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Abstract

Within the scope of this work an experiment to cool rubidium atoms down to
temperatures in the µK region has been set up. The final goal of this experiment
is to use this ultracold rubidium cloud as a high efficiency detector for single
photons. This detector will be an important part of a quantum computer,
that uses single photons as information carriers [KLM01]. Once the ultracold
rubidium cloud reaches the ideal parameters in temperature, density and atom
number, the single photons are sent into the atomic cloud, in which they will
modify the state of exactly one atom per incident photon. Together with the
single photons, a so-called coupling laser will be sent into the atomic cloud to
ensure an efficient modification of the atoms. This modification of the atoms
will be detected afterwards by fluorescence imaging.

The experimental setup has been used to perform measurements on elec-
tromagnetically induced transparency (EIT), an effect that makes otherwise
opaque matter transparent to light. This effect can also be used to reduce the
group velocity of light.

The main parts of the experimental setup are a vacuum chamber, mag-
netic coils and several laser systems. The vacuum chamber consists of the
main chamber, where the atoms are first evaporated from rubidium dispensers,
afterwards trapped magneto-optically and subsequently optically in a dipole
laser trap, and a pumping area, where the ultra high vacuum is produced.
Several magnetic coils are put around the chamber to produce the required
magnetic fields.
The laser system that produces the light to trap and cool the atoms consists of
three diode lasers and one tapered amplifier, which are running at a wavelength
of 780 nm. A Raman laser system that consists of three diode lasers, running at
795 nm, produces the probe light (that will be used as single photon source) as
well as the coupling light.
Furthermore, a CO2-laser, running at a wavelength of 10.6µm, produces up to
130 W optical power, which is used to capture the atoms in the dipole trap.



Abstract

In this work, a description of the setup of the vacuum chamber, the mag-
netic coils and the laser systems will be given.
Furthermore, calculations on single photon detection and measurements on the
atomic cloud will be presented. Finally, measurements with the Raman laser
system on EIT will be shown.

Up to 1.7 · 109 atoms were captured in the MOT, while about 2 % of
them have been transferred into the optical dipole trap.
Using the Raman laser system, EIT has been measured in optically trapped
rubidium atoms for the first time. Here, with 4 kHz, the so far narrowest EIT
bandwidth in ultracold atoms has been achieved.
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Zusammenfassung

Im Rahmen dieser Arbeit wurde ein Experiment zur Kühlung von Rubidiu-
matomen bis in den µK-Bereich aufgebaut. Das Ziel dieses Experiments ist die
Verwendung dieser ultrakalten Atomwolke zur Detektion von Einzelphotonen.
Dieser Detektor stellt einen wichtigen Bestandteil eines Quantencomputers dar,
der Einzelphotonen als Informationsträger nutzt [KLM01]. Sobald die ultrakalte
Atomwolke die idealen Parameter in Temperatur, Dichte und Atomzahl erreicht,
werden die Einzelphotonen in die Wolke geschossen, wo sie den Zustand eines
Atoms pro eintreffendem Photon verändern. Ein sogenannter Koppellaser wird
zusammen mit den Einzelphotonen auf die Wolke geschossen. Dieser sichert
eine effiziente Veränderung des atomaren Zustands. Diese Veränderung wird
anschließend durch Fluorenszenz detektiert.

Der Aufbau wurde genutzt um Messungen zur elektromagnetisch induzierten
Transparenz (EIT), einem Effekt der optisch trübe Materie transparent macht,
durchzuführen. Dieser Effekt kann auch genutzt werden, um die Grup-
pengeschwindigkeit von Licht zu reduzieren.

Die Hauptbestandteile des Experiments sind eine Vakuumkammer, Mag-
netspulen und mehrere Lasersysteme. Die Vakuumkammer besteht aus einer
Hauptkammer, in der die Atome zuerst von Rubidiumdispensern verdampft,
dann magneto-optisch und anschließend in einer optischen Dipolfalle gefangen
werden, und einem Pumpkreuz, in dem das Ultrahochvakuum erzeugt wird.
Mehrere Magnetspulen befinden sich an der Kammer um die erforderlichen
Magnetfelder zu erzeugen.

Das Lasersystem, mit dessen Licht die Atome gefangen und gekühlt wer-
den, besteht aus drei Diodenlasern und einem Tapered Amplifier, welche auf
einer Wellenlänge von 780 nm laufen. Ein Ramanlasersystem, das aus drei
Diodenlasern besteht, welche auf 795 nm laufen, erzeugt sowohl das Licht des
Probelasers (welches später als Einzelphotonenquelle benutzt wird) als auch das
Licht des Koppellasers.



Zusammenfassung

Des weiteren erzeugt ein CO2-laser bei einer Wellenlänge von 10.6µm bis zu
130 W optische Leistung, welche genutzt wird, um die Atome in einer Dipolfalle
zu fangen.

Diese Arbeit enthält eine Beschreibung der Vakuumkammer, der Magnet-
spulen und der Lasersysteme. Es werden sowohl Messungen zur Atomwolke
selbst, als auch Messungen mit dem Ramanlasersystem zur EIT gezeigt.

Bis zu 1.7 · 109 Atome wurden in der MOT gefangen, von denen etwa 2 %
in die optische Dipolfalle transferiert wurden. Mit Hilfe des Ramanlasersystems
wurde EIT zum ersten Mal in optisch gefangenen Atomen demonstriert. Dabei
wurde mit 4 kHz die bisher schmalste EIT Linienbreite in ultrakalten Atomen
erreicht.

Eine umfassende Zusammenfassung dieser Arbeit in deutscher Sprache findet
sich in Anhang F.
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1. Introduction

1.1 Recent developments leading to this

project

Within the last 20 years, great progress was made in the field of atom- and
quantum optics. Three of the recent developments in this field are combined
to fulfill the goal of this experiment: to build a high efficiency single photon
counter. These three developments will be briefly reviewed:

1. Laser cooling
The most popular of these developments were the techniques of laser cooling:
in so-called magneto-optical traps, neutral atoms are cooled and trapped at the
same time, which was first demonstrated by Steven Chu in 1986 [RPC+87].
This atom trap is able to capture relatively fast atoms and is thus used as the
first trap in a trapping sequence, consisting of several traps, being applied after
each other. Because the lowest temperature achievable in this kind of trap
is in the 10µK region, the cold atoms are often transferred into another trap
afterwards.
Another method to trap atoms is the optical dipole trap, which uses strong
lasers and a tight focus to capture the atoms in a conservative potential. It was
also realized for the first time in 1986 by Steven Chu [CBAC86].

2. EIT and STIRAP
Independently from the progress in laser cooling, Harris and co-workers examined
a new effect of light-matter-interaction in three-level systems, which is called elec-
tromagnetically induced transparency (EIT) in 1989 [HFI90]. This effect shows
a complete absence of laser light absorption when a second laser beam, which
is resonant on a second transition of the medium, is applied. Furthermore, this
effect is accompanied by a greatly enhanced non-linear susceptibility. This gives
rise to many further effects as e.g. the slowing and stopping of light. In ultracold
atoms, this has first been demonstrated by Hau and co-workers [HHDB99].



1. Introduction

The group of Klaas Bergmann investigated EIT in a different way by the usage
of molecular beams instead of confined atoms [BTS98]. The movement of the
molecules through the Gaussian shaped lasers adds a time-dependence to the
intensity of the light-matter-interaction (described by the Rabi-frequency). This
leads to a transfer of the photonic state to an internal state of the medium.
Because the light-matter-state follows the change in the Rabi-frequency, this
effect is called stimulated Raman adiabatic passage (STIRAP). Meanwhile, this
effect has also been demonstrated in atoms, where the moving frame of the
molecules has been replaced by modulating the laser-intensities adequately.
Liu and co-workers have demonstrated the successful combination of laser cooling
with EIT and STIRAP in one experiment [HHDB99, LDBH01].

