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Zusammenfassung

Die vorliegende Arbeit behandelt die Anregung von ultrakalten Atomen aus
dem Grundzustand in einen Rydberg-Zustand bei hohen atomaren Dichten.
Rydberg-Zustände sind Zustände bei denen sich mindestens ein Elektron in
einen energetisch hochangeregten Zustand, der über die Hauptquantenzahl n
charakterisiert ist,befindet. Der klassische Radius des Orbits auf dem sich das
Elektron um den Kern bewegt skaliert mit quadratisch mit der Hauptquan-
tenzahl und nimmt Werte an, bei denen das Elektron nur noch schwach an
den Kern gebunden ist. Die schwache Bindung des Elektrons an den Kern
führt zu einer hohen Polarisierbarkeit des Rydberg-Atoms, die mit n7 skaliert.
Da Rydberg-Atome kein permanentes Dipolmoment besitzen ist die van-der-
Waals-Wechselwirkung VvdW = C6/r6 dominierend. Der C6-Koeffizient skaliert
auf Grund der hohen Polarisierbarkeit mit n

11, das heißt schon bei der An-
regung von Atomen in relativ niedrige Rydberg-Zustände gibt die van-der-
Waals-Wechselwirkung die dominierende Energieskala an.

Die Entdeckung der Rydberg-Atome geht bis in das neunzehnte Jahrhun-
dert zurück und wurde im Wesentlichen von dem schwedischen Physiker, und
Namensgeber dieser hochangeregten Zustände, Johannes Rydberg vorange-
trieben. Die von ihm und seinen Vorgänger gefundenen empirischen Gesetze
vermochten die beobachteten Linienspektren zwar zu beschreiben, der funda-
mentale fundamentale physikalische Zusammenhang ihres Auftretens wurde
allerdings erst mit Hilfe der Quantenmechanik erklärbar.

Anfängliche Beobachtungen von Rydberg-Atomen waren auf Umgebungen
wie Plasmen oder den stellaren Raum beschränkt, da dort die für die Anre-
gung nötigen Energien zur Verfügung stehen. Erst die Entwicklung des La-
sers 1960 machte eine selektive Anregung von Rydberg-Zuständen in atoma-
ren Gasen bei Raumtemperatur und Atomstrahlexperimenten möglich. Bis
vor ungefähr 20 Jahren wurden die Eigenschaften der Rydberg-Atome in-
tensiv in diesen Systemen untersucht. Die Linienbreiten der beobachteten
Spektren waren allerdings durch die Doppler-Verbreiterung oder durch die
Verbreiterung auf Grund der kurzen Durchflugzeit durch die Anregungszo-
ne limitiert. Dies änderte sich grundlegend mit der Realisierung von La-
serkühlverfahren und dem Fangen von Atomen in magneto-optischen Fallen,
die Präzensionsmessungen an dreidimensional gefangenen ultrakalten Atomen
zulässt. Die Verringerung der Temperatur um typische acht Größenordnungen
führt zu einer Verringerung der Doppler-Verbreiterung und der Durchflugsver-
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Zusammenfassung

breiterung um fünf Größenordnungen.

Für die Entdeckung der Laserkühlung und deren Beschreibung erhielten
S. Chu, C. Cohen-Tannoudji und W. D. Philips den Nobelpreis für Physik
im Jahre 1997 [Chu98, CT98, Phi98]. Des Weiteren führte die Laserkühlung,
welche den ersten Schritt in fast allen Experimenten mit ultrakalten Atomen
darstellt, und die weitere Entwicklung verschiedener anderer Kühlverfahren
1995 zur ersten Erzeugung eines quantenentarteten Gases von bosonischen
Atomen und Temperaturen im Bereich von einigen Nano-Kelvin. Die so ge-
nannte Bose-Einstein-Kondensation wurde bereits 1924 von S. N. Bose und A.
Einstein vorhergesagt [Bos24, Ein24, Ein25]. Die im selben Jahr veröffentliche
Dissertation von L. V. de Broglie sagt ebenfalls das Auftreten einer Quan-
tenentartung auf Grund des Welle-Teilchen-Dualismus von Atomen für nied-
rige Temperaturen voraus [dB24]. Die experimentelle Realisierung der Bose-
Einstein-Kondensation wurde 2001 mit dem Nobelpreis für Physik für E. A.
Cornell, C. E. Wieman und W. Ketterle gewürdigt [Cor02, Ket02].

Für die Forschung an Rydberg-Atomen ergeben sich durch Herstellung von
ultrakalten atomaren Gasen völlig neue Perspektiven. Herausragend ist dabei
zum einen die Möglichkeit Experimente auf einer Zeitskala durchzuführen auf
der sich die Atome nicht bewegen da die Bewegungsfreiheitsgrade größtenteils
ausgefroren sind. In diesem Zusammenhang hat sich der Begriff der ‘gefrorenen
Rydberg-Gase’ etabliert. Eine weiterer wichtiger Vorteil der Experimente in
einem gefrorenen Rydberg-Gas ist die Möglichkeit vergleichsweise hohe Dich-
ten, in dem in dieser Arbeit vorgestellten Experiment bis mehreren 1020 m−3,
zu erreichen. Die Wechselwirkung zwischen den Rydberg-Atomen ist stark von
atomaren Dichte Abhängig, so dass diese Wechselwirkung mit der Variation
der Dichte eingestellt werden kann.

Allen Experimenten mit ultrakalten atomaren Gasen ist gemein, dass die
Wechselwirkung zwischen den Atomen die entscheidende Rolle spielt. Die Viel-
falt an beobachteten physikalischen Phänomenen ist allein auf die verschiede-
nen Wechselwirkungen, sowie deren stärke zurückzuführen. Die Wechselwir-
kung zwischen den Rydberg-Atomen führt zu einer energetischen Verschie-
bung der Rydberg-Zustände von Atomen in der Nähe eines bereits angeregten
Rydberg-Atoms. Ist die Wechselwirkung stark genug, so wird das durch den
Anregungslaser sättigunsverbreiterte Energieniveau des Rydberg-Zustands so-
weit verschoben, dass der Übergang aus der Resonanz bezüglich des Anre-
gungslasers mit der Kopplungsstärke Ω0 geschoben wird und keine Anregung
in den Rydberg-Zustand mehr stattfindet. Somit führt eine starke Wechselwir-
kung zu einer Blockade der Rydberg-Anregung in einem kugelförmigen Volu-
men mit dem Blockaderadius rb.

Die in dieser Arbeit betrachteten Rydberg-Atome befinden sich in dem Zu-
stand 43S1/2, welcher ausschließlich eine repulsive van-der-Waals-Wechselwirk-

6



ung VvdW = −C6/r6 aufweist. Dabei hat C6 für den 43S1/2-Rydberg-Zustand
einen Wert von −1.6 × 10−60 Jm6 [Sin05], wohingegen der Wert im Grund-
zustand C6 = 4.5 × 10−76 Jm6 um 16 Größenordnungen kleiner ist [Dal66].
Formal kann der Blockaderadius als rb = 6

�
|C6|/�Ω angegeben werden und

nimmt in dem hier vorgestellten Experiment Werte für den 43S1/2-Zustand im
Bereich von 5 µm an. Aus diesem Argument ist ersichtlich, dass sich in einer
Blockadekugel bis zu mehrere tausend Grundzustandsatome befinden.

Die Anregung in den Rydberg-Zustand kann nicht einem bestimmten Atom
in der Blockadekugel zugeordnet werden, sondern wird kollektiv von allen N

Atomen in dem Volumen getragen. Die Beschreibung dieses verschränkten Zu-
stands kann als effektives Zweiniveauatom erfolgen, wodurch sich der Begriff
des ‘Superatom’ für die Beschreibung des kollektiven Zustands von mehre-
ren tausend Atomen durchgesetzt hat [Vul06]. Das auftreten einer kollektiven
Anregung von N Grundzustandsatomen kann durch die Messung der Zeitent-
wicklung zwischen Grundzustand und Rydberg-Zustand erfolgen. Das Dipol-
matrixelement, dass diese Kopplung beschreibt, geht in die Rabi-Frequenz Ω0

ein. Die Normierung des symmetrisierten kollektiven Zustandes resultiert in
einer kollektiven Rabi-Frequenz Ωc =

√
NΩ0, die gegenüber der Einzelatom-

Rabi-Frequenz Ω0 um einen Faktor
√
N größer ist.

Das Auftreten des kollektiven Zustands und die damit verbundene kollek-
tive Rabi-Frequenz wurde erstmals mit dem in dieser Arbeit besprochenen
experimentellen Aufbau untersucht und in den Referenzen [Hei07, Hei08a] do-
kumentiert. Um die Dynamik der Rydberg-Anregung zu untersuchen wurde
die Anzahl der Atome im Rydberg-Zustand für verschiedene Anregungszei-
ten gemessen. Die resultierende Anregungskurve zeigt in erster Näherung ein
exponentielles Sättigungsverhalten für lange Anregungszeiten. Die Dynamik
der Rydberg-Anregung wurde bereits für wesentlich kleinere Dichten in den
Referenzen [Ton04, Sin04b, Vog06] untersucht.

Aus der Skalierung der Rate, mit der die Rydberg-Atomzahl für kurze An-
regungszeiten ansteigt, und der Grundzustandsdichte, sowie der Laserleistung,
die Proportional zu Ω2

0 ist, konnte gezeigt werden, dass die Anregung in den
Rydberg-Zustand sowohl kollektiv als auch kohärent ist. Aus der Skalierung
des Sättigungswertes konnte gezeigt werden, dass die Wechselwirkung zwi-
schen den Rydberg-Atomen durch die van-der-Waals-Wechselwirkung domi-
niert wird. Des Weiteren wurde gezeigt, dass die Anregung auf Grund der
Wechselwirkung stark blockiert ist. Aufbauend auf diesen Ergebnissen sollen
in dieser Arbeit weitere Aspekte der Rydberg-Anregung und der Wechselwir-
kung zwischen den Rydberg-Atomen untersucht werden.
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Zusammenfassung

Universelle Skalierung

Die weitere Untersuchung der Rydberg-Anregungsdynamik geschieht im Hin-
blick auf die Untersuchung einer universellen Skalierung nach der die charak-
teristischen Größen der Rydberg-Anregungsdynamik, nämlich die anfängliche
Rate und der Sättigungswert, mit Potenzgesetzen skalieren, dessen Exponen-
ten universell sind. Eine solche universelle Skalierung wurde von der Arbeits-
gruppe um H. P. Büchler an der Universität Stuttgart für die Anregung von
Rydberg-Atomen vorhergesagt [Wei08].

Universelle Skalierungen sind in allen Teilen der Physik, aber auch darüber
hinaus, von großem Nutzen, da sie das Verhalten vieler sich ähnlicher Systeme
voraussagen, ohne dass das Wissen der genauen mikroskopische Realisierung
nötig ist. Beispiele aus vielen Bereichen der Natur können zum Beispiel in
Referenz [Wes04] gefunden werden. In dieser Veröffentlichung wird beispiels-
weise geschildert wie die Metabolismusrate mit der Masse von Organismen
nach einem Potenzgesetz, welches die selben Exponenten für eine Variation der
Masse über 27 Größenordnungen zeigt, skaliert. In Referenz [Gug45] werden
die physikalischen Eigenschaften verschiedenster Atome und Moleküle in der
Nähe eines Phasenübergangs zweiter Ordnung untersucht und nachgewiesen,
dass sich alle Substanzen nach den gleichen Potenzgesetzen verhalten. Generell
kann das Auftreten von universellen Skalierungen in der Nähe eines kritischen
Punktes eines Phasenübergangs zweiter Ordnung gezeigt werden [Hua87].

Im Falle der Anregung vom Rydberg-Atomen ist die genaue mikroskopische
Realisierung, das heißt die Abstände der Grundzustandsatome, die angeregt
werden, Poisson-verteilt und damit ebenfalls unbekannt. Die globale Anre-
gungsdynamik lässt allerdings Rückschlüsse auf das mikroskopische Verhalten
zu. Der Phasenübergang wird zwischen der ‘paramagnetischen Phase’, in der
sich kein Atom im Rydberg-Zustand befindet, und der ‘kristallinen Phase’ ge-
bildet. Die kristalline Phase bildet sich durch die Anordnung der Superatome
in einem kubischflächenzentrierten Kristall, da dies die Energie zwischen den
Superatomen minimiert. Die physikalisch makroskopisch zugängliche Obser-
vable ist als der Anteil der Atome f , die sich im Rydberg-Zustand befinden
bezogen auf den Anteil der Atome im Grundzustand.

Eine universelle Skalierung zu finden heißt nun, dass für jede das System
beschreibende Variable ein Potenzgesetz existiert, das deren Verhalten um
den kritischen Punkt des Phasenübergangs beschreibt. Im Fall der Rydberg-
Anregung kann der Rydberg-Anteil f durch ein Potenzgesetz in dem Para-
meter α = �Ω/C6n

2
g mit der Grundzustandsdichte ng gefunden werden. Der

dimensionsloser Parameter α vergleicht dabei die Anregungsenergie mit der
Wechselwirkungsenergie.

Die vorliegende Arbeit berichtet über die Messungen um eine universel-
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le Skalierung der Form f ∼ α
ν zu finden und die universellen Exponenten

ν zu bestimmen. Durch Rückschlüsse, die aus dem Superatom-Modell gezo-
gen werden können, wird erwartet das der universelle Exponent nur von der
Dimensionalität der Atomwolke, sowie der Art der Wechselwirkung abhängt.
Sämtliche Systemgrößen wie die atomare Dichte, die Rabi-Frequenz und der
Koeffizient der van-der-Waals-Wechselwirkung sind in α zusammengefasst und
führen zu keinem Beitrag in dem kritischen Exponenten. Eine Messung des kri-
tischen Exponenten ν lässt also bei bekannter Wechselwirkung Rückschlüsse
auf die Dimensionalität der Dichteverteilung der gefangenen Atome zu. Dabei
ist die Dimensionalität immer in Bezug auf die Größe der Superatome, also
des Blockaderadiuses, zu sehen. Eine eindimensionale Dichteverteilung kann
beispielsweise durch einen zweidimensionalen Einschluss der Atomwolke auf
Werte kleiner als der Blockaderadius erzeugt werden.

Die Messungen zur universellen Skalierung wurden daher sowohl in einer
Magnetfalle als auch in einer Dipolfalle, die einen stärkeren Einschluss in zwei
Dimensionen aufweist, durchgeführt. Die Daten die zur Bestimmung der kri-
tischen Exponenten mit magnetisch gefangen Atomen aufgenommen wurden
sind bereits in Referenz [Hei07] veröffentlicht. Obwohl die radiale Ausdehnung
der atomaren Wolke in dieser Messung mit 8.7 µm größer als der Blockaderadi-
us war, zeigte sich ein Skalierungsverhalten, das eher auf eine eindimensionale
Dichteverteilung schliessen lässt. Die durchgeführten Messungen mit Atomen
die in eine Dipolfalle geladen wurden führten im Wesentlichen zu den selben
Ergebnissen. Obwohl der größere radiale Einschluss zu einer Verkleinerung
der radialen Ausdehnung der Wolke um circa einen Faktor zwei führte, konn-
te dennoch keine eindeutige Tendenz der kritischen Exponenten in Richtung
einer noch eindimensionaleren Situation als in der Magnetfalle gefunden wer-
den. Daher werden in dieser Arbeit Vorschläge für die Durchführung künftiger
Experimente, die in der Lage sein sollten eine eindimensionalere Situation zu
erzeugen und die universelle Skalierung in Abhängigkeit der Dimensionalität
der Dichteverteilung eingehender zu untersuchen, gegeben.

Bei den gezeigten Messungen ist insbesondere hervorzuheben das eine uni-
verselle Skalierung mit einem Potenzgesetz gefunden werden konnte. Der di-
mensionslose Parameter α wurde dazu über bis zu 15 Größen ordnungen vari-
iert. Die Messungen zeigen in doppeltlogarithmischer Auftragung einen eindeu-
tig linearen Zusammenhang, das heißt, dass der Zusammenhang zwischen dem
Verhältnis der Atome im Rydberg-Zustand zu denen im Grundzustand durch
ein Potenzgesetz gegeben der Form α

ν ist. Das Auftreten dieser universellen
Skalierung ist ein deutliches Anzeichen dafür bei der stark blockierten An-
regung in einen Rydberg-Zustand tatsächlich einen Quantenphasenübergang
zweiter Ordnung finden zu können.
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Zusammenfassung

Dephasierungseffekte

Der zweite Teil der vorliegenden Arbeit widmet sich der Untersuchung
der Wechselwirkungseffekte auf die Kohärenzeigenschaften der Rydberg-
Anregung. Die mit den vorgestellten Messmethoden gewonnen Erkenntnisse
sind insbesondere im Hinblick auf die Verwirklichung von Quantengattern,
wie sie beispielsweise in den Referenzen [Jak00, Luk01] vorgeschlagen werden,
interessant.

Jede Störung durch die Wechselwirkung der Rydberg-Atome mit ihrer Um-
gebung oder untereinander stellt eine mögliche Quelle der Dekohärenz oder
der Dephasierung dar und würde eine Gatteroperation stören. In einem expe-
rimentellen Aufbau zur Implementierung von Quanteninformationsprozessen
gilt es die verschiedenen Dekohärenzquellen zu beseitigen. Dies geschieht zum
Beispiel durch die Kühlung der Atome und deren vollständigen Isolierung von
der thermischen Umgebung. Des Weiteren finden die Experimente auf Zeitska-
len statt, die kurz gegen die Lebensdauer der Rydberg-Zustände sind. Dadurch
wird die Dekohärenz durch spontane Emission unterdrückt.

Die in einem solchen Aufbau präparierten Rydberg-Atome würden sich
im Hinblick auf die Quanteninformationsverarbeitung besonders eignen, da
der kollektive Zustand (Superatome) einen voll verschränkten Zustand dar-
stellt, dessen Verschränkung äußerst robust gegenüber Anzahlfluktuationen
ist. Derartige Zustände werden in der Literatur als W -Zustände bezeichnet
[Dür00, Sto03].

Die in der vorliegenden Arbeit gezeigten Experimente sollen zum einen di-
rekten Beweis der kohärenten Anregung in den Rydberg-Zustand geben, zum
anderen sollen sie zwei Methoden vorstellen um die Wechselwirkungseffekte
zwischen den Rydberg-Atomen zu quantifizieren.

Bereits die in Referenz [Hei07] gezeigten Messungen ließen den mit Hil-
fe von Skalierungsgesetzen gefundenen indirekten Schluss zu, dass die An-
regung in den Rydberg-Zustand kohärent ist. Ein direkter Beweis über Rabi-
Oszillationen, also Oszillationen der Population zwischen dem Grund- und dem
Rydberg-Zustand, sind mit der in dieser Arbeit gezeigten Art von Experiment
nicht möglich, da die inhomogene Dichteverteilung in der Magnetfalle zu einer
inhomogenen Verteilung von kollektiven Rabi-Frequenzen

√
NΩ0 führt. Da in

dem bestehenden System nicht ohne Weiteres möglich ist direkt einzelne Supe-
ratome zu beobachten, sondern nur das Ensemble, misst man die Summe über
viele verschiedene Oszillationen, was zu den oben erwähnten Anregungskurven
mit exponentieller Sättigung führt.

Ein direkten Nachweis der kohärenten Anregung von Rydberg-Atomen über
die Beobachtung von Rabi-Oszillationen wird in den Referenzen [Joh08, RL08]
für einzelnen Rydberg-Atome beziehungsweise ein schwach wechselwirkendes

10



Gas von Rydberg-Atomen gezeigt.

In dieser Arbeit wird zum direkten Beweis der kohärenten Anregung ein an-
derer Weg beschrieben. In dem Forschungsgebiet der magnetischen Kernspin-
resonanz ist das Problem einer inhomogenen Rabi-Frequenz schon seit langem
bekannt, da beispielsweise verschiedene Kerne in einem komplexen Molekül
verschiedene Umgebungen haben und damit verschiedene Wechselwirkungen
ausgesetzt sind. Die von uns adaptierte Sequenz um das Problem der inhomo-
genen Rabi-Frequenz zu umgehen ist die so genannte ‘Rotationsechosequenz’
[Sol59]. In dieser Sequenz wird das Vorzeichen der Anregung nach einer Zeit
τp ≤ t, wobei τ die Gesamtpulsdauer ist, invertiert. Die Anregung der Atome
in den Rydberg-Zustand wird durch die Rabi-Frequenz Ω0 beschrieben. Durch
eine Phasenumkehr des Anregungslichtes um 180 ◦ kann also die Anregung von
Ω0 auf −Ω0 umgekehrt werden.

In einem System in dem es keine Dekohärenz oder keine Dephasierung gibt
würden in der Rotationsechosequenz für eine Zeit τp Atome vom Grundzu-
stand in den Rydberg-Zustand angeregt und für die restliche Zeit τ − τp wie-
der abgeregt. Nach einer Zeit 2τp befänden sich damit alle Atome wieder im
Grundzustand.

Wie oben bereits geschildert handelt es sich im Fall der Rydberg-Anregung
um ein stark wechselwirkendes System, dessen Anregungsdynamik eine star-
ke Blockade zeigt. Die starke Wechselwirkung führt zur Bildung der kollekti-
ven Zustände, oder Superatomen, die als effektive Zweiniveauatome beschrie-
ben werden können. Die Wechselwirkung zwischen den Superatomen führt
zu einer Dephasierung, das heißt die Phasenbeziehung der Rabi-Oszillationen
der einzelnen Superatome wird abhängig von der Position des Superatoms in
der atomaren Wolke gestört. Eine Phasenumkehr des Anregungslasers kann
nun nicht mehr alle Rydberg-Atome in den Grundzustand zurückbringen. Ein
Maß für die Dephasierung ist die Sichtbarkeit des Echosignals, die definiert
ist als V = (NR(0)−NR(τ/2))/(NR(0)+NR(τ/2)), wobei NR(t) die Anzahl der
Rydberg-Atome zum Zeitpunkt t ist.

Um die Dephasierung des Rydberg-Systems zu untersuchen wurde die Sicht-
barkeit des Rotationsechosignals in Abhängigkeit von der Pulsdauer und der
Grundzustanddichte untersucht. In einem ersten Experiment wurde gezeigt,
dass die Rydberg-Anregung trotz der kurzen Anregungszeiten von nur eini-
gen hundert Nanosekunden stark blockiert ist. In Referenz [Rai08a] ist diese
Messung und die erste systematische Untersuchung der Kohärenzeigenschaften
von Rydberg-Atomen mit Hilfe der Rotationsechomethode für magnetisch ge-
fangene Atome gezeigt.

Des Weiteren wurde die Dephasierung des Systems für Atome, die in ei-
ner Dipolfalle gefangen sind, untersucht. Der stärkere radiale Einschluss der
Atomwolke in der Dipolfalle sollte zu einer Reduktion der Anzahl der nächsten
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Zusammenfassung

Nachbarn und damit effektiv zu einer kleineren Dephasierung durch die Wech-
selwirkung zwischen den Superatomen führen.

Eine andere Möglichkeit die Dephasierung des Rydberg-Systems zu unter-
suchen bietet die elektromagnetisch induzierte Transparenz [Har90, Fle05].
Dabei handelt es sich um einen Effekt der durch die kohärente Kopplung von
zwei Zuständen in einem Dreiniveausystem beobachtet werden kann. Zwei La-
ser koppeln dazu zwei langlebige Zustände an einen kurzlebigen Zustand. Die
Intensität der Laser ist so zu wählen, dass die resultierende Rabi-Frequenz
des einen Lasers (‘Prüflaser’) viel kleiner ist als die Linienbreite des kurzle-
bigen Zustandes. Die Intensität des anderen Lasers (‘Kopplungslaser’) kann
vergleichbar mit der Linienbreite werden. Durch diese Kopplung entsteht ei-
ne destruktive Fano-Interferenz der Anregungspfade in den kurzlebigen Zwi-
schenzustand [Fan61], wodurch dieser nicht besetzt wird. Daraus resultiert
eine kohärente Überlagerung zwischen den beiden langlebigen Zuständen ohne
Beimischung des mittleren Zustandes.

Angenommen der Prüflaser ist resonant mit dem Übergang vom Grund- zum
mittleren Zustand, so wird dieser absorbiert, wenn der Kopplungslaser nicht
vorhanden oder nicht resonant ist. Bringt man den Kopplungslaser in Reso-
nanz mit dem Übergang vom mittleren in das obere angeregte Niveau verhin-
dert die kohärente Überlagerung ohne Beimischung des mittleren Zustandes
eine Absorption auf dem unteren Übergang: Das System wird für den Prüflaser
transparent. Das auftretende Fenster in dem das System ohne Wechselwirkung
vollständig transparent wird kann wesentlich kleiner als die natürliche Linien-
breite des unteren Übergangs sein. Dessen Nachweis ist ein direkter Beweis für
die Existenz des kohärenten Überlagerungszustandes.

Jede Art von Dekohärenz und Dephasierung stört den Aufbau des
kohärenten Übleragerungzustandes, wodurch die Transparenz auf Resonanz
verringert wird. Dies ermöglicht wieder die gezielte Untersuchung der Depha-
sierung im Rydberg-System in Abhängigkeit von der Laserleistung, also der
Rabi-Frequenz Ω0 und der atomare Grundzustandsdichte. Der untere Zustand
des Dreiniveausystems ist in den Experimenten, die in dieser Arbeit disku-
tiert werden, durch den 5S1/2-Grundzustand gegeben. Der mittlere Zustand
ist der 5P3/2-Zustand, der über den schwachen Prüflaser mit dem Grundzu-
stand gekoppelt ist. Als oberer Zustand wird der 43S1/2-Rydberg-Zustand mit
dem Kopplungslaser an den 5P3/2-Zustand gekoppelt. Die Lebensdauern des
Grund- und Rydberg-Zustandes sind im Vergleich zu der Lebensdauer des
5P3/2-Zustandes sehr lang, womit die Grundvoraussetzungen für die Beobach-
tung van elektromagnetisch induzierter Transparenz gegeben ist.

Um die Messungen der Abhängigkeit der Dephasierung von der atomaren
Grundzustandsdichte und der Laserleistung, also der Rabi-Frequenz Ω0, durch-
zuführen wird der die Atomzahl mit Hilfe einer Absorptionsabbildung gemes-
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sen. Bei diesem Abbildungsverfahren, das standardmäßig eingesetzt wird um
die Atomzahl im Grundzustand in Experimenten mit ultrakalten Atomen zu
bestimmen, wird ein mit dem 5S1/2 nach 5P3/2-Zustand resonantes Licht auf
die Atomwolke geschienen und danach von einer Kamera detektiert. Da die
Atomwolke das Licht absorbiert entsteht an der Stelle der Atome ein Schat-
ten, der Auskunft über die Dichteverteilung gibt.

Strahlt man nun zusätzlich noch den Kopplungslaser auf der 5P3/2 nach
43S1/2-Resonanz ein, so verringert sich die Absorption auf Grund der elek-
tromagnetisch induzierter Transparenz und der Schattenwurf auf der Kame-
ra verschwindet. Die gemessene Atomzahl ist damit direkt ein Maß für die
aufgebaute Kohärenz zwischen dem Grund- und dem Rydberg-Zustand. Eine
Störung dieser Kohärenz durch eine Dekohärenz oder einer Dephasierung kann
direkt als eine Zunahme der gemessenen Atomzahl beobachtet werden.

Über die Beobachtung von elektromagnetisch induzierter Transparenz in ei-
nem Rydberg-System wurde bereits in Referenz [Moh07] berichtet. Die dort
gezeigten Experimente wurde in einer Gaszelle bei Raumtemperatur durch-
geführt. Die in Referenz [Wea08] gezeigten Experimente wurden mit Atomen,
die in einer magneto-optischen Falle gefangen waren, durchgeführt.

Die in dieser Arbeit gezeigten Experimente zur elektromagnetisch induzier-
ten Transparenz werden mit Atomwolken, die Temperaturen im Bereich von
einigen Mikro-Kelvin besitzen durchgeführt. Die Temperaturen sind damit
deutlich niedriger als in allen vorangegangenen Experimenten zur elektroma-
gnetisch induzierter Transparenz in einem Rydberg-System. Zur Präparation
der Experimente wurden die magnetisch gefangenen Atome in eine optische
Dipolfalle umgeladen, da es nur so möglich ist ein homogenes Magnetfeld über
die Atomwolke anzulegen und so Sorge zu tragen, dass alle Atome resonant
mit den Anregungslasern sind. Um die atomare Dichte so weit zu reduzieren,
dass elektromagnetisch induzierte Transparenz zu beobachten war, wurden die
Experimente in einer frei expandierenden Atomwolke kurz nach dem Abschal-
ten der Dipolfalle durchgeführt. Trotzdem waren die atomaren Dichten etwa
um vier Größenordnungen höher als in die, die für die in Referenz [Wea08]
gezeigten Experimente genutzt wurde. Die mit den hohen Dichten verbundene
Wechselwirkung zwischen den Rydberg-Atomen und die daraus resultierende
Dephasierung konnte deutlich anhand der Merkmale der elektromagnetisch
induzierter Transparenz nachgewiesen und vermessen werden.
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Part I.

Introduction





The research field of ultracold Rydberg gases has attracted the interest of sci-
entists all over the world in the recent years. The combination of the relatively
well known physics of Rydberg atoms, which were discovered 120 years ago,
with the relatively young research field of ultracold atomic gases leads to com-
pletely new perspectives. Answers to fundamental questions of the interaction
between particles might be found as well as the development of completely
new devices for quantum information processing.

This introduction covers very briefly the main goals and the motivation of
the experiments with ultracold Rydberg atoms as well as the basic ideas of the
theoretical description of this system. It also aims at giving a short historical
overview about the development of this rapidly growing field of research.

Ultracold atoms

The idea of cooling atoms to the microKelvin regime is simply triggered by
the interest in removing the motional degrees of freedom from the system to
study the underlying physics of the interaction between the atoms. Removing
the thermal energy from the atomic sample and increasing its density would
lead to a description of the dynamics that is governed by the interactions of
the atoms and their environment, e.g. other atoms.

The first step in nearly every experiment dealing with ultracold atoms is
the cooling of atoms using laser cooling techniques. The invention of the
techniques for laser cooling and trapping of atoms in magneto-optical traps
has been awarded with the Nobel Prize in 1997 for S. Chu, C. Cohen-Tannoudji
and W. D. Philips [Chu98, CT98, Phi98].

Further techniques for trapping and confining the atoms have been devel-
oped over the years. Using magnetic traps or optical dipole traps it is possible
to achieve high densities at ultracold temperatures. For a bosonic sample of
atoms this leads to the creation of Bose-Einstein condensates, originally pro-
posed by S. N. Bose and A. Einstein in 1924 [Bos24, Ein24, Ein25], and for
fermions to degenerate gases well below the Fermi temperature [DeM98]. In
the same year L.-V. de Broglie intensively investigated the quantum nature
of matter waves [dB24]. The crossing of the border to the quantum degener-
ate regime of Bose-Einstein condensation and the fundamental studies of its
properties was awarded with the Nobel Prize in 2001 for E. A. Cornell, C. E.
Wieman and W. Ketterle [Cor02, Ket02].

