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1. Introduction

In the last years, it has been shown that ultracold atomic gases provide an ’ideal’ environ-
ment for studying many-body quantum systems usually encountered in condensed matter
physics [1, 2]. Both the internal and the external parameters can be controlled with high
precision and the inter-particle contact interaction can be tuned almost at will [3]. Since
1995 [4–6] quantum gases with isotropic short-range contact interaction have been exten-
sively studied. For ultracold gases, the contact interaction strength is characterized by
one single parameter, the s-wave scattering length a. In 2005 the experimental realization
of chromium Bose-Einstein condensates (BECs) [7] opened the door to the investigation
of strong inter-atomic magnetic dipole-dipole interaction in degenerate quantum gases.
In strong contrast with the contact interaction, the dipolar interaction is anisotropic and
long-range. The dipolar interaction in ultracold gases has attracted a lot of attention,
both experimentally and theoretically [8, 9].

Experimentally, strong dipolar effects in cold quantum gases have been shown in systems
of chromium BECs [10–12], ultracold fermionic heteronuclear molecules [13, 14] and BECs
with Rydberg atoms [15]. In alkali gases weak dipolar effects have been observed, when
tuning the contact interaction to vanishing interaction strength [16–18]. Recently, progress
has been made towards the realization of ultracold gases of dysprosium atoms, which have
the highest magnetic moment of all stable elements [19].

Specifically for chromium, the experiments have concentrated on the anisotropic char-
acter of the dipolar interaction. In particular the following effects have been observed:
the dipolar strength was enhanced by decreasing the contact interaction and its effect on
the expansion dynamics was explored [10]. For further decreasing the contact interaction,
the dipolar BEC shows a strong trap geometry dependent instability threshold [11]. It
was shown for certain trap geometries, the dipolar BEC collapses in a d-wave symmetry
[20]. Another effect of the anisotropic dipolar interaction is the coupling of the spin degree
of freedom to the orbital momentum, hence, dipolar collisions do not conserve the mag-
netic substates [21]. This effect has been used to successfully cool a chromium cloud via
demagnetization cooling [22]. Moreover, the dipolar interaction influences the collective
mode frequencies of a BEC [23].

Theoretically, unique self-organized structures have been predicted, such as density
modulated ground states [24, 25], where the maximum density is not centered in the
external trapping potential, or supersolid phases in optical lattices [26, 27]. These effects
are closely related to the non-monotonically increasing excitation spectrum of a dipolar
gas, which displays a roton minimum [28] similar to the one observed in superfluid helium
[29]. Due to the anisotropy of the dipolar interaction, these effects are predicted only in
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Chapter 1. Introduction

highly oblate trapping geometries. Before the start of this diploma thesis, this range of
parameters was in an experimentally unreached regime and it was unclear whether we
could reach this regime or if the dipolar BEC would be unstable.

In earlier experiments in our group, the static properties of a single dipolar BEC were
measured. It was shown that the stability of such a system depends strongly on the
geometry of the trap holding it [11]. In a prolate trap, the dipolar interaction is mainly
attractive and leads to a destabilization of the BEC. The dipolar BEC becomes then
unstable even for repulsive contact interaction. In contrary, for a highly oblate trap,
the dipolar interaction is mainly repulsive and has a stabilizing effect. Therefore, it is
in principle possible to realize stable dipolar BECs with destabilizing attractive contact
interaction in highly oblate traps. The region with repulsive contact interaction was
investigated and a purely dipolar interacting BEC was generated. However, the regime
with attractive contact interaction could not be reached.

During the time of this diploma thesis, we have indeed reached experimentally this
interesting regime, where the above mentioned unique dipolar effects are expected. This
is done by slicing a chromium BEC using a one-dimensional optical lattice. Effectively
for sufficiently deep lattices, the system can be seen as a stack of highly oblate dipolar
condensates, each BEC localized on one lattice site. We investigate the static properties
of a 52Cr BEC in the one-dimensional lattice and we stabilize a dipolar BEC for attractive
contact interaction up to scattering lengths of a = −17 Bohr radii. This work does not
only complete the earlier stability measurements, as we reach highly oblate traps, but
also realizes a system with long-range dipolar interactions between the BECs (inter-site
interactions). We observe a strong influence of the inter-site interactions on the stability
threshold. Studying the stability of this system is a crucial step towards the realization of
novel quantum phases. In addition in such coupled systems, the theoretically predicted
effects are even enhanced [30–32], due to the long-range dipolar interactions between the
dipolar BECs. A preprint with the above mentioned results is already available [33].

This thesis is organized as follows:

In chapter 2 we give the necessary theoretical elements required to describe a dipolar
BEC. After an overview on Bose-Einstein condensation, we describe the two inter-atomic
interactions present in the system, namely the contact interaction and the dipolar inter-
action. We see that the scattering length a can be tuned by using a so-called Feshbach
resonance [3]. With this knowledge various properties of a dipolar BEC are discussed, as
for example its expansion and its stability conditions.

In the following chapter, we show how to realize a chromium BEC with strong dipolar
effects. We demonstrate how we decrease the contact interaction strength using a magnetic
Feshbach resonance to enhance the effects of the dipoles. This implies to know precisely
the scattering length and we present our method to calibrate it.

In chapter 4 we describe the one-dimensional optical lattice that we use to confine
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the chromium BEC in highly oblate traps. Its properties can be described by a single
parameter: the lattice depth V0. For the calibration of this important parameter, we use
two independent experimental methods: the interference patterns obtained after the BEC
expansion and the diffraction of a BEC from a pulsed optical lattice.

In the last chapter we investigate the stability of a chromium BEC in the one-dimensional
optical lattice. We show that we generate a stable dipolar BEC even with attractive
contact interaction. The destabilizing attractive contact interaction is stabilized by the
mainly repulsive dipolar interaction. Additionally we observe a destabilizing effect of the
attractive inter-site dipolar interactions. Finally, to get deeper insight in the effects of
the inter-site interactions, we develop a model to describe the destabilizing effect of the
interactions between spatially separated dipolar BECs.

The appendix gives additional information on the two-frequency acousto-optical mod-
ulator drivers [34] that were renewed during this diploma thesis. Furthermore, three
automatic evaluation procedures were programmed and are described in A.2. All of them
were necessary for the evaluation of the measurements in chapter 5.
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2. Dipolar Bose-Einstein Condensates

This chapter introduces the basic theoretical elements necessary to describe a dipolar
Bose-Einstein condensate (BEC). We first discuss the case of an ultracold atomic sample
that can undergo a phase transition to a BEC below a critical temperature Tc. These
condensates have non-negligible inter-atomic interactions: the contact interaction and the
dipolar interaction.

In section 2.2 we describe the case of an almost purely contact interacting gas with neg-
ligible dipolar effects, like alkali atoms1. Contact interaction is short-range and isotropic.
For a many-body system, it is well described with a mean field ansatz. Due to the large
magnetic moment of chromium2 the anisotropic long-range dipolar interaction is not neg-
ligible. The interplay between contact and dipolar interactions opens the way to new
ultracold atomic physics. In section 2.3 we discuss the mean field description for the
dipolar interaction, which can describe various properties of a dipolar BEC. For example
its expansion and its stability are discussed in detail in sections 2.3.3 and 2.3.4.

2.1. Bose-Einstein Condensation

In 1995 the first BECs have been produced in vapors of atomic rubidium, sodium and
lithium [4–6]. Eric A. Cornell, Wolfgang Ketterle and Carl E. Wieman received the Nobel
Prize in Physics ’for the achievement of Bose-Einstein condensation in dilute gases of
alkali atoms, and for early fundamental studies of the properties of the condensates’ in
2001. There is an easy picture for the formation of a BEC: for high temperatures, the
atoms behave ’classically’, their thermal de Broglie wavelength (see section 2.1.1 for the
definition) being negligible. For lower temperatures, the de Broglie wavelength becomes
comparable to the inter-atomic distance and the single wave packets start to overlap until
at zero temperature we obtain a pure BEC with all the atoms in the ground state of the
system (see fig. 2.1).

However, this ground state is metastable for atoms as it can decay via 3-body collisions.
This collisions create a dimer and a single particle with high kinetic energy, which leads to
heating and losses. These 3-body losses strongly depend on the atomic density. Therefore
another important point for all following considerations is that ultracold gases are dilute:
only binary collisions at low energy are relevant.

1Alkali atoms have one valence electron therefore a magnetic moment of one Bohr magneton
2the dipole strength is 36 times larger for chromium than for alkali atoms
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Chapter 2. Dipolar Bose-Einstein Condensates

Figure 2.1.: Phase transition from an ideal gas to a Bose-Einstein condensate. For high tem-
peratures, the system is an ideal gas behaving like ’billiard balls’. For lower tem-
peratures the de Broglie wavelength increases and becomes relevant for the correct
description of the system: the atoms now behave like wave packets. At the criti-
cal temperature the wave packets start to overlap until at zero temperature they
create a giant matter wave. Figure taken from [35].

2.1.1. Statistical Phase Transition

This section gives a brief overview over the statistics of a non-interacting Bose gas at
ultralow temperatures (see [35–40] for a detailed discussion). We start the section with
the statistical of free non-interacting BECs. We then consider the case of a BEC trapped
in an external potential.

We first discuss the phase transition from an ideal Bose gas to a BEC in a three
dimensional box of volume V and containing Ntot bosons. The particle density is then
given by n = Ntot/V . We have to define two important quantities:

− the thermal de Broglie wavelength

λdB ≡

√
2π~2

mkBT
(2.1)

− and the phase space density
D = nλ3

dB (2.2)
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2.1. Bose-Einstein Condensation

with the Boltzmann constant kB, the atom mass m and temperature T . For an ideal gas,
the temperatures T are high and the densities n are low. As a consequence the phase
space density is D � 1. However, if the temperature is reduced and the density increased,
the phase space density will increase. For D = 1 the inter-atomic distance is equal to the
de Broglie wavelength. For bosons, a macroscopic number of atoms populate the ground
state when D > ζ(3/2) ≈ 2.612, where ζ(s) =

∑∞
n=1 n

−s is the Riemann zeta function.
This criterium defines a critical temperature for condensation

kBT
free
c ≡ 2π~2

m

(
n

ζ(3/2)

)2/3

. (2.3)

In principle, a macroscopically populated ground state is not special, as for T → 0
absolutely all bosons are in the ground state. However, the critical thermal energy kBT

free
c

is much higher than the energy difference between harmonic oscillator energy levels [39,
chapter 3.3.3] [37, chapter 3.2] and therefore the free energy is discontinuous at T freec ,
which is characteristic for phase transitions. For the BEC phase transition the fraction of
’condensed atoms’ in the ground state, this is the so-called order parameter of the phase
transition, is given by [37]

N free

Ntot

= 1−
(

T

T freec

)3/2

, (2.4)

where Ntot is the total atom number in the system, N free the number of free condensed
atoms is and T freec the critical temperature in free space.

In experiments the atoms are not free, but most commonly trapped in external poten-
tials of parabolic shape:

Vext(r) =
m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

(2.5)

with ωi the trapping frequencies. This additional potential has an effect on the critical
temperature [36, chapter II.B][35, chapter 4.5] [37, chapter 10.1]

kBTc = ~ω̄
(
Ntot

ζ(3)

)1/3

≈ 0.94 ~ω̄N1/3
tot (2.6)

with ω̄ = (ωxωyωz)
1/3 the geometric mean of the trapping frequencies. For a non-

interacting harmonically trapped BEC, the density distribution is a Gaussian function
[38, chapter 2.3]

nho(r) =
N

π3/2lxlylz
e
−x

2

l2x
− y

2

l2y
− z

2

l2z (2.7)

corresponding to the first eigenstate of a harmonic oscillator, with the harmonic oscillator
lengths

li =

√
~
mωi

i = (x, y, z). (2.8)
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Chapter 2. Dipolar Bose-Einstein Condensates

We define a characteristic length scale for the system, i.e. the harmonic oscillator length

aho ≡
√

~
mω̄

. (2.9)

The fraction of condensed atoms in a harmonic trap follows a slightly different behaviour
than in free space

N

Ntot

= 1−
(
T

Tc

)3

, (2.10)

with N the condensed atom number and Tc the critical temperature.
For example, let us consider an atomic cloud containing Ntot = 40, 000 chromium

atoms. On our experiment, such cloud is typically obtained in traps with mean frequency
ω̄ = 2π · (250 − 700) Hz, corresponding harmonic oscillator length aho = 880 − 525 nm.
In this case, the critical temperature Tc ranges typically from 385 to 1080 nK.

2.2. Contact interacting Bose-Einstein Condensates

2.2.1. Short-range Interactions

In the previous section, we looked at the properties of a non-interacting Bose gas. Even
though cold gases are very dilute, their properties are strongly influenced by atomic two-
body collisions. The interaction between two atoms is mainly due to the van der Waals
interaction (∝ (−1/r6)) and the resulting interaction (∝ 1/r12) of coulomb and exchange
interactions. This results in a complicated molecular potential with a characteristic range
r0 for the interaction. r0 is typically much smaller than the mean inter-particle distance
for dilute atomic gases. In addition, the atomic gases that we consider are at very low
temperatures. Under those conditions, high energy collisions are suppressed and only
s-wave scattering remains. As a consequence, 2-body collisions within dilute ultracold
atomic gases can be treated as hard spheres scattering, which is isotropic and short-range.
The interaction potential can be written as

Ucontact(r) ≡ g δ(r) (2.11)

with δ(r) the Dirac delta function and g the coupling strength. g describes the interaction
strength and is connected to the s-wave scattering length a

g ≡ 4π ~2 a

m
. (2.12)

2.2.2. Gross-Pitaevskii equation

In the previous section the 2-body short range interaction Ucontact was investigated. But a
BEC is composed of many atoms and one has to take into account all scattering processes.
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2.2. Contact interacting Bose-Einstein Condensates

Because this is complicated, a theory for many particles is needed. The simplest many-
body model is the mean-field model. It maps the N particle3 problem onto a single
particle problem with an effective potential created by all the other particles. A second
quantization description for N particles, the Hamiltonian of the system can be written as

Ĥ =

∫
dr Ψ̂†(r , t)

(
−~2∇2

2m
+ Vext(r)

)
Ψ̂(r , t)

+
1

2

∫
drdr ′ Ψ̂†(r , t)Ψ̂†(r ′, t)Ucontact(r − r ′)Ψ̂(r ′, t)Ψ̂(r , t) (2.13)

with Ψ̂(r , t) and Ψ̂†(r , t) the boson annihilation and creation field operators. The first
term of the Hamiltonian corresponds the kinetic and potential energies and the second
term is the contact interaction energy. Using the field operator commutation relations[
Ψ̂(r , t), Ψ̂†(r ′, t)

]
= δ(r−r ′) and

[
Ψ̂(r , t), Ψ̂(r ′, t)

]
= 0, one gets the equation of motion

with the Heisenberg equation [36, chapter III.A]

i~
∂

∂t
Ψ̂(r , t) =

[
Ψ̂(r , t), Ĥ

]
=

(
−~2∇2

2m
+ Vext(r)

+

∫
dr ′ Ψ̂†(r ′, t)Ucontact(r − r ′)Ψ̂(r ′, t)

)
Ψ̂(r , t). (2.14)

The large number of atoms in a BEC allow to replace the field operators by the classical
field Ψ̂→ Ψ(r , t). This direct replacement can also be understood in such a way that the
wave function Ψ(r , t) is not changed when removing or adding one particle, meaning that
quantum fluctuations are neglected [41, chapter 2.3.2]. Generally, such a replacement is
not possible, but for our system, as we are considering cold binary collisions in a dilute
gas, the Born approximation is applicable. This means that the scattered wave is much
weaker than the initial wave and therefore multiple scattering is negligible. Introducing
the pseudo-potential Ucontact (equation (2.11)) in equation (2.14) one obtains the well-
known Gross-Pitaevskii equation (GPE)

i~
∂

∂t
Ψ(r , t) =

(
−~2∇2

2m
+ Vext(r) + g |Ψ(r , t)|2

)
Ψ(r , t). (2.15)

The GPE is a non linear differential equation and thereby not analytically solvable. How-
ever, by introducing some simple approximations, one can already get insight on the
system ground state.

2.2.3. Thomas-Fermi approximation

For large atom numbers N , the interaction energy term can become much stronger than
the kinetic energy, and the kinetic term in the GPE can be neglected. Such approximation

3in the experimental section 3 the atom numbers are for chromium BEC around N = 20,000
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Chapter 2. Dipolar Bose-Einstein Condensates

is called Thomas-Fermi approximation and allows to obtain a simple equation for a static
external potential (

Vext(r) + g |Ψ(r)|2
)

Ψ(r) = µΨ(r), (2.16)

where µ is the chemical potential. The density distribution is given by

nTF (r) = |Ψ(r)|2 =
µ− Vext(r)

g
(2.17)

and mimics the external trapping potential. Therefore, for a harmonic trap the density
distribution of the ground state has an inverted parabolic shape

nTF (r) = n0 ·max

[
1− x2

R2
x

− y2

R2
y

− z2

R2
z

, 0

]
. (2.18)

with n0 the density at the center of the cloud and Ri the Thomas-Fermi radii

Ri =

√
2µ

mω2
i

i = (x, y, z). (2.19)

By normalizing the BEC wavefunction to the number of atoms N (
∫
|Ψ(r)|2 dr = N) we

obtain the central density n0 = 15N/(8πRxRyRz) and the chemical potential [36]

µ =
~ω̄
2

(
15Na

aho

)2/5

. (2.20)

For a BEC with N = 20, 000 chromium atoms in a trap with mean frequency ω̄ =
2π · (250− 700) Hz, the typical size of the BEC is around 4− 2.6 µm and therefore much
larger than the mean harmonic oscillator length aho calculated in section 2.1.1.

