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Zusammenfassung

Lange Zeit war nicht geklärt was Licht tatsächlich ist. Bei der Untersuchung von Licht
wurde die Frage aufgeworfen ob es sich bei Licht um ein Teilchen oder eine Welle handelt.
Mit Maxwells Theorie des Elektromagnetismus, in welcher Licht als elektromagnetische
Welle beschrieben werden konnte, schien die Frage beantwortet. Effekte wie der Fotoef-
fekt oder die Schwarzkörperstrahlung schienen dieser Auffassung jedoch zu widersprechen
und wieder in Richtung von Lichtteilchen zu zeigen. Seit der Quantentheorie wissen wir
jedoch, dass Licht sowohl als eine Welle als auch als ein Teilchen beschrieben werden kann.
Die Quantisierung des Lichtfeldes führt zu den Elementarteilchen der elektromagnetischen
Strahlung: den Photonen.
Mit modernen Messgeräten ist es möglich schwache Lichtsignale bis hin zu einzelnen Photo-
nen zu messen. Im Verlauf dieser Arbeit werden einzelne Photonen mit zwei COUNT-250C-
FC Einzelphotonenzähler der Firma Laser Components gemessen. Das Ziel dieser Arbeit
bestand darin mit dem Umgang der Photonenzähler vertraut zu werden, diese auf ihre
Verlässlichkeit zu prüfen und die benötigten Techniken und Programme für den späteren
Einsatz im Experiment der Rydberg Quantum Optics (RQO) Gruppe zu entwickeln. Um
dieses Ziel zu erreichen wurden die neu erworbenen Photonenzähler und der ebenfalls neue
Time-Tagger zu Beginn der Arbeit getestet. Dazu wurde zuerst die Dunkelzählrate der
Photonenzähler gemessen und daraufhin die statistische Verteilung von Photonen in einem
Laserstrahl untersucht.
Als erste Anwendung wurden Lichtpulse mit einem mechanischen Shutter erzeugt und
mit den Photonenzählern gemessen. Damit wurde der Shutter auf seine Zuverlässigkeit
untersucht, was ergab dass dieser sehr verlässlich arbeitet. Daruafhin wurden Lichtpulse
mit einem Akustooptischen Modulator erzeugt und vermessen.
Am Ende der Arbeit wurden die erlernten Techniken verwendet um die Verzögerung in
einem Medium, welches elektromagnetisch induzierte Transparenz zeigt, zu messen. Diese
Messung führte für die kalte Rubidium-Atomwolke des RQO Experiments zu Verzögerungs-
zeiten von ca. 100 ns. Dieser Verzögerungszeit entsprechen Gruppengeschwindigkeiten von
ca. 1000 m

s
des Lichtpulses in der Atomwolke.
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1 Introduction

The nature of light has been a subject of interest for a long time in physics. In the centre of
the investigation about the nature of light stood the question of whether light is described
by a particle or a wave. With Maxwell’s theory of electromagnetism and its description
of light as an electromagnetic wave, this question seemed to be answered. However effects
like the photoelectric effect or the black body radiation once again pointed in the direction
of light as a particle. The answer to the question came with quantum theory and its
wave-particle duality. Light can be described by both a particle and a wave.
The quantization of the light field leads to the elementary particle of radiation: the photon.
Each photon carries an energy of ~ω from the electromagnetic field. With today’s means
of detection it’s possible to detect weak light signals down to single photons.
During this thesis this is done using two COUNT-250C-FC single photon counting modules
from Laser Components. With these counting modules light pulses are reconstructed from
single photon counts through repeated measurements. The aim of this thesis was to work
with the single photon counting modules and test their functionality, as they’re necessary
in the experiment of the Rydberg Quantum Optics group. To achieve this aim the new
single photon counting modules together with the new Time-Tagger module were tested
in the beginning of this thesis. With both modules the photon statistics of laser light, the
reliability of a mechanical shutter and light pulses created with an acousto-optic modulator
were investigated.
At the end of the thesis the learned methods were used to measure the delay, caused by
a medium showing electromagnetically induced transparency for two different setups. In
particular the delay of the Rubidium cloud in the setup of the Rydberg Quantum Optics
group was measured.
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2 Theory

In this chapter the relevant theory for the measurements done during this thesis is de-
scribed. This chapter begins with an introduction to quantum optics, then addresses a
short paragraph about pulses and in the end of the chapter a brief overview of electromag-
netically induced transparency and slow light is presented.

2.1 Quantum Optics

In this section the theory of quantum optics is introduced. Starting from the classical
description of light, the connection of light with an harmonic oscillator is used to introduce
the quantization of the light field. In the end of this chapter the statistical properties of
light as a stream of photons is investigated, leading to a classification of different light
sources. This is done on the basis of the quantum optics books written by Mark Fox [1]
and Rodney Loudon [2].

2.1.1 Classical Optics

Classically light is described as an electromagnetic wave. As such the description is based
on the electric field ~E and magnetic field ~B. In a medium there is also the electric dis-
placement ~D and the magnetic ~H-field, which are related to the electromagnetic fields as
given by

~D =ε0 (1 + χel) ~E = ε0εr ~E (2.1)

and

~B =µ0 (1 + χmag) ~H = µ0µr ~H (2.2)

for a linear reacting medium. In these equation χ stands for the electric or the magnetic
susceptibility, ε0 for the permittivity of free space, εr for the relative permittivity of the
medium, µ0 for the permeability of free space and µr for the relative permeability of the
medium. In most optical systems the relative permeability can be neglected (µr = 1),
because magnetic materials are too slow to respond at optical frequencies.
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These quantities have to fulfil the Maxwell equations

~∇ · ~D = % (2.3)

~∇ · ~B = 0 (2.4)

~∇× ~E = −∂
~B

∂t
(2.5)

~∇× ~H = ~j +
∂ ~D

∂t
, (2.6)

with the charge density % and the current density ~j. In free space without charges and
currents wave-like solutions of the Maxwell equations are possible. Taking the curl of
equation 2.5, using the other Maxwell equations and vector identities, we get a wave
equation for the electric field ~E (as seen in equation 2.7) and similar a wave equation for

the magnetic field ~B.

∇2 ~E = µ0µrε0εr
∂2 ~E

∂t2
(2.7)

This equation describes an electromagnetic wave with its speed given by 1/v2 = µ0µrε0εr.
In free space the relative permittivity and the relative permeability are both equal to 1
and as such the speed is given by the vacuum light velocity c = 1/√µ0ε0 = 299792458 m

s
.

The easiest solutions of the wave equation are plane waves, with the angular frequency
satisfying the dispersion relation ω = c k, in which k is the absolute value of the wave
vector.
In a medium the current density ~j does not have to vanish, even if the medium is not
charged. Considering Ohm’s law ~j = σ ~E, in which σ is the conductivity of the medium, a
different wave equation can be derived.

∇2 ~E = µ0µrσ
∂ ~E

∂t
+ µ0µrε0εr

∂2 ~E

∂t2
(2.8)

This equation leads to a damped electromagnetic wave inside the medium, which can
be described by complex quantities for the susceptibility χel, the permittivity εr and the
refractive index n of the medium. For an isolator the conductivity σ vanishes leading
to a real refractive index n =

√
µrεr and a speed of light inside the medium given by

cmedium = c/n.
With this classical description effects like diffraction and interference are easily explained
and for most aspects a semi-classical theory, in which the light is treated classically whereas
matter is treated quantum mechanically, is sufficient.
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2.1. Quantum Optics Fabian Böttcher

2.1.2 Quantization of the light field

The quantization of the light field is done by introducing the scalar potential φ and the
vector potential ~A and using the fourier representation of these potentials to obtain the
Hamiltonian of the system. From this derivation a few steps will be presented here, while
the whole derivation is done elaborately for example in Loudon’s book The Quantum
Theory of Light [2].

