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1 Introduction

Rydberg atoms are atoms with a highly excited outermost electron, which can be brought
into this state by interaction with light. This electron is characterized by quantum
numbers, which correspond to its energy and angular momentum. If both are large, the
electron will be far distant to the core. Due to the correspondence principle the electron
then behaves like a classical particle.
This circumstance helped the early atomic physicists to understand the structure of the

atom. The hydrogen atom was well understood by analytical solutions of the Schrödinger
equation, as it comprises only two particles: the core and one electron. However, larger
atoms consist of more than two electrons, which tremendously complicates the treatment.
Such atoms excited to Rydberg states, in turn, can be similarly described to the hydrogen
atom, as a separation of the outermost electron from the core and inner electrons is
possible.
If only the energy of the outermost electron is large, but not the angular momentum,

the electron can also be found far distant to the core, but not necessarily: It is non-
classically distributed in a large “cloud” overlapping the core atom. It turned out that
atoms in such states are extremely interesting systems, as they are highly sensitive to
their surroundings. For instance, Haroche and coworkers used Rydberg atoms in order
to detected single photons without changing their wave nature [1]. Thereby fundamental
laws of quantum mechanics could be manifested. For appreciation of this work, Haroche
obtained the Nobel Prize in 2012, shared with D. Wineland.
Related to their sensitivity, Rydberg atoms show further extraordinary behaviors. For

instance, Rydberg atoms have long-range potentials. For this reason, they prevent any
excitation of other atoms to Rydberg states if they are in close vicinity. This effect is
called blockade [2, 3]. The blockade is the reason that in large ensemble of atoms only
one atom can be excited to a certain Rydberg state. Thereby, with respect to certain
aspects of atom-light interaction, macroscopic units consisting of atoms can behave like
single atoms and hence quantum-mechanically. This opens a wide range of applications in
novel technologies basing on quantum mechanics, like quantum computation or quantum
communication [4].
Moreover aspects of fundamental interest in modern physics can be investigated us-

ing Rydberg atoms, again using its long-ranging interactions. For example, solid state
systems can be experimentally modeled by Rydberg atoms.
Usually experiments with Rydberg atoms are done by cooling them close to absolute

zero temperature by expensive and laborious cooling techniques. This is done in order

5



1 Introduction

to prevent atomic movement and thereby different energies of the atomic levels due to
the Doppler effect, as well as other effects like the transit-time effect or collisions. Then
the spectral lines of the atom ensemble is narrow and effects of Rydberg interaction can
be observed clearly. However, such cooling limits the practicability of such systems. For-
tunately, all effects corresponding to Rydberg atoms principally occur also in ensembles
at room temperature. In order to circumvent the effects due to the movement of the
atoms, such as spectral Doppler broadening, Rydberg excitation and probing processes
have to be executed on very short time scales (frozen gas regime).

Work at PI5 MicCell group This is a way which is pursued within the Micro cell
group (at which the author carried out this thesis). In this group, important results
with respect of Rydberg atoms in thermal vapors have been obtained prior to this thesis
[e.g. 5, 6].
The established method to detect Rydberg excitations in thermal atomic clouds is to

probe the atoms by exciting with resonant laser irradiation.
A frequently used way to create Rydberg atoms is a two-photon excitation by radiation

near resonant to atomic level transitions. By excitation to the Rydberg state using pulses
of few nanoseconds, coherent Rabi oscillations could be observed, beating the Doppler
broadening bandwidth [5]. Hence evidence of strong Rydberg-Rydberg van der Waals
interaction was found [6].
This means an important step towards the combination of strong Rydberg-Rydberg

interactions and four-wave mixing [7]. Thereby, non-classical photon sources may be
realized, potentially towards single photons [8]. This technique is a promising candi-
date for a raising applicability of single photon sources, since individual systems are
intrinsically identical, which means photons produced by different sources are indistin-
guishable, especially with respect to the frequency. Competing techniques basing on
solid state systems do not provide intrinsic indistinguishability.

Cesium experiment In order to circumvent the pulsed laser system, which has only
low repetition rates, a second experiment has been set up recently. The new aspect
of this system is a Pockels cell [9], which allows a more controllable pulse length and
thereby enables an investigation of time scales of few nanoseconds. In order to enable the
application of this device, a different excitation scheme (inverted excitation scheme) was
chosen. After the setup of the laser system [10] first experiments [11, 12] exhibited effects
caused by the modified excitation scheme, such as double resonance optical pumping.

This thesis In the scope of this thesis, the near-term task has been time-resolved
measurements of the coherences of Rydberg states.
In section 2, the set up of the two-photon excitation experiment is described.
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1 Introduction

The relevant features of cesium, especially spectral properties, as well as the excitation
paths to Rydberg states are described in section 3.
Basics of atom light interaction accompanied by simulations neglecting Rydberg in-

teractions are introduced in section 4. In section 5 we outline optical aspects, especially
with respect to imaging optics.
A strong coupling pulse leads to a.c. Stark shifts. This is investigated in section 6.
Principals of Rydberg interactions are introduced in section 7, where they are also

applied for modeling of Rydberg interactions in atomic ensembles and compared to
measurements at low densities.
In section 8, finally, measurements at high densities and thereby in the strong Rydberg

interaction regime are discussed. The discussions of the measurement results are induced
by theoretical aspects concerning the Rydberg potential structures and critical behavior.
Section 9 concludes the presented results and gives an outlook.
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2 Experimental setup

The experimental setup basically consisted of three parts:

• the laser system, containing light generation as well as frequency locking and shift-
ing for the wavelength 455 nm, light generation, laser amplification, and pulse shap-
ing for the wavelength 1066 nm, and light generation for the wavelength 852 nm;

• the pulsed experiment part containing basically the vapor cell and the signal de-
tection;

• the reference spectroscopy system, integrated in the pulsed experiment, necessary
for absorption measurements.

2.1 Laser system setup

In the experiment, three different wavelengths were involved: 455 nm (6S1/2-7P3/2),
around 1066 nm (7P3/2-nS1/2), and 852 nm (6S1/2-6P3/2). The first two wavelengths
correspond to the Rydberg excitation scheme, whereas the latter corresponds to the D2

line of cesium that was used for density reference measurements (c.f. figure 3.1).

455 nm laser system1

The 455 nm light was generated by a Toptica Photonics TA-SHG pro high power,
frequency-doubled, tunable diode laser system. The system contains an internal fre-
quency stabilization by an external cavity diode laser (ECDL) as well as amplification
by an tampered amplifier (TA).
The atoms are excited off-resonantly by a two-photon excitation with a detuning of

1.5GHz from the 7P3/2 state. For the frequency locking, some light was split off and
was then red-shifted by -1.5GHz. This light was then used for locking the laser via
dichroic atomic vapor laser lock (DAVLL) spectroscopy to the 6S-7P3/2(F = 4−F ′ = 5)
hyperfine transition in a cesium cell [13]. In order to be used for the pulsed experiment
in a different location, it was coupled into an optical fiber. This laser system provided
powers of about 250mW, however, due to the reference and fiber losses, about 120mW
were available in the experiment.

1The setup of this laser system is described in detail in [10, ch. 3.2].
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2 Experimental setup

1066 nm laser system2

The infrared light around 1066 nm was generated by a Toptica Photonics DL 100 pro
design, which is a grating-stabilized, tunable single-mode diode laser. Its output wave-
length ranged from 1040.6 nm to maximally 1078.5 nm, where the maximum gain was at
1066.0 nm.
In the experiment this laser is typically scanned spanning a frequency range of few

GHz, where a Fabry-Perot resonator is used for a relative frequency scale. In order to
get a zero frequency, a Rydberg electromagnetically induced transparency (EIT) signal
is used [14]. In order to drive the 6S-7P transition, a light beam coming from the 455 nm
laser system was used. The remaining beam was amplified by an external TA, before it
was coupled into a fiber going to a fiber amplifier (Keopsys). This device provides an
output power of 42.5 dBm, which corresponds to 15W.
In order to obtain time-resolved dynamics, the upper transition was laser driven in a

pulsed way. Therefore the light was shaped by a Leysop Pockels cell3. Using this device,
pulses of nearly rectangular temporal shapes could be obtained. In the experiment the
typical pulse length was 100 ns at a repetition rate of 10 kHz. The rise time was about
1.5 ns and the background level less than 1% of the peak power.

852 nm laser system

The laser light at 852 nm for the D2-line density reference was produced by a Toptica
Photonics DL pro grating-stabilized, tunable single-mode diode laser. For the density
measurement only few micro-watts were needed, and the laser was frequency scanned
across the 6S1/2-6P3/2 transition.

2.2 Pulsed two-photon excitation setup

Microcell

The central part of the pulsed experiment was a self-built glass cell with an atomic vapor
layer inside with a thickness of 220µm. The cell was composed of a rectangular “science
chamber”, connected to a cylindrical reservoir. Latter was filled with pure cesium and
the density could be controlled by the temperature of the reservoir. For heating purposes,
an oven was built surrounding the cell.

Beam guidance, imaging, and detection

The infrared light beam entered the experiment from the fiber with a waist of 1.33mm
(1/e2 diameter). An f = 30mm lens then focused the beam into the cell down to 31µm.

2The setup of this laser system is described in detail in [10, ch. 4.2].
3The setup, operating mode, and performance of the Pockels cell are described in detail in [9].
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2 Experimental setup

Figure 2.1: Glass cell of 220µm containing a u-formed spacer (left part), and a Cs reser-
voir (right part).

