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Zusammenfassung

Diese Arbeit beschäftigt sich mit der Erzeugung und Untersuchung von Rydberg-Atomen
in ultrakalten Quantengasen. Die Kombination dieser beiden quantenmechanischen Objekte
erlaubt es ungewöhnliche Zustände von Materie herzustellen. Insbesondere lässt sich ein
Modellsystem von grundlegender Bedeutung realisieren, nämlich ein einzelnes Elektron in
einem Bose-Einstein-Kondensat (BEC). Diese neue Idee, ihre experimentelle Realisierung und
theoretische Beschreibung, sowie die Entwicklung von Anwendungsmöglichkeiten in einer
Vielzahl von Bereichen bilden den Kern dieser Arbeit.

Als Rydberg-Atome werden Atome in einem extremen quantenmechanischen Zustand
bezeichnet. Mindestens ein Elektron ist dabei hoch angeregt, gekennzeichnet durch einen sehr
großen Wert der Hauptquantenzahl n. In einem klassischen Bild bewegt sich dieses so genannte
Rydberg-Elektron auf einer Bahn, auf der es sich sehr weit von dem restlichen Atomrumpf
entfernt. Bei der Anregung in einen Zustand mit Hauptquantenzahl n = 200 dehnt sich ein
Atom auf das etwa 40.000-fache seiner ursprünglichen Größe aus und erreicht damit die Größe
kleinster lebender Objekte, die ihrerseits aus mehreren Billionen von Atomen bestehen. Die
Eigenschaften eines solchen Atoms werden dann im Wesentlichen nur noch von dem einzelnen,
hoch angeregten Rydberg-Elektron bestimmt, fast unabhängig von dem jeweiligen chemischen
Element. Insbesondere lässt sich der Ladungsschwerpunkt des Rydberg-Elektrons relativ leicht
verschieben, da dieses nur noch schwach an den weit entfernten Atomrumpf gebunden ist.
Das führt dazu, dass Rydberg-Atome sowohl stark untereinander als auch mit ihrer Umgebung
wechselwirken. Rydberg-Atome sind deshalb auch interessant für die Anwendung als empfind-
liche Sensoren, die sogar in der Lage sind, einzelne Photonen zerstörungsfrei zu detektieren
([1], Nobelpreis 2012 für Serge Haroche). Vor diesem Hintergrund liegt die Vermutung nahe,
dass das Vorkommen von Rydberg-Atomen nur auf ideale Laborbedingungen und, in der
freien Natur, allenfalls auf den interstellaren Raum beschränkt ist. Erstaunlicherweise ist
das nicht zutreffend, denn tatsächlich können sich innerhalb eines einzelnen Rydberg-Atoms
mehrere Zehntausend andere Atome im Grundzustand befinden. Dies wurde bereits vor über
80 Jahren durch die Beobachtung der Absorption von Licht in dichten Gasen gezeigt ([2, 3]
und Einführung auf Seite 4).

Der zweite Bestandteil der hier vorgestellten Experimente, das Bose-Einstein-Kondensat,
weist nicht minder erstaunliche Eigenschaften auf. Nahe des absoluten Nullpunkts der
Temperatur und bei relativ hohen Dichten findet in einem Gas aus schwach wechselwirkenden
Bosonen ein Phasenübergang statt. In dem sich dabei ausbildenden Aggregatzustand befinden
sich alle Teilchen im selben quantenmechanischen Zustand; ein Ensemble, bestehend aus
typischerweise mehreren Zehntausend bis Millionen von Atomen, kann somit durch eine
einzige Wellenfunktion beschrieben werden. Seit der erstmaligen Erzeugung eines solchen
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Quantenzustands ([4, 5], Nobelpreis 2001 für Eric A. Cornell, Carl E. Wieman und Wolfgang
Ketterle) werden Bose-Einstein-Kondensate erfolgreich zur Erforschung einer Vielzahl von
grundlegenden physikalischen Fragestellungen eingesetzt.
Aufgrund ihrer hohen Reinheit und guten Kontrollierbarkeit lassen sich ultrakalte Quantengase
zum Beispiel als Modell zur Simulation komplexer Vielteilchensysteme verwenden [6]. Ein
wesentlicher Beitrag zu den vielversprechenden Entwicklungen auf diesem Gebiet könnte
durch die Nutzbarmachung der Rydberg-Anregung geleistet werden. Die Wechselwirkung
zwischen Rydberg-Atomen ist nämlich nicht nur sehr stark, sondern kann auch relativ einfach
über die Wahl des Quantenzustands kontrolliert werden [7]. Dies bezieht sich nicht nur
auf die Stärke der Wechselwirkung, sondern auch auf deren Winkelabhängigkeit und das
Vorzeichen. Einen limitierenden Faktor stellt dabei allerdings die endliche Lebensdauer von
Rydberg-Zuständen dar. In Abhängigkeit von dem jeweiligen Quantenzustand beschränkt
diese Lebensdauer die mögliche Länge von Experimenten mit einzelnen Rydberg-Anregungen
auf typischerweise mehrere zehn Mikrosekunden bis maximal wenige Millisekunden. Eine
Möglichkeit dieses Problem zu umgehen, das so genannte Rydberg-Dressing, basiert darauf,
dass jedem Atom innerhalb eines Ensembles nur zu einem geringen Anteil der Rydberg-
Zustand beigemischt wird. Dies lässt sich dadurch erreichen, dass das zur Rydberg-Anregung
verwendete Lichtfeld in der Frequenz leicht verstimmt wird. Es gibt eine Vielzahl von
theoretischen Vorschlägen, wie dies zur Erzeugung exotischer Zustände von Materie genutzt
werden kann (siehe Einleitung zu Kapitel 6).

Im ersten Teil dieser Arbeit wird untersucht, inwiefern eine erstmalige experimentelle
Demonstration von Rydberg-Dressing mit dem derzeitigen experimentellen Aufbau möglich
ist. Bei den hohen Dichten, die in ultrakalten Atomwolken typischerweise vorherrschen, sind
kollektive Effekte zu erwarten [8]. Diese verhinderten bislang in diesem Regime ein einfaches
Verständnis der dem Rydberg-Dressing zugrunde liegenden Prozesse. Aufbauend auf der
Beschreibung in einer zweiatomigen Basis [9] wird deshalb zunächst ein Modell entwickelt,
welches den Effekt auf ein Bose-Einstein-Kondensat auch im kollektiven Regime beschreibt.
Es wird gezeigt, dass die Ergebnisse dieser analytischen Rechnungen mit den Resultaten
eines numerischen Ansatzes [8] übereinstimmen. Neben dem anschaulichen Verständnis
bietet dieser neu entwickelte Ansatz allerdings noch weitere wesentliche Vorteile. So erlaubt
die Ausnutzung der effizienteren analytischen Form nicht nur die Simulation experimentell
relevanter asymmetrischer Kondensate in drei Dimensionen, sondern auch die Berechnung
des zu erwartenden Effekts in Abhängigkeit von den experimentell zugänglichen Parame-
tern. Zudem wird die Erweiterung von Rydberg-Dressing auf Rydberg-Zustände nahe einer
Förster-Resonanz vorgeschlagen, um die Flexibilität in der Kontrolle der Rydberg-Rydberg-
Wechselwirkung zusätzlich zu erweitern [10, 11].
In Kombination mit experimentellen Untersuchungen werden schließlich die limitierenden Fak-
toren identifiziert, die eine Beobachtung von signifikanten Effekten durch Rydberg-Dressing
im derzeitigen Aufbau verhindern. Dies sind im Wesentlichen eine zu hohe Dichte der
verwendeten Atomwolke und eine zu geringe verfügbare Laserleistung zur Rydberg-Anregung.
Bei vielen Rydberg-Zuständen, insbesondere bei Rydberg D-Zuständen, treten außerdem
zusätzliche Atomverluste auf, hervorgerufen durch die Erzeugung von weit ausgedehnten
Rydberg-Molekülen [12, 13]. Diese Verluste verhindern eine Realisierung von Rydberg-
Dressing im Bereich kleiner roter Verstimmungen des Anregungslichts. Ohne signifikante
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Veränderung der Fallengeometrie lässt sich die Anzahldichte der Atome nicht mehr wesentlich
verringern, ohne den ultrakalten Temperaturbereich zu verlassen. Dieser ist aber essentiell für
die Beobachtung von möglichen Effekten auf die Atomwolke, hervorgerufen durch Rydberg-
Dressing. Eine mögliche Lösung bietet die Verringerung der effektiven Atomzahldichte durch
die Verwendung von Ensembles mit reduzierter Dimensionalität, wie zum Beispiel durch die
Verwendung optischer Gitter.

Nach diesen Erkenntnissen rückt der Schwerpunkt im zweiten Teil dieser Arbeit auf die direkte
Wechselwirkung zwischen einzelnen Rydberg-Atomen und einem Bose-Einstein-Kondensat.
Die bisherigen Untersuchungen werden dazu auf noch höher angeregte Rydberg-Zustände
ausgedehnt. Für Zustände mit Hauptquantenzahlen n > 110 ist die Wechselwirkung zwischen
zwei Rydberg-Atomen so stark, dass sich, bei konstanter Frequenz der Anregungslaser,
innerhalb des Volumens eines Kondensats nur ein einzelnes Rydberg-Atom erzeugen lässt.
Experimente in diesem Regime stellen zunächst eine ganze Reihe von technischen Her-
ausforderungen. Mit der derzeitigen Apparatur wurden bislang nur Rydberg-Zustände mit
Hauptquantenzahlen n < 50 untersucht. Zunächst musste die Kontrolle der elektrischen
Felder in der Experimentierkammer um mehrere Größenordnungen verbessert werden, da
Rydberg-Atome mit Hauptquantenzahlen um n = 200 eine mehr als 20.000-mal größere
Empfindlichkeit auf elektrische Felder aufweisen. Gleichzeitig wurden die Schaltzeiten der
elektrischen Ionisationsfelder wesentlich verkürzt, da die technisch begrenzte Lebensdauer
des Bose-Einstein-Kondensats nur relativ kurze Experimente erlaubt. Schließlich konnten
Rydberg S-Zustände mit Hauptquantenzahlen bis n = 202 in einem BEC erzeugt werden. Da
das bisher zur Detektion von Rydberg-Atomen verwendete Verfahren aus Feldionisation und
Ionendetektion im bestehenden Aufbau jedoch keine Einzelatomdetektion ermöglicht, muss
auf eine andere Messmethode zurückgegriffen werden, um einzelne Rydberg-Atome in einem
Bose-Einstein-Kondensat nachzuweisen. Die Lösung stellt in diesem Fall die Beobachtung der
Auswirkung der Rydberg-Anregung auf das BEC dar. Die Veränderungen des Kondensats, die
durch einzelne Rydberg-Atome hervorgerufen werden, können mit Hilfe von Absorptionsauf-
nahmen der Atomwolke nach einer freien Expansion sichtbar gemacht werden.
Zunächst wird der Einfluss des Kondensats als dichtes Gas auf das Rydberg-Atom untersucht.
Insbesondere wird die beobachtete Energieverschiebung der Rydberg-Zustände im Kondensat,
basierend auf einem Modell von Enrico Fermi von 1934 [14], vollständig durch die Streuung
des Rydberg-Elektrons an den einzelnen Atomen erklärt. Neben der Verschiebung wird auch
die Verbreiterung der Spektrallinien und die Verkürzung der Lebensdauer von Rydberg-
Zuständen im Kondensat untersucht. Die beobachtete Lebensdauer hängt von der Position des
Rydberg-Atoms im BEC ab, die sich durch die Verstimmung des Anregungslasers kontrollieren
lässt.
Nach allen bisherigen Beobachtungen ist die Wechselwirkung des positiv geladenen Atom-
rumpfs des Rydberg-Atoms mit dem Bose-Einstein-Kondensat vernachlässigbar. Demnach
kann das System als ein einzelnes Elektron in einem Bose-Einstein-Kondensat betrachtet
werden. So gesehen dient das Rydberg-Atom nur als eine Falle für ein einzelnes Elektron.
Dieses befindet sich dabei bis zum Zerfall des Rydberg-Atoms in einem wohldefinierten
Quantenzustand, wie weitere Untersuchungen ergeben. Diese Beobachtung bildet die Basis
für das Verständnis der überraschend starken Wirkung eines einzelnen Rydberg-Elektrons
auf ein Bose-Einstein-Kondensat. Neben einem Verlust von bis zu 50 Atomen aus dem
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BEC je Rydberg-Atom, gemessen nach einer freien Expansion der Atomwolke, führt die
Rydberg-Anregung auch zu einer kollektiven Schwingung des gesamten Kondensats.
In Zusammenarbeit mit David Peter und Hans Peter Büchler vom Institut für theoretische
Physik III der Universität Stuttgart wurde ein Modell entwickelt, welches diese Messergebnisse
weitgehend erklären kann. Es basiert auf der Beschreibung des homogenen Bose-Gases durch
Nikolai N. Bogoliubov [15] und behandelt den Einfluss des Elektrons auf das Kondensat als
eine kurze Störung, welche Anregungen im BEC erzeugt. In Abhängigkeit von dem Impuls
der jeweiligen Anregungen kann es sich dabei um einzelne beschleunigte Teilchen oder um
Schallwellen, so genannte Phononen, handeln. Beide führen, sobald das äußere Fallenpotenzial
abgeschaltet wird, zu Verlusten von Atomen aus dem Kondensat. Bei sehr niedrigen Impulsen
jedoch führen die Schallwellen zur Ausbildung kollektiver Oszillationen des gesamten Systems.

Diese erste Demonstration und das Verständnis dieses einfachen Modellsystems eines
einzelnen Elektrons in einem Quantengas bilden den Ausgangspunkt für eine ganze Reihe
weiterer Experimente. Diese reichen von der Untersuchung der Kopplung von Elektronen und
Phononen, wie sie für einige Modelle der Supraleitung relevant sind, über Anwendungen in
der Quantenoptik bis hin zur direkten Abbildung eines einzigen Elektronenorbitals. Das hier
entwickelte Konzept lässt sich außerdem auch auf die Präparation eines einzelnen ultrakalten
Ions in einem Bose-Einstein-Kondensat erweitern. Aufgrund der größeren Reichweite der
Wechselwirkung zwischen Atomen und Ionen würde dies ein neues, bisher unerreichtes
Regime starker Kopplung experimentell zugänglich machen.
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Introduction

The basic task of natural sciences is to seek simple laws governing the natural world. Find-
ing such rules starts usually with an iterated cycle of systematic observations, formulation of
hypotheses, and their testing and subsequent modification based on repeated experimental mea-
surements. This process can often span over the course of decades.

Spectroscopy and Rydberg atoms

A prominent example is the understanding of atomic spectra. From the first systematic
study of discrete absorption lines in the solar spectrum by Joseph von Fraunhofer in 1814 [16],
it took almost a century until the formulation of Niels Bohr’s model of the atom [17], for the
first time, could provide at least a partial explanation for the occurrence of atomic spectra.
This development was paved by systematic precise measurements of the solar spectrum by
Anders Jonas Ångström, published in 1868, and subsequent efforts to identify patterns and
their underlying fundamental principles. The spectrum of the hydrogen atom proved to be the
first testing ground for the development of hypotheses, since its spectrum contained relatively
few lines, grouped into different series. Early important work is seldom cited in literature,
since it turned out to be completely wrong [18]. George J. Stoney, for example, pointed out
in 1871, that the frequencies of lines, observed in the spectrum of hydrogen, coincide exactly
with higher harmonics of a single fundamental vibration frequency [19]. This explanation was
absolutely in line with knowledge from acoustics, and the higher harmonics not observed in the
spectra could be simply explained as being to weak to be detected. Even though this approach
provided excellent agreement, also for the spectra of other atomic and molecular species [18],
it was proven to be bare coincidence by Arthur Schuster in 1881 [20]. After this major setback,
which prompted many scientists to abandon the quest for patterns in absorption spectra, it was
the school teacher Johann Jakob Balmer, whose attempt succeeded. In 1885, he found out that
the wavelengths λ of the whole hydrogen series known at the time could be described by a
simple formula, depending only on one integer number m [21]:

λ = const. · m2

m2 − 22
(0.1)

However, one aspect of Stoney’s theory was not all wrong. This was the notion to express the
spectral lines in units of frequency. This idea, picked up again by Walter N. Hartley [22], led
to the final breakthrough of Johannes Rydberg in 1890 [23]. Based mainly on spectroscopic
data on alkali metals from George D. Liveing and Sir James Dewar [24], he developed a simple
formula, that describes the observed spectra with only three parameters, besides one universal
constant Ryd = 3.2898 · 1015 Hz, the so called Rydberg constant:

f = Ryd

(
1

(n1 − δl1)2
− 1

(n2 − δl2)2

)
(0.2)
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In Rydberg’s original paper [23], n2 > n1 are integer numbers, where n1 is kept constant. The
parameter δl2 was called quantum defect later by Erwin Schrödinger [25]. Lines, described by
the same first term in equation (0.2) and the same quantum defect, group into a series. In par-
ticular, Rydberg assigned the series S (sharp), P (principal), and D (diffuse). A forth series,
called F (fundamental), was discovered later in 1907 by Arno Bergmann [18]. For hydrogen,
the quantum defects δli vanish. Balmer’s formula (0.1) then results from (0.2) by setting n1 = 2.
Series of lines with different values for n1 could be identified later, starting with n1 = 1, by
Theodore Lyman in 1906 [26] and n1 = 3 by Friedrich Paschen in 1908 [27].
In combination with work of Ernest Rutherford and others (see introduction to section 3.2),
these observations paved the way for Niels Bohr’s model of the atom [17], marking the begin
of quantum theory, introduced by Max Planck in 1900 [28], in atomic physics. Admittedly,
the principal idea of quantized states of electrons was published already three years earlier in
1910 by Arthur Erich Haas, considered as a carnival joke by his contemporaries [29]. The Bohr
model already provides a good description of the hydrogen atom, describing circular electron
orbits with energy −hRyd/n2, quantized with the principal quantum number n. The quantum
defects δl, present in the spectra of the alkalis, however, could only be explained with the ex-
tension of Bohr’s model by Arnold Sommerfeld in 1916 [30]. There, electrons are travelling on
elliptical orbits around the nucleus. For atoms with more than one electron, the energy of the
valence electron then also depends on its angular momentum, quantized as ~l, with the integer
quantum number l of angular momentum (0 ≤ l ≤ n − 1). The angular momentum deter-
mines the ellipticity of the orbits, which coincide with the circular Bohr orbits at the maximum
value l = n − 1. Considering the outermost electron, the orbit at small values of l approaches
the nucleus, which is only partly screened by the other electrons on lower energy levels. This
screening is accounted for by the quantum defect δl. Within this model, the series S, P , and D
can thus be understood as transitions between states with different principal quantum numbers n
and angular momenta l = 1→ 0, l = 0→ 1, and l = 1→ 2, respectively.
A proving ground for the new theories was provided by spectroscopy of hydrogen and, in par-
ticular, alkali atoms. The latter feature only a single valence electron and are much easier to
study in the laboratory than atomic hydrogen H , which first has to be created from molecu-
lar H2. Especially the states with high principal quantum numbers n, termed Rydberg atoms,
turned out be particularly interesting. Absorption spectra of sodium up to n = 50 were already
observed in 1909 by Robert W. Wood [31]. As a side note, these experiments were the first
spectroscopic measurements performed in a laboratory, that could put astronomic observations
of the solar spectrum in the rear, since those measurements were only reaching up to n = 30 at
the time. Rydberg atoms, in the following, were not only used to benchmark the development
of early quantum theory. Owing to their enormous size (see Figure 0.1), given by the radius
2a0(n − δl)

2 (with Bohr radius a0 = 5.292 · 10−11 m) of the classically allowed region, they
turned out to be situated at the border between quantum physics and the realm of classical me-
chanics. Therefore, many of their properties, such as the Stark effect and the quantum defect,
can be also explained using classical theories [34]. Consequently, Rydberg atoms form a prime
example for the correspondence principle, formulated by Niels Bohr in 1920 [35].
Later on, Rydberg atoms became also important in other distinct fields, like astrophysics and
plasmaphysics [36]. The development of the laser allowed for the efficient creation of Rydberg
atoms, stimulating a resurrected interest in this field [37], which is lasting until today. The most
interesting properties of Rydberg atoms are related to their enormous size, resulting in a strong
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Figure 0.1: Size of Rydberg atoms compared to different biological objects. The diameter
4a0(n − δ0)2 of the classical allowed region of the Rydberg electron is plotted depending on the
principal quantum number for rubidium (quantum defect δ0 = 3.135 [32]). Scanning electron mi-
crographs [33] of different biological objects are shown to illustrate the huge size of Rydberg atoms.
They exceed the dimensions of large viruses already at n ≈ 50. At principal quantum numbers
around n = 70, the size of bacteria, the smallest living objects, is reached.

sensitivity to external fields and strong interactions among each other. Rydberg atoms, for ex-
ample, have been already successfully used as nondestructive probes for weak fields, consisting
of few photons [38] (Nobel Prize 2012 for Serge Haroche). Furthermore, they are discussed as
a building block for gates in quantum information processing [39, 40]. The current state of the
art in this field can be found e.g. in [7].

Bose-Einstein condensates

Also, the study of ultracold atomic gases has become an important test bench of physics
in the past decades, allowing for the study of quantum phenomena in a regime qualitatively
different from the classical world. Based on the work of Satyendra Nath Bose on the statistical
distribution of photons, the quanta of light [41], Albert Einstein predicted a phase transition in
a gas of non-interacting atoms [42]. As a consequence of quantum statistics, the particles in the
gas are then condensed into the state of lowest energy. For a long time, this new phase, termed
Bose-Einstein condensate (BEC), had no practical impact.
After the first observation of superfluidity in liquid helium [43, 44], Fritz London pointed
out, that this phenomenon could be connected to Bose-Einstein condensation [45]. Although
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this approach, extended to a two-fluid model by László Tisza [46], turned out to be quite
successful, the direct observation of a Bose-condensed phase in liquid helium is prevented
by the strong interatomic interaction peculiar to helium. Estimates from neutron scattering
experiments [47] suggest a condensate fraction of below 10% only; however, the analysis of this
data is delicate [48]. The separate measurement of the superfluid and condensed fractions in
liquid helium are thus an interesting topic until today [49]. On the theory side, the observation
of superfluidity in liquid helium triggered significant progress. Among many others advances
(see e.g. [50]), this was for example the development of the microscopic theory of a weakly
interacting Bose gas by Nikolai N. Bogoliubov in 1947 [15]. While clearly not describing
the strongly interacting limit, this model leads to good results for the superfluidity of liquid
helium. The search for systems with weaker interaction, and thus higher condensate fraction,
emerged. For a long time, spin-polarized hydrogen atoms, as suggested already in 1959 [51],
were a promising candidate for achieving Bose-Einstein condensation of a weakly interacting
gas. Indeed, a BEC of atomic hydrogen was reported in 1998 [52], after more than two decades
of heroic experimental effort [53].
However, just as in the early days of atomic physics, it were again the alkali metals that, while
being less ideal from a theoretical point of view, became more important, because of their easier
handling in the laboratory. In contrast to spin-polarized hydrogen, the alkali metals are known
to form solids at low temperatures. Moreover, due to their larger atomic mass, the critical
temperature for the transition to the condensed state is more than one order of magnitude lower
than for hydrogen. This reasoning [54], however, turned out to be irrelevant [55]. The devel-
opment of laser cooling and trapping of neutral atoms, pioneered by Steven Chu, Claude N.
Cohen-Tanoudji, and William D. Phillips ([56, 57, 58], Nobel Prize in 1997), compensated for
the drawbacks of alkali atoms in realizing Bose-Einstein condensation. In combination with
techniques for magnetic trapping of neutral atoms [59, 60] and evaporative cooling [61], which
were also further developed during the quest for Bose-Einstein condensation of spin-polarized
hydrogen [62, 63], this led to the final breakthrough in 1995, when the groups of Eric A.
Cornell and Carl E. Wieman, and Wolfgang Ketterle announced the creation of Bose-Einstein
condensates of rubidium 87Rb [4] and sodium 23Na [5], respectively (Nobel Prize in 2001).
Since then, the research in quantum degenerate gases has evolved dramatically. The applica-
tions range widely from the demonstration of basic physical phenomena, like wave-particle
duality by interference experiments [64] and the creation of an atom laser [65, 66], to ambitious
proposals for the construction of a gravimetric radar as a countermeasure against stealth
technology [67]. Most notably, the theories for superfluidity were tested in a regime not
accessible with liquid helium, in particular the weakly interacting and the non-uniform Bose
gas [53, 68]. Moreover, current research aims at the simulation of quantum systems that are
hard or impossible to model otherwise [6] (see also introduction to section 3.1).

Rydberg atoms in dense gases

The study of Rydberg atoms in a high density environment actually dates back almost
exactly one century. In 19141, Robert W. Wood and René Fortrat extended Wood’s first
measurements of the absorption series in sodium from 1909 ([31], as mentioned above), en-

1Published only later, in 1916, delayed on account of the outbreak of World War I.
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larging the number of observed lines by ten principal quantum numbers [69]. To this end, they
studied the absorption of light, generated by a quartz mercury arc lamp, in an evacuated and
heated tube, containing sodium. They used the, at the time, largest and most powerful quartz
spectrograph in the world, located in Zurich. In addition, this measurements were performed at
an increased vapour pressure, compared to previous measurements, in order to make smaller
signals from the higher terms visible2. While noting in Wood’s precedent paper [31], that
the observed linewidth decreases for the transitions with higher principal quantum numbers,
they found in their subsequent measurement that "one sacrifices the sharpness of the lines
somewhat by this augmentation of density" at the higher terms. Furthermore, they compared
the measured transition frequencies to Rydberg’s formula (0.2) in its modified form by Walther
Ritz [70]. For transitions at low principal quantum numbers, there is a systematic deviation
from this formula, known already at the time and caused by the fact that the approximation
of an hydrogenic atom becomes poor in that regime. In their measurements at high atomic
densities, Wood and Fortrat now observed a systematic deviation of the line frequencies also at
high principal quantum numbers, reaching up to 40 GHz. Although noting that this "may result
from slight errors of measurement", the effect seemed significant enough, that an attempt was
made by William M. Hicks in 1916 to explain the results, using a refined scaling formula for
the quantum defects [71]. However, while improving the consistency with Rydberg’s formula
for low principal quantum numbers, he also could not explain the line shift close to the end
of the series. Although it is not possible to tell with absolute certainty today, it seems highly
likely, considering their parameter regime, that the shift and the broadening of the high terms,
observed by Wood and Fortrat, were indeed caused by the interaction of highly excited Rydberg
states with ground state atoms. This phenomenon is one of the main topics of this thesis.
Twenty years later, in 1934, Edoardo Amaldi and Emilio Segrè [2, 3] and, independently,
Christian Füchtbauer and coworkers [72, 73, 74] studied systematically the influence of
different gases, in particular hydrogen, neon, helium, and argon, at variable density onto the
high terms in the spectra of sodium and potassium. At densities reaching up to 1020 cm−3,
there are thousands of particles of the perturbing gas located inside one Rydberg atom. As they
noted, it is a surprising fact, that the absorption lines can be observed at all in such a regime.
They found a shift and a broadening of these lines, which both only depend on the type and the
density of the perturbing foreign gas. Moreover, unexpected at the time, the line shift can be
positive or negative, depending on the type of the foreign gas. This observation does not agree
with a first simple guess, considering the gas as a dielectric medium, filling the space between
the Rydberg electron and the Rydberg core.
A theoretical explanation of the line shift was given by Enrico Fermi in the same year [14]. He
studied the interaction of the Rydberg electron and the positively charged Rydberg core with
the foreign gas separately. He found that the impact of the positive ion is next to negligible. In
order to describe the interaction of the Rydberg electron with the gas, he developed a model
based on the scattering of the Rydberg electron from the neutral particles in the perturbing
gas, introducing a new parameter, termed scattering length. The basic idea, in more modern
terms [75], is that the slow incident particle has a large de Broglie wavelength, so that short-

2While no exact values are specified explicitly, they state that "to get the last members near the head of the bands
a density corresponding to a red heat is necessary", while for the lower lines a temperature just above 100°C
was sufficient. This corresponds to densities of sodium ranging from about 109 cm−3 up to some 1014 cm−3,
just reaching the regime of high density at the high terms (see Figure 0.2).
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range properties of the interaction potential can not be resolved and are thus not important.
To lowest order in the relative momentum of the collision, the effect of the scattering event
can then be described by a single parameter, the scattering length. This concept turned out
to be very successful in different branches of physics. In particular, it was used shortly after
by Fermi to describe the scattering of slow neutrons from hydrogen atoms, introducing the so
called Fermi pseudopotential (see section 3.2). This description of neutron scattering became
very important shortly afterwards for the development of artificial nuclear fission.
Fermi’s description of the interaction of Rydberg electrons with different neutral particles
(atoms and molecules) was further refined in the following decades (see [76] and references
therein). Much later, in 2000, Chris H. Greene and coworkers realized that this interaction can
lead to an intriguing effect in a regime, that only became accessible at the advent of ultracold
atoms (see above). For some alkali atoms, the electron-atom scattering length is negative,
leading to an attractive interaction. At temperatures on the order of µK, the scattering of the
Rydberg electron can thus bind another alkali atom inside its orbit, constituting a new class
of chemical bond. These so called ultralong-range Rydberg molecules were created for the
first time in 2009 [12, 13] by photoassociation from an ultracold gas of rubidium 87Rb at
densities on the order of 1013 cm−3, using Rydberg S-states at principal quantum numbers
around n = 36. In this regime, there is only rarely one additional atom located inside the
volume of a Rydberg atom, making the formation of a molecule possible. Soon, it turned out
that these molecules, besides their size, show interesting properties, opening up a new field
of ultracold chemistry. After the creation of triatomic molecules [77], the coherent creation
and dissociation [78, 79], and the existence of a permanent electric dipole moment [80, 11],
remarkable for a homonuclear diatomic molecule, were demonstrated.

This thesis

Different parameter regimes for the study of Rydberg atoms in gases can be identified in
the plane of principal quantum number n and density of the environment. These regimes are
illustrated in Figure 0.2. If the gas contains on average more than one atom in the classical
volume 4/3π(2a0(n−δ0)2)3 of one Rydberg atom, the system is considered as dense, since then
a Rydberg electron is always interacting with at least one ground state atom (see Figure 0.2d).
Most notably, the experiments of Amaldi and Segrè were performed under this condition.
Another length scale becomes important, if Rydberg atoms are excited with narrow bandwidth.
Due to the strong interaction between two Rydberg atoms, Rydberg excitation is then only
possible beyond a minimum distance, termed blockade radius rB, around one Rydberg atom.
If there is more than one atom inside a sphere with radius rB, collective effects can arise (see
paragraph 1.2.3). This regime has been subject of extensive ongoing studies for decades now.
In particular, most applications of Rydberg atoms for quantum information so far are situated
in this range of parameters [39, 40, 7]. The interaction with ground state atoms here would be
rather detrimental, since it can lead to an additional source of decoherence (see section 7.3).
However, even here the probability to find one or more additional atoms inside one Rydberg
atom is small, but finite (see Figure 0.2a). This allows to create ultralong-range Rydberg
molecules in this regime, as well.
Finally, at very low densities and principal quantum numbers, Rydberg atoms are quasi isolated
(see Figure 0.2b). This regime is interesting for precision spectroscopy of Rydberg states.
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Figure 0.2: Different parameter regimes for Rydberg excitation [81]. At low principal quantum
numbers n and samples at very low density, Rydberg atoms are quasi isolated (grey area and b). As
soon as there is more than one atom inside the blockade sphere with radius rB around one Rydberg
atom, collective effects start to play a role (white area and a). In this regime, there is a small,
but nonzero probability to nevertheless find a ground state atom inside a Rydberg atom, defined as
the volume of the classically allowed region of the Rydberg electron 4/3π(2a0(n − δ0)2)3. This
allows to observe ultralong-range Rydberg molecules. Furthermore, the measurements on Rydberg
dressing are preformed here. At even larger densities and higher Rydberg states, there are, on
average, always many atoms located inside one Rydberg atom (yellow area). This is the regime,
where the experiments on coupling a single electron to a BEC take place. At very large principal
quantum numbers n ≥ 110, the blockade radius rB becomes larger than the sample (c, d). For
n ≈ 200, the size of the Rydberg atom even reaches the radial extent of the BEC (c). The size of
the ground state atoms (grey dots), Rydberg core (red dots) and the Rydberg electron wavefunction
(blue circle), as well as the blockade volume (blue dotted circle) in the insets are not to scale. The
blockade radius is calculated for Rydberg S-states assuming an excitation linewidth of 1 MHz and
using the C6-coefficients from [82] (see also section 1.2).

In this work, the topics of Rydberg atoms and Bose-Einstein condensates at densities up
to 1014 cm−3 are combined. In contrast to previous experiments [83, 84], now the focus lies on
the atomic sample, from which Rydberg atoms are excited, rather than the population in the
Rydberg state only. Explicitly, the goal is to observe the impact of few Rydberg excitations
onto a large atomic sample. Two different approaches are studied in this work.
First, a regime of relatively low Rydberg states with principal quantum numbers right above
n = 30 is considered. Theoretical proposals exist, where the strong interaction between
Rydberg atoms is distributed over all atoms in a larger sample by weakly dressing them with
a Rydberg state [85, 86]. The first part of this work is dedicated to the question, whether
this effect is observable in the present experimental setup. This question is tackled both
theoretically and experimentally. Simulations of realistic, experimentally relevant situations
are presented, based on a theoretical model, developed in the framework of this thesis. The
results are combined with experience gathered from experimental investigations, in order to
identify practical challenges and provide possible solutions.
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Then, the studies are extended to Rydberg states at higher principal quantum numbers reaching
n = 200. This corresponds to more than 50-times larger Rydberg atoms, compared to previous
work with this apparatus. Thus, an extreme regime is reached, where tens of thousands of
atoms are located inside a single Rydberg atom, similar as in the measurements of Amaldi and
Segrè. However, the regime investigated here differs also qualitatively from previous work, due
to the properties of the Bose-Einstein condensate. The blockade radius rB of these Rydberg
states is larger than the size of the BEC (see Figure 0.2c). This offers the possibility to excite
a single Rydberg atom in the condensate. The effect of the positively charged Rydberg core is
negligible compared to the impact of the Rydberg electron, as already shown by Fermi [14].
Therefore, the system can be regarded as a single electron, trapped in a well-defined quantum
state, inside a quantum gas. The Rydberg electron couples strongly to the BEC, creating
excitations of single particles and phonons in the condensate. The experimental results can be
understood using a model, based on Bogoliubov’s microscopic theory of a weakly interacting
Bose gas. This model has been developed in a close collaboration with the Institut für
Theoretische Physik III of the university of Stuttgart, in particular with David Peter and Hans
Peter Büchler. The main results of this thesis are the preparation of this intriguing system and
first experiments studying the interaction of a single electron with a BEC. The demonstration
of this fundamental system provides the basis for a wide range of further work. Some of the
paths, opened up by the results presented here, are already followed by different groups.

This thesis is structured as follows:
First in part I, some basic properties of Rydberg atoms and Bose-Einstein condensates are
reviewed in chapters 1 and 2. This facilitates the discussion in the following main theory
chapter 3. This chapter starts with the derivation of a simple model of Rydberg dressing, that
provides an intuitive understanding of the collective processes involved. Based on this model,
simulations are presented, covering the parameter space, which is experimentally relevant.
Afterwards, the direct interaction between a Rydberg atom and a dense surrounding gas is
discussed. Both, the Rydberg core and the Rydberg electron are considered. In particular, the
work of Fermi and its subsequent refinements are reviewed and later on applied to calculate the
impact of a single Rydberg electron onto a BEC.
In part II, a short introduction to the experimental setup is given. It consists basically of a BEC
apparatus for preparing ultracold samples of rubidium 87Rb (chapter 4) and a laser system to
excite Rydberg atoms (chapter 5). Here, the focus is on the requirements for exciting Rydberg
atoms at high principal quantum numbers n > 100 in a BEC. This involves both substantial
changes to the hardware and to the experimental sequence.
In part III, the experimental results are presented. First, the work on Rydberg dressing is
summarized in chapter 6, listing both principal and practical challenges, that are impeding
an experimental realization so far. In addition, possible solutions for this set of problems
are proposed. Afterwards, the results on the coupling of a single Rydberg electron to a
Bose-Einstein condensate, the main outcome of this work, are discussed. In chapter 7, the
observations are treated focussing on the Rydberg atom, whereas in chapter 8, the impact of
the Rydberg electron as an impurity on the BEC is considered.
Finally, a perspective of a wide range of further possible experiments and applications is given.
This overview contains both ideas, that are already in the stage of being implemented, and
other proposals, that are lying further ahead.
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This thesis is accompanied by a comprehensive appendix, containing explicit calculations and
further discussion, that allow to fully comprehend the content in minute detail.
All calculations and formulas are given on purpose in SI units. This might be at the expense
of slightly more cumbersome expressions, but helps to avoid misconceptions caused by
non-standard units [87].
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1 Rydberg atoms

Rydberg atoms are excited atoms with one or more electrons in a state with high principle
quantum number n. Most physical properties of these atoms are dominated by the highly excited
Rydberg electron, orbiting far away from the Rydberg core. Extensive literature is available
reviewing general properties of Rydberg atoms [37] and e.g. their application for quantum
information [7]. Therefore, in this chapter only some basic properties are shortly introduced,
which are needed for further discussions in later chapters. This comprises also more general
topics like atom-light interaction that are reviewed in the context of Rydberg atoms.

1.1 Atom-light interaction

All experiments discussed in this thesis are based on the optical excitation of Rydberg atoms
using laser light. In order to describe the interaction with radiation, the internal structure of
the atoms can be simplified to a three-level and finally to a two-level system for most problems
within the framework of this thesis. Furthermore, the laser light contains always many photons
so that it can be assumed as classical and the quantization of the light field can be neglected. In
the following, the very basic equations governing the evolution of a two- and three-level system,
coupled by a classical light field, are briefly reviewed. This discussion forms the basis for the
theory developed in section 3.1.

1.1.1 Two-level atom

In the first approximation, an atom in a laser field can be described as a two-level system as
depicted in Figure 1.1. The system then consists of a ground state |g〉 and an excited state |e〉,
which are the eigenvalues of the unperturbed Hamiltonian Ĥ0, describing the system without the
coupling light field. The evolution of the system is governed by the time-dependent Schrödinger
equation:

i~
∂Ψ(~r, t)

∂t
= ĤΨ(~r, t) (1.1)

|gñ

? ,O

|eñ
Ä

? 0 Figure 1.1: Sketch of the two-level system. The ground state |g〉 is coupled by
a light field to the excited state |e〉. The frequency ω of the light is detuned
by ∆ from the energy separation (Ee −Eg)/~ of the two states. The atom-light
interaction results in a coupling with Rabi-frequency Ω.
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The Hamiltonian Ĥ = Ĥ0 + Ĥl is the sum of the Hamiltonian Ĥ0 describing the unperturbed
system and terms Ĥl stemming from the interaction with monochromatic light. For a classi-
cal light field, the quantization can be neglected and Ĥl is given by the product of the dipole

operator ~̂d = e~̂r and the electric field ~E(t) = ~E0 cos (~k~r − ωt) of a plane wave oscillating at
frequency ω. In general, this frequency is detuned by ∆ = ω0 − ω from the energy separation
~ω0 = Ee − Eg of the two states1.

1.1.2 Rabi oscillations

The wavefunction Ψ(~r, t) of the two-level system can be written as a linear combination with
time-dependent coefficients cg/e(t):

Ψ(~r, t) = cg(t) |g〉+ ce(t) |e〉 eiω0t (1.2)

Inserting this ansatz into the Schrödinger equation (1.1) leads to a system of coupled differential
equations

i~
∂cg
∂t

= ce~Ω∗

2
(ei∆t + e−i(ω+ω0)t) (1.3)

i~
∂ce
∂t

= cg~Ω
2
(ei(ω+ω0)t + e−i∆t) (1.4)

where the Rabi frequency Ω has been introduced as1:

Ω = ~E0 e 〈e| ~̂r |g〉 /~ (1.5)

Here, the dipole approximation [88] has been applied, in which the electric field ~E(~r, t) is as-
sumed as constant over the spatial extent of the two-level atom. This holds true for wavelengths
λ = 2π/|~k| smaller than the extent of the atom. The equations can be further simplified using
the rotating-wave approximation, where the time evolution of the coefficients cg/e(t) is assumed
to be much slower than the sum frequency ω + ω0. Thus, terms oscillating at this frequency
average to zero. This is a good approximation for weak driving fields with Ω � ω and small
detunings ∆ � ω2. The system of first-order differential equations (1.3) and (1.4) in the sim-
plified form

i
∂cg
∂t

= ce
Ω∗

2
ei∆t (1.6)

i
∂ce
∂t

= cg
Ω
2
e−i∆t (1.7)

can be converted into a decoupled second-order differential equation:

∂2ce
∂t2

+ i∆
∂ce
∂t

+
Ω2

4
ce = 0 (1.8)

1In this chapter, both the detuning ∆ and the Rabi frequency Ω are defined as angular frequencies in order to
match textbook convention [88]. From chapter 3 on, ordinary frequencies are used, because they are more
common for discussing experimental parameters.

2The standard counterexample is a far off-resonant dipole trap with infrared light, where ω0 + ω ≈ ω0 − ω and
the counter-rotating terms have to be kept.
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Solving this equation under the condition ce(0) = 0 leads to ce(t) ∝ ei∆/2t sin (
√

Ω2 + ∆2/2t).
The probability |ce(t)|2 to find the system in the excited state can then be calculated from (1.7),
accounting for the normalization |cg|2 + |ce|2 = 1. The system is found to undergo Rabi oscil-
lations with an effective Rabi frequency

√
Ω2 + ∆2 and amplitude Ω2/(Ω2 + ∆2):

|ce(t)|2 =
Ω2

Ω2 + ∆2
sin2 (

√
Ω2 + ∆2/2 t) (1.9)

At short times t, the population |ce(t)|2 in the excited state rises to first order quadratically
in
√

Ω2 + ∆2t.