2.2.4. Tuning the scattering length with a Feshbach Resonance

As discussed in the previous sections the contact interaction has a strong influence on
the BEC properties. It has been shown [3] that it is possible to change the value of
the scattering length a by means of a Feshbach resonance. This powerful tool to control
short-range interactions in an ultracold gas can be understood in a simple picture: let
us consider two molecular potential curves Vbg(R) and Vc(r), as shown in figure 2.2. The
potential Vbg(R) describes the interaction of two free atoms with small kinetic energy
E. This represents the energetically open channel for the collision process. The second
potential Vc(r) is a closed channel that supports a bound molecular state at the energy
level Ec. This second channel describes e.g. the molecular potential of atoms in different
internal magnetic sublevels. If the two channels have different magnetic moments, it is
possible to bring the energy levels in resonance with a magnetic field B via the Zeeman
shift. This leads to a resonant behaviour of the scattering process, where the scattering

14



2.3. Dipolar Interactions in Bose-Einstein Condensates

Figure 2.2.: Basic two-channel model for a Feshbach resonance. Open channel Vbg(R) (black)
with collision energy E and closed channel Vc(R) (red) with a bound state at
energy Ec can be tined in resonance via Zeeman-Shift that leads to a mixing of
the two states and a changing of the scattering length. Figure taken from [3]

length a depends strongly on the magnetic field B. Consequently it is a magnetic Feshbach
resonance, and the change in scattering length around the resonance can be described by

a(B) = abg

(
1− ∆B

B −B0

)
(2.21)

with abg the background scattering length far away from the resonance, ∆B the resonance
width and B0 the resonance position. Experimental details on the use of a Feshbach
resonance will be given in section 3.2.

2.3. Dipolar Interactions in Bose-Einstein Condensates

Chromium has a magnetic dipole moment of µm = 6 µB (with µB the Bohr magneton)
due to six unpaired valence electrons. As the dipolar interactions scales like µ2

m, the
dipolar strength for chromium atoms is 36 times stronger than for alkali atoms, which
have only one unpaired electron. For chromium therefore, the dipole-dipole interaction
becomes relevant for the properties of the BEC, in addition to the contact interaction. In
particular, new phenomena peculiar to dipolar ultracold gases appear.

In this section, we first discuss the binary and mean-field description of the dipole-dipole
interaction. We then describe the expansion and the stability of a dipolar BEC.
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Chapter 2. Dipolar Bose-Einstein Condensates

Figure 2.3.: Dipole-dipole interaction. The magnetic dipoles are polarized by an external mag-
netic fieldB. The interaction is proportional to the distance as 1/r3 and dependent
on the relative angle ϑ. The dipole-dipole interaction is attractive in a head-to-tail
configuration (ϑ = 0◦) and repulsive when sitting side-by-side (ϑ = 90◦.)

2.3.1. Binary Dipole-Dipole Interaction

The interaction potential for two magnetic dipoles polarized in the same direction is given
by

Udd(r) =
µ0 µ

2
m

4π

1− 3 cos2 ϑ

r3
, (2.22)

where µ0 is the vacuum permeability and ϑ is the angle between the polarization direction
and the relative position r between the dipoles, see figure 2.3. As seen from equation (2.22)
the potential is anisotropic due to the dependence on the relative angle ϑ. The anisotropy
can be easily seen if we take two limiting cases. If the dipoles are sitting in a head-to-
tail configuration (ϑ = 0◦), they attract each other and therefore lower their potential
energy. In contrast if the dipoles are side-by-side (ϑ = 90◦), they repel each other and the
potential energy is increased. In addition the potential 2.22 decays in 1/r3. As a potential
1/rm cannot be replaced by contact-like pseudo potentials when m ≤ 3 [42], the dipolar
interaction is long-range.

To compare contact (section 2.2) and dipolar interactions, we introduce a characteristic
dipolar length

add ≡
µ0 µ

2
mm

12π ~2
, (2.23)

where the constants in add are defined such that a homogeneous dipolar condensate be-
comes unstable to local density perturbations if a ≤ add, as it will be shown in section
2.3.4. Similar to the definition of the contact coupling strength g (equation (2.12)) we
can define a dipolar coupling strength gdd

gdd ≡
4π ~2

m
add =

µ0 µ
2
m

3
. (2.24)

These definitions for the characteristic dipolar length add and the dipolar coupling strength
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2.3. Dipolar Interactions in Bose-Einstein Condensates

Figure 2.4.: Dipolar mean-field potential for a spherical trap in two dimensions. The dipoles
(shown as little magnets) are aligned by an external magnetic field in z-direction.
The potential is saddle shaped in Thomas-Fermi approximation as given by equa-
tion (2.28). For the shown orientation of the polarization axis the BEC will
elongate in z-direction. Figure taken from [44].

gdd are used to define the relative strength between dipolar and contact interaction

εdd ≡
gdd
g

=
add
a

=
µ0 µ

2
mm

12π ~2 a
. (2.25)

For chromium the value of the characteristic dipolar length is add = 15.2 a0. The relative
strength is εdd ≈ 0.16 [43] at background scattering length abg = 102.5 a0 [21]. For
comparison, alkali atoms like rubidium (abg ≈ 100 a0) with a magnetic dipole moment
of µm = 1 µB have a relative strength of the dipolar interaction of εdd,Rb ≈ 0.007 [8,
chapter 3]. As a reason of the different masses of rubidium and chromium the relative
strength is not 36 times larger for chromium. Instead, the relative dipolar strength is
εdd,Cr/εdd,Rb ≈ 23 larger.

2.3.2. Mean-Field Approximation of Dipolar Interactions

In the previous section, we only took into account the interaction between two dipoles.
This section focuses on the many-body description of a dipolar BEC. Again this many-
body model is reduced to a mean field approximation and an approach comparable to the
one described in section 2.2.2 yields the (non-linear) non-local GPE

i~
∂

∂t
Ψ(r , t) =

(
−~2∇2

2m
+ Vext(r) + g |Ψ(r , t)|2 + Φdd(r)

)
Ψ(r , t). (2.26)

with the non-local term Φdd describing the dipolar contribution to the mean-field potential

Φdd(r) =

∫
d3r ′ |Ψ(r ′, t)|2 Udd(r − r ′). (2.27)
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Chapter 2. Dipolar Bose-Einstein Condensates

For example in a spherical harmonic trap (ω̄ = ωx = ωy = ωz) and for all dipoles
polarized in z-direction with an external magnetic field, the dipolar mean field potential
in the Thomas-Fermi approximation is given by [45, chapter D][8, chapter 5.2]

Φdd(r) =
εddmω̄

2

5

(
1− 3 cos2 ϑ

)
·

{
r2 for r ≤ R̄
R5

r3
for r > R̄

(2.28)

with the Thomas-Fermi radii R̄ = Rx = Ry = Rz. The mean-field potential shows
the same anisotropy as the 2-body dipolar potential and has the shape of a saddle, as
illustrated in figure 2.4. As a result of equation (2.28) the dipolar BEC density is not
spherically symmetric anymore, but elongated in polarization direction of the dipoles to
lower the system’s energy.

However, it has been shown that the inverted parabolic shape remains [46, 47]. It is
remarkable that the inverted parabolic shape still remains even for an asymmetric trap
with dipole-dipole interaction.

2.3.3. Expansion Dynamics of a Dipolar Bose-Einstein Condensate

As shown in section 2.2.3, the size of a BEC is on the order of few µm. For standard
imaging systems the resolution is on the order of around 5 µm. Therefore, the BEC
size is smaller than the optical resolution and it is consequently necessary to expand the
BEC before imaging it. This is possible by turning off the external trapping potential:
the BEC then falls down under the effect of gravity. During this ’time-of-flight’ (TOF),
the BEC expands due to the finite momentum distribution in the trap. In the absence of
interactions the wave function of the expanded cloud is given by the Fourier transformation
of the in-trap wave function. However, the interactions are usually non-negligible and have
an impact on the expansion. This influence can even be used to calibrate the scattering
length (see section 3.2.1).

Let us first consider the simplest case of the expansion of a non-interacting BEC. As
shown in equation (2.7) a non-interacting BEC has a Gaussian wave function. In momen-
tum space, after performing a Fourier transformation, it remains a Gaussian function with
momentum width given by pi = ~/li =

√
m~ωi. This momentum is compatible with the

Heisenberg uncertainty principle and accordingly, a narrow spatial distribution implies a
higher momentum distribution.

However, in presence of contact interaction, the density distribution is not a Gaussian
function anymore. Instead, in the case of a harmonic trap and within Thomas-Fermi
approximation the distribution has the shape of an inverted parabola (see equation (2.18)).
To get insight on the expansion dynamics of a BEC with contact interaction, we introduce
a classical picture. In this case, one can write down the force that the BEC undergoes
[48]

~F (r , t) = −∇ (Vext(r , t) + g nTF (r , t)) . (2.29)
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(b) Condensate aspect ratio

Figure 2.5.: Time evolution of a contact interacting condensate (a) The Thomas-Fermi radii
evolution for an abrupt switch off of the trap (ωr, ωz) = 2π · (650, 270) Hz during
a time of flight. A crossover is visible at 0.9 ms (b) Evolution of the condensate
aspect ratio κ. The condensate aspect ratio is initially smaller than unity. During
the TOF, it crosses unity at 0.9 ms and becomes κ > 1 for long enough expansion
times.

At t = 0 the BEC is trapped, the overall force is zero and consequently Vext(r , 0) +
g nTF (r , 0) is a constant and equal to µ as in equation (2.16). For t > 0 the BEC
experiences a dilatation and its time-dependent radii can be written as

Ri(t) = Ri(0)bi(t) i = (x, y, z) (2.30)

where Ri(0) are the in-trap values of the Thomas-Fermi radii (given in equation (2.19)
and bi the dilatation coefficients. Within the Thomas-Fermi approximation the parabolic
shape is conserved during the expansion because of the dominant contact interaction.
Writing down Newton’s law one gets [48]

b̈i + ω2
i (t)bi −

ω2
i (0)

bibxbybz
= 0 i = (x, y, z). (2.31)

The second term in (2.31) comes from the confining potential with the possibility for time
dependent trap frequencies ωi(t) whereas the third term due to the atomic interaction in
the initial trap ωi(0). We are considering an abrupt turning-off of the initial trap, but
these equations 2.31 remain valid for time-dependent traps.

For simplification a cylindrically symmetric trap Vext = m/2 (ω2
rr

2 + ω2
zz

2) is used for
following considerations with a trap aspect ratio λ = ωz/ωr. After sudden switch-off of
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Chapter 2. Dipolar Bose-Einstein Condensates

Figure 2.6.: Condensate aspect ratios A1 and A2 against time of flight for different relative
dipolar strengths εdd. The error bar in d gives the typical uncertainty (a) ’contact
interacting case’ with polarization axis in imaging view (b)-(d) For the red (blue)
points the polarization axis is aligned in axial (radial) direction (see inset in b).
(b) Expansion at background scattering length with εdd = 0.16 similar to [45, 49]
(c) εdd = 0.5 (d) εdd = 0.75 with A2 staying smaller than unity. The solid lines
are theoretical calculations [45]. Figure taken from [10].

the trap (ωi(t) = 0, t > 0), the equations (2.31) simplify to

b̈r =
ω2
r

b3
rbz

, b̈z =
ω2
z

b2
rb

2
z

. (2.32)

From the solution of these coupled equations and the initial radii of the BEC, we determine
the radii Rr and Rz of the BEC during the TOF. The evolution of Rr and Rz for an initial
trap with trapping frequencies4 (ωr, ωz) = 2π · (650, 270) Hz is shown in figure 2.5a. An
important quantity for describing the expansion is the condensate aspect ratio κ = Rr/Rz.
For a contact interacting BEC in a trap, the condensate aspect ratio is equal to the trap
aspect ratio: κ = λ = ωz/ωr, as mentioned in equation (2.19). When the condensate
aspect ratio is initially (in-trap) κ < 1 (κ > 1), it becomes κ > 1 (κ < 1) for sufficiently
long expansion times (see figure 2.5b).

Finally, the expansion of a dipolar BEC is much more complicated, even though the
BEC shape remains parabolic within the Thomas-Fermi approximation. As learned in

4This special trap is used for the calibration of the scattering length in section 3.2.1
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2.3. Dipolar Interactions in Bose-Einstein Condensates

section 2.3.2, the dipolar BEC is elongated in the polarization direction. For a dipolar
BEC in its trap, the relation between κ and λ is not as simple as in the case of a purely
contact interacting BEC and depends on the relative orientation of the trap axis and
the polarization direction of the dipoles. As a consequence, the expansion of the dipolar
BEC depends also on the orientation of the trap compared to the polarization direction
of the dipoles, as can be seen in figure 2.6b-d. For an initially prolate BEC, the expanded
condensate aspect ratio was observed to be smaller (larger) for the polarization axis
aligned along the axial (radial) direction [45, 49]. This effect is enhanced if the relative
strength of the dipolar interaction εdd is increased. Finally for a relative strength εdd =
0.75 and a prolate trap (λ < 1) with the dipoles polarized along the trap axis, it was
possible to keep the condensate aspect ratio below unity during the TOF. Note that if the
polarization axis of the dipoles is aligned along the radial direction of the trap and along
the imaging axis, the observed condensate aspect ratio behaves like the one of a purely
contact interacting BEC (see figure 2.6a).

2.3.4. Stability of a Dipolar Bose-Einstein Condensate

As discussed in section 2.2.4, it is possible to tune the scattering length a with a Feshbach
resonance. For a purely contact interacting BEC, the stability strongly depends on the
scattering length. As the dipolar interaction is anisotropic, the stability of a dipolar BEC
depends not only on the value of the scattering length a but also on the geometry of
the external trapping potential. One finds the stable regions theoretically by looking for
positive local minima in the non-local Gross-Pitaevskii energy functional

E(Ψ) =

∫ [
~2

2m
|∇Ψ|2 + Vext |Ψ|2 +

g

2
|Ψ|4 +

1

2
|Ψ|2

∫
Udd(r − r ′) |Ψ(r ′)|2 dr ′

]
dr .

(2.33)
The first energy term corresponds to the quantum pressure, the second to the trapping
potential, the third to the contact interaction and the last term is the dipolar interaction
energy. To find the minima one can solve the energy functional numerically but there
is also an analytical solution using a Gaussian ansatz for the wave function. Similar to
equation (2.7) a Gaussian wave function is considered and for simplicity in a cylindrically
symmetric trapping potential Vext = m/2 (ω2

rr
2 + ω2

zz
2) with trap aspect ratio λ = ωz/ωr

Ψ(r, z) =

(
N

π3/2σ2
rσza

3
ho

)1/2

e
− 1

2a2
ho

(
r2

σ2r
+ z2

σ2z

)
(2.34)

with σr and σz the dimensionless variational parameters. With this Gaussian ansatz one
can calculate the different energies in the system. The quantum pressure term writes
[Methods in 11]

Eqp

~ω̄
=
N

4

(
2

σ2
r

+
1

σ2
z

)
, (2.35)
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the potential energy
Epot

~ω̄
=

N

4λ2/3

(
2σ2

r + λ2σ2
z

)
(2.36)

and the mean-field interaction energy (contact and dipolar interaction)

Econtact + EDI

~ω̄
=

N2add√
2πaho

1

σ2
rσz

(
a

add
− f(κ)

)
(2.37)

with

f(κ) =
1 + 2κ2

1− κ2
− 3κ2arctanh

√
1− κ2

(1− κ2)3/2
. (2.38)

and the condensate aspect ratio κ = σz/σr. The function f(κ) [45] decreases mono-
tonically, has the asymptotic values f(0) = 1 and f(∞) = −2 and crosses the zero at
κ = 1.

For decreasing values of the scattering length a, we check if the energy functional has a
positive global or local minimum. The presence of a minimum corresponds to the presence
of a stable ground state. If there is no minimum, the BEC is unstable against small density
perturbations and will collapse. The scattering length below which the BEC is always
unstable, is defined as the critical scattering length acrit.

Let us first describe the case of a purely contact interacting BEC. In this case f(κ) is
equal to zero and the variational parameters σr and σz are fixed through λ = ωz/ωr =
σ2
r/σ

2
z = κ2 (see equation (2.8)). Note that this relation is different in the Gaussian

ansatz and in the Thomas-Fermi regime (see equation 2.19). The exact value of acrit
can be determined by searching for a positive global or local minimum, however one can
get already the critical scattering length with a good approximation by searching for a
change of sign of the total energy. Here, the total energy can be below zero only for
negative scattering length a. Because

∫
|Ψ(r)|2 dr = N , the contact interaction energy is

proportional to N2 and will dominate the energy term for high number of atoms, as the
positive energy contribution from the external potential and quantum pressure depend
only linearly on N . Hence, a contact interacting BEC with many atoms is unstable at
negative scattering length and the critical scattering length acrit is close to zero. However,
for a small number of atoms, i.e. very dilute gas, the interactions do not play such a
dominant role and the BEC can be stabilized by the external trap and the quantum
pressure. Therefore, it is possible to realize stable BECs at negative scattering lengths.
This is indeed what was done to realize a lithium BEC at background scattering length
of abg ≈ −27 a0 [50]. The number of atoms in the BEC was around 650 - 1300 atoms
leading to very low densities.

Let us now consider the case of a dipolar BEC. For polarized dipoles in z-direction
the dipolar interaction energy is negative in a prolate trap (λ < 1, dipoles mainly sitting
head-to-tail) and positive in a oblate trap (λ � 1, dipoles are side-by-side). In the
interaction dominated regime (Nadd � aho) the asymptotic critical scattering lengths for
very prolate or oblate traps are given by the term in brackets in equation 2.37. For a
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2.3. Dipolar Interactions in Bose-Einstein Condensates

Figure 2.7.: (a) Experimental (green squares) and theoretical (green line) values for the criti-
cal scattering length against the trap aspect ratio λ = ωz/ωr for a chromium BEC
with 20,000 atoms. The grey line is the asymptotic stability boundary for many
atoms (Nadd � aho) with the limt values add and 2add. The pure contact interact-
ing case is plotted in red with otherwise chromium parameters. (b)-(e) Behaviour
of the energy landscape. Lines of equal energy for a constant trap aspect ratio
λ = 10 for different scattering length (marked in figure a as blue dots). (b) For
a > add (figure b) there is a global minimum. (c,d) For acrit ≤ a < add the
collapsed ground state (σr → 0 at finite σz) emerges and the BEC is metastable.
(e) For a < acrit there is no local minima left. Figure taken from [11].

very prolate trap, f(0) = 1 and the critical scattering length tends to acrit = add, which
therefore justifies the definition of add (2.23). For a very oblate trap the asymptotic critical
scattering length is acrit = −2add. This means that the dipolar interaction destabilizes
the BEC in a prolate trap and stabilizes it in an oblate trap. Therefore, in principle it
is possible to have stable BECs with high atom numbers and negative scattering length,
due to the stabilizing dipolar interaction. For decreasing scattering length the relative
dipole strength is enhanced and the density distribution is modified by the dipolar mean-
field interaction (section 2.3.3). Near the critical scattering length acrit the BEC shrinks
strongly in radial direction until the instability point is reached. This effect is also visible
in the energy landscape of the BEC with a Gaussian ansatz (see figure 2.7b-e). For
scattering lengths a > add a global minimum is visible, whereas for a < add, a collapsed
ground state emerges with σr → 0 at finite σz.