Having now the ability of removing any perturbing effect of the environ-
ment one can focus on the interaction of the atoms with each other. Usually
ultracold atoms interact with each other via the isotropic short range con-
tact interaction, where short means a distance on the order of the effective
range of the s-wave scattering length, which is for rubidium on the order of
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100 in units of the Bohr radius. However, the production of ultracold gases
of chromium atoms and heteronuclear molecules led to the investigation of
long range dipole-dipole interactions, which have an anisotropic character, i.e.
the interaction depends on the alignment of the dipoles with respect to each
other [Stu05]. The alignment of the dipoles can be adjusted by applying an
external magnetic field or by adjusting the geometry of the trap resulting in
an adjustability of the interaction between the atoms [Koc08].

While chromium atoms have the advantage of relatively large magnetic
dipole moments, alkali atoms, which are of particular interest in ultracold
atoms physics due to their simple level structure, can nevertheless experi-
ence strong dipole-dipole interaction. A proposal for using light to induce an
anisotropic interaction in alkali atoms is given in reference [Löw05] using light
induced dipoles and in reference [O’D00] using an attractive 1/r potential also
induced by a light field.

Another avenue for the creation of large dipole-dipole interactions in al-
kali atoms is discovered using the admixture of electrically polarised Rydberg
states [San00]. The investigation of the effects due to the interaction between
Rydberg atoms or between Rydberg atoms and ground state atoms is the key
point of the research field of ultracold Rydberg gases.

Rydberg atoms

Systematic research on the field of flourescence spectroscopy started with the
discovery by Isaac Newton in 1666 that white light is a superposition of all
colours. It was he who invented the name ‘spectrum’ for the splitting up of light
into its frequency components. After more than one hundred years without
any major achievements in spectroscopy this field of research intensively came
back to the focus of scientists. Starting in 1802 with the discovery of black
lines in the solar spectrum by William Hyde Wollaston. Joseph von Fraunhofer
independently investigated the same phenomena and recorded several hundred
of these spectral lines in 1814 using his invention of the diffraction grating.
However, nobody found the reason for the appearance of the black lines prior
to the work of Robert Wilhelm Bunsen and Gustav Robert Kirchhoff in 1859.
Their spectral analysis led not only to the precise assignment of the spectral
lines to specific elements in the periodic table, but also made it possible to find
two new alkali metals, namely Caesium and Rubidium. Finally, a complete
understanding of the appearance of the element specific lines were given with
the upcoming theory of quantum mechanics in the years after Plancks seminal
talk in 1900 [Pla01].

The swedish physicist Johannes Robert Rydberg was the first to intensively
investigate the spectral properties of highly excited atoms in 1888. These

18



atoms, nowadays called Rydberg atoms, have at least one electron excited to
a high principal quantum number n. The meaning of n became clear only after
Niels Bohr presented his model of the hydrogen atom in 1913, connecting the
principal quantum number to the energetic state of the atom and by this to
the frequency of the emitted light.

Rydberg atoms can be described to some extent in the classical atom picture
of electrons orbiting the core, in which case the principal quantum number is
a measure of the size of the atom. In this sense Rydberg atoms can have
a size on the order of micrometer or even larger [Mes08]. Due to the large
distance of the electron from the core, Rydberg atoms are very sensitive to
electric fields and interactions with neighbouring Rydberg atoms. Many of
the properties, such as the polarisability and the strength of the interaction,
are highly dependent on the principal quantum number and, thus, can be tuned
by choosing an appropriate principal quantum number. The tunability of the
strength of interaction and the manipulation of their dipolar character using
electric fields make Rydberg atoms particularly interesting for the research
field of quantum information processing.

The investigation of Rydberg atoms were limited in the beginning to plas-
mas and to stellar environments due to the high excitation energy needed for
their creation. The invention of laser light sources in 1960 made it possible to
selectively excite atoms into Rydberg states. For some decades the research
with Rydberg atoms took only place in room temperature vapour cells and
atom beams [Har77, Dal83]. In these experiments the observable linewidth of
the Rydberg spectra was limited due to the Doppler or transient time broad-
ening of the atoms moving with room temperature velocities in the cell or due
to a transient time broadening in the atomic beam. Nevertheless a spectral
line perturbation due to the van der Waals interaction between Rydberg atoms
is shown in a atomic beam experiment [Rai81]. A sample of ultracold Ryd-
berg atoms not only increases the interaction time and removes the Doppler
broadening, but also increases the density of Rydberg atoms and, thus, their
interaction with respect to each other. Only this increase in density, using the
setup shown in this thesis, made it possible to observe of the blockade of Ryd-
berg excitation due to the interaction and the resulting collective behaviour of
the atomic sample as introduced in the following sections.

In order to prepare a sample of ultracold Rydberg gases only two approaches
have been realised by now. A recent method uses the high sensitivity of Ryd-
berg atoms on electric field due to the large polarisability. Applying an inho-
mogeneous electric field over a beam of Rydberg atoms leads to a deceleration
[Vli06]. The principle of an electrostatic trap for Rydberg atoms in two di-
mensions is shown in [Vli07].

The approach used for the experiments in this thesis uses a sample of ul-
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tracold atoms subsequently excited into Rydberg states. This method has
the advantage that the time consuming part of the experiment, namely the
preparation of the ultracold atomic sample, is not limited by the lifetime of
the Rydberg atoms. The accessible range of atomic densities from 1014 m−3 in
a magneto-optical trap to 1020 m−3 in a Bose-Einstein condensate trapped in
either a magnetic or dipole trap is also a major advantage of this experimental
scheme. The density in the magnetic or dipole trap can be varied over a large
range using well known techniques from the research field of ultracold atomic
physics.

Such high densities are achieved in usual cold atom experiments by cooling
the atomic sample to temperature on the order of microKelvin. At these
low temperatures the atomic motion can be neglected on the timescale of the
experiments, that is much shorter than the lifetime of the Rydberg state. This
state of matter is usually referred to as a frozen Rydberg gas [And98, Mou98].

Although collisions due to the movement of the atoms can be neglected on
the timescale of the experiments an attractive interaction between the Rydberg
atoms could still lead to collisions and ionisation even on the short timescale
[Li05, Knu06]. The dynamics of the resulting ultracold plasma has been in-
vestigated, e.g. in the references [Rob00, Kil07].

Collectivity

Strong interactions between atoms lead also to strong correlations. Atoms in
the ground state interact via s-wave scattering. Hence, the length scale of this
interaction a is on the order of the interparticle distance r ∝ n

−1/3
g , where

ng is the atomic density. The s-wave scattering length a can be increased by
means of Feshbach resonances. The strong correlation of ground state atoms
in a fermionic system has been investigated in reference [Chi04] in the BEC-
BCS crossover regime. The coherence of this strongly interacting system has
been observed by the investigation of the superfluid behaviour of a strongly
interacting Fermi gas [Zwi05].

Strongly correlated bosonic systems with ground state atoms have been re-
alised by the production of a Mott insulator state in an optical lattice, where
the interaction between the atoms are tailored by the strength of the trapping
potential [Gre02]. The previously mentioned magnetic dipole-dipole interac-
tion in ultracold chromium atoms could also lead to strongly correlated states.

Excited states can also be correlated by strong interactions, leading to col-
lective states and blockade phenomena. The blockade of the excitation into a
Rydberg state is shown for the van der Waals interaction and for dipolar inter-
actions between Rydberg atoms [Sin04b, Ton04, Cub05b, Vog06, Hei07]. For
reasonably strong interactions the excitation of a second atom into a Rydberg
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state is blocked in a certain volume around a Rydberg atom.

The ‘blockade radius’ rb of this volume defines a characteristic length scale
for the interaction, analogue to the s-wave scattering length a. The blockade of
the excitation into the Rydberg state can be understood in terms of a energy
shift of the Rydberg state of the second atom in the vicinity of the already
excited Rydberg atom.

An excitation into the Rydberg state is only possible if the shift of the state
is smaller than the power broadening due to the Rabi frequency Ω0 of the
coupling laser. The blockade radius reads rb ∝

6
�

|C6|/�Ω0 in the case of van
der Waals interaction VvdW = −C6/r6. This length scale is on the order of 5 µm
for the 43S1/2 state and exceeds the interatomic distance between ground state
atoms in experiments with ultracold atomic samples by orders of magnitudes.
Hence, one blockade sphere may contain thousands of ground state atoms.

The excitation into the Rydberg state is then shared by thousands of ground
state atoms: A collective state of the participating atoms is formed. The ap-
pearance of a collective state, which can be found in many mesoscopic systems
[Rai89, Phi01, Col07], manifests itself by an excitation dynamics which is sped
up by a factor

√
N resulting from the normalisation of the collective state with

N members. Hence, the system oscillates with the collective Rabi frequency
√
NΩ0 between the ground state and the one Rydberg state. The formation of

a collective state in a strongly interacting Rydberg gas is shown in references
[Hei07, Hei08a] using the experimental setup shown in this thesis.

Collective states are of particular interest for the research field of quantum
information processing since such a state is an extremely robust realisation
of a highly entangled W state [Dür00, Sto03]. The robustness results from
the large number of participants: If one atom is removed from the collective
state the remaining N − 1 participants are left unaffected and the information
is preserved. Due to its similarity to a two-level atom the collective state is
referred to as a ‘superatom’ [Vul06]. Superatoms can be used as a realisation
of a qbit for the storage of quantum information. The information is stored
in two long-lived ground states, where the interaction between the Rydberg
atoms provide the nonlinearity needed for any gate operation. Experimental
schemes that make use of the dipole blockade are proposed in the references
[Jak00, Luk01].

Another crucial ingredient for the realisation of a quantum gate using Ryd-
berg states is the coherent excitation into the excited state. In the recent
years three approaches have successfully demonstrated the coherent excitation
into Rydberg states. In the case of non interacting Rydberg atoms a STIRAP
(stimulated Raman adiabatic passage) sequence is used in reference [Cub05a]
for the excitation of atoms from a magneto-optical trap. The coherence of
the Rydberg excitation is also been shown in room temperature vapour cells
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in reference [Moh07] using an EIT (electromagnetically induced transparency)
excitation scheme. A direct proof of the coherence is shown by directly ob-
serving Rabi oscillations between the ground and Rydberg state at very low
densities [RL08] or even by the observation of single atoms [Joh08]. Finally,
the coherent excitation of a strongly interacting Rydberg gas is investigated
in reference [Hei07] and as a part of this thesis and the resulting publication
[Rai08a].

Universal scaling

Universal scaling laws are a very powerful tool as they can be used to predict
the behaviour of a system without the exact knowledge of its microscopic
composition. Universal scaling laws can be found everywhere in nature: May
it be the prediction for the metabolic rate of completely different life forms in
reference [Wes04] or the investigation of the normalised density as a function of
the normalised temperature of many different atoms and molecules in reference
[Gug45].

In the case of superatoms the exact description of the atomic state would
require the knowledge of the state of all N members of the superatom. Con-
sidering the superatom as an effective two-level atom a Hilbert space of the
size 2N is needed to describe the collective state exactly. Since this is neither
theoretically nor experimentally possible it is useful to have simple scaling
laws to hand that describe the dynamics of the complete ensemble and draw
conclusions from the collective dynamics to its members.

A proof for the coherent collective excitation into the Rydberg state was
given in the references [Hei07, Hei08a] by observing the scaling behaviour of
the ensemble as a function of the atomic density of ground state atoms and
the Rabi frequency Ω0. The third possible scaling with the principal quantum
number, namely the van der Waals coefficient C6, was kept constant in these
experiments. The direct observation of coherent dynamics via Rabi oscilla-
tions is impossible in our experiment because we excite many superatoms at
once and the inhomogeneous density distribution results in an inhomogeneous
distributed

√
N factor. The population of every of these superatoms oscillate

with its own collective Rabi frequency,
√
NΩ0, between the ground state and

the Rydberg state. This leads to a superposition of many different oscillation
smearing out the individual Rabi oscillation of one superatom.

Universal scaling aims to predict such scaling laws for all systems that fall
into the same universality class [Fis98]. A universality class is formed by
systems that are governed by the same fundamental process. The underlying
process in the case of the driven Rydberg system is a second order quantum
phase transition, that is theoretically predicted in reference [Wei08]. The phase
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transition happens between the phase where all atoms are in the ground state
and the phase where the maximal number atoms are excited to the Rydberg
state. In the picture of the superatom the maximal number of excited Rydberg
atoms corresponds to the number of superatoms that fill the volume of the
atomic sample as densly as possible, i.e. dense sphere packing. The dense
sphere packing of the superatoms can be described in the case of van der
Waals interaction in terms of a face centred cubic crystal.

A general prediction of statistical thermodynamics is that one can find a
universal scaling behaviour of the characteristic variables describing the sys-
tem in the vicinity of a second order phase transition. Here, the characteristic
variable is the Rydberg fraction f , which is the number of Rydberg atoms
divided by the number of ground state atoms. This Rydberg fraction is ex-
pected to depend on a dimensionless parameter α with a universal scaling
law. The parameter α = Ve/Vi compares the excitation energy Ve driving the
system with the interaction energy Vi between the Rydberg atoms. Hence, a
universal scaling law of the form f ∼ α

ν is expected to be found in the criti-
cal region around the second order phase transition. The universal exponent
depends only on the kind of interaction, i.e. whether it is van der Waals or
dipole-dipole interaction, and the dimensionality of the system. The universal-
ity class is then given for all systems that interact with the same interaction,
or to be more precise with the same spatial dependence of the interaction, and
are confined in the same dimension.

The dimensionality of the density distribution of ground state atoms can
be tailored in the presented setup in a wide range using a magnetic trap or
optical dipole potentials. Furthermore, different Rydberg states can be excited
by using the large tunability of the excitation laser, which makes it possible to
change the interaction from van der Waals to resonant dipole-dipole interaction
using electric fields. The measurements of the universal scaling behaviour
shown in this thesis will present data taken for a van der Waals interacting
sample of ultracold Rydberg atoms trapped either in a magnetic trap or in an
optical dipole trap.

Coherence properties

The proposals in the references [Jak00, Luk01] dealing with Rydberg atoms
for the purpose of building a quantum gate or processing quantum information
assume that the excitation into the Rydberg state is coherent. Furthermore
the atomic sample must stay coherent with respect to the excitation laser in
order to read out the information after the gate operation.

Due to the interaction between the Rydberg atoms or the interaction be-
tween Rydberg atoms and their environment sources of decoherence during
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the gate operation could disturb the measurement. Furthermore, a dephasing
of the Rydberg state with respect to the ground state would also lead to a
disturbance of the result if the dephasing cannot be canceled out by the choice
of an appropriate experimental sequence.

As already mentioned above the coherent excitation into the Rydberg state
is successfully demonstrated in many experimental schemes. The timescale on
which the information is preserved, however, needs to be investigated. The
experimental setup presented in this thesis eliminates nearly all sources of
decoherence, e.g. collisions between Rydberg atoms and other atoms and
interactions with walls at room temperature or perturbing electric fields due
to randomly produced ions applying uncontrolled electric fields over the atomic
sample.

However, two sources of dephasing cannot be removed. On the one hand
the inhomogeneous density distribution in our experiment leads to an inho-
mogeneous distribution of the collective Rabi frequency

√
NΩ0, i.e. the Rabi

frequency depends on the spatial position of the superatom in the atomic sam-
ple. Using adequate experimental techniques adapted from the research field
of nuclear magnetic resonance this dephasing effect can be removed allowing
an investigation of the second source of dephasing: The interaction between
the superatoms. The exact interaction between the superatoms, assuming
that the model is correct, is up to now unknown and under theoretical and
experimental investigation. The exact knowledge of this interaction is a cru-
cial ingredient on the way of realising the first quantum gate operations with
neutral atoms.

This thesis

The thesis at hand aims to give two examples of the previously discussed
fields of research: The investigation of the universal scaling of the Rydberg
excitation and the characterisation of the coherence properties due to the
interaction between Rydberg atoms.

The thesis is organised in three major parts. Part II briefly introduces basic
concepts for the theoretical description of the Rydberg system. This includes
the description of the Rydberg atom as a two-level atom and the interaction
between the Rydberg atoms leading to the formation of collective states as well
as an introduction to the basic concept of the universal scaling. Furthermore,
the basic physics of a three-level atom is introduced to accurately describe the
observed effects of electromagnetically induced transparency.

Part III introduces the experimental setup used for this investigations. The
setup is already described in some extend in the references [Kro04, Löw06,
But07, Hei07]. A magnetic trap is used for the cooling and trapping to temper-
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atures near or below the critical temperature of the Bose-Einstein condensate
phase transition. The setup is specifically designed to conduct experiments
with Rydberg atoms in the magnetic trap or in an optical trap with an con-
finement in up to three dimensions. Eight capacitor plates, which are included
in the ultrahigh vacuum chamber, allow the application of nearly arbitrary
electric fields over the atomic sample. Furthermore, two charged particle de-
tectors in the chamber can be used for the simultaneous detection of ionised
Rydberg atoms or their accompanied electrons.

Special attention is drawn to the linewidth of the laser system for the Ryd-
berg excitation. The stability has to be suffcient to spectroscopically resolve
the excitation lines of the Rydberg state and exclude any perturbing decoher-
ence process due to a drift of the laser frequency. Hence, the lasers must be
stable during one experiment, i.e. on the hundred microsecond timescale, as
well as on the long, i.e. minute timescale, between the experiments.

Part IV shows the experimental results on the observation of the universal
scaling of the driven Rydberg system as well as the results on the measurement
of the coherence properties.

The universal scaling is investigated by measuring the initial increase and
the saturation value of the excitation dynamics into the Rydberg state for a
large range of atomic densities and Rabi frequencies, i.e. laser powers. The
presented measurements are done with magnetically trapped atoms and with
atoms trapped in an optical dipole trap. The two measurements are evaluated
particularly with regard to the dimensionality of the atomic density distribu-
tion, that is reduced by the stronger confinement of the optical dipole trap
with respect to the density distribution in the magnetic trap.

The investigation of the coherence properties include two different methods.
The first method uses a technique known from the research field of nuclear
magnetic resonance: The rotary echo sequence [Sol59]. This sequence was
invented to overcome problems due to inhomogeneous Rabi frequencies, a sit-
uation very similar to that in experiments with ultracold Rydberg atoms at
high atomic densities. The Rabi frequency in the Rydberg system is inho-
mogeneous due to the inhomogeneous atomic density distribution leading to
a spatial variation of the collective Rabi frequency

√
NΩ0. The rotary echo

sequence is furthermore technically relatively simple to implement into the
present setup by only switching the phase of one excitation laser by 180 ◦.
This results in a reversion of the sign of the excitation laser field from Ω0

to −Ω0. Removing the effect of the inhomogeneous Rabi frequency from the
measurements leads to the ability to solely investigate the dephasing effects
due to the interaction between the Rydberg atoms.

The second method for the investigation of the coherence properties uses an
experimental scheme called electromagnetically induced transparency. As the
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name already implies, an electromagnetic field renders a medium transparent
under certain conditions. By using electromagnetically induced transparency
it is possible to coherently excite the atoms from the ground state into the
Rydberg state. The dephasing of the Rydberg state affects this coherent exci-
tation and manifests itself in a frequency broadening of the EIT feature and
a decreasing transparency of the atomic sample.
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Part II.

Theoretical pillars





1. Atom light interaction

Understanding the interaction between atoms and light is crucial for dealing
with ultracold atoms. The simplest model is that of one atom with two states
interacting with a light field of distinct frequency. Although this two-level atom
is artificial it gives insight into the principles of atom light interaction, such
as cooling and trapping. Furthermore, assuming good control of the laser fre-
quency, the two-level atom can be used to model alkali atoms to some extent.
The first sections will introduce briefly the physics of the two-level atom includ-
ing the description using the density matrix formalism and the useful picture of
the Bloch vector. The sections 1.6 and 1.7 deal with the physics of a three-level
atom. The three-level atom model assumes one atom with three non-degenerate
energy levels and two light modes. In this work this system is of interest to
explain electromagnetically induced transparency.
Section 1.8 presents under which circumstances the description of a three-level
atom can be reduced to the description of an effective two-level atom, which is
useful in most of the experiments presented in part IV.

1.1. Two-level atom

e

g

E/~

0

ω0

ωl

δ

Figure 1.1.: A two-level atom with ground state |g� and an
exited state |e� with an energy difference of �ω0. The laser
coupling the states has a frequency of ωl and a detuning
δ = ωl − ω0 from resonance.

The interaction between an atom with two levels, a ground state |g� with
zero energy and an excited state |e� with energy �ω0, and one light mode with
frequency ωl is given by the Hamiltonian

H = Ha +Hl +Hi . (1.1)

29



1. Atom light interaction

The three contributions are [Met99]

Ha =
p2

2m
+ �ω0 |e� �e| , (1.2)

Hl = �ωl(a
†
a+ 1/2) , (1.3)

Hi(r, t) = −d ·E(r, t) . (1.4)

In the case of ultracold atoms one can neglect the kinetic energy in equation
(1.2). The eigenvalues of Hl are EN = �ωl(N + 1/2), where a

† and a are the
creation and annihilation operator for photons in the light mode with frequency
ωl, respectively. Thus, this term accounts for the number N of photons in the
light mode with frequency ωl. For a start, this quantisation of the light field
will be neglected. Taking the quantisation of the light field into account yields
to the dressed atom picture discussed in section 1.4.
Finally, the interaction between the atom and the light field is given by the
Hamiltonian Hi in equation (1.4), using the dipole approximation, which is
valid for wavelengths much larger than the Bohr radius. In this case the
dipole d = e0r interacts with the electric field travelling along the z-direction
E(r, t) = E0� cos(kz − ωlt) with a polarisation along �. By introducing the
Rabi frequency

Ω ≡ −
e0E0

� �e| r |g� (1.5)

the interaction Hamiltonian Hi reads in the eigensystem of Ha

Hi =
1
2
�Ω (e−iωlt + eiωlt)(|e� �g|+ |g� �e|) . (1.6)

1.2. Density matrix

In general the atomic state is, e.g. due to dissipation, a statistical mixture
{|ψ�i} of different pure states |ψ� = cg(t) |g� + ce(t) |e� . The introduction
of the density matrix formalism allows to solve the Schrödinger equation for
this statistical mixture with the Hamiltonian from equation (1.1) by means
of matrix manipulations. Considering only pure states |ψ�, i.e. in absence of
dissipation, the density matrix is given by

ρ ≡ |ψ� �ψ| =

�
ρgg ρge

ρeg ρee

�
=

�
|cg|

2
cgc

∗
e

cec
∗
g |ce |

2

�
. (1.7)

The dynamics of the density matrix is given by the Liouville equation

ρ̇ = −
i

� [H,ρ] . (1.8)
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1.2. Density matrix

The dynamics of the atom that is fast with respect to the laser frequency
is usually not of interest and can be separated from the slow dynamics using
the rotating wave approximation. This is done by transforming ρ to a coordi-
nate system, that rotates with the laser frequency ωl and neglecting all terms
that rotate with ω0 + ωl as those correspond to two-photon excitations. The
transformed density matrix becomes

ς =

�
ρgg ρge e

iωlt

ρeg e
−iωlt ρee

�
. (1.9)

Introducing the detuning of the laser from the resonance δ = ωl − ω0 the
Hamiltonian for the atom light interaction becomes

H =
�
2

�
0 Ω
Ω∗

−2δ

�
. (1.10)

All light modes except the laser mode with frequency ωl are nearly unoccu-
pied and do not cause an excitation of the atom. However, the atom is able
to emit in these light modes. This can be understood as a reservoir and can
be covered by a decay rate Γ, which leads to the Lindblad master equation

L(ς) = ς̇ = −
i

� [H, ς] + Ld(ς) , (1.11)

with

Ld(ς) =
�

k

Γk

�
AkςA

†
k −

1
2
A

†
kAkς −

1
2
ςA†

kAk

�
. (1.12)

The Ak are of the form Ak = |m� �n| and Γk is the decay rate from |n� to
|m�, where k ∈ {gg, ge, eg, ee} for a two-level atom. Neglecting any thermal
excitation and dephasing, hence Γgg = 0 and Γge = Γeg = 0, equation (1.12)
becomes with Γee = Γ

Ld(ς) = Γ

�
ςee −

1
2 ςge

−
1
2 ςeg −ςee

�
. (1.13)

The solution of the Lindblad master equation can be conveniently illustrated
using the Bloch sphere introduced in the next section. The MatLab program
in appendix A.3 solves equation (1.11) for a two-level atom if the parameter
Ωc of this program is set to zero.
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1. Atom light interaction

1.3. Bloch vector

Using equations (1.13) and (1.10) in equation (1.11) one finds the Bloch equa-
tions [Sar93]

ς̇gg = −
i

2
Ω (ςeg − ςge) + Γ ςee ,

ς̇ge = −
i

2
Ω (ςee − ςgg)− (iδ +

Γ
2
) ςge ,

ς̇eg = +
i

2
Ω (ςee − ςgg) + (iδ −

Γ
2
) ςeg ,

ς̇ee = +
i

2
Ω (ςeg − ςge)− Γ ςee ,

(1.14)

and their steady state solutions

ς
�
gg = 1− ς

�
ee ,

ς
�
ge =

2Ω (δ + i
Γ
2 )

4δ2 + Γ2 + 2Ω2
,

ς
�
eg = ς

�∗
ge ,

ς
�
ee =

Ω2

4δ2 + Γ2 + 2Ω2
.

(1.15)

a) b) c)w

u
v

w

u
v

w

u
v

Figure 1.2.: Three examples of the representation of an atomic state as a Bloch
vector in a unit sphere. The top of the Bloch sphere represents the exited state
|e�, the bottom the ground state |g�. a) All atoms are in the ground state |g�.
b) After a π/2-pulse the atoms are in a coherent superposition between |g� and
|e�. c) All atoms are excited into |e� after a π-pulse.

Introducing the new variables u = 1
2 (ςeg + ςge), v = i

2 (ςeg − ςge) and w =
1
2 (ςee − ςgg) the Bloch equations (1.14) can be rewritten in a convenient way
as

β̇ = Ω× β − Γ . (1.16)
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1.4. Dressed atoms

The similarity to a spinning top implies the picture of the Bloch vector β =
(u, v, w)t in a unit sphere, where the bottom represents |g� and the top |e� (see
figure 1.2). Applying a light pulse to the atom means in this picture rotating
the Bloch vector around the u-axis from the bottom towards the top. The
Bloch vector β precesses around Ω = (Ω, 0,−δ)t. In the absence of dissipation,
i.e. Γ = 0, the Bloch vector keeps unity length. If the decay rate Γ is finite
the dissipation is included into the Bloch equations by Γ = Γ

2 (u, v, 2w − 1)t

and the length of β decreases with time. For times long compared to 1/Γ the
steady state value according to equation (1.15) is reached

βss =
s

1 + s





δ
Ω
Γ
2Ω

−
1
2s



 , (1.17)

with the saturation parameter

s =
Ω2
/2

δ2 + (Γ/2)2
. (1.18)

1.4. Dressed atoms

Many effects of excitation, e.g. the Mollow triplet and electromagnetically
induced transparency (see section 1.7), can be explained if the quantisation of
the light field, and thus equation (1.3), is taken into account. A comprehensive
description was given by J. Dalibard and C. Cohen-Tannoudji in [Dal85]. Their
dressed atom approach combines the atomic bare state |g� and |e� with the
eigenstates of the light field |N �. Figure 1.3 shows the bare energy states of
the atom and the light as well as the coupled dresses states |+,N � and |−,N �.

The new eigenstates can be found be diagonalising the Hamiltonian in equa-
tion (1.10) resulting in

H
� = −

�
2

�
δ − Ω� 0

0 δ + Ω�

�
, (1.19)

with

Ω� =
�

Ω2 + δ2 , (1.20)

and

|+,N � = sin
ϑ

2
|g,N + 1�+ cos

ϑ

2
|e,N � ,

|−,N � = cos
ϑ

2
|g,N + 1� − sin

ϑ

2
|e,N � .

(1.21)
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1. Atom light interaction

E/~

( +1)N ωl

( +2)N ωl

N lω

ωl

δ

ω0

ωl

δ

ω0

Ω´

g,N

+,N

+, 1N+

e,N

Ω´

+ +, 1N

+,N

e, +1N

g, +1N

dressed
states

bare
states

Figure 1.3.: Dressed atom picture for a two-level atom. The uncoupled basis
with the atomic eigenstates |g� and |e� and the eigenstates of the quantised
light field |N � are coupled by the Hamiltonians Hl and Hi given by equations
(1.2) and (1.3) to new eigenstates |+,N � and |−,N �. For the sake of readabil-
ity the level scheme is shifted horizontally while going from |N � to |N + 1�.
The energy difference between |g,N � and |g,N + 1� is �ωl.

The Stückelberg angle describes the admixture of the bare states in the dressed
states

ϑ = arctan

�
−
Ω
δ

�
. (1.22)

Hence, every new eigenstate is a mixture of the old eigenstates to Ha, where
the mixing is 50% for δ = 0. The new eigenstates evolve asymptotically into
the old for large detunings δ � Ω: |+,N � evolves into |e,N � and |−,N �

evolves into |g,N �.

1.5. Light shift and optical dipole trap

A very important application is directly connected to the situation where δ �

Ω, namely the trapping of atoms using the dipole force of the light field. The
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1.6. Three-level atom

light shift of the ground state is for δ � Ω according to (1.19) and (1.20)

∆Eg ≈
�Ω2

4δ
. (1.23)

For red detuning, i.e. δ < 0 the light shift for the ground state is negative and
the atoms are attracted towards regions of high intensity. When dealing with
real atoms a laser beam forming an optical dipole trap couples not only two
states. Thus, the internal structure of the atom has to be taken into account
and the Rabi frequency can be calculated according to [Met99, Hei08a] using

Ω = (−1)l
�+s+i−m�

f+1
�

2I
c�2�0 �n

�
, l

�
||r||n, l�

×
�

(2j + 1)(2j� + 1)(2f + 1)(2f � + 1)

×

�
l
�

j
�

s

j l 1

��
j
�

f
�

i

f j 1

��
f 1 f

�

mf q −m
�
f

�
.

(1.24)

The braces and the curly braces denote the Wigner 3j and 6j symbols, re-
spectively, decomposing the atomic state from the f -basis into the uncoupled
basis. The variables l, s and i denote the orbital angular momentum, the spin
and the nuclear angular momentum, respectively. The prime denotes the final
state. The Russell-Saunders coupling couples l and s to j = l + s and the
hyperfine couples j and i to the total angular momentum f = j + i, with mf

being the projection of f onto the quantisation axis. Furthermore, I is the
intensity of the laser and �n

�
, l

�
||r||n, l� is the radial part of the dipole matrix

element. The radial part for a transition |a� to |b� is related to the Einstein-A
coefficient Aba = Γba by

�
n
�
, l

���|r||n, l� =

�
3πc3ε0�Aba

ω
3
ba

�
2lb + 1 . (1.25)

The scattering rate Γs ≡ Γbaς
�
ee is for a large detuning δba � (Γba,Ω) with

equations (1.15), (1.24) and (1.25)

Γs =
3πc2

2�ω3
ba

�
Γba

δba

�2

I , (1.26)

with Γba = Aba and δba = ωl − ωba. Hence, the trap potential is proportional
to 1/δba, while the scattering rate decreases with 1/δ2ba, which means that it
is favourable to use high power lasers with a large detuning from the atomic
transition.
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1. Atom light interaction
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Figure 1.4.: Three-level atom. An
atom with a ground state |g� a first
excited state |e� and a second exited
state |r�. The energy difference be-
tween the states |g� and |e� is �ωeg

and �ωre between |e� and |r�. The
states are coupled by light with a
frequency of ωp (‘probe laser’) and
ωc (‘coupling laser’), respectively.
The frequency ωp is far detuned
with respect to the upper transition
and ωc is far detuned with respect
to the lower transition. The probe
laser has a detuning of δp = ωp−ωeg

and the coupling laser has a detun-
ing of δc = ωc − ωre.