1.1.3 AC Stark effect

In order to study steady state properties of a two-level system dressed with a light field [88],
one can remove the explicit time dependence from equations (1.6) and (1.7) by substituting the
coefficients c′g(t) = cg(t), c′e(t) = ce(t) e

i~∆t. In this basis, the Hamiltonian is of the form3:

Ĥ = ~
(

0 Ω∗/2
Ω/2 −∆

)
(1.10)

Diagonalization of this Hamiltonian provides eigenenergies of the dressed two-level system:

E1/2 =
~
2

(
−∆±

√
|Ω|2 + ∆2

)
(1.11)

The AC Stark effect shifts the two bare levels by ∓~∆/2 (1 −
√
|Ω|2/∆2 + 1). For weak

coupling laser fields Ω/∆ � 1, the expansion ±|Ω|2/(4∆) is commonly used [88]. However,
for some effects higher order terms become important, even at weak dressing Ω/∆ � 1, as it
is discussed in section 3.1. The excited state fraction of the new ground state can be calculated
from the normalization condition of the eigenvectors to

f =
|Ω|2

2(|Ω|2 + ∆2 −∆
√
|Ω|2 + ∆2)

(1.12)

This expression simplifies to f ≈ |Ω|2/(4∆2) for weak dressing Ω/∆� 1.

1.1.4 Effective two-level atom

The concept of treating a three-level atom, coupled by two laser fields, is similar to the one of the
two-level atom in the previous paragraph. Nevertheless, the additional level causes a wide range
of further interesting effects. This comprises electromagnetically induced transparency (EIT),
coherent population trapping, Autler-Townes splitting and Raman transitions [91, 92, 93]. In
the framework of the experiments in this thesis, only a simple special case is relevant, that is
discussed in the following. The excitation of a Rydberg state via a two-photon transition can

3There are different sign conventions [89]. Here, red detuning corresponds to ∆ < 0 [90].
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|g〉
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|e〉
Ä

|p〉
Or

Äp Figure 1.2: Sketch of the three-level atom. The ground state |g〉 is coupled by
two light fields with Rabi frequencies Ωr and Ωb to the excited state |e〉. The
light field driving the lower transition is detuned by ∆p from an intermediate
state |p〉. The detuning of the two-photon transition is ∆.

be described as a three-level atom with an intermediate state |p〉. Two laser fields with Rabi
frequencies Ωr and Ωb are coupling the ground state |g〉 and the Rydberg level |e〉 with a total
detuning ∆. In order to achieve coherent excitation, a large detuning ∆p has to be chosen in
order to avoid population of the intermediate state |p〉, which is typically short-lived (e.g. decay
rate Γ = 2π · 6.067 MHz for 5P3/2 state of 87Rb [94]). Within the same approximations as
in paragraph 1.1.2, the Hamiltonian in the basis of ground state |g〉, intermediate state |p〉 and
excited (Rydberg-)state |e〉 can be written as:

Ĥ = ~

 0 Ωr/2 0
Ωr/2 −∆p Ωb/2

0 Ωb/2 −∆

 (1.13)

For simplicity, the Rabi frequencies are here assumed to be real. For large detunings ∆p � Ωr,
the population of the intermediate state |p〉 according to equation (1.12) is small, scaling
as Ω2

r/(4∆2
p). Furthermore, the time evolution in equation (1.9) at frequency

√
Ω2
p + ∆2

p/2
becomes much faster than the time dependence expected for the other states. Thus, for calculat-
ing the populations in the ground and Rydberg state, one can assume a constant time averaged
population of the intermediate state. Thereby, the state |p〉 can be virtually removed from the
Schrödinger equation. The Hamiltonian in the remaining basis |g〉 and |e〉, resulting from this
so called adiabatic elimination, then can be rewritten as [95]:

Ĥ = ~

(
Ω2
r

4∆p

ΩrΩb
4∆p

ΩrΩb
4∆p

Ω2
b

4∆p
−∆

)
(1.14)

A comparison of this result with the Hamiltonian of the two-level system in equation (1.10)
shows that the resulting system behaves like a two-level atom, coupled by an effective Rabi
frequency:

Ω =
ΩrΩb

2∆p

(1.15)

If the detuning ∆p from the intermediate state is also much larger than the Rabi frequencies Ωr

and Ωb, the additional Stark shift Ω2
r

4∆p
− Ω2

b

4∆p
can be neglected and the effective detuning is equal

to the detuning ∆ of the two-photon transition. This assumption is fulfilled in good approxima-
tion in the experiments described in this thesis.
The values of the two Rabi frequencies Ωp and Ωr in the experiments are calculated [96] ac-
cording to equation (1.5) from the measured intensities I = cε0/2|E0|2, using the dipole matrix
elements 〈e| r̂ |g〉 from [84].
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1.2 Interaction between Rydberg atoms

Their strong binary interactions make Rydberg atoms appealing candidates for e.g. quantum
information and simulation. In particular, these kind of interaction can exceed the interaction
between neutral ground state atoms by much more than ten orders of magnitude [7]. After a
basic introduction on binary interaction between Rydberg atoms, the impact on to the excita-
tion dynamics is discussed, forming the basis for the theory developed in section 3.1 and the
experiments presented in chapter 7.

1.2.1 Van-der-Waals interaction

The dominant term in the interaction of a pair of Rydberg atoms, separated by a vectorial dis-
tance R~n (|~n| = 1), is the electric dipole interaction [97]:

Udd =
~d1
~d2 − 3(~n~d1)(~n~d2)

4πε0R3
(1.16)

where ~̂d = e~̂r is the operator of the electric dipole moment. In the absence of external fields and
possible resonances (see subsequent paragraph 1.2.2), Rydberg states do not have a permanent
electric dipole moment. The first term is therefore the van-der-Waals interaction, caused by the
interaction of induced dipole moments. In this case, the interaction energy can be calculated
using second order perturbation theory:

VvdW = −
∑
j,k 6=i

〈k| 〈l|Udd |i〉 |j〉
Ek + El − (Ei + Ej)

=
C6(i)

R6
(1.17)

For a pair of atoms in state |i〉, one has to sum over all possible couplings to other pair states
|j〉 |k〉, mediated by the dipole-dipole operator (1.16). Due to the weighting with the inverse
energy difference to the initial pair state, only pair states close in energy to the initial state con-
tribute significantly. Scaling formulas for the interaction coefficients describing the interaction
between pairs of equal Rydberg S-, P - and D-states of alkali atoms can be found in [82].

1.2.2 Förster resonant interaction

Second order perturbation theory breaks down, if the denominator in equation (1.17), the so
called Förster defect ∆F = Ek + El − (Ei + Ej), vanishes for one pair state k, l. On such a
Förster resonance, a pair of dipole coupled Rydberg states is degenerate with the initial pair of
Rydberg atoms. In a simple model, one can neglect all other states with larger Förster defect
and consider only a pair of two-level atoms, labelled i = 1 and 2 (see Figure 1.3). This single
interaction channel model is a good approximation in the close vicinity of a single Förster
resonance. The two levels e and g in the two atoms are in general not identical; their energy
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d1|1gñ

|2eñ

|2gñ

? F
|1eñ

d2

U (R)dd

R

Figure 1.3: Sketch of single interaction channel model for
Förster resonant interaction: A pair of two-level systems
1 and 2, where the transitions between the two levels is
dipole allowed. The energy splittings differ by the Förster
defect ∆F . The transition dipole moments ~d1 and ~d2 inter-
act via the dipole-dipole interaction operatorUdd(R), which
depends on the relative distance R between 1 and 2.

splittings differ by the Förster defect ∆F . The only requirement is that the transition |ig〉 ↔ |ie〉
is dipole allowed. In this basis, the Hamiltonian of the system is of the form (cf. equation 1.10):

Ĥ = ~
(

0 Vdd
Vdd ∆F

)
(1.18)

Here, Vdd = 〈1e, 2g|Udd |1g, 2e〉 = C3/R
3 describes the interaction of the two oscillating

transition dipole moments ~di in the the two systems i = 1, 2. Diagonalizing this Hamiltonian
leads to the energies

E1/2 =
∆F

2
±
√

∆2
F

4
+ V 2

dd (1.19)

Close to the Förster resonance, where ∆F � Vdd, the interaction becomes dipolar:

E1/2(∆F � Vdd) ≈ ±Vdd = ±C3

R3
(1.20)

The eigenstates in this limit are a linear combination 1/
√

2(|1g, 2e〉 ± |1e, 2g〉) of the unper-
turbed states. The sign of the Förster defect ∆F then determines, whether the repulsive or the
attractive branch is relevant.
Far from resonance, at large Förster defect ∆F � Vdd, the unperturbed states are nearly unaf-
fected and the van-der-Waals interaction (equation 1.17) is recovered:

E1/2(∆F � Vdd) ≈

{
−V 2

dd

∆F
= − C2

3

∆FR6

∆F +
V 2
dd

∆F
= ∆F +

C2
3

∆FR6

(1.21)

In Rydberg atoms, some states can be tuned into resonance by applying microwaves [95, 98] or
small electric fields [99, 100, 101, 102, 103, 104]. By changing the Förster defect ∆F , one can
therefore easily change the character of the Rydberg-Rydberg interaction from van-der-Waals to
dipolar and control the sign of the interaction close to resonance [10]. Furthermore, the dipole-
dipole interaction Vdd typically shows an angular dependence [105, 106]. These effects and the
relevance of Förster resonances in different physical and biological systems are discussed in
depth in [11].
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1.2.3 Rydberg blockade and collective excitation

The strong mutual interaction of Rydberg atoms has an important consequence for the excitation
dynamics. A laser field couples a sample of identical atoms to the Rydberg state with Rabi
frequency Ω as discussed in section 1.1, if the laser frequency is tuned to resonance. However,
the strong interaction between two Rydberg atoms can shift states with more than one Rydberg
excitation out of resonance. As a result, multiple Rydberg atoms can be excited only at distances
where the interaction energy V (~r) does not exceed the excitation bandwidth ~∆ω of the driving
laser field. Thus, without tuning the laser frequency, no further Rydberg excitation is possible
in a region around one Rydberg atom, which is defined by the relation:

|V (~r)| ≤ ~∆ω (1.22)

In case of angular-dependent interaction, the shape of the blockaded volume becomes asym-
metric. For isotropic van-der-Waals interaction V (r) = C6/r

6, equation (1.22) defines a sphere
with blockade radius

rB =
6

√
C6

~∆ω
(1.23)

The excitation bandwidth can be given by power broadening ~Ω, technical sources of laser
broadening or by the Fourier width in pulsed experiments. The C6 coefficients for Rydberg S-
states are scaling to first order with the principal quantum number (n−δ0)11 [82]. The blockade
radius is therefore increasing with (n− δ)11/6, assuming a constant excitation bandwidth ∆ω.
The mean interparticle distance in a gas of particle density ρ can be approximated as the Wigner-
Seitz radius

rm = 3

√
3

4πρ
(1.24)

If the density of an atomic sample is high enough and hence this length rm is smaller than the
blockade radius rB, the Rydberg blockade manifests itself first of all as a reduced fraction of
atoms in the Rydberg state. This aspect of Rydberg blockade is a crucial element in the ap-
plication of Rydberg atoms in quantum optics and quantum information [7]. This comprises
for example quantum logic gates [39, 40], single photon sources [107, 108] and single photon
switches [109, 110].
Furthermore, there is an effect on the dynamics of the excitation process [111, 112]. If all Nc

atoms inside a blockade volume are indistinguishable, the Rydberg excitation becomes delocal-
ized and effectively shared among all atoms. Due to symmetry under permutation of atoms, the
only state, that is coupled by the light field to the ground state |Nc, 0〉 = |g1, g2, ..., gNc〉 of the
system, is a linear combination of the form:

|Nc, 1〉 =
1√
Nc

Nc∑
i=1

|g1, g2, ..., ri, ..., gNc〉 (1.25)

where gi and ri denote an atom in the ground and Rydberg state respectively. Here, the relative
phases between the different states have been set to 1. This is a good approximation as long as
the atoms are not separated by distances larger than the excitation wavelength. The coupling to
the ground state is then given as the matrix element (see section 1.1):

〈Nc, 1| Ĥl |Nc, 0〉 = ~
√
NcΩ/2 (1.26)
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The comparison with equation (1.10) shows that the coupling of the collective Rydberg state
is increased by a factor

√
Nc, compared to the single atom matrix element. An ensemble

consisting of Nc atoms inside one blockade sphere, coupled to the Rydberg state with Rabi
frequency Ω, can therefore be treated as a single effective two-level atom, a so called super
atom [113], that undergoes Rabi oscillations at the collectively enhanced Rabi frequency

√
NcΩ.

Collectively enhanced Rabi oscillations have been demonstrated experimentally with a single
super atom, consisting of two [114, 115] or multiple [116, 117] atoms. In larger many-body
systems, inhomogeneities, both in the atomic density and in the coupling laser field, reduce
the visibility of collective Rabi oscillations. In that case, saturation curves with an enhanced
initial slope can be observed [118, 84]. Even though the super atom model has been very suc-
cessful in describing the behaviour of strongly interacting Rydberg many-body systems (see
e.g. [118, 119] and section 3.1), some care has to be taken in applying the concept of blockade.
In principle, it is only applicable in the case of pure binary interaction. For example, already
in the case of only three atoms and dipolar interaction, there are non-interacting and therefore
non-blockaded configurations [120, 121]. Moreover, any effect that makes the atoms inside the
blockade radius distinguishable, as for example inhomogeneous energy shifts on the same or-
der as the Rydberg-Rydberg interaction energy, requires considerable modification of the simple
concept of Rydberg blockade presented here. Such effects are faced later in section 7.3.
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A system of weakly interacting bosons reaching a critical phase space density is undergoing a
phase transition into a state, where all particles are in the ground state. At this point, the thermal
de Broglie wavelength λdB = h/

√
2πmkBT of the particles with mass m, density ρ and tem-

perature T (kB: Boltzmann constant) becomes comparable1 to the interparticle distance ~ρ−1/3.
This phenomenon, the so called Bose-Einstein condensation, has been predicted by Einstein in
1924 [42] based on earlier work of Bose [41]. So far, Bose-Einstein condensates of cold atomic
gases [4, 5], quasiparticles in solid state systems [122, 123, 124, 125, 126], and photons [127]
have been observed.
The condensation of trapped, weakly interacting ultracold atomic gases is a crucial prerequi-
site for the experiments discussed in part III. Several review articles [128, 129] and textbooks
(e.g. [53, 68, 88]) deal with this special case. Furthermore, there is a considerable overlap with
the theory of superfluidity, developed in the context of liquid helium 4He [50]. In this chapter,
the most important results are recapitulated, allowing for convenient reference in the subsequent
discussions.

2.1 Gross-Pitaevskii equation

A Bose-Einstein condensate under typical experimental conditions [129] can be described as a
nonuniform dilute Bose gas. The many-body system consists of N bosons, that are interacting
with a two-body interaction potential V (~r − ~r ′). The density ρ is low enough, such that the
range of the interaction is much smaller than the mean interparticle distance n−1/3. An exter-
nal trapping potential Ve(~r) finally makes the gas nonuniform. In this treatment, three-body
collisions are explicitly excluded. This kind of collisions would eventually make a real phys-
ical system crystallize into a solid configuration. The ground state of such a model therefore
describes in reality only a metastable configuration. Then, the many-body Hamiltonian Ĥ in
second quantization reads [128]:

Ĥ =

∫
Ψ̂†(~r)

[
− ~2

2m
∇2 + Ve(~r)

]
Ψ̂(~r) d~r +

1

2

∫∫
Ψ̂†(~r)Ψ̂†(~r ′)V (~r − ~r ′)Ψ̂(~r ′)Ψ̂(~r) d~rd~r ′

(2.1)
Here, Ψ̂(~r) and Ψ̂†(~r) are the bosonic field operators, that annihilate and create a particle at
position ~r respectively. They can be expressed in terms of single particle wavefunctions φi [68]:

Ψ̂(~r) =
∑
i

φiâi (2.2)

1The derivation of the more exact condition λdB ≈ 1.38n−1/3 can be found e.g. in [88].
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The corresponding creation and annihilation operators â†i and âi fulfil the usual bosonic com-
mutation rules:

[âi , â
†
j] = δi,j, [âi , âj] = 0 (2.3)

Furthermore, â†i âi is the operator of the occupation number of state i. In the regime of Bose-
Einstein condensation, there is a macroscopic occupation N0 � 1 in the ground state φ0. Thus,
the eigenvalues of â†0 and â0,

√
N0 + 1 and

√
N0 can in good approximation be assumed as

identical and the operators â†0 and â0 can be treated as complex numbers â†0 ≈ â0 ≈
√
N0. In a

generalization of the Bogoliubov approach [15], the bosonic field operator Ψ̂(~r, t) can then be
written in a decomposed form, where the Bose-condensed part is separated as a classical field
ψ(~r, t) =

√
N0ψ0(~r, t) [128, 68]:

Ψ̂(~r, t) = ψ(~r, t) + Ψ̂′(~r, t) (2.4)

The so called wavefunction of the condensate ψ(~r, t) has the meaning of an order parameter.
Its modulus |ψ(~r, t)|2 = N0|ψ0(~r, t)|2 is the density distribution of the BEC. The operator
Ψ̂′(~r, t) =

∑
i6=0 φiâi accounts for population in states with higher momentum. This population

can be caused by external perturbations (see also paragraph 3.2.4) or a short-range part of the
interatomic interaction potential V (~r−~r ′) [53]. Hence in interacting systems, there is a certain
fraction of atoms in higher modes even at zero temperature (see paragraph 2.3.1).
In the regime, where only binary collisions play a role and at low temperatures, the interatomic
interaction is fully characterized by the constant s-wave scattering length a [128]:

V (~r − ~r ′) = gδ(~r − ~r ′), g =
4π~2a

m
(2.5)

For calculating the ground state of the system, the part Ψ̂′(~r, t) can be neglected in equation (2.4)
under the condition of diluteness ρa3 � 1. This condition assures that the depletion of the
condensate mode due to the interatomic interaction is small. Inserting the s-wave scattering
potential (2.5) into the Heisenberg equation for the Hamiltonian (2.1) leads to [128]:

i~
∂

∂t
ψ(~r, t) =

(
− ~2

2m
∇2 + Ve(~r) + g|ψ(~r, t)|2

)
ψ(~r, t) (2.6)

This is the time-dependent Gross-Pitaevskii equation (GPE) [130, 131]. It has the form of a
Schrödinger equation with the external potential Ve(~r) and a nonlinear term g|ψ(~r, t)|2. This
term describes the mean-field acting on a single particle and produced by the interaction with
the surrounding other bosons. The time-independent GPE is then obtained using the ansatz
ψ(~r, t) = ψ(~r)e−i

µ
~ t in equation (2.6):(

− ~2

2m
∇2 + Ve(~r) + g|ψ(~r)|2

)
ψ(~r) = µψ(~r) (2.7)

Here, µ denotes the chemical potential [128].
Alternatively, the time-independent GPE can be also obtained by minimizing the energy func-
tional E(ψ):

E(ψ) =

∫ [
~2

2m
|~∇ψ(~r)|2 + Ve(~r)|ψ(~r)|2 + g/2|ψ(~r)|4

]
d~r (2.8)

This is the expectation value of the N -particle state, neglecting terms of order 1/N under the
normalization condition

∫
|ψ(~r)|2d~r = N [53].
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2.2 Thomas-Fermi approximation

If the density |ψ(~r)|2 varies slowly in space, the quantum pressure [68] or kinetic energy term
− ~2

2m
∇2ψ(~r) in equation (2.7) can be neglected [129]. This is usually the case for a large number

of particles and typical trapping potentials [53]. The density ρ(~r) = |ψ(~r)|2 can be calculated
analytically as:

ρ(~r) = 1/g (µ− Ve(~r)) (2.9)

The formation of this density profile can be depicted as the particles filling the trapping poten-
tial Ve(~r) up to the value µ [129]. The chemical potential µ is then determined by the particle
number N and the normalization condition

∫
d~r ρ(~r) = N .

For the present experimental situations, a cylindrically symmetric harmonic potential with trap-
ping frequencies ωr and ωz can be assumed [132]:

Ve(~r) =
1

2
m
(
ω2
r(x

2 + y2) + ω2
zz

2
)

(2.10)

The condensate then has a parabolic density profile

ρ(~r) = ρ0

(
1− x2 + y2

r2
0

− z2

z2
0

)
(2.11)

with peak density
ρ0 =

m

4π~2a
µ (2.12)

and Thomas-Fermi radii

r0 =

√
2µ

mω2
r

, z0 =

√
2µ

mω2
z

(2.13)

The chemical potential µ is determined from the normalization condition as:

µ =

(
15~2
√
m

25/2
ω2
rωzaN

)2/5

(2.14)

The peak density therefore scales with the total atom number:

ρ0 =

(
15m3

215/2π5/2~3a3/2
ω2
rωzN

)2/5

(2.15)

2.3 Excitations in Bose-Einstein condensates

In this section, excitations in Bose-Einstein condensates are described in two different regimes,
that are both relevant to understand the experimental results in chapter 8. First, a homogeneous
Bose gas is considered in paragraph 2.3.1. This provides a good description, if the wavelength
of the excitation is much smaller than the spatial extent of the condensate. Afterwards in para-
graph 2.3.2, excitations in the limit of very large wavelengths and thus small momenta are dis-
cussed. In this case, the wavelength is on the order of the size of the BEC, leading to collective
excitations of the whole condensate.
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2.3.1 Bogoliubov excitations

In order to study the properties of elementary excitations in Bose-Einstein condensates, it is
instructive to consider the simple case of a uniform Bose gas without external potential Ve = 0
in a volume V . The Hamiltonian (2.1) can be rewritten using the following expression for the
field operators [68]:

Ψ̂(~r) =
∑
~p

â~p
1√
V
ei~p~r/~ (2.16)

Expressing the interaction potential V (~r) in terms of Fourier components

V~q =

∫
V (~r)e−i~q~r/~ d~r (2.17)

the Hamiltonian (2.1) then reads:

Ĥ =
∑
~p

~p 2

2m
â†~pâ~p +

1

2V

∑
~p1,~p2,~q

V~q â
†
~p1+~qâ

†
~p2−~qâ~p1 â~p2 (2.18)

The idea of the Bogoliubov approach [15] is now to separate the ground state with zero momen-
tum ~p = 0 as in the ansatz (2.4). Only the zero momentum component V0 =

∫
V (~r) d~r of the

interaction potential V (~r) is considered. Retaining only terms up to quartic order in the particle
operators with ~p 6= 0 and respecting momentum conservation leads to:

Ĥ =
V0

2V
â†0â

†
0â0â0

∑
~p

~p 2

2m
â†~pâ~p +

V0

2V

∑
~p6=0

(
4â†0â

†
~pâ0â~p + â†~pâ

†
−~pâ0â0 + â†0â

†
0â~pâ−~p

)
(2.19)

For macroscopic particle numbers N , the particle creation and annihilation operators can be
replaced by

√
N as argued in section 2.1. For the first term, a higher order approximation

resulting from the normalization condition

â†0â0 +
∑
~p6=0

â†~pâ~p = N (2.20)

is used, where again only terms up to quartic in particle operators are kept:

â†0â
†
0â0â0 = N2 − 2N

∑
~p6=0

â†~pâ~p (2.21)

Furthermore, the zero momentum component V0 of the interaction potential is expressed in
terms of the scattering length a up to second order [68, 75]:

V0 = g

1 +
g

V

∑
~p6=0

m

~p 2

 (2.22)

The Hamiltonian (2.19) can then be written as:

Ĥ =
gN2

2V
+
∑
~p

~p 2

2m
â†~pâ~p +

ρ

2g

∑
~p6=0

(
2â†~pâ~p + â†~pâ

†
−~p + â~pâ−~p +

mgρ

~p 2

)
(2.23)
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In order to diagonalize this Hamiltonian, a linear transformation, the so called Bogoliubov
transformation2, is used:

â~p = u∗pb̂~p + vpb̂
†
−~p, â†~p = upb̂

†
~p + v∗p b̂−~p (2.24)

The new operators b̂~p, b̂
†
~p fulfil the bosonic commutator relation [b̂~p, b̂

†
~p′ ] = δ~p,~p′ . This imposes

the condition |up|2 − |vp|2 = 1 for the coefficients and one immediately obtains:

b̂~p = upâ~p − vpâ
†
−~p, b̂†~p = u∗pâ

†
~p − v

∗
pâ−~p (2.25)

If one choses [68]

up, vp =

√
~p 2/(2m) + gρ

2ε(~p)
± 1

2
(2.26)

the Hamiltonian (2.23) can finally be written in the diagonalized form:

Ĥ = E0 +
∑
~p

ε(~p) b̂†~pb̂~p (2.27)

with the ground state energy

E0 = g
N2

2V
+

1

2

∑
~p6=0

(
ε(~p)− gρ− ~p 2

2m
+
mg2ρ2

~p 2

)
(2.28)

and the Bogoliubov dispersion relation

ε(~p) =

√(
~p 2

2m

)2

+
gρ

m
~p 2 (2.29)

The structure of the Hamiltonian (2.27) shows that the original system of interacting particles
can be described as a set of independent quasiparticles with energy ε(~p) and creation and anni-
hilation operator b̂† and b̂ . The ground state or BEC-mode is then the vacuum of quasiparticles:

b̂~p |0〉 = 0 (2.30)

The same results can be obtained in a macroscopic theory using hydrodynamic equations [53].
The analogy to hydrodynamics also helps to understand the nature of the quasiparticles intro-
duced above. The shape of the dispersion relation is shown later in Figure 3.13a. In the limit of
low momenta, the dispersion relation (2.29) becomes linear in the momentum:

ε(~p) ≈ cs|~p| (2.31)

2Note that there are different notations for the Bogoliubov coefficients u and v. Here, a notation close to [68]
is used. The coefficients up and vp are chosen to depend only on the absolute value p = |~p| of the momen-
tum, which greatly simplifies the calculation [53]. Furthermore, both variables are chosen complex conjugate.
The latter modification imposes no restriction to generality; the first is justified for the uniform Bose gas by
equation (2.26).
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This is the dispersion relation of a sound wave with the Bogoliubov speed of sound:

cs =

√
gρ

m
(2.32)

In the opposite limit of large momenta p, one obtains the dispersion law of a free particle with
an offset energy −gρ due to the interaction:

ε(~p) ≈ ~p 2

2m
− gρ (2.33)

The transition between the two regimes is located at momenta around |~p| = ~/ξ, with the
healing length:

ξ =
~√

2mgρ
=

~√
2mcs

(2.34)

Excitations at this momentum carry an energy, which is equal to the mean-field interaction gρ.
In practice, the healing length ξ therefore provides an important length scale for the reaction of a
BEC wavefunction on local perturbations. Modifications of the condensate density distribution
take place only at wavelengths larger than the healing length ξ.
Another interesting insight can be obtained by rewriting the normalization condition (2.20) in
terms of Bogoliubov operators. Using equation (2.24), the macroscopic total particle numberN
then reads:

N = N0 +
∑
~p6=0

|vp|2 +
∑
~p6=0

(
|up|2 + |vp|2

)
b̂†~pb̂~p +

∑
~p6=0

(
u∗pv

∗
p b̂
†
~pb̂
†
−~p + upvpb̂−~pb̂~p

)
(2.35)

The last sum describes processes, where pairs of quasiparticles with opposite momentum are
created or annihilated. In the expectation value of eigenstates of the Hamiltonian (2.27), this
term obviously vanishes. The physical interpretation of the other terms is as follows. In the
ground state of an interacting gas, not all particles are in the zero-momentum state. This means
that, even in the absence of real excitations, the occupation number N0 in the ground mode is
reduced by the so called quantum depletion

∑
~p6=0 |vp|2, caused by the interaction between the

particles. Evaluating this term explicitly using the result (2.26), one can show that this number
is proportional to

√
ρa3 [53].

If an excitation with momentum ~p is added to the condensate, the number of particles in the
ground mode is further reduced by an amount

∆NBog(~p) = |up|2 + |vp|2 =

(
~p 2

2m
+ gρ

)
/ε(~p) (2.36)

where equation (2.26) has been inserted.

2.3.2 Collective excitations

In the previous paragraph 2.3.1, the excitation spectrum of a homogeneous Bose gas was de-
rived. These results are used later in paragraph 3.2.4 to calculate the effect of a Rydberg elec-
tron onto a Bose-Einstein condensate. As the discussion there shows, the description becomes
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invalid for excitations at low momenta p, since the number of atoms associated with one quasi-
particle excitations diverges (see Figure 3.13c). Here, the finite size of the system becomes
important and the description as a homogeneous Bose gas is thus not appropriate any more.
Therefore in this paragraph, the description of BEC excitations in the limit of low momenta p,
where the whole condensate is affected, is reviewed. This discussion forms the basis to explain
the experimental observations in section 8.2.
The evolution of the nonuniform Bose gas is governed by the time-dependent Gross-Pitaevskii
equation (2.6). Instead of a microscopic description as in paragraph 2.3.1, now a macroscopic
description is adequate, since the focus here is on collective excitations. The Gross-Pitaevskii
equation (2.6) can be rewritten to provide equations for macroscopic observables, the atomic
density ρ(~r, t) = |ψ(~r, t)|2 and the velocity field:

~v(~r, t) =
~

2mi

(
ψ(~r, t)~∇ψ∗(~r, t)− ~∇ψ(~r, t)ψ∗(~r, t)

)
/ρ(~r, t) (2.37)

Then, one obtains [133]:

∂

∂t
ρ+ ~∇(~vρ) = 0 (2.38)

m
∂

∂t
~v + ~∇

(
δµ+

1

2
m~v 2

)
= 0 (2.39)

Here, δµ is the change of the chemical potential with respect to its value µ in the ground state
of the system (see equation 2.7):

δµ = Ve(~r) + gρ− ~2

2m
√
ρ
~∇2√ρ− µ (2.40)

In the next step, the kinetic energy pressure term ~2

2m
√
ρ
~∇2√ρ is neglected compared to the

interaction energy gρ. This corresponds to the Thomas-Fermi approximation in section 2.2,
which is valid if the particle number is large and the density distribution ρ(~r, t) is smooth.
Note that here these requirements have to be met not only in the ground state, but also during
the dynamic evolution of the system. In particular, this means that only excitations at large
wavelengths are covered. Setting ~v = 0, one directly obtains the stationary solution ρ0~r (see
equation 2.9). Linearising equation (2.38) and (2.39) with respect to small density changes
δρ(~r, t) = ρ(~r, t)− ρ0(~r) and velocities ~v(~r, t) directly leads to:

∂2

∂t2
δρ = ~∇

[
c(~r)~∇δρ

]
(2.41)

Here, the quantity c(~r) =
√
ρ0(~r)g/m =

√
(µ− Ve(~r))/m plays the role of a local sound

velocity [68]. Without external trapping potential (Ve = 0), one obtains sound waves at the
Bogoliubov speed of sound c = cs (see equation 2.32), which is the low momentum limit for a
homogeneous Bose gas, as obtained from microscopic theory (see paragraph 2.3.1).
For the present experimental situations (see section 4.1), the special case of a cylindrically
symmetric harmonic trapping potential Ve(~r) is considered (see paragraph 2.2). With the ratio
λ = ωz/ωr of trapping frequencies, the differential equation (2.41) then reads:

m
∂2

∂t2
δρ = ~∇

[
µ− 1

2
mω2

r(x
2 + y2 + λ2z2)~∇δρ

]
(2.42)
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Looking for periodically oscillating solutions, one can set δρ(~r, t) = ρ(~r)e−iωt and obtains:

ω2δρ =ω2
r

[
r
∂

∂r
+ (λ2 − 1)r cos θ

(
cos θ

∂

∂r
− sin θ

1

r

∂

∂θ

)]
δρ

−
[
µ

m
− ω2

r

2

(
r2 + (λ2 − 1)z2

)]
∆δρ (2.43)

For a spherical trapping potential (λ = 1), the density modulation δρ is proportional to the
spherical harmonics Yl,ml and equation (2.43) directly leads to a dispersion relation [133]. In a
cylindrically symmetric potential, the solution is more involved. However, there exist explicit
solutions in some special cases. Due to the symmetry of the problem, the projection of the
angular momentum onto the symmetry axis ml is still a good quantum number and one can
choose an ansatz δρ(~r) = f(r)rlYl,ml(θ, φ) [133]. This will not necessarily lead to eigenstates,
since the angular momentum l is not a good quantum number any more [134], causing coupling
between modes at different l. For the simplest choice f(r) = 1, this ansatz fulfils Laplace’s
equation and the second term in equation (2.43) vanishes:

ω2 = ω2
r

[
l + (λ2 − 1) cos θ

(
l cos θ − sin θ

∂
∂θ
Yl,ml
Yl,ml

)]
(2.44)

Using the definition of the spherical harmonics Yl,ml and usual recurrence formulas for the
associated Legendre polynomials Pl,ml [135], one obtains:

ω2 = ω2
r

[
l + (λ2 − 1)

(
l2 −m2

l

2l − 1
+

(l +ml)(l +ml − 1)

2l − 1

Pl−2,ml(cos θ)

Pl,ml(cos θ)

)]
(2.45)

It becomes obvious from this expression that the ansatz leads to a solution for ml = ±l:

ω2 = ω2
r l (2.46)

and for ml = ±(l − 1):
ω2 = ω2

r(l − 1 + λ2) (2.47)

These two dispersion relations can fully describe the dipole oscillations (l = 1). These modes
are purely radial (|ml| = 1) and axial (ml = 0) and it is therefore not surprising that the corre-
sponding eigenfrequencies coincide with the unperturbed harmonic oscillator values ω = ωr for
|ml| = 1 and ω = ωz for ml = 0 of the trap. This type of oscillations can occur in combination
with centre of mass oscillations of the condensate in the trap at the same frequencies [136].
For l > 1, the simple ansatz with f(r) = 1 in general does not lead to a solution. For the
quadrupole modes l = 2, one obtains a result only in the cases with |ml| = 2 (⇒ ω =

√
2ωr)

and |ml| = 1 (⇒ ω =
√
ω2
r + ω2

z ). For ml = 0, however, equation (2.45) results in a coupling
to a mode with l = ml = 0, corresponding to a monopole oscillation or breathing mode. This
motivates an ansatz [53] of a coupled quadrupole oscillation and monopole oscillation of the
form δρ(~r) = (a+ br2)Y0,0(θ, φ) + cY2,0(θ, φ). Here, for the monopole mode, the simplest non-
trivial radius dependence f(r) ∝ 1 + const. · r2 is chosen. Inserting the equivalent expression
δρ(r⊥, z) = A+Br2

⊥+Cz2 in cylindrical coordinates into the differential equation (2.43) leads
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Figure 2.1: Eigenfrequencies and components of the coupled monopole and ml = 0 quadrupole
mode, depending on the BEC aspect ratio λ = ωz/ωr. In (a), the eigenfrequencies ω from equa-
tion (2.48) are shown in units of the radial trapping frequency ωr. The asymptotic values for highly
prolate condensates (λ � 1), ω =

√
5/2ωz for the slow and ω = 2ωr for the fast oscillation, are

indicated as black dotted lines. In (b), the relative amplitudes B/(|B|+ |C|) and C/(|B|+ |C|) of
the oscillation in radial (solid lines) and axial (dashed lines) direction for both the slow and the fast
branch are plotted (same colour code as in a).

to a system of algebraic equations for the coefficients. One obtains two nontrivial (B,C 6= 0)
coupled modes with eigenfrequencies:

ω2 = ω2
r

(
2 +

3

2
λ2 ±

√
9

4
λ4 − 4λ2 + 4

)
(2.48)

The dependence of these frequencies on the aspect ratio λ of the condensate is shown in Fig-
ure 2.1a. In the experimentally relevant limit of highly prolate condensates λ� 1, this leads to
the two frequencies ω =

√
5/2ωz and ω = 2ωr. For the current experimental parameters (see

section 4.1), the correction of the exact expression (2.48) is less than half a percent compared to
the limiting values. In Figure 2.1b, the relative amplitudes of the oscillation in radial and axial
direction of the condensate are shown. In the limit of highly prolate BECs, the fast oscillation
is purely radial, whereas the slow branch shows a four times larger amplitude in axial direction
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(a) (b) (c)

Figure 2.2: Shape of the three experimentally most relevant quadrupolar oscillations [129]. The
slow quadrupolar ml = 0 mode (a) at ω ≈

√
5/2ωz is out of phase in radial and axial direction. For

the fast quadrupolar ml = 0 mode (b) at ω ≈ 2ωr, the two directions are in phase, but the amplitude
of the axial oscillation vanishes in the limit of highly prolate condensates (λ → 0). The |ml| = 2
quadrupole mode (c) at ω =

√
2ωr is purely radial.

than in radial direction. Furthermore, the two directions oscillate in phase for the fast quadrupo-
lar mode and out of phase by π for the slow quadrupolar mode.
In Figure 2.2, the shape of the three experimentally most relevant modes are sketched for a
prolate condensate (λ < 1). The first collective oscillations of Bose-Einstein condensates, ob-
served in time of flight experiments, were the slow quadrupolar ml = 0 mode and the |ml| = 2
quadrupole mode [137]. Shortly afterwards, also the fast quadrupolar ml = 0 mode was dis-
covered [134] and studied in situ using nondestructive phase-contrast imaging [136]. For the
present experiments, mainly the slow quadrupolar ml = 0 oscillation is relevant. The exci-
tation of the other modes is unlikely due to their asymmetry (|ml| = 2) or higher frequency
(fast ml = 0). The good agreement of the eigenfrequency, calculated here, with the measured
frequency (see section 8.2) shows that additional effects from finite temperature [138] and in-
fluence of the thermal cloud [136] can be neglected in the present case in good approximation.



3 Interaction of Rydberg atoms and
ground state atoms

In this thesis, the interaction between Rydberg atoms and ground state atoms is investigated
in two different approaches. First, in section 3.1, the possibility to imprint the strong binary
interaction between Rydberg atoms (see section 1.2) onto all atoms in an atomic sample is
discussed. Afterwards, in sections 3.2 and 3.3, the direct interaction between the constituents
of the Rydberg atom, the Rydberg electron and the positively charged core, and multiple atoms
in the ground state is studied.

3.1 Rydberg dressing

Rydberg atoms show a very strong van-der-Waals type interaction, typically more than ten or-
ders stronger than the interaction between ground state atoms [7]. At short distances or close to
a Förster resonance, there is a transition to a long range dipolar interaction, which can exhibit
different kinds of angular dependence (see section 1.2). Furthermore, such a Förster resonance
allows to easily tune the interaction strength [10]. As a result, Rydberg atoms show a large and
tunable interaction, which makes them promising candidates for extending current schemes of
quantum simulation with ultracold quantum gases [6].
The most obvious problem in using Rydberg excitation in quantum gases is the mismatch in
timescales; the lifetime of Rydberg atoms in states with low angular momentum is on the or-
der of tens of microseconds, whereas it typically takes three orders of magnitude longer for a
many-body system to equilibrate in a typical experiment. This problem can be overcome by
only weakly dressing [85, 86] the atomic ground state with a small fraction f of the Rydberg
state, thereby enhancing the overall lifetime of the system by the factor 1/f . As discussed in
paragraph 1.2.3, the strong interaction between Rydberg atoms can result in collective effects
in the excitation process, namely the suppression of further excitation in a volume around the
first Rydberg atom, the so called Rydberg blockade effect. This effect has to be included in
the calculation of the effective dressing potential, as has been already shown by a very simple
two-atom model [9]. At typical densities in quantum degenerate atomic gases, the number of
atoms inside a blockaded volume can become very large, which affects the dressing potential
significantly. There is a transition from the pure two-body interaction to a collective N -body
regime, with the effective interaction vanishing at large densities [8].
In this section, an analytical N -atom model for the dressing potential is described [139], that
fully accounts for blockade effects. The analytical model, developed in the following, leads
to the same results as the purely numerical approach in [8]. At the same time, it provides
an intuitive picture for the processes involved and it furthermore allows significantly extended
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simulations closer to real experimental situations. In particular, the effect of Rydberg dressing
on a three-dimensional asymmetric BEC and the role of Thomas-Fermi approximation in the
Rydberg dressed condensate is studied. The implications for an experimental realization in the
present setup are discussed in paragraph 3.1.4.