Behind the cell an f = 75mm lens recollimated the beam to about 3.3mm. It then
was attenuated, and detected by a Thorlabs Det02AFC photodetector with 1.2GHz
bandwidth.
The blue beam came out of the fiber with a beam waist of 1.25mm, was focused into

the cell by an f = 75mm lens to a waist of 35µm and recollimated by an f = 30mm
lens to 0.5mm. In order to image a homogeneous part of the beam, it was focused onto a
25µm circular high power pinhole at a beam diameter of 73µm and the transmitted light
was focused by a 2 f imaging configuration on the detector. For this purpose a Femto
ultra fast photo-receiver HSA-X-S was chosen. This Si detector is internally amplified
by a conversion gain of 2.5 · 103 V/W and has a bandwidth from 10 kHz to 2GHz.
Both beams of the two-photon transition scheme passed the cell in opposite direction

(“counter-propagating”).

As mentioned above the available infrared beam power was 15W, which corresponds to
a peak intensity of 40 kW/mm2 at the focal point. The power could be controlled either
by the fiber amplifier or by a half wave plate plus high power polarizing beam splitter
cube (PBSC), whereas the latter was polarization sensitive and thereby not favorable.
The blue beam provided at most about 150mW, corresponding to 0.3 kW/mm2 peak
intensity in the cell. Here power control had to be realized by a sequence of polarization
optics, in order to hold the power level stable. It consisted of a cascade of a quarter
wave plate, half wave plate, PBSC, half wave plate, and PBSC elements.
Both beams had to pass a PBSC before passing the cell, not only for power control

(even not in the case of the infrared beam), but also to have a well defined linear
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Figure 2.2: Experimental setup used in order to Rydberg excite atomic cesium and to
measure the atomic density in the cell.
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polarization of the light.

The detected signals were processed by a Teledyne LeCroy Wavesurfer MXs-B oscil-
loscope, which has a spectral bandwidth of 1GHz and a specified sampling rate of 10
giga-samples per second4.

2.3 Reference spectroscopy setup

In order to measure the density in the cell, a third beam passed the cell. This was a
852 nm beam at a power of few micro Watts only, as power broadening had to be avoided
in the reference spectrum measurements. In order to be collimated in the cell at a quite
large beam diameter, the beam had to be expanded by a telescope, and again focused in
order to compensate for the focusing lens before the cell. In this way, the Rabi frequency
in the cell was kept in the MHz range. After passing the cell the light signal was detected
by a Thorlabs PDA36A-EC amplified photodetector.

4The sampling rate could be hold only for single bundles of events and not continuously, as the graphic
processing blockaded further incoming data processing. Therefore the effective sampling rate, which
was provided for continuous sampling, was about 1.5 kilo-samples per second.

12



3 Cesium

General properties1.

group alkali metal
proton number 55
isotope Cs-133
relative natural abundance 100%
atomic mass 132.905451931(27) u
nuclear spin 7/2
melting point 28.5 ◦C
boiling point 671 ◦C

3.1 Level scheme

The level energies of atomic cesium are obtained from [16, table 2]. In figure 3.1 the fine
structure levels up to D (L = 2) are shown.

Quantum defects

Looking at the binding energies or the polarization, many principles of the treatment of
the hydrogen atom can be adapted to the alkali atoms like cesium. The reason is that
all of them are similar due to the outermost electron. However, the effective potentials
for this electron are slightly different. This can be accounted for an effective quantum
number

n∗ = n− δLJ , (3.1)

where δLJ is called quantum defect. It depends on the angular and total angular mo-
mentum L, but not on the principal quantum number n. The quantum defects of cesium
are listed in table 3.1, whereas the results of several groups differ slightly.

3.2 Excitation scheme

In the experiment dealt with in this thesis, an inverted excitation scheme is chosen.
The participating levels are 6S1/2, 7P3/2 coupled by light of 455.6556 nm wavelength [16,

1The values are taken from [15, table 2]
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3 Cesium

Ionization energy:
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Figure 3.1: Level scheme of Cesium [adapted from 10]. The energy values are taken from
[16, table 2].
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3 Cesium
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Figure 3.2: Inverted excitation scheme of Cesium. The left scheme provides a larger
probe signal, whereas the right one enables to reach lower Rydberg states.
The wavelength regime of the upper transition is limited by the laser system.

table 2], and a certain Rydberg state nS1/2. The excitation scheme is shown in figure 3.2.
The laser system provides a maximal wavelength of about 1075 nm, which corresponds
to 30S1/2 up to 1040 nm, and is far above the ionization threshold of atomic cesium.
In comparison, conventional two-photon excitation schemes contain a D line as probe

transition [e.g. in comparable experiments of 5]. This implies a Rydberg-coupling wave-
length that is shorter than the D line wavelength. This fact causes differences, for
instance with respect to the Doppler broadening. Looking at the transition strengths,
the probe signal is stronger, whereas the coupling to the Rydberg state is weaker2 than
in the inverted scheme. Furthermore the D-line is a closed transition, i.e. there are
not any other levels between the driven levels. This avoids dephasing and depopulation
effects.

2The difference is a factor of about two (S. Hofferberth: private communication).

Table 3.1: Quantum defects of cesium in comparison.

Ref. S1/2 P1/2 P3/2

[17] 4.06 3.59
[18] 4.0493527 3.5914856 3.5589599
[19] 4.05219± 0.02786 -
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3 Cesium

To reach states of lower Rydberg quantum number a modified excitation scheme has to
be chosen, in which 7P3/2 is replaced by 7P1/2. That means a wavelength of 459.4459 nm
[16, table 2] for the lower transition. Here the maximally reachable wavelength corre-
sponds to 22S1/2. However, the transition strength of the probe transition is only half
as large as for the 7P3/2 state [c.f. e.g. 20].
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4 Atom-light interaction

4.1 Theory

The influence of light on a single atom can be described by the Schrödinger equation.
Here the atom-light coupling is included by an interaction term Hint in the Hamiltonian
H, i.e.

H = Hatom +Hint . (4.1)

The electric dipole approximation is used, which means that the atomic extension has
to be much smaller than the wavelength of the light. The equation of motion for the
density operator ρ is [21, (9)]

d

dt
ρ = − i

h̄
[H, ρ] + L (ρ) , (4.2)

where the Lindblad operator L accounts for decays and dephasing mechanisms of the
levels. Equation (4.2) is often called master equation, or von-Neumann equation.
In the following, the Hamiltonian and the density operator are treated within the

Schrödinger picture and in the rotating frame1.

The atom is influenced by external light. In turn, the atom influences the light field
due to its induced dipole moment

µ = 〈er〉̺ . (4.3)

The polarization of an atomic ensemble with density ̺ is then P = ̺µ [Detailed treat-
ment in e.g. 22].

Using the framework of equation (4.2), many effects can be described, such as Rabi
oscillations, the near-resonant a.c. Stark effect, or electromagnetically induced trans-
parency in the case of a three-level system. They all are single atom effects, i.e. they
are experienced by single atoms, or, at least, by single-atom-like behaving ensembles.

1Rotating frame means rotating at light frequency [Details e.g. in 22]; rotating at atomic transition
frequency corresponds to the Dirac or interaction picture. Using latter picture is also a way to treat
the system as it is done in [21, p. 639, (8)].
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4 Atom-light interaction

Two-level system

For a two-level atom, the density operator can be represented by a density matrix ρ =
( ρ11 ρ12
ρ21 ρ22 ). The two-level Hamiltonian in the rotating frame is

H =
h̄

2

(

0 Ω
Ω −2∆12

)

(4.4)

and the Lindblad operator is

L = Γ21

(

ρ22 −1
2ρ12

−1
2ρ21 −ρ22

)

, (4.5)

with the population decay rate Γ21. Here the Rabi frequency is defined by

Ω ≡ dE0

h̄
, (4.6)

where d is the effective dipole matrix transition element and E0 is the amplitude of the
electric field E(t) = E0 cosωt.

Three-level system

For three-level systems, there are few different configurations connected to different level
couplings and decay paths, whereas we here restrict to the ladder system. For that case
the Hamilton operator is [e.g. 5]

H =
h̄

2





0 Ω12 0
Ω∗

12 −2∆12 Ω23

0 Ω∗

23 −2 (∆12 +∆23)



 (4.7)

and the Lindblad operator is [5, p. 2]

L = Γ21





ρ22 −1
2ρ12 0

−1
2ρ21 −ρ22 −1

2ρ23
0 −1

2ρ32 0



+ Γ32





0 0 −1
2ρ13

0 ρ33 −1
2ρ23

−1
2ρ31 −1

2ρ32 −ρ33



 (4.8)

In the following, we label the levels in the ladder system ground state, excited state
and Rydberg state.

Adiabatic elimination

If the lasers are in two-photon resonance and far detuned from the excited level, the
three-level system can be approximated by an effective two-level system. The effective
Rabi frequency then is [c.f. 23]

Ωeff ≈ Ω12Ω23

2∆12
(4.9)

18



4 Atom-light interaction

and an effective frequency detuning can be defined as

∆eff = ∆12 +∆23 , (4.10)

which is also called two-photon detuning.

Doppler broadening

In atomic ensembles at finite temperature, the movement of the atoms has to be taken
into account. Due to the Doppler effect, atoms moving at a certain velocity see a shifted
driving light frequency, so that the Doppler shift ∆ω = kv has to be included to the
detuning, i.e. ∆ −→ ∆± kv. The detuning distribution of the atoms in the ensemble is
due to the one-dimensional Maxwell-Boltzmann distribution [e.g. 22, ch. 16]

g(∆) =
1√
2πσ

exp

(

−(∆± kv)2

2σ2

)

, (4.11)

where m is the mass of an atom and T the temperature in K. The width of the Doppler
broadening is given by

σ =
ω0

c0

√

kBT

2m
. (4.12)

So the atomic vapor can be seen as an atomic ensemble of classes of different resonance
frequencies, which induces inhomogeneous broadening.

