result of superradiant
depopulation ρ44 is ”compressed” in density frame. The same happens with ρ77. The
simulation data also show that the increase in population of level 7 occurs later than
the increase of level 4. The results of fig. 4.13 lead to the conclusion that the consid-
eration of successive superradiant depopulation does not affect the density behaviour
of the initially excited Rydberg population when the relevant decay rates are matched.
This means that the simulation with superradiance can be reduced to a few states.

Up to this point we just discussed the influence of succesive superradiant cascading
on the populations but did not discuss the fact that the 32S state could also radiate
superradiantly to P-states other than 31P. To investigate the magnitude of this effect
it is not necessary to expand the simulation by further P-states. This is due to the
fact that decays to additional P-states only change the effective decay rate of the 32S
state. The next subsection will discuss the influence of modified decay rates on the
populations.
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Figure 4.13: Simulation for different number of levels. The figure illustrates
the results of the primary 5-level simulation in comparison to the extension to 7-
and 8-level simulation in accordance with the level scheme presented above (fig.
4.12). Depicted is the dependence on ground state density N of the populations
ρ33, ρ44 and ρ77.

4.3.2 Modified decay rates

To imply the influence of additional decays to P-states the primarily effective decay
rate (2.43) with Γ34,eff = Γ32S→31P for transition 32S→31P

Γeff = Γ32S→31P(ρ33 ·Ncoop + 1) = Γ32S→31P (ρ33 · (N · Vcoop) + 1) (4.10)

with the ground state density N and the cooperative volume Vcoop has to be expanded
by the sum decay rates to other P-states

Γeff,new = Γeff +
∑

10<n<31

Γ32S→nP

(
ρ33 ·

(
N ·

(
λ32S→nP

2

)3
)

+ 1

)
(4.11)

= Γeff +
∑

10<n<31

Γ32S→nPρ33 · N ·
(
λ32S→nP

2

)3

+
∑

10<n<31

Γ32S→nP (4.12)

≈ Γeff + Γ32S→31Pρ33 · N · 0.037 + Γ32S→31P · 27.3. (4.13)

The values 0.037 and 27.3 in equation (4.13) has been determined from the values for
the decay rates Γ32S→nP. The radial part of the decay rates Γ32S→nP has been calculated
with the semiclassical approximation from [28]. When assuming superradiant effects
down to state 10P then approximately 27.3 times the natural linewidth of Γ32S→31P

3

3With the radial part calculated with [28]: Γ32S→31P <10 kHz.
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Figure 4.14: Comparison of simulation results for different decay rates.
(a) shows the density dependence of ρ33 (upper graph) and ρ44 (lower graph)
calculated with the 5-level simulation for constant Γ31 and varying Γ41 rate. In
(b) Γ41 is kept constant while Γ31 is varied. Each curve is normalised to [0,1] to
provide direct comparison in density dependence for different decay rates.

and 4% of the amount coming from superradiance has to be added. Executing the
simulation under assumption of these values the difference is insignificantly small. In
the 5-level simulation superradiance to further P-states is negligible.

In order to demonstrate to what extent different decay rates affect the decay dynamics,
figure 4.13 shows the populations ρ33 and ρ44 for varying values of Γ31 and Γ41. While
an altering Γ41 rate does not affect density dependence of both ρ33 and ρ44, except
the magnitude of ρ44, figure 4.13(b) shows that larger Γ31 rates shift the threshold to
higher densities. Furthermore, though not clearly visible in 4.13(b), a larger Γ31 rate
slightly flattens the drop of ρ33 and the rise of ρ44.
In all 5-level simulations presented above a constant rate of Γ31 = 6.9 MHz was as-
sumed. This rate is composed of two basic thoughts. A decay rate of ∼ 0.9 MHz for
Γ31 takes into account that the atoms have a finite transit time after which they leave
the region illuminated by the beam (equation (3.29) in [17]). That means that after
this time an excited atom is substituted by an atom in the ground state. In this ex-
periment we assume additionally a broadening of ∼ 6 MHz for Rydberg states, which
was observed in another experiment in the same lab. Similarly to Γ31 Γ41 was fixed
at 9.3 MHz. Γ41, however, does not change the density behaviour that much and is
therefore not that important (see figure 4.13). To sum up, the measurement results
reveal that the phase transitions starts later and the threshold exhibits a sharper drop
as predicted by the simulations. Altering the decay rates however does not reproduce
the threshold slope of the experiment.
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4.3.3 Effective ground state density

