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Abstract

In this thesis we will present the set-up of a laser system to drive a two-photon transition
to Rydberg states. The excitation is performed on a thermal atomic vapour. We observed
unexpected absorption effects on the two-photon transition that were systematically explored,
and that could be accounted for by a new model.
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Chapter 1

Introduction

The fast development of information technology since the 1960’s is characterised by Moore’s law.
This empirical law, first introduced by Gordon E. Moore, co-founder of Intel, in 1965, states
that the number of transistor on an integrated circuit doubles approximately every two years.
This evolution will however face a fundamental limit given by the size of the atoms. Therefore
it is not irrelevant to watch out for new technologies suitable for computing tasks.
With the rapid development in isolating and manipulating elementary quantum systems it is
now possible to implement Feynman’s idea of a fundamental quantum simulator. More generally
speaking is the goal of quantum information to take advantage of quantum properties such as
entanglement to store and carry information on a superposition of states (a qubit) instead of 2
bits. This resource of information could then be used in a quantum computer or for quantum
cryptography, which would be much more powerful and secure than any classical realisation of
computers and cryptography protocols.
The quantum information theory has been heavily studied during the last decade, but to build
quantum devices is still a challenge. Elementary quantum operations (CNOT-gate, single-photon
source, etc.) have already been realized with systems such as trapped ions, nuclear spins or
quantum dots. Also Rydberg atoms have been proposed [1] as a possible ingredient towards the
realization of quantum gates, essential devices for quantum information processing. Recently
this was demonstrated by two groups with two atoms. Rydberg atoms are atoms with one or
several highly excited electrons. With their huge electric dipole moment, they exhibit suitable
properties such as an excitation blockade which prevents more than one atom to be excited in
a Rydberg state within a certain blockade radius.
Based on this Rydberg atoms in vapour cells are a promising system for the realization of
quantum devices as for their scalability. It has been shown that Rydberg excitation is possible in
confinement [2], and more recently, that fast coherent Rabi oscillations with a Rydberg state can
occur [3]. Caesium appears to be a better candidate to explore quantum information technology
due to higher vapour pressure, larger hyperfine structure and better suited laser systems.
This thesis presents a new coherent excitation scheme to Rydberg states for this purpose.
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Chapter 2

Fundamental aspects

This chapter presents fundamental aspects that are needed to understand the results present
in this this thesis. In the first section the properties of the element caesium are detailed.
The theoretical foundations of atom-light interaction are discussed in the second section. An
brief introduction to the dipole matrix element formalism is given in the third section. The
discrepancies of real systems to the theoretical treatment are discussed in the fourth section.

2.1 The element caesium

Caesium is is the second heaviest alkali element, and the heaviest to have a stable isotope. Only
133Cs is stable, and we will consider only this isotope in the following study. Useful physical
properties of 133Cs are listed in Table 2.1. The vapour pressure formulae for caesium are given in
[4]. For the temperature range relevant for this thesis (room temperature up to 200 ◦C), caesium
has a vapour pressure that is low enough for the ideal gas model to apply. From the ideal gas
law and the vapour pressure formula one can obtain the expression for the atomic density of
caesium in the gas phase as a function of the temperature (in Kelvin):

n(T ) =
1.0133 · 109.165− 3830

T

kBT
(2.1)

2.2 Atom-light interaction

The theoretical treatment of atom-light interaction in two and three-level systems has been
performed in a variety of books and theses. In the following we will present the models and the
necessary formulae for this thesis. The derivation of these formulae can be found in [5], [6].

Atomic number Z 55

Atomic mass number A 133

Atomic mass m 2.206 946 57(11) × 10−25 kg

Nuclear spin I 7/2

Melting point TM 28.5 ◦C
Vapour pressure at 25 ◦C PV 1.983(98) × 10−6 mbar

Table 2.1: Useful physical properties of 133Cs [4].
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Figure 2.1: Two-level system coupled to a light field. ω is the light frequency, ωge the absolute
frequency of the transition, δ the detuning of the light field with respect to the transition
frequency and γ the decay rate from the excited state |e〉 to the ground state |g〉.

2.2.1 Two-level atom

The simplest way to describe the interaction of a light with atoms is to consider a classical light
field and a two-level system. We consider a ground state |g〉 =

(1
0

)
and an excited state |e〉 =

(0
1

)
.

The system is shown in Figure 2.1. The Hamilton operator for the purely atomic system is the
following:

HA = ~

(
0 0
0 ωge

)

(2.2)

The Hamiltonian describing the interaction between this two-level atom and a classical light
field E(t) = E0(e

iωt + e−iωt) is:

HAL = −dgeE(t)

(
0 1
1 0

)

(2.3)

where dge is the dipole matrix element of the transition.

By introducing the Rabi frequency Ωge =
−dgeE0

~
and applying the rotating wave approximation,

the Hamiltonian reduces to:

H = ~

(
0 Ωge/2

Ωge/2 −δ

)

(2.4)

The system can be described by the density matrix

ρ =

(
ρgg ρge
ρeg ρee

)

(2.5)

and the decay process from the excited state is accounted for by the Lindblad operator

L(ρ) = Γ

(
ρee −1

2ρge
−1

2ρeg −ρee

)

. (2.6)

The time evolution of the system is described by the Liouville-von Neumann equation:

∂ρ

∂t
= − i

~
[H, ρ] + L(ρ) (2.7)
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The equations verified by each coefficient of the density matrix are:

ρ̇gg =
iΩge

2
(ρge − ρeg) + Γρee

ρ̇ge =
iΩge

2
(ρgg − ρee)−

(
Γ

2
+ iδ

)

ρge

ρ̇eg =
iΩge

2
(ρee − ρgg)−

(
Γ

2
− iδ

)

ρeg

ρ̇gg =
iΩge

2
(ρeg − ρge)− Γρee

(2.8)

With the hypothesis that ρgg + ρee = 1, the steady state solutions are:

ρgg =
Ω2
ge + 4δ2 + Γ2

2Ω2
ge + 4δ2 + Γ2

ρge =
Ωge(iΓ + 2δ)

2Ω2
ge + 4δ2 + Γ2

ρeg =
Ωge(iΓ− 2δ)

2Ω2
ge + 4δ2 + Γ2

ρgg =
Ω2
ge

2Ω2
ge + 4δ2 + Γ2

(2.9)

We can define the saturation parameter as

I

Isat
= 2

(
Ωge

Γ

)2

(2.10)

so that the previous coherences in steady-state transform to

ρgg =
1 + 1

2
I

Isat
+ 4

(
δ
Γ

)2

1 + I
Isat

+ 4
(
δ
Γ

)2

ρee =
1
2

I
Isat

1 + I
Isat

+ 4
(
δ
Γ

)2

ρge =

1√
2

√
I

Isat

(
i+ 2 δ

Γ

)

1 + I
Isat

+ 4
(
δ
Γ

)2 = ρ∗eg

(2.11)

where I =
cǫ0E2

0

2 is the light intensity. The saturation intensity is given by:

Isat =
cǫ0Γ

2
~
2

4d2ge
(2.12)

Light absorption

The polarisation of the atom is given by the expectation value of the dipole moment 〈d〉 and
the atomic density:

P = n · 〈d〉 = n · (d∗geρge + dgeρ
∗
eg) (2.13)

Moreover the response of the polarisation of the atoms to weak electric fields is linear:

P = ǫ0χE (2.14)
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The imaginary part of the susceptibility χ contains the information about the absorption proper-
ties. We can therefore extract the absorption coefficient α0 =

ω
c Imχ. Note that the absorption

coefficient is proportional to the imaginary part of the coherence between the two states.
We obtain the absorption coefficient:

α0 =
ω

c

n

ǫ0E0
· 2dge Im ρge

= nσ0
1

1 + I
Isat

+ 4( δΓ)
2

= nσ(δ, I)

(2.15)

with σ(δ, I) = σ0
1

1+ I
Isat

+4( δ
Γ
)2

and σ0 =
~ωΓ
2Isat

being the absorption cross section and the resonant

absorption cross section.

Absorption of a Doppler-broadened medium

The atomic ensembles that we are considering in this thesis are atomic vapours at room tem-
perature or even above so that the thermal movement of the atoms cannot be neglected. Each
atom, moving with its velocity ~v, experiences the Doppler effect in its interaction with the light
field. If ω is the light frequency in the laboratory frame of reference, the light frequency in the
frame of reference of the atom is ω′ = ω−~k ·~v. The atomic velocity follows a Maxwell-Boltzmann
distribution, so it can be shown that the number of atoms that resonant with the light field as
a function of detuning δ to the absolute frequency of the transition is given by:

n(δ)dδ = n0

√

mc2

2πkBTω
e
−mc2δ2

2kBT dδ (2.16)

where n0 is the atomic density, c the speed of light, kB the Boltzmann constant, T the temper-
ature and m the atomic mass.
The absorption coefficient is then defined by equation ( 2.15) any more but by the convolution
of n(δ) and σ(δ, I).
In the low intensity regime, one can neglect the power broadening effect. Moreover, the linewidth
of the excited state (typically a few MHz) is small compared to the width of the Doppler broad-
ened absorption profile (typically a few hundreds of MHz at room temperature). The absorption
coefficient can then be approximated to have a Gaussian lineshape. The width of this Gaussian
profile n(δ), the so-called Doppler width (FWHM) is given by (from [7]):

ωD =
ω

c

√

8 ln 2kBT

m
(2.17)

The formula of the absorption coefficient for a single atomic transition is therefore (from [7]):

α = n0σ0
πΓ

2

√

ln 2

π

2

ωD
e
−4 ln 2( δ

ωD
)2

(2.18)

2.2.2 Three-level atom

In this thesis, we report on Rydberg excitation of caesium atoms via an intermediate state.
A similar theoretical approach to the one presented in section 2.2.1 can be use to describe
such a three-level system. We add to the previous system from Figure 2.2.1 a third level of
higher energy that is coupled to a second light field. The two light fields can be written as
Ei(t) = Ei,0(e

iωit + e−iω1t) with i = 1, 2 for the first and second transition. This so-called
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Figure 2.2: Three-level ladder-type system coupled to two light fields. |g〉, |e〉 and |r〉 are the
ground state, intermediate state and upper/Rydberg state. ω1 (resp. ω2) is the frequency of the
light field coupling the first (resp. second) transition, ωge (resp. ωer) the absolute frequency of
the first (resp. second) transition, δge (resp. δer) the detuning of the first (resp. second) light
field with respect to the first transition frequency, and Γji the decay rate from the |j〉 state to
the |i〉 state.

three-level ladder-type system is shown in Figure 2.2. We can represent the three states in the
following way:

|g〉 =





1
0
0



 |e〉 =





0
1
0



 |r〉 =





0
0
1





and the density matrix for the system is therefore

ρ =





ρgg ρge ρgr
ρeg ρee ρer
ρrg ρre ρrr



 .