For the vector potential ~A it is also possible to derive a wave equation. As such the vector
potential can be expressed as a sum of plane waves, as it is given by

~A(~r,t) =
∑
~k

∑
λ=1,2

~e~k,λ

(
A~k,λ exp

(
−iω~kt+ i~k~r

)
+ A∗~k,λ exp

(
iω~kt− i~k~r

))
(2.9)

with the wave vector ~k and the two possible polarizations λ. In this the unit vectors of the
polarization ~e~k,λ are transverse and perpendicular to each other. This leads to the total
radiation energy

ER =
∑
~k

∑
λ

ε0V ω
2
~k

(
A~k,λA

∗
~k,λ

+ A∗~k,λA~k,λ

)
. (2.10)

Using the conversion from the classical vector potential to the quantum mechanical oper-
ators, the Hamiltonian is then given by

ĤR =
∑
~k

∑
λ

1

2
~ω~k

(
â~k,λâ

†
~k,λ

+ â†~k,λâ~k,λ

)
. (2.11)

This Hamiltonian resembles the Hamiltonian of an harmonic oscillator expressed in terms
of the annihilation operator â and the creation operator â†:

Ĥ = ~ω
(
â†â+

1

2

)
. (2.12)

Because of that the description of light can be understood by looking at the one dimensional
harmonic oscillator. The eigenenergies of the system given by equation 2.12 are En =
~ω
(
n+ 1

2

)
. A representation of the eigenstates are the number states |n〉, which obey the

following relations:

â†â |n〉 = n |n〉 (2.13)

â |n〉 =
√
n |n− 1〉 (2.14)

â† |n〉 =
√
n+ 1 |n+ 1〉 . (2.15)

Applying this formalism to the light field n describes the number of excitations with the
energy ~ω. These quantized excitations of the electromagnetic field are called photons.
With this formalism a beam of light can be considered as a stream of photons. The
statistical properties of the photons can differ for different sources of light, which leads to
a classification of light as explained in the following section.
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2.1.3 Photon statistics

As described in the last section a beam of light can be considered as a stream of photons.
Its photon flux Φ is defined as the average number of photons passing through a cross
section area A of the beam in one second.

Φ =
I A

~ω
=

P

~ω
; [Φ] =

photons

s
(2.16)

In this definition I is the intensity and P the power of the beam. With this the average
number of photons in a segment is given by n = ΦL

c
. The probability of finding n randomly

distributed photons in a segment of length L, which is further divided in a large number
N of sub segments, is then given by the binomial distribution.

P (n) =
N !

n! (N − n)!

(
n

N

)n (
1− n

N

)N−n
(2.17)

In the limit of N →∞ this expression can be written as

P (n) =
nn

n!
exp (−n) (2.18)

As such the statistics of a beam of light with randomly distributed photons is therefore
described by a Poissonian distribution. The Poisonian distribution is shown in figure 2.1
for different values of the average photon number n.
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Figure 2.1: Shown is the poissonian distribution for different mean values and as such the
probability is plotted against the number of photons. This figure was created
on the basis of Fig. 5.3 in [1].
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The fluctuation of the photon number around the mean value is characterized in terms of
the variance. The variance is defined as the square of the standard deviation ∆n. For the
Poissonian distribution the variance is given by

(∆n)2 =
∞∑
n=0

(n− n)2 P (n) = n. (2.19)

Accordingly the variance for the Poissonian distribution is equal to its mean value and
therefore the standard deviation is ∆n =

√
n. The standard deviation provides a way to

classify different types of light. One distinguishes between three different types of light:

- sub-Poissonian statistics: ∆n <
√
n

- Poissonian statistics: ∆n =
√
n

- super-Poissonian statistics: ∆n >
√
n

The difference between the statistical properties of these three types of light is shown in
figure 2.2. The figure clearly shows that a sub- / super-Poissonian distribution describes a
narrower / broader distribution than the Poissonian distribution.
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Figure 2.2: Comparison of super- (blue curve), sub- (red) and poissonian distribution
(black); based on Fig. 5.4 in [1].

Super-Poissonian statistics are even classically easy to obtain and it is simple to show
that a time varying intensity, thermal or chaotic light all lead to the broadening of the
probability distribution.
The random distribution of photons described by the poissonian statistics can be obtained
from a laser, which emits light coherently. Thereby coherence describes the ability of waves
to show stationary interference and is given by the coherence time and length.
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Sub-Poissonian statistics however have no classical equivalent, as perfectly coherent light is
the most stable form of light in classical optics, showing the least fluctuations. As such the
appearance of sub-poissonian statistics is a clear sign for non-classical light. The photon
number states |n〉 possess a fixed value for the photon number n and because of that the
standard deviation vanishes. As such the photon number states are the best example for
sub-poissonian light.

2.1.4 Photon antibuncing

Alternatively light can also be classified in a different way leading also to a threefold clas-
sification1. This classification is done by looking at the second-order correlation function
g(2)(τ), defined by

g(2)(τ) =
〈I(t) I(t+ τ)〉
〈I(t)〉 〈I(t+ τ)〉

. (2.20)

In this equation the brackets 〈...〉 stand for the average over a long period of time. The
classification of different types of light is based on the value of g(2)(τ = 0). With this light
can be classified in three different types:

- bunched light: g(2)(0) > 1

- coherent light: g(2)(0) = 1

- antibunched light: g(2)(0) < 1

The correlation function can be measured with an Hanbury Brown-Twiss experiment,
which is described in detail in chapter 6 of [1]. A Hanbury Brown-Twiss experiment on
the single photon level divides a light beam with a beam-splitter and then measures the
photon counts in both paths relative to the other. The time that passes between a photon
impact in path 1 and the impact in path 2 is the time τ . For a random distribution of the
photons in the beam (coherent light), the impact of the photon in path 2 at each time has
the same probability. As such the correlation function, which is normalized, is equal to 1
for every time τ . For bunched light however, the probability of a photon impact for short
times is higher and as such the value of g(2)(0) is bigger than 1. A classical equivalent
for bunched light can again be easily obtained, for example from a source with a time
varying intensity. Non-classical light has a higher order between the photons and as such
the probability of an impact for short times decreases. Antibunched light has no classical
equivalent and can for example be obtained with a single photon source.

1The two classifications are not identical, as sub-poissonian statistics and photon antibunching are not
the same manifestation of the same quantum optical phenomenon, as discussed in [13].
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2.2. Pulses Fabian Böttcher

2.2 Pulses

This thesis deals with the detection of few-photon light pulses. As such in this section the
most important aspects of pulses will be discussed. A pulse is characterized by

- the maximum height,

- the length (normally given by the full width half maximum (FWHM)) and

- the rise / fall time (given by the time a pulse needs to rise from 10% to 90% of its
maximum height and accordingly to fall from 90% to 10%)

of the pulse. These characteristics are also illustrated for an arbitrary pulse in figure 2.3.

Figure 2.3: Illustration of the height, the length and the rise time of a pulse

To create a light pulse the amplitude of a monochromatic light source has to be modulated.
With the process of amplitude modulation new frequency components are added to the sig-
nal. The frequency spectrum of a pulse can be obtained by using a fourier transformation.
This means, that steeper slopes lead to a broader frequency spectrum.
Considering the propagation of a pulse, each frequency component travels with its respec-
tive phase velocity vph = ω

k
, while the whole pulse travels with the group velocity vg = ∂ω

∂k
.

For light in free space the dispersion relation is given by ω = c k and as such the phase
and the group velocity are both equal to the vacuum light speed c. However in dispersive
media the velocities can assume different values and the pulse can disperse over time.
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2.3 EIT and Slow Light

The following section deals with the effect of electromagnetically induced transparency
(EIT) and its application of slow light. This overview of EIT is based on the paper of M.
Fleischhauer, A. Imamoglu and J.P. Marangos about EIT: Optics in coherent media [3],
with added inputs from [4], [5] and [6].

2.3.1 EIT in a 3-level system

Electromagnetically induced transparency is an effect which renders a 3-level system trans-
parent (or at least improves the transmission) over a narrow spectral range within an
absorption line. To achieve this it is necessary to apply two different light fields to two
different transitions of the medium as it’s shown schematically in figure 2.4 for a Λ-type
and a ladder-type system.