3. Theory on quantum computation and photon detectors
In 2001, Knill, LaFlamme and Milburn proposed a new quantum computation
scheme that uses single photons as information carriers [KLM01]. Such a
quantum computer requires only linear optical parts like beam splitters, which
makes it very robust against perturbations. The downside of this simple scheme
is the necessity of high efficiency single photon sources and counters, which
are not yet available. However, lots of research has been performed on high
efficiency single photon sources within the last years [KHBR99, MKB+00], but
high efficiency single photon counters have not been realized.
In 2002, Atac Imamoǧlu [Ima02] and independently James and Kwiat [JK02]
proposed that the transfer of light onto an atomic state can be used to build
a single photon detector, that has a detection efficiency of more than 99 %.
Furthermore, such a detector is able to distinguish between photon number
states up to n ≈ 50.
Besides quantum computation, such a detector can also be used for high
efficiency quantum communication [BEKW02, CMJ+06] or a loophole-free test
of Bell’s inequalities [ADR82].

The detector of Imamoǧlu combines the three developments described above in
one experiment and is currently being set up at the 5th Institute of Physics at
the Universität Stuttgart.
The goal of the experimental setup described in this thesis is the realization of
such a high efficiency photon counter.
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1.2. Scheme of the experiment

1.2 Scheme of the experiment

The idea is to capture a cloud of ultracold atoms. Then, together with a coupling
laser, the single photons, that shall be counted, are sent into the chamber. The
coupling laser ensures that each single photon transfers an atom into a defined
state. The transferred atoms are subsequently detected by fluorescence imaging.

As this scheme is very sensitive to polarization, a well defined magnetiza-
tion axis is needed. This can only be provided by a high and homogeneous
magnetic offset field. The only atom trap that can be combined with such
a magnetic field is a dipole laser trap, which thus has to be used in the experiment.

As the atoms, which have not been transferred by a single photon also
scatter detection light and therefore spoil the detection process, they have to
be removed from the trap before the detection. This can be done by applying
a strong magnetic gradient, pulling out all atoms, which have been collected
in a magnetically sensitive state, while it leaves the atoms, which have been
transferred by the single photons to a magnetically neutral state, in the trap for
detection.

Finally, the whole detection scheme reads:

1. Atomic cooling
The first step is to capture ultracold rubidium atoms in a ultrahigh vacuum
chamber. The atoms are first trapped and cooled in a magneto-optical trap
(MOT) before they are transferred into an optical dipole trap, where they are
further cooled down and prepared in a defined substate.

2. Adiabatic transfer
Subsequently, the single photons are sent into the cloud. They are accompanied
by a coupling laser, which ensures that each single photon transfers one atom
into a defined state. Hereby, the laser intensities perform the STIRAP sequence.

3. Removal of unwanted atoms
After this transfer, the atoms that have not been transferred will be removed
from the trap by applying a strong magnetic field gradient.

4. The detection process
Then, the transferred atoms will be counted by fluorescence detection.

13
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1.2.1 The idea

Compared to the scheme described above, the initial idea [Ima02] was to capture
the ultracold rubidium atoms in a magnetic trap. As will be shown in the next
sections, the single photon transfer is very sensitive to the polarizations of the
single photons and the coupling laser and a wrong polarization would cause a
decrease of the detection efficiency. The polarization purity that can be achieved
with polarizing beamsplitter cubes and λ-plates is on the order of 1‰ [BHN07],
which is sufficient for the proposed experimental scheme. But likewise, the defi-
nition of the quantization axis, which is obtained from the magnetic field, must
be that pure as well. Because the direction of the magnetic field in a magnetic
trap is not homogeneous, there is no quantization axis that is parallel to the wave
vector of the light (over the whole size of the cloud) and thus this kind of trap
cannot be used.
Additionally, there are always stray fields. These vary from day to day and thus
their compensation shielding is extremely complicated if at all fully possible.
Hence, a high magnetic offset field is required because here the influence of the
stray fields onto the total field is minimized. This high offset field is another
reason why a magnetic trap is not suitable, as the confinement in magnetic traps
decreases for increasing offset fields [Pri83].

1.2.2 Atomic cooling

The solution is to use an optical dipole trap after the MOT loading phase. This
trap creates the confinement of the atoms and an additional high magnetic offset
field creates a well defined direction of the quantization axis with respect to
the wave vector of the light. In this trap, the atoms are cooled to a very low
temperature of ∼ 750 nK by evaporative cooling. At this point, the density and
temperature are just above the critical parameters required for achieving a Bose-
Einstein-Condensate (BEC).
Dipole traps can be easily realized at wavelengths around 1064 nm, as this light
traverses common optical viewports of vacuum chambers. This light is strongly
detuned from the D1 and D2 transition of rubidium and thus the scattering of
this light is strongly suppressed. Nevertheless, there are still disturbing scattering
events possible, when the intensity is increased accordingly. This leads to the
transfer of atoms from the initial ground state to a detectable |F = 2〉 ground
state. Because already one atom in a wrong state would spoil the whole detection
process (a photon would be counted although there wasn’t one), a CO2-laser has
to be used in this experiment. Its far infrared light is so far detuned from the
D1 and D2 lines that scattering is suppressed to less than 1 photon per second
[CRGW03].

14
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As a shortcoming, this light cannot be sent through ordinary glass windows and
zinc-selenid (ZnSe) windows have to be used instead.
To enhance the optical density of the ensemble, an elongated atomic cloud will
be used. A single beam trap would be ideal for this, but it cannot be used as
it is not possible to overlap the single photons with the CO2-laser because the
ZnSe-windows would absorb the single photons. As a solution, a crossed beam
geometry has been chosen. The dipole trap beams meet under an angle of 60◦

and create a slightly elongated cloud. The single photons are then sent along the
long axis of the cloud.

As it is not possible to optically pump atoms into state |a〉 with high effi-
ciency, the atoms are first pumped into state |m〉 and then transferred to state
|a〉 with a microwave Landau-Zener sweep [RKLK81]. The complete level scheme
of the photon detection process is shown in figure 1.1.

Fig. 1.1: Level scheme of
87Rb, which will be used to
detect single photons. All
relevant states are shown,
including the lasers that
couple them to each other
during the single photon
transfer and the detection
afterwards. Furthermore,
the microwave transition,
which is used at the end
of the optical pumping pro-
cess, is shown as a grey ar-
row. The D1 line is used
for the single photon trans-
fer and the D2 line for the
detection process.

15
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1.2.3 Adiabatic transfer

Then, together with a coupling laser, the single photons, which are resonant
on the |a〉–|c〉 transition, are sent into the cloud. The coupling laser, which is
resonant on the |b〉–|c〉 transition, ensures that the atoms end up in the defined
state |b〉. To get an efficient transfer, the laser intensities will be modulated to
perform a STIRAP-sequence (Stimulated Raman Adiabatic Passage) [BTS98],
which is capable of unity transfer efficiency [GRSB90]. It is shown in figure 1.2.

Fig. 1.2: Pulse sequence of the
coupling and the probe laser.
Here, the probe laser carries the
single photons.

In this sequence, the coupling laser is turned on before the single photons arrive
to create a quantum interference between two states (e.g. |b〉 and |c〉). Then it is
slowly turned off while the probe laser (here the single photons) is slowly turned
on (and then off again).
The polarizations of the Raman lasers are adjusted to connect the states |a〉, |c〉
and |b〉 with the polarizations shown in figure 1.1. In this configuration, the single
photon is π-polarized because the |a〉–|c〉 transition has a higher Clebsch-Gordan-
coefficient than the |a〉–|d〉 transition, which results in a higher optical density
for the single photons.