During measurements the 455 nm laser is locked to the 6S 1
2
(F = 4) →7P 3

2
(F = 5)

transition, i.e. atoms in the 6S 1
2
(F = 3) are not addressed by the laser and remain in

the ground state. As the initial 6S 1
2

population is equally distributed over the 16 mF

levels about half of the ground state atoms are effectively accessible for the excitation
process. Figure 4.15(a) presents the changes of the five-level simulation results when
only half of the ground state density is considered. Similar to the discussion of figure
4.14 the density dependent curve is both shifted to higher densities and exhibits a
slight flattening of the slope. The Rabi frequency dependent curves, depicted in figure
4.15(b), on the other hand are ”compressed” with less effective ground state density.
Additionally, the maximum value of ρ33 and ρ44 increases and decreases respectively.
Another mechanism causing a reduction of the effective ground state density could
be optical pumping to the 6S 1

2
(F = 3) state, which is a dark state with respect to

the exciting lasers. One could argue that the 6S 1
2
(F = 4) →7P 3

2
(F = 5) →32S 1

2
is

not a closed system leading to decays via intermediate state to the F = 3 ground
state. Actually, observations showed that this excitation scheme exhibits almost cyclic
character [22] so that optical pumping effects do not significantly influence the ground
state density.

Figure 4.15: Comparison of simulation results for different effective
ground state densities Neff. (a) shows the five-level simulation results of the
ground state density dependence N of ρ33 (upper graph) and ρ44 (lower graph) for
different fractions of addressable ground state atoms: 1, 1

2
, 1

5
, 1

10
, 1

20
. Similarly

(b) presents the simulation results for Rabi frequency dependence of ρ33 and ρ44.
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Figure 4.16: Comparison of simulation results for different effective Ry-
dberg densities NRyd,eff. (a) shows the five-level simulation results for the de-
pendence of N of ρ33 (upper graph) and ρ44 (lower graph) on ground state density
for different fractions of excited atoms: 1, 1

2
, 1

10
, 1

100
. Similarly (b) presents the

simulation results for the dependence of ρ33 and ρ44 on the Rabi frequency.

4.3.4 Effective Rydberg population

The five-level simulation on superradiance, as it is designed, assumes that all excited
atoms, that reside in the effective volume, participate in the cooperative process. This
basically requires that all atomic dipoles stay in phase throughout the process. Actu-
ally, this assumption is not always true, since there are several mechanisms which can
cause a dephasing of the atomic dipoles. Moreover, the simulation assumes the simpli-
fied case where the photon, which initiates the superradiant process, always originates
from the center of the excitation volume, so that all or most of the excited atoms are
involved. However, if the excitation volume is slightly smaller than the emitted wave-
length and the initiating photon emerges at the edge of this volume, then the number
of atoms contributing to the enhanced emission is only a fraction of the excited. Ac-
cordingly, one has to examine modifications of the simulation when only a part of the
excited atoms are considered for superradiance. This is presented in figure 4.16. The
dependence on ground state density and Rabi frequency is simulated for contribution
of all, 50%, 10% and 1% of the excited atoms. Similar to the discussions in the sec-
tions 4.3.2 and 4.3.3 the density dependent curves are shifted to higher densities and
experience a flattening, while the Rabi frequency dependent curves are compressed.

4.3.5 Conclusion

The comparison of the simulation to the experimental results in section 4.2 showed
that the simulation does not reproduce the threshold behaviour that was observed
in the experiment. In this section we discuss possible reason for this discrepancy.
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Chapter 4. Experimental Results and Simulation

The five-level model was extended by further states with superradiant decays. It was
demonstrated that further superradiant decays do not affect the density dependence of
the Rydberg population (see section 4.3.1). The simulation can therefore be reduced to
a few states. Further, modified decay rates, different effective ground state densities and
different effective Rydberg populations were considered. Changing these parameters
resulted in a shift of the density curves to higher densities and a “compression” of
the Rabi frequency curves (see sections 4.3.2, 4.3.3 and 4.3.4). It was not possible to
reproduce the threshold behaviour by changing these parameters.
It is not surprising that the model presented here does not exactly account for the
superradiance effects. Indeed, superradiance is a many-body effect and the model is in
the single-atom frame, with the superradiance embedded as a mean-field effect.
h
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Chapter 5

Summary and Outlook

Summary

Within the frame of this thesis it has been demonstrated that it is possible to generate
superradiance in a caesium vapour cell when the atoms are continuously pumped to
the Rydberg state via the excitation scheme 6S1/2 →7P3/2 →32S1/2. In the experi-
ment the superradiance was investigated indirectly via the detected fluorescence of the
atoms. Nearby states, which are not adressed by the excitation lasers, are populated
through superradiant cascading. As a result, additional spectral lines which correspond
to spontaneous emission from these states appear in the fluorescence spectra. Intense
fluorescence from nF and nD states shows that superradiant cascading strongly popu-
lates higher L-states.