Similarly to the two-level atom, dge (resp. der) is the dipole matrix element of the first (resp.
second) transition, and we can define the Rabi-frequencies describing the coupling of the light

field to the transition by Ωge =
−dgeE0,1

~
and Ωer =

−derE0,2

~
. After applying the rotating wave

approximation, the Hamiltonian describing the atom and the atom-light interaction is

H =





0 Ωeg/2 0
Ωeg/2 −δge Ωer/2

0 Ωer/2 −δer − δge



 . (2.19)

Once again, the Liouville-von Neumann equation describes the time evolution of the system:

∂ρ

∂t
= − i

~
[H, ρ] + L(ρ) (2.20)

where the dissipative effects are accounted for by the new Lindblad operator

L(ρ) =





Γegρee + Γrgρrr −1
2Γegρge −1

2 (Γre + Γrg) ρgr
−1

2Γegρeg −Γegρee + Γreρrr −1
2 (Γre + Γrg + Γeg) ρer

−1
2 (Γre + Γrg) ρrg −1

2 (Γre + Γrg + Γeg) ρre − (Γre + Γrg) ρrr



 . (2.21)
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Note that the coherence between two states decay with the sum of the half decay rates of these
states.
Similarly to the two-level atom, the absorption of a light field is here as well proportional to the
imaginary part of the coherence corresponding to the driven transition.

Electromagnetically induced transparency

In a three-level system, some peculiar effects can arise, such as electromagnetically induced
transparency (EIT). EIT has been studied and discussed since its first observation in 1991 [8],
as it carries promising properties for the realisation of non-classical optical devices. The basic
principle of EIT can be understood with a simple picture.
In a three-level ladder-type system, EIT is observed with weak probe field on the first transition
(|1〉 → |2〉) as a strong pump field drives the second transition. The strong pump field modifies
the properties of of the atomic medium for the probe field, and the absorption on the first
transition is eliminated on resonance. This phenomena can be explained in terms of quantum
interference between the excitation pathways to the intermediate state (|1〉 → |2〉 and |1〉 →
|2〉 → |3〉 → |1〉). On resonance these interfere destructively so that the absorption is annihilated.
More comprehensive studies on EIT can be found in [1].

2.3 Dipole matrix element formalism

In real atomic systems, the atomic levels are degenerated in magnetic sublevels. Depending on
the magnetic quantum number m of the magnetic sublevel and the polarisation of the light field,
the dipole matrix elements take different values. If we consider two hyperfine sublevels |FmF 〉
and |F ′m′

F 〉, the dipole matrix element that couples them is 〈FmF |erq|F ′m′
F 〉, where q describes

the angular component of the position operator r (see section B.1.1). The angular dependence
can be factorized using the Wigner-Eckart theorem into:

〈FmF |erq|F ′m′
F 〉 = 〈F‖er‖F ′〉(−1)F

′−1+mF
√

(2F + 1)

(
F ′ 1 F
m′

F q −mF

)

(2.22)

where 〈F‖er‖F ′〉 is the so-called reduced dipole matrix element and the (:::) symbol is the
Wigner 3-j symbol. This reduced dipole matrix element can be further factorised into terms
that do not depend on the hyperfine coupling between the total angular momentum J and the
nuclear spin I, and on the spin-orbit coupling between the azimuthal angular momentum and
the electronic spin:

〈F‖er‖F ′〉 = 〈J‖er‖J ′〉(−1)F
′+J+1+I

√

(2F ′ + 1)(2J + 1)

{
J J ′ 1
F ′ F I

}

(2.23)

〈J‖er‖J ′〉 = 〈L‖er‖L′〉(−1)J
′+L+1+S

√

(2J ′ + 1)(2L + 1)

{
L L′ 1
J ′ J S

}

(2.24)

where the {:::} symbol is the Wigner 6-j symbol.
These formulae yield the relative strength of every single transition between two hyperfine sub-
levels from a L → L′ transition.
The derivation of the previous formulae is detailed in section B, as well as some discussions
about the dipole matrix elements.

2.4 Real systems

The theoretical treatment of the atom-light interaction presented in section 2.2 describes the
basics of these interactions. However, except for the case of a cyclic transition (perfect two-level
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Figure 2.3: Optical pumping in transitions with F ′ = F −1 and F ′ = F . The allowed transitions
for linearly polarised light fields and the decays into the dark state are shown.

system), this two-level model gets strongly perturbed by several effects when it comes to describe
the interaction of a light field with an atomic ensemble. In this section we will first describe
the processes that perturb an atomic system from the two-level system, and notice that some of
these cancel each other. In the whole section we will only consider linearly polarised light fields.

2.4.1 Deviations from the two-level model

Manifold optical pumping

Let us first consider a real F → F ′ atomic transition. As mentioned above each transition
between two hyperfine states has a specific dipole matrix element. Moreover, each excited
hyperfine state has specific decay rates on the allowed transition. Therefore the steady state
distribution of the atoms on a magnetic manifold is not an equal distribution. Typically the
atoms are being pumped around the central hyperfine state mF = 0.
The derivation of this optical pumping for the case of F ′ = F + 1 was performed by Gao [9].
The interesting consequence of his results is that the coupling to the excited state is affected
and that the two-level model remains valid with the effective dipole moment verifying

d2eff = gS(2F + 1)|〈F‖er‖F ′〉|2. (2.25)

For a transition F = 4 → F ′ = 5 (caesium D2-line 6S 1

2

→ 6P 3

2

), gS = 4420
92377 = 0.047 847 4. For

the two other allowed cases F ′ = F − 1 and F ′ = F one or two of the magnetic sublevels are
dark states (see Figure 2.3). Hence the atoms are pumped into these dark states and in the
steady-state there is no absorption anymore.

Optical pumping in the dark ground state

Another optical pumping effect can occur in the interaction of a light field with an ensemble of
atoms. At least with alkali atoms, because of the hyperfine coupling between the total angular
momentum and the nuclear spin, the ground state is split. So, when the light field is resonant
to one atomic transition, the other ground state is a dark state. If the transition between the
excited state and the dark ground state is dipole-allowed, then the atoms are pumped into the
dark ground state and there is once again no steady-state absorption.
According to this, the absorption of the D1-line of caesium (6S 1

2

(F = 3, 4) → 6P 1

2

(F ′ = 3, 4))

in the steady state should always be zero. This cannot be true since, as we will see in section 3.3,
a laser resonant to the D1-line of caesium is absorbed.

Transit time broadening

As mentioned above the atoms are moving. Moreover, the interaction is performed by a laser
of finite beam cross section. So the atoms only spend a limited time interacting with the light
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field.
This effect is called the transit time broadening. The interaction time between the light field
and the atom is given by the ratio of the atomic velocity to the path length through beam. After
this interaction time τ , the atom leaves the beam section and is basically replaced by a new
atom at a random ground state sublevel. If we assume the light intensity to be weak enough,
we can consider the excited state population to be negligible so that no excited atom leaves the
beam section. The transit time broadening can therefore be regarded as a decay to every ground
state with the same decay rate Γtt = 1/τ . The tricky part is to determine a value for this decay
rate. The difficulty is originating from two facts: the atomic velocity is Maxwell-Boltzmann-
distributed and the laser beam profile is Gaussian. Sagle et al. [10] conducted a theoretical
and experimental investigation on transit time effects on the D1-line of caesium. For the atomic

velocity, they worked with the two-dimensional mean velocity v =
√

πkBT
2m . Then they matched

their theoretical and experimental results and determined that the appropriate beam diameter
to use for the mean path length through the beam is the full width at half maximum (FWHM).

The average path length is d =
πD1/2

4 , D1/2 being the FWHM beam diameter. So according to
Sagle et al., a good expression for the transit time decay rate is:

Γtt = v/d =
1

D1/2

√

8kBT

πm
=

1√
log 2D1/e2

√

8kBT

πm
(2.26)

with D1/e2 being the beam full width at 1
e2

maximum. From this expression, a typical value for
transit time decay rate with caesium atoms is Γtt = 2π × 36 kHz (at 60 ◦C with D1/2 = 1mm).
So the finite transit time of the atoms in the light field prevents the atomic ensemble to reach
the expected steady state that would show no absorption, in the case where the atoms would
be pumped to dark states of the magnetic manifold or to the dark ground state. In the case
where there is no dark state for the system, the transit time broadening tends to flatten the
distribution of the atoms over the magnetic manifold.
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Chapter 3

The 6S → 7P transition in caesium

In this chapter the results of our measurements on the 6S 1

2

→ 7P 3

2

transition of caesium, the

first transition of the three-level system described in chapter 4, are presented. This transition is
driven with a commercial frequency doubled amplified diode laser (Toptica TA-SHG Pro) at 455
nm. We first have a look at the level scheme of this transition. In the second section, the laser
locking set-up scheme is described, as well as its optimization. In the third section we present
further measurements to determine the temperature of the spectroscopy cell.

3.1 Level scheme

The 6S 1

2

→ 7P 3

2

transition is quite similar to the well-known 6S 1

2

→ 6P 3

2

transition (D2-line) of

caesium. The hyperfine structure of these two levels is shown in Figure 3.1. The reduced dipole
matrix element for this transition was determined experimentally [11] to be

〈
J = 1

2

∥
∥ er

∥
∥J ′ = 3

2

〉

6S 1
2

→7P 3
2

= 0.4965(35) × 10−29 C ·m (3.1)

Besides the characteristic frequencies and dipole matrix elements, the main difference of this
transition to the D2-line of caesium is that this system is not a closed system. That means that
7P 3

2

 6S 1

2

is not the only allowed decay channel from the 7P 3

2

state (see Figure 3.2). All decay

channels from the 7P 3

2

state, along with the lifetimes and transition probabilities are shown in

Figure 3.2.
The total lifetime of the 7P 3

2

state is defined as

1

τ
=
∑

i

Γi (3.2)

where the Γi are the transition probabilities from the 7P 3

2

state. The formula shown above

gives a lifetime of τ = 111 ns. The lifetime of the 7P 3

2

state has been measured before as

τexp = 134.5 ns (Γexp = 2π ·1.18 MHz) in [12]. This Γ corresponds to the decay rate or linewidth
of this state.
The transition probability from the 7P 3

2

state to the 6S 1

2

ground state state (single channel) is

defined by

Γ7P 3
2

 6S 1
2

=
ω3
0

3πǫ0~c3
2 · 1

2 + 1

2 · 3
2 + 1

∣
∣
∣
∣

〈
J = 1

2

∥
∥ er

∥
∥J ′ = 3

2

〉

6S 1
2

→7P 3
2

∣
∣
∣
∣

2

(3.3)

All decay channels from the 7P 3

2

state back to the ground state can be seen in Figure 3.2.
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3.2 455 nm laser set-up

3.2.1 Frequency locking procedure: DAVLL

We perform spectroscopy with the 455 nm laser in a thermal (approx. 60 ◦C) vapour cell
of caesium atoms. At such a temperature, the atomic velocities are not negligible and the
atoms experience the Doppler effect in their interaction with the light field. Hence, the pure
spectroscopy signal is Doppler-broadened. In order to lock the 455 nm laser to the 6S 1

2

→ 7P 3

2

transition however, we need a Doppler-free signal. We chose the DAVLL (Dichroic Atomic Vapor
Laser Lock) spectroscopy method with saturation spectroscopy in a magnetic field [14]. In the
case of the D2-line of caesium, polarization spectroscopy is supposed to produce a better locking
signal than the DAVLL method with saturation spectroscopy in a magnetic field. However, we
tried both methods in our case and there was no significant improvement of the locking signal
with polarization spectroscopy, so we used the DAVLL technique.
The set-up for the saturation spectroscopy is shown in Figure 3.3. The incoming laser beam is
split with a half-wave plate and a PBSC (Polarizing Beam-Splitting Cube) into a strong pump
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Figure 3.5: Inside configuration of the Toptica TA-SHG Pro laser (source: Toptica website).