1.2.4 Removal of unwanted atoms

There is another problem with the initial proposal: one detectable atom scatters
about 104 photons per ms. Due to the solid angle (∼ 1 %) and the detection
efficiency (∼ 70 %), about 70 scattered photons will be detected per ms. This
is sufficient for single photon detection. But the atoms, which will remain in
state |a〉 will offresonantly scatter the fluorescence light as well. Due to the large
detuning (6.8 GHz), the scattering rate at low light intensities is suppressed by
a factor of 106. Assuming 43000 atoms in this state (see section 8.1), this adds
a negligible offset on the order of 0.043 (compared to the light of one atom) to
the detection light. Within the detection time of 1 ms, about 430 photons will
be scattered by these atoms. Due to the atomic decay, about 215 atoms will end
up in an |F = 2〉 ground state, from where they will be indistinguishable from

16



1.3. About this thesis

the atoms, which have been transferred by single photons. Thus, the fluorescence
light will increase exponentially and a single photon detection is not possible.
Therefore, the atoms in state |a〉 have to be removed before the single atom
detection process.
This can be done by applying a strong magnetic field gradient parallel to the offset
field. In this configuration, the direction of the magnetic field is maintained and
the gradient can more easily be achieved. This gradient pulls out all atoms which
are not in the magnetically neutral states |k〉 and |b〉, in which the atoms are
transferred by the single photons. (Due to the quadratic Zeeman effect, these
states also become magnetic in very strong fields. But at the field strengths used
in this experiment, this does not have to be taken into account.)
For the removal of the atoms, the dipole trap must be shallow enough and so it
will be ramped down before the STIRAP.

1.2.5 The detection process

The transferred atoms will afterwards be detected by fluorescence. After few
transitions between states |b〉, |e〉, |h〉 and |f〉, the atoms will end up in state |j〉
and scatter light on the closed |j〉–|g〉 transition, which can be detected with a
high efficiency Em-CCD camera [MSK+03, DAK+05, WVS+06]. The intensity
of the scattered light is then proportional to the number of atoms in state |j〉,
which is itself proportional to the number of incident single photons. Thus, a
quantitative analysis of the scattered light yields the number of incident photons.

1.3 About this thesis

Within the scope of this work, the experiment has been designed and set up.
Calculations have been made to determine its optimal parameters. The rubidium
atoms have been captured in the MOT and afterwards in a single beam as well
as in the crossed beam optical dipole trap. These optically trapped atoms have
been used to measure electromagnetically induced transparency with the Raman
laser system.
The design, setup and measurements are the content of this thesis.

In part I the required theoretical basics will be shown. As all experiments
start with cooling and trapping of atoms, the cooling techniques used in this
experiment will be first described in chapter 2. We will then turn the focus onto
the optical properties of atoms, first of the simplified two-level atom in chapter 3,
then on multilevel atoms in chapter 4.

17



1. Introduction

In part II, the experimental setup will be explained, starting with the vacuum
chamber in chapter 5, the magnetic fields in chapter 6 and the laser systems in
chapter 7.

In part III, the calculations required for the design of the experiment and
the measurements will be shown. They contain the calculations on the single
photon detection and electromagnetically induced transparency, provided in
chapters 8 and 9, respectively.

Finally, the experimental results will be presented in part IV. They con-
tain the measurements on the magneto-optical trap and the dark MOT
(chapter 10), the dipole trap (chapter 11), absorption measurements (chapter 12)
and electromagnetically induced transparency (chapter 13).

The next steps of the experiment will be discussed in chapter 14 and ad-
ditional information will be given in the appendices.
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Part I

Theoretical basics





2. Atomic cooling

In this chapter, I will briefly discuss the different cooling techniques of the
experiment. It starts with principle light forces, which can be used to build
magneto-optical traps and optical dipole traps. These are described subsequently.
Furthermore, the quadratic Stark effect will be introduced. This effect is not
only necessary for the understanding of the working principle of optical dipole
traps, but it is also responsible for limiting the bandwidth of EIT signals.
The chapter will close with basic information on magnetic forces and cold
collisions.

2.1 Light forces in two-level-atoms

As it has been shown in [MvdS99], the total light force acting on two-level-atoms
can be split into a dissipative spontaneous and a conservative dipole force

F = Fsp + Fdip . (2.1)

The spontaneous force results from the momentum transfer from the light onto
the atoms and the following random decay process. The so-called magneto-
optical trap (MOT) is based on this force and sketched in section 2.2.

The dipole force results from the atomic polarizability that yields a dipole
moment when atoms are irradiated with offresonant laser beams. The force of a
strongly red-detuned focused laser beam can be used to trap ultracold atoms.
That kind of trap is called an optical dipole trap and is described in section 2.3.

It is also possible to trap atoms magnetically. As the chamber also pro-
vides a magnetic trap, this is sketched in section 2.5.
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2.2 Magneto-optical trap

When an atom is exposed to light, it scatters the light of the beam. Every time
a photon is absorbed, it transfers its directed momentum onto the atom. As the
following emission process has no preferred direction, all the momenta transferred
in the emission cancel each other on average out. The resulting force can be used
to build a magneto-optical trap. Here, usually 3 orthogonal pairs of counter-
propagating circular polarized laser beams meet at the spot where the atoms
shall be trapped (see figure 2.1). Due to the Doppler shift of the atoms, they
create a velocity-dependent force

~F = −β~v , (2.2)

where ~v denotes the velocity of the atoms and β is a proportionality factor.

Fig. 2.1: Three-dimensional
setup scheme of a MOT. It
shows the six polarized laser
beams, the magnetic coils and
the electric currents which flow
through them.

Additionally, two coils in Anti-Helmholtz-configuration create a magnetic quad-
rupole field. Its Zeeman shift alters the absorbtion probabilities of the 6 laser
beams, which results in a spatial confinement of the atoms in space. Together
with the velocity dependent force we get a confinement in momentum- and real
space

~F = −β~v − κ~r , (2.3)

where ~r denotes the spatial coordinate and κ is a proportionality factor.

A detailed description of magneto-optical traps is e.g. given in [MvdS99].
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2.3. Dipole trap

2.3 Dipole trap

The most simple optical dipole trap consists of one far red detuned laser that
is tightly focused in the trap center [GWO00]. This offresonant laser induces a
dipole moment in atoms, resulting in a potential that is given by

V = −1

2
α cos2 ωtE2

0 , (2.4)

where α = α(ω) denotes the atomic polarizability (see section 2.4), ω the laser fre-
quency and E0 the electric field amplitude of the laser beam. Using the definition
of the light intensity

I =
1

2
c ε0E

2
0 (2.5)

and averaging over the fast oscillations of the light field, which the atoms cannot
follow

cos2 ωt
T

=
1

2
(2.6)

we find

V = −1

2

α

c ε0

I. (2.7)

The intensity of a circular Gaussian beam, which is propagating along the ζ-axis,
is given by

I =
2P

πw2
e−

2ρ2

w2 , (2.8)

where P denotes the laser power and ρ the radial coordinate. The beam waist w
at a distance ζ from the trap center can be obtained from

w = w0

√
1 + (ζ/ζ0)2, (2.9)

where w0 is the beam waist at the trap center and ζ0 the Rayleigh length

ζ0 =
πw2

0

λ
. (2.10)

Hence, we derive for the potential:

V = − αP

c ε0πw2
0

1

(1 + ζ2λ2

π2w4
0
)

exp



− 2ρ2

w2
0(1 + ζ2λ2

π2w4
0
)



 (2.11)

For the case α > 0, this potential is shown in figure 2.2.
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2. Atomic cooling

Fig. 2.2: A focused
Gaussian beam
traveling in the
ζ-direction and the
potential V of the
dipole force created
by this beam.