3.1.1 Binary interaction

Following the argumentation of [9], first the simple case of two atoms, dressed with a Rydberg
state by a coupling field with Rabi frequency Ω and laser detuning ∆, is discussed. For sim-
plicity, the interaction V (R) between atoms in the particular Rydberg state are assumed to be of
purely repulsive van-der-Waals type. In fact, it turns out that the actual shape of the Rydberg in-
teraction plays a minor role, effectively reduced to the sign of the potential V (R) and the value
of the blockade radius rB; one can incorporate attractive interaction by simply changing the
sign of the detuning. Using the dressed states approach, that has been described in section 1.1
for a two-atomic system, the Hamiltonian in the basis |gg〉, 1/

√
2 (|gr〉+ |rg〉) and |rr〉 can be

written as:

H = h

 0 Ω/
√

2 0

Ω/
√

2 −∆ Ω/
√

2

0 Ω/
√

2 −2∆ + V (R)

 (3.1)

Here, the asymmetric singly excited state 1/
√

2 (|gr〉 − |rg〉) has been omitted, as it is not
coupled by Ω. It is straightforward to obtain the new ground state of the system by diago-
nalizing (3.1), depending on the interatomic distance R. As can be seen in Figure 3.1a, this
ground state shows a steep avoided crossing at around the blockade radius rB for the com-
bination of blue laser detuning and repulsive potentials, whereas for red detunings, there is a
smooth step. The blockade radius rB is defined as the interatomic distance, where the power
broadening Ωeff =

√
Ω2 + (2∆)2 equates to the absolute value of the Rydberg-Rydberg inter-

action V (rB) (cf. equation 1.22 in paragraph 1.2.3). For a repulsive van-der-Waals interaction
V (R) = C6/R

6, as it is present for most Rydberg states far from possible resonances (see
section 1.2), one obtains:

rB =

(
C6

h
√

Ω2 + (2∆)2

)1/6

≈
(

C6

h |2∆|

)1/6

(3.2)

Here, the second part is the common approximation for weak dressing Ω2/∆2 � 1. In the case
of red detuning and repulsive potentials, the potential (up to an offset) is given as the Rydberg
interaction potential, weighted with the probability f 2 to find both atoms in the Rydberg state.
At large distances R > rB, where the Rydberg blockade does not play a role, this factor is
approximately (see equation (1.12) in paragraph 1.1.3):

f 2 =
Ω4

4(Ω2 + ∆2 + ∆
√

Ω2 + ∆2)2
≈ Ω4

16∆4
(3.3)

At interatomic distances R ≈ rB, the detuning of the doubly excited state |rr〉 increases due
to the Rydberg-Rydberg interaction, tuning this state out of resonance. This is the well known
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Figure 3.1: Sketch of binary Rydberg dressing potentials. In (a), the interaction potential of a pair
of atoms, dressed with a repulsive Rydberg state

(
dV
dR > 0

)
by a coupling laser field with Rabi fre-

quency Ω and detuning ∆ (∆ < 0 red, ∆ > 0 blue), is shown. In both cases, the interaction potential
saturates for very large and very small distances onto a constant value V1/2, which depends only on
the laser parameters Ω and ∆. In case of red detuning and repulsive interaction (or blue detuning and
attractive interaction), the potential converges to the Rydberg-Rydberg interaction potential V (R),
weighted with the Rydberg fraction f squared (dashed line, corrected for offset V1). Note the scaling
of the energy axis with the sign of the detuning ∆. For blue detuning ∆ > 0, the potential effec-
tively becomes repulsive. The parameter regimes, where the four possible potential shapes occur,
are further illustrated in (b). For red detuning, the asymptotic form of the potential is repulsive; for
blue detuning, it is attractive. Avoided crossings appear for the combination of repulsive interaction
and blue detuning, as well as for attractive interaction and red detuning.

phenomenon of Rydberg blockade (see paragraph 1.2.3). Therefore, the probability to find both
atoms in the Rydberg state decreases dramatically and the potential saturates at a constant value.
In case of blue detuning, the interaction energy shows the same asymptotic behaviour, but with
the saturation values for small and large interatomic distances R interchanged. It is important
to note that the difference between the asymptotic values of the potential energy and therefore
also the overall magnitude of the dressing effect is determined only by the laser parameters Ω
and ∆ [140, 141]. These values have been already given by Johnson et al. [9]:

V1 = h∆

(√
Ω2

∆2 + 1− 1

)
(3.4)

V2 = h∆
2

(√
2Ω2

∆2 + 1− 1

)
(3.5)

The overall energy scale is given by the difference of equations (3.4) and (3.5), which can be
approximated as −h Ω4

8∆3 for large detunings |∆| � Ω. The actual shape and strength of the
Rydberg interaction determines mainly the value rB of the blockade radius and thus the transi-
tion between the two regimes. For attractive Rydberg interaction potentials, the same potential
shapes appear (see Figure 3.1b). Only the sign of the laser detuning ∆ has to be inverted in
Figure 3.1a to account for attractive interaction potentials V (R).
The two-atom result has a very simple explanation: If the two atoms are separated by a dis-
tance much larger than the blockade radius rB, the system can be described as two independent
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atoms in a laser field with Rabi frequency Ω and detuning ∆ with respect to the transition to
the Rydberg level. Therefore, both atoms individually exhibit an AC Stark shift V1/2 (see para-
graph 1.1.3). If the two atoms approach each other, at the distance of the blockade radius rB
(equation 3.2), the Rydberg-Rydberg interaction potential becomes so strong that the state with
both atoms excited is tuned out of resonance. The explanation for the behaviour of the system
in the blockade regime becomes obvious from the following discussion of the N -atomic case.

3.1.2 N-atom model

Now, the density-dependent energy of a system consisting of N Rydberg dressed atoms is con-
sidered. At very low densities, the interatomic distances R are much larger than the blockade
radius rB. The atoms are therefore independent and the energy of the system is N -times the
light shift V1/2 of one single atom in equation (3.4):

V1(N) = Nh
∆

2

(√
Ω2

∆2
+ 1− 1

)
(3.6)

In the high density limit, all atoms are situated within one blockade sphere of volume 4
3
πr3

B. In
this case, the dimensionality of the Hilbert space can be dramatically reduced by the fact that
all states with more than one Rydberg excitation are completely tuned out of resonance due to
the Rydberg blockade. The resulting Hamiltonian in the (N + 1)-dimensional basis |gg...g〉,
|rg...g〉, |gr...g〉,... , |gg...r〉 reads:

HN = h


0 Ω

2
Ω
2

. . . Ω
2

Ω
2
−∆ 0 . . . 0

Ω
2

0
. . . . . . ...

...
... . . . −∆ 0

Ω
2

0 . . . 0 −∆

 (3.7)

It can be shown, e.g. by mathematical induction (see appendix A.1.1), that the polynomial
determining the eigenenergies E is given as:

det (HN − 1E) =

[
E2 + h∆E − h2NΩ2

4

]
(−h∆− E)N−1 (3.8)

Therefore, the energy of the ground state of the fully blockaded N -atomic state is

V2(N) = h
∆

2

(√
NΩ2

∆2
+ 1− 1

)
(3.9)

Comparing this result to equations (3.4) and (3.5), the explanation of the energy in the limit of
a fully blockaded system becomes obvious. Due to the Rydberg blockade, all N atoms share
one Rydberg excitation, forming a collective state 1√

N

∑N
i=1 |g1, g2, ..., ri, ..., gN〉. This state, a

so called super atom [113], is coupled by the light field to the ground state with a collectively
enhanced Rabi frequency

√
NΩ (see paragraph 1.2.3). The collective Rabi frequency then also
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has to be used in the calculation of the AC Stark effect. The energy of the fully blockaded N -
atomic system (equation 3.9) is therefore the light shift of a single super atom with a collective
Rabi frequency

√
NΩ and detuning ∆. In the special case N = 2, the result of equation (3.5)

is recovered. The interaction potential induced by Rydberg dressing, shown in Figure 3.1a, can
thus be viewed as the gradual transition from a collective light shift of one super atom to the
individual light shift of two independent atoms in the vicinity of the blockade radius rB.
To study the consequences of high densities for the effect of Rydberg dressing, the additional in-
teraction energyEdress per atom is now calculated. The number of atomsN within one blockade
sphere of radius rB is determined by the ground state atom density ρ:

N =
4

3
πr3

Bρ =
ρ

fρB
(3.10)

Here, ρB denotes the critical density, where according to [8] blockade phenomena start to play
a role. This is the case, when the average number of Rydberg atoms in a blockade sphere
fρ · 4/3πr3

B approaches unity:

ρB =
3

πr3
B

∆2

Ω2
=

3
√

2h

π
√
C6

|∆|5/2

Ω2
(3.11)

The difference of light shifts between one super atom V2(N) (equation 3.9) and N independent
atoms V1(N) (equation 3.6) is shared among all N atoms, so that the contribution per atom
reads:

Edress(ρ) = h
∆

2

(
Ω2

4∆2

ρB
ρ

(√
4
ρ

ρB
+ 1− 1

)
−

(√
Ω2

∆2
+ 1− 1

))
(3.12)

Note that this expression is only valid for ρ/ρB ≥ Ω2/(4∆2); at lower densities, the block-
ade does not play a role any more and the mean interaction energy per particle is given
as f 2V (ρ−1/3) � 1. The relevant quantity for calculating the impact on an ultracold sam-
ple (see following paragraph 3.1.3) is the variation of the energy density Eeff(ρ) = ρEdress(ρ)
with density:

∂ρEeff(ρ) = h
∆

2

1−
√

Ω2

∆2
+ 1 +

Ω2

2∆2

1√
4 ρ
ρB

+ 1

 (3.13)

The density dependence of this quantity is shown in Figure 3.2. For low densities ρ and weak
dressing Ω2/∆2 � 1, there is a linear increase with slope

geff = −hπ
6
r3
B

Ω4

∆3
(3.14)

This slope deviates from the value in [8] only by a constant factor of π/2. At higher densities,
the last part of equation (3.13) vanishes and the energy functional ∂ρEeff quickly saturates on a
constant value

µsat = h
∆

2

(
1−

√
Ω2

∆2
+ 1

)
≈ −h Ω4

2∆3
(3.15)

This expression agrees exactly with the result in [8]. The energy Edress(ρ) from equation (3.12)
saturates on the same value as the derivative ∂ρEeff(ρ). The saturation value is the AC Stark
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Figure 3.2: Rydberg dressing induced energy
functional ∂ρEeff(ρ) versus ground state atom
density ρ. The dashed lines indicate the asymp-
totic behaviour at high and low densities. The
inset shows a zoom at very low densities. The
values are calculated for a Rabi frequency of
Ω = 10 kHz, a red detuning of ∆ = 100 kHz
and a purely repulsive van-der-Waals interaction
with C6/h = 1.89 · 10−28 Hzm6, corresponding
to the 35S Rydberg state [82] and resulting in a
blockade radius of rB = 3.1 µm. The critical
densities ρB and ρC are explained in the text.

shift of a single free Rydberg dressed atom, since the contribution of the dressed super atom to
the energy of a single atom becomes negligible.
As can be seen in Figure 3.2, the energy functional ∂ρEeff deviates from the initial linear slope
already at densities well below ρB. The simple explanation is that collective effects already start
to play a role as soon as there are more than two atoms within one blockade volume. This is the
case at densities above

ρC =
3

2πr3
B

=
3

2π

√
2h|∆|
C6

(3.16)

As a consequence, collective effects beyond two-body interaction have to be considered also at
relatively low densities, where they already start to reduce any influence of Rydberg dressing.

3.1.3 Rydberg dressing of Bose-Einstein condensates

The model, developed in the previous paragraph, allows now to calculate the modification of
the wavefunction of a Bose-Einstein condensate under Rydberg dressing. It provides an analyt-
ical expression of the steady state density distribution of a BEC, dressed with a homogeneous
coupling field Ω, even in case of a cylindrically symmetric harmonic trapping potential. Thus,
not only effects in realistic experimental situations can be predicted, but also the scaling of the
deformation with different parameters can be extracted.
A BEC in a three-dimensional harmonic trap is considered. The evolution of the condensate
wavefunction ψ(~r, t) is described by the Gross-Pitaevskii equation:

i~
∂ψ

∂t
=

[
−~2∇2

2m
+

3∑
i=1

mω2
i x

2
i

2
+ gs |ψ|2 + ∂ρEeff(|ψ|2)

]
ψ (3.17)

As introduced in section 2.1, the first two terms are the usual kinetic energy contribution and the
harmonic trapping potential, characterized by the three trapping frequencies ωi. The third term
is the mean-field contribution of the contact interaction between the atoms, while the fourth
term ∂ρEeff(ρ) from equation (3.13) describes the effect of Rydberg dressing on the BEC. Be-
sides mean-field approximation, this incorporates two further approximations: First of all, local
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Figure 3.3: Reproduction of Figure 3 of [8] with the analytical model: Density profiles ρ(r) of
a Bose-Einstein condensate, consisting of N = 104 (a) and N = 105 (b) atoms, in a radially
symmetric trap with trap frequency ω = 2π · 15.9 Hz. The inset in (a) shows the parameters of the
laser field, coupling to the Rydberg level, in the plane of Rabi frequency Ω and detuning ∆ in units
of the critical detuning ∆c = 107 kHz. For larger condensates and hence higher densities ρ, the
effect of Rydberg dressing is strongly reduced.

density approximation requires the sample to be much larger than the length scale of the interac-
tion, given by the blockade radius rB (equation 3.2). Secondly, the actual shape of the Rydberg
interaction potential is neglected by assuming a step between the two asymptotic values of the
dressing potential at the blockade radius rB. Even without solving equation (3.17), some impor-
tant conclusions can be drawn. In the very low density regime, the interaction energy is linear in
the density |ψ|2 and can therefore be described with an effective s-wave scattering length mgeff

4π~2

(see equation 3.14). For high densities, the energy functional ∂ρEeff(ρ) becomes constant and
thus only contributes as a constant offset to the chemical potential µ. In this case, no effect of
Rydberg dressing on the density distribution can be expected.
The ground state stationary solution ψ(~r, t) = ψ(~r)e−iµ/ht of equation (3.17) can be obtained
numerically, e.g. using the split-step Fourier method [142]. For condensates with large atom
numbers, the trapping potential and the interaction energy are large [129]. In Thomas-Fermi
approximation, the kinetic energy term can be neglected, which is usually a good approxima-
tion, except for the low density wings of the condensate [143]. Without the additional energy
functional ∂ρEeff, the stationary Gross-Pitaevskii equation becomes linear in |ψ|2, making the
analytical solution particularly simple. The well known result is a paraboloidal density distri-
bution ρ = |ψ|2, where the value of the chemical potential µ is determined by the normalization
to the total atom number N (see section 2.2). With the contribution from Rydberg dressing
(equation 3.13), the calculation of the modified ground state density ρ becomes only slightly
more involved. For red detunings ∆ < 0, equation (3.17) can be rewritten as a cubic equation
in the density ρ, that can be efficiently solved analytically. Only the chemical potential µ has
to be calculated numerically under the constraint that the total BEC atom number remains con-
stant. In Figure 3.3, the condensate density distributions, resulting from the same parameters
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Figure 3.4: Radial and axial density profiles of a BEC, consisting of 104 87Rb atoms, in an axially
symmetric trap with trap frequencies ωr = 2π · 80 Hz and ωz = 2π · 20 Hz. The analytical result
using Thomas-Fermi approximation (TF, left) is compared to the full numerical solution of the
Gross-Pitaevskii equation in three dimensions (num., right). The unperturbed density distribution as
well as two different Rydberg dressed situations are shown. The repulsive case has been calculated
for the same parameters as Figure 3.2 (35S, Ω = 10 kHz, ∆ = 100 kHz). For the attractive case, the
sign of the detuning has been inverted.

as in [8], is shown1. The analytical model is in very good agreement with the numerical results
of [8], which were also obtained within Thomas-Fermi approximation, but with a finite devia-
tion. Nevertheless, the results should be more than enough precise to allow predictions about
overall scaling and orders of magnitude. However, since the additional term ∂ρEeff of Rydberg
dressing is expected to be small, it is not obvious that Thomas-Fermi approximation is valid
here. As an exemplary check, the full Gross-Pitaevskii equation is solved, using the split-step
Fourier method, and shown in comparison to the analytical result in Thomas-Fermi approxi-
mation in Figure 3.4. As expected, a repulsive dressing potential leads to an expansion of the
condensate, whereas an attractive potential makes the cloud become smaller and denser. Fur-
thermore, the full numerical solution and the result of Thomas-Fermi approximation agree very
well in the centre of the condensate, while the deviation at the outer parts becomes significant. It
turns out that, in these regions, the kinetic energy term is dominating the density distribution, so
that here the effect of Rydberg dressing is even less visible than in the centre of the BEC. This is
in contrast to what one could have expected from the scaling of the energy functional ∂ρEeff(ρ)
with the density alone (see Figure 3.2). However, the fact that the impact of Rydberg dressing is
vanishing at higher densities, can be seen comparing the attractive and repulsive dressing. The

1The atom number N in [8] is obviously misquoted one order to high. Moreover, creating a BEC of rubidium in
an isotropic trap at a trap frequency as low as ω = 2π · 15.9 Hz is challenging at best.
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effect of repulsive Rydberg dressing is slightly stronger, since it becomes self-amplifying.
Since the modification of the density distribution by the Rydberg dressing is the strongest in
the centre of the condensate, the relative change of peak density is used in order to quantify the
response of a three-dimensional asymmetric BEC in the following paragraph 3.1.4. As the be-
haviour of this quantity is well reproduced using Thomas-Fermi approximation, one can make
use of the significant speed up provided by the analytical calculation within Thomas-Fermi ap-
proximation. Furthermore, the residual deviation from the more exact numerical simulation
further decreases at higher atom numbers in the condensate. In the experimentally relevant
parameter regime, the correction is therefore even smaller.

3.1.4 Systematic study of the parameter space

Based on the model developed in the previous paragraph 3.1.3, the deformation of a BEC can be
calculated depending on different experimentally accessible parameters. These are essentially
the laser parameters, characterized by the Rabi frequency Ω and the detuning to the Rydberg
state ∆, the initial peak density ρ0 of the condensate and the blockade radius rB, which, within
the model of equation (3.2), can be controlled via the C6 coefficient of the Rydberg state.
From Figure 3.2, one can conclude that the effect of Rydberg dressing is vanishing at high
atomic densities. Here, the Rydberg blockade limits the achievable interaction strength. In a
not fully blockaded sample, at densities below ρB, a higher density increases the collective Rabi
frequency

√
NΩ, leading to more Rydberg excitation in the system. Above ρB, however, no fur-

ther Rydberg excitation is possible. The total interaction energy, determined by the number of
Rydberg excitations in the system, is then saturated on a constant value, that is shared among
more and more atoms. The contribution for each individual atom is thus effectively vanishing
at high densities. At very low densities, however, the interatomic distance increases, thereby
also reducing the interaction strength. The maximum effect is therefore expected in the inter-
mediate regime, where the energy difference per atom between the blockaded system and the
non-blockaded system is the highest. One can estimate this region to be at the point, where the
system just starts to become fully blockaded, at densities around ρ = ρB.
The laser parameters Ω and ∆ mainly determine the fraction of Rydberg excita-
tions f ≈ Ω2/(4∆2). Large Rabi frequencies Ω and small detunings ∆ to the Rydberg state
are thus increasing the effect of Rydberg dressing. However, there is an upper bound of the tol-
erable Rydberg fraction f , given by the decay of the Rydberg state. Large Rydberg fractions f
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Figure 3.5: Dependence of Rydberg dressing
of a BEC on the laser parameters Ω and ∆.
The relative change of peak density ∆ρ/ρ0

in steady state is calculated for a condensate,
consisting of N = 2 · 104 atoms, in a cylin-
drically symmetric trap with trap frequencies
ωr = 2π · 20 Hz and ωz = 2π · 80 Hz. The
condensate is dressed with a repulsive Rydberg
state with C6/h = 6.10 · 10−29 Hzm6, corre-
sponding to the 32S Rydberg state.
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Figure 3.6: Dependence of Rydberg dressing of a BEC on the Rabi frequency Ω (a), laser detun-
ing ∆ (b) and the blockade radius rB as an independent quantity. The relative change of peak
density ∆ρ/ρ0 in steady state is calculated for a condensate, consisting of N = 2 · 104 atoms, in a
cylindrically symmetric trap with trap frequencies ωr = 2π · 20 Hz and ωz = 2π · 80 Hz. The con-
densate is dressed detuned by ∆ = 100 kHz (a) with Rabi frequency Ω = 10 kHz (b) to a repulsive
Rydberg state with C6/h = 6.10 · 10−29 Hzm6, corresponding to the 32S Rydberg state. The black
dots show the blockade radii with maximum effect at fixed Ω and ∆ respectively. The black solid
line shows the value of rB,m (equation 3.18), when the sample on average starts to become fully
blockaded. This is where the maximum effect is expected (see text).

lead to a strongly reduced lifetime ∝ 1/f of the dressed state, that prevents the observation of
any mechanical effect. This constraint is further discussed in chapter 6.
In order to quantify the effect of Rydberg dressing onto a BEC, the relative change ∆ρ/ρ0 of
the peak density of the condensate is calculated. The dependence of this quantity on the Rabi
frequency Ω and the laser detuning ∆ to the Rydberg state are shown in Figure 3.5. The range
of Rabi frequencies is given by technical constraints, that are discussed later in chapter 6. As
expected, the effect increases towards higher Rabi frequencies Ω and lower detunings ∆. At
very small detunings ∆ ≤ Ω, however, there is some deviation from this trend, since here the
blockade radius rB, according to equation (3.2), becomes large. Anyway, the approximation of
weak dressing f � 1 is not fulfilled any more in this parameter region.
The calculations so far assumed that the finite blockade radius rB is given by power broadening
according to equation (3.2), neglecting technical sources of laser broadening. In Figure 3.6, the
influence of the blockade radius rB is studied as an independent quantity. The effect of Rydberg
dressing increases monotonously with Rabi frequency Ω and decreases with detuning ∆. For
each value of Ω and ∆, however, there is a clear maximum in the blockade radius rB. This
observation can be explained by the fact that the blockade radius rB determines the length scale
of the system. The density ρ is rescaled by the blockade radius rB according to equation (3.10).
As discussed before, the maximum effect of Rydberg dressing is expected, when the system
becomes fully blockaded at ρ = ρB. Keeping the density ρ fixed, one can calculate the optimal
blockade radius rB,m from equation (3.11):

rB,m = 3

√
3

πρ

∆2

Ω2
(3.18)
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It turns out that this reproduces the dependence observed in Figure 3.6 even quantitatively, if
3/4 times the mean density of the dressed condensate is used. In case of small deformations of
the condensate, also the mean density ρ = 2/5ρ0 of the initial Thomas-Fermi density distribu-
tion with peak density ρ0 is a good approximation.

3.1.5 Dipolar interaction

Within the model presented in this work, the shape of the interaction potential only determines
the value of the blockade radius rB and the sign of the Rydberg dressing. Therefore, one would
not expect that a Rydberg-Rydberg interaction of dipolar type could lead to fundamentally new
effects. However, it seems worthwhile to consider the dipolar interaction of Rydberg states
close to a Förster resonance. Some Rydberg states can be tuned into resonance by applying
microwaves [95, 98] or small electric fields [99, 100, 101, 102, 103, 104]. First of all, the
interaction between two Rydberg atoms close to such a resonance shows an angular depen-
dence [105, 106], that is expected to translate directly into the Rydberg dressed interaction.
Secondly and more importantly, the strength and sign of the interaction close to the Förster
resonance can be tuned via the Förster defect ∆F [144]. This would not only allow to easily
realize repulsive and attractive Rydberg dressing while keeping other parameters of the system,
like e.g. the Rabi frequency Ω, constant, but also enable to control the blockade radius rB of
the system by changing the interaction strength. As the discussion above in paragraph 3.1.4
showed, this is a key parameter that rescales the important density scale of the problem.
Yet in case of a Förster resonance, the level scheme becomes slightly more involved. The two-
atom Hamiltonian (3.1) has to be extended by the pair state |r′r′′〉, which, on Förster resonance
(∆F = 0), becomes degenerate with the doubly excited Rydberg state |rr〉:

H = h


0 Ω/

√
2 0 0

Ω/
√

2 −∆ Ω/
√

2 0

0 Ω/
√

2 −2∆ Udd(R)
0 0 Udd(R) −2∆ + ∆F

 (3.19)

where Udd(R)~R−3 is the coupling of the two doubly excited Rydberg states (see equa-
tion (1.16) in section 1.2). Negative Förster defects ∆F < 0 lead to a repulsive interaction;

0

Förster defect ÄF

detuning Ä

Ä =2F Ä

Figure 3.7: Sketch of different potentials of a
pair of atoms, dressed with a Rydberg state
close to a Förster resonance. In the plane of de-
tuning ∆ and Förster defect ∆F , four different
regimes are identified. The regime of a smooth
potential is narrowed down compared to Fig-
ure 3.1b onto a range of small absolute detun-
ings |∆| < |∆F |/2.
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an attractive interaction can be realized by choosing positive Förster defects. It turns out that
similar potential curves as in Figure 3.1a can be obtained. In particular, the asymptotic values
are the same as for the Hamiltonian (3.1). However, the smooth dressing potential (red curve in
Figure 3.1a) is only present in the regime of small absolute detunings |∆| < |∆F |/2. For larger
detunings ∆, there is an additional avoided crossing occurring. The regimes of different two
body potentials in the plane of detuning ∆ and Förster defect ∆F are sketched in Figure 3.7.
One has to note that the avoided crossings are likely to play a role only in very cold atomic sam-
ples, since fast atoms follow the potential curves diabatically [145]. Then, only the asymptotic
values of the potential and the blockade radius rB are important. In this case, the sign of the
Rydberg dressed potential can be fully controlled with the sign of the laser detuning ∆ alone,
also in the absence of a Förster resonance.

3.2 Electron-atom scattering

A large portion of today’s knowledge in atomic and nuclear physics is stemming from scattering
experiments, ranging from the early days of atomic physics to nowadays particle physics. The
long tradition of scattering experiments started with the famous Geiger-Marsden experiment
from 1909, the elastic scattering of α particles [146]. Together with results from electron scat-
tering, their findings were interpreted by Rutherford later in 1911 as the discovery of the atomic
nucleus [147]. Deep inelastic scattering [148, 149] of high energy electrons was later on used to
clarify the structure of hadrons, leading to the discovery of quarks. The scattering of slow elec-
trons also plays an important role in the history of physics. In the early 1920ies, Ramsauer and
Townsend studied independently the collisions of low-energy electrons and atoms [150, 151].
The characteristic minimum of the scattering probability at a certain electron energy, the so
called Ramsauer-Townsend minimum, is the first phenomenon observed, indicating that the
electron can not be described by classical mechanics. Its later explanation in the framework of
de Broglie’s wave-particle duality [152] was an important step in the development of quantum
mechanics.
The interaction of Rydberg atoms with gases at high densities is largely dominated by the scat-
tering of the highly excited Rydberg electron from the neutral ground state atoms. As men-
tioned in the introduction, first studies in this direction where undertaken in 1934 by Amaldi
and Segrè [2, 3] and independently by Füchtbauer and coworkers [74]. They investigated sys-
tematically the influence of admixtures of various gases such as hydrogen, nitrogen and different
noble gases on absorption spectra of sodium and potassium. For high terms, the Rydberg states,
they found a shift and broadening of absorption lines, which depend only on the type of per-
turbing foreign gas and its density. The explanation of the line shift in terms of low electron
scattering was given by Fermi in 1934 [14], introducing the nowadays well known Fermi pseu-
dopotential, reducing the complex interaction of the Rydberg electron and ground state atoms
to a single parameter, the scattering length a. Within Fermi’s model, the Rydberg electron in
its orbital is assumed as a quasi-free particle, that is scattering with low momentum ~k = ~|~k|
at the ground state atoms. This approach was further refined by extending it to alkali metals
perturbing gas [153] and higher momenta [154], recovering the original result if the impulse
approximation [155] is applied. Considering a single particle incident upon a system of two or
more scattering partners, this approximation in general consists of three main points [156]:
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1. The range of interaction is small compared with the interparticle distance, leading to pure
binary interaction between the incident particle and the target particles.

2. The target system is dilute, so that there is no sizeable attenuation of the incident particle
by the target system. This means that, dealing with one single scattering event, the impact
of the previous events can be largely neglected.

3. The single scattering event lasts short enough that binding forces during the collision may
be neglected.

The experimental results presented in this thesis, considering Rydberg S-states with principal
quantum numbers between n = 110 and n = 202, thermal clouds, and Bose-Einstein conden-
sates of rubidium 87Rb at densities up to 1014 cm−3, can be largely explained by the original
free electron model of Fermi. The absolute value of the relevant triplet electron-atom scattering
length here is 16.1 a0 [157], which is much smaller than the mean interparticle distance ranging
from about 2500 a0 to more than 10000 a0. In the following and in section 7.1, it becomes clear
that also the other requirements for impulse approximation are fulfilled in the present situation.
A good review of the extensions of the Fermi model can be found in [76] and [13]. In the
following section, Fermi’s original derivation [14] is recapitulated, since it deals exactly with
the situation discussed in this thesis. Later on, the influence of higher order scattering theory is
shortly reviewed. Finally, the effects of the scattering on the Rydberg electron and the scattering
atoms are discussed.

3.2.1 Fermi pseudopotential

Even though it does not fully comply with modern textbook nomenclature [75], the original
derivation of Fermi’s pseudopotential is very instructive, not only for historical reasons. Be-
sides the original publication from 1934 [14], this part is based on the paper of Reinsberg [158]
from the same year and the discussion in [159].
The starting point is the stationary Schrödinger equation for the Rydberg electron in the com-
bined potential, created by the Rydberg core U(~r) = − e2

4πε0
1
|~r| and the surrounding neutral

ground state atoms
∑

i Vi:[
− ~2

2me

∆ + U(~r) +
∑
i

Vi

]
ψ(~r) = Eψ(~r) (3.20)

The interaction potential Vi is assumed to be short-range and isotropic. This is the case in the
system under investigation. The interaction is given by the polarization of an atom at position ~Ri

with polarizability α:

Vi = − 1

(4πε0)2

αe2

2|~Ri − ~r|4
(3.21)

The range of the polarization potential can be estimated by the characteristic radius r∗. This is
the distance, at which the polarization potential equals the centrifugal potential ~2/(2maer

2),
with mae denoting the reduced mass of the electron and the atom [160]:

r∗ =

√
maeαe2

4πε0~
(3.22)
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Figure 3.8: Semiquantitative sketch of length scales: Radial profile of probability density |ψ110S |2
for an electron in the 110S Rydberg state. The Coulomb potential U(r), created by the positively
charged Rydberg core (red) and the polarization potential

∑
i Vi by neutral 87Rb ground state atoms

with polarizability α = 5.38 · 10−39 J m2

V2 (green), are indicated. Locally, the wavefunction of the
Rydberg electron is deformed by the polarization potential. Averaging over one interaction range,
given as the characteristic radius r∗ ≈ 0.96 nm, leads to the dashed probability density |ψ|2 of the
Rydberg electron, as indicated in the inset. The mean interparticle distance d = 220 nm corresponds
to an atomic density of 1014 cm−3. The indicated value of the de Broglie wavelength λdB is just
providing an order of magnitude, since it varies with position.

For rubidium 87Rb, this characteristic radius is r∗ = 0.96 nm, which is much smaller than the
mean interparticle distance of d = 220 nm at a density of 1014 cm−3.
Furthermore, the Rydberg electron is assumed to be slow; in particular, the de Broglie wave-
length λdB is required to be much larger than the interaction range ~r∗. In Figure 3.8, the
relevant length scales are sketched for the 110S Rydberg state. The assumptions are well jus-
tified, except for regions very close to the Rydberg core, where the de Broglie wavelength λdB

becomes small. However, this region has only little significance for the calculations in this
thesis. In particular, the contribution to the mean energy shift of the Rydberg atom, averaged
over the whole volume, is negligible due to the scaling of the volume element with the radius
squared (see paragraph 3.2.3). The Schrödinger equation (3.20) is then averaged over a small
volume. This volume is chosen smaller than the de Broglie wavelength λdB, but larger than
the range ~r∗ of the polarization potential and the mean interparticle distance d. The averaged
wavefunction ψ(~r) outside the interaction region resembles then the wavefunction ψ(~r). This
way, the local impact of perturbing neutral atoms is removed (see inset of Figure 3.8). Under
this conditions, the mean of the derivative of the wavefunction can be replaced by the derivative
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of the averaged wavefunction (∆ψ = ∆ψ) and one obtains:

− ~2

2me

∆ψ(~r)− (E − U(~r))ψ(~r) +
∑
i

Viψ(~r) = 0 (3.23)

Now, the region with distance r = |~r − ~Ri|, 0 < r < λdB, closely around a single perturb-
ing neutral atom is considered. This environment is extending over regions with vanishing
and non-vanishing interaction V (r) with the perturber. Outside the interaction zone (r > r∗),
the wavefunction ψ(~r) is equal to the averaged wavefunction ψ(~r) and to first order constant,
since r is smaller than the de Broglie wavelength λdB. Inside the interaction zone (r ≤ r∗),
the energy E − U(~r) is much smaller than the interaction with the perturbing atom V (r) and
can be neglected. Therefore, the wavefunction ψ(~r) in the considered region becomes radially
symmetric around the perturbing ground state atom and reads (see Figure 3.9a):

ψ(~r) =

{
ψ = const. for r > r∗

ψ(r) for r ≤ r∗
(3.24)

The Schrödinger equation (3.20) inside the interaction zone r ≤ r∗ then simplifies to:

1

r2

∂

∂r

(
r2∂ψ

∂r

)
=

2me

~2
V (r)ψ(r) (3.25)

Considering the Laplace operator in spherical coordinates, a more suitable form can be obtained
using the substitution

ψ(r) = u(r)/r (3.26)

which then leads to:
∂2u

∂r2
=

2me

~2
V (r)u(r) (3.27)

For large distances r, the interaction potential V (r) vanishes and u(r) thus becomes linear, as r
is approaching r∗. The slope of u(r) is fixed by equation (3.24) to ψ, so that u(r) reads:

u(r) = ψ · (r − a) for r > r∗ (3.28)

Here, a is the intercept of the asymptotic wavefunction (3.28) with the abscissa (see Fig-
ure 3.9b). This quantity is nowadays called s-wave scattering length2. Now, the averaged
interaction energy stemming from one single perturber i can be calculated using the substitu-
tion (3.26) and equation (3.27). Under the condition that there is exactly one perturbing atom
inside the volume V0 over which the wavefunction is averaged, one obtains:

Viψ(~r) =
4π

V0

∫
V (r)u(r)r dr =

4π

V0

∫
~2

2me

d2u

dr2
r dr =

2π~2a

meV0

ψ (3.29)

The last integral can be solved using integration by parts, under the condition that the wave-
function ψ is differentiable at the position of the perturbing atom3. If there is no perturbing

2The sign here is chosen different to Fermi [14] in order to match nowadays textbook convention [75].
3This implies that

(
du
dr r − u

)
r=0

=
(
∂ψ
∂r r

2
)
r=0

= 0.
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Figure 3.9: Sketched behaviour of the Rydberg electron wavefunction ψ (a) and rψ(r) (b) close to
a perturbing atom. The region of interest is much smaller than the de Broglie wavelength λdB, so
that outside the interaction zone (r > r∗) the wavefunction becomes constant ψ(r) = ψ.

atom within the volume of interest, the interaction is vanishing. The general expression of
equation (3.29) therefore reads:

Viψ(~r) =
2π~2a

me

δr∗(r)

V0

ψ (3.30)

Here, δr∗(r) is a function that vanishes if r > r∗ and is one otherwise. For short-range inter-
action, r∗ vanishes and the function δr∗(r)/V0 converges to the Dirac delta function, so that the
interaction potential in the Schrödinger equation (3.20) can be written as:∑

i

Vi(~r) =

∫ ∑
i

Vpseudo(~r − ~Ri) |ψ(~r)|2 d~r (3.31)

with the well-known Fermi pseudopotential

Vpseudo(~r) =
2π~2a

me

δ(~r) (3.32)

This very last step was introduced by Fermi only later in 1936, when treating the scattering of
slow neutrons from hydrogen atoms [161]. This is the reason why, in the literature, the pseu-
dopotential is mostly connected to nuclear physics. However, the main steps of the derivation
were already formulated in 1934 [14]. Here, Fermi was only interested in the total effect of
a large number of perturbing atoms inside the wavefunction ψ(~r) of the Rydberg electron. By
summing up equation (3.29) over all atoms inside a Rydberg atom, he directly obtained the shift
of the Rydberg absorption line, measured by Amaldi and Segrè [2, 3]:

∆E(ρ) =
2π~2a

me

ρ (3.33)

where ρ is the density of ground state atoms. This equation can be also obtained by integrating
the pseudopotential (3.32) over the density distribution of the Rydberg electron |ψ(~r)|2 and the
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constant particle density ρ(~R) = ρ. This approach and therefore also the expression for the
shift in equation (3.33) are only valid if there are many atoms inside the volume of the Rydberg
atom. If there are only one or few atoms inside the Rydberg atom, it is more appropriate to
calculate the potential energy of a single ground state atom at distance ~R from the centre of the
Rydberg electron wavefunction ψ(~r) by integrating only over the electron density |ψ(~r)|2:

Vscat(~R) =

∫
Vpseudo(~r − ~R)|ψ(~r)|2 d~r =

2π~2a

me

|ψ(~R)|2 (3.34)

For Rydberg S-states with principal quantum numbers in the range of about n = 30 to n = 70,
this allows a bound state of a Rydberg atom and one or more ground state atoms, so called
ultralong-range Rydberg molecules, that have been predicted by Greene in 2000 [162] and
first experimentally observed in 2009 [12, 77]. However, it has to be noted that the molecular
potential (3.34) describes only the contribution to zeroth order in the electron momentum ~k
(see paragraph 3.2.2). Furthermore, it neglects any retroaction of the ground state atoms onto
the Rydberg electron wavefunction ψ(~r). This effect is small, but, in the case of diatomic
molecules, it can lead to a permanent electric dipole moment [80].
Finally, obtaining the value of the electron-atom scattering length a requires a more involved
calculation [157]. Depending on the species of the perturbing atom and the relative orientation
of the electron spin and atomic spin, the value can be positive and negative, as pointed out
by Fermi [14] and concluded by Reinsberg [158], based on Holtsmark’s calculations of the
Ramsauer effect in argon and krypton [163, 164]. This fact is explaining the blue and red shifts
observed in [2, 3, 74]. For rubidium 87Rb, the triplet scattering length relevant for the present
experiments is a↑↑ = −16.1 a0, whereas the singlet scattering length a↑↓ = 0.627 a0 is much
smaller and has a different sign [157].

3.2.2 Higher order contributions

So far, the scattering of the Rydberg electron from ground state atoms inside its wavefunction
has only been treated in zeroth order of the electron momentum ~k. Higher order contributions
have been calculated by A. Omont [76] by expanding the electron wavefunction in terms of
Fourier transformed plain waves ψi. The matrix elements of the interaction energy V (~R) with
the perturbing ground state atom (equation 3.21) read:

〈j|V (~R) |i〉 = 4πa3
0

∑
l

(2l + 1) ·Rl

[
Pl

(
~∇′~∇/k2

)
ψ∗j (~r

′)ψi(~r)
]
~r=~r ′=~R

(3.35)

where Pl are the Legendre polynomials and the reaction matrix elements Rl are connected to
the scattering phase shifts ηl by:

Rl = −2Ryd · tan
ηl

2a0k
(3.36)

The first term with l = 0 of the expansion (3.35) leads to the expectation value

Vs(~R) = 4πa3
0R0|ψ(~R)|2 (3.37)
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With the scattering phase shift η0 from [165], one obtains

R0 =
2Ryd

a0

(
a

2
+

~2

mee2a2
0

· π
6
αk

)
(3.38)

This results in a potential, which is of the form of the molecular potential (3.34), calculated
from Fermi’s pseudopotential (3.32):

Vs(~R) =
2π~2

me

a(k)|ψ(~R)|2 (3.39)

This term is describing s-wave scattering with a momentum-dependent s-wave scattering length:

a(k) = a+
~2

mee2a2
0

· π
6
αk +O(k2) (3.40)

To the same order in the electron momentum ~k, the second term with l = 1 leads to a p-wave
contribution:

Vp(~R) =
12πa3

0

k2
R1|~∇ψ(~R)|2 (3.41)

Using the scattering phase shift η1 from [165], one obtains

R1 = − e2

(4πε0)2a3
0

· π
30
αk (3.42)

This resulting finally in:

Vp(~R) = − e2

(4πε0)2

2π2

5

α

k
|~∇ψ(~R)|2 (3.43)

It is important to note here, that this description breaks down in the vicinity of possible reso-
nances. For the scattering of alkali metal atoms and electrons, there is a typical p-wave shape
resonance [76], that for rubidium appears at an electron energy of 23 meV [166]. The scattering
potential is affected in the range of approximately 10 meV around the resonance [167, 168, 169].
The kinetic energy Ekin(R) = ~2(k(R))2/(2me) can be estimated, depending on the radial dis-
tance R to the Rydberg core, using a semiclassical approximation [76, 12]:

Ekin(R) = − Ryd

(n− δ0)2
+

1

4πε0

e2

R
(3.44)

With increasing principal quantum number n, the radial position of the shape resonance thus
increases up to an asymptotic value of 63 nm, as shown in the inset of Figure 3.10. For low
Rydberg states at around n = 30 to n = 40, the p-wave shape resonance therefore leads to a
significant contribution to the scattering potential. This becomes manifest for example in the
existence of excited states of ultra long-range Rydberg molecules, which are bound by inter-
nal quantum reflection at the p-wave shape resonance [77]. However, in order to estimate the
relevance of the effect, one has to compare the region, in which the shape resonance plays a
role, to the total extent of the Rydberg electron wavefunction. In Figure 3.10, the radial position
of the shape resonance is shown, normalized to the limit of the classically allowed region at
2a0(n − δ0)2, for different principal quantum numbers n. Considering the spherical symme-
try and the scaling of the volume element with r2, it becomes obvious that the actual relative
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Figure 3.10: Estimated radial position of the triplet p-wave shape resonance in Rubidium Rydberg
states with principal quantum number n. The position, where the Rydberg electron reaches the
resonance energy 23 meV [166], according to the semiclassical approximation (3.44), is normalized
to the extent of the Rydberg state, given by the limit of the classically allowed region 2a0(n− δ0)2.
In the inset, the saturation of the unnormalized quantity to the asymptotic value 63 nm (solid black
line) is shown.

volume, in which the shape resonance modifies the scattering potential, becomes very small
already at principal quantum numbers just above n = 100. In the framework of this thesis, the
influence of the p-wave shape resonance hence can be neglected in very good approximation.
In Figure 3.11, the different relevant contributions to the scattering potential for Rydberg S-
states and rubidium 87Rb atoms are shown for the case of triplet scattering, where the spins of
the Rydberg electron and the colliding atoms are parallel. The radial Rydberg wavefunctions
are taken from numerical calculations [79] and the electron momentum ~k(r) is approximated
semiclassically according to equation (3.44). As can be seen in Figure 3.11a, the main contri-
bution stems from the zero energy s-wave scattering. This part leads to an attractive potential,
which is proportional to the probability density of the Rydberg electron. The momentum depen-
dence of the s-wave scattering length (equation 3.40) is always positive and therefore reduces
the potential depth. The p-wave contribution is negative, but out of phase by π in the oscillatory
behaviour of the Rydberg electron wavefunction, and leads to a small correction, leading to a
slightly deeper and smoother potential.
In Figure 3.11b and (c), the mean V =

∫
V (~r) d~r/

∫
d~r and the standard deviation

∆V = (
∫
V (~r)2 d~r/

∫
d~r − V 2)1/2 of the scattering potential in different approximations, cal-

culated over the whole extend of the Rydberg electron wavefunction, are shown. As discussed
above, the perturbative description of the scattering potential fails at low distances to the Ryd-
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Figure 3.11: Different contributions to the scattering potential: (a) s-wave scattering poten-
tial V (r) of the 110S Rydberg state, assuming a constant zero energy electron-atom scattering
length of a = −16.1 a0 [157] and corrections due to the momentum dependence of the scattering
length a(k), according to equation (3.40), and p-wave scattering (equation 3.43). Note that the semi-
classical approximation (3.44) is only valid inside the classically allowed region r ≤ 2a0(n− δ0)2.
Below, the dependence of the mean V (b) and standard deviation ∆V (b) of the total scattering
potential on the principal quantum number n is shown. The average is conducted over the whole
volume of the Rydberg atom. For the standard deviation, the inner region r < 0.1 nm has to be
excluded.
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berg core. Anyway, in this region the influence of the positively charged Rydberg core has to
be included (see also section 3.3). It turns out that this is negligible for the calculation of the
mean potential V . However, for the calculation of the standard deviation, the inner part of the
potential has to be excluded, since it contains unphysical large amplitude oscillations at very
small wavelengths. The result depends only weakly on the exact choice of the cut-off radius
above a certain value. Therefore, a constant cut-off of 0.1 nm is used for all principal quantum
numbers.
Due to the normalization of the electron wavefunction ψ(~r), the mean of the s-wave scattering
potential (3.39) with constant scattering length a(k) = a is inversely proportional to the volume
of the Rydberg atom and thus scaling as (n − δ0)−6. Taking higher order terms into account
leads to a slightly different scaling and amplitude. The momentum-dependent correction in
the scattering length is positive (see equation 3.40), therefore reducing the attractive scattering
potential. The p-wave contribution to the same order in k leads to a slight correction in the
other direction. However, for higher principal quantum numbers, both corrections to the ap-
proximation in zeroth order of the electron momentum ~k vanish. This can be explained by
the fact that the mean momentum of the Rydberg electron, which is proportional to the Ke-
pler frequency, decreases with (n − δ0)−3. The standard deviation ∆V of the potential also
shows a scaling roughly proportional to (n − δ0)−6. The oscillatory behaviour of the zeroth
order s-wave potential is damped by the corrections linear in the electron momentum ~k, since
both the momentum-dependent scattering length (3.40) and the p-wave potential (3.43) lead to
contributions which are out of phase by π (see also Figure 3.11a).