Figure 2.4: Schematic illustration of a 3-level system in which EIT can occur. On the left
side a Λ-type system and on the right side a ladder-type system is shown. The
Λ-system is labelled with all the important quantities, which are explained in
the text.

As shown in figure 2.4 there are 3 levels, for which the transition between the states |1〉
and |2〉 is forbidden. The transition between |1〉 and |3〉 is driven by the probe laser field
with the frequency ωp. This light field is detuned from the actual transition frequency ω31,
with the detuning given by ∆1 = ω31 − ωp. The second possible transition is driven by
the coupling field with the frequency ωc, with the detuning ∆2 = ω32− ωc from the actual
transition. The state |3〉 has a finite lifetime and decays with the rates Γ31 and Γ32 to the
respective lower states.

The effect of EIT can also be observed in a classical system of springs. In such a system the
mass does not move, if it is driven by two sinusoidal forces with the same amplitude but
with opposite phases. For a quantum mechanical system this means, that the probability

10
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amplitude of the state |3〉 has to be driven by two terms of equal magnitude but opposite
sign.
Before solving the master equation which leads to the response of the medium, we examine
the dressed state picture of the system and the concept of a dark state. The Hamiltonian
of the Λ-type system in figure 2.4 is given by Ĥ = Ĥ0 + Ĥint, where Ĥ0 describes the
bare atomic states and Ĥint the interaction with both light fields. The interaction Hamil-
tonian Ĥint = ~µ ~E can be expressed in terms of the Rabi-frequency Ω = 1

~ ~µ
~E0. In both

cases ~µ describes the electric dipole moment of the transition. Using the rotating wave
approximation, in which rapidly oscillating terms of the frequency ωp + ω0 are neglected,
the Hamiltonian of the 3-level system can be written as

Ĥ = −~
2

 0 0 Ωp

0 −2 (∆1 −∆2) Ωc

Ωp Ωc −2 ∆1

 . (2.21)

Diagonalizing the Hamiltonian one obtains E0 = 0 and E± = ~
2

(
∆1 ±

√
∆2

1 + Ω2
p + Ω2

c

)
as the eigenvalues and∣∣a+

〉
= sin Θ sinφ |1〉+ cosφ |3〉+ cos Θ sinφ |2〉 (2.22)∣∣a0
〉

= cos Θ |1〉 − sin Θ |2〉 (2.23)∣∣a−〉 = sin Θ cosφ |1〉 − sinφ |3〉+ cos Θ cosφ |2〉 (2.24)

as the eigenstates. This means that the state |a0〉 remains at the same energy, while the
states |a±〉 are shifted by the energy E±. Thereby the eigenstates are expressed in terms of
the mixing angles Θ and φ, which are in the case of two-photon resonance (δ = ∆1−∆2 = 0)
given by

tan Θ =
Ωp

Ωc

(2.25)

and

tan 2φ =

√
Ω2

p + Ω2
c

δ1

. (2.26)

The state |a0〉 has no contribution from the original state |3〉 and is called a dark state,
because there is no possibility of spontaneous emission. For EIT we consider the case of
a weak probe field Ωp � Ωc. In this case the dark state is identical to the ground state
|1〉 and as such no excitation from this state is possible and as such no radiation from the
probe field is absorbed.

11
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The response of a medium2 to light passing through it can be described by the complex
susceptibility χ(1) of the medium, as mentioned above after the wave equation 2.8 inside a
medium. Thereby the imaginary part Imχ(1) describes the absorption of the medium and
the real part Reχ(1) the dispersion of the medium and as such the refractive index.
In a semiclassical analysis, the light fields will be treated classically with small detunings
∆1 and ∆2 compared to their respective Rabi-frequencies Ωp and Ωc. The Hamiltonian for
the interaction of a 3-level atom with both light fields is

Ĥint = −~
2

(
Ωp(t) σ̂31 ei∆1 t + Ωc(t) σ̂32 ei∆2 t + h.c.

)
, (2.27)

where σ̂ij = |i〉 〈j| is the atomic projection operator and h.c. means the hermitian conjugate
of the first two terms in the brackets. This Hamiltonian can also be obtained from a fully
quantized analysis and is equivalent to the earlier used interaction Hamiltonian.
The quantum mechanical treatment of the 3-level system is done in the density-matrix
formalism. Involving damping terms in the von-Neumann equation we obtain the following
master equation for the dynamics of the system:

dρ

dt
=

1

i~

[
Ĥint, ρ

]
+

Γ31

2
(2 σ̂13ρσ̂31 − σ̂33ρ− ρσ̂33)

+
Γ32

2
(2 σ̂23ρσ̂32 − σ̂33ρ− ρσ̂33)

+
γ2deph

2
(2 σ̂22ρσ̂22 − σ̂22ρ− ρσ̂22)

+
γ3deph

2
(2 σ̂33ρσ̂33 − σ̂33ρ− ρσ̂33)

(2.28)

In this equation the two terms following the commutator describe the spontaneous emission,
while the last two terms describe energy conserving dephasing processes, such as decays
in states not included in the 3-level system. The rates describing the dephasing and decay
rates can be combined to γ31 = Γ31 + Γ32 + γ3deph and γ32 = Γ31 + Γ32 + γ3deph + γ2deph.
Using ρ11 ≈ 1 and the rotating wave approximation, the master equation can be solved to
obtain the linear susceptibility.

χ(1)(ωp) =
|µ13|2 %
ε0 ~

·

(
4 δ (|Ωc|2 − 4 δ∆1)− 4 ∆1 γ

2
2deph

||Ωc|2 + (γ31 + 2 i∆1) (γ2deph + 2 iδ)|2

+ i
8 δ2 γ31 + 2 γ2deph (|Ωc|2 + γ2deph γ31)

||Ωc|2 + (γ31 + 2 i∆1) (γ2deph + 2 iδ)|2

) (2.29)

In this equation δ = ∆1 − ∆2 is the two-photon detuning. In the case of two-photon
resonance δ = 0 the imaginary part of χ(1) vanishes (for γ2deph) and as such the there is no
absorption.

2Here only a linear medium is considered and as such only the first order susceptibility is important. For
nonlinear effects which can also be achieved with EIT higher orders of the susceptibility have to be
considered.
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The real and imaginary parts of χ(1) are shown in figure 2.5. As shown there is a narrow
transmission window inside the absorption valley. In the same spectral range there is a
steep dispersion (see in the figure for Reχ(1)), which leads to the effect of slow light that
will be discussed in the next section.

Figure 2.5: Linear susceptibility as a function of the detuning δ = ωp − ω31 for a 2-level
system (dashed line) and a 3-level system (solid line). The upper figure shown
the imaginary part of the susceptibility, which describes the absorption and the
lower picture shows the real part which determines the refractive index. Taken
from FIG. 1 in [3]

In actual systems (especially dense vapours) the dephasing rate γ2deph does not vanish,
due to collisions between the atoms (in a vapour cell also with the wall), to the spectral
linewidth of the lasers and also due to electric or magnetic fields. In such systems EIT is
also observable, as long as |Ωc|2 � γ31 γ2deph. Because of the dephasing the transmission
is no longer perfect and for γ2deph � γ31 the transmission window vanishes completely.
As such EIT is also observable in hot atomic gases. The Doppler broadening in such a
system in a Λ-configuration has no adverse effect on the EIT, as long as copropagating
laser beams are used. This is because the energy shift caused by the movement of the
atoms similarly changes both detunings and as such maintains the two-photon detuning.
For counterpropagating beams the susceptibility has to be integrated over the velocity
distribution of the atoms. This argument is reversed for a ladder-type system

13
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In an optically thick medium the important quantity is the amplitude transfer function

T (ωp, z) = exp

(
ik z

χ(1)

2

)
. (2.30)

In this k = 2π
λ

is the wave number and z the length of the medium. Near the resonance
(δ = 0) the spectrum is given by a gaussian profile with the width ∆ωtrans given in the
following equation.