Level transitions

Due to spontaneous emission, an atom in a certain level can decay into lower levels. This
implies a natural lifetime τ = 1/Γ. The line width is given by [15, (4)]

ΓJ ′J =
ω3
0

3πǫ0h̄c3
2J + 1

2J ′ + 1

∣

∣〈J‖er‖J ′〉
∣

∣

2
, (4.13)

where ω0 is the frequency difference and |〈J‖er‖J ′〉| is the reduced dipole matrix tran-
sition element2 between the levels with total angular momenta J and J’.

4.2 Values

Doppler widths

The Doppler width depends on the wavelength of the exciting radiation. Thereby, the
Doppler broadening of both transitions are different.

2More details about the formalism of dipole matrix transition elements in [10] and [15].
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4 Atom-light interaction

Table 4.1: Dipole matrix transition element |〈J‖er‖J ′〉| =
∣

∣〈6S1/2‖er‖7P3/2〉
∣

∣ obtained

from different publications in comparison.

Ref.
∣

∣〈6S1/2‖er‖7P3/2〉
∣

∣

[20, table 10] 3.151 · 10−30Cm theoretical
[25, table 4] 3.063 · 10−30Cm experimental
[26, table 1] 3.51(0) · 10−30Cm experimental

At a ensemble temperature T = 100 ◦C the root-mean-square variance (4.12) of the
Doppler distribution of the probe transition at wavelength 455 nm is

σ455 nm = 2π × 505MHz , (4.14)

whereas for 1070 nm it is
σ1070 nm = 2π × 215MHz . (4.15)

Dipole matrix transition elements

The reduced dipole matrix transition element of the 6S1/2-7P3/2 transition is obtained

from the literature. In table 4.1 different values of3 |〈J‖er‖J ′〉| = (J‖er‖J ′) /
√
2J + 1 for

J = 6S1/2 and J ′ = 7P3/2 are listed. Some of them have been obtained from theoretical
calculations, some by experiments.
However, the crucial quantity for Rabi oscillations is not |〈J‖er‖J′〉|, but the effective

dipole matrix transition element deff . This is discussed in the following.

If we drive the transition resonantly, a good way is only to consider the strongest
hyper-fine transition. This is 6S1/2 (F = 4) to 7P3/2 (F = 5). Whereas the transition
starting at the 6S1/2 (F = 3) ground state is far off-resonant by 9.2GHz [15, fig. 3] and
thereby not involved, the remaining hyper-fine transitions F = 4 → F = 3, 4 are much
weaker due to the Clebsch-Gordan coefficients CG(mF ). Thus, they can be neglected
in first approximation and the effective dipole matrix transition element is obtained by
averaging over the different mF transitions:

|deff |2 =
1

2F ′ + 1

∑

mF ′

∣

∣CG (mF ) 〈J‖er‖J ′〉
∣

∣

2
(4.16)

= 0.2037
∣

∣〈J‖er‖J ′〉
∣

∣

2
. (4.17)

This is valid for any J = 1/2 → J = 3/2 transition, which is driven by π-polarized
light.

3C.f. the different definitions used in [15] and [24].
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4 Atom-light interaction

If the driving field is off-resonant, so that ∆ ≫ Γ, ∆EHFS, Ω is valid, then [15, p. 11,
(45)]

|deff |2 =
1

3

∣

∣〈J‖er‖J ′〉
∣

∣ (4.18)

can be applied, in case of π-polarized light.

For the transition from 7P3/2 to the Rydberg S levels the power law4

∣

∣〈7P3/2‖er‖nS1/2〉
∣

∣ = 9.0822 · n∗−3/2 ea0 (4.19)

is used. It is a fit to the result of atomic orbital calculations. For instance, the 7P3/2 −
32S1/2 transition has

∣

∣〈7P3/2‖er‖36S1/2〉
∣

∣ = 3.57 · 10−31Cm, which is ten times smaller
than the 6S− 7P dipole matrix transition element.

4.3 Simulations

By solving the master equation (4.2) numerically with usage of the Runge-Kutta method
of 4th order [details described in 27], we simulated the probe response of the atoms in
the vapor cell, where the response is in linear approximation given by the imaginary
part of the atomic coherence ρ21.
Similar to the experiment, the atomic system consisted of a probe transition corre-

sponding to the 6S-7P level transition, and a coupling transition from 7P to nS. The
former was driven at a constant Rabi frequency of Ωp = 2π×400MHz, whereas the latter
was switched on at t=0 with a value of Ωc = 2π × 2GHz. The probe transition was
driven at a constant frequency, blue-detuned at 2π × 1.5GHz. The coupling transition
was scanned across the two-photon resonance.

First, we considered the response of a single atom at rest, in order to obtain a basic
insight of the atomic system. The result is shown in figure 4.1. Here the probe response
Im (ρ21) is depicted over the time and the frequency detuning of the coupling pulse. The
two photon resonance is at detuning ∆23 = 2π ×−1.5GHz, while ∆23 = 0 corresponds
to the resonance of the 7P − nS transition.
One can observe two-photon Rabi oscillations caused by the pulsed coupling to the

Rydberg level. The slowest oscillations occur blue-detuned from the two-photon reso-
nance. The reason for that is a near-resonant a.c. Stark shift which is included in the
framework of equation (4.2).
These Rabi oscillations can also be observed in the population dynamics of the ground,

excited, and Rydberg level, which are depicted in figure 4.1. The maximal population
of the Rydberg level amounts to a fraction of 70%.

4S. Hofferberth: private communication
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4 Atom-light interaction

Figure 4.1: Simulation of response and population dynamics of the two-photon excitation
of a single cesium atom at rest. The Rabi frequencies are Ωp = 2π×400MHz
and Ωc = 2π×2GHz. The probe transition is driven at ∆12 = 2π×1.5GHz.
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4 Atom-light interaction

Figure 4.2: Simulation of response and population dynamics of the two-photon excitation
of the cesium vapor at T = 110 ◦C. The Rabi frequencies are Ωp = 2π ×
400MHz and Ωc = 2π × 2GHz. The probe transition is driven at ∆12 =
2π × 1.5GHz.
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4 Atom-light interaction

However, since the Doppler width is on the order of the probe Rabi frequency (c.f.
equations (4.14) and (4.15)) it was reasonable to include Doppler broadening. Instead
of only one atom at rest, we solved the equations of motion for many atoms at different
velocities. Afterward the different responses were averaged and weighted by the Gaussian
distribution (4.11).

The result of the simulations including Doppler broadening are shown in figure 4.2. It
can be seen, that the effective Rabi oscillations are slower than the oscillations occurring
at the single atom at rest and seem to wash out. The reason for this is the averaging over
oscillations at different Rabi frequencies. Besides, note that, in contrast to the single
atom simulation, the amplitudes of positive and negative response are not symmetric
anymore.
In figure 4.2 you can observe a reduction of the maximal Rydberg population to 40%

due to the Doppler broadening. Like the coherences, also the population oscillations
wash out.

In these simulations Rydberg interaction was not considered. We shall discuss this in
later sections.
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5 Aspects of optics

Since we manipulate atoms in an optical way, optics plays a crucial role in our exper-
iments. All principles of beam optics are well understood for many decades, and thus
are reviewed in many textbooks [e.g. 28].
In this section, merely remarks to focal behavior of a laser beam and to imaging are

mentioned.

5.1 General remarks

The interface between optical and atomic quantities can be expressed by the Rabi fre-
quency

h̄Ω = d · E0 (5.1)

while the electric field strength E0 is of purely optical and the dipole transition strength
d is of purely atomic nature. Beside the electric field strength, usual experimental
quantities are the intensity

I =
1

2
c0ǫ0E

2 (5.2)

=
c0ǫ0h̄

2

2d2
Ω2 (5.3)

and the light power

P =

∫

A
I(r)dA = 2π

∫

∞

0
I(r)rdr (5.4)

which are just listed for defining purposes.

5.2 Diffraction

The propagation of a light beam with a profile fd=0(x, y) can be described as convolution
[e.g. 28]:

fd(x, y) = fd=0(x, y) ∗ hd(x, y) , (5.5)

where x and y are the coordinates perpendicular to the propagation direction, and d is
the distance between the beam profiles fd=0 and fd(x, y).
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5 Aspects of optics

hd(x, y) is the elemental spherical wave

hd(x, y) ∝
1

r
exp (−ikr) (5.6)

corresponding the Huygens principle, with r =
√

x2 + y2 + d2, and k = 2π/λ.

Gaussian profile

Often in experiments it is dealt with laser beams which have a Gaussian profile in radial
direction. So they can be described by

I(r) = I0 exp

(

−2
r2

σ2
w

)

. (5.7)

Here σw is the half width at half maximum of the beam profile, and I0 is the center peak
intensity in units of W/m2.
The Gaussian beam profile is special, as it is an eigensolution of the convolution with

an spherical wave, i.e. a Gaussian profile remains Gaussian. If a beam of a Gaussian
profile is focused at a minimum waist 2w0 (w0 is the 1/e2 radius), then a length can be
defined in which the intensity is reduced to the half of its maximum value and the waist
is

√
2 · 2w0. This is the Rayleigh length

2zR = 2 · πw
2
0

λ
. (5.8)

The Rayleigh length is important if a region of homogeneous peak intensities is desired,
which is approximately the case within this length.

Rectangular profile

If we consider a rectangular profile, like it happens at diffraction at a narrow aperture,
then two limiting cases can be distinguished: the Fresnel limit, in which the diffracted
profile is similar to the aperture form; and the Fraunhofer limit, in which the diffraction
pattern can be described by the sinc function. Both regimes can be described by using
different approximations in (5.5).
In order to quantify the validity of each of both limits, we can use the Fresnel number

NF =
a2

λd
, (5.9)

where a is the radius of the diffraction aperture. If NF ≈ 1, it will be Fresnel diffraction,
if NF ≪ 1, Fraunhofer diffraction will occur in the distance d from the rectangular beam
profile of radius a.
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5 Aspects of optics

Figure 5.1: Spatial dependence of a Gaussian beam near its focal point at w0 = 15µm.
The plotted range of the optical axis equals the Rayleigh length.