3.2.3 Influence on the Rydberg line

Based on the discussion in the previous paragraph, now the impact of the scattering of the
Rydberg electron from many atoms inside its wavefunction can be calculated. The relevant
properties are the mean V and the standard deviation ∆V of the scattering potential, shown
in Figure 3.11. These two quantities fully characterize the problem in the limit of a large
numberN of atoms, positioned randomly inside the Rydberg electron wavefunction. According
to the central limit theorem [170], the total energy shift of the Rydberg atom converges then to a
Gaussian distribution with meanNV and standard deviation

√
N∆V . If the density ρ of ground

state atoms is constant over the size of the Rydberg atom, the number N of ground state atoms
inside the Rydberg atom is the product of the density ρ and the volume of the Rydberg electron
wavefunction ~(n− δ0)6. This means that the dependence on the volume of the Rydberg atom
in the total energy shift ∆E = NV cancels out. Therefore, one obtains to zeroth order in
the electron momentum an energy shift, which is only proportional to the density ρ. This is
exactly the expression (3.33), given by Fermi already in 1934 [14]. If higher order terms are
taken into account, there is a residual dependence on the principal quantum number n, as can
be seen in Figure 3.12. Again, these corrections become smaller at higher principal quantum
numbers. In the range of n = 100 to n = 200, the modification by all terms linear in the electron
momentum ~k decreases from about 5% to 2%. The statistical distribution of the energy shifts,
according to the central limit theorem, becomes more narrow for higher numbers N~(n− δ0)6

of atoms inside the Rydberg electron wavefunction. Therefore, the full width at half maximum
(FWHM) ∆(∆E) = 2

√
2 ln 2 ·

√
N∆V depends on the principal quantum number n, even in

the lowest order approximation.
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(FWHM, b) of Rydberg S-states as expected from the central limit theorem. Different orders of
approximation have been calculated numerically. The analytical result for the total energy shift
(equation 3.33) to zeroth order in the electron momentum ~k (black dashed line in a) matches ex-
actly the numerical result (blue dots).

3.2.4 Creation of excitations in a BEC

In the last paragraph 3.2.3, the scattering of a highly excited Rydberg electron at a large number
of ground state atoms inside its wavefunction has been discussed from the perspective of the
Rydberg atom. Now, the impact onto the scattering atoms in a Bose-condensed sample is
considered. A first guess could be based on classical scattering with a geometric cross section
4πa2, similar to the treatment of single ion impurities [160]. This approach and its results for
the parameters of the experiments in this thesis are discussed in appendix B.2.2. It turns out that
this description reproduces the observed trend and gives rough orders of magnitude; however,
this treatment clearly does not explain the experimental observations. Instead, now a different
approach is discussed, which has been developed in a collaboration with David Peter and
Hans Peter Büchler [171]. This theory includes the properties of the Bose-Einstein condensate
as a quantum liquid. In particular, the spectrum of Bogoliubov excitations, discussed in
paragraph 2.3.1, is taken into account.
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3.2.4.1 Interaction operator

The basic idea is to treat the scattering potential Vscat, created by the Rydberg electron, as a short
perturbation:

Ĥint =

∫
ρ(~r)Vscat(~r)s(t) d~r (3.45)

The time dependence s(t) is caused by the finite lifetime of the Rydberg atom (see section 7.2)
and the experimental sequence (see paragraph 5.3.2), that limits the interaction time to at
most 10 µs. The shape and impact of this factor are discussed on page 56. The BEC density ρ is
assumed to be constant over the Rydberg atom and hence the basic equations of a uniform Bose
gas, as discussed in paragraph 2.3.1, can be applied. Using the bosonic field operator (2.16), the
Fourier components ρ~k of the atomic density ρ(~r) can be expressed in terms of particle creation
and annihilation operators:

ρ~k =

∫
ρ(~r)e−i

~k~r/~d~r =
∑
~p

â†
~p−~k

â~p (3.46)

Expressing also the scattering potential Vscat(~r) in the Hamiltonian (3.45) of the interaction by
its Fourier transform Vscat(~k) =

∫
Vscat(~r)e

−i~k~r/~d~r, one can identify the Fourier components ρ~k
in the interaction Hamiltonian (3.45) and obtains (see appendix A.2.1):

Ĥint =
1

V

∑
~k,~p

â†
~p−~k

â~p Vscat(~k)s(t) (3.47)

This result can be alternatively expressed in terms of creation and annihilation operators of
Bogoliubov excitations (see appendix A.2.2).

3.2.4.2 Excitation probability

However, one can directly proceed with expression (3.47) and calculate the probability P (~q)
to create a Bogoliubov-type excitation (see paragraph 2.3.1) at quasimomentum ~q. Starting
from the ground state |0〉, the transition probability into the final state |~q〉 = b̂†~q |0〉 with one
excitation at momentum ~q can be calculated to lowest order using perturbation theory, similar
as in [172, 173]:

P (~q) =

∣∣∣∣− i~
∫ ∞

0

eiε(~q)t/~ 〈~q| Ĥint |0〉 dt
∣∣∣∣2 (3.48)

Here, ε(~q) is the energy of a quasiparticle excitation at momentum ~q. The evaluation of this
expression, inserting the perturbation (3.47) and the definition of b̂~q (equation 2.25), is straight-
forward and leads to:

P (~q) =
N0

~2V 2
|uq − vq|2 |Vscat(~q)|2 |s (ε(~q)/~)|2 (3.49)

Here, the Fourier transform s(ω) of the time dependence s(t) of the perturbation has been
introduced. Now, the results for the uniform Bose gas from paragraph 2.3.1 (equations 2.26



54 3 Interaction of Rydberg atoms and ground state atoms

and 2.29) can be applied. The final result then reads:

P (~q) =
N0

~2V 2
|Vscat(~q)|2

~q2

2mε(~q)
|s (ε(~q)/~)|2 (3.50)

The quantity

S(~q) =
~q2

2mε(~q)
(3.51)

is referred to in literature as the static structure or form factor of the homogeneous Bose gas,
which is the dynamic structure factor S(~q, ω) = S(~q)δ(ω − ε(~q)/~), integrated over frequency
space. This quantity was first introduced in the description of the scattering of a particle from a
quantum liquid [173]. It is the Fourier transform of density correlations in the ground state of
the liquid [172]. In its present form, it was first derived for the description of light scattering
from a Bose-Einstein condensate [174, 175]. The consequences of this function, discussed in
that context [172], apply here as well. At small momenta |~q| < ~/ξ, the quasiparticle exci-
tations are of phonon-type (see paragraph 2.3.1). In this case, the excitation probability P (~q)
is suppressed linearly in |~q| = q with S(~q) ≈ ξq

2~ (see Figure 3.13b). However, free particle
excitations at large momenta q > ~/ξ remain unaffected, since then the static structure fac-
tor S(~q)→ 1.
By summing (3.50) over all momenta ~q, one can now calculate the total number NBog of quasi-
particle excitations created by one Rydberg atom until it decays. In paragraph 2.3.1, a uniform
Bose gas in a volume V with periodic boundary conditions was considered. In contrast to
that, in the real experimental situation the momenta ~q are not quantized. Therefore, the sum is
replaced by the integral

∑
~q →

V
(2π~)2

∫
d~q, leading to:

NBog =
∑
~q

P (~q) =
ρ

~2

1

(2π~)3

∫
|Vscat(~q)|2

q2

2mε(~q)
|s (ε(~q)/~)|2 d~q (3.52)

3.2.4.3 Number of affected particles

In order to estimate the effect of these excitations onto the Bose-Einstein condensate, one has
to consider the number of real particles, which are associated to a quasiparticle excitation at
momentum ~q. As shown in paragraph 2.3.1, this number is given as (cf. equation 2.36):

∆NBog(~q) =

(
~q2

2m
+ gρ

)
/ε(~q) (3.53)

The dependence of this quantity on the absolute value of the quasimomentum q = |~q| is shown
in Figure 3.13c. As expected in the free particle regime, at large momenta q > ~/ξ, it converges
to one. Here, one quasiparticle corresponds to a real single atom being excited out of the
condensate mode. At low momenta q < ~/ξ, the number of associated particles diverges
as ∆NBog(q) ≈ ~√

2qξ
. The physical interpretation is that the quasiparticles at low momentum

are sound waves, which can impact a large number of atoms. In the limit of very low momenta,
this can lead to collective oscillations of the whole condensate (see paragraph 2.3.2).
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Figure 3.13: Properties of Bogoliubov quasiparticle excitations. (a) The dispersion relation ε(q)
(equation 2.29), (b) the static structure factor S(q) in the uniform Bose gas (equation 3.51),
and (c) the number of individual atoms affected by one quasiparticle excitation are shown, depend-
ing on the quasiparticle momentum q (solid red lines). The asymptotic behaviour for low (phonons)
and high (free particles) momenta q are indicated as dashed lines. The transition between the two
regimes takes place at q ≈ ~/ξ (see paragraph 2.3.1), indicated as a vertical dotted line.

The total number of affected atoms in the condensate is obtained by summing over the product
of equations (3.50) and (3.53):

∆N =
∑
~q

P (~q) ·∆NBog(~q) =
ρ

~2

1

(2π~)3

∫
|Vscat(~q)|2

1 + ξ2q2/~2

2 + ξ2q2/~2
|s(ε(~q)/~)|2 d~q (3.54)

The product of the number of atoms ∆NBog(~q) per quasiparticle excitation and the static struc-
ture factor S(~q) is a numerical weighting factor for Bogoliubov excitations. As shown in Fig-
ure 3.15b, the value of this factor shows a transition between 1/2 at very low and 1 at very high
momenta q, centred right at the transition between phonon and free particle regime.
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Figure 3.14: Influence of the time dependence of the interaction. The dependence of the additional
factor |s(ω(ε(q)/~))|2 on the quasimomentum q is shown for two different time dependencies s(t),
depicted in the inset. In the experiment, the free exponential decay (td = ∞) is truncated at a
certain time td. The example here shows td = 2/Γ, which corresponds to experiments with the
110S Rydberg state (Γ ≈ 5 µs and td = 10 µs). The transition between the phonon and the free
particle regime is indicated as a vertical dotted line.

3.2.4.4 Time dependence of the interaction

The time dependence of the interaction of the Rydberg electron and the BEC enters into the
total number ∆N of affected atoms as the Fourier transform s(ω). The probability to find an
atom in the Rydberg state is decaying exponentially at rate Γ, leading to:

|s∞(ω)|2 =
1

ω2 + Γ2
(3.55)

This function provides a cutoff of excitations at large energies ω > Γ. The physical inter-
pretation is that the finite interaction time ~1/Γ leads to a finite Fourier width of the excitation.
Therefore, all quasiparticle excitations at energies below 1/Γ can in principle be excited. Via the
Bogoliubov dispersion relation (2.29), this then also defines a range of accessible momenta ~q.
For short Rydberg lifetimes τ = 1/Γ, the total number of atoms affected by one Rydberg elec-
tron is roughly scaling as τ 2. Note that this scaling corresponds to the result of lattice diffraction
in the Raman-Nath regime [176]. This analogy is discussed in more detail in section 8.1. In
the experimental sequence, any possibly existing Rydberg atom is ionized after td = 10 µs.
Therefore, the exponential decay is truncated, leading to a slightly modified expression:

|std(ω)|2 =
1 + e−2Γtd − 2 cos (ωtd) e

−Γtd

ω2 + Γ2
(3.56)
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For td � 1/Γ, this formula obviously converges to equation (3.55). The resulting factor in
equation (3.53) is shown in Figure 3.14, both for a freely decaying Rydberg atom and for a
finite time td. In both cases, |s(ω)|2 is largely constant at low momenta, in particular spanning
over the full range of the phonon regime. The value of this level depends slightly on the value
of td. The cutoff at high momenta, however, is only little affected.

3.2.4.5 Fourier transform of the interaction potential

The last term missing yet in order to evaluate the total number ∆N of atoms affected by one
Rydberg excitation is the Fourier transformed potential from section 3.2. It describes the impact
of the shape of the scattering potential. Due to the spherical symmetry of Rydberg S-states one
obtains:

Vscat(q) =
4π~
q

∫ ∞
0

sin
(qr

~

)
Vscat(r) r dr (3.57)

If only the lowest order of the electron momentum is considered, the scattering potential Vscat(r)
is directly proportional to the probability density of the Rydberg electron. In the limit of high
principal quantum numbers n, the integral in equation (3.57) can then be calculated analyt-
ically [177]. In order to be able to also account for a momentum dependent electron-atom
scattering length a(k) and p-wave scattering (see section 3.2.2), here, the integral is evaluated
numerically using Rydberg wavefunctions from [79]. As a cross check, the results of the nu-
merical and analytical calculations are compared in appendix A.2.3.
For calculating the number of quasiparticle excitations NBog and the total number ∆N(q) of
atoms, the modulus squared of the Fourier transformed perturbing potential has to be con-
sidered. Fourier components at large momenta q, due to the spherical symmetry of the po-
tential, count as q2. The resulting weight q2|Vscat(q)|2 is shown in Figure 3.15c for two dif-
ferent Rydberg states. It shows equally spaced peaks, with an amplitude decaying to higher
momenta q. This structure is mainly caused by the potential drop at the border of the clas-
sically allowed region at rclass = 2a0(n − δ0)2. Approximating the scattering potential as a
spherically symmetric box potential Vbox(r) = V · Θ(rclass − r), with the Heaviside step func-
tion Θ(r), leads to a first maximum at qm = 2π/3rclass and further maxima, spaced equidistantly
at 2π/rclass. This is consistent with the numerical result for the actual potential shape, shown
in Figure 3.15c. Also the scaling of the amplitude can be explained by the approximation with
a box potential. From equation (3.57), one directly obtains Vbox(q)~r2

classV /q. This leads to
q2|Vbox(q)|2~r4

classV
2
~(n − δ0)−4, where the scaling of the mean potential V ~(n − δ0)−6 from

paragraph 3.2.2 has been used.
For comparison, the other contributions to the integral in equation (3.54) are shown. The time
dependence of the interaction, plotted in Figure 3.15a, allows excitations within a relatively
large range of energies. Furthermore, the increase of the number of atoms connected to one
Bogoliubov quasiparticle at smaller quasimomenta q is largely compensated by the excitation
probability, suppressed by the static structure factor S(q) of the condensate. This leads only to a
minor modification by the factor ∆NBog(q) between 1/2 and 1 (see Figure 3.15b). Thus, it is the
shape of the perturbing potential that determines which excitations dominate the impact onto
the condensate. For the Rydberg states investigated in this thesis, at principal quantum numbers
in the range of n = 110 to n = 202, the first peak of the weight q2|Vscat(q)|2 is always situated
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Figure 3.15: Different contributions to the total number of atoms affected by one Rydberg exci-
tation depending on quasimomentum q. (a) Influence of the time dependence |std (ω(ε(q)/~))|2
(see equation (3.56) and Figure 3.14) for td = 1/Γ, which corresponds roughly to the mean
lifetime of all Rydberg states investigated experimentally in chapter 8 (1/Γ ≈ td = 10 µs).
(b) Weight S(q)∆NBog(q) of Bogoliubov excitations. (c) Absolute square of the Fourier trans-
formed electron-atom scattering potential |Vscat|2 for two Rydberg S-states, weighted with q2. Terms
up to linear in the electron momentum are considered (see paragraph 3.2.2). Note the scaling of this
ordinate in (c) with the principal quantum number n. The transition between the regimes of phonons
and free particle excitations is shown as a dotted vertical line. The solid vertical lines indicate the
maximum Fourier components of the scattering potentials at qm = π

3a0(n−δ0)2
.
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in the regime of phonon excitations, since the size of the potential 2a0(n− δ0)2 is always larger
than typical values of the BEC healing length ξ. However, from Figure 3.15, it becomes clear
that the integrated contributions at higher momenta q also play a role.

3.2.4.6 Different approximations of the electron-atom scattering potential

The influence of corrections to higher order in the electron momentum ~k onto the line shift of
Rydberg states is discussed in paragraph 3.2.2. The same comparison for the total number ∆N
of atoms affected by one Rydberg excitation is shown in Figure 3.16a. As with the line shift,
the k-dependent reduction of the scattering length leads to a smaller effect, that is corrected
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Figure 3.16: Number ∆N of atoms affected by one Rydberg excitation for different Rydberg S-
states. In (a), the dependence on the principal quantum number n is shown for different orders
of approximation of the electron atom scattering potential (see paragraph 3.2.2). A homogeneous
condensate density of ρ = 8.6 · 1013 cm−3 over the size of the Rydberg atom is assumed. This
corresponds to the typical mean peak density over one experimental sequence, see section 8.1. The
lifetime of the Rydberg state here is kept fixed at a constant value of τ = 10 µs, corresponding
roughly to the mean lifetime of all Rydberg states investigated experimentally in the condensate
(see section 7.2). The solid lines are fitted power laws. In (b), the relative contribution of phonons
(q < ~/ξ, circles) and phonons at very low momentum q < 4.9 · 105 ~/m ≈ 0.13 ~/ξ (squares) is
shown.
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again to slightly higher values by the p-wave contribution; although here, the deviation is more
pronounced. The correction to first order in k decreases from 23% to 19% between n = 110
and n = 200. All three curves, however, follow a power law with exponent −5.5 ± 0.1 in
the principal quantum number n − δ0. This is close to the value of −6, expected from the
simple following consideration. As discussed above, the integrand in equation (3.54) scales as
the weight q2|Vscat(q)|2~(n− δ0)−4. Since the momentum dependence of this factor is rescaled
proportional to (n− δ0)−2, the integration over all q leads to ∆N~(n− δ0)−6.
Figure 3.16b shows the relative contribution of excitations in the phonon regime to the total
number of atoms affected by the Rydberg excitation. As expected, the low momentum compo-
nents play a more important role at higher principal quantum numbers, since the position of the
dominant Fourier component is inversely proportional to the size of the Rydberg electron wave-
function ~(n−δ0)−2. The oscillatory behaviour is caused by the peaked structure of the Fourier
transformed scattering potential (see Figure 3.15c). When the momentum scale is decreased at
higher n, more and more maxima of q2|Vscat(q)|2 are located within the phonon regime, defined
as q < ~/ξ.
As another important quantity, in Figure 3.16b, the relative contribution of excitations at mo-
menta lower than qmin = 4.9 · 105 ~/m ≈ 0.13 ~/ξ is shown. In the experiments discussed
in section 8.1, excitations at momenta above this approximate threshold are detected as atom
losses in time of flight imaging. It turns out that, at low principal quantum numbers n, next
to all excitations lead to atom losses, whereas at higher n a significant part of the excitations
remains undetected. In the parameter space studied experimentally in the framework of this
thesis, ranging from principal quantum numbers n = 110 up to n = 202, the contribution of
phonons and free particles to the atom loss signal is therefore roughly equal.

3.3 Ion-atom interaction

Rydberg atoms of course not only consist of an electron, but also contain a positively charged
nucleus, that can also interact with atoms in its vicinity. Systems with ionic impurities in
Bose-Einstein condensates have first been experimentally realized by Penning ionization of
metastable atoms [178] and photoionization [179]. The impact of a single ion on a condensate
has been studied combining a Paul trap and a cold atom apparatus [160, 180]. Various theo-
retical proposals exist for ion impurities in Bose-Einstein condensates. This ranges from the
creation of mesoscopic molecular ions [181] and polarons [182, 183] to bosenova type collapse
of the BEC [184]. However, the theoretical description dates back to the studies of impurities
in liquid helium [185, 186, 187, 188]. A simple estimate of the total energy shift of a single
ion, interacting with a gas of neutral ground state atoms, has been already given by Fermi [14]
in the context of Rydberg atoms in high density gases (see introduction to section 3.2).
The discussion in this section shows that the effects arising from the ion-atom interaction are
negligible compared to the electron-atom scattering, described previously in section 3.2.
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3.3.1 Line shift of the Rydberg state

The interaction of the positively charged Rydberg core with the surrounding neutral ground state
atoms is now considered first from the perspective of the Rydberg atom. There is an energy shift
of the Rydberg state from the polarization of the surrounding particles by the ionic charge, that
can be easily estimated [14]. If the relative motion of the Rydberg atom and the surrounding
atoms can be neglected, the total energy shift is the sum of the polarization (3.21) of all atoms
surrounding the nucleus at distances ri:

∆Epol =
αe2

2(4πε0)2

∑
i

1

r4
i

(3.58)

The mean over the sum in (3.58) diverges, if the finite sizes of the Rydberg core and atoms
are neglected, however, the expression of the most probable value in a homogeneous gas of
density ρ is finite: ∑

i

1

r4
i

= −s
(

4πρ

3

)4/3

(3.59)

The intuitive explanation is that the strongest contribution comes from the next neighbour at the
mean interparticle distance r = 3

√
3/(4πρ) and the numerical factor s ≈ 2.6 [14] accounts for

the contribution of all particles further apart. This leads then to a red shift, which is proportional
to the density ρ of perturbing atoms to the power of 4/3:

∆Epol = − αe2

2(4πε0)2
s

(
4π

3

)4/3

ρ4/3 (3.60)

For ρ = 1014 cm−3, which is a typical BEC density in this work, this leads to a line shift
of −26 kHz. This shift is largely negligible compared to the impact of the Rydberg electron,
which is next to three orders of magnitudes larger (see Figure 3.12a). However, the exponent
of the scaling with the atomic density is slightly larger than for the impact of the electron
(equation 3.33). This means that the effect of the ion-atom interaction can become important at
higher densities. Indeed, it leads to a sizeable contribution in the measurements of Amaldi and
Segrè [2, 3], that where performed at densities up to 1020 cm−3.

3.3.2 Rydberg core as an ion impurity

As shown before, the influence of a high density environment onto a Rydberg atom is dominated
by the interaction of the Rydberg electron with the atoms inside its wavefunction. Now, the
impact of the Rydberg core as a positively charged ion onto the surrounding atoms is discussed.
A static positively charged ion in a Bose-Einstein condensate is expected to attract atoms by
the attractive polarization potential (3.21). An estimate for the steady state number ∆N of
accumulated atoms around the impurity from thermodynamic considerations is given in [189],
based on earlier work on 3He impurities in liquid 4He [190, 191]. In the case that the scattering
between BEC atoms among each other and from the impurity can be treated as individual binary
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events, the energy density E of the system reads, depending on the densities ρ of atoms (a) and
impurities (i):

E(ρa, ρi) =
1

2
Uaaρ

2
a + Uaiρaρi (3.61)

Here, Ux (x = aa, ai) denotes the mean field interaction constant Ux = 2π~2ax/mx. The
quantity ∆N is defined as the number of atoms, that has to be added in order to keep the
chemical potential µa = ∂E/∂ρa of the BEC constant, when one impurity is added:

∂µa
∂ρi

+
∂µa
∂ρa

∆N = 0 (3.62)

Inserting equation (3.61) into (3.62) immediately leads to the result:

∆N = −Uai
Uaa

= −maa

mai

aai
aaa

(3.63)

For a charged impurity, the atom-impurity scattering length aai itself is also a function of the
reduced mass mai. In contrast to the electron-atom scattering (see section 3.2), there are no pre-
dictions for the Rb+-Rb scattering length so far. However, the order of magnitude for a singly
charged impurity interacting with atoms with polarizability α can be estimated as the character-
istic radius rai of the polarization potential [160]. This radius is defined as the distance, at which
the p-wave centrifugal barrier Vz = ~2/(2mair

2) is equating the polarization potential (3.21):

rai =

√
maiαe2

(4πε0~)2
(3.64)

In order to check the validity of this approximation, one can compare the resulting value
of rai = 18.1 a0 for the electron-atom scattering length to the known e−-87Rb scattering
length a. The absolute value agrees quite well with the value aai = −16.1 a0 for the triplet
scattering most relevant in this work, whereas the singlet scattering length aai = 0.627 a0 dif-
fers considerably [157].
For the 87Rb+ Rydberg core, this leads to a characteristic radius of rai = 5000 a0. Using
this value as an estimate for the scattering length aai ≈ −rai leads to an accumulation of
about ∆N = 46 atoms. In order to judge whether this can cause a sizeable effect in a Rydberg
atom, one has to compare this to the effect of the Rydberg electron. In case of a charged impu-
rity, one obtains a scaling of ∆N ∝ 1/

√
mai. This means that for 87Rb, the interaction strength

of an electron is two orders of magnitude stronger than the interaction strength expected for a
positively charged ion. Here, ∆N exceeds 104 atoms, clearly reaching the limits of weak per-
turbation assumed in the derivation of expression (3.63). Even though this estimate is not valid
in the case of the electron any more, it clearly shows that, in the present case, any effect of the
Rydberg core can be largely neglected compared to the impact of the Rydberg electron.
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In this part, the experimental setup and the methods used to obtain the results presented in
part III are described. The basic idea of the present experimental apparatus is to combine ultra-
cold dense atomic samples with highly excited Rydberg states. This concept proved to be quite
successful; although the apparatus has been continuously extended and modernized by the pre-
ceding six generations of PhD students [192, 84, 96, 13, 79, 11], the core is now almost ten
years old. Even though some parts seem to be or are indeed outdated, there are some persistent
advantages, that enabled interesting discoveries during the past few years.
The previous work at this apparatus was mainly focused on the spectroscopy of Rydberg states
at relatively low principal quantum numbers, between n = 34 and n = 46, in dense but still
thermal samples of cold atoms. Some initial experiments have been also performed on the
combination of Rydberg atoms and Bose-condensed samples [84, 83]. However, in that work,
the diagnostics were still based on Rydberg spectroscopy by field ionization and subsequent
ion detection. Due to the limitations of this technique in the present configuration (see para-
graph 5.3.1), the information obtained about Rydberg excitation in the condensate was rather
indirect. The main advance of the work presented in this thesis is the extension to much higher
principal quantum numbers n > 100 and direct studies of their impact onto a Bose-Einstein
condensate. Performing experiments in this regime imposes some demanding requirements on
the experimental setup. These points are discussed in more detail alongside a short overview of
the whole apparatus.
The description of the experimental setup is grouped into two chapters: Chapter 4 deals with
the methods, which are used to prepare and probe a sample of ultracold atoms. After a technical
description, the free expansion of a BEC is discussed, since this is crucial for the interpretation
of absorption images, taken after a time of flight. Chapter 5 is dedicated to the excitation and the
detection of Rydberg atoms. Besides a description of the laser system used for Rydberg excita-
tion, the focus here lies on the control of electric fields, required to study Rydberg atoms at high
principal quantum numbers, and the different experimental sequences applied in the BEC and
thermal samples, respectively. Within the framework of this thesis, some overlap between the
two initially separate parts of the setup, described in chapters 4 and 5, emerged. For example,
effects of the Rydberg excitation lasers have to be considered already during the preparation of
the atomic sample and the Rydberg excitation in the condensate, in turn, can be studied using
the imaging of the atomic sample.
In the following, the most important parts of the experimental setup are described. References
to previous PhD theses are added for more detailed information. Only those parts, which un-
derwent significant changes or which are essential to understand the experiments described in
this thesis, are discussed more thoroughly.
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4.1 Preparation

The core of the experimental setup is a rubidium 87Rb BEC apparatus, based on the design
from [193], with some modifications required for experiments with Rydberg atoms as discussed
later in chapter 5. It consists of a cloverleaf type magnetic trap [194] in an ultra-high vacuum
steel chamber, operated at pressures below 10−11 mbar. The atoms are loaded via a magneto-
optical trap (MOT) and a Zeeman slower from an effusive oven. Even though this imposes
some stringent limitations, especially on the repetition rate of the experiment and the optical
access to the atomic sample, the benefits of this concept for Rydberg spectroscopy should not
be underestimated (see chapter 5). Its main purpose is to trap and cool a sample of atoms down
to quantum degeneracy. Starting from a hot rubidium vapour, the apparatus increases the phase
space density by about 14 orders of magnitude. The key figures of merit are the repetition rate,
the rate at which a cold atomic sample is produced, and the reproducibility and stability of
shape, size and temperature of the resulting atomic cloud. Both are principal prerequisites for
systematic studies with decent statistics.
The starting point is a beam of rubidium atoms emerging from an effusive oven, which is
heated to 150°C. This part is operated at pressures of around 10−7 mbar. The hot atomic
beam is directed through a differential pumping stage and a mechanical shutter into a Zee-
man slower [195]. This consists of a 85 cm long tube with magnetic field coils, providing
an increasing magnetic field strength towards the chamber. The atomic beam is slowed down
by absorbing light from a counterpropagating laser beam, resonant to the cooling transition
5S1/2(F = 2)→ 5P3/2(F = 3). The magnetic field induces a Zeeman effect, that compensates
for the decreasing Doppler shift of the decelerating atoms.
The slowed down atoms are loaded into a MOT, that consists of a quadrupole magnetic
field and six counterpropagating laser beams near-resonant to the cooling transition. Since
the transition is not closed, one has to apply a repumping laser, acting on the transition
5S1/2(F = 1) → 5P3/2(F = 2). The cooling light for both the MOT and the Zeeman slower
is derived from a single titanium-sapphire laser (see e.g. [11]), whereas the repumping light is
created with a separate diode laser. During a larger period of maintenance work on the oven part
and a realignment of the Zeeman slower tube, the loading time of the MOT could be reduced
to 2 s compared to previously 8 s [11] and 5 s [79]. This way, a precooled trapped sample of
several 109 atoms at a few mK is prepared. To further the increase density, a dark MOT phase
of 20 ms was introduced in [11].
The magnetic quadrupole field is then switched off for a 15 ms long phase of molasses cooling,
while the cooling light is further detuned [192]. This decreases the temperature to around 20 µK,
while loosing around half of the atoms. At the same time, due to the absence of a well defined
quantization axis by the magnetic field, the atoms depolarize and are then equally distributed
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over all mF levels. Therefore, the atoms are pumped into the F = 2, mF = 2 state, using a
circularly polarized laser beam on the cooling transition at a small axial offset field.
The atoms are then loaded into the magnetic trap by ramping up the magnetic fields in 5 ms.
The mode of the initial catch trap is matched to the size and shape to the MOT. This allows
to transfer more than half of the atoms from the MOT into the magnetic trap. The atoms are
then compressed to a cigar-shaped sample by first ramping up the current in the cloverleaf coils
in 100 ms and subsequently increasing the current in the pinch and bias coils to the final value
of 400 A within 150 ms. The system of power supplies for the magnetic trap is described in [96];
only the power supply of the pinch and bias coils has been replaced with a pair of more stable
devices1 connected in parallel. The magnetic field coils (depicted in Figure 5.2a and in [192])
generate a to first order harmonic, axially symmetric trap with trap frequencies:

ωr =

√
gFmFµB

m

(
B′2

B0

− B′′2

2

)
(4.1)

ωz =

√
gFmFµB

m
B′′ (4.2)

Here, µB denotes the Bohr magneton and the Landé factor is gF = 2 in the present case with
atoms in the F = 2 state. The magnetic field gradient B′ = 5.98 · ICL mT/(Am) is proportional
to the current ICL through the cloverleaf coils. The axial curvature B′′ = 0.83 · IPB/A T/m2

depends on the current IPB, which runs simultaneously through the pinch and bias coils. Both
prefactors were determined for the present situation by measuring centre of mass oscillations
of a BEC in the trap. Additionally, the offset field B0 at the centre of the trap can be controlled
independently by running an additional current through the bias coils. Without this additional
current, the trap offset is B0 = 1.355 mT, as determined by spectroscopy of Rydberg S-states.
In the present experiments, an offset field of around B0 = 0.08 mT was chosen, corresponding
to trap frequencies of about ωz = 2π · 22 Hz and ωr = 2π · 340 Hz respectively. In principle,
slightly higher values for the radial trapping frequency ωr are possible at lower offset fields.
This is favourable for evaporative cooling, since it increases the density and therefore the colli-
sion rate, leading to faster thermalization. However, this magnetic offset field has proven to be
a good compromise if the field is subsequently ramped to higher values.
The longest step in the preparation of a cloud of ultracold atoms is the evaporative cooling.
Here, the transitions between different mF magnetic sublevels are driven by off-resonant radio
frequency (RF) radiation. On resonance, atoms are transferred from the trapped mF = 2 state
into untrapped states with mF < 1. The RF is detuned, such that transitions are only induced in
those regions of the trap, where the Zeeman effect tunes the atoms in resonance. Since the atoms
are trapped in the local minimum of a magnetic field, the RF detuning can be chosen in a way
that only the hottest atoms, which can reach the outer border of the magnetic trap, are affected.
By slowly ramping the frequency, starting from about 45 MHz down to less than 1 MHz over
about 40 s, the cloud can partly rethermalize, leading to a cooling of the remaining atoms. By
choosing the end frequency of the RF ramp accordingly, one can obtain either ultracold thermal
clouds or Bose-Einstein condensates.
In order to realize a Bose-Einstein condensate at low density, as required for example for
Rydberg dressing (see section 3.1), the offset field B0 is then increased up to a value of

1Agilent 6682A, 5000 W power supply, 21 V, 240 A
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B0 = 1.355 mT by adiabatically turning off the additional compensation currents, which are
running through the bias coils [192]. This reduces the radial trapping frequency to about
ωr = 2π · 82 Hz. At the same time, the high magnetic field separates the different Zeeman
components of Rydberg states, enabling to resolve a single quantum state. However, great care
has to be taken, so that the Bose-Einstein condensate survives the ramping and in particular that
no shape oscillations are excited (see paragraph 2.3.2). Therefore, a smooth S-shaped magnetic
field ramp lasting over 400 ms, much longer than the inverse trap frequencies, is chosen. In
order to avoid heating during this time, the RF source used for evaporative cooling is left on
during this step. The RF has to be changed simultaneous with the magnetic field, such that only
hot atoms are removed.
The focused blue Rydberg excitation light generates a potential for the ground state atom (see
Figure 5.3). Fast switching of this laser can therefore also excite shape oscillations of the
BEC and even the thermal cloud. Therefore, this light is already switched on adiabatically
over 400 ms during the ramping of the offset field.

4.2 Detection

At the end of each experimental cycle, the magnetic trap is switched off and the atoms are
released. After a variable time of flight, an absorption image is taken from top. For this
purpose, a circularly polarized laser beam near-resonant to the 5S1/2(F = 2,mF = 2) →
5P3/2(F = 3,mF = 3) transition is applied from below for 100 µs. This laser beam is derived
from the same laser system, which is used to create the MOT light. In order to adapt the quan-
tization axis of the atoms to the imaging axis, a small magnetic offset field is applied along the
y-axis (see Figure 5.2) 20 µs before the currents through the cloverleaf and pinch-bias coils are
switched off. The amplitude and timing of this offset field are crucial. If it is too low or switched
on too late, the atoms are depolarized and therefore only partly detected. If, on the contrary, the
offset field is switched on too early, the atomic cloud is accelerated by the additional magnetic
field pulse. In the worst case, both can happen simultaneously. Experimentally, both amplitude
and timing of the bias field were adjusted in a way that the atomic cloud falls down perfectly
vertically and there is no transfer of atoms into other states. This can be controlled in a Stern-
Gerlach-type experiment.
At the end, the number of atoms can be extracted directly from the absorption profile. The
further interpretation of time of flight images is a little bit more involved. The evolution of a
Bose-Einstein condensate during time of flight is thus discussed in more detail in the following.
As the atomic cloud falls down in gravity, it also expands, driven by the thermal energy and
the mean-field interaction of the particles. In a thermal sample, the atoms detach ballistically
from the centre of mass of the cloud, according to their thermal energy. For long time of flights,
the density distribution of the sample therefore approaches a spherically symmetric Gaussian
distribution. From the measured width of this distribution, then the temperature of the sample
can be determined. The corresponding equation can be found e.g. in [129] or [192]. The fitting
routines, used to extract parameters like density and temperature, are described in [84].
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4.2.1 Time of flight expansion of a BEC

For a condensate in Thomas-Fermi approximation (see section 2.2), the thermal energy of the
atoms is neglected and the expansion is therefore driven by the mean-field interaction. The
expansion can be calculated using a simple and instructive classical model, that leads to the
same result as a quantum mechanical calculation based on the Gross-Pitaevskii equation [196].
Each particle in the BEC individually experiences a force, created by the trapping potential and
the mean-field interaction (see section 2.1):

~F (~r, t) = −~∇ [V (~r, t) + gρ(~r, t)] (4.3)

The trapping potential V (~r, t) is off at times t > 0. For harmonic potentials, the shape of
the condensate is only dilated [196]. This means that any infinitesimal small fraction of the
condensate moves along a trajectory:

Ri(t) = λi(t)Ri(0), i = x, y, z (4.4)

Here, Ri(0) (i = x, y, z) denote the initial equilibrium Thomas-Fermi radii, that are fixed by
the condition ~F (~r, 0) = 0:

~∇ [gρ(~r, 0)] = −~∇V (~r, 0) (4.5)

This is equivalent to the treatment in section 2.2. The density distribution of the condensate is
then rescaled as:

ρ(~r, t) =
1

λx(t)λy(t)λz(t)
ρ

({
ri
λi(t)

}
i=x,y,z

, 0

)
(4.6)

Applying Newton’s law m~̈R = ~F (~R(t), t) on the trajectories (4.4), one can substitute the den-
sity gradient ~∇ρ(~r, t) = 1/[λx(t)λy(t)λz(t)]~∇ρ({Ri/λi(t)}i=x,y,z , 0) in the expression of the
force (4.3) by using equation (4.5). This immediately leads to:

mR̈i(t) = −∂riV (~R(t), t) +
1

λx(t)λy(t)λz(t)λi(t)
∂riV (~R(0), 0) (4.7)

For harmonic trapping potentials V (~r), the initial Thomas-Fermi radiiRi(0) cancel out, thereby
justifying the self-similar ansatz (4.4). For an axially symmetric trapping potential as in the
present experiment, one obtains a system of coupled differential equations for the scaling fac-
tors λr(t) and λz(t) in cylindrical coordinates:

λ̈r =
ω2
r(0)

λ3
rλz
− ω2

r(t)λr

λ̈z =
ω2
z(0)

λ2
rλ

2
z

− ω2
z(t)λz (4.8)

It is equally straightforward to solve this set of equations numerically or expand it for highly
prolate traps ωr(0)/ωz(0) � 1 in order to obtain an explicit result for the time of flight ex-
pansion, as stated in [129]. Introducing time-dependent modulations of the trapping potential,
the differential equations (4.8) even allow to simulate shape oscillations, that were discussed
analytically in paragraph 2.3.2.
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Figure 4.1: Simulated time of flight expansion of a Bose-Einstein condensate. In (a), the radial
(blue) and the axial (red) expansion in units of the axial Thomas-Fermi radius Rz(0) are shown ver-
sus the duration of the time of flight. The calculations were done by numerically solving the system
of differential equations (4.8) for the trap frequencies ωz = 2π · 22 Hz and ωr = 2π · 82 Hz, corre-
sponding to the experimental situation at a high offset field of B0 = 1.355 mT (solid lines), as well
as for both trap frequencies lowered by 10 %. In (b), the relative change of aspect ratioRz(t)/Rr(t),
induced by the weaker trapping, is shown.