∆ωtrans =
Ω2

c√
Γ31 γ31

1
√
% σ z

(% σ z � 1) (2.31)

In this equation σ = 3λ2

2π
is the absorption cross section of a atom and % the density of the

atoms.

2.3.2 Slow Light

As seen in figure 2.5 the real part of the susceptibility χ(1) depends linearly on the frequency
close to the two-photon resonance δ = 0. For a vanishing dephasing γ2deph the real part
can be approximated by

Reχ(1) = η
2 Γ31

Ω2
c

δ +O(δ2) (2.32)

in which η = 3
4π2 % λ

3. The group velocity of a light pulse in a medium with a varying
refractive index n(ω) is given by

vg =
dωp

dkp

∣∣∣∣
δ=0

=
c

n+ ωp
dn
dωp

. (2.33)

Since the linear dispersion is positive near the two-photon resonance, this leads to a reduc-
tion of the group velocity in the medium. At the same time the absorption of the medium
vanishes (or at leasts decreases) and as such light can be transmitted through the medium.
The decreased group velocity leads to a delay inside of a medium with the length L. The
delay is given by

τd = L

(
1

vg

− 1

c

)
= % σ L

Γ31

Ω2
c

. (2.34)

The last equality is only valid for single-photon resonance (∆1 = 0). For ∆1 = 0 the
second-order term in equation 2.32 vanishes exactly and as such there is no group velocity
dispersion. With this a pulse travelling through the medium maintains its shape. The
dephasing γ2deph leads to a change in the denominator of the equation from Ω2

c to Ω2
c +

γ31 γ2deph and as such to a smaller delay.
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2.3. EIT and Slow Light Fabian Böttcher

As a light pulse enters a medium which shows EIT, the pulse becomes spatially compressed
(in the direction of propagation), because the speed of light inside the medium is much
smaller than on the outside. The reverse occurs when the pulse leaves the medium. The
strength of the electric field during this compression however remains the same. Con-
sidering the slow light propagation from the point of view of the atoms, the effect can be
understood as the storing of energy from the light field inside the medium and the coupling
field. As such the process can be considered as a stimulated Raman adiabative return. At
the beginning the atoms are all in the dark-state |1〉 due to the optical pumping due to the
coupling field. This dark-state is changed to a superposition of |1〉 and |2〉 when the front
end of the probe pulse reaches the medium. This change of the dark-state takes energy
out of the pulse and stores it in the coupling field and the atoms. When the pulse reaches
its maximum value, the process is reversed and the energy is returned into the pulse. The
change of the dark-state depends on the strength of the coupling field and the larger the
change of the dark-state (done with a weaker coupling field), the longer the delay of the
pulse.
This can also be understood by considering the propagation of polaritons, which describe a
coherent mixture of electromagnetic and atomic spin excitation. There are two polaritons,
the dark (Ψ) and the bright (Φ) polarition, which are defined in the equations 2.35 and
2.36. The mixing angle between dark and bright polariton is given by tan2 θ = % σ cΓ31

Ω2
c

.

Ψ(z,t) = cos θ Ep(z,t)− sin θ
√
%ρ21(z,t) ei∆k z (2.35)

Φ(z,t) = sin θ Ep(z,t) + cos θ
√
%ρ21(z,t) ei∆k z (2.36)

In this equation Ep(z,t) is the normalized probe field strength which is related to the electric

field by Ep = Ep
√

~ω/2ε0 and ∆k is the difference between the wave vectors of the probe and
coupling beam in the direction of propagation. For a strong coupling field (mixing angle
θ → 0), the dark state polariton is almost electromagnetic in its nature and as such there is
only a small slowdown. For a weaker coupling field (θ → π/2) the dark-state polariton has
the character of a spin-excitation, which corresponds to a vanishing velocity. As such the
effect of slow light can be understood using the propagation of the dark-state polaritons.
The limitations of slow light can be discussed by considering the ratio between delay time
τd and pulse length τp. An upper limit of this value is given due to the finite lifetime of
the dark resonance. Another upper limit for the ratio is given by the opacity % σL of the
medium:

τd

τp

�
√
% σL. (2.37)

As such it is necessary to have an optically thick medium (which relates to an high opacity)
to achieve a noticeable delay. Another important aspect is the spectral width of the pulse,
because even for perfect conditions nonresonant frequencies are absorbed.
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2.3.3 Rubidium D2 Line

In the measurements done in the advanced laboratory experiment3 a Rubidium vapour
cell was used. In this vapour cell the D2-line of Rubidium was used to achieve a 3-level
system, which shows EIT. Rubidium has two stable isotopes (85Rb and 87Rb) which were
both present in the used vapour. The level scheme of the D2-line is shown in figure 2.6 for
both isotopes.

Figure 2.6: Level system of the Rubidium D2 line. On the left side the level system of 85Rb
is shown[7] and on the right side of 87Rb [8].

Due to this level schema the absorption spectrum shows four valleys, from which the middle
two are due to the 85Rb and the two outward lines are due to the 87Rb. It is possible to
realize a Λ-type 3-level system with the two hyperfine S-states, while the upper level can
be any of the hyperfine P-states.

3Fortgeschrittenen Praktikum, Versuch EIT
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2.3.4 Rydberg EIT

EIT can also be observed in a ladder-type system, in which the upper state corresponds
to a Rydberg-state.

Figure 2.7: Level system of the Rydberg EIT. On the left side system for a single photon,
showing EIT. On the right side the interaction between two Rydberg states
shifts the coupling transition out of resonance and the EIT vanishes.

For small optical densities this system acts as a normal ladder-type system showing EIT.
The strong interaction between Rydberg states (Van der Waals force) suppresses multi-
ple excitations in a blockade Volume (Rydberg blockade). For high optical densities per
blockade volume the blockade effect leads to different properties of the system. For a sin-
gle probe photon the coupling field leads to EIT and the photon can pass through the
medium. For a second photon however the interaction between the Rydberg states shifts
the coupling transition out of resonance and the second photon effectively sees a 2-level
system, which leads to absorption. As such the system shows absorption for photon pairs,
while it’s transparent for single photons.
In the experiment the ground state |g〉 is the ground state of 87Rb, which is the 5 S1/2 state.
As excited state |e〉 the 5 P3/2 was used and for the Rydberg state the 40 S-state. The blue
coupling laser was stabilized to be resonant to the transition between the excited state and
the used Rydberg state with a frequency of 623.3724 THz.
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3 Experimental Setup

In this chapter the devices and programs used for the measurements performed during this
thesis will be presented and briefly explained.

3.1 Single Photon Counting Module

The aim of this thesis was to work with and test the single photon counting modules
(SPCM), that are to be used in the experiment of the Rydberg Quantum Optics group.
These modules are two COUNT-250C-FC single photon counter from LASER COMPO-
NENTS, one of which is shown in figure 3.1.

These single photon counters are based on a

Figure 3.1: Picture of the used Single Pho-
ton Counting Module from Laser
Components

silicon avalanche photodiode. A photodiode
is simply a semiconductor diode in reverse
direction, which uses the inner photoelec-
tric effect to create a current if light falls
on it. A single photon creates an electron-
hole-pair, which by itself is not enough to
be measured. In an avalanche photodiode
this single electron-hole-pair is multiplied
through impact ionization (avalanche effect)
by applying a high voltage. With this weak
light signals down to single photons can be
detected.

The used single photon counting modules
create a TTL-output pulse of 25 ns4 length
with a delay of 50 ns between the photon
impact and the output pulse. The avalanche

photodiode inside these modules is sensitive in a spectral range from 400 nm to 1000 nm,
with its efficiency maximum of approximately 70% in the red spectral region. The two
modules which were used during this thesis vary in some of their important quantities and
as such the most important properties of the two modules are compared to each other in
the following table.