It is convenient to express the potential via trap frequencies for each direction,
as it is usually done for the potential of a harmonic oscillator

Vho =
1

2
mω2

x x
2 , (2.12)

For this, we first evaluate the potential along the respective axis, perform a Taylor
expansion afterwards and neglect the lowest order term (the zero-point energy)
as well as terms in higher order than 2:

Vρ(ζ = 0) = − αP

πc ε0w2
0

e
− 2ρ2

w2
0

≈ 2αP

πc ε0w4
0

ρ2 (2.13)

Comparison with the harmonic oscillator (equation 2.12) leads to the radial trap
frequency

ωρ, ζ=0 ≈
2
√
αP√

mπc ε0w2
0

(2.14)

where m is the mass of a rubidium atom. Analogous we find the axial trap
frequency

ωζ, ρ=0 ≈
λ
√

2αP√
mπ3 c ε0w3

0

. (2.15)

The case of a dipole trap with two beams (crossed beam geometry) is discussed
in appendix B.
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2.4. Quadratic ac-Stark effect

2.3.1 Density distribution in a dipole trap

The density distribution of an atomic cloud follows a Maxwell-Boltzmann-
distribution

n(~r) = n0e
−

U(~r)
kBT . (2.16)

In a dipole trap, the energy U(~r) equals the potential V (~r). For the three dimen-
sions, the distribution in the harmonic regime is defined by the widths σi of the
cloud. Comparing the two definitions of the distribution (via the widths and via
the trapping potential)

n(~r) = n0 exp

(
− m

2kBT
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)

)

!
= n0 exp

(
−1

2

(
x2

σ2
x

+
y2

σ2
y

+
z2

σ2
z

))
(2.17)

connects the widths with the trapping frequencies by

σi =
1

ωi

√
kB T

m
; i = x, y, z (2.18)

The peak density n0 can be obtained from the integral

∫
n(~r) d3~r = N

=⇒ n0 =
N

(2π)3/2σxσyσz

, (2.19)

with N being the total atom number.

2.4 Quadratic ac-Stark effect

In 1967, Sandars has shown that the hyperfine state of an atom contributes to its
quadratic electric-field dependence [San67]. These small contributions (. 10−5)
are not relevant for capturing atoms in an optical dipole trap, but they have to
be considered for an estimation of the minimum achievable EIT line width in
optically trapped atoms, as will be shown in chapter 9.
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2. Atomic cooling

For F = I + 1/2 states of hydrogen-like atoms, the polarizability is given by

α(ω) = α0(ω) + α10(ω) +
(
α12(ω) + α02(ω)

) 3m2
F − (I + 1

2
)(I + 3

2
)

I(2I + 1)
(2.20)

and for F = I − 1/2 states by

α(ω) = α0(ω) − I + 1

I
α10(ω) +

3m2
F − (I2 − 1

4
)

(I − 1)(2I − 1)
(2.21)

×
{

(2I − 1)(I − 1)

I(2I + 1)
α12(ω) +

(2I + 3)(I − 1)

I(2I + 1)
α02(ω)

}
.

Here, I is the nuclear spin, α0(ω) is the familiar polarizability in the absence of
hyperfine effects, while α10(ω), α12(ω) and α02(ω) are the contributions from the
contact, the spin-dipolar and the quadrupole part of the hyperfine-interaction,
respectively. As all polarizabilities depend on the laser frequency, we always
have to take the far-offresonant values, as the optical dipole trap is far detuned
from resonance.

According to Lipworth and Sandars, α12 and α02 occur only due to an
electric field-induced admixture of the near-lying P -state of the same principle
quantum number [LS64]. This allows to express them in terms of experimentally
known quantities by

α12 = 3 I
A3/2α0

4 ∆W
(2.22)

α02 =
B3/2α0

2 ∆W
, (2.23)

where ∆W is the energy difference between the nS and nP states and A3/2 and
B3/2 are the magnetic dipole and electric quadrupole hyperfine constants of the
P3/2 state, respectively [CAB+68].

Using α0 = 7.94 · 10−6 Hz/(V/m)2, A3/2 = 84.7185 MHz, B3/2 = 12.4965 MHz,
∆W = 3.84228 · 1014 Hz and I = 3/2 [Ste02], one finds

α12 = 1.9695 · 10−12 Hz
m2

V2
(2.24)

α02 = 1.2912 · 10−13 Hz
m2

V2
. (2.25)
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2.5. Magnetic forces

In terms of the equations above, Mowat, who measured the |F = 1, mF = 0〉–
|F = 2, mF = 0〉 transition in the ground state of rubidium [Mow72], was able to
determine

4

3
α10 −

1

3
α12 = 1.227 · 10−10 Hz

m2

V2
, (2.26)

which leads to

α10 = 9.252 · 10−11 Hz
m2

V2
. (2.27)

This shows that the contact interaction (α10) dominates the hyperfine contribu-
tions to the quadratic Stark shift.

2.5 Magnetic forces

Due to the Zeeman effect, also magnetic forces can be applied on atoms. The
force of a magnetic gradient is given by

~Fy = −mFgFµB
d ~B

dy
, (2.28)

where mF denotes the magnetic quantum number of the hyperfine state F
with respect to the quantization axis, gF the Landé-g-factor and µB the Bohr-
magneton. Such a gradient will e.g. be used to pull unwanted atoms out of the
dipole trap.

But it can also be used to form a conservative potential for atoms, which
results in a magnetic trap [Pri83]. The chamber provides a so-called QUIC-trap
[EBH98], which requires only three magnetic coils. In the harmonic regime, its
trap frequencies depend on the gradient and curvature of the magnetic field
(denoted in the directions of our setup)

ωx ,z =

√
gFmFµB

m

(
B′2

B0

− B′′

2

)
(2.29)

ωy =

√
gFmFµB

m
B′′ , (2.30)

where B0 denotes the field offset, B′ the gradient in radial direction and B′′ the
field curvature.
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2. Atomic cooling

2.6 Cold Collisions

In a MOT, the collisions of cold atoms with each other are not necessary for
cooling while they are necessary for evaporative cooling in a dipole trap. But
collisions also involve loss mechanisms for trapped atoms. These collisions can be
treated quantum mechanically by the well developed scattering theory [BJL+02].

There exist three relevant kinds of collisions: elastic and inelastic colli-
sions, as well as collisions with the background gas.

Elastic collisions can e.g. occur between two trapped atoms. In effect,
they lead to a thermalization of the atomic cloud which is very important for
the evaporative cooling, which uses the effect of thermalization. These collisions
are called good collisions because they don’t involve a loss of atoms.

Inelastic collisions also occur between two or more trapped atoms. But
contrary to the elastic collisions, these collisions change e.g. the internal
state of the atoms. It is possible that the spins of the atoms flip and the
energy gained in this process can be transformed into kinetic energy, which
causes the atom to leave the trap. Hence, these collisions are called bad collisions.

Another type of bad collisions are collisions between atoms and the back-
ground gas (and also collisions between the trapped atoms and atoms from the
atom source). Here, it doesn’t matter if the collisions are elastic or inelastic. As
the background gas atoms are at room temperature, they kick every hit atom
out of the trap, whose depth is only ∼ 10−5Troom. This effect limits the lifetime
in the trap, which can be estimated via

τD ≈ 1.3 · 10−8 1

p
mbar · s , (2.31)

where p denotes the pressure in the chamber [MvdS99].