This was also experimentally investigated in [11] in a cylindrically symmetric trap with
mean frequency ω̄ = 2π · 700 Hz. The stability diagram for a chromium BEC with 20,000
atoms was mapped for trap aspect ratios λ = 0.1 − 10 (see figure 2.7). The critical
scattering length acrit was identified through the abruptly vanishing BEC atom number
at the critical scattering length acrit. A purely dipolar BEC was obtained in an oblate
trap λ = 10 that corresponds to a condensate aspect ratio of κ = 1. However, the regime
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with negative scattering length a < 0 could not be reached.
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3. Experimental Setup

In this section we briefly describe the experimental setup1 and the procedures needed to
generate a 52Cr BEC. The experimental setup has been extensively discussed in [51, 52],
PhD theses [53–58] or diploma theses [59–61]. In section 3.1 the production of a chromium
Bose-Einstein condensate is explained, followed by experimental details on the use of the
Feshbach resonance and the procedure for calibrating the scattering length.

3.1. Creating a Chromium Bose-Einstein Condensate

We give an overview of the steps used to generate a 52Cr BEC. In the next sections each
step is discussed in more detail. The first 52Cr BEC was achieved in 2005 [7, 62] in
Stuttgart with the following cooling and trapping steps:

1. deceleration of hot atoms (T = 1475◦C) with a Zeeman slower (ZS)

2. cooling in a modified magneto-optical trap (MOT) and continuous loading in a
magnetic trap (MT)

3. Doppler cooling and radio frequency (RF) induced evaporative cooling in the mag-
netic trap

4. transfer of the atoms into a crossed optical dipole trap (ODT) and optical pumping
to the magnetic substate with the lowest energy

5. forced evaporative cooling in the ODT towards the critical temperature

With these steps I will shortly describe the different parts of the experimental setup
(see figure 3.1) in this chapter.

3.1.1. Cooling Chromium in a Magnetic Trap

The experiment consists of two vacuum chambers: the oven chamber and the main cham-
ber which are connected by a Zeeman slower (ZS), see figure 3.1. The chromium atoms
are sublimated from a high-purity sample of chromium (99.99%) by a high temperature
effusion cell at T = 1475 ◦C in the oven chamber, leading to a chromium beam with a

1the one-dimensional lattice, used for the stability measurements in chapter 5, is entirely specified in
chapter 4
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Figure 3.1.: Schematic scheme of used setup. (a) The whole apparatus is shown: the oven
chamber connected via the Zeeman slower to the main chamber. The modified
magneto-optical trap consists of the cloverleaf coils (that produce also the mag-
netic trap) and six cooling beams. The probe beam for the absorption imaging is
in x-direction. (b) The scheme is rotated by 90◦. The two optical dipole traps
are orientated in z- and y-direction. The optical pumping beam propagates also
in y-direction. Figure taken from [62]
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Figure 3.2.: Level scheme of 52Cr and experimental sequence. (a) Zeeman slower and MOT use
the transition 7S3 ↔ 7P4 (425.6 nm). The atoms from the excited state decay with
a ratio of 1/250,000 to the metastable state 5D4. Consequently, this metastable
state is continuously loaded in the magnetic trap. After the MOT-light is switched
off the atoms in the magnetic trap are repumped to the state 7P3 with a repumper
at 663.2 nm. (b) To prevent dipolar relaxations the atoms are transferred into an
ODT and optically pumped to the lowest magnetic substate mJ = −3 with σ−

light via the transition 7S3 ↔ 7P3 (427.6 nm).

mean Boltzman velocity of v̄ ≈ 900 m/s. The spin-flip ZS [60, chapter 3.4] decelerates
all atoms with a velocity below vmax ≈ 580 m/s via resonant laser cooling. At the end of
the ZS, the velocity of these atoms is decreased down to the MOT capture velocity of ≈
30 m/s. Furthermore the ZS acts as a differential pumping stage to have a two orders of
magnitude lower pressure (≈ 10−11 mbar) in the main chamber than in the oven chamber
(≈ 10−9 mbar).

Because the ZS only acts on the longitudinal velocity, a two-dimensional optical mo-
lasses in radial directions is used at the entrance of the ZS [63, chapter A.1]. This cools
the chromium atoms in the radial directions and collimates the atomic beam. Hence, the
atomic flux is increased and finally the atom number in the MOT is higher.

The decelerated chromium atoms are captured in a modified MOT [51, 64] where the
magnetic field is created by a Ioffe-Pritchard magnetic trap with cloverleaf shaped coils. A
magnetic trap makes use of the interaction between the magnetic moment of the atoms and
the static magnetic field. The used Ioffe-Pritchard trap has a parabolic shaped magnetic
potential, at least around its minimum. The MOT is operating at the transition 7S3 ↔
7P4 (425.6 nm) with a density-limited atom number of around 5 · 106. This limit is due to
the fact that chromium suffers a large inelastic two-body loss coefficient for excited state
collisions. The low atom numbers in the MOT are not sufficient for reaching Bose-Einstein
condensation in chromium.

Therefore a standard MOT mechanism is not applicable. However, chromium decays
from the excited state 7P4 into a metastable state 5D4 with a branching ratio of 1/250,000
compared to the decay into the ground state 7S3. The metastable state 5D4 is decoupled
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from the MOT light (see figure 3.2a). Most of the atoms in state 5D4 are already cooled
down to the Doppler temperature of 124 µK [57] and therefore the low-field seeking
magnetic substates (mJ > 0) are trapped in the MT. To trap more metastable atoms,
the MT volume is increased by using a two-dimensional MOT plus a one-dimensional
optical molasses instead of a conventional three-dimensional MOT. During the MOT
phase, around 2 · 108 atoms accumulate in the metastable 5D4 state. After 6 s we switch
the MOT light off.

Then we repump the metastable atoms to the ground state 7S3 state via the state 7P3

with a 663.2 nm laser. Subsequently the MT field is increased adiabatically in 1 s to
compress the atom cloud. This heats up the sample to around 1 mK. This compressed
cloud is then Doppler cooled to a temperature of T ≈ 170 µK by applying a short
resonant laser pulse. The MT field is again decreased to prepare the radio frequency
(RF) induced evaporative cooling [65]. An additional magnetic offset field is needed to
prevent Majorana spin-flip transitions to non-trappable magnetic substates (mJ ≤ 0).
The role of RF cooling is to remove selectively the hottest atoms and the remaining
atoms re-thermalize to a lower temperature and higher spatial densities.

For commonly used alkali atoms, the RF cooling can be performed until degeneracy is
reached. But for chromium atoms, this is prevented by the dipolar relaxation [66] process
which increases for higher spatial densities. Because dipolar collisions do not conserve
angular momentum the atoms relax to mJ ≤ 0. This process heats up the sample and
induces losses as states with mJ ≤ 0 are not magnetically trappable. For this reason,
the chromium atoms are only precooled in 8.5 s to 40 µK where we still have around 107

atoms in the trap.

To reach quantum degeneracy all atoms have to be in the energetic lowest magnetic
substate mJ = −3 where spin changing collisions are energetically suppressed. Therefore,
after the RF cooling process, the atoms are transferred into a horizontal optical dipole trap
(ODT1) along the z-direction. ODTs make use of the interaction between the induced
electric dipole moment of the atom and an oscillating electric field (AC Stark effect, see
section 4.1), and are usually created with a focused Gaussian laser beam. This trapping
mechanism is independent of the particular magnetic substate and it is possible to trap
atoms in the mJ = −3 substate. The transfer efficiency from the MT to the ODT1 is
40 %. The atoms are then optically pumped with a σ−-polarized light (427.8 nm) to
the magnetic substate with the lowest energy (see figure 3.2b). A second vertical optical
dipole trap (ODT2) in y-direction is then ramped up to create a crossed ODT.

3.1.2. Condensation of Chromium in a crossed Optical Dipole Trap

After loading into the horizontal ODT1 and ramping up the vertical ODT2 roughly
600,000 atoms are trapped inside the crossed region at a temperature of 15 µK. To reach
quantum degeneracy, forced evaporation is used by decreasing the ODT intensities, which
are controlled with acousto-optic modulators (AOMs). As a part of this thesis the two-
frequency AOM drivers [34, 61] were renewed, improving the pointing stability of the two
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ODT beams (see appendix A.1).
When we want to use the Feshbach resonance (section 3.2), we ramp up the magnetic

field to around 600 G along the z-direction. Along the way we pass 14 Feshbach reso-
nances. Near each resonance occur inelastic 3-body losses, which depend crucially on the
density. To prevent high atom losses we have to pass all the 14 resonances fast enough
with a low spatial density. This is the case during the forced evaporation phase in the
crossed ODT before reaching degeneracy and we thus ramp up the magnetic field during
this phase.

The forced evaporation is finished when ODT1 and ODT2 are both decreased to trap-
ping frequencies of (ωx, ωy, ωz) = 2π · (285, 210, 195) Hz. The forced evaporation takes 5.8
s and the total experimental sequence takes 23 s. We reach a BEC containing typically
20,000 condensed atoms. After generating the BEC we can modify the trapping potential
with the crossed ODT and change the Feshbach magnetic field to adjust the scattering
length a.

The density distribution after a time of flight (TOF) is recorded by absorption imaging.
A resonant probe laser beam is shone on the atoms in x-direction. Due to atom-photon
scattering, the probe beam is absorbed by the atoms and the ’shadow’ of the atomic cloud
is recorded on a CCD-Camera. From this image we calculate the optical density of the
atomic cloud, which is integrated along the x-direction. Depending if we are in low or
high magnetic field (for the Feshbach resonance) the probe beam polarization is different:

The low magnetic field is oriented along the imaging axis so that the probe beam
polarization is well-defined to drive single atomic transitions. We use circularly polarized
σ−-light resonant to the transition |7S3,mJ = −3〉 → |7S3,mJ = −4〉 for imaging.

If the high magnetic field for the Feshbach resonance is turned on during the imaging,
the magnetic field is perpendicular to the imaging axis. Therefore, the probe beam polar-
ization is not well-defined along the imaging axis for the atoms. To avoid this problem we
use linearly polarized π-light (polarized in x-direction), which is a superposition of σ− and
σ+ for the atoms. The σ− light drives the same transition as mentioned before, whereas
the σ+ light is far detuned from the transition |7S3,mJ = −3〉 → |7S3,mJ = −2〉 and its
absorption is consequently very weak. Hence, only half of the probe beam intensity can
be absorbed at maximum. This has to be taken into account for calculating the optical
density [61].

3.2. Enhance the Effect of Dipoles via a Feshbach
Resonance

As mentioned in section 2.3, the dipolar strength is only a perturbative effect at back-
ground scattering length. However, the contact interaction strength can be decreased by a
Feshbach resonance (see section 2.2.4) leading to an enhancement of dipolar effects. Near
Feshbach resonances, inelastic 3-body losses are enhanced. By monitoring inelastic losses
in a system of ultracold chromium atoms, 14 Feshbach resonances were found for magnetic
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fields below 600 G [67]. The 14th one is the broadest, is centered at B0 = 589.1 G and
has a width of ∆B = 1.6 G [33] (measured value, the theoretical value is ∆B = 1.7 G).
We use this particular resonance as it allows the best control on the scattering length.

To produce a homogeneous magnetic field, Helmholtz coils and currents in the order of
I = 400 A are used. To compensate the curvature of the field created by the Helmholtz
coils, we superimpose a second magnetic field. For this we use the pair of coils that
is used for the MT in the earlier stage of the experiment. To create a stable and a
mostly noiseless magnetic field at 590 G, the current is actively stabilized. For this, the
resistance of a MOSFET (metal-oxide-semiconductor field-effect transistor) is controlled
via an electronic stabilization loop. The current is stabilized to a peak-to-peak noise of
∆I/I < 5 · 10−5, while the RMS noise is ∆IRMS/I < 1 · 10−5 [58, chapter 4.2].

3.2.1. Calibration of the Scattering Length

In our experiment the scattering length is calibrated using the BEC expansion (section
2.3.3). As shown in equations (2.19) and (2.20) for a purely contact interacting BEC the

initial radii Ri(t = 0) ∝ (N a)1/5 are depending on the scattering length. During the

expansion the initial trapping energy, proportional to the chemical potential µ ∝ (N a)2/5

(see equation (2.29)), is completely transformed into kinetic energy. Once this is done,
the BEC expands linearly and its expansion velocity has the same dependence on the
scattering length as the initial radii v ∝ (N a)1/5 [58, chapter 4.4.2]. The scattering length
can then be determined experimentally by measuring the BEC radii Ri(tTOF ) after the
expansion time tTOF

a ∝ R5
i (tTOF )

N
i = (x, y, z), (3.1)

In the case of a dipolar BEC the expansion is described analytically in Thomas-Fermi
approximation in [45] with some corrections in [41, chapter A.5.9.]. For a dipolar BEC
the expansion is still linear against the scattering length and the calculated value R5/N
is shown in figure 3.3a. Both the radial and axial value show a linear dependence on
the scattering length until a = 30 a0. The radial value R5

y/N is even linearly decreasing
until the stability threshold is reached (around a = add) and allows to approximate for all
scattering lengths

R5
y

N
= m · (a− aoffset), (3.2)

where the parameters m and aoffset can be calculated and depend on the trapping frequen-
cies. Therefore, to calibrate the scattering length, we choose to measure the radial radius
Ry after TOF. We use a prolate trapping potential (ωx, ωy, ωz) = 2π · (680, 624, 270) Hz
where the radial radius after the expansion is larger than the axial radius due to the
stronger confinement (see figure 2.5). We image the BEC at different magnetic fields B
after a TOF of 7 ms and extract the atom number of the BEC and its radius Ry. Addi-
tionally for measuring the BEC radius precisely, a good calibration of the imaging system
is needed which is explained in section 4.5. The measured values of R5

y/N at different
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3.2. Enhance the Effect of Dipoles via a Feshbach Resonance

magnetic field B around B0 = 589.1 G, are mapped onto the scattering lengths using
the linear dependence of R5/N on a. Due to the uncertainties on the BEC atom number
and on the trapping frequencies, we introduce an effective proportionality factor mexp in
equation 3.2. mexp can be calculated far away from the Feshbach resonance2 where the
scattering length is close to the background scattering length abg = 102.5 a0

mexp = m ·
[
R5
y

N

]∣∣∣∣
exp,bg

/ [
R5
y

N

]∣∣∣∣
theo,bg

. (3.3)

With this mapping the dependency of the scattering length on the magnetic field is given
by

a(B) =

[
R5
y/N

]
(B)

mexp

+ aoffset. (3.4)

Finally the measured scattering length is fitted to the characteristic shape of a Feshbach
resonance, as in equation (2.21) and is shown in figure 3.3b. The uncertainty on the
scattering length a is given by the fit errors. For stability measurements (presented in
chapter 5) we want to decrease the scattering length to values between add to −2add (15
to -30 a0). For positive scattering lengths below add the uncertainty is ∆a ≈ 1.5 a0 and
for negative scattering lengths between 0 a0 > a > −2add we obtain ∆a ≈ 2− 3 a0.

2Experimentally we are limited to 35 G above the Feshbach resonance. There the scattering length is
around 97 a0
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Figure 3.3.: Calibration of the scattering length. (a) The value R5/N is calculated within
the Thomas-Fermi approximation for a BEC containing 20,000 atoms at different
scattering length. Both the radial and the axial value of R5/N depend linearly
on the scattering length. (b) The scattering length extracted from the mea-
sured values R5

y/N is plotted against the magnetic field B around the resonance
B0 = 589.1 G. The error bars correspond to the standard deviation over five
measurements. The red line is a fit with the characteristic shape of a Feshbach
resonance (equation (2.21)). Both figures are for a prolate trap with trapping
frequencies (ωx, ωy, ωz) = 2π · (680, 624, 270) Hz and an expansion time of 7 ms.
The green circled data points are used to calculate mexp (see text).
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4. One-dimensional Optical Lattices

Optical lattices are periodic potentials for ultracold atoms typically created by interfering
laser beams. They are extensively used to mimic solid state physics using cold atoms,
where the ultracold atoms in an optical lattice play the role of electrons in an atomic lattice
[2, 68]. Optical lattices are also used to confine atoms with high trapping frequencies [1].
In our experiment we use a one-dimensional optical lattice to investigate the properties of
a dipolar BEC in such periodic potentials. In contrast to the atomic lattice of a solid body,
the depth of an optical potential can be precisely tuned by the intensity of the laser beams
creating it. This introduces great possibilities for experimental investigations, however
they crucially depend on the calibration of the lattice depth. This requires the knowledge
about the fundamental properties of an optical lattice and well suited calibration methods.

In this chapter, we first present some general properties and characteristics of optical
lattices. Then we describe in more detail our configuration in section 4.3. Subsequently, in
section 4.4, we describe two different, independent methods to calibrate the depth of the
optical lattice potential: first via interference patterns and second through the diffraction
of a BEC from a pulsed lattice. Besides this, the diffraction patterns were used to precisely
measure the scaling of our imaging system as shown in section 4.5.

4.1. Optical Dipole Traps

An optical lattice typically involves two interfering laser beams, which individually would
provide a standard optical dipole trap (ODT). Therefore, we first give a short overview on
the working principle of ODTs before we explain the characteristics of an optical lattice.
A detailed description of ODTs is given in the review [69].