1.6. Three-level atom

The description of a three-level atom follows basically the description of a two-
level atom, but the physics of the three-level atom is enriched by a number
of effects, of which the electromagnetically induced transparency and Autler-
Townes splitting are of special interest in this thesis and will be introduced in
section 1.7. The three levels are labeled as (see figure 1.4) |g� (ground state),
|e� (excited state) and, to cause less confusion later on, |r� (Rydberg state).

The Hamiltonian of the three-level atom is, assuming cold atoms and the
dipole approximation, similar to equation (1.1) with

Ha = �ωe |e� �e|+ �ωr |r� �r| , (1.27)

Hl = �ωp(a
†
pap + 1/2) + �ωc(a

†
cac + 1/2) , (1.28)

Hi =
�
2

�
Ωp e

−iωpt
|e� �g|+ Ωc e

−iωct
|r� �e|+ h.c.

�
. (1.29)

Thus, equation (1.10) becomes in the basis |g� = (1, 0, 0)t, |e� = (0, 1, 0)t

and |r� = (0, 0, 1)t

H =
�
2




0 Ωp 0

Ω∗
p −2δp Ωc

0 Ω∗
c −2(δp + δc)



 , (1.30)
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1.6. Three-level atom

and the Liouville operator becomes according to equation (1.12)

Ld =Γeg




ςee −

1
2 ςge 0

−
1
2 ςeg −ςee −

1
2 ςer

0 −
1
2 ςre 0





+Γrg




ςrr 0 −

1
2 ςgr

0 0 −
1
2 ςer

−
1
2 ςrg −

1
2 ςre −ςrr





+Γre




0 0 −

1
2 ςgr

0 ςrr −
1
2 ςer

−
1
2 ςrg −

1
2 ςre −ςrr





+γed




0 −

1
2 ςge 0

−
1
2 ςeg 0 −

1
2 ςer

0 −
1
2 ςre 0





+γrd




0 0 −

1
2 ςgr

0 0 −
1
2 ςer

−
1
2 ςrg −

1
2 ςre 0



 ,

(1.31)

where γed and γrd take, according to [Fle05], additional energy conserving
dephasing processes into account. These dephasing rates have no contribution
to the diagonal entries of the Liouville operator and, thus, do not change
the population of the state but only the coherence between the states. Phase
fluctuations of the driving laser field or the interaction between Rydberg atoms
are processes which could lead to such dephasing rates γed and γrd. The effects
of γed and γrd are discussed in section 1.7 and depicted in figure 1.6.

In analogy to the two-level atom the three-level atom can be written in
terms of dressed states. For a weak probe laser with frequency ωp and a strong
coupling laser with frequency ωc, i.e. Ωc � Ωp, the dressed atom picture is
shown in figure 1.5. Again, one sees a splitting of the new eigenstates by Ω�

due the atom light interaction. This Autler-Townes splitting [Aut55] can now
be detected using the probe transition (see figure 1.6 c)). A similar picture for
the case Ωp � Ωc can be found in [Hei08a] figure 2.4. If the Rabi frequencies
of the coupling and probe laser are on the same order of magnitude the dressed
atom level scheme is a combination of both pictures.
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1. Atom light interaction
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Figure 1.5.: Dressed atom picture for a three-level atom and two light modes,
where Ωc � Ωp, which is the case for an EIT scheme (see section 1.7). The
uncoupled basis with the atomic eigenstates |g�, |e� and |r� and the eigen-
states of the quantised light field |Nc� with frequency ωc are coupled by the
Hamiltonians given by equations (1.27) and (1.28) to new eigenstates |+,Nc�

and |−,Nc�. For the sake of readability the level scheme is shifted horizontally
while going from |Nc� to |Nc + 1�. The energy difference between |g,Nc� and
|g,Nc + 1� is �ωc.

The digonalisation of equation (1.30) gives the new eigenstates for the three-
level atom in terms of the atomic bare states [Fle05]

|+�=sinϑ sinϕ |g�+ cosϕ |e�+ cosϑ sinϕ |r� ,

|∅� =cosϑ |g� − sinϑ |r� ,

|−�=sinϑ cosϕ |g� − sinϕ |e�+ cosϑ cosϕ |r� .

(1.32)
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1.7. Electromagnetically induced transparency

On two-photon resonance (δ = δp + δc = 0) the Stückelberg angles are

ϑ =arctan
Ωp

Ωc
,

ϕ =
1
2
arctan

�
Ω2

p + Ω2
c

δp
.

(1.33)

Especially the case where the states |g� and |r� have a long lifetime compared
to the state |e� is of interest since the state |∅� has no contribution of the
radiative state |e�. Thus, if the dephasing rate γrd = 0 and the lifetime of |e�
due to radiation short compared to those of |g� and |r�, the system will evolve
on a timescale given by Γeg towards the state |∅�. A laser probing between the
states |g� and |e� hence will not be absorbed. This effect is called coherent
population trapping (CPT) [Alz76, Ari76, Whi76]. If the dephasing rate γrd �=
0 the resulting state will not be |∅�, but some mixture of all atomic bare states
and the probe laser will partially be absorbed. Additionally the time scale for
the decoherence is than given by the lifetime 1/Γeg of the intermediate state.
The different situations are depicted in figure 1.6.

1.7. Electromagnetically induced transparency

Electromagnetically induced transparency (EIT) describes an effect in a three-
level system, where the three levels are coherently coupled with two lasers as
described in section 1.6 in the special case that one of the two lasers is weak
[Har90]. Weak in this context means that the Rabi frequency Ωp of this probe
laser is small in comparison to the decay rate of the corresponding transition.

EIT was first experimentally observed by Boller et al. [Bol91]. As the term
EIT already implies, a medium becomes transparent under certain conditions,
namely if both lasers ωp and ωc are resonant to the transitions ωeg and ωre,
respectively. EIT can be understood using the dressed atom scheme depicted
in figure 1.5. Considering a strong coupling laser with frequency ωc on the
transition from |e� to |r� and a weak probe laser with frequency ωp on the
transition from |g� to |e�, i.e. Ωc � Ωp, and hence sinϑ → 0 and cosϑ → 1.
This leads to the new eigenstates

|+�=sinϕ |r� + cosϕ |e� ,

|∅� = |g� ,

|−�=sinϕ |r� − cosϕ |e� .

(1.34)

If the probe laser comes into resonance, i.e. δp = 0 the states are |+� =
(|r� + |e�)/

√
2 and |−� = (|r� − |e�)/

√
2. The probe light couples only to the

|e� part of |+� and |−�, which have opposite signs in these states. This causes
an
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Figure 1.6.: Absorption spectra for different coupling strengths and dephasing
rates. The absorption is proportional to the imaginary part of the suscep-
tibility χ, while the real part of χ is proportional to the dispersion. The
susceptibility is a function of the coherence ςeg. The dashed lines in figures
d) to i) indicate the absorption without dephasing rate as depicted in a) and
b). In figures with Ωc < Γeg the EIT feature with a width much smaller
than the natural linewidth is visible (b)). For large coupling Rabi frequencies
the absorption line splits according to the Autler-Townes splitting (c)). The
dephasing rate γed basically broadens the line, but the visibility of the EIT
feature is unbowed (d) to f)). The EIT signal vanishes if the dephasing rate
γrd is increased (g) to i)).
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1.8. Effective two-level atom

Fano interference [Fan61] of the two excitation paths from |g� to |+� and |g�
to |−�, leading to zero absorption on the probe transition from |g� to |e�. The
absorption is proportional to the imaginary part of the susceptibility χ, which
in turn is a function of the coherence ςeg between the states |e� and |g�.

The coherence ςeg, among other properties, of the three-level atom can be
obtained from the MatLab program given in appendix A.3, which calculates
the density matrix entries for a three level atom according to to equation (1.11).
Some results of these calculations are shown in figure 1.6 in order to illustrate
the expected signals for different values of the coupling Rabi frequency Ωc and
dephasing rates γed and γrd.

Figure 1.6 b) shows an EIT feature in the case Γeg > Ωc. The width of this
feature is smaller than the linewidth Γeg of the absorption line without coupling
laser (see figure 1.6 a)). In the case where Ωc > Γeg the EIT feature vanishes
and Autler-Townes splitting appears (see figure 1.6 c)). Figures 1.6 d) to i)
show the behaviour of the EIT signal for different values of the dephasing rates
γed and γrd. If the dephasing rate γed of the intermediate state is increased the
linewidth of the signal increases, while the visibility of the EIT feature stays
unaltered. On the other hand, increasing the dephasing rate of the Rydberg
level γrd results in a decreasing depth of the EIT feature, which even vanishes
for large dephasing rates.

Observing an EIT feature is a direct proof for the coherence of the system
since the feature is smaller than the linewidth due to the lifetime of the state.
Hence, for the observation it is necessary to cancel out the effects of the ra-
diative state. This is, in case the lasers are switched on, only possible via a
coherent superposition of the two remaining states.

1.8. Effective two-level atom

The physics of a three-level atom is very much enriched by the third level.
However, along with the third level comes the, in comparison with the the
two-level atom, much more complicated description of the system.

Under some circumstances it is possible to describe a three-level atom as an
effective two-level atom. The requirement for this is, that one of the three levels
must not be occupied, at least not significantly. Here it is the intermediate
state |e� into which no atom should be excited. This can be achieved by
choosing a detuning δp (see figure 1.4 for clarification of the symbols) that is
large compared to the Rabi frequencies Ωp and Ωc. A large detuning from
the intermediate state is especially important for the coherent excitation of
Rydberg atoms involving the intermediate state as its decay rate Γeg causes
an incoherent scattering of photons.

In the case that δp � ΩpΩc and the decay rate Γeg is large compared to Γre
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1. Atom light interaction

the state |e� can be adiabatically eliminated [Mey01]. This means, that the
fast varying variable ςee is removed from the system by solving the Lindblad
equation with ς̇ee = 0. Finally, this results in an effective Hamiltonian [Bri07]

Heff =
�
2

�
−δeff Ω�

eff

Ω�∗
eff δeff

�
. (1.35)

On two-photon resonance the effective Rabi frequency is given by

Ωeff =
ΩpΩc

2δp
, (1.36)

and the effective detuning is

δeff = δc +
Ω2

p

4δp
−

Ω2
c

4δp
. (1.37)

With equation (1.20) the off-resonant two-photon detuning becomes

Ω�
eff =

�
Ω2

eff + δ
2
eff . (1.38)

Coherent effects, e.g. Rabi oscillations, can be observed on a timescale τ =
1/Ωeff if no dephasing or decoherence happens on this timescale. Considering
a decay rate Γ � Γre results with equation (1.15) in a scattering rate

Γs ≡ Γς �ee =
ΓΩ2

p

4δ2p + Γ2 + 2Ω2
p
, (1.39)

which is for large δp

Γs �
ΓΩ2

p

4 δ2p
. (1.40)

Another issue of decoherence is a dephasing rate γd due to, for example, colli-
sions, laser linewidths or interaction between atoms. For a coherent evolution
of the system any decay or decoherence rate must be smaller than the Rabi fre-
quency on two-photon resonance: Ωeff > (Γs, γd). This results with equations
(1.36) and (1.40) in the inequality

2Ωc

Γ
>

Ωp

δp
>

2γd
Ωc

, (1.41)

which leads to the requirement Ωc >
√
Γ γd for the second Rabi frequency

in the two-photon excitation. Thus, the task of maximising Ωeff given by
equation (1.36) must be achieved by maximising the Rabi frequency Ωc of the
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1.8. Effective two-level atom

upper transition rather than maximising the fraction Ωp/δp in order to assure
that the effective two-photon Rabi frequency is larger than any decoherence
or dephasing.

Especially the technical aspect of minimising γd, i.e. minimising the laser
linewidth, is subject of section 6.2. The contribution to γd caused by the inter-
action between Rydberg atoms will be subject of experimental investigation
described in section 9.3.
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2. Rydberg atoms

Rydberg atoms are atoms with at least one electron excited to a high principal
quantum number. The large distance of this electron to its core determines
the most physical properties of Rydberg atom and make them interesting for
quantum computing issues [Jak00, Luk01].
This chapter will only briefly introduce the properties of Rydberg atoms that
are important with respect to this thesis. Moreover, only atoms with one elec-
tron excited to a Rydberg state will be discussed, as no other is used in this
thesis. For more details on Rydberg atoms see [Gal94, Gra06, Hei08a]. The
first section 2.1 introduces the basic properties of Rydberg atoms. Section 2.2
focuses on the interaction between Rydberg atoms, especially on the van der
Waals interaction, which is the dominant interaction for Rydberg atoms used
for the experiments in this thesis.

2.1. Basic properties

The simplest picture of a Rydberg atom is an electron orbiting the core in
analogy to the Bohr model of the hydrogen atom. In a hydrogen atom the
electron is attracted by a Coulomb potential. The energy and the classical
radius for a hydrogen atom with an electron in a state with principal quantum
number n is given by

En = −
R∞hc

n2
, (2.1)

rn = a0n
2
, (2.2)

with the Bohr radius a0 and the Rydberg constant R∞

R∞ =
mee

4
0

8�20h
3c

. (2.3)

Due to the similarity between a hydrogen atom and an alkali atom equations
(2.1) and (2.2) can to some degree be used for the description of alkali Rydberg
atoms. In alkali atoms the potential of the core with Z positive charges is
shielded by Z − 1 core electrons. The probability to find the electron in
the vicinity of the core is small for large angular quantum numbers l > 4
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2. Rydberg atoms

and since the energy shift due to the Z − 1 core electrons are small and the
Rydberg electron basically experiences only a 1/r-potential these states are
called ‘hydrogen like states’. Rydberg states with a smaller angular momentum
l < 4 are called ‘defect states’. The energy shift due to the core electrons
constitutes a significant perturbation to the 1/r-potential. This energy shift
can be taken into account by replacing the principal quantum number n with
an effective principal quantum number n∗ = n− δl, with the ‘quantum defect’
δl [Gal94]. By doing so basically all discovered properties can be translated
from the hydrogen atom to the alkali atoms. Table 2.1 lists the, with respect
to this thesis, most important properties and their dependence on n

∗.

Property Symbol or expression

Binding energy En = −R∞hc (n∗)−2

Level spacing ∆ = En − En−1 ∼ (n∗)−3

Radius �r� = (3(n∗)2 − l(l + 1))/2

Geometric cross section π �r�
2
∼ (n∗)4

Dipole moment d = �nl| er |nl
�
� ∼ (n∗)2

Polarisability α ∼ (n∗)7 [Gra06]

Lifetime (spontaneous decay) τlt = 1.43(n∗)2.94

Lifetime (black body radiation) τbb = 3�/(4α3kBT ) (n∗)2

van der Waals coefficient C6 ∼ (n∗)11

Table 2.1.: Most important properties and dependences on the effective prin-
cipal quantum number n

∗ for alkali atoms in Rydberg states. All entries, if
not cited differently, were taken from [Gal94].
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2.2. Interaction between Rydberg atoms

2.2. Interaction between Rydberg atoms

The dipole-dipole interaction is the dominant interaction between atoms at
moderate densities, where the contact interaction becomes more and more
pronounced for increasing atomic densities. One can distinguish two types,
namely the magnetic and the electric dipole-dipole interaction.

The interaction energy between two dipoles d1 and d2 separated by a dis-
tance r and aligned along the same axis with an angle θ to r is given by

V
el
dd =

d
el
1 d

el
2

r3
· (1− 3 cos2 θ) ,

V
mag
dd =

d
mag
1 d

mag
2

r3
· (1− 3 cos2 θ) .

(2.4)

The strength of both interactions can be compared by comparing their coupling
constants, which are d2/�0 and µ0µ

2 for the electric and magnetic dipole-dipole
interaction, respectively. The comparison of both constants yields a factor of
(αS/2)2, with the Sommerfeld fine structure constant αS. Thus, the magnetic
dipole-dipole interaction is roughly a factor of 75000 weaker than its electric
counterpart.

The electric dipole moment del ∼ n
2 can be several orders magnitude larger

than the magnetic dipole moment, which scales maximal as d
mag

∼ n
1 for

� = n − 1. However, for neutral atoms in the ground state the magnetic
dipole moment is sufficient to trap atoms as it will be discussed in chapter
5. High magnetic moments, up to 10µB have been observed with neutral
atoms [Han04]. For large magnetic moments and small distances R, i.e. high
densities, effects of the magnetic dipole-dipole interaction can be observed
[Stu05].

The magnetic dipole-dipole interaction between Rydberg atoms can be ne-
glected in comparison to the electric dipole-dipole interaction. Usually un-
perturbed atoms do not have a permanent electric dipole moment. Electric
ac dipoles however can be induced by applying an electric field or by means
of Förster resonances [För48] using the degeneracy of two pair states, e.g.
ns + ns ↔ (n− 1)p + (n+ 1)p.

In this thesis the 43S1/2 Rydberg state is solely used. This state has no
Förster resonance at moderate electric fields. The next order in the perturba-
tion theory after the dipole-dipole interaction given in equation (2.4) is the van
der Waals interaction. The van der Waals interaction can be understood as a
dipole-dipole interaction between a fluctuating dipole in one atom, which in-
duces a dipole in a second atom. In a quantum mechanical treatment the clas-
sical dipoles d

el in equation (2.4) are replaced by matrix elements �φ| er |φ
�
�,

where the prime denotes the final state. Neglecting the spatial orientation of
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2. Rydberg atoms

the dipoles the potential of the dipole-dipole interaction between two atoms
in the states |φ1� and |φ2� is in terms of the pair states |φ1φ2� given by

Vdd ∼

�

|φ�
1φ

�
2�

�φ1φ2|
d1d2

R3

��φ�
1φ

�
2

�
(2.5)

Figure 2.1 shows the coupling of three states into pair states considering two
Rydberg atoms in equal states |s� and only the neighbouring states |p� and
|p

�
�, which angular momenta shall be lp = lp� = ls ± 1.

s

p

Eb

p ´

∆

p ´s

p ´p

ss

bare states pair states

sp

Ep

Figure 2.1.: Coupling of the atomic
states to pair states due to the in-
teraction between two dipoles. The
origin of the dipole-dipole interaction
between two atoms in the state |s�

can be understood as a fluctuating
dipole inducing a dipole in an atom
at distance R (van der Waals interac-
tion). This picture assumes that all
atoms are in |s�. The energy split-
ting Es − Ep and Ep� − Es is large
compared to ∆ = Ess − Epp� .

The energy differences between the atomic states are large compared to the
energy difference of the paired state |ss� and |pp

�
�. Equation (2.5) can be

rewritten in terms of a two-level atom in the basis |ss� = (1, 0)t and |pp
�
� =

(0, 1)t as

Hdd =

�
0 d1d2

R3

d1d2
R3 ∆

�
, (2.6)

with ∆ = (Es −Ep)− (Ep� −Es) = Ess −Epp� < 0. In this picture the atomic
states are coupled to the pair states due the interaction between the dipoles
d1 and d2. Diagonalisation of (2.6) leads to the new eigenenergies

E± =
∆
2

±

��
∆
2

�2

+

�
d1d2

R3

�2

. (2.7)

Usually the energy difference ∆ is non-zero. For large distances R one can
expand (2.7), which leads in the case ∆ � d1d2/R3 to the eigenenergy of |ss�

EvdW = E− = −
1
∆

(d1d2)
2

R6
≡

C6

R6
. (2.8)

48



2.2. Interaction between Rydberg atoms

The van der Waals C6 coefficient is proportional to 1/∆, hence the sign of the
interaction can be positive (repulsive) or negative (attractive) depending on
the energies Ess and Epp� . In the case of 87Rb the interaction between two
Rydberg atoms in an nS state is for 14 ≤ n ≤ 236 repulsive [Sin05], while
the interaction between Rydberg atoms in an nD state are predominantly
attractive [Sin04a]. Due to the scalings of 1/∆ with n

−3 and d with n
2 (see

table 2.1) the C6 coefficient scales ∼ n
11.

The case of a vanishing energy difference ∆ is called Förster resonance:
Equation (2.7) has again the form of a dipole-dipole interaction with the energy
EF = d1d2/R3. Although it has been mentioned above that ∆ �= 0 for most of
the atoms, ∆ = 0 still can be achieved by tuning the energies Es, Ep and Ep�

using an electric field. In other words it is possible to tune the range of the
interaction from a van der Waals to the long range dipole-dipole interaction
by means of the electric field using the Förster resonance at ∆ = 0.
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3. Collectivity

Strong interactions change the dynamics of a system considerably. If an atom
is excited into a Rydberg state the van der Waals interaction suppresses the
excitation of a second Rydberg atom in its vicinity. The smallest distance
between two Rydberg atoms is called blockade radius, which is introduced in
section 3.1. The suppression of the excitation into the Rydberg state leads to
collective effects on the excitation and the formation of collective states. The
collective excitation of many ground state atoms due to the blockade is covered
by section 3.2.
Collective effects on the excitation into a Rydberg state are investigated in a
thermal cloud in reference [Hei07] as well as in Bose-Einstein condensates in
reference [Hei08b]. The validity of the concepts briefly introduced in this chap-
ter is shown in this references.
The last two sections of this chapter introduces the simple, though, power-
ful superatom model (section 3.3) and its generalisation (section 3.4). The
description of the excitation dynamics in terms of the superatom model will
be of importance for the interpretation of the results of the universal scaling
presented in chapter 8.

3.1. The blockade radius

If the interaction between the Rydberg atoms becomes large compared to all
other energy scales in the system, i.e. to the natural linewidth Γ and the power
broadened linewidth of the Rydberg state caused by the Rabi frequency Ω, the
excitation of more than one atom into the Rydberg state is blocked. An ex-
ample is shown in figure 3.1 for a purely repulsive van der Waals interaction
as it will be the case in the experiments presented in this thesis. Two atoms
with ground state |g� and Rydberg state |r�can be described in terms of pair
states {|g,g� , |g,r� , |r,g� , |r,r�}, where |g,r� for example denotes atom one in
the ground state and atom two in the Rydberg state. Due to the small polar-
isability of the ground state atoms the energy of the states |g,g� and |g,r� is
not shifted. The van der Waals interaction shifts the energy level of the state
|r,r� out of the laser resonance. This energy shift depends on the distance r
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3. Collectivity

g,g

g,r

r,r

E

ω

ω

rrb

ΩΓ

Figure 3.1.: Blockade of the Rydberg excita-
tion due to the van der Waals interaction. A
laser with frequency ω drives the transition
|g� to |r� from the ground state to the Ryd-
berg state. Considering two atoms, the ener-
gies of the pair states |g,g� and |g,r� remain
unshifted due to the small polarisability of
the ground state atom. The transition |g,r�
to |r,r� however is dependent on the inter-
particle distance r because the energy level
is shifted due to van der Waals interaction
between the two Rydberg atoms. Dependent
on the larger of both ‘linewidths’, Γ or Ω,
one can define a blockade radius rb, which is
the smallest distance between two Rydberg
atoms.

between the two atoms. A transition from |g,r� to |r,r� is suppressed if

VvdW =
C6

r6
> �max(Γ,Ω) . (3.1)

Assuming that the decay rate of the Rydberg state Γ is much smaller than the
Rabi frequency Ω, as it is the case in the experiments presented in this thesis,
the blockade radius is defined as

rb ≡
6

�
C6

�Ω . (3.2)

The blockade radius defines a smallest volume Vb = 4π/3 · r
3
b in which only one

atom can be excited into a Rydberg state.

3.2. Collective states

The experiments discussed in this thesis are conducted in a system with large
atom numbers and high densities. Thus, the volume of a blockade sphere
given by rb contains up to several thousand ground state atoms. Taking this
into account changes the excitation dynamics completely from a single atom
behaviour to a collective behaviour.
Considering N interacting two-level atoms that are driven with a Rabi fre-
quency Ω0 results in a Hamiltonian in the |g� = (1, 0)t and |r� = (0, 1)t basis

H =
N�

j=1

H
s
j +

�

k<l

Vkl
1
2
( − σz)k

1
2
( − σz)l , (3.3)
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with the single atom Hamiltonian

H
s
j =

�
2
Ω0 (σx)j +

�
2
δ ( − σz)j (3.4)

and the well known Pauli matrices

σx =

�
0 1

1 0

�
, σy =

�
0 −i

i 0

�
, σz =

�
1 0

0 −1

�
. (3.5)

The index j, k and l accordingly, denote the subspace of the Hilbert space
for the respective atom. Equation (3.4) is in analogy to (1.10) with a shifted
zero energy. Dissipation according to (1.13) is not taken into account as for
Rydberg states the lifetime is large and, thus, Γ is small. Moreover, in the
experiments presented in this thesis the Rabi frequency Ω0 is much larger than
the decay rate Γ.
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Figure 3.2.: Three different types of coherent excitation. a) Single atom Rabi
oscillation occurs if an atom is driven by a Rabi frequency Ω0. b) N non-
interacting atoms undergo the same Rabi oscillation. The amplitude of the
population in state |r� equals N . c) In the case of a collective excitation
all N atoms carry one excitation. The amplitude of the population in the
Rydberg state is one and the the frequency of the Rabi oscillation is enhanced
by a factor of

√
N (red curve). The collective state, depicted by a red circle

is sometimes called superatom and is the subject of section 3.3. The green
parabola indicates the quadratic onset of the non-interacting excitation.

At this point, depending on the strength of the interaction Vkl, three dif-
ferent excitations can be distinguished. Figure 3.2 depicts in a) the single

53



3. Collectivity

atom excitation, in b) the excitation of N non-interacting atoms and in c) the
collective excitation in the presence of strong interaction. The ground state of
the system is

���ψ(N,0)
�
= |g1,g2,. . . ,gN � . (3.6)

Exciting the jth atom result in a state |g1,g2,. . . ,rj ,. . . ,gN �. Due to symmetry
with respect to permutation the collective state with one excitation reads

���ψ(N,1)
�
=

1
√
N

N�

j=1

|g1,g2,. . . ,rj ,. . . ,gN � , (3.7)

if the phases between all states are one. In general the atoms forming the
collective state have distances larger than the wavelength of the excitation
light and therefore experience individual phases of the light field.

Calculating the matrix element for the transition from the ground state���ψ(N,0)
�
to

���ψ(N,1)
�
yields

�
ψ

(N,1)
���

N�

j=1

�
2
Ω0(σx)j

���ψ(N,0)
�
=

N�

j=1

1
√
N

�
2
Ω0 =

�
2
ΩN , (3.8)

with the collective Rabi frequency

ΩN =
√
NΩ0 . (3.9)

The appearance of the
√
N factor is typical for a collective excitation. The N

ground state atoms inside the blockade sphere equally share one excitation and

form a two-level ‘superatom’ [Vul06] with the states
���ψ(N,0)

�
and

���ψ(N,1)
�
. In

contrast to the usual two-level atom the superatom oscillates with an Rabi
frequency, which is enhanced by a factor of

√
N .

The effective Hamiltonian for the collective excitation has form (see equation
(1.10))

H =
�
2

�
0 ΩN

Ω∗
N 2δ

�
. (3.10)

The interaction from the Hamiltonian in (3.3) is absorbed in the collective

Rabi frequency and the appearance of
���ψ(N,1)

�
. The picture given in figure

3.2 c) illustrates the superatom oscillating with the collective Rabi frequency

between the states
���ψ(N,0)

�
and

���ψ(N,1)
�
.
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The collective state was introduced as an effect of strong interaction. Strong
means to have only one excitation in N atoms, the excitation into the state���ψ(N,2)

�
with two excitation must be impossible. The strength of the transition

���ψ(N,1)
�
to

���ψ(N,2)
�
is given by the matrix element [Hei08a]

�
ψ

(N,2)
���

N�

j=1

�
2
Ω0(σx)j

���ψ(N,1)
�
=

�
2(N − 1)

�
2
Ω0 . (3.11)

Thus, the interaction between the Rydberg atoms must be much stronger than

the corresponding energy of the excitation into the state
���ψ(N,2)

�

Vkl �
�

2(N − 1)
�
2
Ω0 . (3.12)

3.3. The superatom model

The introduction above assumes only one superatom formed by all N available
atoms. This is valid if the N atoms are placed in a sphere with radius rb. In
the experiments in this thesis the size of the atomic cloud will be larger than
this sphere, which means that many superatoms will be found.

In principle an exact solution of the dynamics could be obtained by solving
the Schrödinger equation using the Hamiltonian from (3.3). Due to number
of atoms of real systems the Hilbert space would have 2N , with N ≈ 107,
dimensions, which is impossible to solve. Several approaches to circumvent
this problem by lowering the dimensions of the Hilbert space and, never the
less describing the system accurately have been made. Ates and coworkers
derive in [Ate07] a solution by substituting the quantum correlations between
all N atoms with simpler rate equations. This approach works under certain
conditions, i.e. in systems with a low density of atoms. Tong and coworkers
favoured a mean field approach [Ton04] solving the Bloch equation for a su-
peratom. The pair correlation function for Rydberg atoms are calculated by
Robicheaux et al. [Rob05].

For the superatom model this pair correlation function is assumed to be a
Heaviside function, resulting in separated spheres with a radius of rb/2. Figure
3.3 shows the arrangement of the superatoms assuming close sphere packing.
The close sphere packing minimises the energy by maximising the distance
between the atoms for a given volume.

Generally, the density distribution ng of ground state atom is not constant,
but a function of the spatial coordinate r. Assuming that ng(r) is not varying
too much on the length scale of the blockade radius one can use the local
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rb

Figure 3.3.: Arrangement of superatoms in a close
sphere packing. The distance between the centres of
two superatoms and their diameter is the blockade
radius rb.

density approximation to calculate the dynamics of the superatoms. It has
also to be stressed that in the simple superatom model the superatoms are
assumed to be non-interacting. The interaction between superatoms would
require a detailed knowledge of the pair correlation function and is currently
subject to theoretical investigation.

The spatial dependence of the density distribution of ground state atoms
results in a spatial variation of the number N of ground state atoms consti-
tuting a superatom. With the density of Rydberg atoms nR in the saturation
regime the number of atoms per superatom is

N(r) =
ng(r)
nR(r)

, (3.13)

and with this the collective Rabi frequency becomes according to

ΩN (r) =
�

N(r)Ω0 , (3.14)

a function of the spatial coordinate.
From figure 3.3 the density of Rydberg atoms is nR =

√
2r−3

b . Therefore,
equation (3.2) becomes

ZC6

r
6
b(r)

= ZC6
1
2
n
2
R(r) = κ�ΩN (r) , (3.15)

with Z = 14.4 accounting for the next and next-next neighbours interacting
via the van der Waals interaction. The factor κ � 1 is constant and accounts
for the factor

√
2 in (3.12).