It is obvious that a high ratio between good and bad collisions is needed
to cool atoms in a dipole trap efficiently. For example, a ratio of more than 500
is needed for achieving a Bose-Einstein-Condensate (BEC).
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3. Two-level atoms

In this chapter, I will first introduce the Rabi-frequency, which is a quantity for
the light-matter interaction. It will be described for the cases of single photons,
lasers acting on collective atomic states and and Gaussian laser beam acting on
Boltzmann-distributed clouds.
The Rabi-frequencies will then be used to describe the light-matter interaction
in two-level atoms, which will yield the atomic properties for the passage of light
through the medium.

3.1 Single photon Rabi-frequency

Most calculations of the following sections depend on the Rabi-frequency, which
is a quantity for the light-matter interaction and shall be introduced here:
if one neglects the zero-point energy of the light field, the interaction Hamiltonian
between the light field and the atomic two-state system is given by [Sch01]

Hint = ~Ω(~r) (σ̂â† + σ̂†â) , (3.1)

where σ̂† denotes the creation operator of the atomic state. That means, this
operator causes an atom to get from the ground into the excited state. As the
atom has to absorb light to get into the excited state, this operator always comes
together with a destruction operator â, that takes a photon out of the light field.
σ̂ and â† are the corresponding destruction and creation operators.
In equation 3.1,

Ω(~r) =
| ~̂d ~̂ǫ|
~
E0(~r) (3.2)

denotes the space-dependent Rabi-frequency, with ~̂d being the electric dipole
moment operator of the atomic transition (the transition matrix element), ~̂ǫ the
unit polarization vector of the electric field and E0(~r) the electric field amplitude
of the light.



3. Two-level atoms

Using the definition of the saturation intensity

Isat =
c ε0Γ

2
~

2

4| ~̂d ~̂ǫ|2
(3.3)

and the intensity of the light field

I(~r) =
1

2
c ε0E

2
0(~r) , (3.4)

equation 3.2 reduces to

Ω(~r) = Γ

√
I(~r)

2Isat

. (3.5)

For 87Rb, numerical values of the saturation intensity can be found in [Ste02] for
several polarization vectors.
For a Gaussian beam profile the intensity is not homogeneous over the area A of
the beam and additionally the intensity of the pulse can be varied with time. For
the case of a monochromatic quantized light field, the intensity can be obtained
from the normalization integral

Tp∫

0

∫
I(~r) dAdt = n ~ω . (3.6)

Here, Tp and n denotes the length and the total photon number of the pulse,
respectively. The equations above are valid for all quantized light fields, that
means also for single photons.

3.1.1 Collective Excitations

Usually, the atoms in an ensemble are treated individually. But quantum me-
chanically they have to be treated as a collective [Dic54]: when an atom in an
ensemble gets excited and it has not been measured which atom it is, the excita-
tion does not correspond to a certain atom – it rather corresponds to a collective
excitation of all atoms.
When all N atoms in an ensemble are in the ground state |g〉, their collective
ground state is given by a superposition of all ground states:

|g〉 = |g, g, ..., g〉 = |g〉1 |g〉2 · · · |g〉N (3.7)

If only the first (resp. second) atom is in an excited state |e〉, the state of the
ensemble is given by:

|e, g, ..., g〉 = |e〉1 |g〉2 · · · |g〉N (3.8)

|g, e, ..., g〉 = |g〉1 |e〉2 · · · |g〉N (3.9)
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3.1. Single photon Rabi-frequency

If the atom, that carries the single excitation is not known, the excitation is a
symmetric superposition of all possible excited states:

|ψ〉e =
1√
N

(
|e, g, ..., g〉 + |g, e, ..., g〉 + · · · + |g, g, ..., e〉

)
, (3.10)

where the factor 1/
√
N comes from the normalization of this state. This formula

is only valid if all atoms experience the same Rabi-frequency and thus have the
same probability to get excited. If each atom i experiences the Rabi-frequency Ωi,
its probability of excitation gets modified. This changes also the superposition of
the excited state:

|ψ〉e =
1√∑

i Ω
2
i

(
Ω1|e, g, ..., g〉 + Ω2|g, e, ..., g〉 + · · · + ΩN |g, g, ..., e〉

)
, (3.11)

with the new normalization constant 1/
√∑

i Ω
2
i . The collective dipole operator

is given by a sum over the dipole operators of each atom

d̂ = d̂1 + d̂2 + · · · + d̂N , (3.12)

where d̂i only acts on atom i with the Rabi-frequency

Ωi = 〈g| d̂i |g, ... ei, ..., g〉 . (3.13)

This finally leads to the modification of the Rabi-frequency

〈g| d̂ |ψ〉e =

√∑

i

Ω2
i (3.14)

of a collective atomic ensemble and a light field, where only one excitation is
possible. For two and more possible excitations the formula has to be modified
analogous [TIL03].
If all atoms experience the same Rabi-frequency, formula 3.14 simplifies to

〈g| d̂ |ψ〉e =
√
NΩ (3.15)

3.1.2 Collective Rabi-frequency in a
Boltzmann-distributed cloud

In general, the simplified formulas above are not valid because the laser intensity
as well as a cold atomic cloud are Gaussian and Boltzmann-distributed, respec-
tively.
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3. Two-level atoms

In the harmonic regime, the density of the cloud is given by a Gaussian (see
section 2.3.1)

n3d = n0 exp

(
−1

2

(
x2

σ2
x

+
y2

σ2
y

+
z2

σ2
z

))
. (3.16)

A laser traveling in positive x-direction ”sees” the two-dimensional distribution
of the cloud

n2d(y, z) =

∞∫

−∞

n3d(~r) dx =
N

2πσyσz

exp

(
−1

2

(
y2

σ2
y

+
z2

σ2
z

))
. (3.17)

In this case, the sum in equation 3.14 has to be replaced by an integral:

〈g| d̂ |ψ〉e =

√∫ ∞

−∞

∫ ∞

−∞

Ω2(y, z)n2d(y, z) dy dz (3.18)

This integrates the Rabi-frequency and the probability to find the respective Rabi-
frequency over space. As the Rabi-frequency as well as the probability depend
on the coordinates y and z, one has to integrate over them.
If we assume the Rayleigh-length of the probe beam to be much larger than the
atomic cloud along the x-direction, the intensity of the probe beam is given by

I(y, z) =
2P

πwywz

exp

(
−2

(
y2

w2
y

+
z2

w2
z

))
, (3.19)

where P , wy and wz are the power and the beam waists of the laser.
The space-dependent Rabi-frequency is given by

Ω(y, z) = Γ

√
I(y, z)

2Isat

(3.20)

This leads to the overlap integral between the Gaussian single photon beam and
the atomic distribution

Ωtot = 〈g| d̂ |ψ〉e =






∞∫

−∞

∞∫

−∞

Γ2

2Isat

2P

πwywz

exp

(
−2

(
y2

w2
y

+
z2

w2
z

))

× N

2πσyσz

exp

(
−1

2

(
y2

σ2
y

+
z2

σ2
z

))
dy dz

}1/2

= Γ

√
P N

Isat

1

(4σ2
y + w2

y)
1/4

1

(4σ2
z + w2

z)
1/4

. (3.21)

It can be seen that the collective Rabi-frequency becomes maximal when the
beam focus is minimized.
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3.2 Description of the two-level atom

The most basic atomic model consists of two levels, which are coupled by a laser.
This model is sketched in figure 3.1.