In Figure 4.1a, the expansion for two different pairs of trapping frequencies is shown. Since
the density gradient is larger in radial direction, the expansion in this direction is faster than
the axial expansion. Therefore, the aspect ratio of the condensate is inverted at time of flights
above 10 ms. In the limit of very long expansion times, the aspect ratio converges to exactly the
inverse value of the aspect ratio in the trap. Furthermore, after an initially linear acceleration,
visible as a quadratic increase in radii, the mean-field energy is completely turned into kinetic
energy and the further expansion is linear in time. The timescale of this energy conversion is in-
versely proportional to the trap frequency, leading to an interesting effect shown in Figure 4.1b.
Here, the relative change of the aspect ratio is plotted, which is caused by lowering both trap
frequencies by 10 %. Although the modified trapping frequencies lead to the same aspect ratio,
both in the trap as well as in the limit of long time of flights, there is a significant deviation for
experimentally relevant finite durations of the time of flight. This allows in principle to observe
also isotropic deformations of a Bose-Einstein condensate as a modification of the aspect ratio
in time of flight.





5 Rydberg excitation

For experiments with Rydberg atoms, basically three components are required: A narrow band
laser system to excite Rydberg atoms, good electric field control, and a method to detect atoms
in the Rydberg state. These three components are described in the following sections.

5.1 Laser system

In order to excite Rydberg states of rubidium with principal quantum numbers n > 30 in a
single step directly from the ground state 5S1/2, a laser at a wavelength below 300 nm is re-
quired. Such laser systems exist and can be used to excite Rydberg P -states. Alternatively,
these states can be excited using three laser beams in a specific geometry, such that the Doppler
effect is completely eliminated [197]. However, the most common schemes for Rydberg exci-
tation rely on a two-photon transition. This enables the excitation of Rydberg S- and D-states
at reduced Doppler effect, if a geometry with counterpropagating laser beams is chosen. To
obtain higher two-photon Rabi frequencies, the lower transition can be chosen near-resonant
either to the 5S1/2 → 5P3/2 [198] or to the 5S1/2 → 6P3/2 [199] transition, which requires
lasers at wavelengths 780 nm/480 nm and 420 nm/1020 nm respectively. The laser driving the
lower transition usually is detuned by several 100 MHz to the intermediate state, which turns
the actual three level atom into an effective two-level system with a coherent coupling of the
ground and the Rydberg state (see paragraph 1.1.4). In both excitation schemes, the Rabi fre-
quency of the lower transition is limited by off-resonant scattering from the intermediate P -state
(see section 7.3), which depends on the ratio of Rabi frequency Ωr of the lower transition and
intermediate detuning ∆p, as well as on the decay rate Γp of the P -state [200]:

Γscat =
Ω2
r

4∆2
p

Γp (5.1)

For the transition via the 6P3/2 state, the dipole matrix element of the upper transition is
larger [199]. Furthermore, high power lasers are more readily available at infrared wavelengths
than for blue light. However, in this scheme another limitation occurs. Two photons of the light
at 420 nm can ionize an atom in a two-photon transition, leading to additional atom losses and
electric fields caused by the created ions [201, 202]. Considering also the higher decay rate of
the 6P3/2 state and the smaller dipole matrix element of the lower transition, still a factor two to
three in the two-photon Rabi frequency can be gained, compared to the transition via the 5P3/2

state with current laser technology.
The experiments, presented in this thesis, were conducted with a laser system consisting of a red
(780 nm) and an infrared (960 nm) extended cavity diode laser. The infrared light is frequency
converted into blue light at 480 nm by frequency-doubling. The red laser is blue detuned by
∆p = 500 MHz to the intermediate 5P3/2 (F = 3,mF = 3) state.
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Figure 5.1: Level scheme for the Rydberg excitation of 87Rb. Exemplarily the 200S1/2 and the
44D5/2, 3/2 states are shown. On the left, the splitting by the fine structure and hyperfine structure is
indicated. The hyperfine structure for the Rydberg states is negligible. In a magnetic field, the states
are split further up according to the magnetic quantum number mF (low states) and mJ (Rydberg
states), as can be seen on the right. The Rydberg excitation is performed via a two-photon transition,
blue detuned by ∆p = 500 MHz from the 5P3/2 (F = 3,mF = 3) state; here, only the strongest
excitation path is highlighted (see text). The fine structure splittings are taken from [94].
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The excitation path and the splitting of the relevant states in a magnetic field are shown in Fig-
ure 5.1. Different Rydberg S- and RydbergD-states can be excited by changing the polarization
of the blue excitation light. Note that the excitation frequencies of Rydberg nS1/2 ,mS = 1/2
states do not depend on the magnetic field. However, neither the polarization of the light nor
the spin polarization of the atomic sample are perfect. Due to the inhomogeneous field of the
magnetic trap, there are always atoms that experience unwanted polarization components. At
high laser powers, hence all magnetic substates of Rydberg S- and D-levels can be excited.
Furthermore, evaporative cooling (see section 4.1) creates a small population of the weakly
trapped mF = 1 magnetic sublevel of the ground state. Therefore, all lines in the spectrum
have a tiny mirror image, located at 1/2µBB/h on the blue side. The splitting between these
lines can for example be used to precisely measure the magnetic offset field of the trap.
The first measurements presented in this work were performed with a laser system locked to the
modes of two home-built cavities, constructed with a single spacer. The excitation frequency in
this setup is controlled using a double-pass acousto-optic modulator (AOM) and a master-slave
configuration. This setup is described and characterized in detail in [159, 79]. Most of the re-
sults discussed in part III have been obtained with a new laser system, described in [203]. This
next generation setup provides up to 150 mW of blue laser power at the experimental chamber,
about 50% more than the old system. For the frequency stabilization, here a commercial cav-
ity1 is used. The spacer of this cavity is made from premium grade ultralow expansion (ULE)
glass. The thermal expansion coefficient of this material is below 2 ppb/K, much smaller than
the one of low quality Zerodur glass (up to 100 ppb/K), which is used in the home-made cav-
ity. Therefore, thermal drifts of the resonance frequency [11] are completely negligible even
on the kHz-scale with this system. The cavity mirrors have a dual band coating allowing to
stabilize both diode lasers at 780 nm and 960 nm simultaneously onto the same cavity at a de-
signed finesse2 of 1800. The frequency of the excitation lasers in the new setup is controlled
by locking sidebands at variable frequency to a mode of the cavity. These sidebands and the
modulation for the Pound-Drever-Hall technique are created with a fiber coupled electro-optic
modulator (EOM). Both in the new and the old setup, the frequencies needed for scanning the
laser frequency are generated using a system of direct digital synthesizers (DDS), developed in
collaboration with the electronics workshop. This system is controlled using a combination of
USB and digital (TTL) signals, allowing precise and fast scans of frequencies.
The red and the blue Rydberg excitation light of both laser systems are shone in from opposite
directions into the experimental chamber (see Figure 5.2a). The counterpropagating geometry
significantly reduces the Doppler effect [159] to around 18.5 kHz at temperatures of 1 µK, com-
pared to 77.5 kHz for a collinear configuration. A flipping mirror and a dichroic mirror allow
for fast interchange between the two laser systems, which can be easily extended to a simulta-
neous use. Both red laser beams are only slightly focused to a beam waist of 500 µm, while the
blue laser beam from the old laser setup (system 1 in Figure 5.2a) is focused to a 30 µm waist.
An additional telescope in the path of the new blue laser (system 2 in Figure 5.2a) was used to
initially obtain a waist of 10 µm. However, it was found that this strongly focused configuration
leads to a significant deformation of the trap by the additional potential generated by the 480 µm

1Stable Laser Systems ATF 6020-4 notched cavity
2After finishing the experiments described in this thesis, the cavity has been replaced with a quad-band coated

cavity for simultaneous use with wavelengths at 780 nm/960 nm and 840 nm/1020 nm and a finesse > 10000.
This allows to stabilize another Rydberg laser system near-resonant to the 6P3/2 state at the same time.
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Figure 5.2: Schematic representation of the setup. In (a), the chamber with the field coils and the
light path for Rydberg excitation is drawn from above. The axial MOT beams enter the chamber by
motorized flipping mirrors at the beginning of each sequence. One can switch between two laser
systems by flipping only one mirror, since the blue laser 1 is already overlapped with the red laser 2
using a dichroic mirror. In (b), the geometry of the field plates to control the electric field around
the atomic cloud and the microchannel plate detector for ion detection is sketched.

laser. Therefore, the focus position was slightly changed by moving the last lens in front of the
vacuum chamber until the combined potential of the trap and the blue laser was approximately
harmonic. The defocused geometry leads to a calculated radial width of 60 µm at the position
of the atomic cloud.
The alignment of the focused laser at λb = 480 nm onto the BEC is crucial for all experiments
with Rydberg excitation in a BEC. Due to the Rydberg blockade, the configuration of the maxi-
mum Rydberg signal, measured by field ionization, not necessarily corresponds to the position,
where the focal position of the blue laser beam is in the centre of the condensate. To overlap
the position, the blue laser beam is retroreflected with an additional mirror back into the opti-
cal fibre. The resulting optical lattice is pulsed for typically 0.2 µs to 10 µs, which results in a
diffraction pattern, visible in absorption images taken after a time of flight of duration tTOF. For
alignment of the blue laser beam, pulse lengths are always kept short enough, so that only the
first diffraction order is populated. In this case, the population in the first order is proportional
to the lattice depth [176, 205]. Using this signal, it is tedious but straightforward to align the
angle of the incident beam and the position of the last lens in front of the vacuum chamber to
the maximum lattice depth at the position of the BEC. Furthermore, since the diffraction orders
are equally spaced at 2h/λb/m · tTOF, the lattice diffraction can be used to relate the position
in time of flight images with corresponding atomic momenta, as required for the estimates in
paragraph 3.2.4.
Both laser systems have been characterized to have a combined excitation linewidth be-
low 60 kHz [159, 203]. At very low Rabi frequencies, spectral lines of Rydberg S-states at
linewidths down to 30 kHz, close to the Doppler limit and the natural linewidth (below 16 kHz,
depending on the Rydberg state) have been observed.
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Figure 5.3: Time of flight images of a BEC, diffracted from a standing wave pulse, which is created
by the retroreflected 480 nm laser. The time, which the optical lattice is on, was varied in steps
of 0.2 µs from 0.2 µs to 7 µs, while the time of flight was kept fixed at tTOF = 20 ms. This measure-
ment was taken with the smallest focus (around 10 µm waist) and a laser power of 130 mW. In the
Raman-Nath regime, at short pulse length (here up to about 1 µs), the number of observed diffraction
orders increases monotonously [204, 205]. For longer pulse lengths, there is a revival of the zeroth
order [176, 204] that is not visible in the data shown.
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5.2 Electric field control

The polarizability of high Rydberg S-states is scaling with the principal quantum number
as (n − δ0)7 [206]. Furthermore, the classical ionization field decreases from 312 V/cm
at n = 35 to 2.46 V/cm at n = 110 and even 0.21 V/cm at n = 200, proportional to (n− δ0)−4

(see equation 5.2). Therefore, an excellent control of electric fields is a crucial prerequisite to
be able to investigate Rydberg states at principal quantum numbers above n = 100. The experi-
mental chamber of the present setup is very well suited for this task. All dielectric surfaces like
windows, that could pick up charges and possibly create stray fields, are centimetres away from
the position of the atomic cloud. Eight individually addressable electric field plates are posi-
tioned around the atomic cloud, as depicted in Figure 5.2b. A typical Stark map, measured by
spectroscopy in a thermal sample, is shown in Figure 5.4a for the 160S Rydberg state. The over-
laid theory curves were calculated using the database from [79]. Already at tiny electric fields
on the order of 1 mV/cm, the hydrogenic manifold [37] at principal quantum number n = 157
is crossing the 160S state. The coupling to these states leads to a significant modification of the
observed quadratic Stark effect, also at smaller electric fields. The experimental signal follows
the exact theory curve until it starts to vanish at field strengths above around 12 mV/cm. This
field strength is still well below the classical ionization threshold at 530 mV/cm. The reason
for the vanishing signal is a large broadening, which is caused by the coupling to the manifold
states and by the inhomogeneity of the electric field. During the iterations of field compensa-
tion, the progress can therefore be determined from both the line position and width. In a well
compensated situation, the configurations with highest spectral position and minimum width
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Figure 5.4: Stark maps of high Rydberg S-states. In (a), the calculated energies of Rydberg states
in the vicinity of the 160S state are shown as black lines on top of the colour-coded ion signal
for different electric fields. The black dots are line positions, extracted from Gaussian fits to the
experimental data. The white line is a parabolic fit to the theory at low electric fields, where the
Stark effect is purely quadratic. From this fit, the value of the polarizability for the theory curve
in (b) is extracted. In (b), measured line positions (dots) for different Rydberg states are compared to
the theoretically expected quadratic Stark effect. The polarizabilities are extracted from theoretical
Stark maps [79], as shown in (a). Note that the first data point of the 43S state is already far above
the range of electric fields relevant for the higher Rydberg states.
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of the Rydberg line coincide. Another indication is provided by the measured polarizability.
The white line in Figure 5.4a indicates the polarizability, extracted from the theory data at low
electric fields and far from crossings with other states. Only close to absolute zero electric field,
the curvature of the measured Stark map matches this theoretical polarizability. An insufficient
field compensation in the other directions thus leads to a higher curvature, even at the centre of
the measured Stark parabola. Comparing the experimental data to the calculated polarizability
for measurements at different Rydberg states (see Figure 5.4b), one can estimate the quality
of the current electric field control to be on the order of 1 mV/cm. On this level, the electric
field compensation is stable for about one week in the present setup. It allows to perform spec-
troscopy on Rydberg S-states at linewidths below 1 MHz up to principal quantum numbers of
about n = 125. Even at n = 202, the measured linewidth does not exceed 4.5 MHz (see Fig-
ure 7.2). Due to residual field gradients, these ultimately narrow linewidths are only achievable
in cold thermal samples at temperatures around 1 µK and low laser powers. Any heating leads to
an additional broadening due to atoms, that are excited in regions apart from the zero position.

5.3 Detection

5.3.1 Rydberg spectroscopy in thermal samples

Previously, the detection of Rydberg atoms in the present setup was exclusively done by field
ionization and subsequent ion detection. As discussed in the following, this technique is well-
suited for studies of Rydberg excitation in large thermal samples, but limited for the investiga-
tion of Rydberg atoms in Bose-Einstein condensates, at least in the present setup.
After the laser excitation pulse, a voltage is applied to the field plates B&H (see Figure 5.2b).
The electric field ionizes the Rydberg atoms and accelerates the ions towards a microchannel
plate detector (MCP). The classical threshold Eion for field ionization of Rydberg states can be
estimated from the saddle point of the combined Coulomb potential created by the Rydberg
core and the Stark potential from the external field. Identifying the energy of the saddle point
and the energy of the Rydberg state [37], one obtains:

Eion(n) =
1

16

e

4πε0a2
0

(n− δ0)−4 (5.2)

For n = 35, this formula leads to fields above 310 V/cm, which requires the use of high volt-
ages around 2 kV. Above n = 110, however, the ionization field reaches values of few V/cm
and just some tens of Volts have to be applied. For low Rydberg states, a pair of independent
high voltage power supplies and switches3 is used. A small voltage difference between the two
plates has to be chosen in order to direct the pulse of ions onto the microchannel plate detec-
tor. The rise time of the field pulse is about 400 ns, whereas zero electric field is only reached
after 15 µs due to pronounced ringing. For high principal quantum numbers n > 100, a low volt-
age switch4 was implemented. Together with the lower voltages applied (up to 500 V, typically

3Behlke HTS 61-03-GSM high voltage push pull switch with circuit for positive voltage pulses according to
datasheet in order to reduce ringing.

4CGC instruments NIM-AMX500-3F digital threefold analogue switch.
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around 50 V), this device allows for significantly faster switching. With a matched ringdown
resistor (3 Ω), absolute zero field in the chamber is reached in less than 1.6 µs, as determined by
Rydberg spectroscopy on the 110S state.
Depending on the electric field strength, the ions reach the detector about 2 µs to 260 µs after the
ionizing field is switched on. The ions enter the detector through a grid in a grounded Faraday
cage (see Figure 5.2), which shields the voltage of−2 kV applied to the front of the microchan-
nel plate in chevron configuration. This voltage is used to attract the incident ions and accelerate
the electrons, which are generated by secondary emission towards an anode on ground poten-
tial. Via a simple home-made amplifying circuit, the charge on the anode is converted into a
voltage signal, that is recorded with a PCI digitizer card5. The length of the field ionizing pulse
is chosen to 60 µs, such that crosstalks during switching do not affect the measured signal. The
characterization of the MCP and the data processing is described in [159]. The overall detec-
tion efficiency for Rydberg atoms was determined to about only 2%. This means that single or
even few Rydberg atoms are practically not detectable in the present setup. Due to the Rydberg
blockade, only few Rydberg excitations are possible in the volume of a typical BEC, even at
low principal quantum numbers. Thus, it is impossible to detect any isolated Rydberg signal
from a condensate using field ionization and ion detection in the present setup.
For Rydberg spectroscopy in Bose-Einstein condensates, therefore a different approach was
taken, that is described in the next paragraph. For spectroscopy in large thermal samples, how-
ever, where at least several hundreds of Rydberg atoms are created at once, the field ionization
technique is still advantageous. Since the fraction of atoms excited with one laser pulse is
typically small, a sequence of Rydberg excitation and ion detection can be repeated up to sev-
eral hundred times (see Figure 5.5a) with one atomic cloud before the sample is significantly
depleted. Scanning the excitation frequency at each pulse, a whole spectral line as shown in
Figure 7.2 can be obtained in a single experimental run. In the present setup, the time between
two subsequent Rydberg excitations is 6 ms, leading to an overall sequence length of 2.4 s. The
lower limit is given at the moment by the minimum rearm time of 3 ms of the digitizer card,
which is triggered on the individual excitation pulses. Of course, this limit can in principle be
easily overcome by taking data during the whole sequence. However, this time does not play a
role here, since the lifetime of the thermal cloud is on the order of several seconds. The possible
speed up does not outweigh the additional resources required to deal with a larger amount of
idle data.
The lifetime of Rydberg states in thermal samples is measured in section 7.2 by introducing a
variable wait time between excitation and detection. Atoms decaying by spontaneous emission
most probably end up in low states, close to the ground state [37]. Since the field ionization in
the present setup is not state selective, the measured decay of the Rydberg population does not
include the contribution of blackbody radiation or other decay processes, that mostly populate
neighbouring Rydberg states (see [159] and further discussion in section 7.2).

5.3.2 Rydberg spectroscopy in Bose-Einstein condensates

Even at low principal quantum numbers around n = 35, the Rydberg blockade allows only
much less than ten Rydberg excitations at a time in a Bose-Einstein condensate at the current

5ADLINK Technology PCI-9812
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Figure 5.5: Sketch of different experimental sequences to excite and detect Rydberg atoms. (a) In
a thermal sample, the cycle of excitation and field ionization is repeated several hundred times in
one atomic cloud, while scanning the excitation frequency. The ions are detected as a negative peak
in the current from the anode of the multichannel plate. (b) In a BEC, the cycle of excitation and
field ionization is repeated also several hundred times, however, with a fixed wait time td between
excitation and ionization. The Rydberg signal is then extracted from the atom loss of the BEC,
measured by absorption imaging after a long time of flight (TOF).

parameters (see section 4.1). As discussed in the previous paragraph, the current setup for field
ionization and ion detection is not suited to detect such low numbers of Rydberg atoms. Fur-
thermore, the BEC is always surrounded by a thermal cloud. Even though the density of this
cloud is very low, the infinite wings of its Gaussian density distribution cause a large contribu-
tion to the Rydberg population and therefore to the ion signal. As a matter of principle, it is not
possible to separate the ion signal, stemming from the condensate, from ions emerging from
the thermal cloud6. In order to isolate the effect of Rydberg excitation in a BEC, a different
approach was developed in the framework of this thesis, that is described in the following.
The basic idea is to accumulate atom losses by repeatedly exciting and field ionizing Rydberg
atoms. A sufficiently large depletion of the condensate can then be detected by absorption
imaging after a time of flight (see section 4.2). If the atom losses would be only caused by field
ionizing and extracting the Rydberg atoms, about 10000 subsequent Rydberg excitations would
be required for a sizeable signal. However, as the discussion in paragraph 3.2.4 showed, the
interaction between the Rydberg electron and the Bose-Einstein condensate can create elemen-
tary excitations, that carry a sufficient momentum to leave the condensate during a long time
of flight, typically 50 ms. For the current parameters, Rydberg S-states at principal quantum
numbers between n = 110 and n = 202 and BECs at peak densities up to 1014 cm−3, this ad-
ditional effect is the dominant source of atom losses during time of flight (see appendix B.2.4).
This significant amplification allows to accumulate a sizeable atom loss from the condensate,
caused by as few as 300 − 500 Rydberg excitations. Therefore, an additional wait time td is
introduced between excitation and field ionization to allow the Rydberg electron to interact with
the condensate. If the value of td is increased, the BEC atom losses, observed in time of flight
imaging, saturate at a constant value. This way, the lifetime of the Rydberg atoms in the con-
densate is determined (see section 7.2). For the other measurements, a value of td = 10 µs is
chosen, which is adapted to the mean lifetime of all Rydberg states investigated in this work.

6However, it turns out in section 7.1 that it is indeed possible to selectively excite Rydberg atoms only in regions
with a certain atomic density.
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After this interaction time, a short electric field pulse is applied in order to remove residual
population in the Rydberg state or possibly existing ions. This clearing pulse provides well de-
fined initial conditions for the next laser pulse. An ionization voltage increased by one order of
magnitude7 showed no detectable influence on the results. Together with the results presented
in paragraph 7.2.2, this shows that population of lower Rydberg states does not play any role in
the experiments described in chapters 7 and 8.
Since the lifetime of a Bose-condensed sample in the present setup is only on the order
of 100 ms, the whole sequence has to be orders of magnitude faster, compared to the mea-
surements in the thermal cloud. Using low electric fields of 5.7 V/cm, a 2 µs long field pulse
is sufficient to ionize Rydberg atoms at principal quantum numbers n ≥ 110 and safely extract
the resulting ions from the atomic cloud. Taking the ring-down time of the electric fields into
account, an experiment consisting of a 1 µs long Rydberg laser pulse, a delay time of td = 10 µs,
and a clearing electric field pulse of 2 µs can be applied at a rate of 62.5 kHz. An overall se-
quence, as depicted in Figure 5.5b, then takes 18.75 ms to 31.25 ms.
At the end of the sequence, the atoms are released from the trap and imaged after a time of flight
of 50 ms (see section 4.2). From the absorption images, the absolute atom number and aspect
ratio of the condensate are extracted. Absolute values of the BEC atom number are obtained
using the fitting routines described in [84]. Since the Rydberg excitation leads to a significant
deformation of the condensate, the data presented in chapters 7 and 8 is evaluated differently.
In particular, the atom number is determined by summing all pixels in a rectangle around the
condensate and correcting the number for the average background signal in a region without
atoms in each picture. The aspect ratio is extracted from a one-dimensional Thomas-Fermi fit
to profiles, which are generated by integrating over 11 pixel wide slices (pixelsize 6.45 µm)
along the long and short axis of the condensate respectively.
During a typical sequence, the number of atoms in the condensate decreases from around 8 ·104

to around 5 · 104 atoms, even in the absence of Rydberg excitations, mainly due to off-resonant
scattering from the intermediate 5P3/2 state (see section 5.1) and heating from the trap. Further-
more, the switching of the red Rydberg laser alone induces a shape oscillation of the condensate
(see section 8.2). To eliminate both effects from the data, as well as to reduce the influence of
drifts in the atom number and deformation during time of flight, originating from residual mag-
netic field gradients, the data from each absorption image is related to a reference measurement,
where the blue Rydberg laser is detuned by more than 40 MHz and which is taken immediately
before or after. Therefore, any Rydberg excitation is avoided, while keeping the atom loss and
deformation due to the excitation lasers constant. For each data point in chapters 7 and 8, ten
measurements where averaged to obtain sufficient statistics. Since each laser detuning and each
reference measurement requires a new atomic sample, at least ten hours of uninterrupted mea-
surement time are required to take one Rydberg spectrum, as shown in Figure 7.2, in the BEC.
This does not include the time for warming up the apparatus, which typically takes additional
two to three hours. In contrast to that, an averaged spectrum in the thermal cloud, measured by
field ionization and ion detection as described in paragraph 5.3.1, can be obtained easily within
ten minutes at much better resolution.

7Here, additional capacitor banks at 40 µF per field plate had to be used in order to provide sufficient current at
the high voltage of 500 V.
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6 Dressing a BEC with low Rydberg
states

A common application for ultracold atoms is the simulation of complex many-body systems,
encountered for example in condensed matter physics [6]. Prime examples are the super-
fluid to Mott insulator transition [207], studies of the BEC-BCS crossover [208] or the Ising
model [209]. So far, in such approaches the atoms have mostly been used as hard spheres in
various trapping potentials. Long-range interactions [210] have been realized by dipolar atomic
species [211] and cold polar molecules [212, 213]. A controllable interatomic interaction be-
yond short-range isotropic character would greatly enrich the available toolbox for quantum
simulation and quantum computation. For some atomic species, the isotropic s-wave interac-
tion potential can be tuned using Feshbach resonances [214]. Atomic species with a magnetic
dipole moment show an interaction, which contains an isotropic s-wave part and a long-range
dipolar part [215]. Combining both, the dipolar interaction and a Feshbach resonance, the over-
all character of the interaction can be tuned by changing the strength of the s-wave part to a
certain degree [216].
The interaction between Rydberg atoms is strong and tunable (see section 1.2). In section 3.1,
the idea of distributing this interaction over all atoms in an ultracold sample by weakly dress-
ing them with a Rydberg state was discussed theoretically. Based on this principle, Rydberg
dressing has been proposed for the realization of a number of interesting phases in ultracold
gases, such as rotons, solitons or supersolids [85, 86, 217, 218, 219, 220, 221, 141, 222]. An
experimental observation of an ultracold atomic cloud, being deformed under Rydberg dress-
ing, would mark a first step into this direction. However, this proof of principle has not been
achieved yet. In paragraph 3.1.3, the modification of the peak density of a Bose-Einstein con-
densate, dressed with a Rydberg state, has been calculated for parameters that are in principle
experimentally accessible. Even though a small, but still sizeable effect seems possible, there
are further practical and principal constraints, that have not been considered in the calculations
yet. These are currently restricting the parameter space to ranges, where only negligible effects
can be expected. These challenges are discussed now on the basis of experimental results on
dressing a Bose-Einstein condensate with different Rydberg S-states and a Rydberg D-state
close to a Förster resonance.
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6.1 Rydberg dressing with S-states

The first approach to Rydberg dressing is based on Rydberg S-states. For these states, the in-
teratomic interaction is isotropic and purely repulsive; thus, the theoretical model developed in
section 3.1 can be directly applied. In the present experimental apparatus, Bose-Einstein con-
densates of rubidium 87Rb can be realized in a cylindrically symmetric trap (see chapter 4). Typ-
ical atom numbers vary around N = 105, corresponding to a peak density of ρ0 = 1014 cm−3.
Atom numbers down to N = 2 · 104 can be realized in order to reduce the peak density to
ρ0 = 5 · 1013 cm−3. This is favourable, since the effect of Rydberg dressing increases at lower
atomic densities, as discussed in paragraph 3.1.3. However, this gain is at the expense of larger
atom number fluctuations, which are observed for small condensates. For the measurements
presented in this section, low Rydberg states at principal quantum numbers between n = 30
and n = 40 were chosen in order to obtain a relatively small blockade radius rB (see para-
graph 1.2.3). This is important for two reasons. First of all, an effect of Rydberg dressing can
only be expected, if the sample is larger than the blockade radius rB. Otherwise, all atoms are
located in a region, where the dressing potential is flat (see Figure 3.1a) and no effect can be
expected. Second, the optimal blockade radius rB,m, according to equation (3.18), decreases at
high atomic densities as ~ρ−1/3; counterintuitively, Rydberg states with lower principal quantum
number and thus weaker binary interaction are expected to cause a stronger Rydberg dressed
interaction at high atomic densities. This property, leading to a common misconception, is
caused by the fact that the overall energy scale of Rydberg dressing is only depending on the
AC Stark effect and thus on the laser parameters Ω and ∆, as already pointed out in section 3.1.
The experimental sequence, used throughout this chapter, is designed to allow for the BEC den-
sity distribution to reach its equilibrium. The condensate is dressed for 100 ms, during which
the coupling lasers are switched on adiabatically. This time corresponds to about twice the in-
verse axial trap frequency. The remaining part of the sequence and the evaluation of the data
are very similar to the one described in paragraph 5.3.2, with the only difference that the ref-
erence measurements without Rydberg excitation were performed by keeping the red Rydberg
laser off. Although the additional potential created by Rydberg dressing is radially symmetric,
an asymmetric deformation of the condensate can be expected after a finite time of flight (see
discussion in section 4.2).
A first practical limitation is caused by the scheme for Rydberg excitation based on a two-
photon transition. Atom losses, caused by off-resonant scattering from the intermediate state
(see section 5.1), limit the affordable Rabi frequency depending on the time, during which the
red Rydberg laser is incident onto the atoms. In the experiment, the red laser power, driving the
lower transition, is chosen such that the total atom loss over the whole sequence is largely neg-
ligible. For experiments lasting 100 ms, this results in effective Rabi frequencies on the order
of few kHz.
The results for two different Rydberg S-states are shown in Figure 6.1 in comparison to ref-
erence Rydberg spectra, measured by field ionization and ion detection in a thermal sample as
described in paragraph 5.3.1. For the Rabi frequencies given in Figure 6.1, the onset of full
blockade according to equations (3.2) and (3.18), using the mean density ρ = 2/5ρ0, is taking
place at detunings ∆ just below 100 kHz. This is the regime, where the largest effect can be ex-
pected according to paragraph 3.1.4. Here, obviously the decay from the Rydberg state, visible
as a loss feature in Figure 6.1b, is the limiting factor; the decay leads to strong heating that de-
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Figure 6.1: Dressing repulsive Rydberg S-states to a Bose-Einstein condensate. The condensate,
consisting of 2·104 atoms, is dressed for 100 ms at fixed Rabi frequencies Ω = 3.4 kHz/2.3 kHz and
variable detuning ∆ to the 32S and 35S Rydberg state respectively. In the lower panels, the relative
change of BEC atom number (b) and aspect ratio (c) are shown. The reference spectrum in a thermal
sample (a) was measured by field ionization. The parameters (excitation pulse length 100 µs, Rabi
frequencies Ω = 17.5 kHz/2.3 kHz) were chosen in order to make tiny signals from molecular states
(as present for the 35S state) visible. The signal on resonance is thus highly saturated. The solid
lines in (b) and (c) are a moving average (spectral resolution ~0.3 MHz) as a guide to the eye.
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stroys nearly the whole condensate at small detunings |∆| < 200 kHz. Outside this regime, the
expected effect of Rydberg dressing is very small, as can be seen in Figure 3.5. Consequently,
there is no significant deformation of the condensate detected within the experimental error (see
Figure 6.1c). For long pulse lengths, it is obviously the decay of the Rydberg state that limits
the maximum Rydberg fraction f ≈ Ω2

4∆2 and thus the Rabi frequency. Measurements with
shorter pulse lengths, where the scattering from the intermediate state is the dominating loss
mechanism, are discussed in appendix B.1.1. Furthermore, another problem becomes obvious
from the measurement on the 35S state. In the reference spectrum taken in a thermal sample
at 1012 cm−3, there is a small additional line, red detuned by about 0.85 MHz to the atomic
line (see Figure 6.1a). This line can be assigned to a molecular bound state of a Rydberg atom
and a ground state atom, so called ultralong-range Rydberg molecules [12, 77]. In the BEC,
this leads to loss features, that are more pronounced for two reasons. First, the scaling of the
Franck-Condon factor for the photoassociation of molecules with the density of ground state
atoms leads to an increased excitation probability in the BEC. And second, these bound states
show a reduced lifetime at higher densities [223], thereby causing stronger atom losses.

6.2 Rydberg dressing close to a Förster resonance

In paragraph 3.1.5, the possibility of dressing an atomic sample with a Rydberg state close to a
Förster resonance (see paragraph 1.2.2) has been discussed theoretically. Although there is no
full many-body model describing this situation available yet, it seems worthwhile to investigate
this regime experimentally. In this section, measurements on the 44D5/2, mJ = 5/2 state are
presented. The dipole matrix element, coupling the intermediate 5P3/2 state to the Rydberg
state, is about a factor of two larger for Rydberg D-states than for S-states at the same principal
quantum number n [84]. Thus, larger Rabi frequencies can in principle be achieved. Further-
more, the particular state chosen here can be tuned into resonance with a pair state, consisting
of the 46P3/2, mJ = 3/2 and different 42F7/2 Rydberg states, by applying moderate electric
fields [144]. The experiments discussed in this section have been conducted close to the reso-
nance with the 42F7/2, mJ = 7/2 state. This magnetic sublevel leads to a resonance, which is
relatively strong and, in addition, does not depend on the magnetic field [11].
In Figure 6.2, the results for two different Förster defects ∆F are shown. Since the sign of the
Förster defect determines the sign of the interaction potential (see paragraph 1.2.2 and [10]), an
effect of Rydberg dressing should be visible as a qualitative difference between the two mea-
surements. The experiments in this section were performed with condensates at a four times
higher atom number and thus next to twice the peak density compared to the ones on the S-
states in section 6.1. The better stability of the experiment at these parameters leads to a lower
noise level; however, the expected effect of Rydberg dressing is even further decreased, because
of the higher atomic density and therefore again below the experimental noise level. In partic-
ular, there is no significant difference between the measurements at different Förster defects
(see also appendix B.1.2). Instead, for both measurements on a Rydberg D-state, a band of
molecular states emerges in the spectrum (see Figure 6.2a). In the same range of detunings,
there is a strong and several MHz broad loss feature in the measurements with the BEC, as
can be seen from Figure 6.2b. Furthermore, this loss seems to be connected to a change in
aspect ratio (Figure 6.2c). This observation in time of flight images does not necessarily im-
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Figure 6.2: Dressing of a Rydberg D-state to a Bose-Einstein condensate. The condensate, con-
sisting of 8 · 104 atoms, is dressed for 100 ms at fixed Rabi frequency Ω = 2.6 kHz and variable
detuning ∆ to the 44D5/2, mJ = 5/2 Rydberg state for different Förster defects ∆F . In the lower
panels, the relative change of BEC atom number (b) and aspect ratio (c) are shown. The reference
spectrum in a thermal sample (a) was measured by field ionization. The parameters (excitation pulse
length 5 µs, Rabi frequency Ω = 8.5 kHz) were chosen to make tiny signals from molecular states
visible. Therefore, the signal on resonance is highly saturated. The solid lines in (b) and (c) are a
moving average (spectral resolution ~1 MHz) as a guide to the eye.
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ply an isotropic deformation of the BEC in the trap, as discussed in section 4.2. However, it
also seems unlikely that this deformation is caused by uniform losses alone, since it does not
fully coincide with the observed BEC atom losses. In particular, there is no such pronounced
effect observed in the measurements of the Rydberg S-states (see Figure 6.1b), although there
are equally strong atom losses present close to resonance. Instead, the observed deformation of
the condensate could possibly originate from an anisotropic loss of atoms, which then would
be specific for ultralong-range Rydberg molecules created from D-states. Due to the toroidal
shape of the Rydberg electron wavefunction of the D5/2, mJ = 5/2 state, only pairs of atoms,
whose internuclear axis is aligned almost perpendicular to the magnetic field axis, can be pho-
toassociated. This leads to a depletion of atom pairs, that lie close together in radial direction
of the condensate. In any case, ultralong-range Rydberg molecules cause a serious problem for
the observation of Rydberg dressing at red detuning, especially at Rydberg D-states, where the
molecular spectrum is not restricted to single, well resolved lines.

6.3 Conclusion on Rydberg dressing

Several technical and principle constraints impede an experimental observation of Rydberg
dressing in the current setup. Some of them, like the limitation of accessible Rabi frequen-
cies and the presence of ultralong-range Rydberg molecules, have already been discussed in the
previous sections 6.1 and 6.2. The latter effect becomes even more important at Rydberg states
with higher principal quantum number n. As the depth of the molecular potential is decreasing
proportional to (n− δ0)−6 (see paragraph 3.2.3), the molecular states come closer to the atomic
Rydberg state in the spectrum. Then, polyatomic bound states [77] start to play a role, eventu-
ally leading to a density-dependent shift of the Rydberg line [2, 171].
Another problem is the unfavourable scaling of the effect with the density of ground state atoms.
A low temperature sample is required to observe the small effects expected. Such samples, like
Bose-Einstein condensates, typically feature a high atomic density. As discussed in section 3.1,
the impact of Rydberg dressing is greatly reduced in strongly blockaded samples. Elements
with larger background s-wave scattering length, such as cesium, allow for the preparation of
condensates at lower peak density [224]. In this case, the modification of the density distribu-
tion, however, would be even smaller due to the large mean-field interaction between the atoms.
Furthermore, ultracold samples of cesium can only be prepared in optical dipole traps. Common
red detuned dipole traps create differential light shifts between the ground and Rydberg state,
that can lead to an inhomogeneous laser detuning ∆ to the Rydberg state. Therefore, a magic
wavelength trap [225] is required. Instead of reducing the atomic density, one possibility is to
reduce the blockade radius rB of the sample, in order to tune the system just to the onset of sat-
uration. To this end, a Rydberg state at even lower principal quantum numbers n can be chosen,
since the C6-coefficient is scaling as (n− δ0)11 [82]. Alternatively, the excitation linewidth ∆f
can in principle be increased artificially. The drawback of the first possibility is that the lifetime
of the Rydberg state at the same time decreases ∝ (n − δ0)3, thereby reducing the tolerable
Rydberg fraction. The latter is not practicable due to the unfavourable scaling rB ∝ (∆f)1/6

and the fact that large excitation linewidths preclude the realization of small laser detunings ∆.
Another possibility involves a Förster resonance to tune the Rydberg interaction strength, as
discussed in paragraph 3.1.5.
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Figure 6.3: Dependence of Rydberg dressing
of a BEC on the initial peak density ρ0 and
an offset density ρOffs, simulating a residual
thermal cloud. The relative change of peak
density ∆ρ/ρ0 in steady state is calculated
for a condensate in a cylindrically symmetric
trap with trap frequencies ωr = 2π · 20 Hz and
ωz = 2π · 80 Hz. The condensate is dressed at
a detuning of ∆ = 100 kHz with Rabi frequency
Ω = 10 kHz to the 32S Rydberg state.

A further principal challenge is the long timescale, that is required for experiments studying
mechanical effects on the whole atomic sample. The maximum achievable Rydberg frac-
tion f ≈ Ω2/4∆2 is limited by the product of the pulse length and the decay rate from the
dressed state. As an example, this can be simply estimated for the experimental parameters
from section 6.1, in particular for the 32S Rydberg state and a pulse length of t = 100 ms.
Restricting the maximum atom losses to an arbitrary value of 50%, one obtains the condition
f < 1/(2Γrt) ≈ 10−4. Here, the decay rate Γr = 50.6 kHz of the 32S Rydberg state, including
blackbody radiation at 298 K [103], is assumed. At a detuning of ∆ = 100 kHz, corresponding
to the optimal detuning for the current density (see section 6.1), the Rabi frequency is limited
to Ω = 2 kHz. As can be seen from Figure 3.5, the expected density change due to Rydberg
dressing at these parameters is on the order of only a percent. This is well below the experi-
mental noise level and hence in line with the experimental observation of no effect.
Finally, a rather technical problem is related to the preparation of the condensate. A very pure
BEC is required, since any non-condensed atoms take part in the collective light shift, but do not
lead to a deformation of the condensate. One can account for a residual thermal cloud by simply
introducing a constant offset density ρOffs in the energy functional ∂ρEeff(ρ) (equation (3.13) in
section 3.1). As can be seen in Figure 6.3, the effect of Rydberg dressing on the condensate
is significantly reduced, even at very small offset densities ρOffs. This is due to the fact that
the main impact of Rydberg dressing, according to Figure 3.2, is expected at low densities.
While the chances to observe Rydberg dressing seemed already borderline considering only
the previous discussion, the additional reduction of the expected effect, caused by the residual
thermal cloud, finally makes the observation of Rydberg dressing most likely impossible in the
present setup.
However, there are two paths towards a possible experimental realization. One involves sam-
ples at reduced dimensionality, such as optical lattices [141, 222], thereby reducing the effec-
tive atomic density. The use of three-dimensional samples, instead, would demand a significant
increase in Rabi frequency. The effect of Rydberg dressing scales roughly as ~Ω4/∆3 (equa-
tions 3.14 and 3.15), while the decay rate of the dressed state is only scaling as the Rydberg
fraction ~Ω2/∆2 (see equation 1.12). Increasing the laser detuning ∆ by the same amount as
the Rabi frequency Ω, one can thus expect a stronger dressing effect at the same loss rate. For
the parameters of the present setup (see section 4.1), a modification of the peak density on the
order of ten percent requires a more than hundred times larger laser power. Based on current
laser techniques, this is not feasible so far.