The density of Rydberg atoms and the collective Rabi frequency can be
calculated from the density of ground state atoms and the single atom Rabi
frequency using equations (3.13) and (3.15)

nR(r) =

�
2κ�
ZC6

�2/5

(ng(r)Ω
2
0)

1/5
, (3.16)

ΩN (r) =

�
ZC6

2κ�

�1/5

(ng(r)Ω
2
0)

2/5
. (3.17)
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0 r

n rg( )

n rR( )

-r ´ r ´

Figure 3.4.: Illustration of the density of Ryd-
berg atoms (blue) in a harmonic trap. The
red dots symbolise the ground state atoms, the
blue circles are the superatoms. The blockade
radius is dependent on the spatial coordinate.
The superatom model breaks down at the posi-
tion ±r

� where the atomic ground state density
ng(±r

�) equals the Rydberg density nR(±r
�).

For |r| > r
� the density of Rydberg atoms fol-

lows the density of ground state atoms (red),
which is equivalent of a single atom behaviour.
For |r| < r

� the Rydberg density is according to

equation (3.16) nR ∼ n
1/5
g .

The experiments described in this thesis are solely done in a thermal cloud
of atoms trapped in a potential, which can be approximated to be harmonic.
Hence, the density distribution ng equals a Gaussian distribution with a width
σr. Figure 3.4 illustrates the situation in such a trap, where for simplicity the
cloud is assumed to be round.

The density of Rydberg atoms and the collective Rabi frequency given by
equations (3.16) and (3.17) are valid as long as |r| < r

�, where r
� is given

by ng(±r
�) = nR(±r

�). The Gaussian width of nR is a factor of
√
5 larger

than the width of ng. Hence nR would exceed ng for |r| > r
�, which would be

unphysical. For |r| > r
� the superatom model breaks down and the dynamics is

given by a simple single atom behaviour, i.e. ng(r) = nR(r) and ΩN (r) = Ω0.
The Rydberg atom number NR at a time τ can be calculated using equations

(3.13) and (3.15)

NR(τ) =

�
nR(r) sin

2

�
1
2
ΩN (r)τ

�
d3

r . (3.18)

The integral simply sums the contribution of every superatom, whose excita-
tion oscillates with its collective Rabi frequency. These Rabi oscillations are
however not observable in our experiments due to the distribution of ΩN (r)
in a harmonic trap. To clarify this argument figure 3.2 c) has to be modified.
The result is shown in figure 3.5.

Every superatom is oscillating with its own local collective Rabi frequency.
The sum of all these oscillations leads to a saturation curve. This excitation
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Figure 3.5.: Rydberg excitation
dynamics in the superatom pic-
ture. Due to the inhomogeneous
density distribution ng(r), every
superatom is oscillating with
the local collective Rabi frequency
ΩN (r). The Rydberg atom number
at time τ is the sum of the contri-
butions of all superatoms. Hence,
instead of visible Rabi oscillations
(blue) a smeared out saturation
curve (red) is found. This curve
can, in good approximation, be
characterised by the initial slope
R and the saturation value Nsat.
The green curve indicates again
the quadratic onset of the function
for excitation times shorter than
π/Ω�

N .

curve shows a quadratic onset for times τ < π/Ω�
N , where ΩN is the averaged

collective Rabi frequency. For longer times the dynamics evolves linearly with
a slope R and finally saturates to a value Nsat. These two variables, R and
Nsat can be used to characterise the dynamics, especially to gain insight about
the type of the dynamics and the underlying interaction. This is done by
investigating the scaling behaviour of R and Nsat with ng and Ω0, which was
systematically done in [Hei08a, Hei08b].

3.4. Generalisation of the superatom model

Since this thesis will discuss the scaling behaviour of the Rydberg excitation
for different spatial dimensions (see chapter 8) it is required to generalise the
superatom model, that was introduced in the last section for the case of three
dimensions. This has already been done in reference [Hei08a] and only the
most important points for this thesis will be repeated here.

Rydberg excitation can be categorised by three different regimes, namely
the incoherent dynamics, the coherent single atom dynamics and, finally, the
coherent collective dynamics. The distinction is due to the dominating fre-
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3.4. Generalisation of the superatom model

quency in the system. In the case of an incoherent dynamics the decay rate Γ
dominates over both, the single atom Rabi frequency Ω0 and collective Rabi
frequency ΩN . If N ≤ 1 and Ω0 > Γ the dynamics will follow the prediction of
the coherent individual dynamics. Finally, if N � 1 and, thus, ΩN > (Γ,Ω0)
the scaling behaviour of R and Nsat will follow the predictions given by equa-
tions (3.16) and (3.17) for a coherent collective dynamics in a strong interacting
system.

Regime Dominating frequency R Nsat

incoherent Γ n0Ω
2
0/Γ n0Ω

2
0/Γ

coherent, individual Ω0 n0Ω0 n0

coherent, collective ΩN ∝ (n0Ω
2
0)

β/(2β+1) Ω
(β+1)/β
N Ω

1/β
N

Table 3.1.: Overview over the scaling laws for the three regimes of Rydberg
excitation [Hei08a]. The scaling in the coherent collective regime are obtained
from a generalisation of equations (3.16) and (3.17). The exponent β = p/d

depends on the power of the r-dependence of the potential, i.e. V ∼ r
−p, and

the dimensionality d of the system.

Interaction d p β µR µsat

dipole-dipole 1 3 3 4/7 1/7

2 3 3/2 5/12 1/4

3 3 1 2/3 1/3

van der Waals 1 6 6 7/13 1/13

2 6 3 4/7 1/7

3 6 2 3/5 1/5

Table 3.2.: Scaling of the characteristics R ∼ (n0Ω
2
0)

µR and Nsat ∼ (n0Ω
2
0)

µsat

of the excitation curve with the exponent β = p/d of nR for different interac-
tions and dimensions.

The general form of the blockade condition introduced in equation (3.2) in
terms of the density of Rydberg atoms reads

n
β
R ∼ max(Γ,Ω0,ΩN ) . (3.19)

The exponent of the power law is β = p/d. It is given by the power p of the

59



3. Collectivity

1/r-dependence in the interaction, i.e. V ∼ r
−p, and the dimension d of the

system.
The generalised scaling laws for R and Nsat are found by using equation

(3.19) and

R ∼ NR(τ)/τ ∼ V nR(τ)ΩN ∼ nR(τ)ΩN ,

Nsat∼NR(τ) ∼ V nR(τ) ∼ nR(τ) ,
(3.20)

with a volume V from the integral in (3.18).
Table 3.1 gives an overview over these scaling laws of R and Nsat with the

peak density of ground state atoms n0 and Ω0 in the different regimes. For
the investigation of the scaling behaviour it is sufficient to replace the density
of ground state atoms ng(r) = n0ñg(r) by its peak value n0. This is possible
as long as ñg(r) is fixed for all experiments.

Table 3.2 summarises the expected exponents and the dependence of R and
Nsat on n0 and Ω0 for the dipole-dipole and the van der Waals interaction.
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4. Universal Scaling

Universal scaling laws are a very powerful tool in physics and other fields of
science, which gives the opportunity to describe the behaviour of a system with-
out actually knowing all details on the microscopic length scale. Examples can
be found everywhere in nature. For instance the number of heart beats in the
lifetime is the approximately the same for all mammals and the metabolic rate
of organisms, completely independent of their exact microscopic realisation,
can be described using the same power law within 27 orders of magnitude in
mass [Wes04].
This chapter aims to introduce universal scaling to the issue of Rydberg exci-
tation very briefly. A comprehensive description will be found in H. Weimer’s
thesis. In order to understand the rather abstract concept it is helpful to intro-
duce the universal scaling using known systems from text books, e.g. the ferro
magnet, as it is done in section 4.1. In section 4.2 the vocabulary and the
grammar found must be translated to the physics of the Rydberg excitation.

4.1. Basic concept of critical phenomena

Text books like reference [Hua87] introduce the universal scaling as a critical
phenomenon, which can be found for example near the critical point of a
second order phase transition. At this critical point two things happen. Firstly,
the symmetry of the system will change when crossing the critical point and
secondly, one can assume that at the critical point only one characteristic
‘length scale’ ξ exists and that all observables depend on this length scale with
some critical exponent.

The first point can be understood in terms of a magnet near the Curie
temperature TC, with a phase diagram depicted in figure 4.1 . If T > TC the
system is completely demagnetised and, thus, rotational symmetric. Lowering
the temperature below the Curie temperature causes the solid to magnetise,
due to which the system loses symmetry. The description of the system if
T < TC requires an additional parameter M called the ‘order parameter’,
which is in the case of a magnet just the magnetisation.

In the region near the critical point the order parameter is assumed to be
the only important property of the system. One of the major tasks is usually
to identify this order parameter and its ‘conjugate field’, which in the case
of the magnet is the external magnetic field H. Near but below the critical
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PM

critical

region

FM

H

T

TC

Figure 4.1.: Schematic of the phase diagram of
a ferromagnet around the Curie temperature
TC. For T > TC the system is in the para-
magnetic phase PM. If T < TC the system is
magnetised even without external field H, i.e.
the system is in the ferromagnetic phase FM.

temperature M is fully described by a proportionality to a power of H and to
another power of a dimensionless parameter t. These powers of H and t are
called the critical exponents and are generally fractional numbers. In case of
a magnet t = T/TC − 1 and the critical point is reached for t → 0. Another
characteristic at a critical point and, thus, for the appearance of a universal
scaling, is that the length scale ξ ∼ 1/tν , with ν > 0, is diverging.

The critical exponents are of special interest because they are universal
through out many different systems, at least if these systems fall in the same
universality class [Fis98]. A list of experimentally obtained values for the
critical exponents in the ferromagnetic system can be found in table 16.2 of
reference [Hua87] in comparison to the theoretically expected exponents.

Another experimental example was given in [Gug45] showing the universal-
ity of the critical exponents in a different system. Guggenheim investigated
the behaviour of the reduced density n/nc dependent on the reduced temper-
ature T/Tc near the gas-liquid critical point for noble gases and some different
molecules. He showed by this that the dependence of the reduced density
behaves according to a universal scaling with a power law of the reduced
temperature for all investigated systems, independent of their exact atomic
composition.

4.2. Translation into the Rydberg system

The description of the critical exponents and their universality given above on
the example of a magnet needs now to be translated into the Rydberg system,
which is done in [Wei08]. Given the Hamiltonian in the basis |g� = (0, 1)t and
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|r� = (1, 0)t

H = −
�δ
2

�

i

σ(i)
z +

�Ω
2

�

i

σ(i)
x + C6

�

j<i

P
(i)
rr P

(j)
rr

|ri − rj |
6
, (4.1)

where σ(i) are the Pauli matrices, ri are the positions of the atoms and P
(i)
rr =

|r�i �r|i = ( + σ(i)
z )/2 is the projector onto the excited Rydberg state. The

two-photon detuning is given by δ (see figure 4.2).
The order parameter is simply the Rydberg fraction

f ≡

�
P

(i)
rr

�
=

NR

Ng
, (4.2)

with NR being the Rydberg atom number and Ng the number of atoms in
the ground state. The diverging correlation length ξ is given by the ratio of
the distance aR between the Rydberg atoms and ag the distance between the
atoms in the ground state

ξ ≡
aR

ag
=

1
ag

6

�
C6

�ΩN
, (4.3)

where the blockade condition according to equation (3.19) was used.
The missing part to describe the universal scaling of f near the critical

point is the ‘conjugate field’, which is given by the dimensionless parameter α
comparing the coupling strength with the interaction energy

α ≡
�Ω0

Cpn
β
g

. (4.4)

The second order phase transition happens for α � 1 between the phase
where all atoms are in the ground state (‘paramagnetic phase’) and the phase
where the Rydberg atoms arrange themself in the crystalline structure depicted
in figure 3.3. Figure 4.2 shows the phase diagram in the ∆-α plane with
∆ = �δ/Cpn

β
g , where δ is the two-photon detuning, ng the atomic density in

the ground state. The exponent β = p/d is given by the dimensionality d of
the system and the exponent p of the r-dependence of the interaction, i.e.
V ∼ r

−p. The energy scale ∆ is the equivalent to the dimensionless parameter
t in section 4.1.

The correlation length ξ can be written with equation (4.3) in terms of the
Rydberg fraction f according to

ξ ∼

�
ng

nR

�1/d

∼
1

f
1/d

. (4.5)
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∆
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Figure 4.2.: a) Illustration of the second order phase transition in a driven
Rydberg system in the ∆-α plane. The ‘paramagnetic phase’ PM corresponds
for Ω0 = 0 to f = 0, i.e. no Rydberg atom excited. The crystalline phase C
corresponds to the arrangement of the maximum number of Rydberg atoms,
which is a face centred cubic lattice in the case of three dimensions and van
der Waals interaction. The exponents for the scaling of f are universal in the
critical region between these two phases, where the scaling is expected to be
universal. b) Energy level diagram to clarify the symbols used in the text and
in equation (4.1): δ is the two-photon detuning and Ω the coupling strength
between the ground state |g� and the Rydberg state |r�.

Since ξ diverges for f → 0, it is expected, as pointed out in section 4.1, to
find a universal scaling for ∆ = 0. In other words, for ∆ = 0 the system is
independent of the exact microscopic realisation as the characteristic length
scale ξ diverges.
Similar to the ideas introduced in the previous section one finds that the
order parameter f near the critical point fully characterised by ∆ and α. The
dependence of f on these parameters is given by

f ∼ ∆κ
, (4.6)

and the equation of state for ∆ = 0

f ∼ α
ν
, (4.7)

with the universal scaling exponents κ and ν in the critical region, i.e. α � 1
and ∆ � 1.
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4.2. Translation into the Rydberg system

The derived equations will be used in section 8.1 to find equations describing
the initial slope R and the saturation value Nsat of the Rydberg excitation
curve depicted in figure 3.5.
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5. Cooling and trapping neutral atoms

A setup for experiments with frozen Rydberg gases consists of hundreds of parts
including lasers, electronics, opto-mechanics, opto-electronics and vacuum
parts. This chapter covers the basics of cooling and trapping of neutral atoms
by means of laser cooling, evaporative cooling and trapping of the atoms in mag-
netic and optical traps as well as their detection. The setup will be introduced
briefly in section 5.1. Only the points required for this thesis are pronounced as
the setup was already described extensively in [Löw06, Löw07, Kro04]. Section
5.2 introduces the basics of the laser cooling technique, which is the first step
towards the creation of an dense ultracold atomic sample. The sections 5.3
and 5.4 introduce two different techniques to trap neutral atoms, namely the
magnetic trap and the optical dipole trap.

5.1. The setup

Working with ultracold atoms requires the use various techniques. First, it is
necessary to isolate the atoms from the thermal environment. This is done by
setting up ultrahigh vacuum chambers with pressures below 10−11 mbar. At
these low pressures the collisional rate between atoms and the background gas
is < 1/min. We use in our setup a 200 l/s ion pump and a titanium sublimation
pump with a cryogenic shield to evacuate the main chamber to the desired
pressure.

The second requirement is a source of precooled atoms, which can be further
cooled down and trapped. In the oven part (see figure 5.2) a piece of rubidium
in natural abundance (28% 87Rb, 72% 85Rb) is heated to a temperature of
160K. For the initial cooling step we chose an increasing field Zeeman slower
from the diversity of different cold atom sources [Phi82, Rii90, Lu96, Ber98]
to cool 87Rb atoms from initial temperature to the few Kelvin regime. The
effusive gas jet is spatially filtered by apertures and passes a cooling shield.
Afterwards, the collimated atom beam passes the differential pumping tube,
which separates the high vacuum part from the ultrahigh vacuum part, and
enters the Zeeman slower. The principle of the Zeeman slower is based on
laser cooling by spontaneous scattering of photons as it will be discussed in
section 5.2 with the addition that the decreasing Doppler shift due to the
decreasing velocity of the atoms is compensated by the Zeeman shift induced
by an increasing magnetic field [Löw06, Kro04]. The atoms reach the centre
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capcitor plates

rf coil

rf coil

MCP for electron
detection

MCP for ion
detection

Figure 5.1.: Left: Current picture of the setup. Right: Inside of the main
chamber with the radio-frequency coils, two multichannel plates (MCPs) and
four of the eight capacitor plates around the centre of the chamber. Consid-
ering the coordinate system in figure 5.2 the view is along the z-direction.

of the main chamber with a velocity on the order of 10m/s, where they are
further laser cooled and loaded into a conservative magnetic trapping potential
as discussed in section 5.3.

A picture of the current setup and from the inside of the main chamber is
shown in 5.1. This picture shows the radio-frequency (rf) coils for evaporative
cooling, the multichannel plates (MCPs) for detection of ions and electrons,
respectively, and four of eight capacitor plates. The capacitor plates are placed
around the centre of the main chamber and allow the application of electric
fields over the trapped atomic sample. The segmentation of the capacitor
enables us to apply nearly arbitrary electric fields over the atomic cloud and
to guide the electrically charged particles towards the MCPs for detection as
described in section 7.2.

Additionally to the magnetic trap the setup is build such, that an optical
lattice in three dimension can be realised. In this thesis I will present experi-
ments which were done in an optical dipole trap described in section 5.4.
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ultrahigh vacuum part high vacuum part

Zeeman slower

200 l/s ion pump

40 l/s ion pump

cooling shield

shutter

main chamber

titan sublimation 
pump

field plates

MCPs

gate valve

imaging port

oven

differential
pumping tube

x

y

z

Figure 5.2.: The experimental setup splits into two parts. The oven part in the
upper right corner is under high vacuum with typical pressures of 10−7 mbar.
This part basically consist of a tubing containing 5 g of rubidium, a nozzle
and a cooling shield to produce a collimated atom beam and a shutter to
switch this beam on and off. The oven part can be separated from the main
chamber by a valve and is pumped with a 40 l/s ion pump. The ultrahigh
vacuum part, situated in the lower left corner of the picture, consist mainly
of the main chamber which is pumped by a 200 l/s ion pump and a titanium
sublimation pump. It is connected to the oven part via the Zeeman slower and
a differential pumping tube. The design of the main chamber is based on the
second generation cloverleaf trap experiments built at the M.I.T. [Str06]. Our
setup additionally contains eight capacitor plates in the centre of the chamber
(see figure 5.1 for details) and two multichannel plates in order to manipulate
and detect Rydberg atoms. The coordinate system in the upper left corner
will be used throughout this thesis to identify the direction of the quantisation
axis and laser beams.
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5. Cooling and trapping neutral atoms

5.2. Laser cooling

Laser cooling of atoms is based on the spontaneous scattering of photons or,
to be more precise, it is based on a statistical redistribution of photons from
the laser mode with a frequency of ωl and a wave vector kl into other modes
{kµ,ωµ}. The scattering rate is Γs = Γς �ee with the steady state solution of the
Linblad equation of the two-level atom given by equation (1.15) and the natural
linewidth Γ. By scattering a photon from the laser mode the atom experiences
a force F = �klΓς �ee. Linearising the force of two counter propagating lasers
around v = 0 leads to [Met99]

F ≈ −βv , (5.1)

with

β = −
4�k2

l δs0

Γ(1 + s0 + ( 2δΓ )2)2
, (5.2)

and the on-resonance saturation parameter given by equation (1.18) s0 ≡

I/Isat = 2Ω2
/Γ2.

Thus, the motion of the atoms is damped towards v = 0 if δ < 0. Due to
the emission of the photon the atom experiences a second momentum transfer,
which is statistically distributed and adds to zero when averaging over the time.
On the other hand this impulse leads to a random walk in the momentum
space, which results in a lowest possible temperature of TD = �Γ/(2kB) for the
described Doppler cooling.

Temperatures below TD are possible with multilevel atoms using techniques
like the polarisation gradient cooling, where the lowest temperature is given
by the recoil energy one photon transfers to the atom. Even lower tempera-
tures than this recoil limit are possible using velocity-selective dark states or
Raman transitions. These techniques are described extensively in textbooks
like [Met99, Mey01].

A magnetic field gradient can be used to trap the atoms as it causes, due to
the Zeeman shift, an additional position depending detuning δZ = µ/� ·∇B · z.
This leads to a resulting force

F = −βv − κr , (5.3)

with β from equation (5.2) and

κ =
µeff∇B

�k β , (5.4)

where µeff = (geme−ggmg) is the effective magnetic moment for the transition.
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5.2. Laser cooling

Applying this force in all three spatial directions leads to a cooling and con-
finement of the atoms. This setup is referred to as the magneto-optical trap
(MOT), which constitutes usually the first atom trap in cold atom experi-
ments.

The light for the laser cooling is provided by the laser setup shown in figure
5.3. The main light source is a Nd:YAG1 laser which pumps a titanium sap-
phire laser2 (Ti:Sa). This laser provides the light for the cooling and trapping
for the Zeeman slower and the MOT. It is additionally used to spin polarise
the atoms into the 5S1/2(f = 2,mf = 2) state, which is magnetically trapped
(see section 5.3) and, finally, to image the atoms.

Additionally a diode laser system is used to repump atoms which are acci-
dentally transferred into the 5P3/2(f = 2) state back into the cooling cycle.
This is necessary since atoms in the state 5P3/2(f = 2) decay with a probability
of 50% into the 5S1/2(f = 1) state, which does not couple to the 5S1/2(f = 2)
to 5P3/2(f = 3) cooling transition and, thus, the atoms are lost.

1Verdi V-10, Coherent
2MBR E-110, Coherent
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Figure 5.3.: Scheme of the laser setup. The main laser is a titanium sapphire
(Ti:Sa, denoted MBR) laser pumped by a Nd:YAG laser (Verdi). The light
from the Ti:Sa is used for trapping, cooling and imaging the atoms as well
as pumping them into the magnetically trapped state. Additionally a diode
laser system denoted as ‘repumper’ is used to pump the atoms from the lower
hyperfine level of 87Rb back into the cooling cycle.
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5.3. The magnetic trap

5.3. The magnetic trap

The temperature limit for optical cooling, beside the special techniques men-
tioned in section 5.2, is given by the recoil energy of a photon Tr = (�k)2/(2kBm).
In the case of 87Rb cooling transition this corresponds to a temperature of
180 nK. Even so Tr is on the order of the temperature of the phase transi-
tion from a thermal cloud to a Bose-Einstein condensate (BEC) it is lacking
a high atomic density, since the sub-Doppler cooling methods require a low
atomic density to avoid multiple photon scattering. Hence, the phase space
density ∼ nT

−3/2 cannot be increased to the value of 2.6, where quantum
degeneracy is reached [Foo05], using this methods.

z

pinch

bias

cloverleaf Figure 5.4.: A cloverleaf type magnetic
trap consisting of two wheels each con-
taining six coils. The cloverleaf coils gen-
erate, if they are connected as it is shown,
a three dimensional quadrupole with zero
magnetic field on the z-axis. The pinch
coils generate a curvature along the z-
axis. The bias coils subtract the magnetic
field offset caused by the pinch coils.

High phase space densities can be achieved by the evaporative cooling tech-
nique. Two approaches have been successfully demonstrated over the last
years. The first is the evaporative cooling of magnetically trapped atoms by
transferring the hot atoms in magnetically untrapped states. The second ap-
proach is to store the atoms in an optical dipole trap discussed in section 5.4
and lower the intensity of the dipole trap beam.

5.3.1. The potential

In our setup we use a cloverleaf type magnetic trap [Str06] to trap the atoms
after the MOT and molasses phase. This trap type produces magnetic field
that is similar to that of a Ioffe-Pritchard trap, with the advantage of a better
optical access and a finite radial height of the potential, which prevents the
formation of an Oort cloud [Die01]. The magnetic field of a Ioffe-Pritchard or
cloverleaf trap can be approximated by

B(r) = B0
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0
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�
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−xz

−yz
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2
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1
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 . (5.5)

75



5. Cooling and trapping neutral atoms

The potential energy U(r) = µB, with the magnetic moment µ = gfmfµB,
can be expanded around r = 0. Neglecting all powers larger than two and
using the cylinder coordinates r =

�
x2 + y2 and z results in the harmonic

approximation for the trap potential

U(r, z) =
1
2
mω

2
rr

2 +
1
2
mω

2
zz

2
, (5.6)

with

ωr =

�
gfmfµB

m

�
B�2

B0
−

B��

2

�
,

ωz =

�
gfmfµB

m
B�� .

(5.7)

In a harmonic trap the density distribution for a thermal cloud is of Gaussian
shape

n(r, z) = n0 e
−U(r,z)/kBT = n0e

−r2/2σ2
r−z2/2σ2

z = n0ñ(r, z) , (5.8)

with the width (1/√e -radius) of the cloud

σi =
1
ωi

�
kBT

m
, (5.9)

and the atomic peak density

n0 =
N0

(2π)3/2 σ2
r σz

. (5.10)

The atomic sample is confined radially by the magnetic field gradient B� and
the offset field B0 > 0. A negative magnetic offset would result in an over
compensation of the magnetic trap and a loss of atoms along a potential surface
where the potential is zero. The confinement in axial direction is given by
the curvature B

�� of the magnetic field. Our trap parameters are B
� = 6 ×

10−3
ICL T/Am, B�� = 0.6 IPB T/Am2 and B0 � 10−4 T, where ICL and IPB is

the current through the cloverleaf and pinch-bias coils, respectively (see figures
5.4 and 5.5 for details). Typical values for different temperatures T and atom
numbers N0 of an atomic sample are shown in table 5.1. The temperature of
the atomic cloud is obtained by a series of time of flight measurements (see
section 7.1).

Since the experiments discussed in this thesis are conducted at very low
temperatures (<10 µK) of the atomic sample the harmonic approximation is
justified. For temperatures above �60 µK the atoms would reach regions of
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5.3. The magnetic trap

hot sample cold sample BEC

temperature 550 µK 4 µK 600 nK

axial size 2mm 160µm 40 µm
radial size 340 µm 10 µm 2 µm
atom number 3× 109 1× 107 1× 105

atomic peak density 8× 1017 m−3 4× 1019 m−3 2× 1020 m−3

de Broglie wavelength 10 nm 110 nm 300 nm

phase space density 7× 10−7 0.05 5

Table 5.1.: Typical values of magnetically trapped atoms in our setup. The
values for the ‘hot sample’ column take the linear behaviour of the trap po-
tential into account (see reference [Kro04] for details). The trap potential for
the ‘cold sample’ is harmonic. For comparison the corresponding values for
a Bose-Einstein condensate (BEC) are shown (used relation can be found in
[Pet02]).

the trapping potential that are rather linear than quadratic and the density
distribution would change.
A typical sequence for producing ultracold atomic clouds starts with loading
a MOT for 4 s after which a molasses cooling step follows. For this the cooling
lasers are detuned by 2π×78MHz and the magnetic field gradient is switched
off. The atom cloud is loaded into the magnetic trap by switching on the
currents within 1ms to the values ICL = 200A, IPB = 50A, IP = 75A and
Io = 0A (see the figures 5.4 and 5.5 for details). This creates a very shallow
potential matching the density distribution of the MOT as good as possible
without loosing to much atoms. A σ

+ polarised laser resonant to the 5S1/2(f =
2) to 5P3/2(f = 3) transition pumps the atoms to the 5S1/2(f = 2,mf = 2)
state.

After the atoms are caught in the magnetic trap every light is switched off
and the currents are ramped within 600ms to their final values of ICL = 400A,
IPB = 400A, IP = 0A and Io = 6.5A. The radial gradient of the magnetic
trap is B� = 2.4T/m and the curvature in axial direction is B� = 240T/m2.

Due to the compression of the atomic cloud the atomic peak density increases
roughly by a factor of 100, while the temperature increases from �30 µK after
the molasses to �550 µK and the phase space density increases by a factor of
e � 2.7 if the compression happens adiabatically and no atoms are lost [Pin97].

In order to increase the atomic density and the phase space density further
the temperature must be lowered. In our experiment this is done via forced
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5. Cooling and trapping neutral atoms

evaporative cooling with radio frequency (rf) radiation applied on the Zeeman
sublevels of the 5S1/2(f = 2) state at a frequency of 0 ≤ νrf ≤ 42MHz. Atoms
with an energy of Erf(t) ≥ η(t)kBT , with η � 10, cross the resonant region and
are pumped to the untrapped 5S1/2(f = 2,mf = 0) state. This removes the
velocity classes with the kinetic energy Ek ≥ hνrf from the trap. In other words
the initial Maxwell distributed velocity is truncated at v ≥ vrf. Provided that
the number of elastic collisions exceed the number of inelastic collisions, the
atomic cloud thermalises after which the velocity is again Maxwell distributed,
but now with a lower temperature.

The setup for the evaporative cooling consist of two coils in Helmholtz config-
uration opposing each other inside the main chamber (see figure 5.1) a 42MHz
homemade synthesiser and a 15W3 rf amplifier. We need � 35 s from be-
ginning of the evaporative cooling until the atomic sample reaches quantum
degeneracy (see figure 5.4 and 7.2).

5.3.2. Current control
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Figure 5.5.: Electric setup for the magnetic trap. CL denote the cloverleaf
coils and bias the offset coils. Additional power supplies connected to the
offset coils give the ability to fine tune the offset of the magnetic field over the
atomic sample. The symbol PP denotes a push-pull switch for fast switching
of small currents (see figure C.1). The power supplies denoted ZUP (ZUP6-33,
Lambda Americas, Inc.) are solely connected to the pinch coils and used to
produce the magnetic field gradient used for the MOT.

3AP001220-10, RFPA
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5.3. The magnetic trap

Figure 5.5 shows the electric circuit for the currents used for the magnetic
trapping. Since the magnetic moment of rubidium is µB in the ground state
at maximum, rather high currents are needed in a cloverleaf magnetic trap to
obtain sufficient trap depths. Fast switching of these currents require resilient
switches and ring down circuits, which make sure that after the switch has
been opened the energy in the magnetic field is dissipated as quick as possible.
For the switching of the high currents we use insulated-gate bipolar transistors
(IGBTs)4. Additionally we use diodes5 to protect the power supplies and the
IGBTs. The IGBTs and diodes for the currents through the pinch-bias circuits
and the cloverleaf circuit are mounted on a commercial cooling board6 to avoid
damage of the devices due to insufficient cooling.

In order to fine tune the magnetic field offset we use two power supplies
parallel to the bias coils. The rather low current Io of these additional power
supplies are switched using a push-pull circuit shown in figure C.1.

5.3.3. Landau-Zener sweep

preamplifier

directional
coupler

4W
amplifier

out

bandpass
filtermixer

frequency
generator

switch

6.4 GHz
oscillatorVCO

Figure 5.6.: Schematic of the setup to drive the 5S1/2(f = 2,mf = 2) to
5S1/2(f = 1,mf = 1) of 87Rb via microwave radiation. This transition can
for example be used to apply a Landau-Zener sweep to the atomic sample. A
detailed description of the used devices can be found in [Löw06].

4e.g. FZ800R16KF4, Eupec for the switching of 400A
5e.g. DD800S17K6C B2, Eupec
6AKW/KS 137-535, DAU GmbH
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5. Cooling and trapping neutral atoms

In order to study interaction effects among the atoms one must be able to
tune the interaction between the atoms. Since we are using Rydberg atoms,
which interact through the van der Waals interaction VvdW ∼ C6n

2
g it is pos-

sible to tune the interaction strength by changing the atomic ground state
density ng. A particular useful tool to change the atomic density is the Landau-
Zener sweep [Lan32, Zen32]. The theory behind is again a two-level system
like the one introduced in section 1.1. Microwave radiation with a frequency of
6.834GHz couples the two hyperfine states of 87Rb on the 5S1/2(f = 2,mf = 2)
to 5S1/2(f = 1,mf = 1) transition. Since the 5S1/2(f = 1,mf = 1) state is not
magnetically trapped the atoms can escape the trap volume.