beam and a weak probe beam, both linearly polarized. The probe beam passes directly through
the spectroscopy cell to the detectors. The pump beam is overlapped with the probe beam in
an almost counter-propagating way. The probe laser beam sees the whole Doppler distribution
(see Figure 3.4). When the pump beam is on, both probe and pump beam are simultaneously
resonant with the same velocity class when the laser is resonant to one single hyperfine transition.
This velocity class is the class of atoms that are moving perpendicularly to the beam (~k ·~v = 0).
In this case, the atoms are mainly driven by the strong pump beam, and the vapour becomes
more transparent for the probe beam. This results in transmission peaks (Lamb-dips) at the
position of the transitions and crossovers (see Figure 3.4).
If we apply a magnetic field parallel to the laser beams in the spectroscopy cell, the degeneracy
of the hyperfine sublevels is lifted due to the Zeeman effect. Hence the σ+ and σ− components
of the linearly polarized beams are not simultaneously resonant with the atoms. These two
components are split using a quarter-wave plate and a PBSC, each being sent to one detector.
The difference of these two signals gives the error signal (see Figure 3.4). This error signal
is produced by a differential amplifier and sent to a Proportional-Integral-Derivative (PID)
Controller. The locking signal generated by the PID Controller is fed back into the laser. Each
Lamb-dip gives rise to one zero-crossing slope on the error signal, on which we can lock the laser.

3.2.2 Set-up

The laser system (Toptica TA-SHG Pro) consists of a tunable diode laser (External Cavity Diode
Laser) seeding a tapered amplifier. The infrared beam of this tapered amplifier has a power of
approx. 1 W after the optical isolator, is reshaped and coupled into a ring cavity, in which a
non linear frequency doubling crystal is located (See Figure 3.5).
The output power of the frequency doubled light at 455 nm is approx. 220 mW. From this, we
use approx. 5 mW for the frequency locking process. Before going into the DAVLL spectroscopy,
the beam passes through two acousto-optical modulators (AOM) in double pass configuration
(see Figure 3.6). The first AOM is adjusted such that the 1st order of the diffraction pattern
is selected. The second AOM is adjusted such that the −1st order of the diffraction pattern is
selected. The detuning of the beam used to perform the DAVLL spectroscopy with respect to
the original laser beam is therefore twice the difference between the two AOM frequencies. This
allows us to precisely set the laser detuning to one atomic resonance. The two main cases of
interest are the resonant one (AOM frequencies: +200 MHz and -200 MHz) and the far detuned
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Figure 3.6: Set-up for locking the 455 nm laser.

one (AOM frequencies: +180 MHz and -220 MHz, detuning: -80 MHz). However, the optimal
incoming beam angle to the AOM is strongly dependent on the AOM frequency. So, in order to
have a similar efficiency after the two AOM double passes, we adjusted the AOMs on intermedi-
ate frequencies: +190 MHz and -210 MHz respectively. When the frequencies are back to +200
MHz and -200 MHz, we obtain an efficiency of around 30% after two double passes. The power
of the beam going into the DAVLL spectroscopy is approx. 1 mW and its diameter is approx.
1 mm. We split this beam with the half-wave plate and the PBSC so that the probe beam has
the lowest possible intensity (approx. 50 µW).
We used a home-made spectroscopy cell made out of quartz glass. The cell is 7.5 cm long and
has a diameter of 30 mm. The magnetic field is generated by a a coil around the cell with 180
windings. The cell is heated with a heating foil to obtain sufficient optical thickness, and the
cell windows have additional heaters using a resistor and copper plates to avoid condensation of
caesium.

3.2.3 Saturation absorption and DAVLL spectroscopy measurements

We performed systematic measurements with the DAVLL spectroscopy set-up in order to op-
timize the locking procedure. The parameters that were optimized are the optical pump and
probe powers and the magnetic field in the spectroscopy cell.
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Saturation absorption spectroscopy optimization

We performed a scan over all the hyperfine transitions of the 6S 1

2

(F = 4) → 7P 3

2

(F ′ = 3, 4, 5)

transition for different pump and probe powers. The laser beam diameter was 1 mm.
One can see in Figure 3.7 the saturation absorption signal with the Lamb-dips for different pump
powers. Our goal is to have significantly high Lamb-dips, without using too much power. One
can see that at higher power (20 mW), the Lamb-dips get broadened, what we want to avoid
for the DAVLL signal. So we chose a pump power of ∼ 1mW since it is a satisfying trade-off
between signal amplitude and used power.
We performed the same measurement for different probe powers. The results can be seen
in Figure 3.8. 50 µW corresponds to the minimal achievable power 1 mW input power into
the DAVLL set-up. We obtained 2.5 µW with attenuators before the cell. The signals were
normalized to the same Doppler profile depth. The frequency shift of the two upper signals with
respect to the first one is due to a drift of the laser. We could not see a significant effect of the
different probe power on the relative height and width of the Lamb-dips. Therefore we chose a
probe power of 50 µW to minimize possible saturation effects without having to attenuate the
power of the probe beam before the cell.

DAVLL signal optimization

The error signal is obtained by taking the difference between the transmission of the σ+ and σ−

components of the probe beam in the cell. Its shape depends on the strength of the magnetic
field inside the cell, and therefore on the current applied to the coil. Figure 3.9 displays the
error signal at different currents. The signal at 0 G applied magnetic field indicates the presence
of stray magnetic fields, probably emerging from the optical isolators of our Toptica TA-SHG
pro standing nearby and from the earth. We also notice that at 28 G applied magnetic field,
the slopes become less steep and unclean, as a cause of the specific Zeeman coefficients to the
ground and excited states. For an efficient locking we want to have slopes as steep as possible
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and a large amplitude. Thus, we selected in the end a magnetic field of 4.2 G (current of 150
mA through the coil), as this signal appears to be a good trade-off between the two criteria.

3.3 Temperature measurements

The optical thickness of our 7.5 cm long cell for the 6S 1

2

→ 7P 3

2

transition at room temperature

is relatively low (transmission reduced by approx. 5 % on resonance) compared to the D-line
(6S → 6P ), so we need to heat the cell up to get a significant signal. The heating was set to
obtain a transmission reduced by approx. 60 %. on resonance (see Figure 3.12). However it is
not possible to measure this temperature directly.
The temperature of the cell can be obtained by fitting the absorption spectrum. Along with
the temperature, another important fitting parameter is the ‘2-level-like’ saturation intensity.
Because of the more complex nature of our system (several decay channels) compared to the D-
line, we cannot estimate this saturation intensity in a straight forward manner using the 2-level
formula. Although a fitting procedure on both the temperature and the saturation intensity
simultaneously would be possible, we decided to go for a more robust approach using a 895 nm
laser1 driving the D1-line 6S 1

2

→ 6P 1

2

. We first fitted an absorption spectrum of the 895 nm

laser in a cell at room temperature to obtain a fitted value of the saturation intensity of the
D1-line. With this value of the saturation intensity, we fitted the absorption spectrum of the
895 nm laser in the cell used for the 455 nm laser set-up to obtain a fitted value of the cell
temperature. This allowed us to fit the absorption spectrum of the 455 nm laser with this value
of the temperature and obtain a fitted value of the saturation intensity for the 6S 1

2

→ 7P 3

2

transition afterwards.

3.3.1 Fitting function

From equation 2.18, the absorption profile for the D1-line (6S 1

2

(F = 3, 4) → 6P 1

2

(F ′ = 3, 4)) is

given by the formula:

α(δ, T ) = n(T )σ0
πΓ
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The 7/16 and 9/16 express the probability of the atoms to be initially in the F = 3 or F = 4
hyperfine ground state. It is determined by the number of magnetic sublevels. The other
fractional factors express the relative strengths of each hyperfine transition.
In the case of the 6S 1

2

→ 7P 3

2

transition, the formula yields:
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1Toptica DL100 pro design
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Figure 3.10: Transmission signal of the D1-line (6S 1

2

→ 6P 1

2

), fitted function and fitting error

taken in a 7.5 cm Cs cell at 20 ◦C.

In both formulas the positions of the hyperfine transitions are given in MHz relatively to the
line centre, and n(T ) is the atomic density from equation 2.1.
We could fit the measured transmission profiles to the relative intensity defined by the Lambert-
Beer law:

Irel =
Iout
Iin

= e−αd (3.6)

d being the cell length, with T and Isat as fitting parameters, and allowing a non-linear1 time
to frequency scaling, a non-linear1 light intensity2 and a non-linear1 offset.

3.3.2 Saturation intensity of the D1-line

We took an absorption spectrum of the D1-line at room-temperature (20 ◦C) in a similar cell to
the one used in the previously described set-up. The laser beam was very weak (15µW, intensity
of approx. 1W/m2) and therefore far from the power broadened regime. The signal was then
fitted, keeping the temperature as a fixed parameter. The signal, the fitted function and the
fitting error are shown in Figure 3.10. Note that the fitting error was magnified. The fitted
value for the saturation intensity is Isat = 61.3W/m2. The theoretical value calculated with the
〈
J = 1

2

∥
∥ er

∥
∥J ′ = 1

2

〉
reduced dipole matrix element is Isat = 8.35W/m2. The difference in the

two values accounts for pumping effects within the manifold of the bright ground state, pumping
effects in the dark state in the dark ground state, and its compensation by the transit time of
the atoms through the beam.
Leaving also the temperature free as a fitting parameter results in a higher value than the
expected one. This basically means that the Doppler profiles are broader than the ones expected
from theory. Our home-made spectroscopy cell was filled under a background gas pressure of
approx. 10−6 mbar. The vapour pressure of caesium at room temperature is also on the order of
10−6 mbar. So we could expect that pressure broadening is responsible for this deviation, and
our results are therefore not inherently inconsistent.

12nd order polynomial
2accounting for the feed-forward system in the lasers
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Figure 3.11: Transmission signal of the D1-line (6S 1
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→ 6P 1
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), fitted function and fitting error

taken in the 7.5 cm Cs cell used in the blue laser set-up. The fitted temperature is 58 ◦C.

3.3.3 Temperature of the “blue” spectroscopy cell

With the previously determined value for the saturation intensity of the D1-line of caesium we
could take a reference absorption spectrum of the D1-line in the same cell used in the blue
laser set-up. Again we work in the weak intensity regime (approx. 0.8W/m2). This time we
left the saturation intensity we identified before as a fixed parameter, and the temperature was
left as free fitting parameter. The signal and the fitting results are shown in Figure 3.11. The
temperature we obtain from the fitting is 58 ◦C which seems to be a realistic value.
The fitting error was rather substantial. At such a temperature, our caesium cell is expected
to be optically thick. The bottoms of the transmission dips should therefore coincide with the
zero transmission level. As one can see in Figure 3.11, the bottoms of the transmission dips are
flat and inclined instead of coinciding with the zero transmission level. This might be caused
by another mode coexisting in the laser. We added a polynomial offset to try to compensate for
this effect.
If we also leave the saturation intensity as a free fitting parameter, the fitted temperature is
119 ◦C. This results in smaller fitting errors but with an unlikely temperature. The fact that
this unlikely temperature is higher than expected could be partly explained by the presence of
pressure broadening.