7 High Rydberg states in a BEC

The great leap forward of this dissertation was the extension of Rydberg excitation to states at
high principal quantum numbers n > 100 and high atomic densities ρ ≈ 1014 cm−3 in a Bose-
Einstein condensate. At these high principal quantum numbers, the Rydberg blockade restricts
the number of Rydberg atoms inside the condensate to one (see paragraph 1.2.3 and further
discussion in section 7.3). This results in an intriguing system, where the extent of a Rydberg
atom approaches the radial size of the BEC (see sketch in Figure 7.1). This is pushing into a
regime of strong interaction between the Rydberg atom and the surrounding gas, since there can
be up to several tens of thousands of ground state atoms inside the wavefunction of the Rydberg
electron. In this and the following chapter, the first results of this newly opened field of research
are presented.
The main results are extracted from a single set of data from spectroscopy of Rydberg S-states
in a BEC at different principal quantum numbers ranging from n = 100 to n = 202. The two
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Figure 7.1: Size comparison of the system: A Rydberg atom inside a Bose-Einstein condensate
of N = 8 · 104 atoms. The scheme shows the extent of the Rydberg electron wavefunction for
the 110S (blue) and 202S (red) states, the lowest and highest state under investigation, as spheres.
The densities of the BEC and the surrounding thermal cloud are to scale. As can be seen from the
projection, the lower bound rB (110S) for the blockade radii is much larger than the size of the
condensate. This makes clear that there can be only one Rydberg excitation at a time inside the
BEC. For the higher Rydberg states, the extent of the Rydberg atom approaches the radial size of
the condensate.
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observables in these measurements are the change of BEC atom number and aspect ratio in time
of flight absorption imaging. The data allows evaluation from different perspectives providing
insight into various phenomena. This chapter focuses on the point of view of the Rydberg
atom. At the beginning, this includes basic findings on the perturbation of Rydberg states by
background gas atoms, a field that has been pioneered experimentally by Amaldi and Segrè in
the 1930ies [2, 3]. The validity of the same theoretical concepts, developed by Fermi [14], is
shown, but here in a completely different parameter regime, at much higher Rydberg states.
Furthermore, the collective excitation and the decay of the Rydberg atom in a high density
environment are studied.
The role of the BEC is emphasized later in the next chapter 8. There the new features of the
combination of a single Rydberg atom and a BEC are explored, interfacing a single quantum
system, the Rydberg electron, and a many-body quantum system, the Bose-Einstein condensate.

7.1 Rydberg spectroscopy

Rydberg S-states with principal quantum numbers n between 110 and 202 were investigated
spectroscopically both in a BEC and in a thermal sample (see Figure 7.2). Two different mea-
surement techniques had to be applied, which are described explicitly in section 5.3. The zero
position of the frequency axis is defined as the spectral position of the respective Rydberg state
measured in a thermal cloud at a peak density of about 1012 cm−3. This is a good approximation
for the line position of free Rydberg atoms. At such densities, the Rydberg electron on average
is interacting with 7 to 310 ground state atoms inside the Rydberg atom. However, the resulting
shift is less than 100 kHz and hence below the present spectral resolution at these high Rydberg
states. In the condensate, the density is around two orders of magnitude higher and leads there-
fore to a sizeable energy shift due to the scattering of the Rydberg electron from the ground state
atoms on the order of some MHz. Besides the line shift, also the width and the amplitude of the
spectral lines in Figure 7.2 show a nontrivial scaling with the principal quantum number n of
the Rydberg state. These quantities are discussed in the following paragraphs. The theoretical
basics can be found in section 3.2.

7.1.1 Line shift

The spectral positions of the Rydberg states in the condensate relative to the position measured
in a thermal cloud were extracted from Figure 7.2. The dependency of this effect on the density
of ground state atoms is known to be linear (see paragraph 3.2.2). Since the measurements
were taken at slightly varying atom numbers, the line shift shown in Figure 7.3 is normalized
onto the same peak density for all principal quantum numbers. This essentially only affects
the measurement at n = 125, as this data point was taken at a 7% higher peak density than
the other measurements. The line shift can be fully understood based on Fermi’s description of
low energy electron scattering (see section 3.2). In the first approximation, the electron atom
scattering length is assumed to be energy-independent and one can thus expect a line shift,
which is only depending on the density ρ of ground state atoms inside the Rydberg atom. Using
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Figure 7.2: Spectral lines of different Rydberg S-states. The black data points (left axis) were
measured in a BEC, the red lines (right axis) were taken in a thermal sample. For the measurements
at the two lowest Rydberg states, n = 110 and n = 125, a Rydberg atom was excited 300 times; for
the other states 500 cycles of excitation and ionization were chosen.
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Figure 7.3: Line shifts of Rydberg S-states in a BEC versus principal quantum number n. The line
positions are extracted from Figure 7.2 and normalized onto the same BEC peak density. The solid
lines are theory curves assuming an energy-independent s-wave scattering length a0 = −16.1 [157]
as well as taking correction up to p-wave scattering into account. The dotted lines are calculated for
a homogeneous condensate neglecting the Thomas-Fermi density distribution.

the mean peak density ρ = 9.3 · 1013 cm−3 over one sequence1, one would expect a constant
shift of −8.5 MHz. However, the absolute line shift is found to be lower and decreasing at
higher principal quantum numbers n. These observations can be explained with a simple model,
assuming that the Rydberg atom is always excited at the centre of the condensate, the position
of highest atomic density. This makes sense, because the collective enhancement of the Rabi-
frequency (see section 7.3) is also maximal at this position. As the radius of the higher Rydberg
states approaches the radial size of the condensate, the effective density inside the Rydberg
atom is significantly lower than the peak density of the BEC. This can be included into the
calculation by introducing a mean effective density ρ, averaging the Thomas-Fermi density
distribution (see section 2.2) over the volume of the Rydberg atom, given as a sphere with
radius R(n) = 2a0(n− δ0)2:

ρ = ρ0

(
1− 2

5

R2

r2
0

− 1

5

R2

z2
0

)
(7.1)

1The BEC atom number is decreasing from 8.0·104 to 5.0·104 during one sequence due to off-resonant scattering
from the intermediate P -level (see sections 5.1 and 7.3).
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Inserting this into Fermi’s expression of the interaction energy due to electron-atom scattering
(equation 3.33) already explains the order of magnitude and the overall trend of the observed
line shift. Here, the zero energy 3Se triplet electron-Rubidium scattering length a = −16.1 a0

was taken from the calculations in [157], which agree well with measurements [77]. Further
refinement can be obtained by accounting for the energy dependence of the scattering length
and including the p-wave scattering potential (see paragraph 3.2.2). As can be seen in Fig-
ure 7.3, this leads to slightly better agreement with the data. However, the correction is within
the experimental error and decreasing at higher principal quantum numbers n. This means, that
the original approximation by Fermi, where the kinetic energy of the electron is neglected, is
largely justified in this system. The Rydberg electron can therefore in good approximation be
regarded as a quasi-free electron in a Bose-Einstein condensate.
The positively charged Rydberg core can also lead to a contribution to the line shift of high
Rydberg states [14]. Ground state atoms inside the Rydberg atom can be polarized since the
charge of the core in this region is not completely shielded by the Rydberg electron. As dis-
cussed in paragraph 3.3.1, this effect is still expected to be well below 100 kHz even at the
highest densities achieved in the current setup and thus below the experimental resolution.

7.1.2 Line broadening

The linewidth of the Rydberg lines in the BEC, extracted from the Gaussian fits in Figure 7.2,
is shown in Figure 7.4. The behaviour of the broadening seems unexpected at first glance. In
contrast to the measurements in the thermal cloud, where the linewidth is increasing with prin-
cipal quantum number, here the width is decreasing at higher Rydberg states. The linewidth
measured in the thermal sample is obviously dominated by the homogeneity of the electric
field. Already a minor increase of the sample temperature and therefore the size of the cloud
leads to a further increase of the linewidth. Since the polarizability α increases with the princi-
pal quantum number as (n − δ0)7, the effect of any residual electric field gradient is expected
to increase dramatically with n. In the BEC, there seems to be at least one other dominant
broadening mechanism present, because the linewidth is much larger than the one measured in
thermal samples and due to the different scaling with the principal quantum number n. A full
modelling of the lineshape in the BEC has not been undertaken so far, but there are at least some
broadening mechanisms which are estimated in the following.
First of all, there is an inhomogeneous broadening of the line expected, as it is possible to ex-
cite Rydberg atoms at different positions and hence different local densities in the condensate.
This broadening can be expected to be on the order of the total line shift (see Figure 7.3). As
the linewidth measured at the lower Rydberg states is much larger than the shift, an additional
important mechanism must be present.
Another source of broadening is the random position of the atoms inside the potential gener-
ated by the scattering of the Rydberg electron. The three dimensional potential has the mean
value V and the variance (∆V )2. According to the central limit theorem [170], for large atom
numbers N inside the Rydberg electron wavefunction, the distribution of total line shifts ap-
proaches a normal distribution with mean NV and variance N(∆V )2. The resulting full width
at half maximum (FWHM) is therefore proportional to

√
N , leading also to a broadening de-

creasing with principal quantum number n (see also discussion in paragraph 3.2.2).
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Figure 7.4: Line broadening of Rydberg S-states in a BEC versus principal quantum number n. The
linewidths (FWHM) are extracted from the Gaussian fits in Figure 7.2. The solid lines show theoret-
ically expected contributions from different effects: The blue line is the line shift from Figure 7.3,
which provides the order of magnitude and overall trend of the inhomogeneous broadening due to
the density distribution in the BEC. The green line accounts for the random placement of the atoms
inside the scattering potential of the Rydberg electron. The red line is the contribution of classical
pressure or collisional broadening.

Finally, also a broadening due to the scattering of the Rydberg atom from the single ground state
atoms can be expected. The line broadening observed by Amaldi and Segrè [2, 3] has not been
explained by the Fermi model [14]. The first interpretation has been given in 1937 by Reins-
berg [226] in terms of impact pressure broadening. The resulting linewidth is proportional to
the scattering rate Γscat. Assuming a geometrical cross section of 4πa2, this scattering rate can
be estimated using a semiclassical approximation for the momentum k of the Rydberg electron
(cf. equation 3.44):

k(R) =

√
2me

~2

(
− Ryd

(n− δ0)2
+

1

(4πε0)

e2

R

)
(7.2)

with the Rydberg constant Ryd, the quantum defect δ0, and the vacuum permittivity ε0. The
scattering rate can than be estimated as:

Γscat =

∫
4πa2 ~

m
k(R) |Ψ(R)|2 d~R (7.3)
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Using the approximation of an energy-independent scattering length a [157], this expression is
inversely proportional to the principal quantum number n, as expected from the Bohr model.
The resulting linewidth (FWHM) ∆f = Γscat/π is shown in Figure 7.4. Further measurements
at different powers and pulse lengths of the excitation lasers (see section 7.3) show that there is
at least one dominant decoherence process present; collisional broadening as described above
could be an explanation of this observation.
All three broadening effects mentioned here are individually each smaller than the measured
linewidth, but on the right order of magnitude. Furthermore, they all show the correct trend
in the principal quantum number so that it seems reasonable that a combination of them can
explain the observations.

7.2 Decay of Rydberg atoms

7.2.1 Dependence on principal quantum number and density

A characteristic property of Rydberg states is their long lifetime compared to lower excited
atomic states. For Rydberg states with low angular momentum l � n, the main spontaneous
decay channel is directed into low lying states, leading to a lifetime increasing with principle
quantum number n−3 [37]. Additionally, an environment at finite temperature can induce tran-
sitions into neighbouring Rydberg states [227]. These two effects have been studied extensively
both theoretically [228, 229] and experimentally [230, 231] in the past. However, many more
effects have been identified, which reduce the lifetime in Rydberg states. At high Rydberg den-
sities, incoherent amplified emission and coherent superradiance can lead to an enhanced decay
rate [232, 233]. Collisions with other atoms in the Rydberg state or in the ground state can
cause decay and ionization [234] as well as the spontaneous formation of a plasma [235, 236].
Due to the vast number of processes which can possibly reduce the lifetime of Rydberg states,
it is important to determine the actual Rydberg lifetime in the regime under investigation.
The lifetimes of Rydberg S-states with principal quantum numbers n between 110 and 202 are
shown in Figure 7.5, both measured in a thermal sample at densities around 1012 cm−3 and in a
Bose-Einstein condensate with peak densities reaching 1014 cm−3. Rydberg atoms were excited
on the resonance positions determined from the spectral lines in Figure 7.2. The two different
measurement techniques which are used in the thermal cloud and in the BEC respectively are
described in section 5.3.
Extrapolating empirical scaling laws for spontaneous decay rates [229] to high principle quan-
tum numbers n, one would expect the lifetime to increase from 1.7 ms to 10.8 ms from n = 110
to n = 202. Instead, the lifetime measured in the low density thermal sample seems to be lim-
ited to a rather constant value of around (0.78± 0.08) µs. This value is significantly longer than
the lifetimes of Rydberg states with principal quantum numbers in the range between n = 35
and n = 43 measured previously with the same technique [159], but still much shorter than ex-
pected accounting for spontaneous decay only. Decay induced by blackbody radiation mainly
leads to a redistribution of the population over neighbouring Rydberg states [37]. Since both
measurement techniques applied here are not state selective, this effect can be neglected in the
interpretation of the results presented here. This is also fully consistent with the results at low
principal quantum numbers n [159]. Moreover, the lifetime observed in the condensate at peak
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Figure 7.5: Measurements of the lifetime for different Rydberg S-states in the BEC and in the ther-
mal cloud. (a) and (b) show exemplarily the exponential decay of the signal measured for the 110S
state in the BEC and in a thermal sample. In (c), the dependence of the lifetime on the princi-
pal quantum number n is shown. The lines are fitted power laws with exponents 2.2 ± 0.1 (BEC)
and −0.3± 0.2 (thermal cloud) respectively.

densities up to 1014 cm−3 shows further reduced values on the order of 10 µs which are now in-
creasing with principal quantum number (n− δ0)−2.2±0.1. The exponent differs from the value
of about −3 expected for spontaneous decay [228, 229].
A full explanation of this effect is elusive so far (see also further studies and discussion in para-
graph 7.2.2). However, the data suggests that there is a dominant decay mechanism which is
depending on the number of ground state atoms inside the wavefunction of the Rydberg elec-
tron: The lifetime measured in the thermal cloud is about two orders of magnitude longer than in
the BEC. This factor corresponds to the difference in density between the two sets of measure-
ments. Since the thermal cloud is much larger than the size of one Rydberg atom, the density
of ground state atoms inside the Rydberg atoms can be assumed as homogeneous. The num-
ber of atoms inside the Rydberg atom is then constant (see discussion in paragraph 3.2.3) and
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leads therefore to a lifetime largely independent of the principal quantum number. In contrast
to that, in the BEC, the average density inside the Rydberg electron wavefunction decreases for
large principal quantum numbers, because the radius of the Rydberg atom can become almost
as large as the Thomas-Fermi radius of the condensate (see Figure 7.1). This could explain
the increase in lifetime at higher principal quantum numbers. Nevertheless, the exact observed
scaling cannot be explained within such a model (cf. paragraph 7.1.1). Further evidence for
this hypothesis is provided by lifetime measurements at different positions in the condensate
discussed in paragraph 7.2.1. For Rydberg states with low principal quantum numbers (around
n < 80 at a density of 1012 cm−3), such a process is not expected to play a role since there is on
average less than one atom inside the Rydberg electron wavefunction. This explains why this
effect has not been observed in previous measurements. Additional investigations in order to
clarify the nature of the decay channels are discussed in the following paragraphs.

7.2.2 Possible decay processes

As discussed in the previous paragraph 7.2.1, the origin of the reduced lifetimes both observed
in the thermal cloud and in the BEC is not clear yet. However, some processes that are in
principle possible can be ruled out. Due to the Rydberg blockade (see paragraph 1.2.3), the
density of Rydberg atoms in all samples studied in this work is much lower than required for
superradiance effects [232]. The density of ground state atoms is also still small enough so that
a collective enhancement of the decay into the ground state is suppressed [233].
Another possibility would be a decay by state changing collisions [237] of the Rydberg atom
and the dense background gas of ground state atoms [238]. As calculated in paragraph 7.1.2,
the classical scattering rate of the Rydberg electron from the ground state atoms is quite large,
ranging from 6 MHz at n = 110 to 3 MHz at n = 202 respectively. In a classical picture,
the Rydberg electron is moving through a dense medium, experiencing a friction force. Since
the electron is loosing kinetic energy, it would decay back into the ground state in a cascade.
At this point, however, the quantization of the Rydberg energy levels becomes important. The
states closest to the initial Rydberg state are still at least a few GHz apart, orders of magnitude
more than the energy that could be transfered in a classical scattering event2. A more rigorous
treatment [239, 240] also shows that the probability for any inelastic collision of the Rydberg
electron with ground state atoms is negligibly small at ultracold temperatures, which prevail in
this experiment. In order to check this experimentally, the threshold for field ionization was
measured directly after excitation and td = 3 µs after the exciting laser pulse. The experimental
sequence is similar to the one used for recording the Rydberg spectra in section 7.1, but with
an additional electric field pulse of variable strength after a wait of td (see inset of Figure 7.6).
The resulting relative BEC atom number measured after time of flight for different electric
field strengths E is shown in Figure 7.6. The dashed lines denote the classical field ionization
threshold [37]

Eion(n) =
1

16

e

4πε0a2
0

(n− δ0)−4 (7.4)

in steps of ten principal quantum numbers. At low electric fields, there is no effect of the first

2With the classical mean electron velocity v = 2Ryd/~ · a0/(n − δ0) = 2.0 · 104 m/s of the 110S state the
energy transferred in a straight central elastic collision is about 6.9 MHz.
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Figure 7.6: Investigation of the decay of the 110S Rydberg state. The BEC atom loss was measured
while varying the electric field strength of pulses with a delay time of td = 3 µs (red) and imme-
diately after Rydberg excitation (blue). The dotted vertical lines indicate the classical ionization
threshold for Rydberg states in steps of ten principal quantum numbers n. The solid black line cor-
responds to the value for n = 110. In the grey shaded area, the electric field is not strong enough to
extract a possibly existing ion from the condensate during the electric field pulse. The experimental
sequence is depicted in the inset.

electric field pulse and strong atom losses (see paragraph 3.2.4) are observed, since the Rydberg
atom can interact with the condensate during the full period of 10 µs until the clearing pulse at
the end of each sequence. As soon as the classical ionization threshold Eion is reached (black
solid line in Figure 7.6), the measured BEC atom losses decrease rapidly, since the Rydberg
atom is ionized before it can lead to a significant atom loss. At a finite delay time td = 3 µs
between the light pulse and the first electric field pulse, the measured relative BEC atom number
does not go up to 100% due to the losses accumulated during td. Nevertheless, the onset of the
decreased atom losses is at the same electric field strength as for td = 0 µs, at the value expected
for the 110S Rydberg state according to equation (7.4).
The first conclusion from this observation is that during the delay of td = 3 µs, which is a con-
siderable fraction of the lifetime (5.0 ± 0.5) µs of this state measured in the condensate (see
Figure 7.5), the Rydberg atom is not decaying to states with significantly lower principal quan-
tum numbers. This means that the Rydberg atoms must decay either directly to low energy
levels, as they mainly do in spontaneous decay [37], or directly to the continuum. Possible pro-
cesses could involve associative ionization, so called Hornbeck-Molnar ionization, or ion pair
formation. In the first process, also termed autoionization, a positively charged molecular ion is
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formed [241]:
Rb(nS) + Rb(5S) −→ Rb+

2 + e− (7.5)

In the second process, the high electron affinity of Rubidium allows to capture the Rydberg
electron, leading to a formation of a positively and negatively charged ion:

Rb(nS) + Rb(5S) −→ Rb+ + Rb− (7.6)

Both processes have been experimentally observed in hot Rubidium vapour [242, 243] and are
discussed as a possible relevant decay process of ultralong-range Rydberg molecules [13]. In
the present case, especially Hornbeck-Molnar ionization seems to be a probable explanation,
since positively charged molecular Rb+

2 ions have been experimentally observed in experiments
with ultralong-range Rydberg molecules [12]. In order to distinguish the two processes exper-
imentally, one could reduce the spatial extent of the condensate with respect to the size of the
Rydberg atom. In the present setup, this is possible e.g. by lowering the magnetic offset field
of the trap (see section 4.1). If the decay process is dominated by Hornbeck-Molnar ionization,
then the observed lifetime remains constant. In contrast to that, ion pair formation is strongly
reduced, if the Rydberg electron is located mainly outside the BEC.
Another important conclusion from the measurements described in this paragraph is that the
BEC atom losses observed after time of flight are really caused during the finite interaction
time of a Rydberg atom with the condensate. As can be seen in Figure 7.6, the relative atom
losses nearly completely vanish if the Rydberg atom is extracted immediately after excitation.
The required electric field is very close to the classical field ionization threshold. Any ions pos-
sibly existent before field ionization would be extracted already at much lower fields (see grey
shaded area in Figure 7.6). This is the prerequisite for the interpretation of the experiments in
paragraph 7.2.1 as a measurement of the lifetime of the Rydberg atom in the condensate and the
basis for the explanation of the loss mechanism in section 8.1.

7.2.3 Dependence on spectral position

As discovered in paragraph 7.2.1, the lifetime of high Rydberg states is limited by a process
depending on the number of ground state atoms inside the Rydberg atom. This number can be
controlled spectroscopically by exciting Rydberg atoms at different densities and thus different
laser detunings as pointed out in the discussion of the line broadening in paragraph 7.1.2. The
lifetime of Rydberg atoms in the BEC therefore depends on the spectral position of the Rydberg
excitation. For the 110S state, the lifetime was measured for different laser detunings from
the Rydberg resonance in the thermal sample (see Figure 7.7). Since the experimental effort
to obtain this data is quite high, only few data points are available. However, the lifetime
is clearly decreasing with increasing red detuning. This means that the lifetime observed in
the centre of the condensate is more than a factor of two shorter than the one in the outer
regions at lower density. Although the data does not allow a quantitative analysis, it provides
further evidence for two important conclusions. First, it is possible to control the position of the
Rydberg excitation by spectroscopic means (see also paragraph 8.2.1) and second, the lifetime
is really limited by a process depending on the number of ground state atoms inside the Rydberg
electron wavefunction (see paragraph 7.2.1).
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Figure 7.7: Lifetime of the 110S Rydberg state in a BEC versus spectral position. (a) The spectral
lines measured in the BEC and in a thermal sample from Figure 7.2 (a) are shown as a reference.
The lifetime measured in the condensate (b) shows a clear dependence on the spectral position. The
black line is a guide to the eye.



7.3 Collective excitation 105

7.3 Collective excitation

Strong mutual interaction between Rydberg atoms leads to the Rydberg blockade. This phe-
nomenon results in a region around one Rydberg atom, where further excitations with the same
driving laser field are prohibited (see paragraph 1.2.3). If the atoms are indistinguishable, the
excitation is shared among all Nc atoms inside the blockade sphere, forming a so called super
atom [113]. A clear indication for this effect is the emergence of Rabi oscillations, which are
enhanced by a factor of

√
Nc with respect to the single atom Rabi frequency Ω. This collec-

tive enhancement has been directly observed for two atoms [114, 115] in the past. For larger
systems, inhomogeneities in the density and the coupling laser field reduce the visibility of col-
lective Rabi oscillations, leading to saturation curves with an enhanced initial slope [118, 84].
Therefore, collective Rabi oscillations of many-body systems have so far only be observed in
the case of only one excitation [116, 117].
The experiments in this work have been performed in a completely different regime than the
work cited above. Here, not only the number of atoms inside the blockade sphere, but also
inside the Rydberg atom itself is large. As discussed in paragraph 7.1.1, this leads to a density-
dependent energy shift on the order of some MHz. For this reason, the simple concept of the
Rydberg blockade described in paragraph 1.2.3 is not necessarily applicable. The Rydberg
S-states investigated in this work show a purely repulsive van-der-Waals interaction (see sec-
tion 1.2). Thus, a Rydberg excitation in the low density region of the condensate, at a detuning
close to zero with respect to the resonance position in the thermal cloud, could possibly tune
a second excitation more in the centre of the BEC into resonance. The zero crossings of the
combined interaction and density-dependent potentials then in principle allow to create quasi
crystalline ordered structures of Rydberg atoms [244]. More important for the work presented
here is the case of large red detunings, when Rydberg atoms are excited preferentially in the
centre of the condensate. In this case, the density gradient and the Rydberg-Rydberg interaction
are of the same sign and there is consequently no antiblockade effect present. On the contrary,
the blockade by a single excitation is then even more effective. This justifies a posteriori the
assumption that only one Rydberg atom at a time is excited in the condensate in the present
experiments (see introduction of chapter 7).
However, it is now not obvious whether and to what extent collective effects play a role in
the excitation process. In order to study the excitation dynamics, the relative change of atom
number after time of flight has been measured for different laser powers and pulse lengths on
the 110S Rydberg state. The laser detuning was kept at the resonance position of the spectrum
in the uppermost panel of Figure 7.2. Since the Rabi frequency Ωb on the upper transition is
technically limited by the available laser power and the beam waist in the focus, the effective
two-photon Rabi frequency Ω was changed via the power of the red laser. In Figure 7.8a, the
Rydberg induced relative BEC atom losses after time of flight are plotted versus the single atom
excitation pulse area Ωt. The effective single atom Rabi frequency Ω = ΩrΩb/2∆p (see para-
graph 1.1.4) is calculated [96] from the measured powers and beam waists using the dipole
matrix elements from [84].
For all three pulse lengths, at very high pulse areas Ωt, the Rydberg induced loss is reduced
and the relative BEC atom number approaches 100%. This can be explained by the atom losses
induced by spontaneous scattering of photons via the intermediate 5P3/2 state [198]. Both the
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Figure 7.8: Saturation curves for the 110S state: atom loss versus pulse area Ωt for three different
pulse lengths. (a) Relative change of BEC atom number due to Rydberg excitation. The solid
lines are fitted saturation curves. (b) Reduction of the total BEC atom number due to off-resonant
scattering from the intermediate level. The solid lines are quadratic fits. For the assumed confidence
region the total atom must not exceed 40% (dotted lines).



7.3 Collective excitation 107

pulse area Ωt and the scattering rate Γscat increase with the Rabi frequency Ωr of the lower
transition. While the increase of the pulse area Ωt is linear in Ωp, the scattering rate Γscat scales
quadratically at large detunings ∆p = 500 MHz � Ωr from the intermediate level (see sec-
tion 5.1):

Γscat =
Ω2
r

4∆2
p

· Γp (7.7)

Here Γp = 6.07 MHz is the decay rate of the 5P3/2 state [94]. The off-resonant scattering leads
to a heating of the atoms, which causes significant losses from the condensate. The quadratic
decrease of BEC atom number due to this effect alone is shown in Figure 7.2 (b). As the total
BEC atom number drops, the absolute and at some point also the relative Rydberg induced atom
loss decrease since the density-dependent line shift (see section 7.1.1) tunes the Rydberg state
out of resonance. At the same time, the noise level increases as the BEC becomes very small.
The onset of this effect is moving to values for shorter pulse lengths as the pulse area Ωt is pro-
portional to the Rabi frequency Ωr of the lower transition, whereas the scattering rate according
to equation (7.7) is scaling with Ω2

r (see also appendix B.2.1). The confidence range is assumed
to reach down to total BEC atom numbers of 60% of the initial number, denoted as dotted lines
in Figure 7.2.
Even well within this confidence range, no Rabi oscillations are visible. Instead, an initial
quadratic increase and a saturation onto a constant value for higher pulse areas Ωt appears. It is
important to note here that the origin of these saturation curves is completely different to previ-
ous measurements performed in a thermal cloud [118, 84]. In a large inhomogeneous sample,
the saturation is a result of the superposition of signals stemming from different super atoms.
In this case, each super atom undergoes collective Rabi oscillations at a different frequency,
depending on the local density and power of the driving laser field. The superposition of these
different oscillations gives rise to a saturation curve [84]. The present case is rather comparable
to the situation in [116], where one Rydberg atom in the 102S1/2 state was excited from a sam-
ple smaller than the blockade radius. At peak densities of 1012 cm−3, this resulted in a single
super atom consisting of up to 400 atoms.
In the experiments presented here, however, the density is roughly two order of magnitude
higher, so that there are on average many atoms inside the Rydberg atom (see Figure 7.1). The
scattering of the Rydberg electron from the ground state atoms inside its wavefunction (see sec-
tion 3.2) has basically two effects. First of all, the energy of the Rydberg state depends on the
local density and therefore on the position of the particular atom within an inhomogeneous den-
sity distribution, given here by the Thomas-Fermi distribution of the condensate. This means
that in case of large density gradients over a blockade volume not all atoms actually contribute
to the collective state forming the super atom. The number of atoms taking part in the collective
dynamics is thus reduced. Secondly, the transfer of momentum onto a BEC atom constitutes
a measurement process determining the position of the Rydberg atom. On the first scattering
event, the collective state is hence projected onto the basis of localized Rydberg excitations
and the coherent collective evolution stops. The scattering rate Γscat of the Rydberg electron
calculated according to equation (7.3) for the 110S state is 6.0 MHz. This means that the Ryd-
berg excitation process is collectively enhanced; but as soon as a Rydberg atom is excited, the
coherent collective dynamics stops quasi immediately since the average time 1/Γscat = 170 ns
for a scattering event is short compared to the excitation dynamics. After an initial increase
with sin2(

√
NcΩt), the probability to excite a Rydberg atom then saturates at unity.
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Figure 7.9: Collective enhancement versus pulse length. The number Nc of atoms contributing to
the collective enhancement of the excitation process for different pulse lengths is extracted from the
initial quadratic rise of the saturations curves in Figure 7.8. The solid line is the result of the model
described in the text.

Saturation curves of this shape were fitted in the confidence region in Figure 7.8, with the am-
plitude and the collective Rabi frequency as fitting parameters. Due to the atom losses from
light scattering, the amplitudes of the signal for different pulse lengths can not be compared
directly. This observable is explained later in detail in section 8.1; important for the interpreta-
tion here is only the fact that the measured BEC atom loss is proportional to the probability of
having a Rydberg excitation in the condensate. From the collective Rabi frequency, the num-
ber Nc of atoms contributing to the collective enhancement at the beginning of the excitation
and consequently the size of the super atom can be extracted (see Figure 7.9). The collective
enhancement by the atom number Nc is larger at short excitation pulses, as can be immediately
seen in Figure 7.8 from the faster decrease of the observed BEC atom number with increasing
pulse area Ωt.
In order to understand this trend, a simple model can be applied, where again the Rydberg exci-
tation is assumed to be located in the centre of the condensate (cf. section 7.1). The interaction
of the Rydberg electron and the ground state atoms inside its wavefunction causes a shift of the
Rydberg state, depending on the local density ρ of ground state atoms (see section 3.2). There-
fore, only a certain fraction of the atoms inside a range ∆ρ of densities, where this line shift is
smaller than the excitation bandwidth ∆f , can participate in the coherent dynamics. With the
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line shift from equation (3.33), this argument leads to the simple estimate:

h∆f >
2π~2a

me

∆ρ (7.8)

The fraction of BEC atoms Nc/N taking part in the collective dynamics can then be calculated
from the Thomas-Fermi density distribution as the number of atoms inside a shell of densi-
ties ∆ρ around the center of the condensate with peak density ρ0:

Nc

N
=

(
∆ρ

ρ0

)3/2(
5

2
− 3

2

∆ρ

ρ0

)
(7.9)

The dominant contribution to the excitation bandwidth ∆f is the Fourier width3 0.886/t of the
excitation pulse with finite duration t. The result of this estimate is plotted as a solid line in
Figure 7.9, assuming a mean BEC atom number of N = 6.5 · 104. For the shortest pulse length
t = 100 ns, the Fourier width is with 8.9 MHz larger than the line shift in the condensate at this
state (see paragraph 7.1.1). As a consequence, almost the whole condensate is contributing to
the collective dynamics, forming a super atom consisting of around 60000 atoms. The simple
estimate nicely reproduces the trend and order of magnitude. For longer pulses, the collective
enhancement is restricted to fewer and fewer atoms. At t = 1 µs, where most of the experiments
in this work were performed, still more than 4000 atoms contribute to the super atom. It is this
enhancement factor that allows to excite Rydberg atoms in the condensate fast enough with
the available laser powers and constraints due to scattering of the red light at the intermediate
P -level (see section 5.1).

3The numerical factor comes from the FWHM of the sinc2 function, the Fourier transform of a rectangular pulse
of the electric field squared.





8 Coupling a single electron to a BEC

The evaluation of the results in the last chapter were focused on point of view of the Ryd-
berg atom. Now, the reaction of the BEC on the Rydberg electron forming an impurity in
the superfluid is discussed. This chapter covers an interpretation of the Rydberg spectroscopy
experiments (see section 7.1) in the BEC from a different perspective as well as additional mea-
surements probing the effects onto the condensate.
As discussed in the theory part (section 3.3), the interaction of the positively charged Rydberg
core is negligible compared to the impact of the Rydberg electron. Furthermore, the observed
line shift of Rydberg states at high densities in paragraph 7.1.1 could be fully explained by
Fermi’s free electron model [14] alone. Therefore, it seems reasonable to treat the system as
a single electron impurity inside the Bose-Einstein condensate. The combination of these two
elements is forming a hybrid system, consisting of a single quantum particle, the electron, and
a quantum many-body system, the BEC. The quantum nature of the Rydberg electron already
became obvious in paragraph 7.2.2, where the decay of the Rydberg atom was studied. The
properties of the condensate as a quantum liquid are required in this chapter to understand the
BEC atom loss, observed in time of flight absorption imaging. The discussion of this mech-
anism in this chapter explains the basis for the spectroscopic results provided in the previous
chapter 7. As an additional observable, now the shape of the condensate emerges. The mea-
surements show that the whole condensate is set into a collective oscillation by the electron
impurity.
At first glance, it seems surprising that an electron impurity, a single particle, five orders of mag-
nitude lighter than a 87Rb atom, can lead to such a strong effect onto a BEC consisting of several
hundreds of thousands of atoms. Much heavier single positively charged ion impurities have
already been created in a BEC [160, 180]. But so far, a collective response of a Bose-Einstein
condensate to a single impurity has not been observed in such systems yet. A simple estimate
of the coupling strength of an impurity immersed in a BEC was discussed in paragraph 3.3.2.
Within this model, the interaction strength of an electron is two orders of magnitude stronger
than that expected for a positively charged ion. The fact that there is a significant impact of the
Rydberg electron onto the BEC becomes also obvious by comparing the size and depth of the
scattering potential (see section 3.2), created by the electron with the length and energy scales
of the BEC (see Figure 8.1). Even though the electron scattering potential is small on the scale
of Rydberg states, where the distance to the next level is at least several GHz, it is sizeable on
BEC energy scales. In particular, it is orders of magnitude stronger than the polarization poten-
tial due to the Rydberg core Rb+, except for very small distances, smaller than the minimum
mean interparticle distance of d = 0.2 µm at a BEC peak density of ρ = 1014 cm−3. The mean
potential depth, averaged over the size of the Rydberg atom, is on the same order as the chemi-
cal potential µ of the condensate. At the lowest principal quantum number n = 110 studied in
this work, the scattering potential even exceeds the chemical potential by nearly one order of
magnitude. For long interaction times of the Rydberg atom with the condensate, one can thus
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Figure 8.1: Comparison of length and energy scales of the system. The electron scattering potentials
(see section 3.2) for the 110S and 202S Rydberg states are shown together with the polarization
potential from the Rydberg core Rb+. The mean potentials (black dashed lines) are on the order
of the chemical potential µ = 745 Hz of the condensate with N = 8 · 104 atoms (horizontal black
line). The spatial extent of the scattering potential for all Rydberg states under investigation is much
larger than the healing length ξ = 274 µm of the BEC.

expect a significant modification of the density distribution of the BEC atoms. In particular, this
would lead to an accumulation of atoms inside the wavefunction of the Rydberg atom.
For short interaction times t, where the Fourier width ∝ 1/t is larger than the potential
depth, however, the momentum scale is more important (see paragraph 3.2.4). For all Ryd-
berg states investigated in this work, the spatial extent of the scattering potential, given by
the outermost lobe of the electron wavefunction at 2a0(n − δ0)2 is much larger than the heal-
ing length ξ = 274 nm of the condensate (see paragraph 2.3.1). This means that the Fourier
transform of the potential has a dominant component at low momenta on the BEC scale. The
Rydberg electron can therefore excite phonons in the condensate.

8.1 Coupling to BEC excitations

First evidence, that the interaction of a Rydberg electron with a BEC leads to the excitation of
phonons in the condensate, is provided by the BEC atom losses observed in the spectroscopy
experiments in section 7.1. Some atom losses are caused by each Rydberg atom being ionized
and extracted from the cloud during the sequence. However, the observed atom losses are much
larger than one would expect from this effect alone. The maximum atom losses per Rydberg
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quantum number n 110 125 140 160 182 200
atom loss ∆N 50± 3 36± 3 15± 2 11± 2 7.1± 1.0 5.7± 1.3
lifetime τ [µs] 5.0± 0.5 8.6± 1.1 7.4± 1.3 17± 4 11± 2 24± 8

Table 8.1: Mean BEC atom loss ∆N per Rydberg atom and Rydberg lifetime τ in the condensate
for different principal quantum numbers n. The maximum atom loss per Rydberg excitation is
extracted from the Gaussian fits in Figure 7.2. The given values of the lifetime in the BEC are
measured independently (see Figure 7.7).

excitation in time of flight imaging are shown in Figure 8.2. The relative atom loss evaluated
as described in paragraph 5.3.2 is taken from the Gaussian fits in Figure 7.2. In order to obtain
absolute numbers, these values are multiplied with the BEC atom numbers, measured at the
end of each sequence (typically 5.0 · 104 atoms), and divided by the number of excitations per
sequence. The loss, which is caused by ionizing the Rydberg atom alone, has been subtracted
and the resulting values were normalized onto the same experimental peak density (similar as
in paragraph 7.1.1). Both corrections have only a negligible effect well below the experimen-
tal uncertainty. The result is the mean number of BEC atoms lost per Rydberg atom since the
Rabi frequency for all measurements was chosen on the plateau of the saturation curves in Fig-
ure 7.8 and the Rydberg blockade allows only one excitation at a time in the condensate. The
values are listed in Table 8.1 together with the Rydberg lifetime measured in the BEC from
paragraph 7.2.1. Up to 50 BEC atoms are lost per Rydberg excitation. This number decreases
from lower to higher principal quantum numbers n. As the discussion in appendix B.2.2 shows,
this observation can not be explained by classical scattering theory, as it is possible in similar
experiments with ionic impurities [160]. Contributions by collisions of the positively charged
Rydberg core [160, 180], as well as three-body recombination with two neutral atoms [245],
are expected to be at least two orders of magnitude smaller than the effects observed here (see
paragraph 3.3.2).
It turns out that the experimental data can be reproduced with good accuracy, assuming that
the Rydberg electron is creating Bogoliubov excitations in the condensate, which are detected
as atom losses in time of flight imaging. The underlying theory is discussed in depth in para-
graph 3.2.4. Here, just the fundamental line of reasoning and some additionally required ap-
proximations are outlined in order to provide an intuitive understanding of the processes in-
volved. The calculation assumes that at the beginning of each Rydberg excitation, the BEC
is in its ground state. As excitations are present in the condensate already after the first laser
pulse, this is certainly not the case in the experiment. However, the measured effect scales
linear with the number of Rydberg excitations in the relevant range (see appendix B.2.3), so
that effects of excitations already present in the condensate can be neglected on the current
level of precision. The scattering potential of the Rydberg electron (see section 3.2) acts as a
time-dependent perturbation onto the condensate. Perturbation theory is applied to calculate the
number of Bogoliubov excitations in the BEC (see equation 3.52). The interaction time of the
Rydberg electron with the condensate is limited by the finite lifetime τ of the Rydberg atom
(see paragraph 7.2.1) and the experimental sequence, since any Rydberg atom is extracted after
a fixed time td = 10 µs (see paragraph 5.3.2). The Fourier transform of the time-dependent in-
teraction potential determines which modes are excited in the condensate. The time dependence
leads to a finite Fourier width, allowing energetically a broad energy band of excitations ranging
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from 0 kHz to about 16 kHz. This band is large compared to the energy scale of the BEC, orders
of magnitude larger than the chemical potential µ = 745 Hz. It is then the shape of the scatter-
ing potential (see Figure 3.15c) that largely determines which modes are populated according
to the dispersion relation (see equation 2.29) within the energetically allowed range. As has
been shown in paragraph 3.2.4, excitations of phonon and free particle type are created in the
experimentally relevant parameter range. After a time of flight, both phonon and free particle
excitations can be detected as atom losses, since all atoms that carry a sufficient momentum qmin

are leaving the condensate as the trap is switched off. This way, also the residual thermal cloud
is removed. The minimum momentum can be estimated to be on the order of qmin ≈ 0.13 ~/ξ
from lattice diffraction experiments (see Figure 5.3 in section 5.1) and the size of the conden-
sate after time of flight. As discussed in theory paragraph 3.2.4, for high principal quantum
numbers around n = 200 this cutoff leads to a significant fraction of excited atoms not detected
as atom losses (see Figure 3.16b). However, the absolute influence of this modification is next
to negligible compared to the experimental uncertainty in this regime.
The treatment presented here can be compared to the Raman-Nath regime in lattice diffraction
of atoms [204]. This concept was originally derived for the diffraction of light by high fre-
quency sound waves [246], describing the limit of short interaction time t. In this regime, the
atoms are interacting shortly with a thin periodic phase grating U(z) = U0 cos2 (kz), formed by
a standing wave light field [247]. During this time, the atoms do not move, but only accumulate
a certain phase U0/~ · t induced by the light field potential. The phase shift is much smaller
than π, leading to a small fraction of the atoms acquiring a fixed momentum 2k which is deter-
mined by the Fourier transform of the periodical potential U(z). The probability for an atom to
be scattered out of the condensate is to first order proportional to the square of the accumulated
phase (U0/~ · t)2 [176].
Likewise in the present case, there is a dominant scaling of the atom losses with the square of
the Rydberg lifetime τ (see paragraph 3.2.4). Since so far there is no theoretical model describ-
ing the experimentally observed reduction of the Rydberg lifetime τ at high densities and high
principal quantum numbers, measured values from section 7.2 are used for the theoretical cal-
culations. Therefore in Figure 8.2, the measured atom loss from Table 8.1 is plotted normalized
onto τ 2. This way, the uncertainty in the measured Rydberg lifetime τ has only little influ-
ence on the theory curves, but mainly affects the experimental data. The residual dependence
on the lifetime τ is weak, so that assuming a constant value of 10 µs for all principal quan-
tum numbers n (lines) already reproduces the overall effect very well. Inserting the measured
values of τ into the theory allows for a complete quantitative reproduction of the observations
within the errorbars, without any adjustable parameter (squares in Figure 8.2). As expected,
the corrections to the scattering potential, which depend on the electron momentum, only play
an important role at low principal quantum numbers (see also discussion in paragraph 3.2.2).
The improved agreement between theory and experiment is even better visible in the linear plot
in appendix B.2.4, where also the role of excitations in the phonon regime is discussed. As
already discussed in the theory part (see Figure 3.16), the relative contribution of phonons to
the measured atom loss is around 50%. The fact that the experimentally observed atom losses
can only be explained taking phonon excitations into account, provides clear evidence that the
single Rydberg electron is really coupling to the excitation spectrum of the condensate. This in-
sight is also important for the understanding of further observations, presented in the following
section 8.2.
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Figure 8.2: Rydberg induced BEC atom loss after time of flight for different principal quantum num-
bers n. The maximum atom loss per Rydberg excitation is normalized onto the lifetime squared τ2

of the Rydberg state in the BEC (both quantities from Table 8.1; the losses are corrected for the
loss by the field ionization of the Rydberg atom). Theory values, taking the measured lifetime into
account (squares) and assuming a constant lifetime of τ = 10 µs (solid lines), are shown in the ap-
proximation to zeroth order in the electron momentum k (blue) and taking terms up to linear in k
into account (red) respectively.