The used setup is shown in figure 5.6. Since this transition is forbidden for
electrical dipole radiation a magnetic dipole transition is used. The microwave
radiation is circularly polarised due to the helical realisation of the antenna.
The helical design of the antenna results in a forward gain of the radiation in
the direction of propagation [Ben06]. The used devices for this setup are listed
in reference [Löw06], which shows also the coherent coupling of two hyperfine
manifolds using the microwave transition. Here I will focus on the usage of
6.8GHz source to lower the density of magnetically trapped atoms, as this
application will be essential in the experiments discussed in part IV.

The probability for a transition of the atom from the initial state 5S1/2(f =
2,mf = 2) to 5S1/2(f = 1,mf = 1) is given by [Rub81]

P21 = exp

�
−
2π
� ·

|V12|
2

dE/dt

�
. (5.11)

The matrix element V12 connects the two states and is responsible for the lifting
of the degeneracy. The energy derivation dE/dt = (dE/dB)(dB/dt) is called slew
rate and reflects the behaviour of the transition around the avoided crossing.
The slope of the crossing dE/dB and the rate dB/dt at which the magnetic
field of the microwave radiation is changed determines the efficiency of the
Landau-Zener sweep.

Figure 5.7 shows exemplarily data taken for the density variation to measure
the interaction dependence of the rotary echo experiment in a magnetic trap
presented in section 9.1. The atomic peak density of ground state atoms
is shown as a function of the time τLZ for which the Landau-Zener sweep
was applied to the atomic sample. The rate dB/dt is chosen such that the
temperature of the atomic cloud is not changed by the Landau-Zener sweep.
Hence, the spacial density distribution ñ(r, z) (see equation (5.8)) is constant
while its peak value n0 is lowered for increasing Landau-Zener sweep times.
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Figure 5.7.: Atomic ground state
density ng as a function of the
Landau-Zener sweep pulse duration
τLZ. The red curve is an exponen-
tial decay fitted to the data points.

5.4. The optical dipole trap

Optical dipole traps (ODTs) have a couple of advantages over the magnetic
trap. With optical switches like AOMs, EOMs or liquid crystal cells it is
possible to switch light on and off very fast. In comparison switching of elec-
trical currents is technically challenging due to the finite inductance of wires
and coils and perturbing eddy currents in copper gaskets used for the sealing
of the vacuum chamber. Another advantage is the freedom to apply a ho-
mogenous magnetic field over the atomic cloud with an arbitrary direction.
Furthermore, it is possible to shape the geometry of the cloud in a wide range
using optical potentials.

Ti:Sa
PID

PD

A
O
M

z

x

y
Figure 5.8.: Schematic of the intensity sta-
bilisation of the dipole trap. A photo diode
(PD) monitors the power of the fibre cou-
pler from a polarisation maintaining fibre
using a low reflective beam splitter. The
signal is looped back via a PID controller
to an acoustic-optical modulator in front of
the fibre.

The simplest geometry forming an optical dipole trap is just a single beam
superimposed to the atomic cloud. The major disadvantage of optical dipole
traps is the, in comparison the the magnetic trap, shallow potential and, thus,
a smaller trap volume. The trap potential is given by equation (1.23) with the
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5. Cooling and trapping neutral atoms

Rabi frequency from equation (1.24)

Ud =
�Ω2

4δ
∼

I

δ
, (5.12)

for large detunings δ � Ω of the laser forming the ODT to the atomic transi-
tion. The scattering rate is given by equation (1.26)

Γs =
3πc2

2�ω3

�
Γ
δ

�2

I ∼
I

δ2
. (5.13)

Thus, it is preferable to use strong laser with a large detuning from the atomic
transition.

A payoff for a sufficient deep potential between intensity and detuning must
be found by calculating the potential of the ODT. Since real atoms have more
than two states the potential of the ODT couples to all states with their respec-
tive detuning δba and coupling strength Ωba. Figure 5.9 shows the strongest
transitions of 87Rb to which a far red detuned laser couples in first order.
Usually, the detuning of an ODT from any atomic transition is large so that
one can use equation (5.12) in good approximation.

For the calculation of the potential of the ODT in this thesis only the closest
transitions to the wavelength of the ODT beam were used, namely the D1
and D2 line in 87Rb as depicted in figure 5.9. All other transition would give
corrections on the order of < 10−3 to the calculated value. A MatLab program
for calculating the ac-Stark shift is given in appendix A.2. Using the setup
depicted in figure 5.8 we stabilise the power of the ODT to P = 22mW. The
beam is focused to a waist (1/e2-radius) of w0 =22 µm and has a wavelength of
λ = 826 nm, provided by a titanium sapphire laser7. The polarisation of the
beam is linear along the x-direction. Thus, regarding the quantisation axis of
the atoms the beam couples either with π-light or with the decomposition of
the π-light into σ

+- and σ
−-light to the atoms (see figure 5.9 and chapter B).

The transformation matrices from the coordinate system of the ODT beam
to the atomic coordinate system is given in appendix B. Finally, the resulting
potential depth is U0 = 3.3×10−28 J�=24 µK. This trapping potential is ramped
up in 50ms directly after evaporatively cooling the atoms in the magnetic trap.
Afterwards, the magnetic trap is switched off within 20ms and the atomic
cloud is kept for another 100ms for thermalisation.

The trapping potential can be approximated by a parabolic function, which
leads to the density distribution in the trap analogue to equation (5.10)

n(r, z) = n0 e
−r2/2σ2

r−z2/2σ2
z , (5.14)

7MBR E-110, Microlase Optical System
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Figure 5.9.: D1 and D2 line of 87Rb. The coloured lines indicate the transitions
for different light polarisations used for the calculation of the trap potential of
an optical dipole trap. The D1 line has a decay rate of ΓD1 = 2π × 5.75MHz
and the D2 has a decay rate of ΓD2 = 2π × 6.07MHz [Ste01]. A MatLab
program in appendix A.1 can be used to calculate the line strengths of the
transitions. The program in appendix A.2 can be used to calculate the light
shift due to the ODT.
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5. Cooling and trapping neutral atoms

with the Gaussian widths [Gri00]

σr =

�
kBTw

2
0

4U0
,

σz =

�
kBTz

2
R

2U0
.

(5.15)

The Rayleigh range zR of the Gaussian beam is given by

zR =
πw

2
0

M2λ
, (5.16)

with an propagation constant of M
2 = 1.5 in our setup. This rather large

value for M
2 can be enhanced by the usage of better optics. Currently only

one inch optics is used in the setup of the optical dipole trap. The collimated
laser beam exiting the fibre coupler has a diameter of 13.2mm. The usage of
1.5 inch optics should improve the beam quality, which would result in a waist
of the dipole trap laser beam of 12 µm for M2 = 1.

Another issue concerning experiments in the ODT is the variation of the
atomic ground state density. Since all atomic states are trapped in the ODT
a Landau-Zener sweep cannot be used to lower the number of atoms in the
ODT. Thus, the atom number is lowered in the magnetic trap. Afterwards the
remaining atoms are loaded into the dipole trap. This technique comprises an
additional heating due to the changed number of atoms in the magnetic trap,
which are loaded into the ODT. This means that the temperature increases
slightly for increasing Landau-Zener sweep times. The lowered thermalisation
rate in the axial direction might be an explanation for this effect. The atomic
density distribution in the ODT is calculated by a series of time of flight images
(see section 7.1) from which we take the radial temperature and the axial size,
which does not increase on the time scale of the time of flight. The radial
width σr of the density distribution is found by evaluating equation (5.15).
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6. Rydberg excitation

One major task regarding experiments with ultracold Rydberg atoms is the ex-
citation of Rydberg atoms. Although this seems to be apparent it is never the
less connected to a high technical effort to selectively excite only one specific
electronic state. Since the level spacing of Rydberg states become closer with
higher principal quantum numbers, the excitation laser must have a linewidth
much smaller than this level spacing. On the other hand the laser must produce
a sufficient output power to compensate for the decreasing line strengths due
to the decreasing transition dipole moments with increasing principal quantum
number.
Section 6.1 introduces the details of the excitation scheme into the 43S1/2 state,
which is the Rydberg state of choice throughout this thesis. Section 6.2 will in-
troduce the corresponding laser system consisting of the optical setup as well
as the control circuit setup to produce high power output with at a narrow
linewidth.

Figure 6.1.: Picture of the running
experiment. A magneto-optical trap
is visible in the centre of the cham-
ber. The MOT is illuminated with
the 480 nm light for the excitation
into the Rydberg state seen as re-
flections on the recessed buckets.

6.1. Level structure and excitation path

The energy level structure of 87Rb and the excitation into the 43S1/2 state
are shown in figure 6.2. For the experiments discussed in this thesis the
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6. Rydberg excitation

43S1/2 state is used. As discussed in section 2.2 it is particularly useful to
choose an S-state as it has only a repulsive van der Waals interaction. States
with higher angular momenta have repulsive and attractive branches of the
Rydberg-Rydberg interaction, which leads to interaction induced collisions
and, thus, drastically reduces the lifetime of the atomic sample in the Ryd-
berg state. The electric field of the ions produced by a Rydberg-Rydberg
collision additionally disturbs the other Rydberg atoms due to their sensitiv-
ity on electric fields.

We chose for the experiments in this thesis a Rydberg state with a principal
quantum number of n = 43. Choosing a Rydberg state with a ‘moderate’
principal quantum number comes with the advantage of a reasonable high
Rabi frequency as the dipole transition matrix element for a 5P to nS transition
scales, according to [Hei08a], with the principal number to a power of −1.5.
On the other hand a higher principal quantum number would result in a much
higher interaction between the Rydberg atoms due to the scaling of the van
der Waals interaction with n

11.

Since a transition from an S-state to an S-state is forbidden, we use a two-
photon excitation depicted in 6.2 via the 5P3/2 intermediate state. The laser
for the lower transition has a wavelength of 780 nm and is σ

+ polarised and,
hence, couples to the stretched 5S1/2(f = 2,mf = 2) to 5P3/2(f = 3,mf = 3)
transition. This maximises the Rabi frequency according to equation (1.24)
and suppresses the excitation via unwanted paths, which would lead to a pop-
ulation of the wrong magnetic sublevel in the Rydberg state. We choose the
43S1/2(j = 1/2,mj = 1/2) state since its magnetic moment equals the magnetic
moment of the ground state 5S1/2(f = 2,mf = 2). Hence, the transition is
insensitive to the inhomogeneous magnetic potential of the magnetic trap (see
section 5.3.1). The Rydberg state is described in terms of the j-basis as the
total quantum number f including the angular momentum of the nucleus is
not longer a useful quantum number since the coupling between the electron in
the 43S1/2 state and the nucleus is very weak and the f -states are degenerated.

The description of the two-photon excitation in the three-level system can
be, according to section 1.8, simplified if the detuning δp with respect to any
intermediate state is chosen to be large. All experiments presented in part IV
except the measurements of the electromagnetically induced transparency are
done with a large detuning of δp � 2π×500MHz. Large in this context means
larger than all other frequencies in the system, especially the decay rate of the
intermediate state, which is in 87Rb Γeg = 2π× 6MHz for a weak laser on the
lower transition. If δp becomes comparable to Γeg the intermediate state is
significantly populated and must be taken into account (see section 1.7).

A large detuning from the 5P3/2(f = 3,mf = 3) state is also necessary if
the excitation into the Rydberg state is done on the long axis of a cigar shaped
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6.1. Level structure and excitation path

atomic cloud as it will be the case in the magnetic trap since the optical density
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Figure 6.2.: Energy level diagram of 87Rb involving the transitions into the
43S1/2 Rydberg state. The right diagram shows the energy levels in the j-
basis and the coupling into the f -basis as well as the decay rates of the excited
states. The number of lines in the right level scheme indicate the number
of (j,mj)-states contributing to the respective (f,mf )-state. The horizontal
splitting indicates the mj sublevels in the j-basis for the 43S1/2 state and
the mf magnetic sublevels in the f -basis for the 5S1/2 and 5P3/2 states. The
transition into the Rydberg level is done by means of a two-photon transition.
The 780 nm laser for the lower transition is σ+ polarised, the 480 nm laser σ−.
Using the stretched 5S1/2(f = 2,mf = 2) to 5P3/2(f = 3,mf = 3) transition
for the lower excitation maximises the Rabi frequency and suppresses the exci-
tation along unwanted paths shown in grey. If the 780 nm laser is far detuned
from the intermediate state by a large detuning the system can, according to
the discussion in section 1.8, be treated as an effective two-level system. The
line strengths can be calculated using the MatLab program given in appendix
A.1.

88



6.1. Level structure and excitation path

given by equation (7.7) is on the order of 5 × 103 for δp = 0. The optical
density reduces to 0.2 for a large detuning δp = 2π× 500MHz. The inequality
given by equation (1.41) restricts the Rabi frequency for the lower transition
to Ωp < 2Ωcδp/Γeg in order to fulfil the the requirements for coherent excitation
in the effective two-level system.
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6. Rydberg excitation

6.2. The Rydberg laser system

6.2.1. Optical setup

The Rydberg laser system underlies two major constraints. The decrease of
the Rabi frequency due the dipole transition matrix element with the n

−1.5-
dependency (see equation (1.5) and section 2.1) can be compensated if the
electric field amplitude E0 ∼

√
I is large. Thus, a high output power of the

laser system is required. The optical setup for the generation of the excitation
light is shown in figure 6.4. The setup is mainly build on two tables to minimise
disturbances. The light is connected to the main chamber by polarisation
maintaining fibres1.

The table denoted ‘diode lasers’ contains basically three homemade diode
lasers and their stabilisations. A first diode laser in a Littrow setup produces
the 780 nm light for the lower transition (see figure 6.2). This laser can be
actively stabilised either by using a polarisation spectroscopy or a modulation
transfer spectroscopy [Shi82].

The latter supports a very stable lock to the 5S1/2(f = 2,mf = 2) to
5P3/2(f = 3,mf = 3) transition by using an electro-optical modulator2 adding
frequency sidebands to the laser. Each frequency sideband experiences a dif-
ferent absorption and dispersion due to the presence of a strong pump laser.
These differences can be monitored using phase sensitive measurements of
the amplitude modulated probe beam. The polarisation spectroscopy is used
when ever the laser shall be locked to an other transition, since the modulation
transfer spectroscopy gives poor signals for all transition except the stretched
transition.

Before the light is coupled into the fibre and brought to the experiment it
passes an 200MHz acoustic-optic modulator (AOM)3 twice to shift the fre-
quency of the light by up to 500MHz. The AOM is mounted on a mag-
netic base plate and can be easily replaced by an 80MHz AOM, which can
be used to tune the laser on resonance with the 5S1/2(f = 2,mf = 2) to
5P3/2(f = 3,mf = 3) transition by locking the laser to the (1,3)-crossover
resonance.

One approach to produce 480 nm light with sufficient power is to use pulsed
lasers, which have the advantage of very high intensities, but the disadvantage
of large linewidths. Large laser linewidths would constitute a contradiction to
the result Ωc >

�
Γeg γd from inequality (1.41) needed for a coherent evolution

of the system. Another possibility would be to use dye jet lasers, which come

1PMC fibres, Schäfter + Kirchhoff
2EOM with modulation frequencies of either 2MHz or 10MHz from Nova Phase, Inc.
3typically TeO2 modulators of the 3200 series from Crystal Technology, Inc.
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6.2. The Rydberg laser system

with a much smaller linewidth and a high output power, but are difficult to
handle.
In this setup the 480 nm light for the excitation into the Rydberg state is
produced by means of frequency doubling a 960 nm laser. The setup for the
creation of the 960 nm light consist of two homemade diode lasers, namely a
master and a slave laser. The master laser is build in a Littrow setup, double
passes a 400MHz AOM and is seeding the slave laser. In order to make the
slave laser follow the master, it is required that the frequency of the slave
laser without seeding is almost equal to the frequency of the master laser.
Since the slave laser has no diffraction grating to tune the frequency, this is
achieved by cooling the diode in an evacuated housing to -35 ◦C. The 960 nm
light is sent through a polarisation maintaining fibre into a commercial second
harmonic generator4 consisting of a tapered amplifier and a frequency doubling
cavity. The doubling cavity, situated on the table ‘doubling cavity’ in figure
6.4, has typically an output of well above 200mW. The light passes an AOM
to switch the light and is coupled into a polarisation maintaining fibre after
which �70mW of 480 nm light are available in front of the main chamber.

For the stabilisation of the 480 nm laser we choose a scheme, where we lock
the 960 nm laser. Since there is no available spectroscopic line of rubidium in
the vicinity of 960 nm a Invar transfer cavity is used. This cavity is stabilised
on the already locked 780 nm laser. The 960 nm laser is than locked to the
stabilised cavity. The details of the locking scheme will be discussed in the
next section. The cavity can be evacuated as a change in the air pressure would
result in a change of the refractive index inside the cavity. The refractive index
in air is different for 780 nm and 960 nm and a change would lead to a drift of
the frequency with respect to each other. With this setup and the electronics
described in section 6.2.2 the 780 nm and 960 nm lasers can be stabilised with
respect to each other to a linewidth smaller than � 2π×1.5MHz on the minute
time scale.

6.2.2. Electronic setup

The second major constraint for the Rydberg laser system is that the high
output power produced with the setup discussed in section 6.2.1 must have
a narrow linewidth, e.g. in comparison to the Rabi frequency of the upper
transition of the two-photon excitation in order to fullfil the condition Ωc >
√
Γγd for a coherent dynamics in an effective two-level atom (see section 1.8 for

details). A laser linewidth on the order of the inverse lifetime of the Rydberg
state would be desirable, but is technically challenging.

The electronic part of the locking scheme is depicted in figure 6.3. The

4TA-SHG 110, Toptica Photonics AG
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Figure 6.3.: Locking scheme for the Rydberg laser system. The coloured lines
depict connections with light, while the black lines are electronic connections.
The 780 nm laser is stabilised to a spectroscopy. The transfer cavity is sta-
bilised to the 780 nm light. Finally, the 960 nm light is stabilised to the transfer
cavity. The frequencies of both lasers are stable with respect to each other
better than � 2π × 1.5MHz.

780 nm and 960 nm master laser are stabilised by homemade PID controllers
[Hei08a]. The controller is built such that it can stabilise the laser frequency
on a slow time scale by modulating the grating of the laser using piezo ceramics
and on a fast time scale by directly modulating the current of the laser diode.

In the case of the 780 nm laser the current modulation is achieved by using
the modulation input of the diode laser controller5. The modulation input
of these laser controllers are not fast enough to modulate the current of the
960 nm laser with 10MHz (see below). We overcome this problem with a
MOSFET circuit symbolised by Z in figure 6.3, which ‘steals’ current from
the diode laser. The PID controller for the 960 nm master laser controls also
the current for the 960 nm slave laser. This is the only possibility to fine-tune

5ITC 102, Thorlabs, Inc.
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6.2. The Rydberg laser system

the frequency of the slave laser since it has no grating.
As pointed out in section 6.2.1 rubidium has no spectroscopic line available

in the vicinity of 960 nm. The locking of the master laser is also depicted
in figure 6.3. For this purpose the amplitude of the 780 nm light is modu-
lated with 10MHz using an EOM and sent through the transfer cavity. The
resonator is locked using a photodiode imaging the 780 nm light, which is af-
terwards phase shifted (ϕ symbol) and demodulated (

�
symbol) according

to the frequency modulation spectroscopy scheme presented in [Bjo83]. The
locking of the 960 nm master laser works the same way. The amplitude of this
laser is modulated by modulating the current at a frequency 10MHz. This
results also in a modulation of the amplitude of the slave laser, which can be
used to lock the doubling cavity to its resonance. Since the modulation of
the amplitude comes with a frequency modulation and, thus, sidebands, the
modulation frequency must be chose such, that the sidebands are not passing
the doubling cavity: The modulation frequency of 10MHz must be larger than
the linewidth of the doubling cavity of the second harmonic generator, which
is 6MHz for our system.
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Figure 6.4.: Optical setup for the Rydberg excitation. The setup is distributed
over three optical tables. The table denoted ‘diode laser’ contains three diode
lasers producing the 780 nm (red lines) and 960 nm (green lines) light, which is
frequency doubled on the ‘doubling cavity’ table for the two-photon transition.
Additionally the diode laser table contains a rubidium saturation spectroscopy
to lock the 780 nm laser and a transfer cavity, which is locked to the 780 nm
laser, to stabilise the 960 nm laser in a Pound-Drever-Hall like locking scheme
(see also figure 6.3). Both excitation lasers are brought to the ‘experiment’ ta-
ble with polarisation maintaining fibres and are combined with a combination
mirror. The scheme uses also symbols explained in figure 5.3.



7. Detection

The last chapter of this part as well as of every experimental sequence, de-
picted in figure 7.1, covers the detection of atoms. There is a rich diversity of
different detection methods for atoms in the world of cold atom physics. The
most commonly used detection methods for neutral atoms are the fluorescence
imaging and the absorption imaging. Both methods have the big advantage of
being simple and the disadvantage of being destructive, i.e. only one picture
can be taken per atomic sample. The first section will discuss the absorption
imaging as it is used for the detection of trapped ultracold atoms. Due to the
high optical density the florescence imaging is not suitable for this purpose.
The second section deals with the detection of Rydberg atoms. Since the dipole
matrix element of the transition into the Rydberg state is very small the Ryd-
berg state has a relatively long lifetime. Hence, a fluorescence imaging is un-
satisfying due to a very small signal. However, using EIT (see section 1.7
and section 9.2) one can detect Rydberg atoms optically. Another method is to
detect the ions, which result from field ionisation of Rydberg atoms. Section
7.2 introduces this method.

7.1. Detection of ground state atoms

As pointed out in the introduction the absorption imaging is the commonly
used method to detect dense atomic clouds. The name of this method already
implies the setup used for detection. A resonant light beam passes the atomic
sample and a shadow of the atomic cloud is afterwards detected by a charge-
coupled device (CCD) camera to obtain spatially resolved pictures. Assuming
a two-level atom, which is justified in the case of a reasonable narrow laser, the
scattering rate of an atom with decay rate Γ in the steady state is according
to equation (1.15)

Γs = Γς �ee =
ΓΩ2

4δ2 + Γ2 + 2Ω2
. (7.1)

The scattering of photons on a line, e.g. in y-direction, through an atomic
cloud with n(x, y, z) leads to a reduction of the incident intensity. In the case
of small intentsities, i.e. Ω < max(Γ, |δ|) the reduction is given by

dI
dy

= −σ I n(x, y, z) , (7.2)
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Preparation   35 s

Excitation  20 s∼ ì

Ionisation =  60 sì

Detection

t

Imaging

Figure 7.1.: Typical experimental sequence for a Rydberg excitation of a ul-
tracold atomic sample. After the preparation, which includes all the cooling
and trapping steps, the cloud is excited, field ionised and the remaining ground
state atoms are imaged.

with the scattering cross section defined as the fraction between scattered
power and incident intensity

σ ≡
Patom

I
=

�ωlΓs

I
=

σ0

1 + (2δ/Γ)2 + 2(Ω/Γ)2
, (7.3)

with the on-resonance scattering cross section

σ0 =
�ωlΓ
2Is

, (7.4)

and the definition of the saturation intensity, with I = c�0E
2
0/2 and the defi-

nition of the Rabi frequency in equation(1.5)

Is =
c�0(�Γ)2
4|� · d|2

=
πhcΓ
3λ3

. (7.5)

Usually the absorption imaging is done on resonance, i.e. δ = 0. If the Rabi
frequency fulfils Ω � Γ equation (7.2) becomes independent of the intensity,
which leads to the Lambert-Beer law

I(x, z) = I0e
−

, (7.6)
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7.1. Detection of ground state atoms

a) TOF = 25 ms

T  2 µK

b) TOF = 15 ms

T  500 nK

c) TOF = 25 ms

T  500 nK

Figure 7.2.: Absorption imaging pictures for different temperatures and dif-
ferent time of flights. The dark red corresponds to an optical density of 3.
Image a) shows a thermal cloud. The high densities at ultralow temperatures
cause a Bose enhancement resulting in an anisotropy of the aspect ratio of
the the cloud [Löw06]. The images b) and c) show an atomic sample with a
temperature below the critical temperature for the phase transition to a Bose-
Einstein condensate for different time of flights. The condensation is visible
as an increase of the peak density and a different density profile of the cloud.

with the optical density

= σ0

+∞�

−∞

n(x, y, z)dy . (7.7)

With the atomic density given by equation (5.8) and equation (5.10) the atom
number in the trap can be calculated using the peak value 0 of the optical
density

N0 = 2πσrσz
0

σ0
. (7.8)

The widths of the cloud are obtained from the absorption images of which three
examples for different densities are shown in figure 7.2. The images b) and
c) in this figure show an atomic sample, which temperature is below the crit-
ical temperature for the phase transition to a Bose-Einstein condensate. The
experiments in this thesis will be done at temperatures of the atomic sample
above this critical temperature and can be described by a thermal density
distribution. The spatial resolution of the imaging system in the presented
setup is 5.6 µm. The optical density in the trap along the radial direction of
the cigar shaped cloud is on the order of 100 on resonance. The used CCD
camera1 has a intensity resolution of 12 bit, which corresponds, according to
1PixelFly QE, PCO Computer Optics GmbH
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equation (7.6), to a optical density max = 8.3 that can be detected at most.
Hence, an ultracold atomic cloud cannot be detected in the trap. To obtain
the density distribution the cloud is released from the trap and imaged after a
time of flight. The temporal expansion of the cloud together with the trapping
frequencies yields the spatial density distribution of the ground state atoms.

We image for a time 100 µs with an intensity I ∼ Is/4 with σ
+ polarised

light on the 5S1/2(f = 2,mf = 2) to 5P3/2(f = 3,mf = 3) transition. A series
of absorption images for different end frequencies for the evaporative cooling,
thus, different temperatures, are shown in figure 7.2. The temperature is
obtained using the function

σi(t) =

�
σi(0)2 +

kBT

m
t2 , (7.9)

to fit the Gaussian widths of the atomic cloud in a series of time of flight pic-
tures. The width of the cloud σi(0) in the trap is obtained from the measured
trapping frequencies and the equations (5.9).

7.2. Detection of Rydberg atoms

The second important detection scheme is the detection of Rydberg atoms.
Due to the long lifetime of Rydberg atoms any detection process involving the
spontaneous scattering of photons are not practicable since the signal would
be �4000 times smaller.

The Rydberg atoms can be detected optically with resonant (δp = 0) light
by means of electromagnetically induced transparency as it is discussed in
section 9.2.

r

V

-1/r
-1/ +r rE Figure 7.3.: Illustration of the field ion-

isation. Applying an electric field E

(dashed line) perturbs the Coulomb po-
tential of the core (black line) such that
the electron can tunnel out.

A different approach for a non-optical detection of Rydberg atoms is to use
their large polarisability. When applying a large electric field the electron
tunnels out of the Coulomb potential of the core (see figure 7.3). For even
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7.2. Detection of Rydberg atoms

higher electric fields the potential barrier can be lowered further such that
the electron is unbound from the core. The resulting electron and the ion can
then be detected using e.g. multichannel plates (MCPs)2. MCPs are secondary
electron multiplier and consist of at least one glass plate with millions of holes
with a diameter on the order of 10 µm and an anode to detect the electrons.

A high voltage applied over the glass plate accelerates the charged particle,
which subsequently hits a wall inside a channel and disengage secondary elec-
trons, which in turn are accelerated again. The efficiency of this process can
be optimised by arranging the channels under an angle with respect to the
front surface of the MCP. In our experiment the MCP consists of two glass
plates in such a chevron arrangement. The front of the MCP is set to a voltage
of -2 kV. In order to shield the resulting high electric fields from the ions, the
MCPs are covered by Faraday cages with a cone-shape (see the figures 5.1 and
7.4).

After amplification about 107 electrons reaching the anode of the MCP. The
current caused by the electrons is measured as a voltage drop over a resistor.
This voltage is amplified using a standard operation amplifier and detected by
a digitiser card3 with a time resolution of 50 ns.

x

y

z

UU

00

0 0

0 0

MCP
ion detection

MCP
electron detection

Figure 7.4.: Schematic of the inside of the cham-
ber with the electric field plates, the MCPs and
the excitation laser. Two of the eight field plates
are set to a voltage U to drag ions out during
excitation and to field ionise the Rydberg atoms
after excitation.

Currently only one of two MCPs (see figure 5.1) are in use to detect rubid-
ium ions. The second one could be used to simultaneously detect electrons.
The detection of the electrons would yield a better time resolution due to their
smaller mass but suffers from free electrons in the vacuum chamber e.g. pro-
duced by the ion pump. However, the time resolution for the ion detection
is sufficient for the experiments discussed in this thesis and, hence, only the
MCP for the detection of ions is used.

2B012VA, El-Mul Technologies, Ltd.
3NI 5102, National Instruments Corporation
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A schematic view of the inside of the chamber with the field plates and
the excitation laser are depicted in figure 7.4. The cloud is enclosed by eight
capacitor plates which can independently be set to a voltage. We use them
for two purposes. The first is to drag ions out of the excitation volume to
prevent unwanted electric fields over the atomic sample during the excitation.
The second purpose is the field ionisation. For that the field plates opposite
to the MCP for ion detection are set to a voltage of U � 2 kV, which ionises
the Rydberg atoms and push the ions directly to the MCP. The switching
of the voltages from 10V during the excitation to 2 kV for field ionisation is
done with a commercial fast high voltage transistor push-pull switch4 within
�50 ns.

4HTS 61-03-GSM, Behlke Electronic GmbH
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8. Universal scaling

This chapter will present the experimental results on the universal scaling be-
haviour of the Rydberg excitation dynamics. Rydberg excitation dynamics have
been studied in some detail for magnetically trapped atoms in reference [Hei07].
It was shown that the initial slope and the saturation value of the excitation
curves depend on the single atom Rabi frequency and the atomic peak density
of ground state atoms according to simple power laws. Moreover, by investi-
gating the exponents of the scaling laws the Rydberg excitation was shown to
be collective and coherent.
As pointed out in reference [Wei08] and section 4.2 it is expected to find an
algebraic scaling behaviour of the Rydberg fraction with the characteristic pa-
rameters, which appears from the renormalisation of the Hamilton operator
describing the system. The appearance of such a power law is a strong evi-
dence for a second order quantum phase transition of the Rydberg system.
The scaling behaviour of the Rydberg excitation is investigated for different
atomic ground state peak densities, single atom Rabi frequencies and geomet-
ric shapes of the atomic sample. The dependence of the universal exponents
on the dimensionality allows to draw conclusions on the spatial distribution of
the Rydberg excitation. The dimensionality of the atomic sample is changed
by loading the atoms from a magnetic trap into a tightly focused optical dipole
trap. The theoretically expected exponents for the characteristics of the Rydberg
excitation curves will be derived in section 8.1 based the generalised superatom
model discussed in section 3.4.
The results of the measurement of the universal scaling behaviour of the Ryd-
berg excitation are shown in section 8.2. The experimental data will be com-
pared to theoretical predictions of a mean field model derived in reference
[Wei08] and the generalised superatom model presented in section 3.4. Two
different systems are used for the measurements of the universal scaling. The
atomic samples, that are magnetically trapped, have a radial size that is larger
than the blockade radius. Trapping the atomic sample in an optical dipole trap
leads to confinements in which the radial size is equal or smaller as the blockade
radius.
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8. Universal scaling

8.1. Scaling of the excitation

Section 4.2 introduced the ideas of the universal scaling to the driven Ryd-
berg system, which is expected to exhibit a quantum phase transition in the
parameter ∆ = �δ/Cp nβ

g , with the two-photon detuning δ (see figure 4.2 b))
and the interaction energy Cpn

β
g given by the atomic ground state density ng.