5.3 Discussion

If we now design an experimental setup for the excitation atoms in a thin cell by laser
radiation, we often have to focus down the laser beams in order to obtain sufficiently large
Rabi frequencies. However, we have to avoid spatial inhomogeneities of the intensities
and equally of the Rabi frequencies, as they lead to different atomic responses. These
finally are averaged on the photodiode and show a wash-out of the signal or an effective
dephasing, which we want to avoid. Thereby we have to consider the Rayleigh length:
The Rayleigh length has to be larger than the cell length, if we desire a nearly constant
Rabi frequency distribution along the optical axis (see figure 5.1). In our case, the
blue beam has a waist 2w0 = 35µm which corresponds to a full Rayleigh length of
2zR = 4.0mm, and the infrared beam of 2w0 = 31µm has 2zR = 1.3mm. Both Rayleigh
lengths are much larger than the cell length and thereby homogeneity of the intensities
along the optical axis is sufficiently fulfilled.
In order to obtain also almost constant intensities perpendicular to the optical axis,

we have to cut off the wings of the beam profile. This is achieved by an imaging pinhole,
on which the beam is focused after passing the cell. By this only the region among the
beam maximum is imaged on the photodetector.
However, we have to consider which parts of the beam in the cell contribute to that

part of the beam, which transmits the pinhole. This can be investigated by regarding
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Figure 5.2: Spatial dependence of the aperture function, back-imaged from the imaging
pinhole into the cesium cell. The image of the aperture has a width of 10µm.
The plotted range of the optical axis corresponds to the length of the cell.

the back-imaging of diffraction at the pinhole into the cell. In the center of the cell,
the pinhole is imaged perfectly, but before and afterwards Fresnel diffraction occurs,
which can be observed in figure 5.2. Note that, while in the real experiment the beam
is Gaussian, the idea of back-imaging shows us the contributions of the different spatial
coordinates of the beam to the cut-off fraction. To quantify this aspect, we can use
the Fresnel number. The aperture, which we imaged in the experiment, had a radius of
a = 5µm. The maximal distance, at which the atomic response influenced the electric
field, was d = 0.5 × 220µm. A Fresnel number of NF = 0.5 belonged to the blue
beam and a Fresnel number of NF = 0.2 to the infrared beam. Latter is the important
quantity, as the infrared beam causes a modulation of the blue beam; and it is this
modulation which is imaged on the a.c. coupled photodiode.
An alternative and more formal treatment of this issue could be provided by the use of

point spread functions. These functions describe the evolution of a spatial distribution
of spherical waves, which is exactly the case in the experimental situation.
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5 Aspects of optics

The discussion and the Fresnel numbers imply an occurrence of inhomogeneities of the
field strengths in the cell. In the performed experiments, these influenced the precision
of the measurements and therefore had to be minimized. The inhomogeneity of the Rabi
frequency was guessed to be 15% at most.
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6 Pulsed far off-resonant a.c. Stark shift

Due to the huge power of the infrared laser pulse, a.c. Stark shifts of the 6S1/2 and
7P3/2 states are supposed to occur, and that in a dynamical and coherent manner. To
avoid confusion with Rydberg dynamics, this effect will be considered in the following.

6.1 Introduction

External magnetic as well as electric fields have influence on atomic levels, primarily
leading to level shifts and splittings dependent on the external field. For static fields these
effects are known as Zeeman effect and d.c. Stark effect. Related to these effects is the
a.c. Stark effect1. It is caused by the interaction between (alternating) electromagnetic
radiation leading to shifts, broadenings, and splittings of atomic levels.

Whereas in the former effects only the field strength is decisive for the behavior of
the atomic levels, for the latter additionally the frequency of the electromagnetic field
has to be compared to the level transition frequencies. If the frequency is close to
resonance, the behavior of the levels can be described by the usual two-level optical Bloch
equations [29]2 including the rotating wave approximation. Here a level splitting due to
Rabi oscillations occurs, which leads to Mollow triplets [31] or Autler-Townes splitting in
three-level systems [32]. Due to the rotating wave approximation, this treatment cannot
be correct, if the frequency is far-detuned from the transition frequency.
The latter case can be called the far-off-resonant a.c. Stark shift and is treated in

more detail below.

6.2 Theory

The far-off-resonant a.c. Stark shift is a single-atom two-level effect, in the sense that a
single isolated atom shows this shift and that only two levels are involved3.

1As the electric coupling between the atomic levels overwhelms the magnetic couplings, it is reasonable
to only look at the influence of the electric field and to neglect the magnetic contribution. Thereby,
for systems of interest there is just one alternating field correspondence to both d.c. Stark and
Zeeman effect.

2An alternative treatment [30] uses the dressed state picture.
3Actually this is a simplification of the problem, as the frequency changes by a.c. Stark shifts due to
any third levels are neglected. As absolute frequency separations usually are in the range of several
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Figure 6.1: If the field is red-detuned, the levels will be forced apart (a). If the field is
blue-detuned, they will approach each other (b).

Furthermore, the population of the involved levels does not matter for this effect. It
is merely necessary for probing the shift, either by inducing a probe transition, or by
spontaneous emission, both under participation of at least one of the shifted levels.

Quantitatively the far-off-resonant a.c. Stark shift can be treated by non-degenerate
perturbation theory4. On making use of second order perturbation, we obtain

∆E2 ≡ −∆E1 =
3πc2Is
2ω3

0

(

Γ2↔1

E2 − E1 − h̄ωs
+

Γ2↔1

E2 − E1 + h̄ωs

)

(6.1)

following [34, p. 5, (16)] or [35, p. 212, (1)]. Here E1, E2 are the level energies, Γ2↔1

is the decay rate directly between the levels without decays into intermediate levels; Is
and ωs are the intensity the frequency of the shifting light. The first order perturbation
term, which is linear proportional to the electric field, vanishes for parity reasons.
Equation (6.1) is valid on the assumption that the electric dipole approximation holds,

and the detuning is assumed to be large compared to the natural linewidths of the in-
volved levels. Besides these approximations, perturbation theory is restricted to param-
eter regimes where the perturbation term is small, which is the case for not too large
intensity of the shifting beam and a large detuning with respect to the atomic transition.
In the case, that the perturbation term is not small, either the forth order perturbation
has to be included [35], or it has to be switched to degenerate perturbation theory, if
the level is shifted close to any neighboring level.

Perturbation theory virtually provides a standard interpretation: it can be seen as
emission of a photon into a virtual state and re-absorption of the same photon, so that
the initial and final state are the same. Also the inverted order is possible [35].

THz and shifts are in the GHz regime, this effect is reasonably ignorable in the case of interest.
4A dressed state treatment without using the rotating wave approximation can also be performed [c.f.
33].
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6 Pulsed far off-resonant a.c. Stark shift

In a many-level system, like a real atom, the effective level shifts are just sums of
shifts between two-level sub-systems (two-level character of a.c. Stark shift), so that we
obtain5

∆En =
3πc2Is
2ω3

0

∑

m

(

Γm↔n

En − Em − h̄ωs
+

Γm↔n

En − Em + h̄ωs

)

(6.2)

As in a real atomic system there is an infinite number of levels, a truncation of the sum
(6.2) is necessary and mostly reasonable, as relevant shifts usually confine to a certain
region of levels.

Discussion

In the case of interest the transition 6S1/2-7P3/2 is driven by a cw field near-resonantly
at 455 nm. That causes a steady state population between these two levels. The shift
of both levels relatively to each other is mainly generated by the infrared laser, because
of its sufficiently high power. As it is pulsed, the lower transition experiences a pulsed
detuning with respect to the 455 nm probing light. Therefore, the population as well as
the coherence have to oscillate into the new steady state at the different detuning. This
process is depicted in figure 6.2.
These oscillations, on the one hand, are disturbing and misdirecting in some sense,

that it is searched for coherent population transfer to the Rydberg state mediated by
the infrared laser.
However, the a.c. Stark effect provides also this coincidence without involving the

Rydberg state. A way to avoid this effect is to perform an off-resonant two-photon
excitation to the Rydberg state, which means that the steady state dressing of the
intermediate level is small and a change in the detuning has a merely tiny effect and
hence only a little change in the signal.

On the other hand, such oscillations can be used to check the capability of the experi-
mental system to image coherent oscillations and to prove the overlap of the two beams
performing the two-photon transition. This feature becomes necessary if, as in the case
on hand, a possibility to watch two-photon oscillations is not provided. The reason
for this is that low-lying Rydberg states are not addressable by the laser system and
oscillations to high-lying states are thereby prevented by Rydberg-Rydberg interactions.
Therefore oscillations due to the a.c. Stark effect have been investigated more closely,

even though they are not strictly a matter of interest for Rydberg interactions.

5 referred to [34, p. 4, (10)] or [35, p. 213, (2)]
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Figure 6.2: Principle of the a.c. Stark shift in the experiment: The pulsed high power
beam at 1070 nm (a) disturbs the level scheme (b) resulting in a divergence of
the levels and Rabi oscillations (c) of the excitation population as well as the
coherence between the levels shown in (b). The parameters are adapted from
the simulations (c.f. subsection 6.4) and the driving frequency is resonant to
the non-shifted transition.
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Figure 6.3: Shifts of 6S1/2 and 7P3/2 due to interaction to the neighboring levels. The
dimension of the shifting beam wavelength 1070 nm is depicted in gray. The
values are calculated using [20].