4All of the values are taken from the data sheet of the COUNT-250C series [9]
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3.2. FPGA Time-Tagger Fabian Böttcher

SPCM 1 SPCM 2

serial number C2621 D2642

dead time 56 ns 55 ns

dark count rate 130 1
s

202 1
s

efficiency @ 670 nm 84% 87%

efficiency @ 810 nm 54% 56%

Table 3.1: Comparison of the two single photon counting modules as specified by Laser
Components [9]

The counting modules can be turned on and off with a gating function. This gating
has a response time of typically 20 ns for turning the module off and a response time of
typically 85 ns for turning it on. Another important aspect is the maximal count rate of
5 Mio. counts/s and the necessary correction factor for high counting rates, caused due to
the dead time of the photodiode. The true counting rate Ractual can be calculated from
the measured rate Rmeasured by the following equation:

Ractual =
Rmeasured

1−Rmeasured · Tdead

(3.1)

3.2 FPGA Time-Tagger

For the high resolution timing of the TTL-pulses emitted by the counting modules a field-
programmable gate array (FPGA) based Time-Tagger was used, which was developed in
the group of Dr. H. Fedder in the 3rd physical institute. This FPGA based Time-Tagger
can count on up to 8 independent channels with a time resolution of 60 ps.

Figure 3.2: Picture of the prototype version (left) and the final version (right) of the FPGA
Time-Tagger

The control programs of the Time-Tagger were also developed in the 3rd institute. The
control of the measurements with the Time-Tagger is done in the programming language
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Python. During this thesis the control programs were developed further by Hannes Gorni-
aczyk, mainly to work together with the experimental control system of the RQO experi-
ment.
For the measurements done during this thesis, two different counting functions of the device
were used:

- A function that counts all pulses on each individual channel and displays the counts
per second averaged over the time since the start command (or since the last clear
command).

- A pulsed function that counts the incoming pulses in a specified time (bin width)
for a specified number of bins, after a trigger pulse (the rising slope of the pulse) is
detected on a different channel. This function displays the counts of each bin in a
two dimensional array. A second trigger pulse starts the measurement again and the
counts after the second trigger are added to the previous counts in the respective
bin. There can also be specified a number of repetitions (shots), so that the counts
after a new trigger pulse are written in a new line. The output of this mode is then
a (number of shots)×(number of bins) matrix.

The principle behind the pulsed measurement is also shown in figure 3.3.

Figure 3.3: Illustration of the pulsed measurement mode of the Time-Tagger, with the trig-
ger pulse, the bins filled with photons (representing the TTL-pulses measured
during the time of the bin) and the output array.

3.3 Pulseblaster Board

To create the pulses a Pulseblaster PCI board from SpinCore was used. With this board it
is possible to create short electrical pulses down to a length of 2 ns. The control software,
the implementation and the testing of this device was done by Udo Hermann as a bachelor
thesis a year earlier. Further information about the Pulseblaster board can be found in
[10].
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3.4 Acoustooptic Modulator (AOM)

To create the light pulses an acoustooptic modulator (AOM) was used. The basic princi-
ple of an AOM is the interaction between a light beam and a density modulation inside
of a medium. The density modulation is caused by an acoustic wave, which is created
with a piezoelectric transducer. This density modulation leads to a similarly changing
refractive index of the medium. The speed of the acoustic oscillation is much slower than
the oscillation of the light and because of that the light sees a ’frozen’ modulation of the
refractive index, which corresponds to a diffraction grating. The principle of the AOM is
also illustrated in figure 3.4.

Figure 3.4: Basic principle of an AOM: The incoming light beam interacts with the acoustic
wave, which acts as a diffraction grating. The light coming out of the AOM is
split into different orders, with different angles.

Using the 1st-order of the light after the AOM it is possible to create light pulses by
turning on and off the piezoelectric transducer which generates the sound waves in the
quartz crystal. To turn the piezoelectric transducer on and off short electric pulses are
needed, which were created with a Pulseblaster board.
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4 Measurements

In this chapter the measurements done during this thesis are presented, beginning from
the testing of the new SPCMs and the new Time-Tagger and ending with the delay mea-
surement of the RQO experiment.

4.1 Dark Counts and Time-Tagger

At the beginning of this thesis the single photon counting modules were tested. After
testing the functionality and the gating function, the dark count rate was measured and
compared to the specified value. This measurements was used to test the functionality of
the new Time-Tagger. For this measurement the light input of the SPCM was closed and
the counts of the SPCM recorded for a duration of 45 minutes using the pulsed feature
of the Time-Tagger with a single trigger pulse. The result of this measurement is shown
in figure 4.1. Evaluating the mean value of the recorded data, we get the following dark
count rates:

- SPCM1: 128 counts/s

- SPCM2: 200 counts/s

(a) (b)

Figure 4.1: Dark count rate of the two SPCM (a) and histogram of the dark counts (b)

These values for the dark count rate agree with the specified values, given in table 3.1,
with both measured values being slightly smaller. Plotting the recorded dark counts in a
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histogram, shows a poissonian distribution (compare figure 4.1 (b)). This is as expected
for the random process of Generation-Recombination noise of a semiconductor device.

After proving the functionality of the measurements done with the Time-Tagger, which
was only a prototype version in the beginning of this thesis, light was actually measured.
In these measurements an oscillation of the measured counts was observed (as seen in
figure 4.2 (a)) when the voltage of the trigger channel was changed (in the figure due to
the incoming trigger pulse). This leads to the assumption that the oscillation was caused
by cross talk between the two channels. The left side of figure 4.2 shows the oscillation at
the beginning of a measurement of the fall time of a light pulse created with an AOM. The
observed oscillation shows a period of about 6 ns and changed its direction when the used
channels were flipped.

(a) (b)

Figure 4.2: Left: Oscillation of the recorded counting rate, which was normalized by the
mean value and oscialltion with flipped channels. Right: A comparison of the
old and new Time-Tagger shows that the oscillation doesn’t show on the new
version.

Later in the thesis a new version of the Time-Tagger was used, for which the oscillation
did not show. Figure 4.2 (b) shows a comparison of the old and the new Time-Tagger, the
old showing an oscillation while the new one doesn’t.
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4.2 Photon Statistics of Laser Light

As next step the statistics of laser light was investigated. For this measurement the beam
of a diode laser was sent through an optical isolator and then though an AOM, after which
the first order light was coupled it into a fiber connected to the SPCM. The recorded data
was then multiplied with the correction factor (as given by equation 3.1) and then plotted
in a histogram as shown in figure 4.3.
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Figure 4.3: Histogram of the photon number detected in a time interval of 100µs compared
to an poissonian distribution with the same mean value.

As explained in the theory, coherent laser light should show a poissonian distribution in
the number of photons. Using this knowledge a poissonian distribution, with its mean
value given by the data, was plotted in the same figure. As seen in the plot the data and
the poissonian distribution do not agree perfectly. Evaluating the variance of the data we
receive a higher value than the mean value. Dividing the calculated variance through the
mean value we get a factor of 1.1726.

This means the measurements done are not shot noise restricted as already a higher de-
viation was detected as there should be for coherent light. The added noise could come
from the laser itself, as the used laser was not stabilized. This was checked by measuring
the statistics of another laser (the laser used in the slow light measurements done in the
advanced laboratory). For this laser there was also more than shot noise present, but the
ratio between the variance and the mean value was decreased to 1.1061.

The added noise detected for both laser sources could be caused by different factors. It
could be caused from fluctuations in the power supply of the diode lasers or even from the
coupling of the the light into a fiber. Another reason for the noise could be the AOM in
the path of the light.
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Figure 4.4: Photon statistics recorded for a different laser.

4.3 Classification of a Mechanical Shutter

After proving the functionality of the measurements done with the SPCMs and the Time-
Tagger, light pulses created with a mechanical shutter were examined as a first application.
The shutter consists of a small movable metal plate, which can take two different positions,
changing the position due to magnetic forces if the TTL-input is changed. In the experi-
ments mechanical shutter are used to avoid as much stray light as possible and as such the
reliability of the shutter was investigated.