A light wave described by an electric field E oscillating at frequency ω induces an
electric dipole moment d in the atom, which is proportional to the dynamic polarizability
α. This leads to an energy shift of the atomic energy levels via the AC Stark effect and
the corresponding dipole potential is then described by

Vdip = −1

2
〈dE〉 = − 1

2ε0c
α(ω)I, (4.1)

with the field intensity I = 2ε0c |E|2 and ε0 the vacuum permittivity. The factor 1/2 takes
into account that the electric dipole is induced and not permanent. The polarizability α
can be calculated in a two level scheme considering the Lorentz oscillator model, where the
electron is elastically bound to the nucleus featuring an eigenfrequency ω0. The radiative
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Chapter 4. One-dimensional Optical Lattices

energy loss of the accelerated electron is taken into account by a damping rate Γ that
corresponds to the decay rate of the excited state. The corresponding equation of motion
is ẍ+ Γẋ+ω2

0x = −eE(t)/me with the driving field E(t) = E0 cos(ωt). The polarizability
is then proportional to the amplitude A(ω) of this driven harmonic oscillator and is given
by −eA(ω).

For large detunings δ = ω− ω0 the scattering rate of photons is much smaller than the
spontaneous decay rate Γ. In this case the dipole potential is given by [69]

Vdip(r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r). (4.2)

In the case |δ| � ω0, the rotating-wave approximation is valid. Then the second term in
the brackets of equation (4.2) is much smaller than the first term and can therefore be
neglected. The dipole potential simplifies to

Vdip(r) =
3πc2

2ω3
0

Γ

δ
I(r), (4.3)

hence, for a red detuned light field (δ < 0) the dipole potential is negative and attracts
atoms into regions of maximum intensity. The opposite effect is true for the blue detuned
case (δ > 0) where potential minima correspond to minima of intensity. Thus atoms can
be trapped by a red-detuned focused laser beam. The transversal shape of a laser beam
is generally given by a Gaussian function. In the following paragraph we will give a short
overview on the propagation of a Gaussian beam and extract the trapping frequencies
and other characteristics of real light potentials.

Gaussian Beams and Trap Geometry

The intensity profile I(r) of a cylindrically symmetric Gaussian beam is given by

I(r, z) = I0

(
w0

w(z)

)2

e
− 2r2

w2(z) (4.4)

with z the direction of propagation, r the radial coordinate and I0 the maximum intensity.
The width w(z) is defined as the value where the radial intensity of the beam drops down
to a value 1/e2, when compared to the corresponding axial value. Along the direction of
propagation, the width is given by

w(z) = w0

√
1 +

(
z

zR

)2

(4.5)

with the beam waist w0 in the focus. The characteristic distance

zR =
πw2

0

λ
(4.6)
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4.2. Characteristics of a one-dimensional Optical Lattice

is called the Rayleigh length and denotes the distance where the width has increased by
a factor of

√
2 with respect to the waist w0. For given laser power P and beam waist w0

the maximum intensity in the focus (z = 0, r = 0) is

I0 =
2P

πw2
0

. (4.7)

According to equation (4.3) the dipole potential Vdip is directly proportional to the field
intensity and therefore

Vdip(r, z) = V dip
0

(
w0

w(z)

)2

e
− 2r2

w2(z) , (4.8)

with the trap depth V dip
0 that can be calculated using I0 and equation (4.3). For trap

depths much larger than the thermal atom energy kBT the atoms will stay in the center of
the trap. In this case the trapping potential is well approximated by a harmonic oscillator
potential Vdip = m/2(ω2

rr
2 + ω2

zz
2) with the radial and axial trapping frequencies

ωr =

√
4V dip

0

mw2
0

, ωz =

√
2V dip

0

mz2
R

. (4.9)

Typical trapping frequencies in a single beam trap are a few Hz axially and 100-1000 Hz
radially. From an experimentalists point of view, it is important to note that the trap
depth depends linearly on the power in the laser beam, while the trapping frequencies
scale like

√
P .

4.2. Characteristics of a one-dimensional Optical Lattice

Creating an optical lattice is based on the principles of an ODT, but requires interfering
laser beams. To have a standing light wave requires two use beams with wave vectors kL
and k ′L, with linear polarization in the same plane1 (described by the unity vector êy)
and same wavelength λL (ω = ω′). The electric field created by the superposition of these
two laser beams is

E (r , t) = E0 êy [cos(ωt+ kLr) + cos(ω′t+ k ′Lr)]

= 2E0 êy

[
cos

(
2ωt+ r(kL − k ′L)

2

)
· cos

(
r(kL + k ′L)

2

)]
. (4.10)

The laser beams are crossing under an angle θ, where θ is defined as shown in figure 4.1.
We define the direction êz as the angle bisector of θ. The optical lattice field in z-direction
is in this case

E(z, t) = 2E0 êy [cos(ωt) cos(zkL cos(θ/2))] . (4.11)

1if the polarizations are not in the same plane one would have a polarization gradient with circularly
and linearly polarized light.
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Chapter 4. One-dimensional Optical Lattices

Figure 4.1.: Interference of two laser beams. The beams cross under an angle θ and create a
standing light wave in z-direction.

According to equation (4.3) the optical lattice potential in z-direction is proportional to
the light field intensity

Vlat(z) = 4V dip
0 cos2(klat z) = V0 cos2(πz/dlat) (4.12)

with V0 the lattice depth (four times larger than the dipole trap depth of a single beam),
the lattice vector klat = kL cos(θ/2) and the period length called lattice spacing

dlat =
π

klat
=

λL
2 cos(θ/2)

. (4.13)

If the laser beams are counter propagating (θ = 0) the lattice spacing is equal to half the
laser wavelength, dlat = λL/2.

The lattice depth V0 is commonly given in units of the recoil energy that an atom gains
by absorption of one photon with momentum ~klat:

ER =
~2k2

lat

2m
=

~2π2

2md2
lat

. (4.14)

For further notations we will use the dimensionless lattice parameter s = V0/ER.

A deep one-dimensional lattice can be considered as a stack of highly oblate ODTs,
where the radial trapping frequencies are still on the order of a few hundred Hz and the
axial trapping frequencies on the single sites are obtained via

ωlat =
π

dlat

√
2V0

m
= 2
√
s
ER
~
, (4.15)

with the corresponding lattice oscillator period Tlat = 2π/ωlat [70, chapter II.B.2].
Like in a solid state body, the particles in each lattice site can tunnel to neighboring

sites if the lattice depth is sufficiently small. The tunneling parameter J gives the gain in
kinetic energy due to nearest neighbor tunneling. For V0 � ER the tunneling rate J/h is
given by [71]

J

h
=

4√
π

ER
h
s3/4e−2

√
s. (4.16)

When the tunneling time h/J becomes small compared to experimental time scales (2-10
ms), particle exchange becomes very small and the on-site wave functions are well-localized
within a single lattice site. This corresponds to the so-called tight binding regime.
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4.3. Experimental Realisation of the one-dimensional Optical Lattice

Figure 4.2.: Setup of the one-dimensional optical lattice and scheme of the experiment in top
view. The lattice laser beam (solid red line) is guided through an optical isolator
and an AOM to control the beam intensity (used telescopes are not shown). The
polarization after the λ/2 wave plate is orientated perpendicular to the plane of
projection (y-direction). The beam is then focused by a lens onto the atoms, then
back reflected under an angle of θ ≈ 10◦ (see figure 4.3) and refocused onto the
atomic sample. The atoms are held against gravity (points opposite y-direction)
with the horizontal ODT1 (dashed red line) and vertical ODT2 (not shown). The
magnetic field coils for reaching the Feshbach resonance are shown in green. After
a TOF the atoms are recorded via absorption imaging in x-direction and imaged
by two lenses onto the CCD camera.

4.3. Experimental Realisation of the one-dimensional
Optical Lattice

In our experiment we use a nearly back reflected configuration of a laser beam that is
created by a continuous wave ytterbium fiber laser2 at wavelength λL = 1064 nm. The
beam is focused onto the atoms with a waist of 72 µm, collimated, and back reflected
under an angle of θ ≈ 10◦ (see figure 4.2) and refocused onto the atoms. We thus create
a one-dimensional optical lattice with spacing dlat = 534 nm, which is superimposed to
the crossed ODT, described in section 5.2.

The fiber laser is used at a power of 8.4 W for the one-dimensional lattice. This laser
beam is guided through an optical isolator and an acousto-optic modulator3 (AOM) for
controlling the laser beam power, as shown in figure 4.2. The laser beam intensity is

2IPG: ’YLR-20-1064-LP-SF’
3TeO2-S modulator, model MTS80
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Chapter 4. One-dimensional Optical Lattices

Figure 4.3.: The required lengths to determine the angle in between the lattice laser beams
in top view. The dimensions are given for our vacuum chamber (centered in the
figure) and the aluminium rings for mounting the magnetic field coils (right and
left side). The trigonometrically calculated angle is θ = 9.44±1.32◦ and the lattice
plain is dumped by 1.9± 1.3◦ to the imaging camera.

controlled via an acoustic travelling wave inside the AOM’s crystal. The beam is going
through the AOM with a diameter of around 1 mm that leads to a rise time of 1 µs
because of the finite acoustic velocity within the crystal of the AOM. After these optical
components, mirrors and telescopes (not shown in figure 4.2) the polarization direction
is aligned in y-direction (perpendicular to the plane of incidence) by a λ/2 wave plate.
The maximum power in the laser beam that creates the optical lattice is around 4.7 W
in front of the last lens, before the chamber. The beam is then focused onto the atoms
with a waist of 72 µm. After this it is back reflected under an angle of around 10◦ (see
figure 4.2) and refocused onto the atoms using two lenses. During the preparation of the
BEC (≈ 20 s) the shutter is closed and the laser beam switched on to heat the optical
components. This technique efficiently reduces temperature effects.

The angle included between the two lattice laser beams was calculated using right
triangles where two side lengths were measured. All lengths are shown in figure 4.3 in
top view including the dimensions of the vacuum chamber and two aluminium rings
for mounting the coils for the magnetic offset field. We determine the angle to be
θ = 9.44 ± 1.32◦, which yields the lattice spacing dlat = 533.8 ± 0.5 nm, a re-
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4.4. Calibration of the Lattice Depth

coil energy of ER = 13.9 peV =̂ 3.36 kHz =̂ 161 nK and a lattice trapping frequency
ωlat = 2π · 30 kHz for a depth of 20 ER, where all the values are calculated for 52Cr
with mass mCr = 8.68 · 10−26 kg.

4.4. Calibration of the Lattice Depth

In experiments with optical lattices, the lattice depth V0 (see section 4.2) is defining
most of the properties of the system and therefore an important quantity to determine.
In principle, the lattice depth can be calculated if one knows all the atomic and lattice
parameters. In contrast to the simple two-level Lorentz oscillator model (section 4.1), we
have to take into account the coupling of all the energy levels in the spectrum of 52Cr.
Even though we can perform these calculations, they can only provide a good estimate
of the lattice depth. Furthermore, the real laser intensity seen by the atoms is difficult to
measure and depends crucially on the alignment of the laser beams.

For experimentally measuring the lattice depth V0, we use well-known effects arising in
a system of ultracold atoms in periodic potentials. For example Bloch oscillations of a
moving condensate in a lattice or Landau-Zener tunneling can be used to calibrate low
lattice depth where the tunneling rate is large [72]. However, in our experiments we are
mainly interested in larger lattice depths. So we do two independent calibrations of the
lattice depth suited for this regime, namely the analysis of interference patterns after
time-of-flight (TOF) [72] and the diffraction of atoms from a pulsed optical lattice [73].

4.4.1. Interference Patterns - Relative Side-Peak Population

For using the first mentioned calibration method of the lattice depth, the BEC is loaded
adiabatically into the lattice (see section 5.2) and then the lattice is switched off suddenly.
For a sufficiently deep lattice, the BEC is well described by a sum of Gaussian wave
functions localized on all the lattice sites. During a TOF these wave packets will expand
freely and interfere with each other and we observe an interference pattern. If the wave
packets are still coherent one can see a characteristic pattern of equidistant peaks with
spacing 2~klat · tTOF/m, as shown in figure 4.4a. The coherence is conserved for shallow
lattices where tunneling is allowed or for short holding times in the lattice (few ms). The
relative side-peak populations P±1 increase with the lattice depth as [72, 74]

s =
16

[ln(P±1)]2
P
−1/4
±1 . (4.17)

This equation can be directly used to calibrate the lattice depth. In the experiment, the
interference pattern is averaged over eight pictures for a scattering length of a = 60 a0

to obtain a high signal-to-noise ratio. This averaging procedure is described in detail in
the appendix A.2.3. By fitting a sum of three Gaussian functions, the populations of the
zeroth and first orders are extracted. For a lattice depth of V0 = 12 ER the side-peak
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(a) Interference patterns
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Figure 4.4.: (a) Averaged images of eight shots for increasing lattice beam intensity I in per-
centage. The images are taken at a scattering length a = 60 a0 and the field of
view for each image is 288.5 × 129 µm. (i) averaged pictures as recorded in the
experiment (ii) the thermal cloud is subtraced in every single shot (b) Lattice
depth determined via the relative side-peak method against the lattice beam in-
tensity in percentage. The populations P±1 are extracted by a three Gaussian fit
from a(ii). The lattice depth is calculated with equation (4.17) and plotted with
blue circles with errors coming from the fit. To interpolate for deeper lattices, the
lattice depth is fitted by a straight line (solid black line).

population is P±1 = 0.25 and a second order peak is not visible. Figure 4.4b shows the
calibration of the lattice depth for this method against the lattice power. The straight
line is a linear fit to the data that yields V0[ER] = (1.248± 0.032) I[%]. This calibration
of the lattice depth is used for the measurements described in chapter 5.

For our experiment this method is not valid anymore for lattice depths V0 > 15 ER
where tunneling is suppressed. As a result of this, the phases of the separated clouds
develop independently and dephasing effects happen as described in [75]. These dephasing
effects prevent the application of this calibration method for very deep lattices.

4.4.2. Diffraction of a Condensate from an Optical Lattice

A second, independent method for the calibration of the lattice depth V0 makes use of an
analogon of our system with classical optics: Similar to diffraction of a coherent beam of
light from a grating, a BEC (coherent matter wave) is diffracted from an optical lattice
for sufficiently short interaction times. These diffraction patterns were first investigated
experimentally in 1983 with a beam of sodium atoms [76] and in 1999 with a sodium BEC
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4.4. Calibration of the Lattice Depth

[73]. These experiments demonstrated the wave-particle duality and inverted the role of
matter and light in the classical double-slit experiment.

When coherent light shines through a grating with spacing d, diffraction orders are
observable in the far field with spacings ∝ 1/d, the light is diffracted by periodic matter
grating. For the diffraction of a BEC from an optical lattice, we start with a BEC in
the trap (in our case a crossed ODT). Then we abruptly turn on the lattice to a depth
V0 and hold this value for a variable time tpulse and then turn it off abruptly4 again.
The resulting situation is, that a BEC is shortly interacting (compared to the oscillation
period) with an optical lattice at constant depth. Immediately after this short interaction
time, we use a TOF to let the cloud expand and record the resulting density distribution by
resonant absorption imaging. As mentioned in section 2.3.3 a TOF without interactions
is similar to a Fourier transformation. The recorded image is therefore displaying the
in-trap momentum distribution. We observe several diffraction orders separated by the
momentum 2~klat = 2π~/dlat and the spacing between neighboring diffraction orders on
the recorded image

∆z = vlat · tTOF =
2~klat
m
· tTOF (4.18)

depends on the TOF length tTOF . Recalling the analogon to the classical diffraction of a
light wave on a refractive index grating, the interaction time tpulse defines, if the matter
wave is diffracted from a ’thin’ or ’thick’ grating. For a thin grating the interaction time
is so short that the displacement of the atoms along the lattice can be neglected. This
regime is described in section 4.4.2.1. Whereas for a thick grating the interaction time
is comparable to or longer than the oscillation time of the atoms in the standing light
wave. This will be discussed in section 4.4.2.2. Hence, for variable interaction times we
will expect dynamics of the diffraction patterns.

In figure 4.5 we show an experimental sequence for the dynamics of the population of
the diffraction orders with increasing tpulse. In the beginning the maximum observable
diffraction order increases linearly with the interaction time. For longer pulse durations
there is a boundary given for the maximum diffraction order nmax. For increasing further
the interaction time the higher order populations decrease until the zeroth order is again
the most populated order. We then observe that the pattern starts to repeat again.
These revivals are visible for pulse durations that are approximately multiples of Tlat/2
[77]. From the measured maximum order with its momentum 2~kmax = 2~nmaxklat, the
lattice depth can be estimated by

V0 =
~2k2

max

2m
= 4n2

maxER. (4.19)

Using this estimation, the lattice depth in figure 4.5 is roughly V0 ≈ 256ER. A way to
measure more precisely the depth of the lattice implies to determine the dynamics of
the population of each diffraction order with increasing tpulse. Experimentally, we fit a

4Note that our rise time of the used AOM is 1 µs. But the effective pulse length (integration over the
pulse) matches quite well with the pulse duration tpulse.
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Chapter 4. One-dimensional Optical Lattices

Figure 4.5.: Atomic density distribution obtained from the diffraction of a BEC by a lattice
of depth 225 ± 9 ER. The single images are taken for different interaction times
tpulse from 0.2 µs to 6 µs. The patterns are recorded after a TOF of 4 ms. The
equidistant peaks have a spacing of 2~klattTOF /m and the number of momentum
orders is linearly increasing until 2.5 µs and reaches nmax = 8. The revival point
of the zeroth order is visible at tpulse ≈ 5.6 µs. In the images at 5.4 µs and 5.6 µs
the zeroth order is splitted in a double peak, which is probably an effect of a
slightly misaligned optical lattice. Because of this reason, longer interaction times
yield asymmetric diffraction patterns that is not in agreement with theory. The
field of view for a single shot is 67.5× 1184 µm.
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4.4. Calibration of the Lattice Depth

Gaussian function to every diffraction order, to extract the normalized populations. Doing
this, we ’reconstruct’ the dynamics of each order (see figure 4.6), which we compare to
theory to finally determine the lattice depth.