8.2 Excitation of BEC shape oscillations

In the previous section 8.1, the atom losses from the condensate observed after time of flight
could be explained by the creation of excitations in the BEC. All atoms that acquire a sufficient
momentum above a certain threshold qmin leave the condensate during time of flight. Accord-
ingly, the excitations at low momentum can lead to a modification of the density distribution of
the condensate. In the following, this deformation of the condensate, observed in the BEC spec-
troscopy experiments in section 7.1, is discussed. It turns out that the findings are caused by a
collective shape oscillation of the whole condensate, which the Rydberg electron is coupling to.
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8.2.1 Deformation of condensate

The absorption images of the condensate contain information about the size and the shape of the
BEC. So far, only the BEC atom number has been evaluated (see Figure 7.2). An anisotropic
deformation of the condensate, preserving the cylindrical symmetry, can be quantified using the
aspect ratio ε = rr/rz, the ratio between radial size rr and axial size rz of the condensate after
time of flight. This number is plotted in Figure 8.3 together with the atom loss and the Rydberg
spectra measured in the thermal cloud for reference. For the lower Rydberg states, there is a
strong change of the measured aspect ratio ε. The Gaussian fits are a guide to eye showing a
clear shift of the maximum mechanical effect to the red side of the loss feature. The condensate
there becomes more elongated after time of flight, partially compensating for the atom losses
in the radial direction. This is illustrated by the insets in Figure 8.3a, where the difference of
an absorption image with Rydberg excitation and a reference measurement with detuned blue
laser is shown at two different laser detunings. The spectral positions were chosen so that the
integrated total atom loss is the same for both examples. On the blue side, the atom loss is
isotropic, resulting in a blue spot in the difference picture at the position of the condensate.
On the red side, the deformation of the condensate in radial direction partially compensates the
atom losses, leading to a red stripe where the atom number after time of flight is not changing.
The observation of this mechanical effect of the Rydberg electron onto the BEC provides fur-
ther evidence for the conclusions drawn in the previous discussions. Both the line broadening
in paragraph 7.1.2 and the dependence of the measured lifetime on the spectral position (see
Figure 7.7) suggest that the position of the Rydberg atom inside the inhomogeneous density
distribution of the condensate can be controlled spectroscopically. The density-dependent in-
teraction energy of the Rydberg electron with the ground state atoms (see section 3.2) allows to
excite Rydberg atoms only at positions in the sample with a certain density. This assumption is
also backed by the collective enhancement of the Rydberg excitation that is limited to a certain
density range around the peak density (see section 7.3).
The dependence of the observed BEC deformation on the laser detuning from the Rydberg state
can be explained from the same principle. Due to the energy shift from Rydberg electron-atom
scattering (equation 3.33), a Rydberg excitation at large red detuning from the non-interacting
Rydberg state (as measured at low densities) is pinpoint at high densities; this leads to a scatter-
ing potential, well localized in the centre of the condensate. Then, a slow mechanical response
of the BEC atoms on the millisecond timescale, given by the inverse trap frequencies, can be
expected from the resulting time averaged potential. At smaller red detunings, the Rydberg ex-
citation is restricted to a larger range and eventually to a shell of equal density around the centre
of the BEC. During repeated excitations, the Rydberg electron is then positioned randomly in-
side such a shell, so that the average effect onto the condensate averages to zero. This only
holds true for excitations at low momenta, well within the phonon regime, where the atoms do
not gain enough momentum to leave the condensate at once.
The achievable degree of localization of the Rydberg atom around the centre of the condensate
can be estimated by equating the excitation linewidth h∆f and the density-dependent line shift
from equation (3.33). The resulting resolution ∆ρ in the density ρ of ground state atoms reads
(cf. section 7.3):

∆ρ =
me

~|a|
∆f (8.1)
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Figure 8.3: Rydberg excitation spectra for different principal quantum numbers n. Relative change
of the BEC atom number (a) and aspect ratio (b) after time of flight. The solid lines are Gaussian
fits to the data. The zero position is determined as the position of the Rydberg line in the thermal
cloud, as shown for reference. The change of aspect ratio is illustrated in the insets of (a), which
show difference pictures of the condensate at two distinct spectral positions of the 110S state, where
the overall losses are the same. The data is from the same measurements as Figure 7.2.
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As the excitation linewidth over the size of the condensate is limited by the finite pulse
length of t = 1 µs, the resulting spectral resolution in density is expected to be on
the order of ∆ρ ≈ 9.0 · 1012 cm−3. At a mean peak density of the condensate of around
ρ0 = 8.6 · 1013 cm−3, this corresponds to a resolution of 32 % of the Thomas-Fermi radii around
the center of the condensate. In the present case, this provides a spatial resolution of 1.9 µm in
the radial direction, which is much smaller than the optical resolution in the setup. Of course
this value is only valid for the lowest two Rydberg states investigated, since already at n = 140
the size of the Rydberg atom exceeds this value. Note that this localization actually forms
an additional excitation blockade mechanism in addition to the Rydberg dipole blockade (see
paragraph 1.2.3) and the Coulomb blockade [248].

8.2.2 BEC shape oscillations

In order to further clarify the origin of the deformation, the dynamics of the BEC deformation
are studied in Figure 8.3. Here, the hold time of the condensate after a sequence of 200 Rydberg
excitations was varied. The measured relative change of aspect ratio ε at the 110S state is shown
in Figure 8.4 for two different laser detunings on the red and blue flank of the Rydberg line in
the condensate (see Figure 7.2). Both measurements show a clear sinusoidal oscillation at the
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Figure 8.4: Shape oscillations of the BEC induced by the 110S state. The relative change of aspect
ratio is shown for different hold times in the trap and two different laser detunings. The sequence
of 200 Rydberg excitations lasts from 0 ms to 3.2 ms. Except for the number of pulses, it is identical
to the one described in paragraph 5.3.2. The solid lines are sinusoidal fits with fixed phase.
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same frequency, but with different amplitudes. This means, that the BEC deformation observed
in the BEC spectroscopy experiments (see Figure 8.3) is due to a collective shape oscillation
of the whole BEC that is excited at different strength and imaged at a fixed time. Since the
period of this oscillation is longer than the Rydberg sequence, the contributions of all Rydberg
excitations add up in phase. As explained in paragraph 8.2.1, the amplitude on the blue side is
lower, since the effect of repeated excitations on a shell around the centre of the condensate is
reduced due to the averaging.
The type of shape excitation can be determined by its frequency. Analytical expressions
for collective excitations of harmonically trapped Bose-Einstein condensates in the Thomas-
Fermi regime are reviewed in paragraph 2.3.2. Taking all measurements at different princi-
ple quantum numbers n (see Figure 8.5) into account, one obtains an average frequency of
νosc = (35.2± 0.8) Hz. Within the errorbars, this is perfectly matching the eigenfrequency
of
√

5/2ωz = 35.4 Hz expected for the slow ml = 0 quadrupolar mode (see paragraph 2.3.2).
For this mode, the radial and axial size of the condensate are oscillating out of phase. However,
it turns out that in the present setup the oscillation in the axial direction after time of flight [196]
is too small to be resolved. Therefore, in the following only the radial size of the BEC is evalu-
ated. Figure 8.5a shows the oscillation of the radial size of the condensate after time of flight for
different Rydberg S-states. The laser detuning was chosen on the blue flank of the loss signal in
Figure 7.2 at half maximum of the atom loss, where the mechanical effect onto the condensate
is large. In order to quantify this effect, the amplitude and the offset of sinusoidal fits are shown
in Figure 8.5b and Figure 8.5c. The oscillation amplitude becomes weaker for higher principal
quantum numbers in agreement with the observations in Figure 8.3. The offset of the oscilla-
tion is expected to decrease due to atom losses from the condensate (see section 8.1), since the
Thomas-Fermi radii of the condensate scale with the BEC atom number to the power of 1/5.
The expected change in offset from the measured atom loss is shown in Figure 8.5c. The order
of magnitude is correct, as well as the overall trend. The experimentally observed change in off-
set is about a factor of two larger than expected. A quantitative understanding is more involved
since the effect of the Rydberg excitation alone is relatively small compared to the impact of
the red Rydberg laser (see appendix B.2.5). For the measurements presented here, this effect
has been subtracted; however, assuming the condensate to be unperturbed might be therefore a
poor approximation, even though it lead to very good results in section 8.1. This is one of the
reasons why the observation of any deformation of the condensate beyond shape oscillations
has been elusive so far, even though such effects could be expected from the shape and strength
of the scattering potential (Figure 8.1). The other reason is the finite spatial resolution of the
Rydberg excitation, leading to a washing out of the time-averaged potential.
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Figure 8.5: Shape oscillations of the BEC, induced by Rydberg atoms in different S-states. (a) The
relative change of the radial size of the condensate (Thomas-Fermi radius) is shown for different
hold times in the trap and different Rydberg states. The sequence of 200 Rydberg excitations lasts
from 0 ms to 3.2 ms. The amplitude (b) and the offset (c) of the sinusoidal fits (solid lines in a) are
shown for different principal quantum numbers. In (c), additionally the change of the offset expected
from the measured atom loss is shown as red squares.
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beginning of the end. But it is, perhaps,
the end of the beginning.
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The overall goal of this thesis was to observe the impact of few Rydberg excitations onto a large
atomic sample. In a first approach, an atomic sample was dressed with a low lying Rydberg
state. Due to the Rydberg blockade, the excitation is shared among all atoms inside a blockade
volume, leading to a small admixture of the Rydberg state to each atom. This way, the strong
interaction between two Rydberg atoms causes a small additional interaction energy for all
dressed atoms. Many ambitious theoretical proposals exist, that are based on this idea, some
even for parameters close to the present experimental configuration. However, in this work,
further principal as well as technical problems were identified, that impede an experimental
realization in the present setup. A new model has been developed in the framework of this
thesis, providing more insight and an intuitive explanation for the collective processes involved.
Moreover, it allowed for more precise estimates of the effect of Rydberg dressing, which can
be expected for the current situation. This way, clear requirements, that have to be satisfied for
an experimental realization, could be derived. One possible path involves significant changes
of the trapping geometries to reduce the effective atomic density, such as optical lattices or
samples at reduced dimensionality. Approaches based on the current setup, instead, would
require a hundred times higher laser power than currently available.

The focus then turned from the Rydberg-Rydberg interaction to the direct interaction be-
tween one single Rydberg atom and a large number of atoms in the ground state. This
interaction was found to be dominated by the short-range interaction of the Rydberg electron
with all atoms located inside its orbit.
In order to enter this regime, the current experimental setup had to be pushed to the limits. High
atomic densities around 1014 cm−3, as present in a Bose-Einstein condensate, and Rydberg
states at high principal quantum numbers n > 100 had to be combined, allowing the Rydberg
electron to interact with a large number of atoms. This imposed orders of magnitude higher
technical demands to the control of electric fields and to the timing of the experimental
sequence than previous experiments. On the one hand, much shorter switching times within
one sequence and, on the other hand, much longer total measurement times were required. The
latter demanded long term stability on much larger timescales and long, uninterrupted operation
of the experiment. Finally, Rydberg states at principle quantum numbers even above n = 200
could be achieved. Rydberg atoms at more than a factor of two higher principal quantum
numbers have been already observed in different laboratories [249, 250] and lower Rydberg
states have been studied in a high density environment already in the 1930ies [2, 3, 74].
However, it is the combination of both, high Rydberg states and Bose-Einstein condensed
samples at high densities, that constitutes the major advance in this work.
The experimental results were first discussed from the point of view of the Rydberg atom.
It was shown that the density-dependent energy shifts can be fully explained, based on the
concept of low energy electron-atom scattering as developed by Enrico Fermi already in
1934 [14]. Besides the line shift, also a broadening and a density-dependent reduction of the
lifetime of high Rydberg states were observed. Moreover, the influences onto the Rydberg
blockade and the collective excitation of Rydberg atoms were studied.
For all experimental observations so far, the role of the positively charged Rydberg core
was negligible. Due to the Rydberg blockade, there is only one excitation at a time in the
condensate. The system can thus be considered as a BEC with a single electron impurity,
where the Rydberg atom effectively only serves as an electron trap with variable size. However,
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studying the decay of the Rydberg atom, it could be shown in this thesis that the motion of the
electron in this trap is not classical. Instead, the Rydberg electron seems to stay in its quantum
state, until it finally decays in a sudden event. This formed the basis to understand the impact
of the Rydberg electron onto the condensate.
In collaboration with a theory group, in particular David Peter and Hans Peter Büchler, a simple
model was developed, that can explain the Rydberg induced atom losses from a condensate
observed after a time of flight. This model is based on the creation of Bogoliubov type
excitations in the BEC. It could be shown that a significant contribution of the measured signal
comes from phonon type excitations at low momenta. In the limit of very low momenta, these
phonons can extend over the whole condensate, causing collective shape oscillations, that were
indeed experimentally observed. Measuring the dependence of these shape oscillations on the
laser frequency used for Rydberg excitation, evidence was provided that the interaction of the
Rydberg electron with the BEC allows to position a Rydberg atom in the condensate much
more precisely than the optical resolution.

This thesis started a new field of intriguing research. The results have opened up paths
in different directions. Some of them are already followed by different groups. In the follow-
ing, a short overview of both work already started and possible ideas is given. In particular, the
first idea is currently being realized using the present experimental setup, while current work
on a next generation apparatus is undertaken to implement some of the other proposals.

Ultralong-range Rydberg molecules
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44D , m =1/25/2 J44S , m =1/21/2 J 44D , m =5/25/2 J

Figure 8.6: Molecular potentials for different ultralong-range Rydberg
molecules in cylindrical coordinates (ρ, z). The potential to zeroth order
in the electron momentum is plotted weighted with the radius r.

The first idea actually
goes one step back and is
motivated by one of the
problems occurring in the
quest for Rydberg dress-
ing on Rydberg D-states.
On the red side of the
44D5/2, mJ = 5/2 state,
a whole band of lines was
found. These lines can be
identified as states of ultralong-range Rydberg molecules. Here, one or more atoms in the
ground state are bound by the elastic scattering of the Rydberg electron. Similar molecules,
formed by Rydberg S-states, have been already studied previously [12, 13]. The main differ-
ence of the Rydberg D-states is that their Rydberg electron wavefunction shows an additional
angular dependence, that translates directly into the molecular potential (see Figure 8.6). More
appealing than the D-state molecules with magnetic quantum number mJ = 5/2, already ob-
served in this work, are states with mJ = 1/2. Here, ground state atoms can be bound in two
potential wells, located around the poles and the equatorial plane respectively.
Another interesting direction in the field of ultralong-range Rydberg molecules is to study the
bound states based on Rydberg S-states at much higher principal quantum numbers than previ-
ous work [12]. At constant atomic densities, here, the Franck-Condon factor for the photoasso-
ciation of molecules with more than one ground state atom [77] increases. While the binding
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energy per atom is decreasing roughly as the principal quantum number (n− δ0)−6, the forma-
tion of larger and larger polymers can be expected until the binding energy per atom reaches
the experimental spectral resolution. Then, there is a transition to the regime of a mean energy
shift of the Rydberg atom by all atoms distributed randomly inside, as it has been studied in
this work. For a resolution of 100 kHz, this transition is expected at principal quantum numbers
around n = 80 for Rydberg S-states.

Single photon absorber

Turning to the parameter regime investigated in this thesis, a direct application can be
found in quantum optics. Here, the Bose-Einstein condensate can serve as a single photon
absorber [251]. Two properties of the combination of high Rydberg states and a high density
environment are important. First, the Rydberg blockade for Rydberg states at principal quantum
numbers n ≥ 100 excludes multiple excitations in the condensate at the present parameters.
Therefore, only one photon at a time is subtracted from the incident light field. Second, and
more important is the interaction of the Rydberg electron with a large number of atoms within
its orbit. In this work, evidence was provided that this interaction causes a strong dephasing.
The scattering of the Rydberg electron at the ground state atoms acts as a measurement process,
that projects the superposition state onto the state of one localized Rydberg atom. This stops
the coherent evolution, as soon as there is one atom excited. Thereby, it is assured that the
Rydberg state is not transferred coherently back to the ground state by stimulated emission.
Since the BEC is optically thick, the BEC then forms an element, that almost deterministically
absorbs a single photon from an arbitrary light field. Such an element could not only be used
to generate nonclassical states of light [252], but could also form one building block of a single
photon counter. Here, an array of atomic clouds, e.g. in an optical lattice, has to be combined
with a detection scheme for Rydberg atoms, such as field ionization and ion detection or EIT
imaging [253].

Phonon-mediated coupling of electrons
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Figure 8.7: Feynman di-
agram of phonon-mediated
coupling of two electrons

A microscopic model explaining the mechanism of superconduc-
tivity, the phenomenon of absolutely vanishing electrical resistance
of a material below a certain critical temperature, is provided by the
BCS theory [254]. Within this model, electrons, that experience an
attractive potential, form so called Cooper pairs that condense into
a superfluid state. In most conventional superconductors, the attrac-
tive interaction between the electrons is formed by a temporal po-
larization of the surrounding lattice, which is caused by collective
modes of motion of the ionic cores, i.e. phonon modes. There is ex-
perimental evidence that electron-phonon coupling also plays a role
in high-temperature superconductors [255]. Even though the ac-
tual underlying processes of superconductivity are more involved,
a clean model system, which allows to study the very first building block, the interaction of two
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electrons mediated by phonons in the surrounding material, is certainly of fundamental interest.
The system studied in this thesis makes it possible to prepare a single electron in a Bose-Einstein
condensate, forming a medium close to the absolute ground state. The excitation of phonons
by the electron in the BEC has been already demonstrated in this work. So far, no evidence has
been found that phonons, which are already present in the condensate or excited by previous
Rydberg electrons, influence the subsequent excitation of a Rydberg atom. However, the time
between the single excitations was so short that phonons, travelling at the Bogoliubov speed
of sound cs ≈ 2 nm

µs (see equation 2.32), could not propagate notably. First evidence for the
coupling of an electron to phonons could possibly be provided in an experiment, where two
pulse trains of Rydberg excitations are separated by a variable delay time on the order of few
milliseconds. The study of a clean model system, consisting of only two Rydberg electrons,
separated in time and coupled by phonons, seems out of reach of the resolution of the present
setup.

Crystalline structures of Rydberg atoms

Another idea that is more straightforward, based on the results of this work, deals with
the creation of quasi-crystalline structures of Rydberg atoms. One proposal for realizing such
a system is based on the strong interaction between Rydberg atoms [256]. Such a dynamical
crystallization [257] requires chirped Rydberg excitation pulses [244]. Other proposals use
Rydberg dressing to prepare e.g. supersolid crystals [85, 86, 217]. The experimental realization
of this approach, however, is even more difficult, as proven in this work. Instead, the interaction
between Rydberg electrons and ground state atoms inside their wavefunction could be used.
In an inhomogeneous dense sample, such as provided by a typical BEC, the zero crossings of
the combined Rydberg-Rydberg interaction and density-dependent scattering potentials allow
to excite ordered shells of Rydberg atoms. Such crystals could even have technical relevance,
for example as sources for cold ion and electron beams, required for nanoscale imaging and
milling applications [258].

Electron orbital imaging

An idea, which is closer to an experimental realization, focuses on the Rydberg electron
itself. The excitation of phonons in the BEC, as observed in this work, is caused by the
imprint of the potential, which is created by the elastic scattering of the Rydberg electron
from ground state atoms in the condensate. The response of the BEC density distribution to
this potential could be used to make the orbital of the Rydberg electron visible. The length
scales of the structures expected for high principal quantum numbers are on the order of
micrometers and therefore well above the resolution limit of state of the art imaging. Various
techniques like dark ground imaging [259], phase-contrast imaging [260], polarization contrast
imaging [261, 262] and adapted forms of absorption imaging [263] allow to measure precisely
the density distribution of a BEC in situ. It seems therefore well within reach to image a single
electron orbital. This technique would be more direct than results of high harmonics generation
from intense femtosecond laser pulses [264] and photoionization microscopy [265].
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Figure 8.8: BEC density distribu-
tion of a BEC modified by 50 sub-
sequent Rydberg excitations calcu-
lated for the current experimental
parameters [266].

So far, two problems prevented an experimental realization.
The results discussed in this work show that the mechanical
effect of the Rydberg laser dominated the deformation of
the condensate. Current effort aims to overcome this effect
by applying different Rydberg excitation schemes and mod-
ified experimental sequences. If one does not require the
deterministic excitation within a short time, much longer
light pulses at lower power can be applied. Thereby, detri-
mental light forces can be significantly reduced. A more
principal problem is connected to the short lifetime, that
was observed in this thesis for Rydberg states at BEC den-
sities. Since the timescale of a possible modification of
the BEC density distribution is much larger, several sub-
sequent Rydberg excitations are required. Theoretical cal-
culations done in a collaboration with Tomasz Karpiuk,
Mirosław Brewczyk and Kazimierz Rza̧żewski show that
around 50 Rydberg excitations at a rate below 100 kHz lead to a sufficiently strong effect (see
Figure 8.8), provided that the atoms are placed with a precision better than 1 µm. The required
level of spatial resolution can be met by a next generation experimental setup, which allows to
tightly focus the Rydberg laser. Alternatively, a strongly inhomogeneous density distribution of
the BEC can provide an almost equally good spatial resolution, as could be shown in this work.
The estimated resolution of just below 2 µm, achieved in the present setup, could be improved
using an atomic trap with higher trapping frequencies.

Cold ion impurity and polaron physics

The experiments presented in this work demonstrated that the role of the positively charged
Rydberg core is negligible compared to the impact of the electron. Even though the coupling
strength of a charged impurity to a Bose-Einstein condensate is decreasing with its mass mi

roughly as 1/
√
mi, the scattering length is increasing as ~

√
mi. For the present case of 87Rb,

the electron-atom scattering length is −16.1 a0, whereas the ion-atom scattering length is
expected to be on the order of 5000 a0. This value is roughly twice the mean interparticle
distance at typical BEC peak densities. One impurity ion can therefore interact with multiple
atoms at the same time. In this regime of many-body interaction, the impurity gets dressed
by the surrounding atoms, forming a quasi-particle. These so called polarons play a role in
some important phenomena in solid state physics, ranging from the colossal magnetoresistance
effect to high-temperature superconductivity [267]. They have been already observed in
liquid helium [188, 268] and in ultracold Fermi gases [269, 270, 271, 272]. Ion impurities in
Bose-Einstein condensates are discussed as promising candidates to reach a regime of strong
coupling, that has been elusive in solid state systems so far [273, 182, 183]. In this regime,
mesoscopic molecular ions [181] are expected to be formed, that can be self-trapped in the
condensate or even lead to a bosenova-type collapse of the BEC [184]. Current approaches,
realizing single ion impurities in Bose-Einstein condensates using ion traps [160, 180], are
limited by residual micromotion of the ion in the trap [274]. Thus, the regime of s-wave
scattering, as required for strongly coupled polaron physics, could not be reached yet.
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Figure 8.9: Schematic view of a circular
Rydberg atom in a Bose-Einstein condensate
(grey).

Rydberg excitation in a Bose-Einstein condensate,
as presented in this thesis, provide a promising al-
ternative approach. The temperature of the posi-
tively charged Rydberg core is mainly determined
by the temperature of the atomic cloud and can
thus be easily below 1 µK, if the Rydberg atom
is excited from an ultracold sample. Since the
ionic charge is screened by the Rydberg electron,
the Rydberg atom is not accelerated by electric
fields. Therefore, no sophisticated ion trapping
techniques are required to hold the ion in place for sufficiently long interaction times. However,
in the present case of a condensate of rubidium 87Rb atoms in the 5S1/2(F = 2, mF = 2) state,
the interaction of the Rydberg electron with the BEC is much larger than any effect that could
be expected from the ion. One idea to overcome the effect of the Rydberg electron is based
on Rydberg states with high angular momentum along the quantization axis ml = l = n − 1.
In such so called circular states, the Rydberg electron is localized on a toroidal Bohr-like or-
bit around the Rydberg core. At sufficiently large principal quantum numbers n, the Rydberg
electron is then located outside the Bose-Einstein condensate. Circular states can be efficiently
excited, either using microwave adiabatic transfer [275] or by varying crossed electric and mag-
netic fields [276].
Another approach would be to increase the interaction strength of the Rydberg core above the
one of the Rydberg electron, using e.g. a Feshbach resonance of the Rb+−Rb scattering. How-
ever, no Feshbach resonance can be expected at least in the present case of atoms in themF = 2
state and ions created from the same atomic state [277].
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A Appendix: Theory

In this chapter, additional material is presented in order to further elucidate and substantiate the
discussions in chapter 3. It contains explicit calculations and proofs, as well as a benchmark for
the numeric calculations in paragraph 3.2.4.

A.1 Rydberg dressing

A.1.1 Eigenenergy of a blockaded N-atom system

The crucial step in order to calculate the energy of a fully blockaded system, consisting
of N atoms within one blockade sphere, is the diagonalization of the (N + 1)-dimensional
Hamiltonian HN (equation 3.7). As stated in paragraph 3.1.2, the characteristic polynomial
det (HN − 1E), determining the energy eigenvalues, is given by equation (3.8):

det (HN − 1E) =

[
E2 + h∆E − h2NΩ2

4

]
(−h∆− E)N−1 (A.1)

Now, the proof for this expression is provided by mathematical induction.

For one atom N = 1, the statement is obviously true:

det (H1 − 1E) =

∣∣∣∣ −E hΩ/2
hΩ/2 −h∆− E

∣∣∣∣ = E2 + h∆E − h2 Ω2

4
(A.2)

Setting this polynomial in E equal to zero, one obtains exactly the result of the AC Stark effect
of a single atom, as described in paragraph 1.1.3 (cf. equation 1.11). Although redundant for
the proof, also the case of two atoms N = 2 is shown explicitly:

det (H2 − 1E) =

∣∣∣∣∣∣
−E hΩ/2 hΩ/2
hΩ/2 −h∆− E 0
hΩ/2 0 −h∆− E

∣∣∣∣∣∣ =

[
E2 + h∆E − h2 Ω2

2

]
(−h∆− E)

(A.3)
This is to demonstrate that a simple treatment, without any change of basis, leads to the same
result as the more elegant calculation in paragraph 3.1.1. There, the asymmetric linear combi-
nation of the two singly excited states was eliminated (cf. equation 3.1), as it is not coupled to
the ground state by the light field.
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It remains to show that the hypothesis (A.1) is true for N + 1 atoms:

det (HN+1 − 1E) =

∣∣∣∣∣∣∣∣∣
hΩ/2

HN − 1E 0
...

hΩ/2 0 ... −h∆− E

∣∣∣∣∣∣∣∣∣
=(−h∆− E) det (HN − 1E)

+ (−1)N+1h
Ω

2

∣∣∣∣∣∣∣∣∣∣∣∣

hΩ/2 −h∆− E 0 . . . 0

hΩ/2 0 −h∆− E 0
...

... 0
. . . . . . 0

...
... . . . . . . −h∆− E

hΩ/2 0 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
=(−h∆− E) det (HN − 1E)

+ (−1)N+1h
Ω

2
(−1)Nh

Ω

2

∣∣∣∣∣∣∣∣∣
−h∆− E 0 . . . 0

0 −h∆− E . . . ...
... . . . . . . 0
0 · · · 0 −h∆− E

∣∣∣∣∣∣∣∣∣
=(−h∆− E) det (HN − 1E)− h2 Ω2

4
(−h∆− E)N

=(−h∆− E)

[
E2 + h∆E − h2NΩ2

4

]
(−h∆− E)N−1 − h2 Ω2

4
(−h∆− E)N

=

[
E2 + h∆E − h2 (N + 1)Ω2

4

]
(−h∆− E)N

≡ det (HN+1 − 1E) (A.4)

In the third last line, the induction hypothesis (A.1) has been inserted in order to show that,
indeed, the identity for det (HN+1 − 1E) holds.

Q.E.D.

The energy eigenvalues resulting from the characteristic polynomial (A.1) are:

E1/2 =
h

2

(
±
√
NΩ2 + ∆2 −∆

)
(A.5)

E3,... ,−N+1 =− h∆ (A.6)

The ground state of the system has thus the energy

E1 =
h

2

(
−
√
NΩ2 + ∆2 −∆

)
(A.7)

This is the result (3.9), stated in paragraph 3.1.2 for red detuing ∆ < 0.
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A.2 Creation of Bogoliubov excitations

In this section, some additional details on the treatment of a Rydberg electron in a Bose-Einstein
condensate are given. This comprises some elementary calculations required for the perturba-
tive treatment in paragraph 2.3.1, as well as a comparison of the numerical calculations, used in
this work, to the analytical results in [171].

A.2.1 Interaction operator in momentum representation

Expressing the scattering potential Vscat(~r) in the Hamiltonian (3.45) by its Fourier compo-
nents Vscat(~k), one obtains

Ĥint =

∫
ρ(~r)

1

V

∑
~k

Vscat(~k)ei
~k~r/~s(t) d~r (A.8)

Here, the symmetry of the scattering potential Vscat(~r) (see paragraph 3.2.2) has been exploited
to obtain simpler expressions1. Since the summation runs over all momenta ~k, one can flip the
sign of ~k. The symmetry of the scattering potential Vscat(~r) also translates into the Fourier space
and with Vscat(~k) = Vscat(−~k), one can write equation (A.8) as:

Ĥint =
1

V

∑
~k

∫
ρ(~r)e−i

~k~r/~ d~r Vscat(~k)s(t) (A.9)

Introducing the Fourier components ρ~k [173] of the atomic density (see equation 3.46) imme-
diately leads to the expression in equation (3.47):

Ĥint =
1

V

∑
~k,~p

â†
~p−~k

â~p Vscat(~k)s(t) (A.10)

A.2.2 Interaction operator in Bogoliubov operators

The result, derived in the previous paragraph A.2.1 for the interaction Hamiltonian Ĥint, can also
be written in terms of creation and annihilation operators of Bogoliubov excitations by inserting
the transformation (2.20) into equation (A.10). In the ground state, the lowest mode ~p = 0 is
macroscopically occupied and the particle creation and annihilation operators can be approxi-
mated by â†0 ≈ â0 ≈

√
N0 (see section 2.1). Applying the interaction operator Ĥint onto the

ground state |0〉 and separating the terms with zero momentum out of the sum in equation (3.47)

1This step is only performed in order to match the notation in [171] and is later reversed in the calculation of
equation (3.49).
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leads to:

Ĥint |0〉 =
1

V

∑
~k,~p

â†
~p−~k

â~p Vscat(~k)s(t) |0〉

=
1

V

N0Vscat(0) +
∑
~k 6=0

√
N0Vscat(~k)â†~k +

∑
~p6=0

√
N0Vscat(~p)â~p

+
∑

~p6=0,~k 6=~p

Vscat(~k)â†
~p−~k

â~p

 s(t) |0〉
=

1

V

N0Vscat(0) +
∑
~k 6=0

√
N0Vscat(~k)(uk + vk)b̂

†
~k

+
∑

~p6=0,~k 6=~p

Vscat(~k)up−kvpb̂
†
~p−~k

b̂~p

+
∑
~p6=0

Vscat(0)|vp|2
 s(t) |0〉 (A.11)

In the last step, equation (2.30) and the commutation relation of the Bogoliubov operators (see
paragraph 2.3.1) have been used. The second-last term describes processes, where two quasi-
particles are excited simultaneously. The first and last term lead only to a constant energy shift:

〈0| Ĥint |0〉 /s(t) =
1

V
Vscat(0)

N0 +
∑
~p6=0

|vp|2
 = V scatN (A.12)

Here, the total atom number N , including the quantum depletion (see equation 2.35), and the
mean scattering potential V scat = 1/V

∫
Vscat(~r)d~r = Vscat(~k = 0)/V have been identified in

order to recover the energy shift, obtained already in paragraph 3.2.3, using the central limit
theorem [170]. Neglecting this constant shift and the second order term, the relevant part of the
interaction Hamiltonian can finally be written as:

Ĥint/s(t) =

√
N0

V

∑
~q 6=0

Vscat(~q) (uq − vq)
(
b̂†~q − b̂−~q

)
(A.13)

Here, a zero term (see equation 2.30) has been added. In this form, the result is equivalent to
the one given in [171].

A.2.3 Numerical vs. analytical calculation

The calculations of the number of atoms ∆N affected by the excitation of a Rydberg atom
in paragraph 3.2.4 are performed numerically, based on the Rydberg electron wavefunctions
from [79]. However, an analytical solution is possible, if one neglects terms to higher order in
the electron momentum in the electron-atom scattering potential (see paragraph 3.2.2). Then,
an analytical expression of the Fourier transformed probability density of the Rydberg electron



A.2 Creation of Bogoliubov excitations 135

2
2

n
o
rm

. 
lo

s
s
e
s
 Ä

N
/t

 [
1
/ì

s
]

-110

010

(a)

 

numerical
analytical
power law fit

80 100 120 140 160 180 200
-4

-3

-2

-1

0

principal quantum number n

re
l.
 d

e
vi

a
tio

n
 [
%

]

-6~(n-d )0

110

(b)

Figure A.1: Comparison of numerical and analytical [171, 177] calculation of atom losses induced
by Bogoliubov excitation. In (a), the number ∆N of atoms lost from a condensate, caused by one
Rydberg excitation, is shown for different principal quantum numbers n. A homogeneous con-
densate density of ρ = 8.6 · 1013 cm−3 over the size of the Rydberg atom is assumed. In both
calculations, the integration has been cut at momenta smaller than q = 4.9 · 105 ~/m ≈ 0.13 ~/ξ
(see discussion in paragraph 3.2.4 and section 8.1). As in Figure 8.2, the number ∆N of lost atoms
is normalized onto the lifetime squared τ2 of the Rydberg state in the BEC, which is here kept fixed
at a constant value of τ = 10 µs. Both the numerical (red dots) and the analytical solution (black
crosses) are consistent with a (n− δ0)−6 scaling (blue line). The relative deviation of the numerical
result from the analytical solution is shown in (b).

in the limit of large principal quantum numbers n can be used [177]. In order to benchmark the
numerical evaluation, the results to zeroth order in the electron momentum are compared to the
results of an analytical calculation in Figure A.1. Both curves largely comply with a (n− δ0)−6

power law. The two results agree within a few percent; at low principal quantum numbers n, the
difference is even less than one percent. The deviation at higher n is caused by the fact that the
overall result there becomes very small and hence the relative error increases. However, even
in this regime, the error is way below the corrections to the scattering potential, linear in the
electron momentum, and below the experimental uncertainty.





B Appendix: Experiment

In this chapter, additional experimental data and different evaluations of the measurements dis-
cussed in part III are presented. Section B.1 contains data on Rydberg dressing, measured in
various parameter regimes in order to further confirm the conclusions drawn in chapter 6. Sec-
tion B.2 is mostly focused on complimentary evaluations of the data, which is discussed in
chapters 7 and 8, but includes also some additional measurements. While not absolutely neces-
sary for the line of thought, this information provides significant confirmation of the reasoning
in the main text.

B.1 Rydberg dressing

In this section, additional measurements on dressing a Bose-Einstein condensate with different
Rydberg S-states (paragraph B.1.1) and a Rydberg D-state close to a Förster resonance (para-
graph B.1.2) are shown. These results agree qualitatively with the results in chapter 6. However,
they further demonstrate that it is not possible to observe a significant effect of Rydberg dressing
with the current apparatus, even in different parameter regimes.

B.1.1 Rydberg dressing with S-states

In section 6.1, the weak dressing of a Bose-Einstein condensate with different Rydberg S-states
was discussed. For the measurements presented in Figure 6.1, a relatively long sequence, last-
ing t = 100 ms, was chosen to allow for the dressed BEC to reach its ground state. In this
case, the Rabi frequency Ω close to resonance of the Rydberg state is limited by the decay of
the dressed state. In first approximation, the number of lost atoms then scales as ΓrΩ

2t2 (see
paragraph 1.1.2), where Γr is the decay rate of the particular Rydberg state. Alternatively, one
can also apply a relatively short Rydberg excitation pulse. Then, much larger Rabi-frequencies
can be realized, at which there is a significant change of the Rydberg dressed ground state of the
BEC predicted from the calculations in paragraph 3.1.4. However, this treatment only describes
the ground state of the system and it is not clear yet, how strong effects can be expected in an
experiment, where the Rydberg dressing potential is only pulsed for a very short time. Nev-
ertheless, one can presume a momentum transferred onto the atomic cloud, that finally leads
to a deformation during time of flight. In Figure B.1, the result of measurements with a short
dressing laser pulse are shown. In this sequence, the blue Rydberg laser is switched on adiabat-
ically (see section 4.1), before the red Rydberg laser is turned on as a square pulse for 1 ms. The
Rabi frequency was chosen such that the total atom losses from the BEC do not exceed 50%.
In contrast to the measurements with a longer sequence (see Figure 6.1), there is no loss feature
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Figure B.1: Dressing a repulsive Rydberg S-state to a Bose-Einstein condensate. The condensate,
consisting of 2 · 104 atoms, is dressed for 1 ms at fixed Rabi frequency Ω = 23.3 kHz and variable
detuning ∆ to the 32S Rydberg state. The relative change of BEC atom number (a) and aspect
ratio (b) was extracted from absorption images, taken after a time of flight of 50 ms. In (a), addi-
tionally the ion signal from reference measurements in a thermal sample is shown (excitation pulse
length 2 µs). The solid black lines are a moving average (spectral resolution ~0.3 MHz) as a guide
to the eye.

visible in the BEC atom number. Obviously, the decay from the Rydberg state does not play a
role any more; the Rabi frequency Ω is only limited by the atom losses created by off-resonant
scattering from the intermediate 5P3/2 state (see section 5.1). This results from the fact that this
process is only scaling linear with the pulse length t. Combining equations (5.1) and (1.15),
the total atom loss ∆Nloss can be expressed in terms of the decay rate Γp of the intermediate
state, the two-photon Rabi frequency Ω, and the Rabi frequency Ωb driving the upper transition
(cf. discussion in section 7.3 and paragraph B.2.1):

∆Nloss ~ Γscatt = Γp
Ω2

Ω2
b

t (B.1)
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Even though there seems to be some effect visible in the aspect ratio, the noise level is too high
to provide a definite result. Anyway, most applications of Rydberg dressing (see chapter 6)
require longer experimental sequences to allow for the system to reach its ground state.

B.1.2 Rydberg dressing with D-states

In this paragraph, additional measurements on dressing a Bose-Einstein condensate with a Ryd-
berg state close to a Förster resonance are shown. This comprises measurements at different
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Figure B.2: Dressing of a Rydberg D-state to a Bose-Einstein condensate. The condensate, con-
sisting of 8 · 104 atoms, is dressed for 100 ms at fixed Rabi frequency Ω = 2.6 kHz and variable
detuning ∆ to the 44D5/2, mF = 5/2 Rydberg state for different Förster defects ∆F . The rel-
ative change of the BEC atom number (a) and the aspect ratio (b) was extracted from absorption
images, taken after a time of flight of 50 ms. The solid lines are a moving average (spectral resolu-
tion ~0.5 MHz) as a guide to the eye.
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Förster defects ∆F (see Figure B.2) and different sequence lengths (see Figure B.3). The addi-
tional data further confirms the conclusions drawn in section 6.2. That is, there is no effect of
Rydberg dressing observed above the noise level.
In particular, the results for all Förster defects ∆F in Figure B.2 seem to agree within the ex-
perimental error. Only one single data point at a Förster defect of ∆F = 6.4 MHz and low laser
detuning ∆ seems to deviate. This point, however, seems to be clearly an outlier without any
significance.
Also the measurements for different sequence lengths in Figure B.3 largely agree, at least qual-
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Figure B.3: Dressing of a Rydberg D-state to a Bose-Einstein condensate. The condensate, con-
sisting of 8 · 104 atoms, is dressed for 100 ms and 60 ms respectively at variable detuning ∆ to the
44D5/2, mF = 5/2 Rydberg state for a Förster defect of ∆F = 2.2 MHz. The Rabi frequencies
Ω = 2.6 kHz /3.4 MHz have been adjusted to the pulse lengths. The relative change of the BEC
atom number (a) and the aspect ratio (b) was extracted from absorption images, taken after a time
of flight of 50 ms. The solid lines are a moving average (spectral resolution ~0.5 MHz) as a guide to
the eye.
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itatively. The slightly higher losses on resonance for the shorter sequence are caused by the
different Rabi frequency. The change in aspect ratio at low detunings, also visible in Fig-
ure B.2, is presumably connected to the strong atom loss at red detuning. As already discussed
in section 6.2, this effect is most likely not connected to Rydberg dressing.