6.3 Calculations

For the calculation of the shifts of the levels 6S1/2 and 7P3/2, the energy differences
between the levels have been obtained by [16, table 2], and the dipole transitions were
calculated via the transition rates of [20, table 10]. For the shifting beam at 1070 nm
the laser power was assumed to be 14W and the beam waist was set to 31µm, as it was
the case in the performed experiments.
Using these parameters, the shift of 6S1/2 sums up to 2π × 407MHz. Like depicted

in figure 6.3, it acts in a lowering manner, as the shifting laser frequency is red-detuned
to the level transition. It is mainly caused by the 6P1/2,3/2 levels, all further P levels
contribute less than the natural linewidth of the 6S1/2-7P3/2 transition and thus are
negligible.
For the 7P3/2 level the situation is much more complicated. Here there are levels which

are lower than 7P3/2, namely 6S1/, 7S1/2, and both 5D fine structure states. Additionally,
the frequencies of the level transitions have to be compared to the frequency of the
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6 Pulsed far off-resonant a.c. Stark shift

Figure 6.4: Time-resolved simulation of the atomic response dependent on the frequency
detuning ∆12, assuming a pulsed a.c. Stark shift of 2π × 400MHz.

shifting laser. The shifts caused by the S states are quite strong, namely 2π × 173MHz
due to 7S1/2 and 2π × 215MHz due to 8S1/2. However, as they are shifted in opposite
directions, they almost annihilate to a shift of 2π × 42MHz. For the shifts due to the
D5/2 the situation is comparable, whereas the shifts of D3/2 are only little beyond the
natural linewidth. So the total shift of 7P3/2 sum up to about 2π × 83MHz to higher
energies.
Both level shifts combined, a relative shift between 6S1/2 and 7P3/2 of ∆a.c. = 2π ×

490MHz is calculated. That means, due to the infrared laser both levels diverge about
this effective value. As in the present excitation scheme the 455 nm light had a detuning
∆ = ∆L −∆0 = 2π × 1.5GHz, the a.c. Stark shift caused a pulsed detuning of about

∆′ = ∆L − (∆0 +∆a.c.)

= ∆−∆a.c.

= 2π × 1.010GHz . (6.3)

6.4 Simulation

Simulations of the response of a velocity distributed ensemble of atoms were performed
including a time-dependent a.c. Stark shift of 2π × −400MHz and a Rabi frequency
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of 2π × 350MHz in a Doppler broadened medium at T = 100 ◦C. Like in comparable
simulations in this thesis, we used a Runge-Kutta algorithm of forth order to solve the
optical Bloch equations time-dependently.
In figure 6.4 you can see the result of the simulation. As soon as the pulse enters the

cell, the steady state will be perturbed and oscillations occur. The central frequency
of these oscillations is at ∆12 = 2π × 400MHz, and corresponds to the shifted level
transition resonance.

6.5 Measurements

As previously mentioned, we performed pulsed a.c. Stark shift measurements to obtain
a feedback, how well the beams are overlapped and how well the imaging system works.
Thereby, the infrared laser is turned far away from any transition to a Rydberg state,
usually in the order of few Ångström. The blue cw laser is slowly scanned near-resonantly
at the frequency of the 6S1/2-7S3/2 transition. As soon as the infrared pulse generates
the shifts, the steady state is perturbed by the change of the detuning and oscillations
into the new steady state occur. This can be seen in figure 6.5. Here the probe power
was 10mW, which corresponds theoretically to a Rabi frequency of 350MHz6.
In figure 6.6 a simulation is fitted to a measurement trace at a single frequency de-

tuning. To obtain any congruency, a probe Rabi frequency of 2π× 250MHz is assumed,
which is less than the calculated value resulting from the power measurement.
Besides, the effective decoherence of the response of the atomic ensemble cannot be

fully explained neither by the theoretically assumed natural linewidth of 2π × 1.2MHz
[20, table 11] nor by Doppler-broadening. Thereby additionally a loss (“transient-like
dephasing”) of 2π × 20MHz is used to reconstruct the decay shape of the coherence
signal. This fact suggests the occurrence of effects like transit time broadening [36],
which is about 2π × 3MHz, or collisional relaxation and broadening, which is less than
2π × 10MHz.
To explain an enhanced effective decoherence as well as varied Rabi frequencies occur-

ring in the oscillations, three effects can be considered. First, instead of a pure two-level
system, the real situation is rather a system of three different excited states. The reason
is that it consists of the F = 4 ↔ F ′ = 3, F = 4 ↔ F ′ = 4, and F = 4 ↔ F ′ = 5
transitions, which are slightly frequency-detuned and correspond to different Rabi fre-
quencies. As they overlap mainly due to power broadening, the Rabi oscillation at a
single frequency are a superposition of Rabi oscillations at different Rabi frequencies into
different hyper-fine states.
Second, each of the F ↔ F ′ lines consists of different mF subsystems, each of them

with different Clebsch-Gordan coefficients. This again causes an average of dynamics at
different Rabi frequencies.

6On making use of formula (4.17).
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6 Pulsed far off-resonant a.c. Stark shift

Figure 6.5: Time-resolved measurement of the signal, scanned across the resonance. The
signal level is given with respect to the steady state signal without infrared
pulse. The pulse enters the cell at t=0.

Figure 6.6: Trace of probe signal at 2π × 480MHz detuning. Measurement (blue) and
fitted simulation (green) in comparison.
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Third, the beam profile and, related to that, the imaging system causes an inhomoge-
neous distribution of Rabi frequencies. Actually, the set-up is done in such a way, that
these effects are minimal. However, it can not be totally excluded.
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7 Rydberg interactions I: basic principles

and weak interaction regime

In order to get a basic insight into the matter of Rydberg interactions, we first use a
didactically motivated simplification, considered in this section. By this we can approach
the complex matter of many-body Rydberg interaction and obtain several aspects, which
will also hold for more complicated systems.

The situation will be a permantently excited single Rydberg atom in a certain state
nS and a probe atom. The Rydberg atom shall be in an nS Rydberg state and shall
have an active character, since it generates a Rydberg potential. In contrast, the probe
atom can be seen as passive receiver or sensor. Consequently in this sense, it shall not
influence the active Rydberg atom. The probe atom shall be a quantum-mechanical
two-level system1, which is excited into the same state nS by an external laser field. The
here explained simplified situation of Rydberg interaction is sketched in figure 7.1.

In section 8, we will overcome this ambivalence by treating both atoms symmetrically.

permanent
Rydberg

atom

Rydberg state

ground state

probe
atom

ra
di

at
io

n

Rydberg
potential

Figure 7.1: Sketch of the situation system of Rydberg interaction.

1Indeed, we are interested in three-level atoms, but the formalism of a two-level system can be adapted
using adiabatic elimination of the excited state.
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7 Rydberg interactions I: basic principles and weak interaction regime

7.1 Theory

Firstly, we will introduce the simplest form of the Rydberg interaction potential: the
van der Waals potential. Using this, we obtain the effect of Rydberg blockade. Finally,
we expand the van der Waals potential by higher orders in order to have a more accurate
description of Rydberg interactions.

Van der Waals Rydberg potential

As known from classical electrodynamics, the potential of an induced dipole in the field
of a permanent dipole is given by the van der Waals potential2 [c.f. 37, chapter 4d]

V (r) =
C6

r6
, (7.1)

where r is the distance between the particles and C6 is the dispersion or van der Waals
coefficient. In our situation, this principle can be adapted, in the sense that the Rydberg
atom is the permanent dipole and the probe atom is the induced dipole. As mentioned
earlier, both atoms have to be in the nS state. Using quantum-mechanical perturbation
theory, the dispersion coefficient was calculated to be [38, table 6]3

C6 = n∗11 ·
(

−10.64 + 6.249 · 10−1n∗ − 2.330 · 10−3n∗2
)

, (7.2)

where n∗ is the effective Rydberg quantum number. In equation (7.2) we observe that
for small n∗ the potential is attractive, whereas the sign of the potential changes for
increasing n∗ leading to a repulsive potential (see figure 7.3). The change of sign occurs
between n∗ = 18 and n∗ = 19.
Note, that in the picture used in this section only the probe atom experiences this

potential, which leads to a shift of its Rydberg level.

Blockade

Now hypothetically suppose an infinitesimal narrow excitation bandwidth, which shall
excite our probe atom. The level shift due to equation (7.1) will prohibit any excitation
of the probe atom into its Rydberg state; no matter in which distance to the Rydberg
atom it is located.
However, there is always a finite excitation bandwidth, given by the effective Rabi

frequency [39]

Ωeff ≡
√

Ω2 + (2∆)2 , (7.3)

2if one atom shows a dipole moment p1 caused by fluctuations, an electric dipole field E1 ∝ p1/r
3 is

provoked. This field induces a dipole moment of a neighboring nonpolar atom of p2 ∝ E1 ∝ p1/r
3.

The resulting interaction potential then is φ ∝ −
p1p2
r3

∝
1

r6
.

3Note the different choice of sign convention compared to [38, (1) and table 6].
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7 Rydberg interactions I: basic principles and weak interaction regime

where Ω is the two-level Rabi frequency and ∆ is the frequency detuning. The natural
linewidth and other line broadenings are neglected.

As a consequence, within a certain distance from the Rydberg atom the probe atom
cannot be Rydberg-excited. By comparison of the potential (7.1) and the excitation
bandwidth (7.3) we obtain the blockade radius [39]

rB ≡
(

C6

h̄Ωeff

)1/6

. (7.4)

The principle of Rydberg blockade is illustrated in figure 7.2.