3.3.4 Absorption of the blue laser on the 6S → 7P transition

A similar measurement was then realized with the blue laser on the 6S 1

2

→ 7P 3

2

transition. The

signal was first fitted with a fixed temperature of 58 ◦C. The results are shown in Figure 3.12.
The fit is rather good, since the error mainly emerges from the laser intensity which has a peculiar
behaviour that could not be fitted perfectly by our function, as one can see with the off resonant
signal in Figure 3.12. The saturation intensity obtained from the fitting for the 6S 1

2

→ 7P 3

2

transition with T = 58 ◦C is Isat = 424W/m2. If both the saturation intensity and the cell
temperature are left as free parameters, they are fitted to T = 52 ◦C and Isat = 261W/m2, in
which the fitting error is only slightly improved.
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Figure 3.12: Transmission signal of the blue laser, fitted function and fitting error taken in the
blue laser set-up for T = 58 ◦C.

So the temperature of the spectroscopy cell used to lock the 455 nm laser was determined to
be around 58 ◦C by the fitting of the absorption spectrum. These fittings also provided rough
estimates for the effective saturation intensities of the D1-line and the 6S 1

2

→ 7P 3

2

transition.

Such values could be used to calculate the parameters of effective two-level models of these lines.
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Chapter 4

A new way to the Rydberg states of

caesium

The excitation scheme to Rydberg states that was chosen for this project differs slightly from
previous approaches, e.g. with rubidium. The excitation scheme, its differences to previous
approaches and the motivation for using this new scheme are described in the first section.
Preliminary simulations showed that as in the case of rubidium one expects to observe elec-
tromagnetically induced transparency (EIT). The experimental set-up was designed for such
measurements and is described in the second section. However the experimental results re-
ported in the third section exhibit a peculiar behaviour not entirely understood by the present
theory. The analysis and interpretations of these results will be performed in the fourth section
by means of comparison to other works and analysis of possible unwanted effects.

4.1 The level scheme

Most experiments involving Rydberg states of alkali metals were performed on cold atoms where
the slowing and trapping processes happen with the D2-line (if the ground state has n as principal
quantum number, the D2-line is the nS 1

2

→ nP 3

2

transition). Therefore the same laser system

can be used for the first excitation step.
In the case of rubidium, the usual excitation scheme is the two-photon-transition 5S 1

2

→ 5P 3

2

→
nS, nD [15]. The same scheme has been used with thermal rubidium atoms in our group ([2],

6S1/2

32S1/2

7P3/2

probe
455 nm

pump
1070 nm

Figure 4.1: Level scheme of the considered three-level system to the 32S Rydberg state.
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[3]). In the case of caesium, Rydberg excitation have been performed with the similar scheme
6S 1

2

→ 6P 3

2

→ nS, nD [16] and with the three-photon-transition scheme 6S 1

2

→ 6P 3

2

→ 7S 1

2

→
nP on ultracold caesium atoms [17].
The excitation scheme that was chosen in our case can be seen in Figure 4.1. The 6S 1

2

→ 7P 3

2

transition is the first excitation step, driven by the 455 nm laser system described in the previous
chapter. The Rydberg transition is the 7P 3

2

→ nS, nD. It is driven by a laser around 1070 nm,

slightly depending on the principal quantum number of the chosen Rydberg state.
The dipole matrix element of the upper transition has been calculated for the 32S state using
the method from [15] adapted to caesium. The wave functions are computed with the Numerov
method and the dipole matrix elements are then calculated by integration. We obtain:

〈
J = 3

2

∥
∥ er

∥
∥J ′ = 1

2

〉

7P 3
2

→32S 1
2

= 3.06 × 10−31 C ·m (4.1)

As a comparison, the value given by this method for the 6S 1

2

→ 7P 3

2

transition has a relative

error of 6.3% to the experimental value from section 3.1. Since the computation of the wave
function with the Numerov method improves drastically with the principal quantum number,
one can assume that the above value is reasonably good.
The lifetime of the 32S Rydberg state was measured and calculated in [16] to be approx. τ32S =
27µs. This excitation scheme presents some advantages in comparison to the 5S 1

2

→ 5P 3

2

→ nL

scheme in thermal rubidium. From a fundamental point of view, the dipole matrix element to
the Rydberg state is larger than in the case of rubidium. Indeed caesium has one more inner
electron shell than rubidium, so the similar states (e.g. 6P 3

2

in Cs and 5P 3

2

in Rb) are further

away from the core in caesium than in rubidium, and the intermediate that we chose has a
larger principal quantum number, which contributes to a larger overlap with the Rydberg state,
and therefore to a larger dipole matrix element. This allows to have larger Rabi frequencies on
the upper transition. From the technical point of view, the upper transition is at a wavelength
of 1070 nm, which can be easily amplified by an ytterbium-doped fibre amplifier up to 15 W
of optical power. A Pockels-cell can afterwards be used to produce pulses, in a much easier
way than in a previous experiment [3]. Both these differences are interesting in the prospect of
observing and utilizing fast (Gigahertz) Rabi oscillations thermal vapours.
The other difference to the rubidium case is the inverted ratio of the two wavenumbers of the
two-photon-transition. This has an implication on the averaging process over the whole Doppler-
distribution.
The chosen excitation scheme is basically a three-level system in a ladder configuration. EIT
is expected from the simulations for such a system with the first transition being driven by a
weak probe and the upper transition being driven by a strong coupling, independently of the
difference of the wavenumbers.

4.2 Experimental set-up

The initial goal of the set-up was to measure EIT, in order to be able to implement a frequency
locking procedure for the laser driving the upper transition afterwards.
The laser set-up described in section 3.2 is used for the first transition of the ladder system. An
additional commercial diode laser drives the upper transition. The second laser (Toptica DL100
pro design) is a tunable diode laser (External Cavity Diode Laser) at 1070 nm. The output
power after the optical isolator is approx. 110 mW. The set-up can be seen in Figure 4.2. The
incoming laser beam at 455 nm passes through two AOMs in double pass configuration in the
exact same way as described in section 3.2. These AOMs are also adjusted with a total detuning
of −40 MHz. Once again, the purpose of these AOMs is to detune the laser beams without any
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Figure 4.2: Set-up for the spectroscopy on Rydberg states.

restrictions. In this case, if the the AOMs detune the incoming frequency-locked blue beam,
a non-zero velocity class (~k · ~v 6= 0) is selected and when the Rydberg laser is resonant, it is
actually detuned from the zero velocity class (~k · ~v = 0). Overall, the four AOMs from the
two set-ups allow to select the detuning of each beam to the zero velocity class independently.
The blue beam is afterwards sent through the spectroscopy cell which is identical to the one
described in section 3.2.
The beam of the 1070 nm laser is reshaped and collimated using an anamorphic prism pair and
two telescopes to achieve a 1

e2
waist of 2 mm. We then use half-wave plates and PBSCs to split

the beam into three beams: two of them are coupled into optical fibres to a wavemetre and to
other experiments, and the third beam is used for our set-up. This beam needs to be reshaped
afterwards to a waist of 1 mm to match the aperture of the chopping AOM that will be used
for the amplitude modulation.
We use the amplitude modulation technique to enhance the signal-to-noise ratio by modulating
the intensity of the 1070 nm pump beam. We select the 0th order beam of the Bragg diffraction
for the experiment. The RF power is then chopped with 20 kHz and the measured signal is
demodulated by an lock-in amplifier.
The modulated beam passes through a half-wave plate and a PBSC to choose the power of
the beam in the experiment. Both the blue and infrared (IR) laser beams are overlapped in
the spectroscopy cell in a counter-propagating configuration using a dichroic mirror. Another
dichroic mirror separates the blue beam after the cell to be analysed by a photodiode. Both
beams are linearly polarized.
For some of the measurements, this set-up was modified to have the beams focused instead of
collimated in the cell, or to have the beams overlapped in a co-propagating configuration.

4.3 Experimental results

All measurements presented below were performed with the following excitation scheme:
6S 1

2

(F = 4) → 7P 3

2

(F ′ = 3, 4, 5) → 32S

Experiments from the other hyperfine ground state 6S 1

2

(F = 3) produced similar results.

28



-50 0 50 100 150

-0.4

-0.2

0

0.2

Infrared laser detuning (MHz)

B
lu

e
 l
a
s
e
r 

tr
a
n
s
m

is
s
io

n
 (

a
.u

.)

-50 0 50 100 150
-0.06

-0.04

-0.02

0

0.02

0.04

Strong pump beam

Weak pump beam

F =3´

F =4´

F =5´

Figure 4.3: Blue laser transmission signal with the infrared laser being scanned. The beams were
focused at 100µm. The probe beam was weak (power of 24µW, intensity of approx. 103 W/m2).
The blue curve represents the spectrum with a strong pump beam (power of 95 mW (maximum
available), intensity of approx. 108 W/m2). The green curve represents the spectrum with a
weaker pump beam (power of 440µW, intensity of approx. 105 W/m2). Note that the two
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4.3.1 Observation of enhanced absorption

The very first measurements were performed with the laser beams focused into the cell (waist
of 100µm) in order to achieve larger peak Rabi frequencies and by this a bigger signal.
Surprisingly in our first try, we observed dips in the blue laser transmission instead of the ex-
pected peaks with a strong pump beam and a weak probe beam. When we started to change the
pump intensity we were also able to observe a peak arising for the F ′ = 5 hyperfine intermediate
state. The two extreme cases of strong and weak pump intensity are shown in Figure 4.3. One
can see three clean transmission dips with a strong pump beam, and with a weak probe beam for
a small transmission peak F ′ = 5 and transmission dips for F ′ = 3, 4. The signal was averaged
over 256 traces in the weak pump beam case.

Intensity dependence of the system

We performed systematic measurements for different pump and probe intensities in order to
understand the behaviour of the enhanced absorption and of the EIT that we observe.
Working with focused beams is interesting because the peak intensity is higher. It is a way
to achieve higher Rabi frequencies, or to save optical power for other applications. However
focused beams induce a broadening as the intensity is not constant and the observed signal is an
integration over the beam path in the spectroscopy cell. In order to understand the behaviour
of our system, it is preferential to have a single intensity/Rabi frequency over the whole cell. So
the beams were not focused for these measurements.
For the measurements, signals were taken systematically for different combinations of probe
(blue) and pump (IR) intensities following a rectangular pattern . The measurements were done
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for co- and counter-propagating beams. The blue beam diameter was 1 mm. The infrared beam
diameter was approx. 1.5 mm in the counter-propagating case and approx. 2 mm in the co-
propagating case. The corresponding data sets are shown in the Figures 4.4 to 4.11. On each
Figure there is one set of measured spectra for one of the intensities kept constant, in the co- or
counter-propagating case. Each signal is an average over 32 traces. Note that the Figures 4.10,
4.11 and 4.8 are split in two parts. This is due to the fact that a change of parameters on the
photodiode and on the lock-in amplifier had to be made in order to keep a good detection signal,
without the possibility to rescale by comparing the signals before and after the change.