Figure 4.5: On the left side the schematic setup for the shutter measurements and on the
right a photo of the actual setup is shown.
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For the measurements the setup was build as shown in figure 4.5. As light source a diode
laser with a wavelength of 780 nm was used. The beam was then sent through an optical
isolator, which prevents reflections going back into the laser. After the isolator the beam
passed through an AOM, after which the first order of light was used (This was done to be
able to compare the measurements to later measurements in which the pulses were created
with an AOM). With a mirror the beam was then coupled into a fiber. In the path of the
light from mirror to fiber the shutter was placed. For the exact positioning of the shutter
it was looked to it that the metal plate was roughly orthogonal to the beam. This was
done because the initial position has a great effect on both the rise and the fall time of the
created light pulses. Most measurements were done without focusing the laser, leading to
a beam waist of roughly 1 mm, which corresponds to nearly the whole metal plate filled
with light. Later a lens was placed before the shutter to focus the laser at the position
of the shutter, as it’s done in most experimental setups. After the shutter the beam was
collimated again and an iris was used to block the other orders of the light created by the
AOM. Optical absorption filters were placed in the optical path to attenuate the beam of
light down to the low photon count rates needed for the SPCM. The fiber was connected
to the SPCM from which the output went to the Time-Tagger and its controlling software.
The whole setup was placed inside of a casing of carton to minimize the effect of the
surrounding light.
As mentioned above absorption filters were needed to attenuate the beam to the few-
photon level. To obtain a counting rate of 1 Mio counts/s, a 100 mW laser beam has to be
attenuated with a factor of roughly 10−12, as calculated in the following following equation
for an unit time.

P = n
h c

λ
= 2.55 · 10−13 W (4.1)

→ P

Plaser

= 2.55 · 10−12 (4.2)

To be on the safe side and because the absorption filters each have a percentage error in
their optical densities, more filters were used in the beginning and then reduced until the
desired counting rate was achieved.
Before the SPCM was used, the delay between electric signal and light pulse was measured
using a photodiode and fewer absorption filters. Those delay measurements are given for
the rising and the falling slope of the light pulse in figure 4.6 (a) and (b). The blue curve
is the electrical TTL-signal and the red curve is the measured voltage of the photodiode
created due to the light pulse. Both curves were normalized to easier obtain the rise/fall
time.
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(a) (b)

Figure 4.6: Rising and falling slope of the shutter pulse measured with the photodiode with
a fitting curve each and compared to the electric signal to determine the delay.

The delay of the rising slope was measured to ∆tOpen = 4.37 ms and the delay of the
falling slope to ∆tClose = 8 ms. These times were later used in the SPCM measurements
to reduce the measurement to the region of interest. Also seen in the figure is a fitting
curve5 using the error function. The error function is the integral over a gaussian function,
corresponding in the measurement to a constant opening/closing shutter and a gaussian
profile of the laser. Both requirements weren’t completely fulfilled in the experiment, but
as seen in the figure the approximation is already quite good.
The rise and the fall time of the pulse were taken from the fitting curve as the times
between 10% and 90% of the pulse height, indicated by the black lines in the figure. The
obtained values are 0.45 ms for the rise time and 1.15 ms for the fall time.
The SPCM and the Time-Tagger was then used to reconstruct an 1 second light pulse
after many measurements each detecting only a few photons per 100µs bin. Calculating
the mean value of each bin and normalizing it to counts per second the light pulse is shown
in figure 4.7.

5For the rising slope a function of the form p1

(
1 + erf( t−p2

p3
)
)

and for the falling slope of the form

p1

(
1− erf( t−p2

p3
)
)

was used, in which the pi are the parameters.
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Figure 4.7: Reconstruction of a one second light pulse created with an mechanical shutter.

Measurements of the pulse with a better time resolution (bin width of 1µs) were done to
determine the rise and fall time of the light pulse. As shown in figure 4.8 an error function
was fitted to the data, which was normalized to the counting rate of an open shutter, in
order to obtain the rise and fall time.

(a) (b)

Figure 4.8: Rising and falling slope of a light pulse created by a shutter, measured with
the SPCM.

From the figure the rise time was taken to be 0.586 ms and the fall time to be 0.505 ms.
These obtained times vary from the ones measured with the photodiode. This could be
due to small changes in the position of the shutter caused during the modification of the
setup or else due to mechanical oscillations caused by the shutter leading to a better or
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worse coupling of the few photons. Therefore the shutter should always be placed on a
damping surface to minimize the effect of the oscillations on the optical setup. Also all
measured times should only be treated as a reference as the times vary for each setup, due
to the exact positioning of the shutter.

To examine how reliable the shutter works, the variance of the recorded data was calculated
and compared to the mean value. For this the variance was once plotted against the time
(figure 4.9 (a) and (c)) and once it was plotted against the mean value ((b) and (d)) for
both the rising and the falling slope of the pulse. Looking at the calculated variance (red
points) in figure 4.9, we see that its always higher than the mean value (black points).
Taking into account the already measured added noise of the laser source, we see that
the modified variance (blue points) is nearly identical with the mean value, leading to the
assumption that the shutter works highly reliable.

(a) (c)

(b) (d)

Figure 4.9: Calculated variance (red points) and modified variance (blue points) compared
to the mean value (black points) for the opening shutter on the left and for the
closing shutter on the right side.
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In the last measurement performed with the mechanical shutter the laser beam was focused
down to a beam waist of approximately 0.1 mm at the position of the shutter and then
collimated again after the shutter. For this measurement there was again plotted the
normalized counts with a fitting curve laid through the points, as it’s shown in figure
4.10. For this the rise time was measured to be 71µs and the fall time 49µs. For the
focused beam the impact of the exact positioning of the shutter is even greater than for
the not focused beam. These times should as such only be treated as an order of magnitude
measurement for shutter used in different setups.

(a) (b)

Figure 4.10: Rising and falling slope of a shutter pulse with a laser beam focused down to
a beam waist of approx. 0.1 mm.

All in all the mechanical shutter was found to be very reliable, which is important for its
application to avoid stray light. The rise and fall time of light pulses created by the shutter
were found to be varying from around 50µs up to 1 ms, heavily depending on the beam of
light (focused or not) and the positioning of the shutter (angle between the initial position
and the light beam).
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4.4 AOM-Pulses

To create short pulses of light an AOM is used in most experimental setups. As described
in the explanation of the AOM, the pulses are created by turning on and off the acoustic
waves inside the medium of the AOM (a TeO2 crystal), which interact with the light of the
laser. As such the rise time of the light pulse depends only on the speed of the acoustic
waves and the diameter of the light beam.

For the measurements the setup as shown in figure 4.11 was used. As light source the
same laser as in the last part was used, again with the optical isolator at the beginning of
the optical path. The change in the setup compared to the shutter measurements, are the
lenses used to focus the light beam inside of the crystal of the AOM. This was done using
lenses with different focal lengths (100 mm, 200 mm and 400 mm) as first lens f1, while for
the second lens f2 a 100 mm lens was used. The setup was also used with no lenses and
modified to a telescope type setup (reducing the beam radius to 1/2 and 1/4) in front of the
AOM to achieve different values for the beam radius inside of the AOM.

Figure 4.11: On the left side the schematic setup for the measruements, while on the right
side a photo of the actual setup with an 400 mm lens as first lens is shown.

To compare the measurements performed with the AOM to the ones using the shutter a
1 s light pulse was created and recorded with the same resolution that was used for the
shutter pulse. The comparison of the pulse created with an AOM (figure 4.12) with the
one created by the shutter (figure 4.7) clearly shows that the rise and fall time of the AOM
is significantly smaller. This is as expected due to the fact that the AOM uses acoustic
waves to create the pulses of light instead of the mechanical means of the shutter.
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Figure 4.12: Measurement of a 1 s light pulse, measured to compare the AOM to the me-
chanical shutter.