Higher Rydberg potential orders

Mathematically spoken, the Rydberg potential (7.1) is a Taylor expansion of the physi-
cally real potential, and is obtained by a non-degenerate perturbation approach. Physi-
cally spoken, the potential (7.1) stands for the interaction between two dipole moments.
Both perceptions let us consider higher order interaction terms of the Rydberg po-

tential, for instance dipole-quadrupole interaction. It turns out that for nS-nS Rydberg
interaction, the potential can be extended to [38, table 6]

V (r) =
C6

r6
+

C8

r8
+

C10

r10
+O

(

1

r12

)

, (7.5)

where C6 is defined by (7.2) and the other dispersion coefficients are

C8 = n∗15 · (30.19− 3.777n∗ + 1.581 · 10−2n∗2) (7.6)

C10 = n∗22 · (−3.190 · 10−3 + 5.920 · 10−5n∗ − 3.022 · 10−7n∗2) . (7.7)

The higher order terms proportional to r−8 and r−10 become important for increasing
Rydberg quantum number and small interatomic distances. In figure 7.3 (a) the potential
terms are plotted for different effective Rydberg quantum numbers.
The Taylor-expanded potentials have been calculated using non-degenerate pertur-

bation theory, as the pair state ”nS-nS” is taken as an isolated level. As soon as the
interaction energy is on the order of the energy spacing to the neighboring pair states,
non-degenerate perturbation is not valid any more. Besides, the order truncation of the
power series has to be reasonable, so that the influence on the potential is negligible.4

4 Also a minimal radius is given by the LeRoy radius, which is the sum of both root-mean-squared
distances from their respective cores [40]. However, for lower Rydberg states it is on the order of few
tens of nanometers [c.f. 41].
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Figure 7.2: Principle of Rydberg blockade: a Rydberg atom (red) generates a van der
Waals potential experienced by a laser-driven ground state atom (blue). For
distances larger than the blockade radius rB, a finite excitation bandwidth
allows excitation into the Rydberg state; for distances below this radius the
excitation is prevented. Note the disparate roles of the participating atoms.
Whereas one atom is totally Rydberg excited and generates a Rydberg po-
tential, the other atom only experiences the potential in presence of exciting
radiation.
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7 Rydberg interactions I: basic principles and weak interaction regime

Figure 7.3: Dependence of the Rydberg interaction potential orders (a) on the inter-
atomic distance for various effective Rydberg quantum numbers. Note the
change of the C6 term from attractive to repulsive potential for increasing n∗.
In (b) the nearest neighbor distribution is shown for three orders of densities.
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7 Rydberg interactions I: basic principles and weak interaction regime

Partially excited Rydberg atom

Up to now we have considered a potential-generating Rydberg atom, that is fully excited,
which means a population fraction f ≡ ρ33 = 1. If we assume partial excitation, which
means f < 1, the potential experienced by the probe atom has to be weighted by this
probability factor and we obtain

V (r) = f
C6

r6
. (7.8)

Using the same argument, we obtain the potential energy for the probe atom

Epot = f fp
C6

r6
, (7.9)

where fp is the excitation fraction of the probe atom.
Therefore, light interaction of the formerly permanently excited Rydberg atom is

allowed, since this is connected to a varying excitation fraction. But the interaction is
still allowed in one direction only. This slightly modified situation is illustrated in figure
7.4.

Figure 7.4: Sketch of the situation system of Rydberg interaction: Now, atom-light in-
teraction of the formerly permanently excited Rydberg atom is allowed.

7.2 Models

The more or less didactic simplification of a fixed Rydberg atom and a probe atom can
be used to describe Rydberg interaction in an atomic ensemble. In the following, we will
first investigate the distance distribution model, which uses an inhomogeneous ensemble,
and subsequently, we will treat the so-called dephasing model, which is related to the
former, but mainly empirically motivated.
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7 Rydberg interactions I: basic principles and weak interaction regime

Distance distribution model5

The distance between the Rydberg atom and the probe atom can be described by the
nearest-neighbor distribution [42, p.86, (671)]

w(r) = 4πr2̺ exp

(

−4π

3
r3̺

)

, (7.10)

where r is the distance between two particles and ̺ is the particle density. w(r)dr is
the probability to find two atoms in the distance interval (r, r+ dr). Related to w(r), a
characteristic length

r0 ≡ (4π/3̺)1/3 (7.11)

can be defined, which is related to the mean distance rm = 0.893 r0 and the most
probable distance rp = 0.874 r0.
The distance distribution for various densities is shown in figure 7.3.

Now let us suppose a large ensemble of probe atoms with density ̺, which shall be
coupled to a Rydberg state nS. Due to their passive character, they shall not interact
with each other. Furthermore, an nS-Rydberg atom is placed in the ensemble, which
neither interacts with the driving light nor is influenced by the probe atoms. We now
can map the distance distribution (7.10) onto a detuning distribution w(∆int) of level
shifts of the probe atom on making use of the potential (7.1). The transformation of the
probability distribution is

w(∆int) =
dr

d∆int
w(r) , (7.12)

which leads us to

w (∆int) =
1

2

Ωeff

∆
3/2
int

̺

̺crit
exp

(

−
(

Ωeff

∆int

)1/2 ̺

̺crit

)

, (7.13)

where

̺crit ≡
(

4π

3
r3B

)

−1

(7.14)

is the critical density.

This model can be improved. For that we allow the formerly fixed Rydberg atom
to interact with the external laser field. Now, Rabi oscillations cause a time-dependent
Rydberg potential: since C6 is substituted by f(t)C6 and hence, the distance distribution
(7.13) becomes time dependent. Thereby, the following happens: If the atom is Rydberg
excited, the Rydberg population of the probe atoms in its vicinity will be small, and vice

5This model was developed by B. Huber [6, supplemental material].
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7 Rydberg interactions I: basic principles and weak interaction regime

versa. From this perspective, the fact that ground state atoms do not screen Rydberg
interaction, is included. Furthermore, the Rydberg interaction of the whole ensemble
saturates above a certain density.

The nature of this model is closely related to the Doppler broadening effect, at which
different velocity classes of moving atoms are connected to different detunings, so that
the behavior of the ensemble is just the superposition of every velocity class6.

Besides, note that the nearest neighbor distribution is valid only for interaction-free
particles. Rydberg interactions modify the particle distributions. This is one reason,
why the distance distribution model is restricted to the weak interaction limit.

Dephasing model

A different model is the dephasing model, which is empirically motivated, since a
smearing-out of Rabi oscillations [6, 43] was observed. It can be understood as a mean-
field theory. Therefore let us suppose an atom, which feels the Rydberg potentials of all
other atoms in the ensemble. All of them cause different shifts, which can be effectively
combined into a single dephasing term. Due to the mean-field treatment, all atoms are
identical and we obtain a homogeneous ensemble of effectively dephased Rydberg atoms.
Experiments in the weak Rydberg interaction regime have been performed in cold

atomic clouds by [43]. In measurements using atomic vapors at room temperature, an
effective Rydberg dephasing

Γ33 ∼ Γρ33ρ33 (7.15)

was experimentally observed [6], where

Γρ33 ∝ ̺

̺crit
∝ n∗ 11/2 . (7.16)

Corresponding to the effective character of this model, the dephasing term is closely
related to the root-mean-square variance of the distribution (7.13) of the level shifts .

7.3 Measurements

Measurements have been performed with the Rydberg state 32S and in a regime of low
vapor densities, where the lower limit of densities was set due to the decreasing signal
strength. Thereby, the lowest reasonable density was about 5 · 1012 cm−3, at which the
signal almost vanished. This density corresponded to an effective atomic density of

6As well as the Doppler broadening effect, this model of Rydberg interaction is collective in the sense
that it cannot be described by a single atom, but only by an inhomogeneously broadened ensemble
[c.f. 22, ch. 16].
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Figure 7.5: Measured signals at densities (5, 11)9/16 × 1012 cm−3: (a) shows frequency
cuts at ∆23 = 2π×−1GHz, where the amplitudes are normalized; in (b) the
dependence of the measured signals on the frequency detuning ∆23 is shown.
The coupling pulse enters the cell at time t = 0. The signal is broader at
larger density.
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9/16× 5 · 1012 cm−3, as the light interacts only with the F = 4 hyper-fine ground state,
whereas the F = 3 state is not involved. The fraction is due to the degeneracy of both
levels with respect to its mF levels. The powers were 5mW for the probe and 14W for
the pulsed coupling beam, which corresponded to Rabi frequencies of 2π× 400MHz and
2π × 2GHz.

Assuming C6 interaction, these parameters corresponded to a blockade radius of
0.5µm and a critical density of 1.6 · 1012 cm−3. The densities of the measurements
are much larger. However, the critical density is a quantity which corresponds to 100%
Rydberg excitation, which is here not the case. Assuming a Rydberg excitation fraction
of 10%, the critical density is 5 · 1012 cm−3.

Traces at a driving Rabi frequency 2π×−1GHz detuned relative to the 7P -32S transi-
tion are shown in figure 7.5 (a). As it can be observed in figure 7.5 (b), Rabi oscillations
could not be observed, also not in comparable measurements at different parameters.
Besides Rydberg interactions, different broadening effects give rise to the suppression
of Rabi oscillations, like pressure broadening, different ionization mechanisms, plasma
formation, etc. They all sum up to 2π × 20MHz at most.

However, Rabi oscillations were observed in atomic Rubidium vapor [5]. The most
essential difference between the experiments is the excitation scheme, which corresponds
to different probe signal strengths and thereby to different ensemble responses. In our
case, the dipole matrix transition element is reduced by a factor of 10 compared to the
non-inverted excitation scheme. So the response of the ensemble is diminished by a
factor of hundred. The reduction of the ensemble response has to be compensated by
increasing the vapor density, which leads to stronger Rydberg interaction between the
atoms, but also to other interatomic effects (e.g. collisions).