Weak probe beam For a weak probe beam, in the case of the counter-propagating beams
(Figure 4.4), for the F ′ = 5 hyperfine intermediate state, the EIT peak amplitude grows first
as we increase the pump intensity before shrinking as a broader transmission dip grows. The
transition seems to occur for a pump intensity of around 30 kW/m2, and the signal shows a
dispersive behaviour during the transition. For co-propagating beams (Figure 4.5) the evolution
of the EIT peak is similar though we do not see an transmission dip, as we could not achieve
as much pump intensity as with counter-propagating beams (19 kW/m2 against 47W/m2). We
could however observe that the peak takes a dispersive shape as the pump intensity is increased,
similarly to the situation of the counter-propagating beams.
In both cases for the two other intermediate states F ′ = 3 and F ′ = 4 we see transmission dips.
Their amplitude decrease as we turn the pump intensity down before becoming undistinguish-
able.

Strong probe beam Here both cases of counter- and co-propagating beams (Figures 4.6
and 4.7 respectively) are quite similar. There is an EIT peak for each hyperfine intermediate
state whose amplitude decreases as we turn the pump intensity down. We also notice that for
high pump intensities, this peak seems to sit on top of a smaller and broader transmission dip.

Weak pump beam For a weak pump beam, only the features from the F ′ = 5 hyperfine
intermediate state are clearly visible. In both cases of counter- and co-propagating beams
(Figures 4.8 and 4.9 respectively), there is an EIT peak that gets broader and bigger with the
probe intensity. The position at which the features from the F ′ = 3 and F ′ = 4 states should
occur are however shown.

Strong pump beam In the strong pump and counter-propagating beams case (Figure 4.10)
for the F ′ = 3 and F ′ = 4 hyperfine intermediate states, we first see an transmission dip growing
as we increase the probe intensity. This dip then gets overcome by an faster growing EIT peak
as we increase the probe intensity further. For F ′ = 5, This transition also happens, but the
signal takes a dispersive shape during the transition, instead of being a growing peak sitting on
top of a dip. We can extract from the data rough values for the probe beam intensity at which
the transitions are happening: for F ′ = 5 at 100W/m2, for F ′ = 4 at 1 kW/m2 and for F ′ = 3
at 6 kW/m2. For co-propagating beams (Figure 4.11), the same is occurring with F ′ = 3 and
F ′ = 4 (at 200W/m2). For F ′ = 5, we only see that the EIT peak takes a dispersive shape for
small probe intensities, once again as the achievable pump intensity was smaller.
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Figure 4.10: Blue laser transmission signal for different probe beam intensities with
counter-propagating beams. The pump beam intensity is 48 kW/m2.
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A overview of these results for F ′ = 4, 5 with co- and counter-propagating beams is presented
in Figure 4.12. We notice that the results for counter- and co-propagating beams are perfectly
compatible regarding the prevalence of EIT or enhanced absorption.
Now the information concerning the transmission and absorption peaks that we can extract

from these measurements is the following:� There are two phenomena competing, the enhanced transmission and the enhanced ab-
sorption.� At constant blue (probe) intensity, increasing the IR intensity leads the absorption to take
over the EIT.� At constant IR (pump) intensity, a small blue intensity leads to enhanced absorption and
as we increase the blue intensity, EIT takes over.� There seems to be a minimal blue intensity below which it is not possible to observe a
transmission peak (see left side of Figure 4.12(b)).� The transition between enhanced absorption and the enhanced transmission shows a dif-
ferent behaviour between the hyperfine intermediate states F ′ = 5 and F ′ = 3, 4. For
F ′ = 5, a dispersive behaviour is observed whereas for F ′ = 3, 4 we observe a peak and a
dip that are competing.

Starting from this, we will now try to explain the presence of unexpected absorption peaks and
their relative behaviour to the transmission peaks.
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Figure 4.12: Blue and infrared intensity dependence of the EIT/absorption for the
6S 1

2

(F = 4) → 7P 3

2

(F ′ = 4, 5) → 32S excitation scheme. The measurement points are shown

as green cross for counter-propagating beams and black circles for co-propagating beams. (a)
is for F ′ = 5 and (b) for F ′ = 4. The thick coloured line represents the prevailing observed
effect. The colour cross-fading represents the rough transition interval between the two effects.
No thick line is drawn in case the effect is not distinguishable.
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4.4 Analysis and interpretation

Enhanced absorption of the blue laser is not expected from theoretical simulations of ladder-
type three-level systems like ours. However, it has been reported in other works on three-level
ladder-type systems that one can observe absorption peaks ([18] and [19]). We will see that the
explanation of these results relies on the fact that perfect three-level ladder-type systems rarely
exist, and that the theoretical treatment of Moon et al. [19] can apply to our system.

4.4.1 Three-level ladder-type systems in the reality

Hayashi et al. have conducted studies of electromagnetically induced transparency in hot sodium
atomic vapours [18]. Four different ladder type systems in sodium were investigated. For the
3S 1

2

→ 3P 1

2
, 3
2

→ 5S 1

2

system, absorption peaks and even transitions from absorption peaks

to transmission peaks were observed. They interpreted the enhanced absorption to arise from
two-photon absorption (TPA), but they were not able to explain the transitions between the
two regimes.
Moon et al. have conducted extensive studies of three-level ladder-type systems in rubidium
atoms ([20], [21], [19]). In the 5S 1

2

→ 5P 3

2

→ 5D 3

2
, 5
2

system, they have observed an absorption

peak ([19]) along with expected transmission peaks. They demonstrate the absorption peak
to be caused by TPA. They also developed an improved theoretical treatment for three-level
ladder systems that accounts for all the absorption/transmission peaks from their systems, and
highlight the fact that only if the transition is cyclic or almost cyclic the transmission peak that is
observed can be due to EIT. Otherwise it arises from double-resonance optical pumping (DROP)
[19]. Let us now analyse these three effects and their contribution in an actual three-level ladder
type system as Moon et al. did, and try to match it to our experimental results.

Actual structure of a three-level ladder type system

The only true three-level ladder-type systems that can be found in atomic systems are the one
with closed (or cyclic) transitions. One example is the 6S 1

2

(F = 4) → 6P 3

2

(F ′ = 5) → 5D 5

2

(F ′′ =

6) transition in caesium, as the 5D 5

2

state can only decay to the 6P 3

2

state. Most three-level

ladder systems have additional allowed decays channels from the upper state and to the other
hyperfine ground state (dark ground state). These systems can be much better represented by
a five-level ladder-type system (see Figure 4.13, [21]).

EIT, DROP and two-photon absorption

The contributions of the EIT, DROP and two-photon absorption in the five-levels ladder-type
system for Moon et al. are explained below.

EIT In a cycling transition (where γij = 0 except for γ32 and γ43 in Figure 4.13), EIT tends
to be the dominant phenomena with a weak probe (Noh opt ex 2011). However when the
transition is not cycling, the additional decay rates tend to reduce the importance of the EIT
for the amplitude of the transmission peak ([22]). The EIT tends to take a dispersive lineshape
when the lasers are detuned.

DROP DROP can be explained only in the five-levels ladder-type system. Here, a strong
coupling tends to pump the atoms that are excited by the probe laser to the intermediate state
in the dark ground state. Thus the population in the ground state decreases and the transmission
is bigger. DROP increases with both probe and pump intensities. The lineshape of DROP does
not show dispersive behaviour when the laser are detuned ([21], [19]).
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Figure 4.13: Scheme of a five-level ladder-type system.

Two-photon absorption TPA appears when the two beams respect the two-photon reso-
nance. It results in an absorption peak. TPA is always present, but mostly overcome by the
one-photon effects EIT and DROP. Moon et al. explain the absorption peak that they observe
by the fact that for this particular transition, EIT and DROP are too weak or suppressed. They
observed that their absorption peak amplitude increases with the pump intensity but decreases
with an increase of the probe intensity.

4.4.2 Comparison to our results

In our system, the upper state is a long-living state. Therefore the decay rates from this state
are low. This would mean that DROP is more difficult to achieve as in Moon’s system. Our
intermediate state has additional decay paths to the direct 7P3/2  6S1/2. This leads to addi-
tional decoherence, which would tend to reduce the EIT contribution. The F ′ = 5 intermediate
state however can decay in the dark ground state (F = 3) only via the additional decay paths
mentioned in section 3.1. The 6S 1

2

(F = 4) → 7P 3

2

(F ′ = 5) → 32S transition is therefore not far

from being cyclic, considering the long lifetime of the Rydberg state.
We observed that the absorption peak amplitude grows with the pump intensity. This is con-
sistent with TPA. Moreover, we just mentioned that EIT and DROP effects should be in-
hibited compared to Moon’s system. This can explain why we need relatively high intensi-
ties for the transmission processes (EIT and DROP) to take over the TPA and to observe a
transition from absorption peaks to transmission peaks. The almost cyclic character of the
6S 1

2

(F = 4) → 7P 3

2

(F ′ = 5) → 32S transition is also consistent with the fact that in this case,

we sometimes observe signals with a dispersive lineshape. In this case, the implied detuning
could come from the blue laser, whose locking system was unstable at the time. All of this is
consistent with the transition from absorption to transmission peaks as we increase the pump
intensity for a constant probe intensity.
Therefore the work of Moon et al. helps us understand that because of the long-living character
of the Rydberg state and the additional decay paths from the 7P3/2 state, the EIT and DROP
effects are inhibited and they surpass the two-photon absorption process for higher intensities.
The TPA is actually a weak effect, so this also explains why the measured signals were always
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very weak and needed averaging to be distinguished.
Yet one conclusion of our experiment remains unexplained: the transition to enhanced absorp-
tion for higher pump intensities at constant probe intensities. Indeed increasing the pump
intensity should increase the EIT and the optical pumping. Our results should be further inves-
tigated with simulations of the five-level ladder-type system. These simulations should focus on
the influence of the existence of several decay paths from the 7P3/2 state, as it is the only change
to the model compared to usual three-level ladder system 5S 1

2

→ 5P 3

2

→ nS, nD in rubidium,

which exhibits strong EIT ([23]).

4.4.3 Other effects

Though the former interpretation appears to be robust, there are quite a few differences between
our system and Moon’s system (long-living upper state, inverted ratio of the wavenumbers, . . . ).
Therefore we examined other hypotheses for the observation of enhanced absorption.

Fundamental aspects

Rydberg state In order to check if the 32S Rydberg state had a specificity (e.g. shorter
lifetime) that would lead to the results that were observed, other Rydberg states were tried
with both allowed azimuthal quantum numbers L = 0 and 2. The 35S, 43S, 32D states show
identical behaviour to the 32S state.

Inverted wavenumber ratio One of the characteristic of our 6S 1

2

→ 7P 3

2

→ nS, nD ap-

proach is that the wavenumber ratio of the driven transitions is inverted compared to usual
systems. The laser with the largest wavenumber (shortest wavelength) drives the first transition
(455 nm - 1070 nm) of our system whereas in the two well studied approaches via the D2-line
in caesium and rubidium it is the smallest wavenumber first (780 nm - 480 nm in Rb, 852 nm -
509 nm in Cs). The consequence of this inversion on a ladder system is that the averaging over
the Doppler velocity distribution is changed. However, simulations show that enhanced trans-
mission should still be present at all Rabi frequencies/intensities. Also measurements on other
“inverted” ladder systems have already been performed ([20], [18]) and enhanced transmission
was reported. Ergo, the scheme having an inverted wavenumber ratio should not be the cause
for the observation of enhanced absorption.