As another important aspect the number of repetitions required to reconstruct a few-photon
pulse with a high time resolution was examined. The impact of the number of repetitions
on the pulse shape of a 50 ns pulse, recorded with a resolution of 100 ps is shown in figure
4.13 (a) and with a resolution of 1 ns in figure 4.13 (b).

(a) (b)

Figure 4.13: Impact of the number of repetitions used to recreate a 50 ns pulse measured
with a time resolution of 100 ps (left) and with a resolution of 1 ns (right). For
the time resolution of 1 ns the data of the 100 ps measurement was combined
to the achieve the 1 ns bins during the analysis.

By decreasing the time resolution, and as such using longer bins, the necessary number
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of repetitions to obtain a nice pulse shape also decreases, as shown in figure 4.13. For
a counting rate of 1 Mio counts/s the mean value of a photon inside a 1 ns bins is only
0.001, which means only one of 1000 measurements should measure a photon for this bin.
To obtain a reasonable mean value more than 1000 repetitions of the measurement are
necessary. For a better time resolution (as shown in the figure for a bin width of 100 ps)
even more measurements are necessary to achieve a reasonable mean value and as such a
nice pulse shape.
Using the different lenses to achieve different beam waists inside of the AOM, the rise time
(for the AOM the rise and fall time are the same and therefore the mean value of both
will be stated) was determined using short pulses and a high resolution (down to 100 ps).
Again an error function was used as a fit function for the normalized data, as its shown
in figure 4.14 for a beam waist of 130µm, achieved with a lens of 400 mm focal length as
first lens.

(a) (b)

Figure 4.14: Measured data of the rising and falling slope of a light pulse created with an
AOM and the respetive fitting function. The measurement was done with a
lens of 400 mm focal length resulting in a beam waist of 130µm.

All determined rise times that are shown in table 4.1 are mean values over two different
measurements and over the rise and fall time of each measurement. In the table the times
are also compared to the theoretical values, which can be calculated for a gaussian beam
profile by taking the length the profile needs to include 80% of its intensity (which is
1.281552 ·w0) and dividing it by the speed of the sound waves.

trise =
1.281552 · w0

vsound

(4.3)

The speed of the acoustic waves inside the TeO2 crystal of the AOM is specified as 4200 m
s

[11]. The size of the laser beam was measured with a CCD-Chip, leading to the values for
the beam waists given in table 4.1.
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beam waist w0 measured trise [ns] calculated trise [ns]

1.02 mm 368.5 311.2

510µm 226.0 184.3

255µm 122.8 92.1

130µm 28.8 39.7

70µm 15.6 21.4

150µm 20.3 45.8

Table 4.1: Comparison of the measured rise times with their theoretical value for their
respective measured beam waist

As shown in figure 4.15 the used laser did not

Figure 4.15: Intensity distribution of the
laser beam, measured with a
CCD-Chip.

show a perfect gaussian profile and as such the
obtained values for the beam waists from a
gaussian fit differ from the actual beam waists.
This explains the difference between the mea-
sured and the calculated rise times. Also seen
in the table is that the waist for a bigger beam
was measured to be to small, as the calculated
rise times are smaller than the ones measured.
This is as expected because the fitted gaus-
sian to the intensity curve differed more for
a broader beam than for the focused beams.
Also the last value for the beam waist can’t
be correct, which most likely results from not
hitting the focus of the 100 mm lens with the
CCD-chip. All in all it can be said that the

measured values roughly match with the theoretical rise times, showing that the measure-
ment with the SPCM works properly.
The high time resolution of the measurement was then used to measure the delay between
the electric signal and the light pulse and also to measure the speed of sound inside the
crystal of the AOM. For this the laser beam was focused (therefore the 400 mm lens was
used resulting in a beam waist of 130µm) and then measurements of a 100 ns pulse were
done, once when the light entered the AOM leftmost and once rightmost of the opening.
The delay to the electric signal was measured by taking the side nearest to the piezoelectric
transducer and determining the time distance to the electric signal, which is shown in figure
4.16 as black line at 0.4µs. The delay was determined to be ∆t = 265 ns and is caused
by different factors summing up to the measured delay. The biggest factor is the signal
propagation time of the electric signal through the used cables and the electric driver of the
AOM, summing up to around 100 ns. Another factor is the delay between photon impact
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and TTL-output of the SPCM, specified to be 50 ns. A relatively small part of a few ns is
caused by the propagation time of the light from the AOM to the SPCM. The rest of the
delay could be caused by the time the signal to the AOM needs to reach its full intensity
(as the amplifiers in front of the piezoelectric transducer need a short time to reach their
maximum output) or the time the sound waves need from the piezo to the opening in the
AOM casing.

Figure 4.16: Measurements of a 100 ns pulse done to determine the delay between electric
signal and light pulse and the speed of the sound in the quartz crystal.

As shown in figure 4.16 there is also a delay between the pulses, which were created by light
passing through the AOM leftmost and rightmost of its opening. This delay is caused by
the finite speed of the sound waves. The delay was taken from the figure to be ∆t = 488 ns.
The opening of the AOM has the size of 2.5 mm×1 mm, from which only the first value is
relevant because that’s the direction the sound waves take through the medium. The laser
beam was focused down to a beam waist of 130µm, which leads to a distance of about
2.24 mm between the two measurements. With these values the speed of the sound wave
can now be calculated:

vsound =
∆s

∆t
=

2.24 mm

488 ns
= 4590.2

m

s
(4.4)

This obtained value differs by 9.3% from the specified value of 4200 m
s

[11], which is quite
good considering the vague adjustment of the laser beam to the sides of the opening of the
AOM by visual judgement.
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4.5 Slow Light Measurements

As last part of this thesis the SPCM and the Time-Tagger were used to measure slow
light. This was done for two different setups, once for the setup of the advanced laboratory
EIT-experiment and once for the setup of the Rydberg Quantum Optics (RQO) group. In
particular the delay of the RQO setup was determined.

4.5.1 Advanced Laboratory

The setup in the advanced laboratory already existed and only a few modifications were
necessary for the desired measurements. As such the optical path had to be adjusted, so
that the first order light from the AOM was used instead of the zero order. The second
modification was the setup used to lock the probe laser (the coupling laser could already be
locked). For this a spectroscopy of a Rubidium vapour cell was used to realize a dichroic-
atomic-vapour laser lock (DAVLL)6, with which the laser could be locked to the necessary
transition.

Figure 4.17: Simplified illustration and picture of the actual optical setup of the EIT mea-
surements done in the advanced laboratory.

A simplified illustration and a picture of the actual setup is shown in figure 4.17. In this
setup the Rubidium D2-line was used to achieve the necessary 3-level system, as explained
in the theory chapter. For this the 85Rb-transitions were used, with the coupling laser
frequency stabilized to the transition between the F = 3 hyperfine ground state and the
hyperfine states of the 5 P3/2 state. The frequency of the probe laser could be locked to and
scanned through the transition between the F = 2 hyperfine ground state and the 5 P3/2

state. The beam of the probe laser passed through an AOM, which was used to create the
necessary light pulses. Both beams were superimposed with a beam splitter before passing

6For more information about the locking mechanism see [12].
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through a Rubidium vapour cell, which was used as medium for EIT. After the vapour cell
the two beams were splitted again, with the probe laser being attenuated and then coupled
into a single mode fiber. The probe beam was also already attenuated before superposing
it with the coupling beam, in order to fulfil the EIT condition Ωp � Ωc.

First of all the spectrum of the used transition was measured, once using a photodiode
and once with the SPCM. The measured spectrum is shown in figure 4.18, with the red
curve showing the absorption without the coupling field and the blue curve showing the
EIT-spectrum.

Figure 4.18: Observed transmission spectrum of the setup in the advanced laboratory with-
out (red curve) and with the coupling field (blue curve).

The absorption with the coupling field turned on is considerably higher due to optical
pumping effects caused by the coupling light. The depth of the absorption spectrum
measured with the photodiode varys from the one measured with the SPCM, which was
most likely caused by the fewer photons used for the SPCM measurement, as the probe
beam was attenuated by a larger factor before passing through the vapour cell. It is
also clearly visible that the measured height of the EIT peak is diminished by dephasing
processes inside of the hot Rubidium gas.