Fig. 3.1: Two atomic levels and
the laser, that couples the states.
The laser has a frequency ωL and
a Rabi-frequency ΩL. |a〉 denotes
the ground state, |b〉 the excited
state. The decay rate of the ex-
cited state |b〉 is Γ. In the case
shown, the detuning ∆ is nega-
tive.

For a single two-level atom, I will define the following basis for the states shown
in figure 3.1:

|a〉 =

(
0
1

)
; |b〉 =

(
1
0

)
(3.22)

The atomic state |ψ〉 is then given by

|ψ〉 = c|a〉|a〉 + c|b〉|b〉 =

(
c|b〉
c|a〉

)
, (3.23)

where c|a〉 and c|b〉 denote the population amplitudes in the indicated states. Ne-
glecting the movement of the atoms, the Hamiltonian of the combined atom-light
system is then the sum of the internal Hamiltonian and the Hamiltonian of the
light-matter interaction, represented by the Rabi-frequency Ω

Ĥ

~
= ω|a〉 |a〉〈a| + ω|b〉 |b〉〈b|
+ Ω cos(ωLt) |a〉〈b|
+ Ω⋆ cos(ωLt) |b〉〈a| . (3.24)

~ω|a〉 and ~ω|b〉 denote the energies of the indicated atomic levels, while ωL denotes
the frequency of the laser. The frequencies are connected with the detuning ∆ of
the lasers via

ωL = ω|b〉 − ω|a〉 + ∆ . (3.25)
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3. Two-level atoms

The cosine corresponds to the oscillation of the light wave with the frequency ωL.
Replacing the cosine by exponential functions and combining the equation in a
matrix yields

Ĥ

~
=

(
ω|b〉

1
2
Ω⋆(eiωLt + e−iωLt)

1
2
Ω(eiωLt + e−iωLt) ω|a〉

)
. (3.26)

The equations can be further simplified by transforming the Hamiltonian into a
frame that rotates with the laser frequency via [Hen04]

ˆ̃H = U †ĤU − i~U †∂tU . (3.27)

The transformation matrices are given by

U = exp
{

+ itωL|a〉〈a|
}

= exp

{
+it

(
0 0
0 ωL

)}
=

(
1 0
0 e+iωLt

)

U † = exp
{
− itωL|a〉〈a|

}
= exp

{
−it

(
0 0
0 ωL

)}
=

(
1 0
0 e−iωLt

)

∂tU =

(
0 0
0 iωLe

iωLt

)
(3.28)

The entries of these matrices rotate with the laser frequency ω. The first term of
the new Hamiltonian thus becomes:

U †ĤU

~
=




ω|b〉

Ω⋆

2
(eiωLt+e−iωLt)eiωLt

Ω
2
(eiωLt+e−iωLt)e−iωLt ω|a〉



 (3.29)

Now we expand the terms. The terms containing one ’+’ and one ’−’ sign in the
exponent cancel down to 1. The other terms rotate with the double frequency
2ωL or −2ωL. We assume that they rotate so fast that they cancel out in aver-
age. Furthermore, these terms correspond to improbable two-photon-transitions
[Sch01], which is also a justification to neglect them. This is called the rotating
wave approximation (RWA) and simplifies the above term to

U †ĤU

~
=

(
ω|b〉

1
2
Ω⋆

1
2
Ω ω|a〉

)
. (3.30)

By adding the second term of equation 3.27

−i~U †∂tU

~
=

(
0 0
0 ωL

)
, (3.31)
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3.2. Description of the two-level atom

simplifying the equations with help of the detuning (see figure 3.1), taking ~ω|b〉

as the zero-point energy and adding the atomic decay we find

ˆ̃H

~
=
U †ĤU − i~U †∂tU

~
=

(
−iΓ

2
1
2
Ω⋆

1
2
Ω ∆

)
. (3.32)

The atomic populations can then be calculated via the time-dependent
Schrödinger-equation

ˆ̃H

~
|ψ〉 = i

∂|ψ〉
∂t

, (3.33)

where the wave function |ψ〉 is given by equation 3.23.

Because not only the atomic populations but also the coherence between
them is of interest, we evaluate the behavior of the system with help of the
density matrix

ρ̂ =

(
ρbb ρba

ρab ρaa

)
. (3.34)

Using the Liouville equation

i ~ ˆ̇ρ = ˆ̃Hρ̂− ρ̂ ˆ̃H† (3.35)

and the hermitian conjugated Hamiltonian

ˆ̃H†

~
=

(
+iΓ

2
1
2
Ω⋆

1
2
Ω ∆

)
(3.36)

yields a linear system of coupled differential equations of first order for the density
matrix elements

ρ̇bb = −Γρbb −
i

2
(Ωρba − Ω⋆ρab)

ρ̇aa = − i

2
(Ωρba − Ω⋆ρab)

ρ̇ba = (−Γ

2
+ i∆)ρba −

i

2
Ω⋆(ρaa − ρbb)

ρ̇ab = (−Γ

2
− i∆)ρab +

i

2
Ω(ρaa − ρbb) . (3.37)

These equations can also be written as a 2 × 2 matrix. As the Hamiltonian
contains only the decay of the coherences and the populations, the population of
the excited state decays but does not end up in the ground state. If one wants to
include this, the term +Γρbb has to be added to the matrix element of the ground
state.
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3. Two-level atoms

Usually, the Rabi-frequency is real, that means Ω = Ω⋆. The four equations can
be reduced to 3 since

ρba = ρ⋆
ab (3.38)

is valid and the system is overdetermined.

Besides the description of the internal atomic states, equations 3.37 can
also be used to derive the rate at which a two-level atom scatters light [MvdS99].
This scattering rate reads

γp0 =
Γ

2

I/Isat

1 + I/Isat + (2δ/Γ)2
, (3.39)

where Γ is the natural decay rate, I the light intensity, Isat the saturation intensity
and δ the detuning from resonance.

3.3 Optical properties

If the Rabi-frequencies are not time-dependent, the equations 3.37 can be solved
analytically by diagonalizing the 2 × 2 matrix. This can also be done for time-
dependent Rabi-frequencies, but then the change in the Rabi-frequency must be
so low that the atomic system can follow it adiabatically.
However, the complete analytic solution is too long to be written out here, but it
can be approximated when we assume all atoms to be in state |a〉, that is ρaa ≈ 1.
The polarization of the atomic medium is then given by [Zim05]

P = n0 [µρba + c.c.] , (3.40)

where µ denotes the dipole matrix element of the transition and n0 the atom
number density. From this we get the linear susceptibility of the two-level atom
[Zim05, Sut97]

χ2l =
|µ|2 n0

~ǫ0

∆ + iΓ
2

(Γ
2
)2 + ∆2

. (3.41)

This formula describes the absorptive as well as the dispersive properties of the
medium. The transmitted electric field is then given by

Eout = Ein · exp {iklχ2l/2} , (3.42)

where l denotes the length of the medium and k the wave number.
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The intensity transmission is given by the imaginary part of the susceptibility
and the phase shift by the real part of the susceptibility. They are plotted in
figure 3.2.

Fig. 3.2: Real and imag-
inary part of the sus-
ceptibility, plotted for
n0|µ|2/~ε0 = 1. On res-
onance, the absorption is
maximal and the phase
shift zero. For large de-
tunings, the absorption
vanishes together with the
phase shift.

The group velocity is associated to the derivative of the refractive index

n =
√

1 + Reχ2l (3.43)

via

vgr(∆ = 0) =
c

n+ ωL
dn

dωL

∣∣∣
∆=0

=
c

1 + 2ωL|µ|2n0

ε0~Γ2

, (3.44)

where I have used
ωL = ω0 + ∆ =⇒ dωL = d∆ . (3.45)

In a typical atomic cloud, the group velocity is reduced by three orders of mag-
nitude.
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4. Multilevel atoms

This chapter deals with multilevel atoms and the properties they provide for the
passage of light through the medium. It starts with a survey of effects that are
observable in three-levels atoms. The effects are based on the quantum mechan-
ical description of the three-level atom, which will be discussed subsequently. In
the following sections, the effects themselves will be discussed. Corrections of
the three-level atom are discussed in section 4.7 and the expansion to the second
quantization is given in appendix C.