Broadening effects

Laser ionization Another hypothesis is that the infrared laser induced the ionization of the
Rydberg atoms, explaining the peculiar effect that was measured. The level scheme is shown in
Figure 4.14. Let us assume that the Rydberg atoms are ionized by the infrared laser driving
the upper transition. Since we observe enhanced absorption for several Rydberg levels for which
the resonant wavelengths differ by up to several nanometres, this phenomenon is not strongly
dependant on the wavelength of this laser.
The ionization was tested with an additional laser passing through the cell. This is a diode-
pumped Nd:YAG laser with 1.5 W of optical output power at 1064 nm. A scheme of the
modified set-up is shown in Figure 4.15. The transmission of the blue laser was measured with
and without additional laser. Like in the very-first measurements, the beams were focused in
the cell to 100µm. The probe beam was weak (power of 24µW, intensity of approx. 103 W/m2).
The results are shown in Figures 4.16(a) and 4.16(b). In both cases, strong and weak pump,
the only visible difference between the two signals is a shift in frequency, which comes from the
drift of the lasers. Therefore there is no laser ionization visible.
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Figure 4.14: Level scheme corresponding to the ionization hypothesis.
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Figure 4.15: Modified set-up with the additional beam propagating through the cell.
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Figure 4.16: Blue laser transmission signal with the infrared laser being scanned. The pump
beam was (a) strong (power of 95 mW (maximum available), intensity of approx. 108 W/m2)
and (b) weak (power of 440µW, intensity of approx. 105 W/m2).
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Background gases and collisions A defect spectroscopy cell would possess an excessively
high fraction of background gases. These could be responsible for unwanted effects. This
hypothesis was ruled out by trying a commercial Cs spectroscopy cell with which we noticed no
difference compared to the home-made cell.
It has also been reported in [24] that collisions can induce enhanced absorption in ladder systems.
A three level ladder system with collisional decay rates was simulated and the results exhibit a
competition between EIT and enhanced absorption as a function of the probe Rabi frequency.
We also witnessed such a phenomena except that Yang sees the absorption taking over the
transmission as he increases the probe Rabi frequency and we measured the exact opposite.
Moreover the atomic density that is achieved in our spectroscopy cell at around 60 ◦C on the
order of 1018 atoms/m3. This value is way below the collisional regime. The combination of
these arguments allows us to say that our measurement results are not a result of collisions.
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Chapter 5

Conclusion and outlook

The scope of this thesis has been the set-up of a new laser system and to investigate a two-
photon transition to a Rydberg state in caesium via an intermediate state. First results on the
behaviour of the transition have been presented and explained by applying a five-level atom
model.
The first transition 6S 1

2

→ 7P 3

2

was driven by a commercial frequency doubled diode laser.

The laser could be frequency locked to the hyperfine transitions with the DAVLL spectroscopy
method and saturation absorption spectroscopy. A measurement method to determine temper-
ature of the spectroscopy cell was reported and led to satisfying results.
The excitation to a Rydberg state was performed with a commercial diode laser. Surprisingly,
the measurements did not match the expected results. Enhanced absorption of the blue laser was
observed at the two-photon resonance instead of the expected EIT signal. To gain more insight
the intensity dependence of the system was studied and the transition between absorption and
transmission peaks was determined. A more complex model than the usual three-level system
as well as the comparison with other results on three-level systems allowed to determine that
the results arose from the competition between three processes, and in particular that the en-
hanced absorption was due to two-photon absorption. A set of simulations has to be performed
on five-levels systems, in order to make sure that the interpretation was right, and to further
understand the role of the different parameters in the system.
As mentioned above, the original purpose of the set-up was to perform EIT measurement and
to lock the second laser frequency with this signal. The conclusion of this study is that such
a procedure would be highly consuming in optical power, as obtaining clean spectra at low
pump power required substantial averaging. The recently developed method of polarisation
spectroscopy of an excited state transition ([25]) will be performed to lock the frequency of the
1070 nm laser. We have good confidence that this method will produce better signals, as it
relies on the optical pumping on the first transition by a circularly polarised beam. Although
the optical pumping should not be as efficient as in a closed transition, the almost cyclic nature
of the 6S 1

2

(F = 4) → 7P 3

2

(F ′ = 5) transition should still make it possible to create an anisotropy

for the 1070 nm laser.
Once the laser set-up is fully functional, the goal is to amplify the 1070 nm laser in a fibre am-
plifier, to modulate its intensity with an ultrafast Pockels cell and to study fast dynamics on the
6S 1

2

→ 7P 3

2

→ nS, nD transition, similarly to previous work on rubidium ([3]). Afterwards, we

would like to achieve higher caesium densities and to observe blockade phenomena in a vapour
cell.
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Appendix A

Caesium level structure
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Figure A.1: Level structure and lowest optical transitions of caesium. The wavelength of each
transition is indicated on the arrow representing the transition. The values were taken or
calculated from [26], [27] and [28] with the best available precision.
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Appendix B

Dipole matrix elements: derivation

and analysis

B.1 Derivation of the dipole matrix elements

B.1.1 The spherical basis

A very useful tool for the evaluation of the dipole matrix elements is the so-called spherical
basis, since it provides a very nice and convenient form for the dipole operator using the spherical
harmonics. The overview presented here is based on the treatment of the spherical basis by Steck
[30], Sobelman [31] or Zare [32].
In terms of the Cartesian basis vectors x̂, ŷ and ẑ, the spherical basis vectors are defined as:

ê±1 := ∓ 1√
2
(x̂± iŷ) = −(ê∓1)

∗

ê0 := ẑ = (ê0)
∗

(B.1)

Note that we must use a hermitian scalar product so that this basis is orthonormal: ê+1 · ê+1 = 0
but (ê+1)

∗ · ê+1 = 1.
The components of any vector A in the spherical basis are given by : Aq := êq ·A (usual “dot”
product!), and thus the expression of A in the spherical basis is:

A =
∑

q

Aq ê
∗
q =

∑

q

(−1)qAq ê−q (B.2)

The hermitian scalar product is then defined as A
∗ · B =

∑

q(Aq)
∗Bq so that the norm is

|A|2 =∑q |Aq|2.

If the components of a vector A are defined in the Cartesian and spherical basis such that
A = Axx̂+Ayŷ +Az ẑ =

∑

q Aq ê
∗
q , the the basis transformation relations are:

A0 = Az Az = A0

A±1 = ∓ 1√
2
(Ax ± iAy) Ax = − 1√

2
(A+1 −A−1) (B.3)

Ay =
i√
2
(A+1 +A−1)

We can now express the components of the position operator r in the spherical basis:

r±1 = ∓ r√
2
sin θe±iϕ

r0 = r cos θ
(B.4)
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or more compactly,

rq = r

√

4π

3
Y1q(θ, ϕ) (B.5)

As we can see later on (equation (B.7)), the q term corresponds to the inverse of the polarisation:
q = 0 is π-polarisation, q = +1 is σ−-polarisation and q = −1 is σ+-polarisation.
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B.1.2 Reduced matrix element, what is it?

A dipole matrix element 〈jmj |erq|j′m′
j〉 can be factored as a product of a radial and an angular

dependance using the Wigner-Eckart theorem:

〈jmj |erq|j′m′
j〉 = 〈j‖er‖j′〉〈jmj |j′m′

j, 1 q〉 (B.6)

〈jmj |erq|j′m′
j〉 = 〈j‖er‖j′〉(−1)j−mj

√

2j + 1

(
j 1 j′

−mj q m′
j

)

(B.7)

〈jmj |erq|j′m′
j〉 = 〈j‖er‖j′〉(−1)j

′−1+mj
√

2j + 1

(
j′ 1 j
m′

j q −mj

)

(B.8)

respectively with Clebsch-Gordan coefficients or Wigner 3-j symbols.

Without hyperfine structure or LS-coupling, such a dipole matrix element can also be written
in an integral form and expanded using the separation of the radial and angular part of the wave
function (symmetries of the Hamiltonian operator).

〈LmL|erq|L′m′
L〉 = 〈LmL|er

√

4π
3
Y1 q|L′m′

L〉 using equation (B.5) (B.9)

= e

√

4π

3

∫

r,θ,ϕ
(R∗

nL r Rn′ L′r2 dr)(Y ∗
LmL

Y1 qYL′ m′

L
sin θ dθ dϕ) (B.10)

= e

√

4π

3

(∫

r
r3R∗

nLRn′ L′ dr

)

(−1)mL

√

(2L+ 1)(2× 1 + 1)(2L′ + 1)

4π

×
(
L 1 L′

0 0 0

)(
L 1 L′

−mL q mL′

)

1 (B.11)

= e(−1)mL

(∫

r
r3R∗

nLRn′ L′ dr

)
√

(2L+ 1)(2L′ + 1)

×
(
L 1 L′

0 0 0

)(
L 1 L′

−mL q mL′

)

(B.12)

We can now identify the equation (B.7), valid for any angular momentum, with the equation
(B.12) to get the expression of the the reduced dipole matrix element 〈L‖er‖L′〉.

〈L‖er‖L′〉 = e(−1)mL−(L−mL)

(∫

r
r3R∗

nLRn′ L′ dr

)√
2L′ + 1

(
L 1 L′

0 0 0

)

(B.13)

Since
(
L 1 L′

0 0 0

)

=

{ √
Lmax

(2L+1)(2L′+1) (−1)
L+L′

+1

2 if ∆L = ±1

0 if ∆L 6= ±1
(B.14)

with Lmax = max(L,L′), we get

〈L‖er‖L′〉 = e(−1)2mL−L

(∫

r
r3R∗

nLRn′ L′ dr

)√
2L′ + 1

√

Lmax

(2L+ 1)(2L′ + 1)
(−1)

L+L′
+1

2

(B.15)

= e(−1)
L′

−L+1

2

(∫

r
r3R∗

nLRn′ L′ dr

)√

Lmax

2L+ 1
mL ∈ N so (−1)2mL = 1 (B.16)

if ∆L = ±1, and 〈L‖er‖L′〉 = 0 otherwise.