The dynamics of the diffraction pattern is well understood and different models have
been proposed. It can be described for example by considering the simple case of a two-
level system, as in [78, chapter 4.1 - page 58ff] and [79]. In the following however, to be
consistent with the picture of the matter waves, we choose to present another description
for the dynamics of the diffraction pattern which obtains the same results: in this model,
we neglect all atomic interactions during the pulse duration and therefore the system is
well described by the Schrödinger equation. This is valid due to the short interaction
time tpulse that has to be much smaller than the radial oscillation time (tpulse � Tr).
In presence of the one-dimensional lattice potential Vlat = V0 cos2(klat x) (see equation
(4.12)), the Schrödinger equation is

i~Ψ̇(x, t) = − ~2

2m

d2Ψ(x)

dx
+ V0cos2(klatx)Ψ(x) (4.20)

with the normalized matter wave Ψ(x). Starting from this equation we first describe
analytical solutions within the so-called Raman-Nath approximation, before numerical
methods are presented that solve the full equation (4.20).

4.4.2.1. Raman Nath Approximation

For very short pulse durations, the atoms move only by a very small distance compared to
the lattice period dlat. Therefore, one can neglect the movement of the atoms during the
pulse and hence neglect the kinetic energy term in the Schrödinger equation (first term on
right hand side of equation (4.20)). This is called the Raman-Nath approximation. This
approximation was first used for the diffraction of light by sound waves in the regime of
’thin’ gratings [80, and following parts].

For the optical lattice the pulse durations have to be much smaller than the oscillation
time of the atoms on a single lattice site. An upper limit is estimated by the Raman-Nath
time tRN [81]

tpulse < tRN ≡
Tlat√

2π
. (4.21)

Note that, for the calculations the notation of the pulse duration tpulse is simplified to
t. Within the Raman-Nath approximation the kinetic energy in the time-dependent
Schrödinger equation is neglected and we obtain a homogeneous differential equation

V0 cos2(klatx)Ψ(x, t) = i~Ψ̇(x, t) (4.22)

The solution of this equation is

Ψ(x, t) = A · e−i
Vo
~ cos2(klatx) t = A · e−i

V0
2~ (1+cos(2klatx)) t

= A · e−iΩt · e−i cos(2klatx)Ωt, (4.23)
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with the two photon Rabi frequency Ω = V0/2~. These solutions are of course not
stationary solutions, because we have neglected the kinetic energy term. To obtain a
mathematical description of the measured density distribution after a TOF, we perform
the Fourier transformation of the spatial density distribution. For the Fourier transfor-
mation we consider only one period length π/klat of the function (4.23) that leads to the
normalization A =

√
klat/π. Therefore, the momentum distribution writes

F Ψ(x, t) = Ψ̃(p, t) =
1√
2π~

∫ π
2klat

− π
2klat

Ψ(x, t) · e−i
px
~ dx

=

√
klat

2π2~
· e−iΩt

∫ π
2klat

− π
2klat

e−i cos(2klatx)Ωt · e−i
px
~ dx (4.24)

using the substitution z′ = 2klatx+ π/2 leads to

Ψ̃(p, t) =

√
1

8π2~klat
· e−iΩt

∫ 3π
2

−π
2

ei sin(z′)Ωt · e−i
p

2~klat
z′ · e−i

p
2~klat

π
2 dz′. (4.25)

As mentioned before, we observe diffraction peaks at momenta p = 2n~klat only (with n
being an integer number). All functions in the integral (4.25) are 2π-periodic, therefore
we are allowed to shift linearly both integration limits. The outcome of this is

Ψn(t) =

√
1

8π2~klat
· e−iΩt

∫ π

−π
e−i(nz

′−Ωt sin(z′))(−i)n dz′. (4.26)

The final equation for the momentum wave function within the Raman Nath approxima-
tion is

Ψn(t) =

√
1

2~klat
· e−iΩt(−i)nJn(Ωt), (4.27)

where Jn are Bessel functions of the first kind, that are equal to the integral term in
equation (4.26) for integer values of n: [82, page 31]

Jn(x) =
1

2π

∫ π

−π
e−i (nτ−x sin τ) dτ. (4.28)

The remaining exponential function in (4.27) has no influence on the time propagation
as this term is the same for all n (it describes only the global phase evolution). The
populations Pn(t) of the various diffraction orders are finally given by the square of the
absolute values of the wave functions in (4.27)

Pn(t) = 2~klat |Ψn(t)|2 = J2
n(Ωt). (4.29)

As we will see, our experimental data is in good agreement within the Raman-Nath
approximation until reaching the Raman-Nath time tRN (see figure 4.6). However, for
our calibration of the lattice depth we use also longer interaction times, going beyond the
Raman-Nath regime, which increases the accuracy of the determined lattice depth.
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Figure 4.6.: Relative populations of diffraction orders extracted from figure 4.5 are plotted
in blue circles against the pulse length tpulse. To determine the lattice depth,
the theoretical population in equation (4.38) is fitted to the experimental data
(red line). The mean value of the lattice depth (omitting the value from order
8) is V0 = 225 ± 9 ER. The dashed black line is the theoretical population
within the Raman-Nath approximation. It deviates from the data after the time
tRN = 2.3 µs.
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Chapter 4. One-dimensional Optical Lattices

4.4.2.2. Beyond the Raman-Nath Regime

To increase the accuracy of the calibration of the lattice depth, we have to measure for
times longer than tRN . Also the observed revivals of the zeroth order are not predicted
within the Raman-Nath approximation. In this regime, the interaction time tpulse is com-
parable or longer than the lattice oscillator period Tlat (axial oscillation time). Therefore,
the kinetic energy in axial direction is not negligible. We describe this regime again by
the Schrödinger equation in presence of an optical lattice potential

EΨ(x, t) = − ~2

2m

d2Ψ(x)

dx
+ V0cos2(klatx)Ψ(x). (4.30)

Using the trigonometric rule cos2(x) = (1 + cos(2x))/2 and dividing by ER = ~2k2
lat/2m

the result is

E

ER
Ψ(x) = −d2Ψ(x)

dx2

1

k2
lat

Ψ(x) +
V0

2ER
(1 + cos(2klatx))Ψ(x). (4.31)

Finally using the substitution z = klatx it yields to Mathieu’s differential equation [83]

d2Ψ(z)

dz2
+ [ar − 2q cos(2z)]Ψ(z) = 0 (4.32)

with the characteristic value ar and the lattice parameter q

ar =
E

ER
− V0

2ER
and q =

V0

4ER
=
s

4
. (4.33)

The Mathieu equation is found in many physical problems dealing with elliptic cylindri-
cal coordinates or periodic potentials and is well understood [83]. The Mathieu functions
M(ar, q, z) are the corresponding solutions that can be calculated numerically5. All Math-
ieu functions are 2π-periodic and they are normalized over one period to the value of π
[83, chapter 2.21] ∫ π

−π
M(ar, q, z) ·M∗(ar, q, z) dz = π. (4.34)

We give a short overview on the properties of Mathieu functions. In the following these
properties will be needed to simplify the expressions for the description of the dynamics
of the diffraction pattern:

1. For q = 0 equation (4.32) reduces to Ψ′′ + arΨ = 0 and the solutions are sine and
cosine functions. In the case ar � q they are still very close to sine and cosine
functions [83, chapter 2.11].

2. According to Bloch’s theorem any Mathieu function can be written as eirzf(z) where
f(z) is a 2π-periodic function and r is called the characteristic Mathieu exponent
[83, chapter 4.12].

5Mathematica: MathieuC[ar, q, x] gives the even Mathieu functions for known q and ar
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4.4. Calibration of the Lattice Depth

3. For integer r the Mathieu functions are real and 2π-periodic. Moreover for odd r
they are asymmetric and for even r they are symmetric.

4. For given lattice parameter q and characteristic Mathieu exponent r there is only
one possibility for the characteristic value ar to solve the Mathieu equation6 (4.32).
This solution fulfills the condition ar > r2 [83, chapter 2.16].

The Mathieu functions are used to describe the dynamics of the diffraction pattern for
long interaction times, where the kinetic energy is non-negligible. To obtain the time-
dependent populations of the diffraction orders, we calculate the wavefunction of the
initial state of the BEC and project it onto the eigenfunctions of the Mathieu equation.
These eigenfunctions are then evolved in time with the corresponding eigenenergies up
to tpulse to calculate the wavefunction before the TOF. We finally calculate the Fourier
transform to obtain the time-dependent population of the diffraction orders after TOF.

For all the following calculations we consider only one period of the Mathieu functions.
The period for all Mathieu functions is z = [−π, π], which corresponds a spatial interval
of two lattice sites. Note that in the diffraction problem, the characteristic Mathieu
exponent r is a multiple of 2. In the following the characteristic Mathieu exponents are
r ≡ 2j with integer j. Therefore even Mathieu functions, real and 2π-periodic, are used
(enumeration point 3). The initial BEC wave function is assumed to be constant over a
single lattice site during the pulse time and is given by Φ(z, t = 0) = 1/

√
2π. This is valid

as long the interaction time is shorter than the radial oscillation time (tpulse � Tr). When
the lattice is pulsed onto the constant BEC wavefunction, the initial state is developed in
the even Mathieu functions

Ψ(z, t = 0) =
∞∑
j=0

|M(a2j, q, z)〉 〈M(a2j, q, z)|Φ(z, t = 0)〉

=
∞∑
j=0

c2j
1√
π
M(a2j, q, z) (4.35)

with the expansion coefficients

c2j = 〈M(a2j, q, z)|Φ(z)〉 =

∫ π

−π

1√
π
M(a2j, q, z) · 1√

2π
dz

=

√
2

π

∫ π

0

M(a2j, q, z) dz (4.36)

using equation (4.34) for normalization and the symmetry of even Mathieu functions. As
it is not possible to numerically calculate all Mathieu functions up to infinite j, we need
to truncate the sum in equation (4.35). The corresponding ’truncation criterion’ is given

6Mathematica: MathieuCharacteristicA[r, q]: gives the characteristic value ar for even Mathieu func-
tions
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Chapter 4. One-dimensional Optical Lattices

by the properties of the Mathieu functions. As mentioned before, under the condition
a2j � q the even Mathieu functions can be simplified to cosine functions cos(

√
a2jz)

(see enumeration point 1). In this case the expansion coefficients c2j are zero as the
integral

∫ π
0

cos(x) dx vanishes. Therefore, the truncation criterion could be written as
a2j � q. However, it is more clear to rewrite this truncation criterion as a condition on
the maximum number of visible orders nmax. Knowing that the characteristic value a2j is
always larger than the squared characteristic exponent r = 2j (enumeration point 4), the
truncation criterion can then be written as 16j2 � s, where s = 4q is the dimensionless
lattice parameter. s being related to the highest visible diffraction order s = 4n2

max,
we finally get the truncation criterion j � nmax. In the calculations we find that the
condition j > nmax + 1 is sufficient.

Taking into account the time evolution operator with eigenenergy E = (a2j + 2q)ER
from equation (4.33), the time dependent wave function is

Ψ(z, tpulse) =
nmax+1∑
j=0

c2j
1√
π
M(a2j, q, z) e−i

a2j+2q

~ ERtpulse

= e−i
2q
~ ERtpulse

nmax+1∑
j=0

c2j
1√
π
M(a2j, q, z) e−ia2jωRtpulse (4.37)

with the recoil frequency ωR = ER/~. As before in equation (4.27), the first exponential
function has no influence for the time evolution of the different populations. Finally
we use a Fourier transformation with discrete momenta7 k = 2n to obtain the desired
momentum distribution

Pn(q, tpulse) =

∣∣∣∣∫ 2π

0

1√
2π

Ψ(z, tpulse) e
−2inz dz

∣∣∣∣2 . (4.38)

In this final equation the only free parameter is the lattice depth via the parameter q,
which is used for our calibration of the lattice depth.

The atom numbers in the experimental diffraction orders are fitted using Gaussian
functions. From this procedure the relative populations of all visible orders are extracted
as a function of pulse length tpulse. For every momentum order, the lattice parameter
q is independently fitted with equation (4.38). The semi-automatic evaluation program
is described detailed in the Appendix A.2.2. As shown in figure 4.6 we perform nine
independent fits and determine precisely the lattice depth to be V0 = 225±9 ER (without
order 8). The advantage of the Raman-Nath procedure is the short interaction time and
therefore it is a good method for calibrating very high lattice depths. Such high lattice
depths cannot be calibrated via the interference patterns, where we are limited due to
dephasing effects in deep lattices.

Finally, we repeat this calibration procedure for several lattice laser intensities and
determine the lattice depth in each case. As the lattice depth is proportional to the

7unitless momentum k due to unitless space parameter z = klatx

48



4.5. Magnification of the Imaging System
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Figure 4.7.: Determined lattice depth with the diffraction procedure against the lattice beam
intensity I in percentage. Similar to figure 4.6 the lattice depth is extracted with
separate fits to the populations of the diffraction orders for several lattice beam
intensities. The mean values with the standard deviation (blue circles) is plotted
with a linear fit (solid black line) to extrapolate other laser powers.

lattice laser intensity, see equation (4.3), the lattice depth is interpolated by a linear
fit. The calibration of the lattice depth used for the measurements described in chapter
5 is shown in figure 4.7. The straight line fit to the laser intensity in percentage is
V0[ER] = (1.541± 0.040) I[%].

We have shown the calibration of the lattice depth via two independent methods, one
through evaluation the interference patterns of a BEC released from the optical lattice,
the other via the diffraction of a BEC from the optical lattice. The evaluation of datasets
from the same day shows a deviation of the results of around 20 %. Up to now it is still
unclear which one of the two methods is closer to the true value of the lattice depth. In
the following chapter we will use both calibrations in parallel and we will compare the
results of our measurements to the full theoretical simulation. There we will see, that
the calibration of the lattice depth via the interference patterns leads to better agreement
between measurements and theory.

4.5. Magnification of the Imaging System

As already mentioned in section 3.1.2 we use absorption imaging for recording the density
distribution of the BEC after a TOF. The atoms are imaged via two lenses, as shown
in figure 4.2, on a CCD-Chip with a pixel size of lpixel = 6.45 µm. The magnification
M of our imaging system is expected to be exactly unity. However, due to the a small
uncertainty on the position of the atoms, the real value can deviate slightly from M = 1.
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Chapter 4. One-dimensional Optical Lattices

(a) Diffraction for different tTOF (V0 ≈ 50 ER)
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(b) Extraced spacing against tTOF

Figure 4.8.: Using the diffraction of a BEC to calibrate our imaging system (a) Diffraction
patterns for a lattice depth V0 ≈ 50 ER with equal pulse duration tpulse = 5.5 µs
for different expansion times tTOF from 3 ms to 9 ms. The spacing between
neighboring orders is increasing linearly in time. The field of view is 104 × 1227
µm for each shot (b) Extracted spacing between neighboring orders on the camera
for several time of flight lengths tTOF (blue circles). The error bars are inside the
point size and therefore not visible. A linear fit (black solid line) gives the velocity
on the camera vcam. The ratio of the measured velocity and the theoretical velocity
vlat = 2~klat/m yields a magnification factor of M = 1.051 ± 0.002 for the
imaging. Furthermore, the effective time of flight is toffset = 0.126 ms longer than
the programmed one.

In any case it is essential to know the scaling of the imaging system to precisely determine
the real magnification factor. Only if this value is well known we can rely on the extracted
radii and consequently the atom numbers and temperatures.

In the previous section we presented the calibration of the lattice depth via the diffrac-
tion patterns. As the separation between the diffraction orders in the measured pat-
terns are well defined by the properties of the optical lattice, one can calibrate the
imaging system using this length scale. The spacing ∆z is given by equation (4.18)
and proportional to the expansion time tTOF . In the measurements presented in fig-
ure 4.8, the diffraction orders propagate at the constant velocity vlat = 2~klat/mCr =
(14.301±0.015) ·10−3 m/s, with uncertainties due to the specified uncertainty of the laser
wavelength λL = 1064 ± 0.5 nm and the uncertainty on the crossing angle of the laser
beams θ = 9.44± 1.32◦.

To extract the experimental ’velocity on the camera’ vcam we pulse the lattice at a
constant lattice depth of V0 ≈ 50ER and then perform a TOF at variable times tTOF =
3 − 9 ms in steps of 1 ms. We use a pulse length of tpulse = 5.5 µs where the forth
diffraction order is clearly observable. One example of this measurement is shown in 4.8a
visualizing the increasing spacing of neighboring orders. This spacing is determined by
fitting two Gaussian functions on both two forth orders (left and right) to measure their
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4.5. Magnification of the Imaging System

distance on the camera. This is repeated for both third and second orders to have an
average over nine spacings between neighboring orders for a single TOF length.

The averaged spacings are shown in figure 4.8 for several TOF lengths. A linear fit
vcam · (tTOF + toffset) yields a velocity on the camera of vcam = (15.033 ± 0.021) ·10−3 m/s.
As mentioned before the diffraction order velocity vlat is well known and can be used to
determine the magnification of the imaging system to M = 1.051 ± 0.002. The value
required for every information on BEC length scales in our evaluation program is the
effective scaling between pixel and real space at the atoms position:

lpixel

M
=
(
6.136 ± 0.011 · 10−6

) m

pixel
. (4.39)

Furthermore, toffset yields a ∆tTOF = 0.1261 ± 0.0089 ms longer tTOF than expected from
the programmed value.
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5. Stability of a Dipolar Condensate in
a one-dimensional Optical Lattice

In the two previous chapters, we have shown how to obtain a BEC with enhanced dipolar
interaction and how to control a one-dimensional lattice. In this chapter, we combine
both techniques to investigate the static properties of a dipolar BEC in a one-dimensional
optical lattice. In section 5.2 we explain the loading process of the lattice. For a shallow
lattice the underlying prolate ODT determines the shape of the BEC. In this geometry the
dipolar interaction is mainly attractive and destabilizes the system. On the contrary, for
a deep lattice the BEC is sliced into a stack of oblate BECs with long-range dipolar inter-
site interactions without any particle exchange. In our geometry, the dipolar interaction is
on-site repulsive and strongly stabilizes the system, whereas the inter-site interactions are
mainly attractive and yield to a destabilization. But still, we will experimentally show
in section 5.3 that the overall dipolar interaction can stabilize a many-body quantum
system even at attractive contact interaction. The effects of the inter-site interactions are
discussed in detail in section 5.4.