4.1 Three-level phenomena

Contrary to two-level atoms, more physical effects can be observed in three-level-
atoms. These effects are e.g. electromagnetically induced transparency (EIT),
dark state polaritons (DSPs), stimulated Raman adiabatic passage (STIRAP),
coherent population trapping (CPT) and slow and stored light.

Fig. 4.1: Three atomic levels in
Λ-configuration: |a〉 and |b〉 de-
note the ground states, |c〉 the
excited state. The atoms shall be
initially in the ground state |a〉.
The probe laser couples states |a〉
and |c〉, where the detuning is
denoted with ∆p, while the cou-
pling laser couples states |b〉 and
|c〉, where the detuning is de-
noted with ∆c. The decay rate
of the excited state |c〉 is Γ. In
the case shown, the detunings ∆p

and ∆c are negative.



4. Multilevel atoms

Most experiments in this field are performed in Λ-type atomic systems (see
figure 4.1). Here, two ground states are coupled by two lasers via an intermediate
state. The effects can also be observed in three level systems with another
arrangement of the internal states (namely the ladder- and V -type systems).
Because they are not part of this thesis, I refer to the literature [SZ97].

All the phenomena mentioned above are based on the same principle: the
medium is probed with a probe laser that can be absorbed and excite atoms
into state |c〉. The coupling creates a second path to excite atoms. There, atoms
can be excited to state |c〉, then transferred to state |b〉 and back to state |c〉 by
the coupling laser. As this path allows for a different phase, the lasers can be
adjusted to let the two paths destructively interfere. Then, the absorption of the
medium is canceled out for the probe laser, which yields complete transparency.
This phenomenon is called electromagnetically induced transparency and will
be introduced in the following sections. The two destructive paths are shown in
figure 4.2.

Fig. 4.2: The two possible
absorption paths that destruc-
tively interfere and create elec-
tromagnetically induced trans-
parency.

An important feature of EIT is a strongly reduced group velocity of the probe
beam (slowed light). For the slowing process, the phase information of the
light is temporarily stored in a collective excitation of the atomic cloud. These
excitations can be described by a quasi-particle, the so-called dark state polariton
(DSP). The particle nature of DSPs has been demonstrated recently [KW06].

DSPs can be used to store light temporarily: when the intensities of the
coupling and the probe laser follow the STIRAP-scheme (see figure 4.3), the
probe light gets stored in the atomic cloud, until a second coupling laser transfers
the dark state polaritons back to light.
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4.2. 3-level-Λ-system

Fig. 4.3: Pulse sequence of the
coupling and the probe laser to
perform a stimulated Raman adi-
abatic passage. The second cou-
pling pulse transforms the polari-
tons back to light.

If strong lasers are used (number of photons ≫ number of atoms), the atomic
population can be transferred from state |a〉 to state |b〉 with unity efficiency.
This is called coherent population trapping (CPT).
All these effects are based on the three-level atom and will be introduced in the
following sections.

4.2 3-level-Λ-system

Now, we will derive the time evolution of the three-level-Λ-system in the same
way as for the two-level system in section 3.2. For this, I will define the following
basis for the states shown in figure 4.1 of a single three-level atom:

|a〉 =




0
0
1



 ; |b〉 =




0
1
0



 ; |c〉 =




1
0
0



 (4.1)

The atomic state |ψ〉 is then given by

|ψ〉 = c|a〉|a〉 + c|b〉|b〉 + c|c〉|c〉 =




c|c〉
c|b〉
c|a〉



 , (4.2)

where c|a〉, c|b〉 and c|c〉 denote the population amplitudes in the indicated states.
The Hamiltonian of the combined atom-light system is then the sum of the in-
ternal Hamiltonian and the Hamiltonian of the light-matter interaction, given by
the probe and the coupling laser, represented by their respective Rabi-frequencies
Ωp and Ωc

Ĥ

~
= ω|a〉 |a〉〈a| + ω|b〉 |b〉〈b| + ω|c〉 |c〉〈c|
+ Ωp cos(ωpt) |a〉〈c|
+ Ω⋆

p cos(ωpt) |c〉〈a|
+ Ωc cos(ωct) |b〉〈c|
+ Ω⋆

c cos(ωct) |c〉〈b| . (4.3)
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4. Multilevel atoms

ω|a〉, ω|b〉 and ω|c〉 denote the energies of the indicated atomic levels, while ωp and
ωc denote the frequencies of the probe and the coupling laser, respectively (that
means ωc 6= ω|c〉). The frequencies are connected with the detunings ∆p and ∆c

of the lasers via

ωp = ω|c〉 − ω|a〉 + ∆p

ωc = ω|c〉 − ω|b〉 + ∆c . (4.4)

The cosine corrsponds the respective oscillation of the light wave with the fre-
quencies ωp and ωc. Replacing the cosine by exponential functions and combining
the equation in a matrix yields

Ĥ

~
=




ω|c〉

1
2
Ω⋆

c(e
iωct + e−iωct) 1

2
Ω⋆

p(e
iωpt + e−iωpt)

1
2
Ωc(e

iωct + e−iωct) ω|b〉 0
1
2
Ωp(e

iωpt + e−iωpt) 0 ω|a〉



 . (4.5)

The equations can be further simplified by transforming the Hamiltonian in a
frame, that rotates with the frequencies of the two lasers via [Hen04]

ˆ̃H = U †ĤU − i~U †∂tU . (4.6)

The transformation matrices are given by

U = exp
{
itωp|a〉〈a| + itωc|b〉〈b|

}

= exp




it




0 0 0
0 ωc 0
0 0 ωp








 =




1 0 0
0 eiωct 0
0 0 eiωpt





U † = exp
{
− itωp|a〉〈a| − itωc|b〉〈b|

}

= exp




−it




0 0 0
0 ωc 0
0 0 ωp








 =




1 0 0
0 e−iωct 0
0 0 e−iωpt





∂tU =




0 0 0
0 iωce

iωct 0
0 0 iωpe

iωpt



 (4.7)

The entries of these matrices rotate with the two laser frequencies ωp and ωc. The
choice of this base helps to get rid off any terms which contain the ground state
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4.2. 3-level-Λ-system

splitting ω|b〉 − ω|a〉. The first term of the new Hamiltonian thus becomes:

U †ĤU

~
= (4.8)





ω|c〉
Ω⋆

c

2
(eiωct+e−iωct)eiωct Ω⋆

p

2
(eiωpt+e−iωpt)eiωpt

Ωc

2
(eiωct+e−iωct)e−iωct ω|b〉 0

Ωp

2
(eiωpt+e−iωpt)e−iωpt 0 ω|a〉




.