The fluorescence was measured under the variation of ground state density, the Rabi
frequency and the excitation volume. The measurement results presented above reveal
that under continuous pumping the superradiance exhibits threshold behaviour as ex-
pected from the theory [21]. When the number of cooperative atoms reaches a critical
value the spontaneous emission from nearby states rapidly increases while the direct
optical fluorescence from the 32S1/2 state decrease.

Furthermore, it was demonstrated that it is possible to influence the threshold be-
haviour of the superradiance by varying the excitation volume. On the basis of the
ground state density measurements it was verified that in case of an excitation volume
which is smaller than the maximum cooperative volume the critical threshold density
is higher. In addition to that the maximum cooperative volume can be determined
from density measurements for two different excitation volumes. The condition for
this measurement is that the one excitation volume is larger and the other one smaller
than the maximum cooperative volume. In the experiment it turned out that more
than half of the adjusted beam sizes produced excitation volumes larger than the max-
imum cooperative volume. If one is interested in a clear imaging of the influence of the
excitation volume on the threshold behaviour measurements should also be performed
for beam sizes smaller than 1 mm.
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Chapter 5. Summary and Outlook

Outlook

The results achieved in this thesis form a first basis for the understanding of superradi-
ant dynamics from S-states in caesium. Now, as the relevant regimes are known further
investigations can focus on particular properties of the superradiance. With regard to
arrays of vapour cells as quantum modules one could perform measurements on a ex-
perimental configuration of two cells that can be addressed by laser beams individually.
Such a configuration allows to investigate the interaction between the microwave, that
was generated in the first cell, and the Rydberg atoms of the second cell.

Based on the realization of cavity tuned superradiance by Gross et al [8] a future idea
is to integrate the vapour cells in a microwave-guide. The purpose of this design is to
provide selective suppression or amplification of particular superradiant modes. Such
a design makes it, for instance, possible to avoid limitations on the Rydberg lifetime
due to superradiance. Although the superradiance is quite long known effect it still
holds a lot of interesting physics to be investigated.
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Appendix A

Diffraction gratings

A.1 Reflection gratings

An overview on the basic theory of spectrographs and diffraction gratings can be found
in [29]. More detailed information on diffraction gratings is given in [30]. Reflection
gratings consist of many straight grooves, which have been ruled onto an optically
smooth glass substrate or produced by holographic techniques, [30] chapter 3.-4. .
The grooves, which have a width that is comparable to the wavelength d ∼ λ, act as
many small radiation sources. The total reflected light results then in an interference
pattern. For a parallel light beam (figure A.1), with the incidence angle α to the grating
normal1 and wavelength λ, constructive interference is observable for those angles β of
the reflected beam for which the grating equation

d(sinα± sin β) = mλ (A.1)

is satisfied, i.e. the path difference ∆s = ∆s1 − ∆s2 is a multiple of λ.2 m denotes
the diffraction order with m = 0,±1,±2, ... and is according to eq. (A.1) limited by a
finite maximum value |m| < 2 d

λ
.

From equation (A.1) is obvious that for m = 0, when α = −β and ∆s = 0, all compo-
nents of the zero order light are radiated in the same direction. That means, there is
no separation of wavelengths in the zero order. Hence it is called specular reflection. In
contrast all other orders can be used to separate light into its constituent wavelengths.
However note that the diffraction angle β depends on the incidence angle α and the
groove density G = 1/d.

When the angles of the incident light and the mth-order of the diffracted light are
equally with respect to the groove normal, i.e. when incident light and mth-order light

1Not necessarily normal to the grooves.
2The plus sign is for the case, when β and α are on the same side of the gratin normal.
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Chapter A. Diffraction gratings

Figure A.1: Diffraction on a reflection grating. a) Illustration of the grating
equation (A.1). b) Littrow configuration of a grating with β = α.

describe mirror reflection on the groove facet and

θB =
α + β(m)

2
, (A.2)

most of the diffracted energy is gathered in the mth order. The blaze angle θB is the
gratings characteristic angle between groove normal and grating normal. The favoured
wavelength, called the blaze-wavelength λB, then is

λB =
2d

m
sin(θB) cos(α− θB), (A.3)

which varies with θB and α. Technically a reflection grating properties are specified by
the indication of (A.3) for the case α = θB:

λB,Litt = 2d sin(θB). (A.4)

This is when α = β and the diffracted light is reflected back into the direction of incident
light. Such configuration is called Littrow mount (see figure A.1), which is relevant in
laser optics. Accordingly, in which wavelength and order most of the diffracted energy
is concentrated is determined via the blaze angle θB.