7.4 Simulation

We performed simulations with the two presented models: Cesium atoms in a hot vapor
are two-photon excited via a cw-driven 2π×1.5GHz off-resonant transition from the 6S1/2
to 7P3/2 and a pulsed coupling transition to 32S. The probe light is 2π × 1.5GHz blue
detuned, the coupling pulse is 2π×−1.0GHz red detuned, so that the excitation is close
to the two-photon resonance. The Rabi frequencies are 2π× 400MHz and 2π× 2.0GHz
for the probe transition and for the coupling transition respectively. Thereby the effective
Rabi frequency (see formula (4.9)) is 2π × 267MHz.
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Distance distribution model

The simulations have been done by solving the optical Bloch equations for different
classes of velocities as well as Rydberg interaction shifts.
In figure 7.6 the results with a constant Rydberg shift and a dynamical Rydberg shift

are compared. Whereas in former case you can observe a smearing out of the Rabi
oscillations as the density increases, in the latter a different behavior occurs. As the
Rydberg interaction strength oscillates at the frequency of the Rydberg population, but
shifted by a phase of π, the dephasing of the Rabi oscillations only happens in certain
parts of the time evolution. In our case, this leads to a suppression of the enhanced
transmission (signal > 0).
The simulations merely are in qualitative agreement with the experimental results for

small two-photon detunings (figure 7.5).
Especially at higher densities, for which neither the restriction to nearest neighbor

interaction (c.f. figure 7.3) nor the choice of the interaction potential is reasonable,
simulations and measurements still have similar signal shapes. As a large interaction
shift causes a decrease of Rydberg atom density, a saturation of C6 · f(t) occurs, which
enlarges the regime of qualitative validity of this model.

Dephasing model

We also simulated the atomic behavior with use of the dephasing model (section 7.2).
The Rydberg dephasing was assumed to be

Γ33 = 2π × 750MHz · ̺

̺crit
· ρ33 , (7.17)

whereas the constant is a reasonable value so that Γ33 remains small compared to the
effective Rabi frequency. The critical density is ̺crit = 1.5 · 1012 cm−3 for the case of
n∗ = 28 and Ωeff = 2π × 250MHz.

The results of the simulations at the same parameters as in the simulations of the
distance distribution model are shown in figure 7.6. By comparing the results with
the measurements shown in figure 7.5, we observe quite good agreement for the higher
densities. However, it is not clear that the dephasing of the measured signals is totally
due to Rydberg interaction.

Additionally we simulated the response of the ensemble dependent on the detuning of
the pulsed coupling beam at a particle density of 9/16×5·1012 cm−3, shown in figure 7.8.
One can observe a washing-out of the Rabi oscillations in the region of the two-photon
resonance. This is not surprising, as it is this resonance which causes a high population
of the Rydberg level and so large dephasing.

49



7 Rydberg interactions I: basic principles and weak interaction regime

Figure 7.6: Simulations of the time-evolution of the blue signal from the Doppler-
broadened three-level system using the distance distribution model (inhomo-
geneous), done for several densities: (a) at a fixed Rydberg potential and (b)
at a time-dependent potential; the coupling pulse shape is each depicted in
gray. The Rydberg population fractions of the atom, which generates the Ry-
dberg potential, are shown in (c) and (d). The parameters of the two-photon
excitation are Ωp = 2π × 400MHz, Ωc = 2π × 2GHz, ∆12 = 2π × 1.5GHz,
∆23 = 2π ×−1GHz.
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Figure 7.7: Simulations of the time-evolution of the blue signal from the Doppler-
broadened three-level system using the dephasing model (homogeneous),
done for several densities. The coupling pulse shape is depicted in gray. The
parameters are Ωp = 2π × 400MHz, Ωc = 2π × 2GHz, ∆12 = 2π × 1.5GHz,
∆23 = 2π ×−1GHz. The effective dephasing term is described in the text.
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Figure 7.8: Simulation of the response and the atomic population dynamics using the
dephasing model (homogeneous). The pulse starts at t=0.The parameters
are Ωp = 2π × 400MHz, Ωc = 2π × 2GHz, and ∆12 = 2π × 1.5GHz. The
atomic density is 9/16× 5 · 1012 cm−3.
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Looking at the populations of the several levels in figure 7.8, a decrease of the Rydberg
population simultaneously to an increase of the excited level can be observed. The reason
for this is that the coupling from ground to Rydberg state does not involve the excited
level, but the dephasing (line broadening) leads to a coupling of the Rydberg population
to the excited level. There, it is only weakly coupled the ground state.

7.5 Remarks

In this section Rydberg interaction was treated simplified by neglecting quantum me-
chanical principles such as coherence and identical treatment of the atoms. However,
the comparison of measurements and simulations justifies this approach.
The parameters of these measurements are located in the weak interaction regime.

This implies weak correlations between the single Rydberg atoms an atomic ensemble and
the atomic behavior is only quantitatively changed with respect to vanishing Rydberg
interaction. That means, Rydberg interactions merely cause slight modifications of
quantities like dephasing [6, 43].
However, if we increase the particle density, the interatomic distances will decrease

and we will enter a parameter regime, in which the ensemble behavior is totally different
due to strong Rydberg interactions. Then the atomic behavior changes qualitatively
compared to a single atom. The atomic behaviors will correlate strongly and interatomic
cooperativity cannot be neglected [44].
We will investigate this transition of the atomic ensemble behavior in the following

section by looking into theoretical aspects and by measurements at densities, at which
strong Rydberg interaction is expected to appear.
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8 Rydberg interaction II: strong interaction

regime

The investigation of the strong Rydberg interaction regime forces us to consider Rydberg
interaction in a deeper sense than it is treated in section 7. This will lead us to much
more complicate potentials, which we will use to explain the results of the measurements.
These might help us to explain the measurement results, which, as we will see in this
section, exhibit a qualitatively different behavior.

8.1 Theory

If two Rydberg atoms are much closer than the blockade radius, the potentials (7.1) and
(7.5) are not valid any more. So far neglected effects have to be included now and we
cannot use the description of an active Rydberg atom and a passive probe atom any
more.

atom
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Figure 8.1: Rydberg interaction between two identical atoms. Each of them is driven by
external radiation and experiences the Rydberg interaction potential of the
other atom.
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8 Rydberg interaction II: strong interaction regime

For this reason, we consider two identical atoms, as depicted in figure 8.1. Both
are driven by an external field, which excites them into an Rydberg state nS. By this
the meanings of the terms “potential” and “blockade” have to be modified: Now, the
Rydberg interaction potential describes the potential of the Rydberg levels of two excited
Rydberg-exited atoms. So both see the potential caused by each other, and both are
identical. If they are now located closely, both strongly interact with each other and
blocking further excitations, so that one excitation is coherently distributed over both
atoms.

Pair states and pair state mixing

A further difference comes into play with the system of two identical atoms. Now they
do not have to be excited into the nS-nS state. Also different combinations of Rydberg
states are allowed, if it is energetically possible.
In the spectral vicinity of the nS − nS pair state, there are many other pair states

n1L1 − n2L2. This can be seen as accidental occurrence1 or as result of the manifold
possible combinations n1L1−n2L2. For instance the 30S1/2− 33D3/2 pair state lies just
2π × 6.0GHz above the 32S1/2 − 32S1/2 pair excitation. This gives rise to restrict the
validity of the given potential only to small level shifts. As soon as the particles approach
each other, the differently shifting pair states will hit each other. Consequently, non-
degenerate perturbation theory is not valid any more and degenerate perturbation theory
has to be applied [41]. Then avoided crossings occur, which give rise to binding potentials
and thereby may lead to molecule formation, so called macrodimers [40].
In figure 8.2 the crossing behavior of two levels is depicted. In the crossing regime,

the different states are mixed. In the vicinity of such a crossing region, small admixtures
ǫ ≪ 1 of the other pair state level occur. Note that, if one of the pair state levels is
dipole-forbidden, it still has an influence on the potential structure as nevertheless the
ǫ admixture of the allowed level appears.
By the discussion of this simple crossing of two pair state levels, it is clear that the

levels structure of Rydberg pair states is extremely complicated. This can be seen in
figure 8.3. Here all pair state levels in the vicinity of 30S1/2 − 30S1/2 are shown. A
tremendous number of crossings occur, as the interatomic distance decreases.
The potentials are calculated by D. W. Booth and J. P. Shaffer (University of Ok-

lahoma) via diagonalization of the pair state Hamiltonian including many neighboring
pair state levels [similar calculations are described in 41].

Collective behavior

In the strong Rydberg interaction regime the individual Rydberg atoms show so-called
collective behavior. A central aspect of this collectivity is the enhancement of collective

1Accidental occurrence in the sense, that it is not a degeneracy due to any symmetry.
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Figure 8.2: Crossing behaviors of two spectrally close levels: one level attractive (A) and
one repulsive (R). Near the crossing regions ǫ mixtures occur. While here a
ideal situation of two neighboring levels shall demonstrate the principle of
anticrossing of pair state levels, results of calculations in a real system are
shown in figure 8.3.

Rabi frequency. That means, the ensemble Rabi frequency Ωcoll is enhanced the square-
root of the number N of atoms within one blockade sphere:

Ωcoll =
√
NΩ , (8.1)

while Ω is the Rabi frequency of a single isolated atom2.
This enhancement was observed by T. Pfau and coworkers [3] in an ultracold ensemble

of rubidium atoms.
Beyond the enhanced ensemble dynamics, collective behavior of Rydberg excited

atomic ensembles opens a wide field of interesting effects, like critical phenomena and
phase transitions [45, 46]. A detailed treatment goes beyond the scope of this thesis and
connections to the measurements in the here performed experiments are not entirely
understood.