1Here we use Yl−m = (−1)mYlm and equation (B.67), taken from [32] eq. (3.119) p. 103, or citesobelman eq.
(4.62) p.66
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We can also define a “purely radial” dipole matrix element as:

〈RnL|er|Rn′ L′〉 = e

∫

r
r3R∗

nLRn′ L′ dr (B.17)

The relation between this radial dipole matrix element and the reduced dipole matrix element
〈L‖er‖L′〉 coming from the Wigner-Eckhart theorem is then:

〈L‖er‖L′〉 = (−1)
L′

−L+1

2

√

Lmax

2L+ 1
〈RnL|er|Rn′ L′〉 (B.18)

The radial dipole matrix element 〈RnL|er|Rn′ L′〉 is simply the radial integration of the radial
parts of the wave functions. It is used for example in [1]. The reduced dipole matrix element
〈L‖er‖L′〉 used for example by Steck, coming from the Wigner-Eckhart theorem, contains an
additional angular factor, depending on the L’s.
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B.1.3 Calculation of the dipole matrix element with hyperfine structure

A hyperfine sublevel can be split in a sum of uncoupled products of fine structure and nucleus
spin sublevels using the Clebsch-Gordan coefficients or the Wigner 3-j symbols:

|nLSJIFmF 〉 =
∑

mJ ,mI
mJ+mI=mF

|JmJ , ImI〉〈JmJ , ImI |FmF 〉 (B.19)

|FmF 〉 =
∑

mJ ,mI
mJ+mI=mF

|JmJ〉|ImI〉
√
2F + 1(−1)J−I+mF

(
J I F
mJ mI −mF

)

(B.20)

Similarly,

|nLSJmJ〉 =
∑

mL,mS
mL+mS=mJ

|LmL, SmS〉〈LmL, SmS |JmJ〉 (B.21)

|JmJ 〉 =
∑

mL,mS
mL+mS=mJ

|LmL〉|SmS〉
√
2J + 1(−1)L−S+mJ

(
L S J
mL mS −mJ

)

(B.22)

Putting this expression in the |FmF 〉 expression, we obtain:

|FmF 〉 =
√

(2F + 1)(2J + 1)(−1)J−I+L−S

×
∑

mJ+mI=mF
mL+mS=mJ

|LmL〉|SmS〉|ImI〉(−1)mF+mJ

(
L S J
mL mS −mJ

)(
J I F
mJ mI −mF

)

(B.23)

Let us now write the complete formula for the dipole matrix element with hyperfine structure
〈FmF |erq|F ′m′

F 〉 using equations (B.23) and (B.7), and reduce it to get equation (B.8) in terms
of F . The relations used to manipulate the Wigner 3-j symbols and Wigner 6-j symbols are
listed in section B.3.
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〈FmF |erq|F ′m′
F 〉 =

√

(2F + 1)(2J + 1)
√

(2F ′ + 1)(2J ′ + 1)(−1)J−I+L−S(−1)J
′−I′+L′−S′

×
∑

mJ+mI=mF
mL+mS=mJ
m′

J+m′

I=m′

F
m′

L+m′

S=m′

J

〈ImI |〈SmS |〈LmL|erq|L′m′
L〉|S′m′

S〉|I ′m′
I〉(−1)mF+mJ (−1)m

′

F+m′

J

×
(

L S J
mL mS −mJ

)(
J I F
mJ mI −mF

)(
L′ S′ J ′

m′
L m′

S −m′
J

)(
J ′ I ′ F ′

m′
J m′

I −m′
F

)

(B.24)

=
√

(2F + 1)(2J + 1)
√

(2F ′ + 1)(2J ′ + 1)(−1)J+J ′+L+L′−I−I′−S−S′

×
∑

δII′δmIm
′

I
δSS′δmSm

′

S
〈LmL|erq|L′m′

L〉(−1)m
′

F+mF+m′

J+mJ

×
(

L S J
mL mS −mJ

)(
L′ S′ J ′

m′
L m′

S −m′
J

)(
J I F
mJ mI −mF

)(
J ′ I ′ F ′

m′
J m′

I −m′
F

)

(B.25)

= 1
√

(2F + 1)(2J + 1)
√

(2F ′ + 1)(2J ′ + 1)(−1)J+J ′+L+L′−2I−2S

×
∑

mJ+mI=mF
mL+mS=mJ
m′

J+mI=m′

F
m′

L+mS=m′

J

(−1)m
′

F+mF+m′

J+mJ (−1)L−mL
√
2L+ 1〈L‖er‖L′〉

(
L 1 L′

−mL q m′
L

)

×
(

L S J
mL mS −mJ

)(
L′ S J ′

m′
L mS −m′

J

)(
J I F
mJ mI −mF

)(
J ′ I F ′

m′
J mI −m′

F

)

(B.26)

1Since the dipole operator doesn’t act on the electronic and nucleic spin, the Kronecker-δ symbols in equation (B.25) come from the fact that electronic spin and nucleic
spin states form an orthonormal basis. This is the reason why there is only I , mI , S and mS left in equation (B.26). We also use equation (B.7) for 〈LmL|erq|L

′m′

L〉
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〈FmF |erq|F ′m′
F 〉 = 2

√

(2F + 1)(2J + 1)
√

(2F ′ + 1)(2J ′ + 1)
√
2L+ 1(−1)J+J ′+L−2I−3S

×
∑

mJ+mI=mF
mL+mS=mJ
m′

J+mI=m′

F
m′

L+mS=m′

J

(−1)m
′

F+mF−mJ+4mS 〈L‖er‖L′〉
(

J I F
mJ mI −mF

)(
J ′ I F ′

m′
J mI −m′

F

)

× (−1)L+L′+S+mL+m′

L−mS

(
J ′ S L′

m′
J −mS −m′

L

)(
L 1 L′

−mL q m′
L

)(
L S J
mL mS −mJ

)

(B.27)

= 3
√

(2F + 1)
√

(2F ′ + 1)(2J + 1)(−1)J+J ′+L−2I+S

×
∑

mJ+mI=mF
m′

J+mI=m′

F

(−1)m
′

F+mF−mJ

(
J I F
mJ mI −mF

)(
J ′ I F ′

m′
J mI −m′

F

)(
J ′ 1 J
m′

J q −mJ

)

(−1)−J ′−L−1−S

× (−1)J
′+L+1+S〈L‖er‖L′〉

√

(2J ′ + 1)(2L+ 1)

{
J ′ 1 J
L S L′

}

︸ ︷︷ ︸

=〈J‖er‖J ′〉

(B.28)

= 4
√

(2F + 1)
√

(2F ′ + 1)(2J + 1)(−1)J+J ′+L−2I+S

×
∑

〈J‖er‖J ′〉(−1)m
′

F+mF−mJ

(
J I F
mJ mI −mF

)(
J ′ I F ′

m′
J mI −m′

F

)(
J ′ 1 J
m′

J q −mJ

)

(−1)−J ′−L−1−S (B.29)

2The relation m′

J +mJ −mL = (m′

L +mL −mS) + (−mJ + 4mS) has been used to transform the exponent of (−1). The underbracketed 3-j symbol was also
transformed using the symmetry relations (B.57) and (B.58).

3We use the fact that (−1)4S = 1 = (−1)4mS to suppress the 4mS exponent and transform (−1)−3S into (−1)S. We also factorised 3 3-j symbols into one 3-j symbol
and one 6-j symbol using the tranformation formula (B.66).

4We used the equation (37) from [4] to introduce the fine structure 〈J‖er‖J ′〉 reduced dipole matrix element. Symmetry relations (B.63) and (B.64) are used to get
the proper form for the 6-j symbol.
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〈FmF |erq|F ′m′
F 〉 = 5

√

(2F + 1)
√

(2F ′ + 1)(2J + 1)(−1)J−2I−1

×
∑

〈J‖er‖J ′〉(−1)m
′

F+mF−mJ (−1)J+I+F

(
F I J

−mF mI mJ

)(
J ′ 1 J
m′

J q −mJ

)

(−1)J
′+I+F ′

(
J ′ I F ′

−m′
J −mI m′

F

)

(B.30)

= 6
√

(2F + 1)
√

(2F ′ + 1)(2J + 1)(−1)J−I−1+F ′+F

×
∑

mJ+mI=mF
m′

J+mI=m′

F

〈J‖er‖J ′〉(−1)2m
′

F+mF−2mI

× (−1)J
′+J+I+mI−m′

J−mJ

(
F I J

−mF mI mJ

)(
J ′ 1 J
m′

J q −mJ

)(
J ′ I F ′

−m′
J −mI m′

F

)

(B.31)

= 7
√

(2F + 1)
√

(2F ′ + 1)(2J + 1)(−1)J−I−1+F ′+F+2m′

F+mF−2I

×
∑

mJ+mI=mF
m′

J+mI=m′

F

〈J‖er‖J ′〉(−1)J
′+J+I+mI−m′

J−mJ

(
F I J

−mF mI mJ

)(
J ′ 1 J
m′

J q −mJ

)(
J ′ I F ′

−m′
J −mI m′

F

)

(B.32)

= 8
√

(2F + 1)(−1)J−3I−1+F ′+F+2m′

F+mF

(
F 1 F ′

−mF q m′
F

)

(−1)−F ′−J−1−I

× (−1)F
′+J+1+I〈J‖er‖J ′〉

√

(2F ′ + 1)(2J + 1)

{
F 1 F ′

J ′ I J

}

︸ ︷︷ ︸

=〈F‖er‖F ′〉

(B.33)

5The two underbracketed 3-j symbols were transformed using respectively (B.57) and (B.58).
6The exponent of (−1) was modified using the relation m′

F +mF −mJ = (2m′

F +mF − 2mI) + (mI −m′

J −mJ).
7Since −2I and −2mI have the same parity, we use (−1)−2I = (−1)−2mI .
8We factorised 3 3-j symbols into one 3-j symbol and one 6-j symbol using the tranformation formula (B.66).
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〈FmF |erq|F ′m′
F 〉 = 9

√

(2F + 1)(−1)−4I+F−2+2m′

F+mF 〈F‖er‖F ′〉 (−1)F
′+1+F

(
F ′ 1 F
m′

F q −mF

)

(B.34)

= (−1)2F−4I+2m′

F 〈F‖er‖F ′〉(−1)F
′−1+mF

√

(2F + 1)

(
F ′ 1 F
m′

F q −mF

)

(B.35)

〈FmF |erq|F ′m′
F 〉 = 10〈F‖er‖F ′〉(−1)F

′−1+mF
√

(2F + 1)

(
F ′ 1 F
m′

F q −mF

)

(B.36)

(B.37)

9We used the equation (36) from [4] to introduce the fine structure 〈F‖er‖F ′〉 reduced dipole matrix element. Symmetry relations (B.63), (B.64) and (B.57) are used
to get the proper form for the 6-j symbol, as well as another 3-j symbol.

10Finally, to get equation (B.36), which is exactly the same as the equation (35) from [4], we used the following facts:

– 2F and 2F ′ necessarily have the same parity, so 2F and 2m′

F too, so (−1)2F+2m′

F = 1
– I is an integer or a half integer, so (−1)−4I = 1
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B.1.4 Comments

Why Wigner 6-j symbols?

We saw in the calculation that Wigner 6-j symbols appear by recombination of Wigner 3-
j symbols. We can understand this in another way. Let us remember that the Wigner 6-j
symbols come from the different possibilities of adding three angular momenta. Adding j1, j2, j3
gives different basis if you first add j1+j2 = j12 and then j12+j3, or if you first add j2+j3 = j23
and then j1 + j23. The Wigner 6-j symbols give the basis transformation relations.

〈F‖er‖F ′〉 = 〈J‖er‖J ′〉(−1)F
′+J+1+I

√

(2F ′ + 1)(2J + 1)

{
J J ′ 1
F ′ F I

}

In this equation (equation (36) from [4], similar to equation (37)), the idea is that one can see the
photon as either changing J or F . This amounts to coupling the photon (of angular momentum
1) to the electron (of angular momentum J) either before or after coupling the electron to the
nucleus (of angular momentum I). Thus the appearance of the Wigner 6-j symbol.
The equation (37) from [4] is to understand in the similar way, that is coupling the photon to
the electron (of angular momentum L) before or after coupling the electron to the electronic
spin S.
For more details, you can refer to Daniel Steck’s very comprehensive script on quantum optics
[30], sections 7.3.6.1 and 7.3.7.1.