A.2 Efficiency characteristics

The diffraction efficiency is a quantity that denotes the extent of diffracted energy with
respect to the incident energy. Each reflection grating has a wavelength dependent
diffraction efficiency which should be accounted for in the designing process of the
experiment. The grating efficiency is either specified in relative or absolute efficiency.

56



A.2. Efficiency characteristics

The absolute efficiency is designated by the ratio of diffracted power P to the incident
power P0

ηabs =
P

P0

, (A.5)

while the relative efficiency expresses the diffraction efficiency with respect to the re-
flectance of the coating material i.e.

ηrel =
P

Pcoat

=
P

ηcoatP0

=
ηabs

ηcoat

(A.6)

with ηcoat denoting the reflectivity of the coating material. The diffraction efficiency
curves are usually given or measured for standard conditions which is the Littrow
mount configuration. The characteristic blaze wavelength λB,Litt is then the wavelength
of maximum efficiency or the peak wavelength. The actual grating efficiency depends
on the usage, that means it depends on the incidence angle α (see eq.(A.3)). Figures
A.2 to A.4 illustrate the diffraction efficiencies for the gratings that are available in the
experiment.

Figure A.2: Diffraction efficiency for reflection grating 235 lines/mm at 750
nm blaze wavelength. Depicted is the relative grating efficiency with respect to
aluminium. Figure from [31].
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Chapter A. Diffraction gratings

Figure A.3: Diffraction efficiency for reflection grating 600 lines/mm at 800
nm blaze wavelength. Depicted is the relative grating efficiency with respect to
aluminium. Figure from [31].

Figure A.4: Diffraction efficiency for reflection grating 600 lines/mm at 500
nm blaze wavelength. Depicted is the absolute grating efficiency. Figure from [31].
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Appendix B

Identification of fluorescence lines
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Chapter B. Identification of fluorescence lines

Figure B.1: Identification for wavelength area: 490 nm - 590 nm. Vertical
lines indicate dipole allowed transitions and each column represents a set of possible
transitions. Experimental parameters of spectrum: beam size diameter dbeam,455 nm =
1.0 mm, ground state density N ∼ 3 × 1011cm−3 and rabi frequency ΩP/2π = 2.97
MHz.
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Figure B.2: Identification for wavelength area: 590 nm - 710 nm. Vertical
lines indicate dipole allowed transitions and each column represents a set of possible
transitions. Experimental parameters of spectrum: beam size diameter dbeam,455 nm =
1.0 mm, ground state density N ∼ 3 × 1011cm−3 and rabi frequency ΩP/2π = 2.97
MHz.
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Chapter B. Identification of fluorescence lines

Figure B.3: Identification for wavelength area: 710 nm - 840 nm.Vertical
lines indicate dipole allowed transitions and each column represents a set of possible
transitions. Experimental parameters of spectrum: beam size diameter dbeam,455 nm =
1.0 mm, ground state density N ∼ 3 × 1011cm−3 and rabi frequency ΩP/2π = 2.97
MHz.
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Figure B.4: Identification for wavelength area: 820 nm - 945 nm Vertical
lines indicate dipole allowed transitions and each column represents a set of possible
transitions. Experimental parameters of spectrum: beam size diameter dbeam,455 nm =
1.0 mm, ground state density N ∼ 3 × 1011cm−3 and rabi frequency ΩP/2π = 2.97
MHz.
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Chapter B. Identification of fluorescence lines

Figure B.5: Identification for wavelength area: 930 nm - 1050 nm.Vertical
lines indicate dipole allowed transitions and each column represents a set of possible
transitions. Experimental parameters of spectrum: beam size diameter dbeam,455 nm =
1.0 mm, ground state density N ∼ 3 × 1011cm−3 and rabi frequency ΩP/2π = 2.97
MHz.
Note: The last two peaks in the spectrum are ghost peaks caused by errors occuring
from time to time on the CCD chip.
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