B.2 High Rydberg states in a BEC

This section contains additional material connected to chapters 7 and 8. Further evaluations
(paragraphs B.2.1 and B.2.4) and complementary approaches for the interpretation of the data
(paragraph B.2.2) are shown, together with additional data (paragraphs B.2.3 and B.2.5), for the
sake of completeness.

B.2.1 Atom losses due to light scattering

In section 7.3, measurements of the BEC atom losses, induced by spontaneous scattering of
photons via the intermediate 5P3/2 state, are presented for different pulse areas Ωt (see Fig-
ure 7.8b). In Figure B.4, these losses are plotted versus the calculated probability Γscatt for a
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Figure B.4: Atom losses due to scattering from the intermediate P -level. The data from Figure 7.8
is shown versus the calculated probability for an atom to scatter a photon of the red Rydberg laser.
The black dotted line assumes that one scattered photon leads to exactly one atom lost. The black
solid line is a linear fit.
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scattering event. As expected, the data points taken at different excitation pulse lengths collapse
on one single line, except for few points at the highest atom losses. The fitted slope of this line
(solid line) is (5.6± 0.3) times higher than expected if one assumes that every scattering event
leads to exactly one atom lost (dotted line). This can be explained by reabsorption of scattered
photons within the condensate. The mean free path of a fluorescence photon can be estimated
as l = 1/(σ0ρ), using the free space absorption cross section σ0 ≈ 4π/k2

0 [278]. For the wave-
length λ = 780 nm of the D2 line and a BEC peak density of ρ = 1014 cm−3, this results in a
mean free path of around l = 52 nm, which is much smaller than the size of the condensate.
This simple calculation clearly overestimates the effect of reabsorption. Light scattering not
necessarily happens in the condensate or directed to the centre of the condensate and the cross
section σ0 drops very quickly proportional to the atomic density ρ towards the edge of the BEC.
However, it seems probable that, on average, a few reabsorption events will take place. Only
for larger atom losses, the size of the condensate is reduced so much that there is a deviation
from the linear dependence, explaining the observation shown in Figure B.4.

B.2.2 BEC atom losses due to classical electron atom scattering

A classical approach to explain the losses of BEC atoms observed in time of flight imaging
in section 8.1 is based on the scattering of the electron and the BEC atoms, similar to the
treatment of a single ion impurity [160]. The expression of the scattering rate Γscat is already
given in equation (7.3) in the context of the broadening of the Rydberg line, measured in the
condensate (see paragraph 7.1.2). In a classical picture, it is reasonable to assume that every
single scattering event leads to an atom loss, since the energy transferred in an elastic collision
(see footnote 2 on page 101) is much larger than the chemical potential µ = 745 Hz of the
condensate. As in paragraph 7.1.1, the Rydberg atom is assumed to be localized in the centre of
the condensate and the Thomas-Fermi density distribution of the BEC is taken into account. The
interaction time is limited both due to the finite Rydberg lifetime τ (see paragraph 7.2.1) and
the experimental sequence, where any Rydberg atom is extracted after a fixed time td = 10 µs
(see paragraph 5.3.2). Therefore, the number Nscat of scattering events per Rydberg excitation
reads:

Nscat =

∫ td

0

Γscate
−t/τ dt = Γscatτ

(
1− e−td/τ

)
(B.2)

The result using the energy-independent scattering length a = −16.1 a0 [157] is shown in
Figure B.5. The overall trend and order of magnitude match, but do not reproduce the measured
data at higher principal quantum numbers n. This is not very surprising, since the classical
picture of the Rydberg electron, transferring energy onto the atoms while slowly decaying back
to the ground state, turned out to be wrong in paragraph 7.2.2.
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Figure B.5: Rydberg induced BEC atom loss after time of flight for different principal quantum
numbers n. The maximum atom loss per Rydberg excitation is normalized onto the lifetime τ of the
Rydberg state in the BEC (both quantities from Table 8.1. These values are corrected for the loss
by the field ionization of the Rydberg atom). The calculated scattering rate Γscat (blue solid line)
and the number of scattering events, taking the measured lifetime into account (red squares), cannot
reproduce the experimental observations for higher Rydberg states.

B.2.3 BEC atom losses for different sequence lengths

For the modelling of the BEC atom losses in section 8.1, the condensate is assumed to be in
its ground state at the beginning of each Rydberg excitation. In the experiment, this is cer-
tainly not the case, since already the first Rydberg excitation creates excitations persistent in
the condensate. However, one can estimate whether this approximation will cause some crucial
deviation. A good indication, that one can neglect excitations already present in the conden-
sate, can be obtained experimentally by measuring the BEC atom loss in time of flight imaging
for different numbers of Rydberg excitations in one sequence. This was done exemplarily for
the 110S Rydberg state (see Figure B.6). Since this measurement was taken at 5 % lower Rabi
frequency than the spectroscopic measurements in Figure 7.2, the fitted atom loss per Rydberg
excitation is with 26.2 ± 2.3 slightly lower than in the measurements in section 8.1. However,
the losses are still linear for up to 400 Rydberg excitations in one condensate, which is much
larger than the number of pulses used for the measurement of the spectral line of this Rydberg
state in Figure 7.2. This provides experimental evidence that, within the current experimental
error, effects of quasiparticle excitations already present in the condensate can be neglegted in
good approximation.
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Figure B.6: Absolute BEC atom losses in time of flight imaging for different number of pulses.
The laser detuning was kept fixed at −11.4 MHz to the 110S state, close to the maximum of the
BEC atom loss. The Rabi frequency was around 5 % smaller than the one for the spectroscopic
measurements in Figure 7.2. The solid line is a linear fit with slope 26.2 ± 2.3 atoms per Rydberg
excitation light pulse.

B.2.4 Absolute BEC atom losses

In section 8.1, the BEC atom loss in time of flight imaging is plotted normalized to the squared
lifetime τ 2 of the Rydberg states (see Figure 8.2). This way, the uncertainty in the measured life-
time τ of the Rydberg states translates mostly into the experimental data. For comparison, here
the absolute BEC atom losses are shown in Figure B.7. Even though the theory data now show
large errorbars, it becomes obvious that the corrections linear in the electron momentum k in the
scattering potential (see paragraph 3.2.2) indeed play a significant role. At low principal quan-
tum numbers n, they lead to much better agreement with the experimental data. Furthermore,
the calculated contribution of excitations in the phonon regime, at quasi-momenta q < ~/ξ, to
the observed atom losses is indicated. Consistent with the results discussed in paragraph 3.2.4,
the fraction is on the order of 50%.
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Figure B.7: Absolute Rydberg induced BEC atom loss after time of flight for different principal
quantum numbers n. The losses are corrected for the loss by field ionization of the Rydberg atom and
normalized on the peak density. Theory values taking the measured lifetime τ into account (squares)
and assuming a constant lifetime of τ = 10 µs (solid lines) are shown, both in the approximation to
zeroth order in the electron momentum k (blue) and taking terms up to linear in k into account (red).
Furthermore, the calculated contribution of phonon excitations including s- and p-wave scattering is
indicated (green diamonds).

B.2.5 Induced BEC shape oscillations

As mentioned in paragraph 8.2.2, the switching of the red Rydberg laser alone creates a
BEC shape oscillation due to the momentum transfer by off-resonant scattering (see also ap-
pendix B.2.3). Additional reference measurements, where the blue Rydberg laser is detuned
by more than 40 MHz, allow to extract the pure effect of the Rydberg excitation onto the con-
densate as shown in Figure 8.5. The underlying raw data is plotted in Figure B.8. It becomes
obvious that the effect of the Rydberg excitation, while being clear and considerable, is small
compared to the effect of the off-resonant red laser light. This makes the interpretation not
straightforward and probably hinders the observation of any mechanical effects beyond collec-
tive oscillations of the condensate. Since the detuning to the intermediate 5P3/2 is constantly
500 MHz throughout all measurements, the amplitude of the reference oscillation is determined
only by the power of the red Rydberg laser. This value was adjusted for each Rydberg state in
the procedure described in section 8.1.
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Figure B.8: Shape oscillations of the BEC induced different Rydberg states. The radial size of the
condensate (Thomas-Fermi radius) was measured for different hold times in the trap and different
Rydberg states. Both measurements with Rydberg excitation (red) and with detuned lasers (blue)
for reference are shown. The sequence of 200 Rydberg excitations lasts from 0 ms to 3.2 ms.
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Lukin and V. Vuletić, Quantum nonlinear optics with single photons enabled by strongly
interacting atoms, Nature, 488, 57–60 (2012).

[110] S. Baur, D. Tiarks, G. Rempe and S. Dürr, Single-photon switch based on Rydberg block-
ade, Phys. Rev. Lett., 112, 073901 (2014).

[111] I. Mourachko, D. Comparat, F. de Tomasi, A. Fioretti, P. Nosbaum, V. M. Akulin and
P. Pillet, Many-body effects in a frozen Rydberg gas, Phys. Rev. Lett., 80, 253–256
(1998).

[112] D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côté, E. E. Eyler and
P. L. Gould, Local blockade of Rydberg excitation in an ultracold gas, Phys. Rev. Lett.,
93, 063001 (2004).

[113] V. Vuletic, Quantum networks: When superatoms talk photons, Nature Physics, 2, 801–
802 (2006).

[114] E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker and
M. Saffman, Observation of Rydberg blockade between two atoms, Nature Physics, 5,
110–114 (2009).

[115] A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet,
A. Browaeys and P. Grangier, Observation of collective excitation of two individual atoms
in the Rydberg blockade regime, Nature Physics, 5, 115–118 (2009).

[116] Y. O. Dudin, L. Li, F. Bariani and A. Kuzmich, Observation of coherent many-body Rabi
oscillations, Nature Physics, 8, 790–794 (2012).

[117] M. Ebert, A. Gill, M. Gibbons, X. Zhang, M. Saffman and T. G. Walker, Atomic Fock
state preparation using Rydberg blockade, Phys. Rev. Lett., 112, 043602 (2014).



154 Bibliography

[118] R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher, R. Löw, L. Santos and T. Pfau,
Evidence for coherent collective Rydberg excitation in the strong blockade regime,
Phys. Rev. Lett., 99, 163601 (2007).

[119] U. Raitzsch, V. Bendkowsky, R. Heidemann, B. Butscher, R. Löw and T. Pfau, Echo
experiments in a strongly interacting Rydberg gas, Phys. Rev. Lett., 100, 013002 (2008).

[120] T. G. Walker and M. Saffman, Zeros of Rydberg-Rydberg Förster interactions, J. Phys. B:
At. Mol. Opt. Phys., 38, S309 (2005).

[121] T. Pohl and P. R. Berman, Breaking the dipole blockade: Nearly resonant dipole interac-
tions in few-atom systems, Phys. Rev. Lett., 102, 013004 (2009).

[122] H. Deng, G. Weihs, C. Santori, J. Bloch and Y. Yamamoto, Condensation of semicon-
ductor microcavity exciton polaritons, Science, 298, 199–202 (2002).

[123] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M.
Marchetti, M. H. Szymaska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, D. B.
and L. S. Dang, Bose-Einstein condensation of exciton polaritons, Nature, 443, 409–414
(2006).

[124] S. O. Demokritov, V. E. Demidov, O. Dzyapko, G. A. Melkov, A. A. Serga, B. Hille-
brands and A. N. Slavin, Bose-Einstein condensation of quasi-equilibrium magnons at
room temperature under pumping, Nature, 443, 4430–433 (2006).

[125] R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer and K. West, Bose-Einstein condensation of
microcavity polaritons in a trap, Science, 316, 1007–1010 (2007).

[126] J. D. Plumhof, T. Stöferle, L. Mai, U. Scherf and R. F. Mahrt, Room-temperature Bose-
Einstein condensation of cavity exciton-polaritons in a polymer, Nature Materials, 13,
247–252 (2014).

[127] J. Klaers, J. Schmitt, F. Vewinger and M. Weitz, Bose-Einstein condensation of photons
in an optical microcavity, Nature, 468, 545–548 (2010).

[128] F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein con-
densation in trapped gases, Rev. Mod. Phys., 71, 463–512 (1999).

[129] W. Ketterle, D. S. Durfee and D. M. Stamper-Kurn, Making, probing and understanding
Bose-Einstein condensates, Proceedings of the International School of Physics "Enrico
Fermi", Course CXL, IOS Press, Amsterdam (1999).

[130] E. P. Gross, Structure of a quantized vortex in boson systems, Il Nuovo Cimento Series
10, 20, 454–477 (1961).

[131] L. P. Pitaevskii, Vortex lines in an imperfect Bose gas, Soviet Physics JETP-USSR, 13
(1961).

[132] R. Löw, Versatile setup for experiments with rubidium Bose Einstein condensates: From
optical lattices to Rydberg matter, Ph.D. thesis, Universität Stuttgart (2006).

[133] S. Stringari, Collective excitations of a trapped Bose-condensed gas, Phys. Rev. Lett.,
77, 2360–2363 (1996).



Bibliography 155

[134] M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. M. Kurn, D. S. Durfee, C. G.
Townsend and W. Ketterle, Collective excitations of a Bose-Einstein condensate in a
magnetic trap, Phys. Rev. Lett., 77, 988–991 (1996).

[135] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: with Formu-
las, Graphs, and Mathematical Tables, Dover books on mathematics, Dover, New York
(1972).

[136] D. M. Stamper-Kurn, H.-J. Miesner, S. Inouye, M. R. Andrews and W. Ketterle, Colli-
sionless and hydrodynamic excitations of a Bose-Einstein condensate, Phys. Rev. Lett.,
81, 500–503 (1998).

[137] D. S. Jin, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Collective
excitations of a Bose-Einstein condensate in a dilute gas, Phys. Rev. Lett., 77, 420–423
(1996).

[138] D. S. Jin, M. R. Matthews, J. R. Ensher, C. E. Wieman and E. A. Cornell, Temperature-
dependent damping and frequency shifts in collective excitations of a dilute Bose-Einstein
condensate, Phys. Rev. Lett., 78, 764–767 (1997).

[139] J. B. Balewski, A. T. Krupp, A. Gaj, S. Hofferberth, R. Löw and T. Pfau, Rydberg dress-
ing: Understanding of collective many-body effects and implications for experiments,
arXiv:1312.6346 (2013).

[140] I. Bouchoule and K. Mølmer, Spin squeezing of atoms by the dipole interaction in virtu-
ally excited Rydberg states, Phys. Rev. A, 65, 041803 (2002).

[141] T. Macrì and T. Pohl, Rydberg dressing of atoms in optical lattices, Phys. Rev. A, 89,
011402 (2014).

[142] J. Javanainen, Noncondensate atoms in a trapped Bose gas, Phys. Rev. A, 54, R3722–
R3725 (1996).

[143] L. Vestergaard Hau, B. D. Busch, C. Liu, Z. Dutton, M. M. Burns and J. A. Golovchenko,
Near-resonant spatial images of confined Bose-Einstein condensates in a 4-Dee magnetic
bottle, Phys. Rev. A, 58, R54–R57 (1998).

[144] J. Nipper, J. B. Balewski, A. T. Krupp, B. Butscher, R. Löw and T. Pfau, Highly
resolved measurements of Stark-tuned Förster resonances between Rydberg atoms,
Phys. Rev. Lett., 108, 113001 (2012).

[145] C. Wittig, The Landau-Zener formula, J. Phys. Chem. B, 109, 8428–8430 (2005).

[146] H. Geiger and E. Marsden, On a diffuse reflection of the α-particles, Proceedings of the
Royal Society of London. Series A, 82, 495–500 (1909).

[147] E. Rutherford, The scattering of α and β particles by matter and the structure of the
atom, Philosophical Magazine Series 6, 21, 669–688 (1911).

[148] E. D. Bloom, D. H. Coward, H. DeStaebler, J. Drees, G. Miller, L. W. Mo, R. E. Tay-
lor, M. Breidenbach, J. I. Friedman, G. C. Hartmann and H. W. Kendall, High-energy
inelastic e− p scattering at 6° and 10°, Phys. Rev. Lett., 23, 930–934 (1969).



156 Bibliography

[149] M. Breidenbach, J. I. Friedman, H. W. Kendall, E. D. Bloom, D. H. Coward, H. DeStae-
bler, J. Drees, L. W. Mo and R. E. Taylor, Observed behavior of highly inelastic electron-
proton scattering, Phys. Rev. Lett., 23, 935–939 (1969).

[150] C. Ramsauer, Über den Wirkungsquerschnitt der Gasmoleküle gegenüber langsamen
Elektronen, Annalen der Physik, 369, 513–540 (1921).

[151] J. S. Townsend and V. A. Bailey, The motion of electrons in gases, Philosophical Maga-
zine Series 6, 42, 873–891 (1921).

[152] L.-V. de Broglie, Recherches sur la théorie des quanta, Ann. de Phys., 10e série, t. III
(1925), translated by A. F. Kracklauer.

[153] L. P. Presnyakov, Broadening of highly excited atomic levels in an atmosphere of alkali-
metal atoms, Phys. Rev. A, 2, 1720–1725 (1970).

[154] V. A. Alekseev and I. I. Sobel’man, A spectroscopic method for the investigation of elas-
tic scattering of slow electrons, Sov. Phys. JETP, 22, 882–888 (1966).

[155] G. F. Chew, The inelastic scattering of high energy neutrons by deuterons according to
the impulse approximation, Phys. Rev., 80, 196–202 (1950).

[156] J. E. G. Farina, On the impulse approximation, J. Phys. A: Mathematical and General,
11, 1915–1932 (1978).

[157] C. Bahrim, U. Thumm and I. I. Fabrikant, 3Se and 1Se scattering lengths for e− + Rb, Cs
and Fr collisions, J. Phys. B: At. Mol. Opt. Phys., 34, L195–L201 (2001).

[158] C. Reinsberg, Zur Theorie der Druckverschiebung der Spektrallinien in der Nähe des
Serienendes, Z. Phys., 93, 416 (1934).

[159] J. Balewski, Hochauflösende Photoassoziationsspektroskopie von Rydberg-Dimeren und
Trimeren, Diplomarbeit, Universität Stuttgart (2009).

[160] C. Zipkes, S. Palzer, C. Sias and Köhl, A trapped single ion inside a Bose-Einstein con-
densate, Nature, 464, 388–391 (2010).

[161] E. Fermi, Sul moto dei neutroni nelle sostanze idrogenate, Ric. Scientifica, 7, 13–52
(1936), translated by G. M. Temmer in Enrico Fermi, Collected Papers Volume I, univer-
sity of Chicago press, 1962.

[162] C. H. Greene, A. S. Dickinson and H. R. Sadeghpour, Creation of polar and nonpolar
ultra-long-range Rydberg molecules, Phys. Rev. Lett., 85, 2458–2461 (2000).

[163] J. Holtsmark, Der Ramsauereffekt im Argon, Z. Phys., 55, 447–446 (1929).

[164] J. Holtsmark, Der Wirkungsquerschnitt des Kryptons für langsame Elektronen, Z. Phys.,
66, 49–58 (1930).

[165] O. Hinckelmann and L. Spruch, Low-energy scattering by long-range potentials, Phys.
Rev. A, 3, 642–648 (1971).

[166] M. I. Chibisov, A. A. Khuskivadze and I. I. Fabrikant, Energies and dipole moments of
long-range molecular Rydberg states, J. Phys. B: At. Mol. Opt. Phys., 35, L193 (2002).



Bibliography 157

[167] C. Bahrim and U. Thumm, Low-lying 3P o and 3Se states of Rb−, Cs−, and Fr−, Phys.
Rev. A, 61, 022722 (2000).

[168] E. L. Hamilton, C. H. Greene and H. R. Sadeghpour, Shape-resonance-induced long-
range molecular Rydberg states, J. Phys. B: At. Mol. Opt. Phys., 35, L199 (2002).

[169] C. H. Greene, E. L. Hamilton, H. Crowell, C. Vadla and K. Niemax, Experimental ver-
ification of minima in excited long-range Rydberg states of Rb2, Phys. Rev. Lett., 97,
233002 (2006).

[170] G. Pólya, Über den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung und das
Momentenproblem, Mathematische Zeitschrift, 8, 171–181 (1920).

[171] J. B. Balewski, A. T. Krupp, A. Gaj, D. Peter, H. P. Büchler, R. Löw, S. Hofferberth and
T. Pfau, Coupling a single electron to a Bose-Einstein condensate, Nature, 502, 664–667
(2013).

[172] D. M. Stamper-Kurn, A. P. Chikkatur, A. Görlitz, S. Inouye, S. Gupta, D. E. Pritchard
and W. Ketterle, Excitation of phonons in a Bose-Einstein condensate by light scattering,
Phys. Rev. Lett., 83, 2876–2879 (1999).

[173] P. Nozières and D. Pines, Theory Of Quantum Liquids: Normal Fermi liquids, W. A.
Benjamin Inc., New York, Amsterdam (1966).

[174] J. Javanainen and J. Ruostekoski, Off-resonance light scattering from low-temperature
Bose and Fermi gases, Phys. Rev. A, 52, 3033–3046 (1995).

[175] R. Graham and D. Walls, Spectrum of light scattered from a weakly interacting Bose-
Einstein condensed gas, Phys. Rev. Lett., 76, 1774–1775 (1996).

[176] Y. B. Ovchinnikov, J. H. Müller, M. R. Doery, E. J. D. Vredenbregt, K. Helmerson,
S. L. Rolston and W. D. Phillips, Diffraction of a released Bose-Einstein condensate by
a pulsed standing light wave, Phys. Rev. Lett., 83, 284–287 (1999).

[177] D. Peter, private communication.

[178] A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook
and A. Aspect, A Bose-Einstein condensate of metastable atoms, Science, 292, 461–464
(2001).

[179] D. Ciampini, M. Anderlini, J. H. Müller, F. Fuso, O. Morsch, J. W. Thomsen and
E. Arimondo, Photoionization of ultracold and Bose-Einstein-condensed Rb atoms,
Phys. Rev. A, 66, 043409 (2002).

[180] S. Schmid, A. Härter and J. H. Denschlag, Dynamics of a cold trapped ion in a Bose-
Einstein condensate, Phys. Rev. Lett., 105, 133202 (2010).

[181] R. Côté, V. Kharchenko and M. D. Lukin, Mesoscopic molecular ions in Bose-Einstein
condensates, Phys. Rev. Lett., 89, 093001 (2002).

[182] J. Tempere, W. Casteels, M. K. Oberthaler, S. Knoop, E. Timmermans and J. T. Devreese,
Feynman path-integral treatment of the BEC-impurity polaron, Phys. Rev. B, 80, 184504
(2009).



158 Bibliography

[183] W. Casteels, J. Tempere and J. Devreese, Polaronic properties of an ion in a Bose-
Einstein condensate in the strong-coupling limit, Journal of Low Temperature Physics,
162, 266–273 (2011).

[184] R. M. Kalas and D. Blume, Interaction-induced localization of an impurity in a trapped
Bose-Einstein condensate, Phys. Rev. A, 73, 043608 (2006).

[185] F. Reif and L. Meyer, Study of superfluidity in liquid He by ion motion, Phys. Rev., 119,
1164–1173 (1960).

[186] G. W. Rayfield and F. Reif, Evidence for the creation and motion of quantized vortex
rings in superfluid helium, Phys. Rev. Lett., 11, 305–308 (1963).

[187] D. S. Fisher, B. I. Halperin and P. M. Platzman, Phonon-ripplon coupling and the two-
dimensional electron solid on a liquid-helium surface, Phys. Rev. Lett., 42, 798–801
(1979).

[188] A. F. Borghesani, Ions and electrons in liquid helium, International series of monographs
in physics, Oxford University Press, Oxford (2007).

[189] P. Massignan, C. J. Pethick and H. Smith, Static properties of positive ions in atomic
Bose-Einstein condensates, Phys. Rev. A, 71, 023606 (2005).

[190] J. Bardeen, G. Baym and D. Pines, Interactions between He3 atoms in dilute solutions of
He3 in superfluid He4, Phys. Rev. Lett., 17, 372–375 (1966).

[191] J. Bardeen, G. Baym and D. Pines, Effective interaction of He3 atoms in dilute solutions
of He3 in He4 at low temperatures, Phys. Rev., 156, 207–221 (1967).

[192] R. Löw, A versatile setup for experiments with rubidium Bose-Einstein condensates:
From optical lattices to Rydberg matter, Ph.D. thesis, Universität Stuttgart (2006).

[193] E. W. Streed, A. P. Chikkatur, T. L. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. K.
Campbell, D. E. Pritchard and W. Ketterle, Large atom number Bose-Einstein condensate
machines, Rev. Sci. Instrum., 77, 023106 (2006).

[194] M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. M. Kurn, D. S. Durfee and
W. Ketterle, Bose-Einstein condensation in a tightly confining dc magnetic trap,
Phys. Rev. Lett., 77, 416–419 (1996).

[195] W. D. Phillips and H. Metcalf, Laser deceleration of an atomic beam, Phys. Rev. Lett.,
48, 596–599 (1982).

[196] Y. Castin and R. Dum, Bose-Einstein condensates in time dependent traps,
Phys. Rev. Lett., 77, 5315–5319 (1996).

[197] V. M. Entin, E. A. Yakshina, D. B. Tretyakov, I. I. Beterov and I. I. Ryabtsev, Spec-
troscopy of the three-photon laser excitation of cold rubidium Rydberg atoms in a
magneto-optical trap, JETP, 116, 721–731 (2013).

[198] R. Löw, H. Weimer, J. Nipper, J. B. Balewski, B. Butscher, H. P. Büchler and T. Pfau,
An experimental and theoretical guide to strongly interacting Rydberg gases, J. Phys. B:
At. Mol. Opt. Phys., 45, 113001 (2012).



Bibliography 159

[199] M. Viteau, J. Radogostowicz, M. G. Bason, N. Malossi, D. Ciampini, O. Morsch and
E. Arimondo, Rydberg spectroscopy of a Rb MOT in the presence of applied or ion
created electric fields, Opt. Express, 19, 6007–6019 (2011).

[200] R. Grimm, M. Weidemüller and Y. B. Ovchinnikov, Optical dipole traps for neutral
atoms, Adv. At. Mol. Opt. Phys., 42, 95–170 (2000).

[201] M. Anderlini, E. Courtade, D. Ciampini, J. H. Müller, O. Morsch and E. Arimondo,
Two-photon ionization of cold rubidium atoms, J. Opt. Soc. Am. B, 21, 480–485 (2004).

[202] E. Courtade, M. Anderlini, D. Ciampini, J. H. Müller, O. Morsch, E. Arimondo, M. Ay-
mar and E. J. Robinson, Two-photon ionization of cold rubidium atoms with a near res-
onant intermediate state, J. Phys. B: At. Mol. Opt. Phys., 37, 967–979 (2004).

[203] C. Tresp, A setup for highly precise excitation and detection of Rydberg atoms, Master
Thesis, Universität Stuttgart (2012).

[204] O. Morsch and M. Oberthaler, Dynamics of Bose-Einstein condensates in optical lattices,
Rev. Mod. Phys., 78, 179–215 (2006).

[205] P. L. Gould, G. A. Ruff and D. E. Pritchard, Diffraction of atoms by light: The near-
resonant Kapitza-Dirac effect, Phys. Rev. Lett., 56, 827–830 (1986).

[206] M. S. O’Sullivan and B. P. Stoicheff, Scalar polarizabilities and avoided crossings of
high Rydberg states in Rb, Phys. Rev. A, 31, 2718–2720 (1985).

[207] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch and I. Bloch, Quantum phase transi-
tion from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature, 415, 39–44
(2002).

[208] N. Navon, S. Nascimbène, F. Chevy and C. Salomon, The equation of state of a low-
temperature Fermi gas with tunable interactions, Science, 328, 729–732 (2010).

[209] J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss and M. Greiner, Quantum simulation
of antiferromagnetic spin chains in an optical lattice, Nature, 472, 307–312 (2011).

[210] B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A. Hazzard, A. M. Rey, D. S. Jin
and J. Ye, Observation of dipolar spin-exchange interactions with lattice-confined polar
molecules, Nature, 501, 521–525 (2013).

[211] T. Lahaye, T. Koch, B. Fröhlich, M. Fattori, J. Metz, A. Griesmaier, S. Giovanazzi and
T. Pfau, Strong dipolar effects in a quantum ferrofluid, Nature, 284, 672–675 (2007).

[212] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel,
S. Kotochigova, P. S. Julienne, D. S. Jin and J. Ye, A high phase-space-density gas of
polar molecules, Science, 322, 231–235 (2008).

[213] S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quéméner,
P. S. Julienne, J. L. Bohn, D. S. Jin and J. Ye, Quantum-state controlled chemical reac-
tions of ultracold potassium-rubidium molecules, Science, 327, 853–857 (2010).

[214] C. Chin, R. Grimm, P. Julienne and E. Tiesinga, Feshbach resonances in ultracold gases,
Rev. Mod. Phys., 82, 1225–1286 (2010).



160 Bibliography

[215] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein and T. Pfau, The physics of dipolar
bosonic quantum gases, Reports on Progress in Physics, 72, 126401 (2009).

[216] S. Giovanazzi, A. Görlitz and T. Pfau, Tuning the dipolar interaction in quantum gases,
Phys. Rev. Lett., 89, 130401 (2002).

[217] F. Cinti, P. Jain, M. Boninsegni, A. Micheli, P. Zoller and G. Pupillo, Supersolid droplet
crystal in a dipole-blockaded gas, Phys. Rev. Lett., 105, 135301 (2010).

[218] F. Maucher, N. Henkel, M. Saffman, W. Królikowski, S. Skupin and T. Pohl, Rydberg-
induced solitons: Three-dimensional self-trapping of matter waves, Phys. Rev. Lett., 106,
170401 (2011).

[219] N. Henkel, F. Cinti, P. Jain, G. Pupillo and T. Pohl, Supersolid vortex crystals in Rydberg-
dressed Bose-Einstein condensates, Phys. Rev. Lett., 108, 265301 (2012).

[220] S. Möbius, M. Genkin, A. Eisfeld, S. Wüster and J. M. Rost, Entangling distant atom
clouds through Rydberg dressing, Phys. Rev. A, 87, 051602 (2013).

[221] M. Mattioli, M. Dalmonte, W. Lechner and G. Pupillo, Cluster luttinger liquids of
Rydberg-dressed atoms in optical lattices, Phys. Rev. Lett., 111, 165302 (2013).

[222] F. Cinti, T. Macrì, W. Lechner, G. Pupillo and T. Pohl, Defect-induced supersolidity with
soft-core bosons, Nature Communications, 5, 3235 (2014).

[223] B. Butscher, V. Bendkowsky, J. Nipper, J. B. Balewski, L. Kukota, R. Löw, T. Pfau, W. Li,
T. Pohl and J. M. Rost, Lifetimes of ultralong-range Rydberg molecules in vibrational
ground and excited states, J. Phys. B: At. Mol. Opt. Phys., 44, 184004 (2011).

[224] T. Weber, J. Herbig, M. Mark, H.-C. Nägerl and R. Grimm, Bose-Einstein condensation
of cesium, Science, 299, 232–235 (2003).

[225] S. Zhang, F. Robicheaux and M. Saffman, Magic-wavelength optical traps for Rydberg
atoms, Phys. Rev. A, 84, 043408 (2011).

[226] C. Reinsberg, Zur Theorie der Verbreiterung der Spektrallinien einer Serie durch
Fremdgase, Z. Phys., 105, 460–467 (1937).

[227] W. E. Cooke and T. F. Gallagher, Effects of blackbody radiation on highly excited atoms,
Phys. Rev. A, 21, 588–593 (1980).

[228] F. Gounand, Calculation of radial matrix elements and radiative lifetimes for highly ex-
cited states of alkali atoms using the Coulomb approximation, Journal de Physique, 40,
457–460 (1979).

[229] I. I. Beterov, I. I. Ryabtsev, D. B. Tretyakov and V. M. Entin, Quasiclassical calculations
of blackbody-radiation-induced depopulation rates and effective lifetimes of Rydberg nS,
nP , and nD alkali-metal atoms with n ≤ 80, Phys. Rev. A, 79, 052504 (2009).

[230] A. L. d. Oliveira, M. W. Mancini, V. S. Bagnato and L. G. Marcassa, Measurement of
Rydberg-state lifetimes using cold trapped atoms, Phys. Rev. A, 65, 031401 (2002).

[231] V. A. Nascimento, L. L. Caliri, A. L. de Oliveira, V. S. Bagnato and L. G. Marcassa,
Measurement of the lifetimes of S and D states below n = 31 using cold Rydberg gas,
Phys. Rev. A, 74, 054501 (2006).



Bibliography 161

[232] F. Gounand, M. Hugon, P. R. Fournier and J. Berlande, Superradiant cascading effects
in rubidium Rydberg levels, J. Phys. B: At. Mol. Opt. Phys., 12, 547 (1979).

[233] T. Wang, S. F. Yelin, R. Côté, E. E. Eyler, S. M. Farooqi, P. L. Gould, M. Koštrun,
D. Tong and D. Vrinceanu, Superradiance in ultracold Rydberg gases, Phys. Rev. A, 75,
033802 (2007).

[234] I. Beigman and V. Lebedev, Collision theory of Rydberg atoms with neutral and charged
particles, Physics Reports, 250, 95–328 (1995).

[235] M. P. Robinson, B. L. Tolra, M. W. Noel, T. F. Gallagher and P. Pillet, Spontaneous
evolution of Rydberg atoms into an ultracold plasma, Phys. Rev. Lett., 85, 4466–4469
(2000).

[236] M. Robert-de Saint-Vincent, C. S. Hofmann, H. Schempp, G. Günter, S. Whitlock and
M. Weidemüller, Spontaneous avalanche ionization of a strongly blockaded Rydberg gas,
Phys. Rev. Lett., 110, 045004 (2013).

[237] R. K. Janev and A. A. Mihajlov, Excitation and deexcitation processes in slow collisions
of Rydberg atoms with ground-state parent atoms, Phys. Rev. A, 20, 1890–1904 (1979).

[238] E. de Prunelé and J. Pascale, Theoretical model for the collision of high Rydberg atoms
with neutral atoms or molecules, J. Phys. B: At. Mol. Opt. Phys., 12, 2511–2528 (1979).

[239] A. P. Hickman, Relation between low-energy-electron scattering and l-changing colli-
sions of Rydberg atoms, Phys. Rev. A, 19, 994–1003 (1979).

[240] A. P. Hickman, Approximate scaling formula for collisional angular-momentum mixing
of Rydberg atoms, Phys. Rev. A, 23, 87–94 (1981).

[241] A. Kumar, B. C. Saha, C. A. Weatherford and S. K. Verma, A systematic study of Horn-
beck Molnar ionization involving Rydberg alkali atoms, Journal of Molecular Structure:
THEOCHEM, 487, 1 – 9 (1999).

[242] L. Barbier, M. T. Djerad and M. Chéret, Collisional ion-pair formation in an excited
alkali-metal vapor, Phys. Rev. A, 34, 2710–2718 (1986).

[243] W. L. M Chéret, L Barbier and R. Deloche, Penning and associative ionisation of highly
excited rubidium atoms, J. Phys. B: At. Mol. Opt. Phys., 15, 3463–3477 (1982).

[244] R. M. W. van Bijnen, S. Smit, K. A. H. van Leeuwen, E. J. D. Vredenbregt and S. J. J.
M. F. Kokkelmans, Adiabatic formation of Rydberg crystals with chirped laser pulses,
J. Phys. B: At. Mol. Opt. Phys., 44, 184008 (2011).

[245] A. Härter, A. Krükow, A. Brunner, W. Schnitzler, S. Schmid and J. H. Denschlag, Single
ion as a three-body reaction center in an ultracold atomic gas, Phys. Rev. Lett., 109,
123201 (2012).

[246] C. Raman and N. S. Nagendra Nath, The diffraction of light by high frequency sound
waves: Part I., Proceedings of the Indian Academy of Sciences - Section A, 2, 406–412
(1935).

[247] C. Keller, J. Schmiedmayer, A. Zeilinger, T. Nonn, S. Dürr and G. Rempe, Adiabatic
following in standing-wave diffraction of atoms, Applied Physics B, 69, 303–309 (1999).



162 Bibliography

[248] D. V. Averin and K. K. Likharev, Coulomb blockade of single-electron tunneling, and
coherent oscillations in small tunnel junctions, Journal of Low Temperature Physics, 62,
345–373 (1986).

[249] J. Neukammer, H. Rinneberg, K. Vietzke, A. König, H. Hieronymus, M. Kohl, H. J.
Grabka and G. Wunner, Spectroscopy of Rydberg atoms at n ≈ 500: Observation of
quasi-Landau resonances in low magnetic fields, Phys. Rev. Lett., 59, 2947–2950 (1987).

[250] S. Ye, X. Zhang, T. C. Killian, F. B. Dunning, M. Hiller, S. Yoshida, S. Nagele and
J. Burgdörfer, Production of very-high-n strontium Rydberg atoms, Phys. Rev. A, 88,
043430 (2013).

[251] J. Honer, R. Löw, H. Weimer, T. Pfau and H. P. Büchler, Artificial atoms can do
more than atoms: Deterministic single photon subtraction from arbitrary light fields,
Phys. Rev. Lett., 107, 093601 (2011).

[252] M. Dakna, T. Anhut, T. Opatrný, L. Knöll and D.-G. Welsch, Generating Schrödinger-
cat-like states by means of conditional measurements on a beam splitter, Phys. Rev. A,
55, 3184–3194 (1997).

[253] G. Günter, M. Robert-de Saint-Vincent, H. Schempp, C. S. Hofmann, S. Whitlock and
M. Weidemüller, Interaction enhanced imaging of individual Rydberg atoms in dense
gases, Phys. Rev. Lett., 108, 013002 (2012).

[254] J. Bardeen, L. N. Cooper and J. R. Schrieffer, Theory of superconductivity, Phys. Rev.,
108, 1175–1204 (1957).

[255] A. Lanzara, P. V. Bogdanov, X. J. Zhou, S. A. Kellar, D. L. Feng, E. D. Lu, T. Yoshida,
H. Eisaki, A. Fujimori, K. Kishio, J. I. Shimoyama, T. Noda, S. Uchida, Z. Hus-
sain and Z. X. Shen, Evidence for ubiquitous strong electron-phonon coupling in high-
temperature superconductors, Nature, 412, 510–514 (2001).

[256] F. Robicheaux and J. V. Hernández, Many-body wave function in a dipole blockade con-
figuration, Phys. Rev. A, 72, 063403 (2005).

[257] T. Pohl, E. Demler and M. D. Lukin, Dynamical crystallization in the dipole blockade of
ultracold atoms, Phys. Rev. Lett., 104, 043002 (2010).

[258] B. J. Claessens, M. P. Reijnders, G. Taban, O. J. Luiten and E. J. D. Vredenbregt, Cold
electron and ion beams generated from trapped atoms, Physics of Plasmas, 14, 093101
(2007).

[259] M. R. Andrews, M.-O. Mewes, N. J. van Druten, D. S. Durfee, D. M. Kurn and W. Ket-
terle, Direct, nondestructive observation of a Bose condensate, Science, 273, 84–87
(1996).

[260] M. R. Andrews, D. M. Kurn, H.-J. Miesner, D. S. Durfee, C. G. Townsend, S. Inouye
and W. Ketterle, Propagation of sound in a Bose-Einstein condensate, Phys. Rev. Lett.,
79, 553–556 (1997).

[261] C. C. Bradley, C. A. Sackett and R. G. Hulet, Bose-Einstein condensation of lithium:
Observation of limited condensate number, Phys. Rev. Lett., 78, 985–989 (1997).



Bibliography 163

[262] F. Kaminski, N. Kampel, M. Steenstrup, A. Griesmaier, E. Polzik and J. Müller, In-
situ dual-port polarization contrast imaging of Faraday rotation in a high optical depth
ultracold 87Rb atomic ensemble, The European Physical Journal D, 66, 1–8 (2012).

[263] G. E. Marti, R. Olf and D. M. Stamper-Kurn, A collective excitation interferometer for
rotation sensing with a trapped Bose-Einstein condensate, arXiv:1210.0033 (2012).

[264] J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pepin, J. C. Kieffer, P. B. Corkum and
D. M. Villeneuve, Tomographic imaging of molecular orbitals, Nature, 432, 867–871
(2004).

[265] A. S. Stodolna, A. Rouzée, F. Lépine, S. Cohen, F. Robicheaux, A. Gijsbertsen, J. H.
Jungmann, C. Bordas and M. J. J. Vrakking, Hydrogen atoms under magnification: Di-
rect observation of the nodal structure of stark states, Phys. Rev. Lett., 110, 213001
(2013).
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„The exceptionally precise control of the motional and internal 

degrees of freedom of ultracold atoms and ions has enabled the 

engineering and manipulation of new and unusual quantum 

states of matter.  […]

Jonathan Balewski and colleagues used laser light to excite a 

single atom in an atomic rubidium condensate to its Rydberg 

state - a highly excited state with a very large principal quantum 

number, n=110-200. They created and investigated an unusual 

quantum object: a single electron whose orbit encloses the 

entire condensate. This system exhibits strong coupling 

between the electron and the collective mechanical motion of 

the condensate. The electron orbit encircles tens of thousands 

of atomic nuclei, in contrast to an exotic atom, where an electron 

orbits around a nucleus with at least one nucleon replaced by 

another unstable particle. […]

The results reported by Balewski and colleagues will deliver 

new opportunities in quantum optics and quantum information 

science. The strong interactions of the Rydberg atoms provide 

robustness and speed for these quantum technologies. Strong 

coupling of the electron to the condensate phonons could be 

used to produce phonon-mediated interactions between 

several electrons within the condensate, and may also act as an 

exotic qubit or offer a testing ground for strongly correlated 

electron physics.“

Ennio Arimondo and Jun Ye,

Nature Physics 9, 694 (2013)
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