5.1. A Dipolar Bose-Einstein Condensate in an Optical
Lattice

As mentioned in section 2.3.4 a single oblate dipolar BEC is expected to be stable even
at negative scattering length. In our configuration we create for sufficently deep lattices a
stack of oblate dipolar BECs (see figure 5.1). In this system, one expects that the mainly
attractive inter-site interaction leads to destabilization. Because of these counteracting
effects of stabilizing on-site interaction and destabilizing inter-site interaction, the static
properties of a dipolar BEC in an optical lattice are not clear and therefore subject of our
investigations.

Figure 5.1.: Sketch of a dipolar BEC and a stack of oblate dipolar BECs with spacing dlat
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Chapter 5. Stability of a Dipolar Condensate in a one-dimensional Optical Lattice

Figure 5.2.: Timeline of our experimental procedure to measure the stability of a chromium
BEC. We first create a chromium condensate at high magnetic field (600 G) near
the Feshbach resonance. Then the BEC is loaded adiabatically with an s-shaped
ramp into the optical lattice. To keep the radial trapping frequencies constant,
we decrease the ODT with the same ramp shape. Once the lattice has reached
the final depth we tune the scattering length in 6 ms via the magnetic field to its
final value. Then we hold the BEC for 2 ms. After this evolution time we release
it from the trapping potential to perform a TOF of 6 ms. Finally we image the
density distribution by absorption imaging.

5.2. Loading a Chromium Condensate in a
one-dimensional Optical Lattice

As shown in chapter 3 we perform evaporative cooling to create a BEC in a crossed
ODT. During the evaporation the high magnetic field is ramped up to around 600 G
near the Feshbach resonance. Then the trapping potential of the crossed ODT is shaped
adiabatically to the trapping frequencies ωx,y,z = 2π · (440, 330, 290) Hz, such that the
BEC is still in the ground state of the trapping potential. After this we add the optical
lattice along the polarization direction (z-direction). Unlike in section 4.4.2 where the
optical lattice is suddenly turned on and several momentum states are occupied, we now
aim to load the lattice adiabatically. Therefore, the changing of the lattice depth has to
fulfill the conditions for adiabaticity to reach the new ground state of the system. Starting
from zero lattice depth the adiabaticity criterion that has to be fulfilled writes [84]

dV0

dt
� 16E2

R

~
= 16ERωR. (5.1)

For our experimental values, this criterion implies that the optical lattice should be
switched on much slower than dV0/dt � 0.3 ER/µs. To ensure adiabaticity we ramp
up the optical lattice to the final lattice depth with an s-shaped ramp1 in 20 ms, shown in

1V0(t) = V0 ·
(
(k + 1)tk − ktk+1

)
with k = 11 and t is linearly increased from zero to one within the

ramping time
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Figure 5.3.: Checking the adiabaticity for our loading scheme. The first point at V0 = 0 ER is
the case without the overlying lattice. (a) Mean temperature for different lattice
depths. S-shaped loading and unloading in 40 ms for different lattice depth. The
temperature is constant for all lattice depth that confirms the adiabaticity. The
trapping frequencies are ωx,y,z = 2π · (440, 330, 290) Hz with the corresponding
critical temperature of Tc = 540 nK for a system of 40,000 chromium atoms. (b)
thermal atom numbers for different lattice depths. The thermal atom numbers
are constant for all lattice depths. Together with the constant temperature, we
show that the atomic cloud is not heated up during the loading process.

figure 5.2. The ramp is globally slow enough to ensure adiabaticity, and in addition, we
make the ramp slower at its beginning, when the lattice depth and therefore the energy
spacing to the first excited state are small. Ramping up the lattice laser beam, we also
add some extra radial confinement. Additionally in our measurement, we want to keep
the radial frequencies constant, and therefore the power of the horizontal ODT beam is
decreased also s-shaped (see figure 5.2).

Experimentally we check the adiabaticity, by loading the BEC into the optical lattice
and immediately decrease the lattice intensity with the same ramp inversed. Then we
perform a 6 ms TOF and record the atoms by absorption imaging. The initial BEC is
chosen not to be purely condensed with a remaining thermal cloud. This allows us to
measure the temperature of the cloud. If our loading ramp is adiabatically we should not
heat the system and the thermal atom number should not increase.

From the recorded density distribution, we extract the thermal fraction. The thermal
density distribution in a harmonic trap has a Gaussian shape with widths li, which we
extract from a bimodal fit to the cold cloud. The corresponding temperature of the
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Chapter 5. Stability of a Dipolar Condensate in a one-dimensional Optical Lattice

Figure 5.4.: Lifetime in a deep lattice (V0 = 41.6 ± 1.7 ER) for different scattering lengths
a. For being further away from the Feshbach resonance and the instability point
(acrit ≈ −15ER) the 1/e lifetime is increasing. It stays always below the lifetime
of a dipolar BEC in a crossed ODT and above our measurements timescale of 2
ms.

thermal cloud after an expansion is given by [57]

T =
m

kB

l2i (tTOF )
1
ω2
i

+ t2TOF
(5.2)

with li(tTOF ) the widths after an expansion time tTOF . The atom mean temperature
(averaged for at least five images) is shown for different lattice depths in figure 5.3. The
temperature is constant for every lattice depth, so there is no visible heating effect due to
the lattice loading procedure. In addition the number of thermal atoms does not increase
after loading and unloading the lattice. Therefore we show that we are able to load
adiabatically a chromium BEC into a one-dimensional lattice up to depths V0 = 90 ER.

Lifetime in the Optical Lattice

The lifetime of a BEC is strongly reduced when going close to the Feshbach resonance
due to inelastic 3-body losses. The 1/e lifetime of a chromium BEC in a crossed ODT in
the vicinity of the used Feshbach resonance was already measured in [10]. The lifetime
far away from the resonance was longer than 1 s, whereas near the resonance the lifetime
decreased to 40 ms due to inelastic losses. So it is not clear if the lifetimes are long enough
for measurements when using an optical lattice, as we expect high densities which lead
to an enhancement of 3-body losses.

Therefore, we have done lifetime measurements in a deep lattice (V0 = 42 ER) at low
and even negative scattering length. We create a BEC in high magnetic field, load it into
the lattice as described before, then tune the scattering length to the final value and hold
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5.3. Stability Diagram of a Chromium Condensate in a one-dimensional Lattice

for variable time thold (see figure 5.2). For each thold we measure the number of atoms in
the condensate and we fit this decaying curve by an exponential function to extract the
1/e lifetime. This lifetime as a function of the scattering length a is shown in figure 5.4.
The lifetime of the BEC in the lattice is below 40 ms and thus shorter than for a BEC
trapped in the crossed ODT only. As expected the lifetime is shorter due to the higher
mean frequency with superimposed lattice. For a lattice depth of V0 = 42 ER the mean
frequency is around ω̄ = 2π · 1800 Hz, while ω̄ is much lower for a BEC in the crossed
ODT (ω̄ ≈ 2π · 300 Hz).

For the interesting range of scattering length, namely a < add ≈ 15 a0 the lifetime is
sufficiently long for the stability measurements, as it should be longer than the holding
time of 2 ms at the final scattering length.

5.3. Stability Diagram of a Chromium Condensate in a
one-dimensional Lattice

Now, that we are able to adiabatically load the dipolar BEC into the optical lattice, we are
able to investigate the static properties of the system. The procedure is similar to the one
in [11] for the measurements shown in section 2.3.4. In detail, the experimental procedure
is shown in figure 5.2 and is as follows: the chromium BEC is produced in high magnetic
field at a scattering length of a ≈ 90 a0 in a crossed ODT with trapping frequencies
ωx,y,z = 2π · (440, 330, 290) Hz. The dipoles are aligned along the strong magnetic field
in z-direction. After reducing the scattering length to a = 60 a0, we load the BEC into
the one-dimensional optical lattice, which is oriented along the polarization axis in z-
direction. We populate around 15 lattice sites, the central sites containing around 2000
atoms. Then we decrease the scattering length in 6 ms to its final value and hold the
atoms for thold = 2 ms. Finally we perform a TOF of tTOF = 6 ms and take an absorption
image.

The BEC atom number is extracted by a 1D bimodal fit. We explain the fitting pro-
cedure in detail in appendix A.2.1. The initial BEC atom number before loading into
the lattice is N ≈ 20,000. For large scattering lengths, we measure typically 10,000 BEC
atoms in a deep lattice and 15,000 BEC atoms in a shallow lattice. Getting close to
the instability point the BEC atom number abruptly decreases as shown in figure 5.5.
By fitting an empirically chosen function2 to the observed BEC atom numbers, we find
the critical scattering length acrit. For a shallow lattice around V0 = 7 ER the critical
scattering length is positive acrit = 6.5 ± 1.9 a0. For deeper lattices around V0 = 45 ER
the scattering length is negative acrit = −13.2 ± 2.5 a0.

In figure 5.6 we show the stability diagram of a chromium BEC in a one-dimensional
lattice, which is obtained by measuring acrit for several lattice depths V0 = 0 − 80 ER.
The critical scattering length decreases continuously for increasing lattice depth. acrit is

2N = max
[
N0(a− acrit)β , 0

]
where N0, acrit and β are fitting parameters
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Figure 5.5.: Atom numbers versus scattering length for a shallow lattice (blue circles) and deep
lattice (filled red circles). The solid lines are fits to the data using an empirically
chosen function N = max

[
N0(a− acrit)β, 0

]
from which we extract the critical

scattering length acrit.

positive until V0 ≈ 10 ER and in a deep lattice it goes down to acrit = −17± 3 a0.
The solid red line in figure 5.6 is obtained from numerical simulations based on the non-

local GPE (equation (2.26)) using exactly our experimental parameters. The simulations
agree well with the experimentally determined stability threshold. The simulations were
done on a full 3D numerical grid in imaginary time to find the ground state of the system,
which means no assumptions were made on the wave function (in contrast to e.g. the
Gaussian ansatz in section 5.4). Alternatively, the non-local GPE was evaluated in real
time and simulated exactly our experiment as described above. Both results of the critical
scattering length are basically undistinguishable. This implies that the experimental
results recover the stability threshold even for deep lattices, where reaching the ground
state is questionable, due to the suppression of tunneling.

As our BEC atom number varies during the measurement day (∆N ≈ 5000), we checked
the theoretical dependence of acrit on N . The black dashed and dotted lines are full
simulations for initial BEC atom numbers of 30,000 and 10,000. They only show a weak
dependence on the atom number, especially for deep lattices. To show the difference from
a purely contact interacting BEC the experiment is simulated without magnetic dipole
moment with chromium parameters otherwise. This is shown as the green dashed-dotted
line and the critical scattering length for the whole range is |acrit| < 0.4 a0.

In the absence of the lattice, the ODT determines the shape of the dipolar BEC and
for the chosen trapping frequencies the BEC is prolate. The BEC is destabilized by
attractive dipolar interaction and becomes unstable for positive scattering lengths close
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Figure 5.6.: Stability diagram of a dipolar condensate in the one-dimensional lattice. The
critical scattering length acrit is plotted against the lattice depth V0. The lines are
numerical simulations based on the non-local GPE for different atom numbers.
For increasing lattice depth we observe a crossover from a dipolar destabilized
(acrit > 0) to a dipolar stabilized (acrit < 0) regime. The green dashed dotted line
is the simulation for the purely contact interacting case with otherwise chromium
parameters. The Lattice depth is calibrated in two independent ways (a) via the
diffraction method (Raman-Nath) and (b) with the relative side-peak method
(interference).

to the value add = 15a0 [11]. For lattice depths smaller than V0 < 12 ER, the stability
depends on the interplay of the interactions and the tunneling rate in the lattice and is
very hard to describe. For deeper lattices (V0 > 12 ER) tunneling is suppressed and the
prolate BEC is sliced into a stack of highly oblate dipolar BECs. The oblate dipolar BECs
are even stable for negative scattering lengths. For increasing lattice depth we observe
a crossover from a dipolar destabilized to a dipolar stabilized regime. This means the
stabilization due to the large condensate aspect ratio is stronger than any possible inter-
site destabilization mechanism. The inter-site interaction without particle interaction is
particular to long-range interacting systems, and we will investigate them further in the
next section 5.4.

As mentioned in section 4.4 we have two independent ways to calibrate the lattice
depth. In figure 5.6a the diffraction method (Raman-Nath) is used, whereas in figure 5.6b
the interference patterns with the relative side-peak population were chosen as calibration
method. We find a better agreement of the numerical solution with the measurements for
the lattice calibration via the relative side-peak population. A possible explanation for this
result is: we use the Raman-Nath diffraction method in low magnetic field and pulse the
lattice immediately after releasing the BEC from the ODT. In contrast to this, we extract
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the relative side-peak population in high magnetic field from interference patterns at 60
a0 with the same external trapping as we use for the stability measurements. Cosequently,
it is performed exactly under the same conditions present in the stability measurements.
Therefore, the calibration of the lattice depth via the interference patterns is probably
closer to the true value.

5.4. Dipolar inter-site Interactions in a one-dimensional
Optical Lattice

As tunneling is suppressed in the deep lattice regime the system is well described by
independent wavefunctions, localized on the sites of the optical lattice. Tunneling is
negligible for V0 ≥ 12ER where the tunneling rate is J/h ≤ 50Hz that leads to a tunneling
time of h/J ≥ 20ms. This is ten times larger than the holding time at the final scattering
length of thold = 2 ms. In this tight-binding model the several site populations do not
change due to negligible particle exchange. Therefore, one can assume the system to
be a stack of oblate BECs, that are coupled only via the long-range dipolar inter-site
interactions.

To investigate the role of the inter-site interactions on the stability threshold, we repeat
the numerical simulations without inter-site interactions. This is done by introducing a
truncated dipolar potential U box

dd (r) = Udd(r)[Θ((r · êz) + dlat/2)− Θ((r · êz)− dlat/2)],
where Θ(x) is the Heaviside function. With this potential only the dipolar and contact
on-site interactions are taken into account, whereas the dipolar inter-site interactions are
effectively removed. Figure 5.8 shows the deep lattice regime of the stability diagram for
the full and the truncated potential simulations. The simulation with the truncated poten-
tial shows a large deviation from the experimental data in the full range of measurements.
As an exmaple, at V0 ≈ 18 ER this deviation is around 8 a0 which is three times larger
than our standard deviation. This discrepancy, in addition to the good agreement with
the full simulation, confirms the presence of destabilizing dipolar inter-site interactions.

Numerical simulations give very exact results without any assumption on the wavefunc-
tion, but one data point takes several hours for these calculations. Hence, for qualitative
understanding, we assume a fixed shape for the wavefunctions for faster analytic cal-
culations. We approximate the on-site wavefunctions by radially symmetric Gaussian
functions, which is a good approximation in the tight-binding model. To find the stable
regions of a coupled stack of oblate BECs we search for minima in the energy functional
having the BEC radii as variational parameters σr and σz, similar to the procedure de-
scribed in section 2.3.4. For the Gaussian ansatz the on-site energy terms are given in the
equations (2.35)-(2.37). The on-site energy consists of the quantum pressure term, the
potential energy, the contact and the dipolar interaction energy. For a stack of coupled
dipolar BECs we also have to take into account the inter-site interaction energy. For sim-
plicity, we assume equal atom numbers on Nlat lattice sites. Each lattice site with spacing
dlat contains N atoms in the BEC and the spacing between the sites is denoted by dlat
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Figure 5.7.: The effects of the inter-site interaction is calculated for different numbers of filled
lattice sites Nlat with distance dlat. Each oblate dipolar BEC contains N = 2000
atoms. The case Nlat = 1 considers only on-site interaction. For Nlat ≥ 2 each
inter-site interaction to the j-th nearest neighbor is calculated.

(see figure 5.7). For the j-th nearest neighbors with polarization in lattice direction the
inter-site interaction energy is given by [17]

Ej
Inter

~ω̄
=

√
2

π

N2add
aho

1

σ3
r

F

(
c,
j dlat
ahoσr

)
(5.3)

where c =
√

1− σ2
z/σ

2
r =

√
1− 1/κ2 and

F (u, v) =

∫ 1

0

3s2 − 1

(1− u2s2)3/2

(
1− v2s2

1− u2s2

)
e
− v2s2

2(1−u2s2) ds. (5.4)

Using these on-site and inter-site energies the total energy is a function of the variational
parameters σr and σz. To obtain the total system energy, the on-site energy is multiplied
by Nlat and the inter-site energy with the j-th nearest neighbor is multiplied by Nlat − j
to account for the finite size of the system. Similar to section 2.3.4, the presence of a
positive global or local minimum corresponds to the presence of a stable ground state.
Note that the prefactor of the inter-site energy is doubled compared to the on-site energy
contact interaction (see equation 2.37), as we count it only once for each pair of coupled
BECs.

With this Gaussian ansatz we will first investigate the situation of the stability mea-
surements. In the experiment, we load around 15 lattice sites with the atoms parabolic
distributed with 2000 atoms in the central sites. For the first set of calculations, we will
use the following simplified picture: uniformly distributed atoms on 15 lattice sites with a
relative distance of dlat = 534 nm, each lattice site containing 2000 atoms. The trapping
frequency in z-direction is defined by the lattice (equation (4.12)). As the Gaussian ansatz
is radially symmetric, we have to consider a radially symmetric trapping potential. For
this we take the mean radial frequency ωr =

√
ωxωy = 2π · 380 Hz. For our experimental

values this leads to trap aspect ratios of λ = 55 for a lattice depth of V0 = 10 ER and
λ = 175 for a lattice depth of V0 = 100 ER.