The exponent β = p/d is dependent on the exponent of the r-dependence of
the interaction, i.e. V ∼r

−p, and the dimensionality d of the atomic sample.
For a finite single atom Rabi frequency Ω0 and ∆ = 0, i.e. the laser is on

two-photon resonance, the system is located in the critical region of the phase
diagram shown in figure 4.2 a).

The Rydberg excitation curves can be characterised by the initial slope R

and saturation value Nsat as shown in figure 8.3. These characteristics can be
written in terms of dimensionless parameters leading to the Rydberg fraction
in the saturation fsatand the normalised initial slope fR, which must not be
mistaken with the general Rydberg fraction f .

The scaling laws for R and Nsat with the atomic ground state density and
the Rabi frequency are derived in section 3.4. Using equation (3.20) and the
scaling of R and Nsat with the collective Rabi freuquency ΩN given in table
3.1 one finds for a volume V

R ∼ V Ω
β+1/β
N ∼ N0n

β
g α

2(β+1)/(2β+1)
,

Nsat ∼ V Ω
1/β
N ∼ N0α

2/(2β+1)
,

(8.1)

with the atomic density of atoms in the ground state ng and the atom number
in the ground state N0 = ngV . The parameter

α ≡
�Ω0

Cpn
β
g

, (8.2)

compares the coupling energy �Ω0 with the interaction energy Cpn
β
g , which

was also introduced in section 4.2.
Rescaling the quantities in equation (8.1) leads to the dimensionless param-

eter for the initial rate

fR ≡
R

N0n
β
g

∼ α
2(β+1)/(2β+1)

∼ α
νR , (8.3)

and for the saturation level

fsat ≡
Nsat

N0
∼ α

2/(2β+1)
∼ α

νsat
. (8.4)

Both fR and fsat exhibit a power law dependence on α. The critical exponents
are νR = 2(β+1)/(2β+1) and νsat = 2/(2β+1) for fR and fsat, respectively. In the
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case of van der Waals interaction between the Rydberg atoms a scaling of fR
and fsat with the exponents νR = 6/5 and νsat = 2/5 is expected in an atomic
sample with a three dimensional shape. For a one dimensional geometry of
the atomic cloud the exponents are νR = 14/13 and νsat = 2/13.

8.2. Measurement of the universal scaling

For the systematic study of Rydberg excitation the following experimental
sequence has been used. After evaporative cooling of the 87Rb atoms in the
5S1/2(f = 2,mf = 2) state (see section 5.3.1), the atoms are excited by a
two-photon transition via the intermediate 5P3/2(f = 3,mf = 3) state into
the 43S1/2(j = 1/2,mj = 1/2) Rydberg state. The 780 nm laser for the lower
transition is σ

+ polarised and has a detuning with respect to the 5S1/2(f =
2,mf = 2) to 5P3/2(f = 3,mf = 3) transition of 2π× 470MHz. According to
section 1.8 the system can be treated as an effective two-level atom driven by
an effective two-level Rabi frequency Ω0.

The ultracold atomic sample is excited for pulse durations between 100 ns
and 20 µs, which is much smaller than the lifetime of the 43S1/2 Rydberg state
of �100 µs. After the excitation the Rydberg atoms are field ionised and de-
tected by a multi-channel plate (MCP) resulting in strongly blocked excitation
curves (see figure 8.3 and [Hei07]). The atomic density of the remaining ground
state atoms are monitored by means of absorption images described in section
7.1.

The parameter α on which the characteristics fR and fsat depend with
power laws is varied by either changing the power of the 780 nm laser and,
thus, the effective Rabi frequency Ω0 or by changing the atomic peak density
of ground state atoms n0 by means of a Landau-Zener sweep described in
section 5.3.3. The parameter α can be written in terms of the peak density
as α = �Ω/Cpn

β
0 if the spatial part ñg(r) of the density distribution ng(r) =

n0ñg(r) is fixed for all experiments.
Two different experimental setups as shown in figure 8.1 are used for the

experimental investigation of the universal scaling and its dependence on the
dimensionality of the system. The experimental setup allows the shape of the
atomic sample to be tailored from a three dimensional geometry to a quasi
one dimensional geometry. In a one dimensional geometry, i.e. if the radial
size of the cloud is much smaller than the blockade radius defined by equation
(3.2) the universal exponents would change their values according to section
8.1. Thus, the values of these exponents give an indication of the distribution
of the Rydberg excitation in the atomic cloud. Many properties of the local
dynamics of the Rydberg excitation can be obtained by the investigation of
the global characteristics of the Rydberg excitation.
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a) b)

Figure 8.1.: Schematic of the setup used for the universal scaling measure-
ments. a) Measurements in the magnetic trap: Both excitation beams enter
the the main chamber colinear and copropagating. The 780 nm laser beam
is σ

+ polarised, the 480 nm laser beam is σ
− polarised with respect to the

quantisation axis in the z-direction. b) Measurements in the optical dipole
trap. The ODT is linearly polarised along the x-direction. The atomic sample
is illuminated radially to avoid inhomogeneities in the Rabi frequency due to
the high optical density along the long axis of the cigar shaped atomic cloud
in the ODT. The quantisation axis and polarisation is chosen such that the
780 nm laser beam is σ

+ polarised. The 480 nm laser beam is right handed
circular polarised.

The first experiment was done with magnetically trapped 87Rb atoms and
the data are published in [Hei07], where the coherent collective behaviour of the
excitation was shown. The atomic cloud has a temperature of 3.4 µK, which
is kept constant for all experiments. The size of the cloud is σr = 8.7 µm
and σr = 150 µm in radial and axial direction, respectively. The sizes of
the excitation laser beams are �600 µm for the 780 nm laser and 42 µm for
the 480 nm laser. Therefore, the Rabi frequency is constant over the atomic
sample.

With the given sizes of the atomic cloud and a maximal atom number of
N0 = 1.5 × 107 in the ground state the atomic ground state peak density
in three dimensions is given according to equation (5.10) n0 = n3d = 8.0 ×

1019 m−3. The peak density of atoms in the ground state is varied between
this value and a minimal value of n3d = 2.8×1018 m−3 for a maximal Landau-
Zener sweep time of 0.8 s. Assuming that the density distribution is purely
one dimensional, thus n1d = N0/(

√
2πσz), the peak density varies between n1d =

1.3×109 m−1 and n1d = 3.8×1010 m−1. Figure 8.2 shows the parameter space
which is scanned to investigate the scaling behaviour of the Rydberg excitation.
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8.2. Measurement of the universal scaling

The effective single atom Rabi frequency Ω0 is calculated using equation (1.36)
with a detuning of δp = 2π×470MHz from the intermediate 5P3/2 state. The
value of Ω0 is varied between 2π × 31 kHz and 2π × 154 kHz.

Ω
/2

 (
k
H

z)
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π

n3d (10  m )19 -3
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Figure 8.2.: Scanned parameter space for the
experiments to investigate the scaling be-
haviour of the Rydberg excitation. The ex-
periments are done with magnetically trapped
atoms (���) and with atomic samples trapped in
an optical dipole trap (���).

In order to reduce the dimensionality of the system the atomic cloud is
transferred into an optical dipole trap (ODT) as described in section 5.4. We
wait for 100ms after the transfer in the ODT to let the atomic sample ther-
malise. Thus, any effect of remaining untrapped atoms, which are lost during
the loading process into the ODT and would change the spatial distriubtion
to a rather three dimensional cloud can be neglected. Figure 8.1 b) shows
the setup for the experimental investigation of the scaling behaviour of the
Rydberg excitation in the ODT. The atomic sample is illuminated along the
radial direction to avoid inhomogeneous Rabi frequencies due to the high op-
tical density along the long axis of the cigar shaped atomic cloud in the ODT
(see also sections 7.1 and 9.1.2). The temperature of the atomic sample is
varied between 2.2 µK and 6.3µK resulting in sizes of the atomic sample be-
tween 3.2 µm and 5.4 µm in radial direction and between 460 µm and 540 µm
in axial direction. Due to the resolution of the imaging system being 5.6 µm
the radial size has to be calculated from the trapping potential of the ODT
and the temperature of the atomic sample using equation (5.15). The size in
the axial direction can be measured directly by means of absorption images.
The 3d peak density n3d is varies between 6.6× 1017 m−3 and 6.7× 1018 m−3

or, assuming a one dimensional density distribution with the peak density n1d,
between 1.2× 108 m−1 and 4.2× 108 m−1. The detuning from the intermedi-
ate 5P3/2 state is δp = 2π × 490MHz resulting in effective single atom Rabi
frequencies Ω0 between 2π × 17 kHz and 2π × 122 kHz.

Figure 8.3 shows as an example one of the Rydberg excitation curves
from which the universal scaling is obtained. The solid line shows a fit ac-
cording to section 3.4 with an exponential saturation function of the form
NR(τ) = Nsat(1− exp(−R/Nsat τ)). Although this function does not reproduce
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Figure 8.3.: Typical excitation curves for
atoms trapped in the ODT with n3d = 6.7×
1018 m−3 and Ω0 = 2π×19 kHz. The dashed
lines indicate the characteristics of the exci-
tation curves, namely the initial slope R and
the saturation value Nsat. The error bar rep-
resent the statistical error for an average over
ten independent measurements.

the complete excitation dynamics, especially not the quadratic rise for very
short times when the Rydberg excitation shows a single atom behaviour, it
reproduces the important properties R and Nsat. From these quantities, to-
gether with the atom numbers and atomic densities in the ground state the
dimensionless parameters fR and fsat can be calculated.

The dependence on the single atom Rabi frequency Ω0 and the atomic
ground state peak density n0 is according to equation (8.3) and (8.4) for the
Rydberg fraction during the initial slope

fR ∼ n
aR
0 ΩbR

0 , (8.5)

with

aR = −2β(β+1)/(2β+1) ,

bR = 2(β+1)/(2β+1) ,
(8.6)

and for the Rydberg fraction in the saturation regime

fsat ∼ n
asat
0 Ωbsat

0 , (8.7)

with

asat = −2β/(2β+1) ,

bsat = 2/(2β+1) .
(8.8)

Since a power law is expected to reproduce fRand fsatit is useful to evaluate
the data in double logarithmic space and fit simple flat planes in this space to
the measurements. Hence, the obtained values for R and Nsat are fitted with
two dimensional fits of the form lg(fX,Y ) = aX,Y lg(nY )+ bX,Y lg(Ω0)+ c with
X ∈ {R, sat} and Y ∈ {1d, 3d}. The obtained values for the coefficients aX,Y
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and bX,Y are listed in table 8.1 for magnetically trapped atoms and in table
8.2 for atoms trapped in the ODT.

According to equations (8.3) and (8.4) it is also expected to find a power
law dependence for the dimensionless parameters of the form fX,Y ∼ α

νX,Y
Y

with νR,Y = 2(β+1)/(2β+1) and νsat,Y = 2/(2β+1). An evaluation of the data
shown in figure 8.4 with a fit function of the form lg(fX,Y ) = νX,Y lg(αY ) + c

yields the critical exponents νX,Y of α, as shown in the third column in table
8.1 and 8.2 for a one and three dimensional geometry of the atomic sample.
Both the critical exponent as well as the offset c are free fit parameters. The
data sets for the measurements in the magnetic trap show a different offset in
comparison to those taken with atoms trapped in an ODT. The origin of this
difference might reflect a deviation of the detector efficiency, e.g. to different
positions of the atomic sample with respect to the detector in the magnetic
and optical dipole trap. This ‘misalignment’ of the optical dipole trap with
respect to the magnetic trap is on the order of 100 µm. A specific experiment
in which the position of the atomic sample is varied might clarify this point.

The comparison between the measured and the theoretically expected ex-
ponents is given in units of the error σ obtained from the power law fits
corresponding to the 68% confidence interval, and as the relative deviation
of the experimental to the theoretical value. The next section 8.3 covers the
interpretation of the measurements on the scaling behaviour of the Rydberg
excitation.
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aR,Y bR,Y νR,Y

theory (1d) −84/13�−6.46 14/13�1.08 14/13�1.08

experiment (1d) −6.50± 0.07 1.15± 0.12 1.08± 0.01

deviation (1d) 0.5σ (0.6%) 0.6σ (6.8%) 0.3σ (0.3%)

theory (3d) −12/5 = −2.4 6/5 = 1.2 6/5 = 1.2

experiment (3d) −2.51± 0.08 1.20± 0.13 1.25± 0.03

deviation (3d) 1.4σ (4.6%) 0σ (0%) 1.7σ (4.2%)

asat,Y bsat,Y νsat,Y

theory (1d) −12/13�−0.92 2/13�0.15 2/13�0.15

experiment (1d) −0.92± 0.02 0.38± 0.03 0.16± 0.01

deviation (1d) 0.2σ (0.3%) 7.5σ (150%) 0.6σ (4.0%)

theory (3d) −4/5 = −0.8 2/5 = 0.4 2/5 = 0.4

experiment (3d) −0.92± 0.02 0.38± 0.03 0.45± 0.01

deviation (3d) 6.0σ (15%) 0.7σ (5.0%) 5.0σ (13%)

Table 8.1.: Scaling exponents for the power law dependence of the Rydberg

fraction during the linear increase fR,Y ∼ n
aR,Y
Y Ω

bR,Y
0 ∼ α

νR,Y of the excita-

tion and in the saturation regime fsat,Y ∼ n
asat,Y
Y Ω

bsat,Y
0 ∼ α

νsat,Y for magnet-
ically trapped atoms. The dimensionless parameters are defined in equations
(8.3) and (8.4) with Y ∈ {1d, 3d} and represent the characteristics R and
Nsat of the excitation curve shown in figure 8.3. The theoretical predictions of
the scaling exponents can be obtained from equations (8.3) for νR,Y and (8.4)
for νsat,Y . The expected exponents aY and bY can be derived from table 3.1.
The uncertainty (68% confidence interval) of the measured exponent is given
by σ. The relative deviations of the measured exponents to the theoretically
expected exponents are given in brackets.
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8.2. Measurement of the universal scaling

aR,Y bR,Y νR,Y

theory (1d) −84/13�−6.46 14/13�1.08 14/13�1.08

experiment (1d) −6.43± 0.21 1.02± 0.13 1.06± 0.03

deviation (1d) 0.2σ (0.5%) 0.4σ (5.3%) 0.6σ (1.6%)

theory (3d) −12/5 = −2.4 6/5 = 1.2 6/5 = 1.2

experiment (3d) −2.30± 0.11 1.02± 0.11 1.11± 0.04

deviation (3d) 0.9σ (4.2%) 1.6σ (15%) 2.3σ (7.5%)

asat,Y bsat,Y νsat,Y

theory (1d) −12/13�−0.92 2/13�0.15 2/13�0.15

experiment (1d) −1.01± 0.11 0.39± 0.07 0.20± 0.01

deviation (1d) 0.8σ (9.4%) 3.4σ (150%) 4.6σ (30%)

theory (3d) −4/5 = −0.8 2/5 = 0.4 2/5 = 0.4

experiment (3d) −0.60± 0.04 0.42± 0.05 0.32± 0.02

deviation (3d) 5.0σ (25%) 0.4σ (5.0%) 4.0σ (20%)

Table 8.2.: Scaling exponents for the power law dependence of the Rydberg

fraction during the linear increase fR,Y ∼ n
aR,Y
Y Ω

bR,Y
0 ∼ α

νR,Y of the excita-

tion and in the saturation regime fsat,Y ∼ n
asat,Y
Y Ω

bsat,Y
0 ∼ α

νsat,Y for atoms
trapped in the ODT. The dimensionless parameters are defined in equations
(8.3) and (8.4) with Y ∈ {1d, 3d} and represent the characteristics R and
Nsat of the excitation curve shown in figure 8.3. The theoretical predictions of
the scaling exponents can be obtained from equations (8.3) for νR,Y and (8.4)
for νsat,Y . The expected exponents aY and bY can be derived from table 3.1.
The uncertainty (68% confidence interval) of the measured exponent is given
by σ. The relative deviations of the measured exponents to the theoretically
expected exponents are given in brackets.
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Figure 8.4.: Universal scaling of the two dimensionless parameters of the Ryd-
berg fraction during the linear increase fR,Y ∼ α

νR,Y
Y and in the saturation

regime fsat,Y ∼ α
νsat,Y
Y with Y ∈ {1d, 3d} for atomic samples trapped mag-

netically (���) and in the ODT (���). The data are fitted with linear function in
the logarithmic space.
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8.3. Discussion and conclusion

The scaling of the initial slope R and the saturation value Nsat for magnet-
ically trapped atoms is already investigated in [Hei08a]. The scaling drawn
from this evaluation leads to the conclusion that the atomic sample in the mag-
netic trap has, under the given circumstances, a density distribution which is
in between one and three dimensions. The evaluation of the scaling behaviour
from this data are given in the first two columns of table 8.1 with the new
dimensionless parameters. The scaling indicates, except for the scaling of
fsat(Ω0), a one dimensional rather than a three dimensional geometry of the
atomic cloud.

For the measurements of the universal scaling of the normalised initial slope
fR(α) and in the saturation regime fsat(α) the parameter α is varied by 15
orders of magnitude. This assumes a one dimensional density distribution and
four orders of magnitude assuming a three dimensional density distribution.

The evaluation of the data for fR and fsat presented in figure 8.4 shows
an excellent agreement with a power law dependence on α, visible as a linear
function in the double logarithmic depiction. The data for fR especially shows
a nearly perfect linear behaviour for the scaling with α in the double logarith-
mic space. Time dependent effects, e.g. linewidth of the laser and lifetime of
the Rydberg state, become more prominent in the measurement of the scaling
of fsat. The scaling of the Rydberg fraction in the saturation regime shows
a clear power law dependence for the scaling with α suggesting a universal
scaling.

The exponents of the power law for this dependence are summarised and
compared to the theoretically expected values in table 8.1 for magnetically
trapped atoms and in table 8.2 for atoms trapped in an ODT for an assumed
one or three dimensional density distribution.

The scaling behaviour of fR and fsat indicates again a one dimensional
geometry for the magnetically trapped atomic sample since the deviation from
the expected exponent in the one dimensional case is considerably smaller than
in the three dimensional case.

The obersvation of the scaling behaviour of fR and fsat for atoms trapped
in the ODT shows a deviation from the theoretically expected exponent for the
α dependence of fR that is smaller for a one dimensional density distribution.
For the scaling behaviour of fsat with α, however, the deviation with respect
to the theoretical exponent is slightly smaller for a three dimension geometry
of the atomic sample. A definite conclusion whether the scaling behaviour
shows one or three dimensional exponents is not possible since both exponents
show a rather large deviation from the theoretical expected value. Thus, the
scaling behaviour of fsat is still in between one and three dimensional.
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8. Universal scaling

This result is astonishing since the radial width of the atomic cloud has
been decreased by roughly a factor of two going from the magnetic to the
optical dipole trap. The stronger radial confinement of the atoms in the optical
dipole trap is supposed to create a geometry which comes closer to the one
dimensional situation than in the magnetic trap, but the contrary seems to be
the case. Although the data shows a scaling in fR, which suggests rather a
one dimensional geometry, the difference in the scaling between the one and
three dimensional case of this variable is not as significant as the difference in
fsat, namely only 10%.

At this point it should be noted that the conclusion on the dimensionality
includes only the observed critical exponent ν. Effects which also might disturb
the observation of the true dimensionality are not included into this discussion
because it would require a deeper theoretical and experimental understanding
of the system, which will be the subject of further studies in the future.

The size of the blockade radius, with which the radial expansion of the
atomic cloud has to be compared to determine the dimensionality of the den-
sity distribution is given by equation (3.19). According to this equation the
blockade radius is on the order of 5 µm. The Gaussian width σr of the atomic
cloud in the ODT calculated with equation (5.15) is 5.6 µm for a temperature
of T = 6.3 µK and a given potential depth U0 = 3.3× 10−28 J. The ratio σr/rb

of the radial width of the atomic sample in comparison to the blockade ra-
dius could be used as a measure for the dimensionality, where a value smaller
than one corresponds to a one dimensional distribution of superatoms. This
ratio is � 1.7 for the experiments shown with magnetically trapped atoms
and between � 0.6 and � 1.1 for the experiments conducted in the optical
dipole trap. From these considerations one expects to find a three dimen-
sional distribution of Rydberg excitations in the magnetic trap and a rather
one dimensional distriubtion of superatoms in the the ODT.

However, the density distribution is not sharply truncated at σr, which leads
to an excitation of the atoms in the wings of the density distribution resulting
in a three dimensional geometry. A better, though conservative, estimation
of the cloud size takes the Gaussian shape of the combined optical potential
and the potential due to the gravity into account. Adding both potentials
results in an effective potential with a finite height at a radial distance rf from
the trap centre. For the given parameter of the ODT the atomic cloud could
have a maximal radial extension of rf = 30 µm, which is much larger than the
blockade radius and, thus, leads to the observation of three dimensional density
distribution instead of the expected one dimensional shape of the atomic cloud.

Two approaches could in future experiments lead to a realisation of a purely
one dimensional Rydberg system. Firstly, a focus of 3 µm with the given trap
depth U0 would result in a maximal radial extension of the atomic cloud of
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8.3. Discussion and conclusion

rf =5.3 µm leading to a purely one dimensional chain of superatoms. The
numerical aperture of the main chamber in the direction of the ODT is 0.28
[Löw06], which allows foci down to a waist of �1.5 µm. The realisation of such
small foci, however, requires special optics to maintain the optical quality of
the Gaussian beam. The transfer of the atoms from the magnetic trap into
such an ODT is constrained due to the mismatch of the potentials. This would
result in a heating of the atomic sample and an increased atom loss during the
transfer.

The second approach to tailor the dimensionality if the system is to use the
posibility of changing the blockade radius by altering the principal quantum
number of the Rydberg state. According to table 2.1 the C6 coefficient scales
with principal quantum number as n

11, while the transition dipole matrix
element for the 5P3/2to nS transition scales with n

−1.5. Hence, the blockade

radius rb = (C6/�Ω)1/6 scales roughly like n
2. Going from the current Rydberg

state with n = 43 to n = 104 would result in a blockade radius on the order of
30 µm and, thus, the realisation of a purely one dimensional system of Rydberg
atoms using the currently implemented optical dipole trap.

To conclude, it is shown that the characteristics of the Rydberg excitation,
namely the normalised initial slope fR and in the saturation regime fsat,
shows an algebraic behaviour with the dimensionless parameter α. This scaling
behaviour is direct evidence of universality of the scaling in the critical region
depicted in figure 4.2 a) of the Rydberg excitation. The appearance of a
universal scaling is evidence that the driven Rydberg system exhibits a second
order quantum phase transition due to the interaction and the formation of
collective states.

Furthermore, the dependence of the Rydberg excitation on the dimension-
ality was investigated. The critical exponents for the scaling of fR and fsat

with α for magnetically trapped atoms showed a good agreement with the
predictions for the theoretical expected exponents assuming a one dimensional
density distribution. The critical exponent measured with atoms trapped in
the ODT has been inconclusive since the scaling of fR with α indicates a one
dimensional geometry and the scaling of fsat indicates a rather three dimen-
sional density distribution. The observation of the scaling of fR and fsat with
the atomic ground state peak density and the single atoms Rabi frequency
showed in both cases a rather one dimensional scaling behaviour. In future
experiments it might be possible to systematically investigate the dependence
of the Rydberg excitation with the radial confinement of the cloud by either us-
ing a smaller focus for the optical dipole trap or by choosing a higher principal
quantum number of the Rydberg state.
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9. Coherence properties

In chapter 3 the coherent collective excitation of a dense sample of Rydberg
atoms was discussed. Several proposals [Jak00, Luk01] have been made to use
the blockade of the Rydberg excitation for the realisation of quantum gates. A
fundamental requirement for such a quantum gate is the coherence of the qbits
during the time needed to perform the gate operation. The Rydberg excitation
in a strong interacting atomic sample was shown to be collective and coherent
in [Hei07, Hei08a]. However, the proof of the coherent evolution established
in these references is rather indirect by using the scaling laws of the excitation
dynamics into the Rydberg states. The initial slope and the saturation value
of the the Rydberg excitation curves follow simple power laws in the atomic
ground state density and the single atom Rabi frequency.
The aim of this chapter is to produce a direct proof of the coherence in a strong
interacting sample of Rydberg atoms. For this we use two different methods,
namely a rotary echo sequence [Sol59, Rai08a] known from the research field of
nuclear magnetic resonance in section 9.1 and the electromagnetically induced
transparency in section 9.2.
The strong interactions between Rydberg atoms lead to a dephasing of the
atomic states with respect to each other. The dephasing rates are investigated
by studying the time dependence of the rotary echo signals and the line shape
of electromagnetically induced transparency signals [Rai08b].

9.1. Rotary Echo

The results shown in chapter 8 and in [Hei07, Hei08a] state the coherent char-
acter of the Rydberg excitation: The initial rate R of the excitation curves
scales with the single atom Rabi frequency Ω0 or, in the collective regime, with
Ω

2(β+1)/(2β+1)

0 (see table 3.1).
A direct proof of the coherence can be given by a reversal of the excitation

into the Rydberg state. Such echo sequences are widely used in the research
field of nuclear magnetic resonance in various schemes. We chose the rotary
echo sequence [Sol59, Rai08a], which was invented to overcome problems with
inhomogeneous Rabi frequencies over the sample. This reflects exactly the
situation in our experiments, where the collective Rabi frequency varies over
the atomic cloud due to its dependence on the ground state density ng.
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9. Coherence properties

The N -particle Hamilton operator describing the dynamics of the Rydberg
excitation is given by equation (4.1)

H = −
�δ
2

N�

i=1

σ(i)
z +

�Ω
2

N�

i=1

σ(i)
x + C6

�

j<i

P
(i)
rr P

(j)
rr

|ri − rj |
6
, (9.1)

with the Pauli matrices σ(i), the positions of the atoms ri and the projector
onto the Rydberg state P

(i)
rr .

This description of the system assumes an effective two-level atom with a
two-photon detuning δ and a coupling Ω between the ground and the Ryd-
berg state. A description as an effective two-level atom is accurate as long
as the detuning δp of the two excitation lasers from the intermediate state
5S1/2(f = 2,mf = 2) is large as discussed in section 1.8. In the experiment
the detuning was δp � 2π × 500MHz from the intermediate state (see figure
1.4). Furthermore it is assumed that the Rydberg gas is frozen, i.e. the centre
of mass motion of the atoms can be neglected. The problem simplifies even
further if the two lasers for the two-photon transition are on two-photon res-
onance, i.e. the first term vanishes for δ = 0. A dephasing due to a finite
frequency linewidth of the excitation laser can be included by a time depen-
dent detuning δ(t). Without van der Waals interaction the Hamilton operator
simplifies to H = 1/2N�Ω0σx. The solution of the Schrödinger equation is
then a system of independent atoms undergoing single atom Rabi oscillations.
If the van der Waals interaction becomes large compared to �Ω the system
will show the collective behaviour described in chapter 3.
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Figure 9.1.: Scheme of the rotary echo se-
quence. The atoms are excited for a time τ .
After a time τp the phase of the excitation
amplitude is reversed and the population is
brought back to the ground state at 2τp if no
dephasing occurred.

118



9.1. Rotary Echo
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Figure 9.2.: Simple picture of the rotary echo experiment involving the Bloch
sphere introduced in section 1.3. The top of the Bloch sphere refers to the
state were all atoms inside the superatom are in the Rydberg state, while
the bottom indicates their ground state. The Bloch vector (red) depicts the
population difference (vertical direction) and the coherences between ground
and Rydberg state (horizontal plane). Figures a) to c) show the noninteracting
case, while figures d) to f) show the interacting case. a) At t = 0 all atoms
are in the ground state. The orange arrow indicates the Rabi frequency Ω0.
b) At time t = τ/2 the sign of the Rabi-frequency is changed. c) At time
t = τ all atoms are back in the ground state. The faint arrows refer to
the respective values before the phase flip. d) The interaction (grey arrow) is
represented as a detuning and tilts the precession axis out of the vertical plane.
e) After the phase flip the sign of Ω0 is again reversed, while the interaction is
constant. The population is not brought back to the ground state after t = τ .
f) Different superatoms contribute with different signals depending to their
experienced interaction.
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9. Coherence properties

Figure 9.1 shows a schematic of the rotary echo sequence in which an atom is
excited for a time τ using a square pulse with a rise time of ≤ 20 ns. After
a certain time τp ≤ τ the sign of the excitation amplitude is changed from
Ω0 to −Ω0. The reversal of the sign of Ω0 is done by a 180 ◦ phase flip of
the light field using the single pass AOM in the 480 nm beam (see figure 6.4).
The corresponding circuit to flip the phase of the acoustic wave in the AOM
is shown in figure C.2.

If no dephasing, e.g. due to the interaction between the Rydberg atoms or
a finite linewidth of the laser, or decoherence, e.g. due to spontaneous decay
of the Rydberg state, occurs during the time τ the complete population is
completely reversed to the electronic ground state after a time 2τp. The time
evolution for the noninteracting case is shown in figures 9.2 a) to c) using the
Bloch sphere, which was introduced in section 1.3. The figures 9.2 d) to f) give
an intuitive picture for the time evolution of the Rydberg population during
a rotary echo sequence in a strongly interacting Rydberg gas.

The coloured curves in figure 9.1 indicate the onset of the Rydberg excitation
curve for which an expample is shown in figure 9.3 a) for magnetically trapped
atoms at an atomic ground state peak density of n0 = 5.2 × 1019 m−3 and
Ω0 = 2π×91 kHz. The size of the sample depends according to equation (5.9)
only on the temperature and the trapping frequency. Since the temperature
is constant when changing the atom number in the magnetic trap the sample
is fully characterised by either the atomic ground state peak density or the
number of atoms Ng in the ground state.

It is important to note that the rotary echo signal is expected to vanish for
long excitation times in an atomic cloud with an inhomogeneous density distri-
bution since every superatom accumulates a phase dependent on the position
in the cloud due to the position dependent interaction between the Rydberg
atoms (see figure 9.2 f)). The gathered phase due to the superatom-superatom
interaction cannot be reversed, as the sign of the interaction between the Ryd-
berg atoms cannot be reversed. Thus, the rotary echo cannot be observed
in the saturation regime, i.e. for long excitation times, as every superatom
will have accumulated a different phase. The understanding of these interac-
tions requires a model beyond the simple superatom model, which does not
account for any interaction between the superatoms. Such a beyond mean
field approach for the description of the Rydberg excitation dynamics is under
current theoretical investigation [Wei08].