The probe laser was then locked to the frequency of the EIT peak, with measurements
done for slightly different positions of the frequency inside of the absorption valley. Some
of these measurements are shown in figure 4.19. The black measurement looks to be the
best position of the laser, while the blue and green ones show that parts of the pulse were
absorbed leading to the change in the pulse shape. The red data points were measured
with the probe laser highly detuned from any transition and as such showing no absorption.
For these pulses the delay was determined by calculating the weighted mean value of the
time for each pulse. For this the sum over the product of pulse height (photon counts) and
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time was divided by the summed counts. Subtracting the calculated times for the slowed
pulse (black) from the red pulse, a delay time of 7.02 ns was obtained. For the other two
pulses higher delay times were calculated, caused mostly by the change in the pulse shape.

Figure 4.19: Measurements of the delay caused by the slow light. The red pulse shows the
pulse without delay, whereas the other pulses show the delayed pulses each
for a slightly different frequency.

With this delay time the achieved group velocity can be calculated with equation 4.5, which
can be derived from equation 2.34.

vg =
1

τd
L

+ 1
c

(4.5)

With the length of the vapour cell (L = 10 cm) the achied group velocity is 13598848 m
s

.
This corresponds to 4.54% of the vacuum speed of light.
As explained there were various problems during the measurements, such as the stability
of the locking system for the probe laser or even the stability of the whole setup, as there
were for example large drifts in the temperature during the day. Another point was the
relative small EIT peak, leading only to small delay times, caused by dephasing effects in
the hot vapour cell.
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4.5.2 RQO experiment

In the RQO experiment EIT can be observed in a ladder-type system, with the upper state
being a Rydberg state.

The ground state shown in figure 4.20 is the 5 S1/2 ground

Figure 4.20: Level System
of the RQO
setup

state of 87Rb. As excited state |e〉 the 5 P3/2 was used and
for the Rydberg state the 40 S state. Therefore different
lasers had to be used as coupling and probe laser. The blue
laser, which acts as coupling field, is locked to be resonant
to the transition from the 5 P3/2 to the 40 S Rydberg-state.
This transition corresponds to a frequency of 623.3724 THz.
The frequency of the red laser used as probe laser can be
changed by locking it to a set value and changing the value
for each cycle of the experiment. As described in the theory
section this system only shows EIT on the few photon level
for the high optical density achieved in the atomic cloud and
as such all the absorption filters were placed at the beginning
of the optical path of the probe laser.
This setup uses a cold cloud of 87Rb atoms as medium for
EIT. The cloud of atoms is created by loading Rubidium
atoms from a gas, which was created through evaporation,
into a magneto-optic trap (MOT). After loading the atoms

from the MOT in a dipole trap, the generated cloud is roughly 100µm in diameter and its
temperature in the range of 40µK. Turning off the dipole trap the cloud expands freely
and in this time the actual experiment is done. After letting the cloud expand for 1 ms the
whole procedure is repeated, leading to a cycle of about 4 s.
The EIT spectrum of the expanding 87Rb cloud is shown in figure 4.21. To obtain this
spectrum the frequency of the probe laser was changed by 0.2 MHz after each cycle of the
experiment. For each step of the frequency the photon count is measured for multiple
bins, each with a length of 20µs. As the cloud expands its density decreases and as such
the later bins show the spectrum of a lower density. As such the spectrum is registered
for different densities. In the case of the spectrum in figure 4.21, the first 5 bins were
combined, leading to a mean value of the spectrum for the first 100µs of the expansion of
the cloud with a fit function laid through the measured points.
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Figure 4.21: Obtained EIT spectrum of the RQO experiment measured in a region of
40 MHz around the two-photon resonance.

For the measurements of slow light the probe laser was locked to the frequency of the
maximum of the EIT peak. For this fixed frequency pulses of 1µs length and a distance
of 2µs between each other, were created using a pulse generator and an AOM. During
one cycle of the experiment 100 such pulses were sent through the expanding cloud and
also when no atoms were present. During the analysis of the data 10 of the pulses were
combined and then plotted, leading to figure 4.22 in which four of the 10 resulting pulses
are shown as an example.

Figure 4.22: Illustration of the delay caused by the slow light effect. The red pulses shows
the pulse without delay, whereas the blue pulses show the delayed pulses
obtained by combining the pulses 1-10, 21-30, 41-50 and 61-70.
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From the figure it is clear to see that the transmission through the cloud increases with
the decreasing density, as the later pulses are higher then the first ones. For all recorded
pulses the delay time was calculated as explained in the previous section. These delay
times were then plotted against the number of the pulse (and as such against the density
of the cloud), showing a decrease in the delay the smaller the density of the cloud. Also
for each pulse the obtained group velocity was calculated with equation 4.5 with a cloud
length of 100µm. These obtained group velocities were again plotted against the number
of the pulse, as shown on the right side of figure 4.23.

(a) (b)

Figure 4.23: Obtained delay times (a) and calculated group velocities (b) for each pulse.

These two figures show that the delay between the pulses decreases with the decreasing
density, corresponding to a smaller slope in the EIT spectrum. This decrease in the delay
time leads to the observed increase of the group velocity. Calculating the mean value of
the group velocity for the first 20 pulses, we obtain a value of 921.6 m

s
. This corresponds

to 1/325300 of the vacuum speed of light. This is clearly a better result as the one obtained
in the hot vapour cell, which is due to fewer dephasing effects inside the clod cloud than
in the hot vapour.
All in all the measurements of this section show that the effect of slow light leads to
measurable delay times, caused by the reduction of the group velocity of a light pulse
inside a medium showing EIT.
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The aim of this thesis was to work with and test the single photon counting modules and
the high resolution timing with the Time-Tagger. The measurements done during this
thesis show that both of these modules work properly and that they can be used together
to reconstruct light pulses from the measurements of few photons. It was also show that
it is possible to measure the delay caused by slow light with these pulse measurements, as
it was done in particular for the RQO experiment.
To obtain this conclusion it was first shown that the measured dark count rates of both
SPCM’s agreed with their specified values. Next the photon statistics of laser light was
investigated leading to the detection of added noise in the measurement. Whether this
noise comes from the laser source or the measurement/analysis itself couldn’t be finally
proved during this thesis and should be examined again.
As next step a mechanical shutter was used to create pulses of light with rise and fall times
varying from around 50µs up to 1 ms depending on the beam of light and the positioning
of the shutter. By considering the variance of the recorded data and by taking the already
measured added noise into account, the shutter was found to be highly reliable.
Afterwards light pulses were created using an AOM, leading to considerably shorter rise
times of around 20 ns up to 370 ns. These measured values agree in their order of magnitude
with the once calculated. The measurement of light pulses was then used to determine the
speed of sound inside the crystal of the AOM, with the determined value agreeing in its
order of magnitude with the specified value.
As last part of this thesis a SPCM was used to measure the delay of light pulses inside
an EIT medium. This was done for a hot Rubidium vapour cell and for a cold cloud of
Rubidium atoms, clearly showing better results in the cold cloud due to fewer dephasing
effects. For the light pulses delay times in the order of 100 ns were measured, corresponding
to group velocities of 1000 m

s
inside the atomic cloud.

During the process of this thesis the SPCM’s were already used to measure EIT spectrums
of the cold Rubidium cloud of the RQO group. In the future it will be tried to use the
strong long-range interactions of the Rydberg states and the strong atom-light interaction
of EIT to control the quantum state of the light. As mentioned above in the text the
excitation of one Rydberg state leads to a shift in the energy levels of the surrounding
atoms inside the blockade volume. For a second photon passing through the medium, the
system is then effectively a 2-level system, leading to the absorption of the photon. This
can be used to create a single-photon switch or even a single photon source and as such
the SPCM’s will be needed to verify the non-classical nature of the output light.
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