The results for the critical scattering length are shown in figure 5.8. The blue line is
the result of the system described above with 15 lattice sites filled. The blue dashed line
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Figure 5.8.: Zoom in figure 5.6 for the deep lattice regime. The full numerical simulation
(red solid line) and the numerical simulation without inter-site interaction (red
dashed line) are given. The calculations without the inter-site interaction show a
substantial deviation to the experimental data, indicating the presence of desta-
bilizing dipolar inter-site interactions. In addition, the analytical simulation with
the Gaussian ansatz is given for a single dipolar condensate (blue dashed line) and
15 equal coupled condensates (blue solid line) each with 2000 atoms.

is resulting for only a single filled lattice site Nlat = 1. This is equivalent to removing
inter-site interactions comparable to the use of the truncated potential explained above.
The resulting stability threshold matches the experimental datapoints within the error
bars, therefore providing an appropriate theoretical description of the system. When
comparing the simulation and the Gaussian ansatz for Nlat = 1, the stability threshold
using the Gaussian ansatz is smaller than the numerical simulation in the whole range.
The same case occurs for Nlat = 15 in the experimentally accessible range.

As the density distribution is forced to a Gaussian shape the maximum density is always
in the center of the trap. In this case the BEC shrinks in radial size for scattering lengths
approaching acrit. Because here the whole BEC is contracting towards the center, leading
to an ’implosion’ of the condensate, this mechanism is called ’global collapse’. When doing
the full simulations the density distribution is not predefined and local density maxima off
the trap center can occur. In certain configurations, the instability then is induced at these
locations off the center [85]. This ’local collapse’ leads to a less stable BEC compared
to simulations with the Gaussian ansatz. Nevertheless, the Gaussian ansatz describes
the role of the inter-site interaction remarkably well. For example at V0 = 18 ER both
simulations yield the same destabilization effect of the inter-site interaction ∆acrit ≈ 8 a0.
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5.5. Interactions between spatially separated Dipolar
Condensates

In the previous section we kept the radial trapping frequency ωr constant and controlled
the axial frequency ωz by the lattice depth V0. However, the mean trapping frequency ω̄ =
(ω2

rωz)
1/3 is not constant for the experimental measurement. For further investigations of

the effects coming from the inter-site interactions, we will study a different system with
constant mean trapping frequency ω̄. Hence, we only change the trapping geometry with
the value λ the trap aspect ratio. Unless explicitly stated, in the following we will consider
the system:

− Nlat lattice sites

− N = 2000 atoms per lattice site

− lattice spacing dlat = 534 nm

− mean trapping frequency of ω̄ = 2π · 1500 Hz (mean harmonic oscillator length
aho = 359 nm)

We calculate the critical scattering length, the interaction energy and the radial size of
the condensate using the Gaussian ansatz for the wavefunction as in the previous section
5.4.

5.5.1. Critical Scattering Length for coupled Dipolar Condensates

We investigate the dependency of the critical scattering length on the number of neigh-
boring filled lattice sites using the Gaussian ansatz. As can be seen in figure 5.9, the most
stable system is the single BEC, stabilized by repulsive dipolar interactions. Adding more
lattice sites destabilizes the system meaning that the inter-site interactions are mainly at-
tractive. One can infer an ’asymptotic’ stability diagram by increasing the number of
lattice sites to very large values: for Nlat = 200, the critical scattering length acrit differs
only by around 0.5 a0 from the system with 50 lattice sites. Experimentally the number
of filled lattice sites is Nlat = 15 which varies only 1.5 a0 from the ’asymptotic’ value in
the investigated regime.

In addition, we compare the calculated stability threshold of a dipolar BEC to calcula-
tions where we set the dipole moment to zero (i.e. purely contact interacting system with
chromium parameters otherwise). Here the critical scattering length is negative as well
but much closer to the zero value. In the full range between λ = 10− 1000 the minimum
is acrit = −2 a0. The negative scattering length is stabilized by the quantum pressure and
the external trapping.
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Figure 5.9.: Critical scattering length acrit against trap aspect ratio λ for different number
of lattice sites Nlat. The single BEC (lower blue solid line) is the most stable
system. Filling more lattice sites destabilizes the system up to the ’asymptotic’
value (upper solid blue line). Red dashed lines are the asymptotic values for a
prolate trap (add) and highly oblate trap (−2add). The green curve marks the
stability threshold for a purely contact interacting BEC with otherwise the same
parameters.

5.5.2. Inter-site Interaction Energy

In this section we calculate the inter-site interaction energy, which turns out to be negative
between all the lattice sites in our system. We consider a purely dipolar BEC at a = 0a0

(without any contact interaction). We search for the ground state of a system with
Nlat = 200 lattice sites. From this system we extract the inter-site interaction energy
for two separated oblate BECs with spatial distance d = j dlat (j ∈ N). The inter-site
interaction energy is shown for different distances in figure 5.10 for different trap aspect
ratios λ. For each distance, lattice site and trap aspect ratio the inter-site interaction
energy is negative and consequently attractive. A repulsive interaction energy is only
possible for overlapping Gaussians, which is not observable in the tight binding regime.
The inter-site interaction energy decreases for higher trap aspect ratios. If the trap aspect
ratio is increased the BEC grows in the radial direction.

The asymptotic value of the inter-site energy of two infinite parallel homogeneous dipo-
lar discs is zero [86, 87]. This can be shown with the following calculation: the interaction
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Figure 5.10.: Inter-site interaction energy for a dipolar BEC versus spatial distance. The
ground state of 200 lattice sites with each 2000 atoms and spacing dlat = 534 nm
at the scattering length a = 0 a0 is considered. The interaction energy (in
frequency) of a single site with a second site with spatial distance d is shown.
For every distance the interaction is attractive. (a) inter-site interaction energy
with linear scale (b) the same data in log-log scale, where for large distances
the interaction energy is proportional to 1/r3 for all systems with different trap
aspect ratio λ.

potential between two magnetic dipoles belonging to two different lattice sites is [87]

Uinter(r) =

(
µ0µ

2

4π

)2
r2 − 2d2

lat

(r2 + d2
lat)

5/2
(5.5)

where r is the in-plane separation between these dipoles. We now consider a single dipole
interacting with a two-dimensional disc with radius R with a homogeneous dipole density.
In this case, the inter-site interaction is proportional to

Eint(R) ∝
∫ R

0

r · Uinter(r) dr ∝ − R2

(R2 + dlat)3/2
. (5.6)

Therefore, the interaction energy between a single dipole and an infinite extended homo-
geneous disc is zero. As the problem is radially symmetric, the interaction energy for two
infinite homogeneous discs is also zero.

In figure 5.10b the inter-site energy is plotted in a log-log scale. For large distances
(in this case more than 40 dlat) the inter-action energy is proportional to 1/r3. For this
reason, systems at any trap aspect ratios λ can be described as two interacting point-like
magnetic dipoles, provided the distance between them is sufficiently large.
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Figure 5.11.: Radial cloud size (using Gaussian ansatz) against the scattering length a for
several number of filled lattice sites Nlat. A system with Nlat sites shrinks radially
for decreasing the scattering length and at acrit its radial collapse takes place.
For adding more neighbors the radial size shrinks at a constant scattering length.
For smaller radial size the absolute value of the inter-site energy is higher and
the system gets more unstable. (a) for a trap aspect ratio λ = 70 (b) for a very
oblate trap aspect ratio λ = 1000, where the effect of increasing number filled
lattice sites is smaller compared to λ = 70.

5.5.3. Radial Size modified by inter-site Interactions

When performing variational calculations to find the stability threshold of a single BEC,
we have seen that the condensate contracts radially until it reaches zero size and the
collapse occurs. Hence, the radial size is an interesting observable, which we examine in
presence of inter-site interactions in this section. Using the Gaussian ansatz we consider
a system with different number of filled lattice sites Nlat. We calculate the ground state
for different scattering lengths and for two different trap aspect ratios. The radial size of
the ground state is shown in figure 5.11 for different number of lattice sites against the
scattering length a close to acrit. The calculations are carried out for two traps: for a trap
aspect ratio of λ = 70 that is experimentally created at a lattice depth of V0 = 15 ER and
a very oblate trap λ = 1000 that is close to an infinitely thin oblate BEC.

First, we consider the case of a single BEC Nlat = 1. The BEC shrinks radially for
decreasing scattering length until it collapses at a = acrit. A similar radial collapse is also
found when several sites are populated, see figure 5.11.

In presence of inter-site interactions, the system shrinks radially at constant scattering
length. This effect can be understood, when recalling that two point-like dipoles on
neighboring lattice sites are attracting each other (lower their potential energy), whereas
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Figure 5.12.: Radial cloud size (using Gaussian ansatz) against the effective scattering length
aeff for several number of filled lattice sites Nlat. aeff is defined such that all
systems with different Nlat collapse at aeff,crit = 0 a0 (it is a linear transformation
like aeff = a−acrit(Nlat) compared to figure 5.11). Then one can see the unitary
radial collapse for all systems of Nlat. In green it is shown the case for a contact
interacting BEC with otherwise same parameters as chromium. This case is for
every scattering length smaller than the dipolar case. (a) for a trap aspect ratio
λ = 70 (b) for a trap aspect ratio λ = 70.

two infinite planes of dipoles are not interacting at all. This effect is more prominent in
moderately oblate traps than in extremely oblate traps, see comparison between λ = 70
and λ = 1000 trap in figure 5.11.

The behaviour of the radial size against the scattering length for different number of
lattice sites Nlat is qualitatively the same in all cases. Therefore, they are compared
in the following way: We define an effective scattering length where all the systems
collapse at aeff,crit = 0 a0. To fulfill this definition we shift all curves linearly by using
the transformation aeff = a− acrit(Nlat). As a result all curves overlap at their instability
point, see figure 5.12. As the curves almost overlap in the full range of aeff , the inter-site
interactions essentially shift the critical scattering length, while leaving the qualitative
behaviour unchanged. However, we have to keep in mind our simplification of the system
due to the Gaussian ansatz. Several theoretical investigations have revealed interesting
qualitative effects as well [32, 88].
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Figure 5.13.: Total inter-site interaction energy for a dipolar BEC with spatial distance for
several trap aspect ratios λ. We consider a purely dipolar BEC with 20,000 atoms
at a = 0 a0. These atoms are uniformly distributed on Nlat lattice sites and we
calculate the ground state. (a) The total inter-site interaction energy of the
whole system against the number of filled lattice sites Nlat. The calculations are
done for different trap aspect ratios λ. The absolute value of inter-site interaction
energy is maximized for low trap aspect ratios. The red dots mark the maximum
absolute value of the inter-site interaction of each system with trap aspect ratio
λ. (b) The total energy of the system (on-site and inter-site) against different
number of filled lattice sites. For small trap aspect ratios the total energy is
lower. A minimum for a single system with trap aspect ratio λ is not visible.

5.5.4. Maximum inter-site Energy of a Dipolar Condensate

In the previous sections we fixed the number of atoms in all lattice sites to N = 2000,
independent on the number of total filled lattice sites Nlat. However, in our experiment we
have a limited total number of atoms (typically 20,000) than can be distributed on Nlat

lattice sites. Hence, we check at which number of loaded lattice sites we find maximum
inter-site interactions. Furthermore we want to know the system with the relative highest
inter-site interaction energy compared to the total energy of the system (on-site and
inter-site energy).

For this we consider a purely dipolar BEC with 20,000 atoms at a = 0 a0 with no
influence of contact interaction. To mimic our experiment we uniformly distribute the
20,000 atoms on Nlat lattice sites. Note that in this system the atom number per site is
N = 20000/Nlat, in contrast to the sections before. We extract the inter-site interaction
energy and the total energy of the whole system, for several lattice sites Nlat and trap
aspect ratios λ.
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The results are shown in figure 5.13. Figure 5.13a shows the total inter-site interaction
against the number of filled lattice sites. For moderate trap aspect ratios the total inter-
site interaction reaches a maximum value. The red dots mark the maximum absolute
value of the inter-site interaction of each system with trap aspect ratio λ. The value
with maximum inter-site interaction is for the whole investigated range of trap aspect
ratios between Nlat = 9− 18. This regime is experimentally accessible as we load 20,000
chromium atoms in 15 lattice sites for the stability measurements.
Figure 5.13b shows the total energy of the considered system. Even though the inter-site
interaction energy has a clear minimum between Nlat = 9 − 18, the total energy does
not show such behaviour, due to the interplay between on-site and inter-site interactions.
Instead the total energy is nearly constant for sufficient high number of loaded lattice
sites. Therefore, the relative total inter-site interaction reaches the maximum for small
trap aspect ratios
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6. Conclusion and Outlook

Conclusion

In this thesis we have presented the experimental investigation of the static properties of
a dipolar BEC in a one-dimensional optical lattice. We have reached the stable regime
of highly oblate dipolar BECs with attractive contact interaction, where several unique
physical phenomena are predicted.

Such experiment implied to produce a dipolar BEC and to know its basic properties,
which we introduced in the first two chapters. It was also essential to control the inter-
actions inside the BEC and to handle a one-dimensional optical lattice. Furthermore the
experiments required a very high level of control on two important parameters: first the
scattering length a, describing the contact interaction strength and tunable by a mag-
netic Feshbach resonance, and second the lattice depth V0, describing the properties of
the optical lattice potential and that can be tuned by changing the intensity of the laser
beams creating it. A major effort was made to calibrate both parameters as accurately
as possible.

These requirements being fulfilled, we studied the stability of a chromium BEC in the
one-dimensional optical lattice. The stability threshold depends on the complicated in-
terplay between tunneling, contact interaction and dipolar interactions. However, in the
deep lattice regime, tunneling between the lattice sites becomes negligible and the system
can be considered as a stack of highly oblate dipolar condensates. In this regime, we have
shown the dipolar stabilization of an otherwise unstable many-body system such as an at-
tractive Bose gas. The mainly repulsive dipolar interaction compensates the destabilizing
attractive contact interaction and stabilizes the system up to negative scattering lengths
of a = −17 a0. In contrast, for reduced lattice depths the dipolar interaction becomes
mainly attractive and destabilizes the system. The tunable parameters (scattering length
a and lattice depth V0) being well controlled and well calibrated, our measurements are
in excellent agreement with numerical simulations without any adjustable parameter.

To understand the behaviour of the stability threshold for a stack of oblate dipolar
condensates, the long-range dipolar interaction between the single BECs (inter-site inter-
actions) have to be taken in account. For this we developed a model using the Gaussian
ansatz for the wavefunction and we quantified the destabilization induced by inter-site
interactions.
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Figure 6.1.: Excitation spectra of highly oblate dipolar BECs. Curves calculated for following
values: ωz = 2π ·42 kHz (corresponding to V0 = 40 ER), axial size lz =

√
~/mωz =

68 nm, density n = 1015 cm−3 and lattice spacing dlat = 534 nm (a) single dipolar
BEC at three different scattering lengths (b) for a single site (dashed line) and
two sites (solid lines) (c) single site (dashed line) and 10 sites.

Outlook

The results presented in this thesis are promising for studying unique features of dipolar
BECs, e.g. their roton-like excitation spectrum [28] and self-organized structures [24,
26]. The roton-maxon excitation spectrum predicted for a dipolar oblate BEC differs
fundamentally from the spectrum of contact interacting systems. For a purely contact
interacting BEC, the excitation spectrum increases monotonically with the momentum
q of the excitation. For small momenta, the spectrum exhibits a phonon-like behaviour,
increasing linearly with q. For higher momenta, the spectrum increases quadratically as for
a free particle (similar to the green dashed-dotted curve in figure 6.1a). In strong contrast,
the excitation spectrum of an oblate dipolar BEC does not increase monotonically due to
the momentum-dependent dipolar interaction and exhibits a local minimum1 called roton
minimum (see figure 6.1a). This roton minimum defines a new characteristic length scale
in the system, which is associated to self-organized structures [24].

In our setup using the one-dimensional optical lattice, we do not produce a single oblate
dipolar BEC. Typically we create a stack of around Nlat = 10− 15 oblate BECs coupled
by inter-site interactions. This is predicted to modify the roton-maxon spectrum [30, 31].
For example, assuming a system with two sites (Nlat = 2), two different branches appear
in the excitation spectrum, one mode stiffer and the other one softer compared to the case
of a single dipolar BEC (shown in figure 6.1b). As a consequence, the roton minimum
emerges even for larger scattering lengths, i.e. for negative scattering lengths with smaller
absolute values. This ’hybridization’ becomes even more pronounced in a stack of coupled

1The excitation spectra presented in figure 6.1 are calculated with the formulae in [30] (see appendix
A.3)
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BECs2. Indeed, the excitation spectrum hybridizes in Nlat modes, as one site couples with
all other Nlat−1 sites. The more lattice sites are loaded, the more softened is the lowest
lying roton-mode and the roton minimum is shifted to smaller momenta compared to the
case of a single BEC (see figure 6.1c).

The calculations shown in figure 6.1 assume a homogeneous BEC with infinite radial
extension. As our dipolar BECs are finite in size, the roton-maxon spectrum is not
continuous anymore. However, as shown in [89], the roton minimum is still observable
in a finite size BEC. Further simulations have to show whether the roton minimum is
observable in our stack of dipolar BECs or not.

A way to probe the roton minimum could be to induce a ’roton instability’, which
emerges when the energy associated to the roton minimum is equal to zero. This roton
instability - occurring at finite momentum - is fundamentally different from the ’phonon
instability’ observed in previous d-wave collapse measurements [20]. Therefore, the dy-
namics associated to the roton instability is expected to be significantly different. Hence,
in the next step we would like to induce a roton instability by ramping fast over the
stability threshold, similar to the experimental procedure presented in [20].

2In addition, the presence of inter-site coupling in a stack of dipolar BECs is responsible for the appear-
ance of self-organized structures, which would not be present in a single BEC [32, 88].
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A. Appendix

A.1. Two-Frequency Acousto-Optic Modulator Driver

Figure A.1.: (a) standard AOM driver setup to control the laser beam intensity with a volt-
age controlled oscillator (VCO) that creates the frequency f1 (blue line) an its
attenuator is controlled by the external voltage. This signal is amplified and goes
to the AOM. (b) two-frequency AOM driver setup with an additional VCO with
frequency f2 that is added before the amplifier to keep a constant radio-frequency
power on the AOM crystal constant. For this a control voltage dependent voltage
adjustment is needed. Taken from [34].

An acousto-optic modulator (AOM) uses the acousto-optic effect to diffract light from
a standing sound wave inside a crystal. The sound wave induces a periodic change in the
refractive index of the crystal, therefore, generating a grating for an incoming light beam.
The resulting diffraction pattern at the output of the AOM can be modified. Hence, when
blocking all beams except the first diffraction order, the AOM can be used to control the
intensity of a light beam.