Although the excitation times for the rotary echo were only several hundred
nanoseconds, figure 9.3 b) shows that the van der Waals interaction strongly
suppresses the excitation of Rydberg atoms. In the non-interacting case, i.e.
the van der Waals interaction term in equation (9.1) is negligible, the number
NR of atoms in the Rydberg state would oscillate as depicted in figure 3.2 with
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9.1. Rotary Echo

a Rydberg atom number given by

NR = Ng sin2

�
1
2
Ω0τ

�
. (9.2)

Hence, the expected exponent for the scaling of NR with Ng is one. The upper
black line in figure 9.3 b) shows the result of equation (9.2) NR = 0.02Ng for
an excitation time τ = 478 ns. In comparison, the data shows a dependence
NR ∼ N

0.43±0.03
g obtained from a fit to the data points in figure 9.3 b). Thus,

a clear suppression of the Rydberg excitation is evident.
The lower black line in figure 9.3 b) takes a finite linewidth of the excitation

laser into account. This frequency uncertainty can be included into equation
(9.2) via a detuning δ. This results in an effective Rabi frequency Ωeff =�

Ω2
0 + δ2 and the Rydberg atom number is given by [Met99]

NR = Ng ·

�
Ω0

Ωeff

�2

sin2

�
1
2
Ωeff τ

�
. (9.3)

Since the laser is not detuned by a fixed δ, but drifting with a certain linewidth
between the experiments it is necessary to average over all possible detunings.
Assuming a weight function for the detuning of the form

f(δ) =
1

√
2πδlw

e−
δ2/2δ2lw , (9.4)

with a linewidth δlw = 2π× 1.5MHz results in a dependence NR = 0.01Ng for
τ = 478 ns.

The reduction of the measured NR with respect to the lower estimate for
the single atom dynamics and the exponent of 0.43± 0.03 of the scaling with
the atom number Ng in the ground state show that the experiments are done
in the strong blockade regime. According to section 3.2 the strong interaction
between the Rydberg atoms leads to the formation of collective states. In a
first approximation the dynamics of the Rydberg excitation in a rotary echo
sequence can be covered by a mean field model such as the superatom model
described in section 3.3.
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Figure 9.3.: a) Typical Rydberg atom numbers for different excitation times
τ . The atomic ground state density is ng = 5.2×1019 m−3, i.e. Ng = 1.1×107

atoms and Ω0 = 2π× 91 kHz. The error bar indicates the statistical error due
to the average over ten independent measurements. b) Rydberg atom number
(���) as a function of the atom number in the ground state and the atomic
ground state peak density n0 (upper scale), respectively, for an excitation
time of τ = 478 ns. The red line is a fit to the data giving the dependence
NR ∼ N

0.43±0.03
g . For the non-interacting case an exponent of one is expected.

The non-interacting case is depicted by the black lines without a laser linewidth
(upper line) and with a finite laser linewidth (lower line). The filled data points
(�) indicate the atom numbers for which the rotary echo signals are shown in
figure 9.5.
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9.1. Rotary Echo

9.1.1. Rotary echo in the magnetic trap

z

x

y

780 nm
480 nm

B

Figure 9.4.: Configuration used for the ro-
tary echo measurements in the magnetic
trap. Both excitation beams are colinear
and copropagating. The 780 nm laser has
a waist at the position of the atoms of
600 µm and is σ

+-polarised with respect
to the quantisation axis pointing in the z-
direction. The 480 nm laser has a waist of
42 µm and is σ−-polarised.

Figure 9.4 shows the configuration for the excitation light used for the mea-
surements of the rotary echo with magnetically trapped atoms. A schematic
setup to flip the phase of the 480 nm light by 180 ◦ and, thus, the excitation
amplitude from Ω0 to −Ω0 can be found in figure C.2.

Both excitation beams enter the main chamber colinear and copropagating.
The 780 nm beam is collimated with a waist of 600µm at the position of the
atoms. The 480 nm beam is focused using an achromat in front of the chamber
to a waist of 42 µm. The polarisation of both beams are chosen such that the
Rabi frequency according to equation (1.24) is maximised. Hence, the 780 nm
beam is σ

+ and the 480 nm is σ
−-polarised with respect to the quantisation

axis point in the z-direction. Using this stretched transition also minimises
the unwanted population of the 43S1/2(j = 1/2,mj = −1/2) state through other
transitions as depicted in figure 6.2.

In order to investigate the dependence of the rotary echo signal on the
interaction VvdW ∼ C6n

2
g between the Rydberg atoms the atomic ground state

density is varied by means of a Landau-Zener sweep to the state 5S1/2(f = 1)
(see section 5.3.3) which is unaffected by the excitation light. Using this
technique the atomic peak density n0 in the state 5S1/2(f = 2,mf = 2) is
varied between 5.2×1019 m−3 without sweep and 0.4×1019 m−3 for a Landau-
Zener sweep time of 400ms. The temperature T=3.8 µK for the measurements
in the magnetic trap is constant.

A useful measure to investigate the interaction effect on the evolution of the
rotary echo signal is the visibility defined as [Mic91]

V =
NR(τp = 0)−NR(τp = τ/2)
NR(τp = 0) +NR(τp = τ/2)

. (9.5)

Three typical rotary echo signals for different atomic ground state densities
measured for a magnetically trapped atomic sample are shown in figure 9.5 for
an excitation time of τ = 478 ns. The effective single atom Rabi frequency Ω0
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Figure 9.5.: Three typical rotary echo signals for different atomic ground state
densities (see figure 9.3 b)) for an excitation time of τ = 478 ns. The Rydberg
atom number is according to the rotary echo scheme depicted in figure 9.1 a
function of the time τp at which the sign of the excitation amplitude is flipped
from Ω0 to −Ω0. A fit with a parabolic function yields the visibility in figure
a) (47 ± 8)% with n0 = 0.4 × 1019 m−3, in figure b) (48 ± 5)% with n0 =
1.5× 1019 m−3 and in figure c) (29± 6)% n0 = 5.2× 1019 m−3. The effective
single atom Rabi frequency was for all measurements Ω0 = 2π × 91MHz.

of 2π×91 kHz is calculated using equation (1.24) and (1.25) with a value for the
Einstein-A coefficient of Aba = 5535 s−1, obtained by numerically calculating
the overlap integral between the 5P3/2 and 43S1/2 state [Gra06]. A parabolic
function is fitted to the data to obtain the visibility and to guide the eye. The
correct functional dependence of the Rydberg atom number on τp is unknown
and currently under theoretical investigation [Her08].

However, it is obvious that with increasing density (figure 9.5 a) to c))
the number of excited Rydberg atoms increases while the visibility decreases.
Figure 9.6 shows the dependence of many of such visibility curves taken in the
magnetic trap for two additional excitation times τ = 534 ns and τ = 659 ns
for various densities of ground state atoms. Since the exact dependence on n0

and τ is unknown the data points are again fitted with the most simple guess,
here an exponential decay.

In section 9.3 the assumption of an exponential decay for the dependence of
the visibility on the excitation time will be used to investigate the dephasing
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of the atomic sample due to Rydberg-Rydberg interaction.
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Figure 9.6.: Visibility as a function of the peak density of ground state atoms
n0 for three different excitation times. All three data sets were fitted with a
simple exponential decay to guide the eye. The error bars are obtained from
the parabolic fits to the data similar to those in figure 9.5.

9.1.2. Rotary echo in the optical dipole trap

Additionally to the rotary echo measurements in the magnetic trap the same
sequence is performed with atoms in an optical dipole trap described in sec-
tion 5.4. A strong confinement in radial direction leads to a one dimensional
distriubtion of superatoms as discussed in chapter 8. The reduced number of
next neighbours in a one dimensional arrangement reduces the dephasing due
to the interaction between the superatoms and, hence, the visibility for a given
pulse duration is higher.

According to equation (7.7) the optical density on the long axis of the ODT
on resonance can be on the order of a thousand or even higher at atom numbers
of Ng � 105. Illuminating the atomic cloud along this axis would lead to an
inhomogeneous distributed Rabi frequency over the sample as the 780 nm light
would be absorbed. This problem is circumvented by the setup shown in figure
9.7. Since the radial width of the atomic cloud in the ODT is �6 µm the optical
density is �5 on resonance along the radial direction of the atomic sample. For
the rotary echo experiments the detuning from the intermediate 5P3/2 state is
again 2π×470MHz and the Rabi frequency can be assumed to be homogenous
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Figure 9.7.: Configuration used for the rotary echo measurements in the ODT.
The 780 nm laser propagates along the -x-axis to overcome inhomogeneities in
the Rabi frequency due to the high optical density on the long axis of the ODT.
The 780 nm laser has a waist at the position of the atoms of � 1mm and is
σ
+ polarised with respect to the quantisation axis pointing in the x-direction.

The 480 nm laser has is focused to a waist of 42 µm and is σ� polarised.

over the atomic sample.
In order to use the stretched transition 5S1/2(f = 2,mf = 2) via 5P3/2(f =

3,mf = 3) a small magnetic offset field is applied along the x-axis. The
780 nm laser is σ+-polarised with respect to B and has a waist of �1mm. The
480 nm laser is also circularly polarised, which leads, according to appendix
B, to a reduction of the Rabi frequency for the transition from 5P3/2(f =
3,mf = 3) to 43S1/2(j = 1/2,mj = 1/2) by a factor of 1/2. The effective single
atom Rabi frequency for the measurements of the rotary echo in the ODT is
Ω0 = 2π × 71 kHz.

The rotary echo experiment in the ODT is performed at temperatures be-
tween 5 µK and 8µK. The widths of the atomic cloud in the ODT are σr =
5.5 µm and σz = 500µm in radial and axial direction, respectively. The result-
ing atomic ground state densities are 3×1017 m−3 to 2×1018 m−3. Figure 9.8
shows, similar to figure 9.6, the visibility as a function of the atomic ground
state density for six different pulse durations. The data are again fit with an
exponential decay to guide the eye.

For short excitation times (τp = 207 ns) the visibility has a maximum value
of 75% and is not decreasing significantly if the atomic density of ground state
atoms is varied. The dependence of the visibility on the atomic density shows
for longer pulse durations roughly the same behaviour as in the magnetic trap.
A clear signature of a reduced dimensionality due to the stronger confinement
in radial direction is not visible. This result is in accordance with the obser-
vation of the dimensionality dependence of the scaling behaviour discussed in
section 8.3 of the previous chapter.
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Figure 9.8.: Visibility of the rotary echo signal for atoms trapped in an ODT
as a function of the peak density of ground state atoms n0 for six different
excitation times. All data sets were fitted with a simple exponential decay to
guide the eye. The error bars are obtained from the parabolic fits to the data
similar to those in figure 9.5.

The dephasing rates of the Rydberg state obtained from the dependence of
the visbility on the pulse duration assuming an exponential decay (see figure
9.12) is investigated in section 9.3. The rotary echo experiment is simulated
using the the Hamiltonian described in [Wei08]. A simpler mean field approach
for the basic understanding of the rotary echo is given in the next section.

9.2. Electromagnetically induced transparency

The principles of electromagnetically induced transparency (EIT) were intro-
duced in section 1.7. In this section the line shape of the EIT signal is used to
investigate the dephasing of the Rydberg state due to the van der Waals inter-
action between the Rydberg atoms. The Liouville operator given by equation
(1.31) takes additional dephasings of |e� and |r� into account. These dephasing
do not change the population of the states, but affect the coherence between
the states. The effect of the dephasing rates becomes important if their value
is similar to the corresponding decay rate of the state as depicted in figure 1.6.
Due to temperatures of <10 µK the motional degree of freedom of the atomic
sample is frozen out on the timescale of ≤100 µs of the experiments shown
in this thesis. Hence, the dephasing due to collisions can be neglected. This

127



9. Coherence properties

leads to the approximation of γed = 0. The dephasing rate γrd, however, is
dominated by the Rydberg-Rydberg interaction and exceeds easily the decay
rate of the Rydberg state, which is Γre � 10 kHz.

9.2.1. EIT of ultracold atoms

The susceptibility χ describes the response of an atom to an incident light
field. The imaginary part of χ is connected to the absorption of the light and
shows in the case of a three level atom the EIT features presented in figure
1.6.

Since it is experimentally difficult to directly measure χ a formula for obtain-
ing the coherence properties from measurable quantities must be found. In our
experiment we detect the atom number in the ground state using the absorp-
tion imaging scheme described in section 7.1. Thus, the coherence properties
must be evaluated from these pictures.

The polarisation of the atomic sample is for a weak probe laser the linear
response to the probe field and given by

P = �0χE0 = npa , (9.6)

with the particle density n and the polarisation per atom

pa = |dge| ςge , (9.7)

where |dge| is the dipole matrix element on the probe transition and ςge the
coherence between the states |g� and |e�. Hence, using equation (1.5) the
susceptibility can be written as

χ =
ng|dge|

2

�0�Ωp
ςge , (9.8)

with the atomic density of ground state atoms ng and the dipole matrix ele-
ment dge. The coherence ςge is a function of the two-photon detuning δ with
an on-resonance value of ςeg,0. Measuring the fraction χ/χ0 is equivalent to
measuring ςge/ςeg,0.

The latter fraction can be obtained from the absorption images in the fol-
lowing way. For the sake of simplicity it is assumed without loss of generality
that the coupling laser is off. The validity of the derived results if the coupling
laser is on was tested by numerical calculations of the Lindblad master equa-
tion for the three-level atom (see MatLab program in appendix A.3). In the
off-resonant case equation (7.7) must be modified by replacing σ0 with σ(δ)
from equation (7.3). The optical density becomes

(δ) =
N0

2πσrσz
· σ(δ) . (9.9)
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9.2. Electromagnetically induced transparency

On the other hand one obtains from an off-resonant absorption image according
to equation (7.8) an atom number

N(δ) = 2πσrσz
(δ)
σ0

. (9.10)

Combining equations (9.9) and (9.10) leads to

N(δ)
N0

=
σ(δ)
σ0

. (9.11)

The definition of the scattering cross section given by equation (7.3) can be
rewritten with the steady state solution of the two-level atom in equation
(1.15)

σ(δ) = σ0
Γeg

Ωp
· Im(ς �ge(δ)) . (9.12)

Finally, inserting equation (9.12) into (9.11) leads to

Im(ς �ge) =
Ωp

Γeg
·
N(δ)
N0

. (9.13)

Hence, the absorptive part of the χ, namely the imaginary part Im(χ) ∼

Im(ςge) can be obtained in the steady state from the absorption images by
dividing the off-resonant ‘atom number’ by the on-resonant atom number. In
the case of electromagnetically induced transparency a certain number of the
ground state atoms are excited to the Rydberg state and do not contribute to
the coherhence ςeg. Equation (9.13) must be corrected by this atom number
and reads

Im(ς �ge) =
Ωp

Γeg
·

N(δ)
N0 −N

max
R

, (9.14)

with N
max
R being the Rydberg atom number on two-photon resonance.

9.2.2. Experimental realisation

Figure 9.9 shows the details of the configuration used for the EIT measure-
ments of optically trapped ultracold Rydberg atoms. The ODT to trap the
atoms is described in section 5.4. The laser beam, which is usually used for the
absorption imaging of the atomic sample is replaced by the 780 nm excitation
laser for the Rydberg transition that is specially frequency stabilised with re-
spect to the 480 nm laser (see section 6.2). The 780 nm excitation laser beam
has a waist of 13mm and is σ+ polarised with respect to the quantisation axis
pointing along the y-direction. A CCD camera in this direction detects the
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9. Coherence properties

780 nm light. The 480 nm laser beam for the upper transition has again a waist
of 42 µm and is linearly polarised along the x-direction in order to optimise
the Rabi frequency on the 5P3/2(f = 3,mf = 3) to 43S1/2(j = 1/2,mj = 1/2)
transition.
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Figure 9.9.: a) Configuration used for the EIT measurements in the ODT. The
780 nm laser propagates along the y-axis and is detected using a CCD camera.
The 780 nm laser has a waist at the position of the atoms of �13mm and is σ+

polarised with respect to the quantisation axis pointing in the y-direction. The
480 nm laser has a waist of 42µm and is linearly polarised along x. b) Level
scheme involving the ground state 5S1/2(f = 2,mf = 2), the intermediate
state 5P3/2(f = 3,mf = 3) and the Rydberg state 43S1/2(j = 1/2,mj = 1/2)
coupled by the probe (780 nm) and coupling laser (480 nm), respectively.

To measure the EIT signal with a high contrast �50% of the incident light
should be absorbed by the atomic sample when the probe laser is on resonance.
In order to decrease the atomic peak density of ground state atoms such that
the optical density is on the order of 0.6 the atom number in the magnetic
trap is lowered by means of a Landau-Zener sweep (see section 5.3.3) before
loading the atoms into the ODT. Afterwards the atomic cloud is released from
the ODT and freely expands for 100 µs. The loading into the ODT is only
done to circumvent inhomogeneous magnetic fields during the switching of the
currents of the magnetic trap due to eddy currents.

The temperature of the sample in the ODT is T = 6.2 µK resulting in
atomic peak densities of nmax

0 = 5×1017 m−3 for 1 s Landau-Zener sweep time
and a minimal value of nmin

0 = 2 × 1017 m−3 for 4 s sweep time. After this
preparation the cloud is excited for 100 µs during which the atomic density
decreases further due to the free expansion to a value of �50% of the initial
value.

The Rabi frequency for the 480 nm laser has a value of Ωc = 2π × 8MHz,
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Figure 9.10.: Imaginary part of ς �ge as a function of the detuning δp of the probe
laser. The red curve is taken without the presence of a coupling laser, i.e.
Ωc = 0. The absorption and, thus, Im(ς �ge) decreases for δp → 0 if the coupling
laser is on. Im(ς �ge) = 0 is reached if no damping or dephasing occurs, i.e.
γrd = 0 (dashed blue line). With a finite dephasing due to interaction between
Rydberg atoms the depth of the dip decreases. The solid lines were calculated
by numerically diagonalising equation (9.15) with Ωp = 2π × 800 kHz, Ωc =
2π × 4.5MHz, γed = 0 and γrd = 2π × 2.5MHz. The natural linewidth of
|e� is Γeg = 2π × 6MHz and the 43S1/2 Rydberg state |r� has a decay rate
of Γre = 2π × 1.6 kHz. Both blue lines are calculated with a detuning δc =
2π× 0.75MHz and the green line is calculated with δc = −2π× 2.0MHz. The
atomic density of ground state atoms is n0 = 2.4× 1017 m−3.

which is again calculated using equation (1.24) and (1.25) and the Einstein-A
coefficient calculated with the program described in [Gra06].

Figure 9.10 shows the observation of Im(ς �eg) as a function of the probe
detuning δp. The red data set is a reference scan of δp in the case of a blocked
coupling laser, i.e. Ωc = 0. The result is the expected Lorentzian shaped
absorption line of the atomic transition with a natural linewidth of 2π×6MHz
as described in section 1.7. The value for Im(ςge) can be calculated by solving
the the Lindblad master equation

ς̇ = −
i

� [H, ς] + Ld(ς) , (9.15)

with the Hamilton operator from equation (1.30) and the dissipative Lindblad
operator from equation (1.31). The theory curves in figure 9.10 are calculated
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by diagonalising equation (9.15) using the MatLab program in appendix A.3.
The Rabi frequency for the probe laser is Ωp = 2π × 800 kHz for all theory
curves.
Switching the coupling laser on results in a reduction of the coherence between
the ground state |g� and the intermediate state |e� (see figure 1.6). Without
dephasing and a Rabi frequency of the coupling laser of Ωc = 2π × 4.5MHz
one would expect the dashed blue line with zero coherence between the ground
and the intermediate state, i.e. Im(ς �ge) = 0, for δp = 0 corresponding to a
maximal coherence of the states |g� and |r�. With dephasing the coherence
between |g� and |r� is smaller, i.e. Im(ς �ge) �= 0 for δp = 0.

The calculation for the two data sets shown in blue and green in figure 9.10
includes a dephasing rate of the Rydberg state γrd accordinging to equation
(1.31). The dephasing rate of the intermediate state γed is � 0 since dephasings
due to collisions can be neglected. Furthermore the decay rates of the Rydberg
state are Γre � 0 and Γrg = 0. Additionally, the detuning of the coupling laser
is taken into account by δc.

The Rabi frequency found for the coupling laser deviates from the calculated
value by a factor of ∼ 2. The considerations in [Hei08a] appendix B result in
a prediction that the splitting Ω� in figure 1.5 increases with the coupling
Rabi frequency according to

√
kΩc, where k is the number of atoms in the

intermediate state |e�. The differential energy shift in the dressed atom picture,
which is probed with the 780 nm light, reduces with 1/

√
k. A simple picture

is again given by the superatom model: The coupling to a state, which can
only populated by one atom, cannot render all N − 1 remaining members of
the superatom transparent. As a result of the decreasing differential energy
shift between the dressed states the transparency window of the EIT feature
narrows, resulting in the observation of a smaller coupling Rabi frequency Ωc.

For the investigation of the dephasing rates γrd it is useful to scan the
detuning of the coupling laser through the two-photon resonance and keep the
detuning of the probe laser fixed. With this method the Lorentzian absorption
profile is removed from the data accentuating the EIT feature.

Figure 9.11 shows the corresponding measurements of the EIT feature that
depends on the atomic ground state density and coupling Rabi frequencies. In
order to obtain the dephasing rate the data are first fitted with the analytical
function

Im(ςeg) =
4δ2Γe + Γr

�
|Ωc|

2 + ΓeΓr

�

||Ωc|
2 + (Γe − 2iδp) (Γr − 2iδ) |2

· Ωp , (9.16)

which is the first order expansion in the probe Rabi frequency of the solution
of equation (9.15). Thus, this equation is only valid in the regime where the
probe laser is in comparison to the coupling laser a small perturbation. The
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9.2. Electromagnetically induced transparency

only free fit parameters in this function are the two-photon detuning δ and the
rate Γr = Γre + γrd � γrd. The value for the maximal coupling Rabi frequency
is Ωc = 2π × 6.5MHz and the rate Γe = Γre + γed � Γre. The probe Rabi
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Figure 9.11.: Imaginary part of ς �ge as a function of the detuning of the coupling
laser δc. The data are normalised for |δc| � 0 to the value of Im(ς �eg) for Ωc = 0.
The red lines show the numerically obtained solution of equation (9.15) with
a probe Rabi frequency Ωp = 2π × 800MHz. The value of the coupling Rabi
frequency is in figures a) and b) Ωmax

c = 2π × 6.5MHz, in figure c) Ωmax
c /

√
2

and in figure d) Ωmax
c /2. The values for the calculation were obtained by pre-

fitting the data with the function given in equation (9.16). The insets in figure
b) show two typical absorption pictures of the atomic cloud for δc �= 0 (left)
and δc = 0 (right). The red and grey colour in these pictures corresponds to
an optical density of 0.4 and 0, respectively.

frequency is held constant with respect to the measurement shown in figure
9.10 and has a value of Ωp = 2π × 800 kHz.

The data in figure 9.11 shows a trend of the dephasing rate with the in-
teraction between the Rydberg atoms. For the highest atomic ground state
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peak density of n0 = 5.0 × 1017 m−3 the dephasing rate is about a factor of
two larger than in the measurement with the lowest density. The dephasing
rate is decreasing if the Rabi frequency decreases (see figures 9.11 e) and f)).
Although the coupling Rabi frequcency is lower in these measurements the
density was higher in comparison to the data shown in figure 9.11 b) and,
thus, the interaction induced dephasing rates are higher. The values for the
obtained dephasing rates are shown in figure 9.13 in the next section together
with the results from section 9.1 and in comparison to the expected trend from
a numerical simulation of the rotary echo.

9.3. Dephasing

This section aims to gather the dephasing rates of the Rydberg state from the
measurements presented in section 9.1 on the rotary echo experiments and the
EIT measurements in section 9.2. In the latter the dephasing rate γd = γrd is
obtained by investigating the imaginary part of the coherence between ground
and intermediate state. Since Im(ς �ge) is a function of the dephasing rate the
values could easily be found by fitting the data with the function given in
equation (9.16).

In the case of the rotary echo, however, the dephasing rate is not obviously
defined. This has two major reasons. The first is that the system in which
the rotary echo is measured is not in the steady state. The Rydberg atom
number increases linearly with the excitation time for the typical pulse lengths
of 0 ≤ τ ≤ 800 ns (see figure 9.3 a)) . The second reason for the lack of an
obvious dephasing rate is nescience of the exact dependence of the visibility on
the excitation time, which is currently a subject of theoretical investigation.

However, in order to find a measure for a dephasing rate one can assume in a
zeroth order approximation that the visibility depends on the excitation time
according to an exponential decay. Thus, the dephasing rate can be obtained
by fits to the data with an exponential decay and using

γd = −
1
τ

lnV (9.17)

This function has been fitted to the data shown in figures 9.6 and 9.8. As an
example the data from the measurements in the optical dipole trap are shown
in figure 9.12 with two of the exponential fits.

The dephasing rates from the rotary echo measurements and those obtained
from the EIT data are shown in figure 9.13 a) and b) as a function of the max-
imal Rydberg atom number NR. The atom number max(NR) is for the rotary
echo measurements the Rydberg atom number without phase flip NR(τp = 0)
and for the EIT measurements the Rydberg atom number on two-photon res-
onance NR(δ = 0).
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Figure 9.12.: Visibility of the rotary echo signal for an atomic sample trapped
in the ODT as a function of the excitation time. One finds a measure for
the dephasing rate assuming an exponential decay for the dependence of the
visibility on the pulse duration. Two fits of an exponential decay are shown as
examples in red. The inset shows a typical rotary echo signal for τ = 200 ns
and ng = 4.4× 1017 m−3. A visibility of 75% is obtained from a parabolic fit.

Additionally to the experimental data the rotary echo experiment is simu-
lated by H. Weimer. The simulation takes the Hamilton operator from equa-
tion (4.1) on two-photon resonance, i.e. δ = 0

H =
�Ω
2

�

i

σ(i)
x + C6

�

j<i

P
(i)
rr P

(j)
rr

|ri − rj |
6
, (9.18)

and numerically calculates the time evolution of N particles in a box with
volume Vb. Since the size of the Hilbert space grows exponentially with the
number of particles in the box the dipole blockade due to the van der Waals
interaction between the Rydberg atoms is used to reduce the number of di-
mensions drastically. A detailed description of the simulation can be found in
[Wei08]. The calculations are performed for N = 44 . . . 54, C6/V 2

b = 0.01 and
Ωτp = 0.32 . . . 0.74. The sign of the excitation amplitude is again flipped from
Ω to −Ω at the time τp. The treatment of the resulting rotary echo curves
are the same as with the experimental data, i.e. the visibility is obtained
by fitting a parabolic curve to the rotary echo signal. From the evolution of
the visibility with the excitation time τ the dephasing rate is obtained from
γd = − ln(V )/τ . Figure 9.13 c) shows the results of the simulation.
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Figure 9.13.: Collection of the dephasing rates γd as a function of the maxi-
mal Rydberg atom number NR. Figure a) shows the results from the rotary
echo measurements in the magnetic trap (���) and in the optical dipole trap
(���). Figure b) shows the dephasing rates γd = γrd obtained from the EIT
measurements presented in figure 9.10 (���) and figure 9.11 (���). Data from a
simulation of the rotary echo sequence are shown in figure c).

In section 6.2 it is pointed out that the two excitation laser have a frequency
uncertainty on the minute timescale of � 2π × 1.5MHz with respect to each
other. From the measurement shown in the inset of figure 9.12 an upper bound
for the laser linewidth on the 100 ns timescale of � 2π×200 kHz can be found.
The laser linewidth causes the same effect on the data as the dephasing due to
the interaction does, namely it decreases the visibility of the signal. However,
the ‘dephasing’ caused by instrumentation is much smaller than the observed
additional dephasing due to the interaction between the Rydberg atoms. Both
sets of data show the same trend of an increasing dephasing if the Rydberg
atom number is increased. This observation is strengthened by the numerical
simulation of the rotary echo experiment since these do not take any laser
linewidth into account: Both, the experimental data sets and the calculation,
reflect the same overall behaviour of the dephasing rate.

In order to study the dephasing of the sample of ultracold Rydberg atoms
more quantitavely in future experiments the interaction could be tailored, e.g.,
by increasing the confinement of the atomic sample in radial direction. If the
radial width becomes smaller than the blockade radius, i.e. the situation be-
comes purely one dimensional, the reduced number of next neighbours reduces
the dephasing due to the reduced interaction. Conducting the experiments in
an ODT with a tight radial confinement of the atomic cloud comes with the
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advantage that the dimensionality is reduced in comparison to the confinement
in the magnetic trap. Section 8.3 discusses the dimensionality issue on the ex-
ample of the universal scaling. Since the numerical apertures of the vacuum
chamber allow in principle much smaller foci than the currently implemented
21 µm waist of the optical dipole trap measurements of the coherence proper-
ties in a real one dimensional situation should be feasible in the future.
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Summary

In summary, during the course of this work an existing experimental setup was
modified in order to conduct measurements on the universal scaling behaviour
as well as the coherence properties of ultracold Rydberg atoms.
Universal scalings can be found in the vicinity of a second order phase transi-
tion. Here the scaling behaviour of the Rydberg excitation of ultracold atoms
was investigated dependent on the interaction and the dimensionality of the
density distribution of the atomic sample. The data used for the investigation
of the three dimensional scaling behaviour are published in reference [Hei07].
In order to change the density distribution from a three dimensional to a one
dimensional geometry an optical dipole trap was set up.
The coherence properties of strongly interacting ultracold Rydberg atoms have
been investigated by using two different methods. For the measurements in-
volving the rotary echo sequence a control over the phase of the excitation light
was implemented to the experiment. This led to the observation of rotary echo
signals, which were studied dependent on the interaction between the Rydberg
atoms [Rai08a].
The second experiment to investigate the coherence properties of a sample of
ultracold atoms that are excited into a Rydberg state involves electromagnet-
ically induced transparency. This coherent effect in a three-level system was
again studied dependent on the interaction by changing the atomic density of
ground state atoms and the Rabi frequency that couples the ground state and
the Rydberg state. The resulting dephasing rates of the atomic sample in the
Rydberg state were investigated for the rotary echo experiments as well as for
the experiments involving electromagnetically induced transparency [Rai08b].

Universal scaling

Based on the work previously done by R. Heidemann [Hei08a] and the theory
group of H. P. Büchler [Wei08] the first set of experiments presented in this
thesis investigated the universal scaling behaviour in the driven Rydberg sys-
tem. A second order quantum phase transition is predicted theoretically to
be found in the Rydberg system. A second order phase transition manifests
itself in the appearance of a universal scaling behaviour in a region around
the critical point at which the phase transition happens. The usual experi-
mental sequence that is used to excite ultracold Rydberg atoms takes place in
this critical region. Hence, a universal scaling behaviour is reported in these
experiments. The results presented in this work aimed at two goals, namely
identifying a universal scaling behaviour and to investigate the dimensional
dependence of the critical exponents ν. The critical exponents describe the
system around the critical point of the phase transition as any important vari-



Summary

able of the system can be expressed in terms of a power law of the form α
ν

with an dimensionless parameter α and the critical exponent ν. Moreover,
the critical exponents are of special interest because they are universal. That
means in every system that falls into the same universality class the same
behaviour with the same exponents will be found.