Angular factor / Transition strength

Let’s now write the dipole matrix element for the transition from a state |nL · · ·αmα〉 to a
state |n′L′ · · ·α′ m′

α〉, the α angular momenta being either L, J or F , in terms of the reduced or
the radial dipole matrix elements multiplied by an angular factor {·|·} (often also refered to as
transition strength):

〈nL · · ·αmα|erq|n′L′ · · ·α′m′
α〉 = 〈L‖er‖L′〉 × {L · · ·αmα|L′ · · ·α′ m′

α}reduced (B.38)

〈nL · · ·αmα|erq|n′L′ · · ·α′m′
α〉 = 〈RnL|er|Rn′ L′〉 × {L · · ·αmα|L′ · · ·α′ m′

α}radial (B.39)

The relation between these two angular factors is then:

{L · · ·αmα|L′ · · ·α′ m′
α}reduced = (−1)

L′
−L+1

2

√

2L+ 1

Lmax
{L · · ·αmα|L′ · · ·α′ m′

α}radial (B.40)

These angular factors exhibit different symmetry properties:

{L′ · · ·α′ m′
α|L · · ·αmα}reduced = (−1)ε

√

2L+ 1

2L′ + 1
{L · · ·αmα|L′ · · ·α′ m′

α}reduced (B.41)

{L′ · · ·α′ m′
α|L · · ·αmα}radial = (−1)κ{L · · ·αmα|L′ · · ·α′ m′

α}radial (B.42)

where ε and κ are two integers.

Using the reduced dipole matrix elements, we can also define transition strengths between two
angular momenta α and β, α and β being either L, J or F :

〈n · · ·α · · · β mβ|erq|n′ · · ·α′ · · · β′ m′
β〉 = 〈α‖er‖α′〉{α · · · βmβ|α′ · · · β′ m′

β}reduced (B.43)

The symmetry relation in that case is:

{α′ · · · β′m′
β|α · · · β mβ}reduced = (−1)η

√

2α+ 1

2α′ + 1
{α · · · βmβ|α′ · · · β′ m′

β}reduced (B.44)

where η is an integer.
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B.2 Discussions and examples

B.2.1 Normalizations

The dipole matrix elements obey several normalization, arising from the orthogonalization rules
for the Clebsch-Gordan, Wigner 3-j and Wigner 6-j symbols. They also have physical interpre-
tations.

Let us first consider the decay from a state |j′m′〉 to any other state |j (m′ + q)〉. The cor-
responding decay rate is then1:

Γj′m′→j (m′+q) =
ω3
0

3πǫ0~c3
|〈j (m′ + q)|erq|j′m′〉|2 (B.45)

The global decay rate from the state |j′m′〉 is the sum of all possible single decay rates:

Γj′m′ =
∑

j,q

Γj′m′→j (m′+q) (B.46)

Γj′m′ =
ω3
0

3πǫ0~c3

∑

j,q

|〈j (m′ + q)|erq|j′m′〉|2 (B.47)

The sum of all possible transition strengths to a single state |j′m′〉 is appearing. The Wigner-
Eckhart theorem (B.7 and B.6) and the first orthogonality relation for the Wigner 3-j coefficients
(B.60) yield:

∑

j,q

|〈j (m′ + q)|erq|j′m′〉|2 =
∑

j,q

|〈j‖er‖j′〉|2|〈j (m′ + q)|1 q, j′m′〉|2 (B.48)

∑

j,q

|〈j (m′ + q)|erq|j′m′〉|2 =
∑

j,q

|〈j‖er‖j′〉|2 (2j + 1)

(
j 1 j′

−(m′ + q) q m′

)2

(B.49)

∑

j,q

|〈j (m′ + q)|erq|j′m′〉|2 =
∑

j

|〈j‖er‖j′〉|2 2j + 1

2j′ + 1
(B.50)

Assuming a simple j → j′ system, the sum disappears and we get:

∑

j,q

|〈j (m′ + q)|erq|j′m′〉|2 = |〈j‖er‖j′〉|2 2j + 1

2j′ + 1
(B.51)

This identity can be verified by summing the squared coefficients leading to a single level in
Figure B.1. A similar relation is valid if we express the reduced dipole matrix element in
another basis (equation (36) from [4], leading to the equation (38)) and use the orthogonality
relation for the Wigner 6-j coefficients:

∑

F,q

|〈F (m′
F + q)|erq|F ′m′

F 〉|2 =
2J + 1

2J ′ + 1
|〈J‖er‖J ′〉|2 (equation (40) in [4]) (B.52)

This normalization is actually valid for any angular momenta and can be rewritten in terms of
(reduced) transition strengths (see equation (B.38)):

∑

β,mβ

|{α · · · β mβ|α′ · · · β′ m′
β}reduced|2 =

2α+ 1

2α′ + 1
(B.53)

1[30] section 7.3.7.4 or 11.4
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The meaningful interpretation of this takes place when j = j′. In this case the strengths of
the transitions leading to a single magnetic level is 1, meaning that adding the strengths of the
different decay paths represent the probabilities of the single decays.

Figure B.1: Two-level-systems with the associated ‘transition factors’ (Clebsch-Gordan coeffi-
cients from equation (B.6) in this case).

Another normalization appears from the sum of all dipole matrix elements from a single
ground state sublevel. This is also a consequence of the first orthogonality relation.
In [4], this normalization is shown with the equations (39), (41) and (42). The interpretation of
this normalization is a bit tricky and not really physical (see [30]).

B.2.2 Hydrogen atom

The structure, fine structure and hyperfine structure of the 1s → 2p transition of hydrogen (D1
and D2 line), with the respective transition coefficients, is represented in Figure B.2, Figure B.3,
Figure B.4 and Figure B.5. The missing coefficients can be obtained by symmetry or antisym-
metry: multiplication by (−1)j

′+j+1−2mj , j and j′ being the corresponding angular momenta.
This factor arises from the symmetry relation (B.58) for the Wigner 3-j coefficients and from
mj → −mj.
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Figure B.2: ‘L-structure’ of the 1s → 2p transition of hydrogen. The coefficients give the dipole
matrix elements when multiplied with the reduced matrix element 〈L‖er‖L′〉 = 〈0‖er‖1〉

Figure B.3: ‘J-structure’ of the 1s → 2p transition of hydrogen. The coefficients give the dipole
matrix elements when multiplied with the reduced matrix element 〈L‖er‖L′〉 = 〈0‖er‖1〉

Figure B.4: ‘F -structure’ of the D1-line of hydrogen (1s → 2p). The coefficients give the dipole
matrix elements when multiplied with the reduced matrix element 〈J‖er‖J ′〉 = 〈1/2‖er‖1/2〉.
For the D1-line, 〈J‖er‖J ′〉 =

√
13/6〈L‖er‖L′〉
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Figure B.5: ‘F -structure’ of the D2-line of hydrogen (1s → 2p). The coefficients give the dipole
matrix elements when multiplied with the reduced matrix element 〈J‖er‖J ′〉 = 〈1/2‖er‖3/2〉.
For the D2-line, 〈J‖er‖J ′〉 = −

√
25/6〈L‖er‖L′〉
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B.3 Mathematical formulae

B.3.1 Wigner 3-j symbols and Clebsch-Gordan coefficients

The relation between Clebsch-Gordan Coefficients and Wigner 3-j symbols is:

〈j1m1, j2m2|j3m3〉 = (−1)j1−j2+m3

√

2j3 + 1

(
j1 j2 j3
m1 m2 −m3

)

(B.54)

Symmetry relations� The “complex conjugate” of a Clebsch-Gordan coefficient is defined as:

〈JM |j1m1, j2m2〉 ≡ 〈j1m1, j2m2|JM〉 (B.55)� The Wigner 3-j symbols have the following symmetry relations:

(
j1 j2 j3
m1 m2 m3

)

=

(
j2 j3 j1
m2 m3 m1

)

=

(
j3 j1 j2
m3 m1 m2

)

(B.56)

(
j1 j2 j3
m1 m2 m3

)

= (−1)j1+j2+j3

(
j1 j3 j2
m1 m3 m2

)

= (−1)j1+j2+j3

(
j3 j2 j1
m3 m2 m1

)

= (−1)j1+j2+j3

(
j2 j1 j3
m2 m1 m3

)

(B.57)

(
j1 j2 j3
m1 m2 m3

)

= (−1)j1+j2+j3

(
j1 j2 j3

−m1 −m2 −m3

)

(B.58)

Orthogonality relations

The related orthogonality relations for Wigner 3-j symbols and Clebsch-Gordan coefficients are:� First orthogonality relation:

∑

m1,m2

〈jm|j1m1, j2m2〉〈j1m1, j2m2|j′m′〉 = δj,j′δm,m′ (B.59)

∑

m1,m2

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j′3
m1 m2 m′

3

)

=
1

2j3 + 1
δj3,j′3δm3,m′

3
(B.60)� Second orthogonality relation:

∑

j,m

〈j1m1, j2m2|jm〉〈jm|j1m′
1, j2m

′
2〉 = δm1,m′

1
δm2,m′

2
(B.61)

∑

j3,m3

(2j3 + 1)

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
m′

1 m′
2 m3

)

= δm1,m′

1
δm2,m′

2
(B.62)

Other relations can be found in Sobelman, or Zare for instance.
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B.3.2 Wigner 6-j symbols

Symmetry relations

The Wigner 6-j symbols have the following symmetry relations:

{
j1 j2 j3
l1 l2 l3

}

=

{
j2 j1 j3
l2 l1 l3

}

=

{
j3 j2 j1
l3 l2 l1

}

=

{
j1 j3 j2
l1 l3 l2

}

(B.63)

{
j1 j2 j3
l1 l2 l3

}

=

{
l1 l2 j3
j1 j2 l3

}

=

{
l1 j2 l3
j1 l2 j3

}

=

{
j1 l2 l3
l1 j2 j3

}

(B.64)

Orthogonality relation

∑

j3

(2j6 + 1)(2j3 + 1)

{
j1 j2 j3
j4 j5 j6

}{
j1 j2 j3
j4 j5 j′6

}

= δj6,j′6 (B.65)

Relation to the 3-j symbols A sum of Wigner 3-j symbols can be factorised into a product
of one 3-j symbol and one 6-j symbol using:

∑

µ1µ2µ3

(−1)l1+l2+l3+µ1+µ2+µ3

(
j1 l2 l3
m1 µ2 −µ3

)(
l1 j2 l3

−µ1 m2 µ3

)(
l1 l2 j3
µ1 −µ2 m3

)

=

(
j1 j2 j3
m1 m2 m3

){
j1 j2 j3
l1 l2 l3

}

(B.66)

B.3.3 Other

∫∫

Yl1 m1
Yl2 m2

Yl3 m3
sin θ dθ dϕ

=

√

(2 l1 + 1)(2 l2 + 1)(2 l3 + 1)

4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)

(B.67)
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