Experimentally we use two AOM setups to control the optical dipole trap (ODT). The
crossed ODT is produced by a 1076 nm CW Ytterbium fiber laser (VLR-100-F) operating
at a power of 64 W. The beam is splitted in two parts: one corresponding to ODT1, the
other one to ODT2. Each beam goes through an AOM and behind the AOMs, we measure
a maximum power of 17.7 W for ODT1 and 16.0 W for ODT2 (but only 8 W are used).
For a standard AOM driver setup (see figure A.1a), the diffracted laser beam can be
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Figure A.2.: Reflectivity of the AOMs (Crystal Tec 3110-199) used for both optical dipole
traps. Minima are at 98, 110 and 122 MHz. Therefore, we chose f1 = 98 MHz
and f2 = 122 MHz.

deflected about 1 mrad when changing the radio-frequency (RF) power. The higher the
RF power the higher the crystal temperature. This can induce changes on the diffraction
index, therefore leading to movements of the diffracted beam.

To improve the pointing stability of the ODTs in our experiment, we use a two-frequency
AOM driver setup (see figure A.1b). This setup was build up in 2007 and is described in
detail in [34, 61], but it had to be renewed due to a damaged analog voltage control for
the second attenuator. In the following we describe the new programming of the digital
voltage control and the measured pointing stability.

Reflectivity of the AOM

As the name of the driver suggests, we need two frequencies (f1 and f2) on the AOM.
To find the correct frequencies f1 and f2, the reflectivity of the used AOM (Crystal Tec
3110-199) had to be measured. First the input power after the amplifier to the AOM was
measured with a spectrum analyzer. To measure the reflectivity, a coupler (2DC 10 1+)
between the amplifier and the AOM is built in. The back reflected signal is measurable
at the coupler ’output’, where we measure the backreflected power again with a spectrum
analyzer. The obtained reflectivity is shown in figure A.2 with minima at 98, 110 and
122 MHz. Therefore, the used frequencies for the two-frequency driver setup are f1 = 98
MHz and f2 = 122 MHz.

Digital Voltage Adjustment

The previous used voltage adjustment circuits were analog and had to be calibrated with
six potentiometers. Our electric workshop built digital voltage adjustments, which are

76



A.1. Two-Frequency Acousto-Optic Modulator Driver

0 20 40 60 80 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ve
rt

ic
al

 m
ov

em
en

t [
m

ra
d]

ODT1 beam intensity [%]

 

 

single frequency AOM Driver
two−frequency AOM Driver

Figure A.3.: Pointing stability of single frequency driver setup compared to a two frequency
driver setup. The vertical movement against different ODT1 beam intensities.
The single frequency driver shows a maximum vertical movement of 0.67 mrad.
For the two-frequency driver setup it is reduced by a factor of around 20 to
maximum 0.03 mrad.

working with a digital list, containing incoming control voltage and the corresponding
output voltage. The outcoming voltage has to be chosen such that the resulting power of
f1 and f2 on the AOM crystal is constant. We looked simultaneously at both frequency
powers by using a spectrum analyzer after the last amplifier and programmed the out-
coming voltage for the attenuator of frequency f2. This was done for sufficient small steps
of the incoming control voltage.

Pointing Stability

After reinstalling the new AOM driver setup, we checked the pointing stability of the
diffracted beam (first order of diffraction). We measured the ODT1 movement at a
distance of d = 1.05 ± 0.05 m after the AOM, for the single frequency driver setup and
the two-frequencies driver setup. The intensity of the Gaussian laser beam (ODT1) was
measured with a four quadrant photodiode to determine the position of the beam. The
photodiode measures the intensity on four neighboring quadrants. We extract the sum of
the signals detected on all quadrants A and the horizontal and vertical differences ∆Uv,h.
The beam waist is measured to be 0.673 mm at the photodiode and the spatial beam
movement is evaluated with Gaussian beam theory. The integrated 2D-Gauss beam with
intensity A′ yields to a measured power on all the four quadrants of

A ≡
∫ ∞
−∞

dx

∫ ∞
−∞

dy A′ e−
x2

2σ2
− y2

2σ2 = A′ 2πσ2. (A.1)

77



Appendix A. Appendix

The position of the quadrant photodiode was aligned to have ∆Uv,h for maximum laser
intensity. The measurable difference signals ∆U for other laser intensities is resulting
from the spatial beam movement b

∆U =

∫ b

−b
dx

∫ ∞
−∞

dy A′ e−
x2

2σ2
− y2

2σ2 = A′
√

2π σ

∫ b

−b
dx e−

x2

2σ2 (A.2)

with the substitution τ 2 = x2

2σ2 . Using that a Gaussian function is symmetric one gets

∆U = A′
√

2π σ

∫ b/
√

2σ

−b/
√

2σ

dτ e−τ
2√

2σ = A erf

(
b√
2σ

)
, (A.3)

with the error function erf(x) = 2√
π

∫ x
0
e−τ

2
dτ . As the inverse error function is not avail-

able in every calculations program, we determine b by searching for the zero1 of

∆U − A erf

(
b√
2σ

)
= 0, (A.4)

which is only solvable for a single value of movement b. The angular movement is finally
determined with the distance as b/d.

The measured angular movement in vertical direction is shown in figure (A.3). The
single frequency driver shows a maximum movement of 0.67 mrad, whereas the two-
frequencies driver reduces the maximum movement by a factor of 20 to 0.03 mrad. The
horizontal movement of the beam is not shown on the figure. It has a maximum movement
of 0.06 mrad for both driver setups.

A.2. Written Programs for the Evaluation

As a part of my thesis I have written several programs for the evaluation of the absorption
images of atomic clouds. I will give here a short overview on the three procedures included
in the already existing automatic evaluation program. These programs were necessary for
the evaluation of the stability of the BEC in the one-dimensional lattice.

A.2.1. 1D Bimodal Fit

From the taken absorption images the optical densities of the atomic clouds are extracted
with MatLab. The fitting procedures to extract the atom number, cloud size or tempera-
ture are done with an automatic evaluation program. In this already existing evaluation
MatLab program, a new fitting procedure2 was included to extract the BEC atom number

1MatLab: command ’fzero’
2ep.traptype ’LatticeStability’ - ip.plottype ’LatticeStability’ - program ’cloudfitgauss1droni.m’
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Figure A.4.: The integrated density distribution is plotted with black crosses. The Gaussian fit
(dark blue line) is performed without the area inside the magenta lines (RONI).
The parabolic function is fitted on the data after subtracting the blue plotted
Gaussian fit (green crosses and turquoise line). The final bimodal fit, including
parabolic and Gaussian shape, is shown in red.

for the stability of a BEC in the one-dimensional optical lattice. In this case the absorp-
tion images exhibit interference peaks. Therefore, to simplify the fitting procedure, each
absorption image is integrated along the lattice direction.

The atom distribution density is already integrated in one direction due to the used
absorption imaging. For this reason we have to integrate twice equation (2.18) describing
the density distribution of a BEC after a TOF. Performing the first integration, it gives
the two dimensional distribution [90, chapter 1.2.3.3]

n2D(y, z, tTOF ) =
5N

2πRy(tTOF )Rz(tTOF )
max

[
1−

(
y

Ry(tTOF )

)2

−
(

z

Rz(tTOF )

)2

, 0

]3/2

(A.5)
with Rz(tTOF ) the Thomas-Fermi radius after the expansion time tTOF . After integrat-
ing also in a second direction (z) one get the following one-dimensional (1D) density
distribution

n1D(y, tTOF ) =
15

16

N

Ry(tTOF )
max

[
1−

(
y

Ry(tTOF )

)2

, 0

]2

. (A.6)

However experimentally, the atomic clouds present a condensed BEC fraction and also
a thermal fraction (not condensed). For a thermal cloud the integrated 1D distribution
writes

nT,1D(y, tTOF ) =
NT√

2πly(tTOF )
e
− y2

2l2y . (A.7)
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Figure A.5.: Typical diffraction pattern integrated perpendicular to the lattice direction (red
line). For each ’positive’ diffraction order on the right side, we extract the relative
populations. This is done by using a multiple Gaussian fit with constant spacing
(blue lines).

To extract the BEC atom number the recorded absorption image is fitted in the following
way. We integrate the two dimensional density distribution along the lattice direction to
get the 1D distribution. This consists of a 1D parabolic BEC fraction and a 1D Gaussian
shaped thermal fraction, shown with black crosses in figure A.4. First we fit a Gaussian
function to the 1D data to have good starting parameters for the following fits. We then
define a region of no interest (RONI) where all BEC atoms sit and we remove this region
from the 1D raw data (two magenta lines). Then we fit a second Gaussian function to
this modified distribution to extract the maximum thermal density (dark blue line).

For the next fitting procedure, we subtract the fitted thermal density distribution from
the 1D raw data (green in figure A.4). Then we fit the 1D parabolic density distribution
(turquoise line) on this remaining density distribution. After these fitting procedures the
maximum BEC density and the maximum thermal density are fixed. Finally on the whole
1D data, a bimodal fit including a Gaussian function and the parabola is fitted with fixed
maximum densities (red line). We extract the BEC radius from which we determine the
condensed atom number using equation (A.6).

A.2.2. Raman Nath Evaluation

The corresponding program3 is used to calibrate the lattice depth via the diffraction of
a BEC from a pulsed standing light wave (see section 4.4.2 and 4.4.2.2). Before running
the program with ’evaluateRamanNath’ one has to choose a picture with many visible
orders and mark two regions in the chosen picture. First the zeroth order with ’New

3Runs with ’evaluateRamanNath’ - ep.traptype ’RamanNathDiffraction’ - program ’cloudfitRaman-
NathNew.m’ and ’lifecalcRamanNathNew 02.m’
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ROI for RamanNath0’ and the last visible order with ’New ROI for RamanNath1’. After
starting the program, we determine first the distance between these two orders. We fit
the center position of both orders by using two single Gaussians. The spatial difference
of these orders has to be a multiple of the characteristic neighboring spacing ∆z (4.18).
Therefore, we calculate the maximum number of diffraction orders nmax by calculating
the nearest multiple of ∆z. After this precalculations, the real procedure to extract the
relative populations of the orders starts.

For each diffraction pattern, measured for different lattice pulse durations tpulse, we
extract the population dynamics of all diffraction orders by following procedure:

1. The diffraction pattern is integrated along the y-direction to get the data similar to
figure A.5.

2. The program searches for the center of the diffraction pattern. For this the data
is averaged over 50 pixels to receive a very smoothen picture. On this smoothen
picture we fit a Gaussian function to extract the center position z′0.

3. We fit in the region [z′0 −∆z/2, z′0 + ∆z/2] a second Gaussian function to find the
real center z0 of the zeroth order.

4. We fit nmax+1 Gaussian functions with spacing ∆z on the right ’positive’ diffraction
orders (blue lines in figure A.5). From the height and the widths, we can extract
the atom number using equation A.7.

Experimentally the diffraction patterns are sometimes asymmetric and the first centering
step fails. Because of this the program asks after the fourth step if the center position
z0 needs to be corrected. This can be done in units of half characteristic spacings ∆z by
typing it in the command line. An empty line continues the fitting procedure with the
next image.

When all images are evaluated, another procedure (’lifecalcRamanNathNew 02.m’)
starts automatically. For every extracted population dynamics of the nmax + 1 orders,
we perform an independent fit with the theoretical populations given in equation (4.38).
So the next described steps are nmax + 1 times performed. As the function (4.38) is
only numerically available, a standard fitting procedure is not possible. Instead, we de-
termine roughly the lattice depth via s = 4n2

max and calculate the functions for many
lattice depths V0 around this value. In the next step, we calculate for all functions the
sum of squared residuals (difference between the population dynamics and the function)
compared to the experimental relative populations. In the end we take the function with
the smallest difference (least square method) to find the best lattice depth V0 describing
the experimental population dynamics.

The final outputs are figures like 4.6 to determine the lattice depth and the program
creates automatically figures like 4.5.
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(a) Modified experimental image (b) Fitted ellipse to the data

Figure A.6.: (a) Modified absorption image. All data points with optical density higher than
0.02 are set to unity (red-brown), otherwise to zero (blue). (b) A two-dimensional
structure with unity inside an ellipse and otherwise zero, is fitted on a to deter-
mine the center position.

A.2.3. Averaging of Interference Pictures

The corresponding program4 is used for the calibration of the lattice depth via the in-
terference patterns and the relative side-peak population (see sections 4.4.1). The fitting
procedure is very similar to our ’standard’ 2D bimodal fit ’cloudfitgauss2droni 3.m’ (it
has the same fit procedure in 2D, as the described fitting procedure ’1D bimodal fit’ in
section A.2.1). Nevertheless we point out the procedure to center the images by using
the thermal cloud distribution. To fit only the thermal density distribution, we have to
remove the region where all BEC atoms sit. As the interference patterns are distributed
over the whole thermal cloud, there are only a few data points left to fit the thermal
distribution. Therefore, the uncertainty on the corresponding center of the thermal cloud
is large.

To overcome this problem, we use the following method: we set to unity all the data
points with optical density (OD) higher than typical 0.02 and for OD < 0.02 we set the
data points to zero, as shown in figure A.6a. As a result we see an elliptic shape which
we fit a 2D structure with the value unity inside

f(y, z) =
(y − y0)2

l2y
+

(z − z0)2

l2z
(A.8)

and otherwise zero, shown in figure A.6b. As a result of this, we extract exactly the
center of the thermal cloud by the fitting parameters y0 and z0. With this determined
center of all images, once they have been shifted accordingly to their center. The final
outputs of the program are averaged pictures like figure 4.4a.

4ep.traptype ’LatticeCenterPic’ - program ’cloudfitEllipse.m’ and ’lifecalcCenterPic.m’
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A.3. Roton-Maxon Excitation Spectrum

Roton-Maxon Spectrum for a single two-dimensional Dipolar Condensate

The dispersion relation of a purely contact interacting BEC is the Bogoliubov excitation
spectrum of elementary excitations

E(q) =
√
Eq (Eq + 2µcontact) (A.9)

with q the quasi momentum, Eq = ~2q2
2m

the free particle energy and µcontact the chemical
potential as in equation (2.20). For small q the dispersion relation is phonon-like E(q) =
µ~
2m
q and for higher momenta, it is like the one of a free particle E(q) = ~2q2

2m
. The instability

occurs here for q = 0 and is called phonon instability.
However, for a dipolar BEC, the excitation spectrum is different due to the momentum-

dependent dipolar interaction. In particular, the excitation spectrum of a two-dimensional
homogeneous dipolar BEC, infinitely elongated in the radial directions and strongly con-
fined in z-direction, was predicted to have a minimum, called roton minimum, and a
maximum [28]. Assuming that the wavefunction of the BEC in z-direction is exponential
decaying, the excitation spectrum writes [30]

E(q) =
√
Eq(Eq + 2A) (A.10)

where

A = µ−µdipole(q) = µ−2gddn0 F

(
q lz√

2

)
with F (x) =

3
√
π

2
|x| erfc(x)ex

2

(A.11)

with erfc(x) = 1−erf(x) the complementary error function, µ = (g+2gdd)n0 is the chemical
potential of the dipolar BEC with n0 the maximum density and lz =

√
~/mωlat is the

harmonic oscillator length associated to the BEC wavefunction in the lattice direction.
The resulting dispersion relation exhibits a roton minimum for proper values of g. In

particular in figure 6.1a is shown the dispersion relation for our experimental parameters.
We observe a roton minimum in the dispersion curve only for scattering length close to
the instability point, i.e. the point at which the energy associated to the roton minimum
is equal to zero. This instability is different from the phonon instability5, because it
occurs at finite momentum. It is called the roton instability. One can finally note that
the regime where the roton minimum appears in the dispersion curve, is as small as 1 a0

for our parameters, which makes it difficult to observe experimentally.

Two coupled Dipolar BEC

For two interacting dipolar BECs, inter-site coupling due to the long-range dipolar inter-
action, leads to a hybridization [30] of the dispersion relation in two continuous curves

5a phonon instability can still occur in a dipolar BEC if the roton minimum does not ’touch the zero’
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with a stiffer (+) and a softer (-) mode. The dispersion relation for two identical dipolar
BECs is given by

E±(q) =
√
Eq(Eq + 2A± 2C(dlat)) (A.12)

where

C(dlat) = µinter(dlat)− µinter(q, dlat) = 2gddn0 e
−d2lat/2l

2
z − 2gddn0 F̃

(
q lz√

2
,
dlat√
2lz

)
(A.13)

with

F̃ =
3
√
πxex

2

4

(
e−2xy erfc(x− y) + e2xy erfc(x+ y)

)
. (A.14)

Note that the roton minimum is observable at higher (less negative) scattering length
compared to a single dipolar BEC due to the softening of one mode.

Stack of N coupled Dipolar BEC

For a stack of N interacting two dimensional BEC (created with a one-dimensional optical
lattice), the hybridization becomes even more pronounced. A plane-wave ansatz leads
to coupled Bogoliubov-de Gennes equations for fq,i = uq,i + vq,i and the N continuous
dispersion relations are given as the eigenvalues of a system of N linear equations

Eq(Eq+2A) 2EqC(dlat) 2EqC(2dlat) ··· 2EqC(Ndlat)
2EqC(dlat) Eq(Eq+2A) 2EqC(dlat) 2EqC((N−1)dlat)
2EqC(2dlat) 2EqC(dlat) Eq(Eq+2A) 2EqC((N−2)dlat)

...
...

...
2EqC(Ndlat) 2EqC((N−1)dlat) 2EqC((N−2)dlat) ··· Eq(Eq+2A)




fq,1
fq,2
fq,3

...
fq,N

 = E2


fq,1
fq,2
fq,3

...
fq,N

 .

(A.15)
Calculating the N eigenvalues for several q gives the hybridization for the dispersion
relation.
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91





Danksagung

Ich habe es hinten angewurzelt,
dass keiner aus der Arbeit purzelt.

Zu guter Letzt danke ich allen, die mich während dieser Arbeit unterstützt und zum
Gelingen dieser Arbeit beigetragen haben:

• Prof. Dr. Tilman Pfau, der es mir ermöglicht hat die Arbeit in diesem interes-
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