In this thesis the characteristic dimensionless parameter α was the fraction
Ve/Vi comparing the excitation energy Ve = �Ω with the van der Waals in-
teraction energy Vi = C6/r6. The strong van der Waals interaction between
the Rydberg atoms leads to a blockade of the Rydberg excitation. The exci-
tation curves can therefore be described to some extent by an initial slope R

and a saturation value Nsat to which the Rydberg atom number saturated for
long excitation times. The variables of interest are the variables fR and fsat

obtained from these characteristics of the Rydberg excitation curves. Both
variables are dimensionless and show a scaling behaviour according to α

νR

and α
νsat for fR and fsat, respectively.

In order to find a prediction for the expected values of the critical exponent ν
the superatom model introduced in [Hei07, Hei08a] was used. The superatom
model describes the atomic sample, that is exited to a Rydberg state in terms of
collective states. These collective states are a result of the strong blockade due
to the van der Waals interaction between the Rydberg atoms. The Rydberg
energy levels of neighbouring atoms around one Rydberg atom are shifted
out of resonance to the excitation lasers and a further excitation of atoms is
blocked up to a interatomic distance rb. For interatomic distances larger than
the blockade radius rb the power broadening exceeds the energy shift due to
the interaction and further Rydberg excitation is possible. Due to symmetry
reasons the atoms inside a sphere defined by the blockade radius collectively
share the Rydberg excitation. This collective state is called superatom as it
can be described like a simple two-level atom. The appearance of the collective
state can be found by observing the scaling behaviour of the initial slope R of
the Rydberg excitation dynamics.

The critical exponents ν in the vicinity of the second order quantum phase
transition in the Rydberg system have been predicted by using the superatom
model. Generally the critical exponent of the Rydberg system can be expressed
in terms of the dimensionality d of the system and the power p of the r-
dependence of the interaction. Thus, by investigating the critical exponent it
is possible to unveil the dimensionality of the Rydberg excitation distribution
inside the atomic sample and the type of the interaction between the Rydberg
atoms. In the experiments presented in this thesis the dimensionality of the
atomic sample was varied by confining the atoms either in a magnetic trap,
resulting in a rather three dimensional density distribution, or in an optical
dipole trap, in which the ratio between the blockade radius and the radial
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size of the atomic sample was lowered by a factor of two in comparison to the
magnetic trap. Both measurements showed a clear evidence for a universal
scaling and the existence of second order quantum phase transition in the
Rydberg system as the data depend on the parameter α with a power law. For
these measurements α was varied up to 15 orders of magnitude by changing
the atom number of the samples using a Landau-Zener sweep and by changing
the laser power resulting in a change of the Rabi frequency of the coupling of
the ground and the Rydberg state.

The investigation of the dependence of the critical exponent on the dimen-
sion of the density distribution of the atomic sample indicate that both, the
magnetically trapped atoms as well as the atoms trapped in the optical dipole
trap, behave rather as it is expected for a one dimensional density distribution.
However, the data calls in some points for a further theoretical and experi-
mental investigation as the scaling behaviour was not clearly reproduced by
the superatom theory. In future experiments the dimensionality of the atomic
sample can be further reduced using the experimental setup described in this
thesis. This gives the ability to precisely characterise the physics in the critical
region and the quantum phase transition of the Rydberg system in the future.

Coherence properties

The second part of the experimental results presented in this thesis dealt with
the investigation of coherence properties of the interacting Rydberg system.
For this observation basically two different methods were introduced. First,
the rotary echo sequence, which is well known from the research field of nuclear
magnetic resonance. It was used to investigate the dephasing of the atomic
sample that is excited to the Rydberg state. In the rotary echo sequence the
atomic sample was excited into the Rydberg state for a certain time τp after
which the sign of the excitation was reversed. If no decoherence or dephasing
occurs the complete population is reversed from the Rydberg state into the
ground state at the time 2τp. However, the investigated Rydberg systems in
this thesis were shown to be strongly interacting. This leads to a dephasing
of the atomic sample, which is measurable by observing the visibility of the
rotary echo signal.

In this thesis the first systematic measurement of the dephasing of a sam-
ple of Rydberg atoms is presented by using the rotary echo sequence. The
visibility of the rotary echo signal was investigated for magnetically trapped
atoms as well as for atoms trapped in an optical dipole trap. Visibilities of
75% were observed for atomic samples in an optical dipole trap. The exci-
tation times were varied between 200 ns and 800 ns. In addition, the atomic
density of ground state atoms was changed by means of a Landau-Zener sweep
resulting in a change of the interaction between the Rydberg atom and, thus,
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Summary

a systematic change of the dephasing of the atomic sample. Although the
exact dependence of the visibility on the atomic density and the excitation
time is unknown and under current theoretical investigation [Her08], a mea-
sure of the dephasing can be found by assuming an exponential decay of the
visibility with an increasing excitation time. As naively expected the dephas-
ing increases with an increasing number of Rydberg atoms. The results from
the measurements of the dephasing using the rotary echo sequence were com-
pared to a numerical calculation done by H. Weimer [Wei08]. This numerical
simulations show the same overall behaviour of the dephasing with increas-
ing Rydberg atoms number and, thus, confirm the conclusion drawn from the
experimental data.

Another type of experiments that can be used to investigate the dephas-
ing due to the interaction was introduced to the research field of Rydberg
atoms in reference [Moh07]: The electromagnetically induced transparency.
Electromagnetically induced transparency renders a medium transparent un-
der certain conditions, namely at least two lasers must drive the transition
between three levels of which one has a short lifetime in comparison to the
other two. If one of the two lasers is weak, i.e. its Rabi frequency is small in
comparison to the linewidth of the fast decaying state, and both lasers are on
resonance the medium becomes transparent for this weak laser.

The degree of the transparency of the medium depends on the decoherence
and the dephasing of the long-lived states. Hence, the observation of the
electromagnetically induced transparency constitutes an excellent tool for the
investigation of the dephasing of an atomic sample that has been excited to a
Rydberg state.

For the experiments on electromagnetically induced transparency presented
in this thesis a sample of ultracold ground state atoms was released from an
optical dipole trap. After the release from the trap the atomic sample ex-
panded freely for 100 µs and was than excited to the Rydberg state involving
an fast decaying intermediate state. The detection of the weak probe beam on
the lower transition led to the observation of a clear signal of electromagneti-
cally induced transparency. This signal was systematically studied for differ-
ent atomic densities and Rabi frequencies. The evaluation of the data showed
again the same overall behaviour as in the rotary echo measurements, namely
that an increasing number of Rydberg atoms led to an increasing dephasing of
the atomic sample due to the interaction between the Rydberg atoms. These
results are published in reference [Rai08b].
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Outlook

From the technical point of view the experiment needs only minor changes to
increase the stability and reliability of the setup. With the technical effort
in the last years the experiment can be run on a everyday basis. However,
a bigger issue which will be addressed in the near future is the stability of
the Rydberg excitation laser system. Especially the linewidth on the long
timescale, which is currently ∼ 1.5MHz needs to be reduced in further experi-
ments. For this purpose a ultrastable cavity will be used. This cavity is made
of Zerodur, a glass ceramic with a thermal expansion coefficient of ∼ 10−8 K−1.
Additionally the cavity will be place in a ultrahigh vacuum chamber removing
all disturbances of the environment. The long term stability is then expected
to be on the order of 100Hz.

The current experimental investigations successfully demonstrated the cre-
ation of molecules between a Rydberg atom and a ground state atom for the
first time [Ben08]. These weakly bound molecules have been predicted in the
references [Gre00, Gre06] to appear in samples of ultracold atomic sample that
are excited to a Rydberg state. The ultralong range binding of the ground state
atom to the Rydberg atom constitutes a novel type of binding and adds a fifth
type to the well known covalent, ionic, hydrogen like and van der Waals bonds
of molecules.

The fast evolving research field of ultracold Rydberg atoms makes it nearly
impossible to predict the direction into which future experiments will go. The
experimental setup presented in this thesis is specifically designed for investiga-
tion of ultracold Rydberg samples. Further studies of the coherence properties
of the Rydberg system will be one of the first points on the agenda. Based
on the experiences with the rotary echo experiment more elaborate sequences
known from the research field of nuclear magnetic resonance can be imple-
mented into the experimental setup. A sequence of two short pulses with a
180 ◦ phase flip of the excitation amplitude and a variable time between the
two pulses would result in a direct observation of the dephasing of the atomic
sample without the perturbing effects of the laser linewidth. Pulse sequences
in which the detuning is changed during the second pulse such that the detun-
ing caused by the interaction is compensated could lead to a higher visibility,
i.e. to longer coherence times of the Rydberg sample.

Experiments in which the detuning is changed are also interesting from the
theoretical point of view. Given the phase diagram presented in reference
[Wei08] it is possible to adiabatically move from the ‘paramagnetic phase’
into the ‘crystalline phase’. With the current experimental sequence, where
the light pulse is suddenly switched on, the system is projected to excited
Rydberg state and, thus, the system is no longer in the ground state of the
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Outlook

corresponding Hamiltonian. By adiabatically changing the detuning and the
laser power, i.e. the Rabi frequency, it is possible to keep the system in the
ground state of the Hamiltonian and move the system to the desired point
in the phase diagram. Using this method the phase diagram itself can be
mapped.
Another fascinating idea is to use the coherence properties of Bose-Einstein
condensates to study the distribution of Rydberg atoms in the atomic sample.
This could for example be achieved by interferometric measurements. In a first
approach the atoms from a BEC initially trapped in the 5S1/2(f = 2,mf = 2)
state could be brought into a superposition of this state and the 5S1/2(f =
1,mf = 1) state. Afterwards the part of the atoms in the 5S1/2(f = 2,mf = 2)
state are excited by the usual sequence discussed in this thesis into the Rydberg
state. The Rydberg atom will gather a phase due to the interaction with other
Rydberg atoms, which can be detected if the population is coherently reversed
back to ground state using for example a pulse sequence analog to the rotary
echo experiment. Interfering the matter waves will create a Mach-Zender in-
terferometer and result in an spatial interference pattern, which structure is
dependent on the accumulated phase. If the blockade radius is made much
smaller than the spatial size of the atomic sample it should be feasible to ob-
tain information about the spatial correlation function, i.e. the arrangement
of the superatoms, in the atomic sample from these interference patterns.

A last idea for an experiment that might be realised in the future is the
addressability of single sites in an optical lattice. The experimental setup
discussed in this thesis is not only designed for the excitation of Rydberg
atoms, but has also enough optical access to implement an optical lattice in
up to three dimension. For a first experiment of the single site addressability
the optical dipole trap that had been setup during my work on the experiment
can be extended to a one dimensional optical lattice. Applying an electric
field gradient using the eight capacitor plates over the atomic sample will
create a position dependent energy shift of the Rydberg state. Given that this
energy shift is large enough between to adjacent lattice sites a specific cite can
be addressed by a laser with a reasonable small linewidth. This experiment
would demonstrate a key ingredient for a quantum computer with neutral
atoms, namely that a qbit can be separately addressed.
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Appendix





A. MatLab programs

A.1. Calculation of the Rabi frequency

function [Omega,aPart]=RabiFreq(gs,es,I,Gamma,Int,omega,q)
% MatLab program for calculating the Rabi frequency
% ATTENTION: es MUST be the state with the higher energy!

if( nargin < 7 )
disp(’usage: [Omega,aPart] = ...

RabiFreqETC(gs,es,I,Gamma,Int,omega,q’);
disp(sprintf(’\n state = [l s j f mf] \n I: nuclear spin...

\n Gamma: radiative life time \n Int: intensity \n ...
omega: transition freuqency \n q: polarisation’));

return;
end

% Constants
hbar = 1.05457e-34;
eps0 = 8.854e-12;
c = 299792458;

l = gs(1); s = gs(2); j = gs(3); f = gs(4); mf = gs(5);
lp = es(1); sp = es(2); jp = es(3); fp = es(4); mfp = es(5);

% Calculating the angular part and the Rabi-frequency
% according to eq. 1.24. This might be modified if one
% prefers to use the dipole matrix element in stead of Gamma
aPart = (-1)^(lp+s+I-mfp+1)*...

sqrt((2*j+1)*(2*jp+1)*(2*f+1)*(2*fp+1))*...
sqrt(2*lp+1)*...
Wigner6j(lp,jp,s,j,l,1)*...
Wigner6j(jp,fp,I,f,j,1)*...
Wigner3j(f,1,fp,mf,q,-mfp);

Omega = aPart*sqrt(6*pi*c^2*Gamma*Int/(omega^3*hbar));

%% Used functions
%==========================================================%
% Calculating the Wigner3j-Symbols
% Author: David Terr, Raytheon, 6-17-04
function wigner = Wigner3j(j1,j2,j3,m1,m2,m3)

% error checking
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if ( 2*j1 ~= floor(2*j1) || 2*j2 ~= floor(2*j2) || ...
2*j3 ~= floor(2*j3) || 2*m1 ~= floor(2*m1) || ...
2*m2 ~= floor(2*m2) || 2*m3 ~= floor(2*m3) )

error(’All arguments must be integers or half-integers.’);
end

% Additional check if the sum of the second row equals zero
if ( m1+m2+m3 ~= 0 ),

disp(’3j-Symbol unphysical’);
wigner = 0;
return;

end

if ( j1 - m1 ~= floor ( j1 - m1 ) )
disp(’2*j1 and 2*m1 must have the same parity’);
wigner = 0;
return;

end

if ( j2 - m2 ~= floor ( j2 - m2 ) )
disp(’2*j2 and 2*m2 must have the same parity’);
wigner = 0;
return;

end

if ( j3 - m3 ~= floor ( j3 - m3 ) )
disp(’2*j3 and 2*m3 must have the same parity’);
wigner = 0;
return;

end

if j3 > j1 + j2 || j3 < abs(j1 - j2)
disp(’j3 is out of bounds.’);
wigner = 0;
return;

end

if abs(m1) > j1
disp(’m1 is out of bounds.’);
wigner = 0;
return;

end

if abs(m2) > j2
disp(’m2 is out of bounds.’);
wigner = 0;
return;

end

if abs(m3) > j3
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disp(’m3 is out of bounds.’);
wigner = 0;
return;

end

t1 = j2 - m1 - j3;
t2 = j1 + m2 - j3;
t3 = j1 + j2 - j3;
t4 = j1 - m1;
t5 = j2 + m2;

tmin = max(0, max( t1, t2 ));
tmax = min(t3, min( t4, t5 ));

wigner = 0;

for t = tmin:tmax
wigner = wigner+(-1)^t/(factorial(t)*factorial(t-t1)*...

factorial(t-t2)*factorial(t3-t)*factorial(t4-t)*...
factorial(t5-t));

end

wigner = wigner*(-1)^(j1-j2-m3)*sqrt(factorial(j1+j2-j3)*...
factorial(j1-j2+j3)*factorial(-j1+j2+j3)/...
factorial(j1+j2+j3+1)*factorial(j1+m1)*...
factorial(j1-m1)*factorial(j2+m2)*factorial(j2-m2)*...
factorial(j3+m3)*factorial(j3-m3));

%==========================================================%

%==========================================================%
% Calculating the Wigner6j-Symbols using the Racah-Formula
function WignerReturn = Wigner6j(j1,j2,j3,J1,J2,J3)

% Check that the js and Js are only integer or half integer
if (2*j1 ~= round(2*j1) || 2*j2 ~= round(2*j2) || ...

2*j2 ~= round(2*j2) || 2*J1 ~= round(2*J1) || ...
2*J2 ~= round(2*J2) || 2*J3 ~= round(2*J3))
error(’All arguments must be integers or half-ints.’);

end;

% Check if the four triads ((j1 j2 j3),(j1 J2 J3),...
% (J1 j2 J3),(J1 J2 j3)) satisfy the triangular inequalities
if (abs(j1-j2) > j3 || j1+j2 < j3 || abs(j1-J2) > J3 || ...

j1+J2 < J3 || abs(J1-j2) > J3 || J1+j2 < J3 || ...
abs(J1-J2) > j3 || J1+J2 < j3 )
disp(’6j-Symbol is not triangular!’);
WignerReturn = 0;
return;

end;
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% Check if the sum of the elements of each traid is an integer
if (2*(j1+j2+j3)~=round(2*(j1+j2+j3)) || 2*(j1+J2+J3)~=...

round(2*(j1+J2+J3)) || 2*(J1+j2+J3) ~= ...
round(2*(J1+j2+J3)) || 2*(J1+J2+j3) ~= ...
round(2*(J1+J2+j3)))

disp(’6j-Symbol is not triangular!’);
WignerReturn = 0;
return;

end;

% Arguments for the factorials
t1 = j1+j2+j3;
t2 = j1+J2+J3;
t3 = J1+j2+J3;
t4 = J1+J2+j3;
t5 = j1+j2+J1+J2;
t6 = j2+j3+J2+J3;
t7 = j1+j3+J1+J3;

% Finding summation borders
tvec = [ t1 t2 t3 t4 t5 t6 t7 ];
tmin = max(0, max(t1, max(t2, max(t3,t4))));
tmax = min(t5, min(t6,t7));

% Calculation the sum part of the 6j-Symbol
WignerReturn = 0;
for t = tmin:1:tmax,

WignerReturn = WignerReturn+(-1)^t*factorial(t+1)/( ...
factorial(t-t1)*factorial(t-t2)*factorial(t-t3)* ...
factorial(t-t4)*factorial(t5-t)*factorial(t6-t)* ...
factorial(t7-t));

end

% Calculation of the 6j-Symbol
WignerReturn = WignerReturn*sqrt(TriaCoeff(j1,j2,j3)* ...

TriaCoeff(j1,J2,J3)*TriaCoeff(J1,j2,J3)* ...
TriaCoeff(J1,J2,j3));

%==========================================================%

%==========================================================%
% Calculating the triangle coefficient
function tc = TriaCoeff(a,b,c)

tc = factorial(a+b-c)*factorial(a-b+c)*factorial(-a+b+c)/...
(factorial(a+b+c+1));

%==========================================================%
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A.2. Calculation of the ac-Stark shift

% MatLab program for caluclating the Stark shift in 87Rb

% Constants
c = 299792458;
hbar = 1.05457e-34;
kb = 1.38065e-23;

% 87Rb properties
omegaD1 = 2*pi*377.107463e12;
GammaD1 = 2*pi*5.747e6;
omegaD2 = 2*pi*384.230484e12;
GammaD2 = 2*pi*6.066e6;
omegaL = 2*pi*c/lambda;
mass=1.443e-25;

% Dipole trap properties
lambda = 825.7e-9; % laser wavelength
w0=20.8e-6; % waist of the dipole trap beam
M2 = 1.54; % propagation constant
zR = pi*w0^2/lambda/M2; % Rayleigh range
T = 6.2e-6; % Temperature
P = 22.4e-3; % Power

% Ground state
gstate = [0 0.5 0.5 2 2];
I = 3/2;

% Polarisation (see Appendix B for details)
%qS=[-1 1]; % sigmaMinus sigmaPlus
qS=0; % linear

% Intensity
Int = 2*P/(pi*w0^2);

% Excited states of the D1 line
estateD1A = [];
lp = 1;
sp = 0.5;
jp = lp-sp;
for fpc = I-jp:1:I+jp

for mfpc = -fpc:1:fpc
estateD1A = [estateD1A; lp sp jp fpc mfpc];

end
end;

% Excited states of the D2 line
estateD2A = [];
lp = 1;
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sp = 0.5;
jp = lp+sp;
for fpc = I-jp:1:I+jp

for mfpc = -fpc:1:fpc
estateD2A = [estateD2A; lp sp jp fpc mfpc];

end
end;

% If the light is sigmaMinus/sigmaPlus polarised the
% intensity of each component must be according to equation
% (B.8) multiplied by a factor 1/2
if qS~=0

fInt = 0.5;
else

fInt = 1;
end

% Stark shift
EStark = 0;
estateTD1 = [];
for k = 1:size(estateD1A,1)

estate = estateD1A(k,:);
for q=qS

[Omega,aPart] = RabiFreq(gstate,estate,I,GammaD1,...
fInt*Int,omegaD1,q);

if aPart ~= 0
estateTD1 = [estateTD1; estate];

end
EStark = EStark+hbar*Omega^2/(4*(omegaL - omegaD1));

end
end

estateTD2 = [];
for k = 1:size(estateD2A,1)

estate = estateD2A(k,:);
for q=qS

[Omega,aPart] = RabiFreq(gstate,estate,I,GammaD2,...
fInt*Int,omegaD2,q);

if aPart ~= 0
estateTD2 = [estateTD2; estate];

end
EStark = EStark + hbar*Omega^2/(4*(omegaL-omegaD2));

end
end

sigma0x = sqrt(kb*T*w0^2/(4*(-EStark)));
sigma0z = sqrt(kb*T*zR^2/(2*(-EStark)));
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A.3. Calculation of the three-level atom

function ergOut = ThreeLevelAtom(D,par)
% MatLab program for the calculation of the 3-level atom
% (|1> - |2> - |3>) using the Lindblad master equation
% given in (1.11)
%
% Usage (input parameters):
% D = [D1; D2]
% D1: detuning first transition; row vector
% D2: detuning second transition; row vector
%
% par = [O1 G2 O2 G3 Gd2 Gd3 time]
% O1: Rabi frequency first transition
% G2: lifetime |2>
% O2: Rabi frequency second transition
% G3: lifetime |3> ( G3 << G2 )
% Gd2: additional dephasing only on the (12) offdiagonal
% elements of the Liouville operator
% Gd3: additional dephasing on the (23) and (13) offdiag.
% elements of the Liouville operator
% time: excitation time
%
% Output: ergOut = [D1 D2 rho[11 12 ... 33]]

D1 = D(1,:);
D2 = D(2,:);

if sum(D1-D1(1)*ones(1,size(D1,2))) == 0
D1 = D1(1);

end
if sum(D2-D2(1)*ones(1,size(D2,2))) == 0

D2 = D2(1);
end

O1 = par(1); G2 = par(2);
O2 = par(3); G3 = par(4);
Gd2 = par(5);
Gd3 = par(6);
time = par(7);

% Preparation of all atoms in the ground state
C0=[1; zeros(8,1)];

ergOut = zeros(size(D1,2)*size(D2,2),11);
j=1;
for D1C = D1

for D2C = D2

% Hamilton operator
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H = [
0 O1/2 0;
O1/2 D1C O2/2;
0 O2/2 (D1C+D2C);
];

% Representation of the Hamiltonian as a 9x9 matrix
% for diagonalisation
Hrho = kron(H,eye(3));
rhoH = kron(eye(3),H’);

% Linblad operator (also 9x9 matrix)
L = zeros(9,9);
L(1,5) = G2;
L(2,2) = -1/2*(G2 + Gd2);
L(3,3) = -1/2*(G3 + Gd3);
L(4,4) = -1/2*(G2 + Gd2);
L(5,5) = -G2;
L(5,9) = G3;
L(6,6) = -1/2*(G2 + G3 + Gd2 + Gd3);
L(7,7) = -1/2*(G3 + Gd3);
L(8,8) = -1/2*(G2 + G3 + Gd2 + Gd3);
L(9,9) = -G3;

[HV,HD] = eig(-i*(Hrho-rhoH)+L);

Z=diag(HD,0);

% Calculation of the time evolution
% Result is a 9x9 matrix, which rows contain the
% density matrix entries: [D1 D1 rho_gg rho_ge ...]
ergOut(j,:)=[D1C D2C (HV*diag(exp(Z*time))*...

inv(HV)*C0)’];
j=j+1;

end
end
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B. Polarisation and light

The knowledge of the polarisation of the light with respect to the quantisation
axis is crucial for the calculation of the electric dipole matrix elements and
the resulting Rabi frequency given by equations (1.5) and (1.24). This chapter
aims at lifting the confusion of the terms used to describe the polarisation with
and without respect to the atom.

The electric field of the light is given by

E(z�, t) = �









E0x�

E0y� eiφ

0



 ei(kz
�−ωt)




 (B.1)

where it is assumed that the plain wave is propagating along the z
� direction

with a frequency ω. The prime denotes the coordinate system of the light.
The phase φ determines the polarisation of the light:

1. φ = 2π ·m (m ∈ ) results in linearly polarised light

2. φ = π/2+2π ·m (m ∈ ) and E0x� = E0y� = E0/
√
2 results in σ

� circularly
polarised light that describes a right handed screw when looking towards
the light source. Hence, it rotates counterclockwise to the left and has a
positive helicity.

3. φ = −π/2 + 2π · m (m ∈ ) and E0x� = E0y� = E0/
√
2 results in σ

r

circularly polarised light that describes a left handed screw when looking
towards the light source. Hence, it rotates clockwise to the right and has
a negative helicity.

It is important to note that unless a quantisation axis is chosen the po-
larisation of the light has no distinctive significance for the transitions in
the atom driven by the electric field. The quantisation axis of the atom is
given by a magnetic field B = Bêz along the z axis in the coordinate system
of the atom (without prime). Modeling the atom according to the Lorentz-
Lorenz atom model as harmonic oscillators as it is describes in the references
[Lor80a, Lor80b] the differential equation for the motion of the electron reads

mr̈ +mω
2
0r + e ·E = 0 , (B.2)
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with the atomic resonance frequency ω0. Assuming a σ
r polarised electric field

E(z, t) =
E0
√
2
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0



 , (B.3)

propagating along the z-axis, e.g. k � êz, one finds the solution
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·
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0



 . (B.4)

Hence, the electron follows the electric field vector. In other words, if a
right circularly polarised light wave propagates colinear with the magnetic
field defining the quantisation axis the electron describes a screw in time and
position with negative helicity: The light is σ

− polarised with respect to the
atom. If the light is σ

� polarised the light is called σ
+ polarised as the screw

would have a positive helicity. Swapping the magnetic field would mean that
σ
� becomes σ− with respect to the atom.
Light with σ

+ polarisation drives transitions in the atom with ∆m = +1,
where σ

− light drives transitions with ∆m = −1, where m is the projection of
the orbital momentum onto the quantisation axis. Such an assertion cannot
be assigned in the case of σ� and σ

r! If the light is linearly polarised and this
polarisation is along the quantisation the light is called π polarised and drives
transitions with ∆m = 0.

It is convenient to introduce a transformation matrix to transform from the
(x, y, z)-system into the (σ−

,π,σ
+)-system, since this is the only system which

has a meaning with respect to the atom. The transformation is given by



E

−

E
π

E
+



 = U




Ex

Ey

Ez



 , (B.5)

with the transformation matrix

U =
1
√
2




1 i 0
0 0

√
2

−1 i 0



 , (B.6)

and its inverse transformation

U−1 =
1
√
2




1 0 −1
−i 0 −i

0
√
2 0



 , (B.7)
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If the light does not penetrate the atom colinear to the quantisation axis
equation (B.5) becomes
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−

E
π

E
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 = U ·D




Ex
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 , (B.8)

with the coordinate transformation

D =




êxê
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êzê
�
x êzê
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 . (B.9)

Example

Atom Light
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Figure B.1.: Illustration of the coordi-
nate systems with respect to the atom
and the light.

Assuming a left circular polarised light

E =
E0
√
2
�









1
i

0








 , (B.10)

in the primed coordinate system shown in figure B.1 becomes with the coor-
dinate transformation

D =




0 0 −1
0 1 0
1 0 0



 , (B.11)

according to equation (B.8) a superposition of σ+, σ− and π light
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 (B.12)
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C. Electronics

C.1. Push-pull switch
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Figure C.1.: a) Circuit of the push-pull switch for switching small currents.
This switch is used in the electrical setup of the magnetic trap (see figure 5.5).
The ±15V are provided by DC-DC converter (Traco Power TEL 3-1223), such
that the computer control (TTL in) is separated from the experiment. The
figure b) and c) show typical switching times for the current Io through the
bias coils to compensate the offset. The time of � 1.5ms for switching on the
current might be limited by the power supply. The switching TTL is indicated
by the upper signals.
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C. Electronics

C.2. Phase switch for AOMs
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Figure C.2.: Schematic of the cir-
cuit used to flip the phase of the
480 nm laser by π using the single
pass AOM depicted in figure 6.4.
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Figure C.3.: RF amplitude in figure a) without and in figure b) with π-phase
flip. The frequency is 230MHz.
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C.2. Phase switch for AOMs
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Figure C.4.: Example of a light pulse used in the rotary echo experiments. The
inset shows a zoom to the break-in of the light pulse during the phase flip.
The intensity breaks down for 20 ns.
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thesis, Faculte des Sciences de Paris (1924). 6, 17

[DeM98] DeMarco, B. and Jin, D. S.: Exploring a quantum degener-
ate gas of fermionic atoms. Phys. Rev. A, 58(6):R4267 (1998).
DOI: 10.1103/PhysRevA.58.R4267. 17

[Die01] Dieckmann, K.: Bose-Einstein Condensation with High Atom
Number in a Deep Magnetic Trap. Ph.D. thesis, Universiteit van
Amsterdam (2001). URL http://www.amolf.nl/publications/
theses/dieckmann/dieckmann.pdf. 75

[Dür00] Dür, W.; Vidal, G.; and Cirac, J. I.: Three qubits can be entan-
gled in two inequivalent ways. Phys. Rev. A, 62(6):062314 (2000).
DOI: 10.1103/PhysRevA.62.062314. 10, 21

167

http://dx.doi.org/10.1103/RevModPhys.70.707
http://dx.doi.org/10.1103/PhysRevA.72.023405
http://dx.doi.org/10.1103/PhysRevA.72.023405
http://dx.doi.org/10.1103/PhysRevLett.95.253002
http://dx.doi.org/10.1103/PhysRevLett.95.253002
http://dx.doi.org/10.1103/PhysRevA.58.R4267
http://www.amolf.nl/publications/theses/dieckmann/dieckmann.pdf
http://www.amolf.nl/publications/theses/dieckmann/dieckmann.pdf
http://dx.doi.org/10.1103/PhysRevA.62.062314


Bibliography

[Ein24] Einstein, A.: Quantentheorie des einatomigen idealen Gases.
Sitzungsberichte der preussischen Akademie der Wissenschaften,
71:463 (1924). 6, 17

[Ein25] Einstein, A.: Quantentheorie des einatomigen idealen
Gases. Zweite Abhandlung. Sitzungsberichte der preussis-
chen Akademie der Wissenschaften, p. 3 (1925). URL
http://www.lorentz.leidenuniv.nl/history/Einstein_
archive/Einstein_1925_publication/. 6, 17

[Fan61] Fano, U.: Effects of Configuration Interaction on Intensi-
ties and Phase Shifts. Phys. Rev., 124(6):1866–1878 (1961).
DOI: 10.1103/PhysRev.124.1866. 12, 41

[Fis98] Fisher, M. E.: Renormalization group theory: Its basis and formu-
lation in statistical physics. Rev. Mod. Phys., 70(2):653–681 (1998).
DOI: 10.1103/RevModPhys.70.653. 22, 62

[Fle05] Fleischhauer, M.; Imamoglu, A.; and Marangos, J. P.: Electro-
magnetically induced transparency: Optics in coherent media. Rev.
Mod. Phys., 77:633–673 (2005). DOI: 10.1103/RevModPhys.77.633.
12, 37, 38

[Foo05] Foot, C. J.: Atomic Physics. Oxford University Press (2005). 75

[För48] Förster, T.: Zwischenmolekulare Energiewanderung
und Fluoreszenz. Annalen der Physik, 437:55–75 (1948).
DOI: 10.1002/andp.19484370105. 47

[Gal94] Gallagher, T. F.: Rydberg Atoms. Cambridge University Press
(1994). 45, 46

[Gra06] Grabowski, A.: Aufbau einer Messapparatur zur Laserkühlung
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