8.2 Measurements

We performed measurements at densities ranging from 5 · 1013 cm−3 to 2 · 1014 cm−3.
The measurements were performed at a blue power of 3mW, which corresponds to
2π × 360MHz, while the infrared power was 14W, which is about 2π × 2GHz.
Assuming C6 interaction, these parameters corresponded to critical densities of 1.6 ·

1012 cm−3 (32S), 1.0 · 1012 cm−3 (34S), an , 0.7 · 1012 cm−3 (36S). Hence, the densities

2A detailed description is given e.g. in [39].
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Figure 8.3: Potentials of the pair states of cesium in the vicinity of the 30S1/2 − 30S1/2
pair state, dependent on the interatomic distance. In combination with an
excitation bandwidth in the gigahertz regime and sufficient interatomic dis-
tances, the shown pair state level structure does principally not allow the
application of the concept of blockade. These results are kindly provided by
D. W. Booth and J. P. Shaffer (University of Oklahoma).
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occurring in this measurements were much larger than the critical densities and strong
interaction was expected.
In figure 8.4 (a) frequency scans of the time-dependent signals at different particle

densities are shown. The densities varied from 6.5 ·1013 cm−3 to 2.37 ·1014 cm−3, whereas
the abundance factor 9/16 of the driven 6S1/2(F = 4) sublevel has to be taken into
account.
The frequency scan measurements can be characterized by three different features:

The fast absorption, near one- and two-photon resonance, delayed absorption at few
gigahertz red detuning, and the often sharp, kink-like transition between these two
regions.

Fast absorption

In the band of the two-photon and single photon resonance, the signal looked similar to
the measurements at lower densities. That means, absorption was enhanced, and that
instantaneously to the coupling pulse, due the population transfer into the Rydberg
state.
In figure 8.4 (b) the time-dependent signal form is shown. After the sharp absorption

feature, a constant signal was obtained rapidly. This new steady state showed enhanced
absorption with respect to the steady state signal before the coupling pulse enters the
cell (t=0).
In figure 8.6 (a) the signal from a few nano-seconds after the coupling pulse entered

the cell is shown. For both low densities a absorption peak at the shifted two-photon
resonance is visible. Red detuned to that line was a feature which caused a sharp
absorption kink. This feature became a dominant feature as the density increased. At
large densities, the lineshape looks similar to bistable lines, caused by nonlinearities.

Delayed absorption

At a certain frequency the instantaneous absorption vanishes. Instead, the absorption
occurred delayed by few nanoseconds, depending on the frequency detuning and on the
density. In figure 8.5 (a) the time-dependent signals at different densities are compared,
each at 2π × −3400MHz and coupling to 32S. The absorption becomes larger, faster,
and shorter in time for increasing density. Besides, oscillations seem to occur.
In figure 8.5 (b) the behavior dependent on the density and the Rydberg quantum

number is analyzed. A clear dependence on the Rydberg state occurs. This gives rise for
scaling the densities by the critical density assuming Rydberg van der Waals interaction.
The result is shown in figure 8.5 (c). However, this seems not to be the correct critical
density, which is not surprising in the face of the complicated structure of the molecular
potentials.
We fitted the data assuming a power law of the form f(̺) = A̺α and obtained:
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Figure 8.4: (a): Frequency detuning scans at various densities. The Rydberg-coupling
pulse enters the cell at t = 0. The density dependence of the kinks and the
delayed absorptions is clearly visible. (b): Time-dependent signal at various
densities. The coupling frequency is detuned by 2π × −1.5GHz to the one-
photon resonance. The signal strength is normalized. The time offset is with
respect to the coupling pulse.
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Figure 8.5: Time-dependent signal at various densities (a). The coupling frequency is de-
tuned by 2π×−3400MHz to the one-photon resonance. The signal strength
is normalized. In (b) the delays are shown dependent on the density in a
logarithmic scale, comparing different Rydberg states. The dependence on
the Rydberg state is accounted by scale the densities by the critical density
of C6 interaction (c).
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nS A ( 2π×GHz
(1012 cm−3)α

) α

32S 10.8± 6.4 −1.29± 0.14
34S 3.4± 1.5 −1.10± 0.10
36S 0.96± 0.52 −0.95± 0.13

As the processes occurring in these measurements are not understood, there is no
theoretical description available, to which the quite clear results can be compared.

Kink-like transition

The dependency of the frequency of the instantaneous red edge was investigated. In fig-
ure 8.6 (a) signals shortly (≈ 1 ns) after the switch-on of the coupling pulse are shown.
We carried out such measurements at many different densities, as well as different Ry-
dberg states. The results are shown in figure 8.6 (b). The frequencies of the kinks
depend on the involved Rydberg state. However, a scaling behavior cannot be observed
(figure 8.6 (c))
Additionally, the dependence of the kink frequency on the probe power was investi-

gated, where the Rydberg state was 32S. The results are shown in figure 8.7.
We fitted the data assuming a power law of the form f(̺) = A̺β + C and obtained:

nS A ( 2π×MHz
(1012 cm−3)β

) β C (2π ×MHz)

32S 8.6 · 10−3 ± 3.2 · 10−3 2.06± 0.17 −1634± 65

The fit results in a quadratic Rabi frequency dependence of the kink frequency.
The uncertainties in the performed measurements were given by the temperature in

the cell, which was obtained by absorption spectroscopy, and power deviations during
the measurement procedure. Especially the former was not accurate enough and might
be improved.

8.3 Remarks

Several effects may cause the behavior which we observed.
The delayed absorption feature may appear due to small admixtures (ǫ) of the nS-

nS pair states to neighboring states. The excitation probability would decrease as the
coupling frequency departs from nS-nS resonance. This could explain why the absorption
delay increases in that case. However, due to the complexity of the level structures,
the establishment of a connection between the experimental results and the pair state
potentials in figure 8.3 is rather complicate and is beyond the scope of this work.
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8 Rydberg interaction II: strong interaction regime

Figure 8.6: Frequencies of the red edge of the signals in the probe transition at various
densities for the 32S Rydberg state (a); the cuts are taken shortly after the
arrival of the coupling pulse. The density dependence of the sharp edge at
three different Rydberg quantum states are compared (b). In (c) the densities
are scaled by the critical density of C6 interaction. Tendencies in the density
and Rydberg state dependency can be observed; however, any clear scaling
behavior is not visible.
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8 Rydberg interaction II: strong interaction regime

Figure 8.7: Signal cuts shortly after the entering of the pulse into the cell at different
probe powers (a) (similar to the measurements shown in figure 8.6); evalua-
tion of the frequency of the red edge dependent on the probe power (b). A
quadratic dependence of the red edge frequency on the probe power is evi-
dent. The origin of this is not clear, expecially whether any Rydberg-specific
nature causes this scaling. Further measurements investigating the Rydberg
state dependence have to be done.
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8 Rydberg interaction II: strong interaction regime

The reason for the kink structure and the fast absorption signal may be critical be-
havior and a phase transition into crystal-like structure of the Rydberg system.
These and additional aspects are under current theoretical as well as experimental

investigation.
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9 Conclusion and Outlook

The scope of this thesis spanned the experimental set up as well as first measurements
of pulsed Rydberg excitations in thermal cesium vapors.
The purpose of this experiment was to provide an alternative solution to the experi-

ment using rubidium, since the differing technical features were supposed to provide new
experimental opportunities. It turned out that the cesium experiment provides rather a
complement than a substitution of the established rubidium experiment.

The first step of this work was to combine several technical advices like the Pockels
cell and the signal detection at nanosecond timescales. Moreover, the setup of the two-
photon excitation was designed and realized. In order to reach sufficiently fast dynamics,
we were forced to work with optics at few micrometers, which has been taking a long
time until adequate control was achieved.
Besides, due to the inverted excitation scheme, the a.c. Stark effect had to be taken

into account.
This setup enabled us to investigate Rydberg interactions. We performed measure-

ments in the weak interaction regime. These were accompanied by simulations using
mean field and ensemble models, which have been set up and improved during this
thesis, so that qualitative agreement could be obtained.
By increasing the vapor densities we could enter the regime of strong Rydberg in-

teractions and consequently we started to explore qualitatively new effects due to the
strength of interaction between the Rydberg atoms. Finally, we characterized these
features systematically, which are not fully understood theoretically up to this date.

This work, for the one hand, might contribute to future understanding of many-body
interaction mechanisms, especially of quantum phase transitions into strongly corre-
lated regime. On the other hand, the investigated Rydberg interactions are a crucial
component for the setup of a single photon source, complementary to the closely related
experiment of pulsed Rydberg excitation of thermal rubidium vapors.

Further investigations have to be done in the regime of strong Rydberg interactions and
towards the manifestation of Rydberg crystals, which might be present in this system.
Connected to this, a deeper understanding of processes occurring in our system needs
to be developed.
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Zusammenfassung

Diese Arbeit behandelt die zeitaufgelöste kohärente Anregungsdynamik von Rydbergzuständen
in thermischen Gasen. Der erste Schritt dieser Arbeit war der Aufbau des Experiments.
In anschließenden Messungen wurde zeitaufgelöst die Anregungsdynamik gemessen. Dabei
konnten Effekte beobachtet werden, die starke Rydbergwechselwirkungen zwischen den
Atomen vermuten lassen. Es wurde ein kritschen Verhalten beobachtet, das weit-
erführenden Untersuchungen unterzogen werden muss und den Rahmen dieser Arbeit
sprengen würde.
Die Messungen wurden durch theoretische Analysen dieses Systems begleitet, wobei

verschiedene Modelle herangezogen wurden, die in qualitativer Übereinstimmung mit
Messungen in Parameterbereichen schwacher Rydbergwechselwirkung stehen. Das En-
sembleverhalten bei starker Rydbergwechselwirkung ist bislang theoretisch noch nicht
voll erschlossen. Jedoch werden in dieser Arbeit einige Aspekte und somit Ansätze zur
Lösung offener Fragen angeführt.
Die Ergebnisse im Rahmen dieser Arbeit aufgenommener Messungen könnten einen

wichtigen Beitrag in der theoretischen Weiterführung von kollektiven Effekten in Ryd-
bergsystemen sowie zum Aufbau einer Einzelphotonenquelle leisten.
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An dieser Stelle möchte ich mich recht herzlich bedanken bei:

• Herrn Prof. Tilman Pfau, der mir die Möglichkeit gegeben hat, an diesem Institut
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