Now we expand the terms. The terms containing one ’+’ and one ’−’ sign in the
exponent cancel down to 1. The other terms rotate with the double frequency,
e.g. 2ωp. We assume that they rotate so fast that they cancel out in aver-
age. Furthermore, these terms correspond to improbable two-photon-transitions
[Sch01], which also justifies to neglect them. This is called the rotating wave
approximation (RWA) and simplifies the above term to

U †ĤU

~
=




ω|c〉

1
2
Ω⋆

c
1
2
Ω⋆

p
1
2
Ωc ω|b〉 0

1
2
Ωp 0 ω|a〉



 . (4.9)

By adding the second term of equation 4.6

−i~U †∂tU

~
=




0 0 0
0 +ωc 0
0 0 +ωp



 , (4.10)

simplifying the equations with help of the detunings (see figure 4.1) and adding
the atomic decay we find

ˆ̃H

~
=
U †ĤU − i~U †∂tU

~
=




−iΓ

2
1
2
Ω⋆

c
1
2
Ω⋆

p
1
2
Ωc ∆c 0

1
2
Ωp 0 ∆p



 . (4.11)

The atomic populations can then be calculated via the time-dependent
Schrödinger-equation

ˆ̃H

~
|ψ〉 = i

∂|ψ〉
∂t

, (4.12)

where the wave function |ψ〉 is given by equation 4.2.
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4. Multilevel atoms

Because not only the atomic populations but also the coherence between them
is of interest, we evaluate the behavior of the system with help of the density
matrix

ρ̂ =




ρcc ρcb ρca

ρbc ρbb ρba

ρac ρab ρaa



 . (4.13)

Using the Liouville equation

i ~ ˆ̇ρ = ˆ̃Hρ̂− ρ̂ ˆ̃H† (4.14)

and the hermitian conjugated Hamiltonian

ˆ̃H†

~
=




+iΓ

2
1
2
Ω⋆

c
1
2
Ω⋆

p
1
2
Ωc ∆c 0

1
2
Ωp 0 ∆p



 (4.15)

yields a linear system of coupled differential equations of first order for the density
matrix elements

ρ̇cc = −Γρcc −
i

2
(Ωcρcb − Ω⋆

cρbc) −
i

2
(Ωpρca − Ω⋆

pρac)

ρ̇bb = − i

2
(Ωcρcb − Ω⋆

cρbc)

ρ̇aa = − i

2
(Ωpρca − Ω⋆

pρac)

ρ̇cb = (−Γ

2
+ i∆c)ρcb −

i

2
Ω⋆

c(ρbb − ρcc) −
i

2
Ω⋆

pρab

ρ̇bc = (−Γ

2
− i∆c)ρbc +

i

2
Ωc(ρbb − ρcc) +

i

2
Ωpρba

ρ̇ca = (−Γ

2
+ i∆p)ρca −

i

2
Ω⋆

p(ρaa − ρcc) −
i

2
Ω⋆

cρba

ρ̇ac = (−Γ

2
− i∆p)ρac +

i

2
Ωp(ρaa − ρcc) +

i

2
Ωcρab

ρ̇ba = i(∆p − ∆c)ρba −
i

2
(Ωcρca − Ω⋆

pρbc)

ρ̇ab = i(∆c − ∆p)ρab +
i

2
(Ω⋆

cρac − Ωpρcb) . (4.16)

These equations can also be written as a 3 × 3 matrix. As the Hamiltonian con-
tains only the decay of the coherences and the populations, the population of the
excited state decays but does not end up in the ground states. If one wants to
include this, terms depending on the decay strength of the respective transition
have to be added to the matrix elements of the ground states.

44



4.3. EIT and slow light

In the three-level system, the terms are

ρ̇aa = +CG2
ac Γ ρcc (4.17)

ρ̇bb = +CG2
bc Γ ρcc , (4.18)

where CGac and CGbc denote the Clebsch-Gordan-coefficients on the indicated
transitions.
If a decay of the ground states occurs in the system, additional decay terms have
to be added in the same way.
Usually, the Rabi-frequencies are real, that means Ω = Ω⋆. The nine equations
can be reduced to 6 since

ρcb = ρ⋆
bc; ρca = ρ⋆

ac; ρba = ρ⋆
ab (4.19)

is valid and the system is overdetermined.
Appendix C shows a derivation of the three-level atom in second quantization.
The results show the consistency between the classical three-level atom (shown
in this section) and the single photon Rabi-frequency (section 3.1).

4.3 EIT and slow light

If the Rabi-frequencies are time-dependent, the equations above must be solved
numerically. This has been done for the calculation of the single photon detec-
tion, as it is described in section 8.1.
If the Rabi-frequencies are not time-dependent, the equations can be solved an-
alytically by diagonalizing the 3 × 3 matrix. This can also be done for time-
dependent Rabi-frequencies, but then the change in the Rabi-frequency must be
so low that the atomic system can follow it adiabatically.
However, the complete analytic solution is too long to be written out here, but
it can be approximated under certain conditions: we assume all atoms to be in
state |a〉, that is ρaa ≈ 1. This can e.g. be achieved by using a strong coupling
laser that ensures to pump back all atoms, once they are in state |b〉 or the use
of very weak probe pulses because few photons cannot transfer many atoms into
another state.
The polarization of the atomic medium is then given by [FIM05]

P = n0 [µacρca + µbcρcb + c.c.] , (4.20)

where µac and µbc denote the dipole matrix elements of the respective transition
and n0 the atom number density.
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4. Multilevel atoms

From this we get the linear susceptibility for the probe laser

χ(+) =
|µac|2n0

ε0~

×
[

4∆p(Ω
2
c − 4∆2

p − γ2)

|Ω2
c + (Γ + i2∆p)(γ + i2∆p)|2

+i
8∆2

pΓ + 2γ(Ω2
c + γΓ)

|Ω2
c + (Γ + i2∆p)(γ + i2∆p)|2

]
. (4.21)

The (+) indicates, that this formula will later be used for σ+-polarized light.
Furthermore, I have assumed that the coupling laser is always on resonance (∆c =
0). Γ denotes the decay rate from the intermediate state, while γ is the decay
rate between the two ground states, which corresponds to spin-changing collisions
between the atoms as well as collisions with the background gas (which had been
neglected so far). The real and imaginary part of the susceptibility are plotted
in figure 4.4.

Fig. 4.4: Real and
imaginary part of the
susceptibility, plotted for
n0|µac|2/~ε0 = 1, γ = 0
and Ωc = Γ. Under these
conditions, the absorption
cancels completely out on
resonance. Independent
from the conditions, the
phase shift is always zero
on resonance.

This formula describes the absorptive as well as the dispersive properties of the
medium for the probe laser. The transmitted electric field is then given by

Eout = Ein · exp
{
iklχ(+)/2

}
, (4.22)

where l denotes the length of the medium and k the wave number. The relative
intensity transmission (including the phase of the transmitted light) is then given
by

Tr =
E2

out

E2
in

= exp
{
iklχ(+)

}
. (4.23)
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4.3. EIT and slow light

For a vanishing ground state decay rate and a non-vanishing coupling laser Rabi-
frequency the medium becomes fully transparent on resonance (∆p = 0).
To specify a transparency width it is convenient to approximate the transmission
as a Gaussian around ∆p = 0

Re{Tr} ≈ exp

{
−

∆2
p

σ2
p

}
, (4.24)

whose width is defined as

σp =

√
ε0~

|µac|2n0kl

√
Ω4

c + γ2Γ2 + 2Ω2γΓ

8Γ − 2γ(4Γ2 − 8Ω2
c + 4γ2)/(Ω2

c + γΓ)
(4.25)

and reduces for a negligible decay rate γ to

σp =
Ω2

c

2

√
ε0~

2Γ|µac|2n0kl
. (4.26)

The group velocity is associated to the derivative of the refractive index

n =
√

1 + Reχ(+) (4.27)

via
vgr(∆p = 0) =

c

n+ ωp
dn
dωp

∣∣∣
∆p=0

=
c

1 + 2ωp|µac|2n0 kl

Ω2
cε0~

, (4.28)

where I have used
ωp = ω0 + ∆p =⇒ dωp = d∆p . (4.29)

Comparison with equation 4.26 finally connects the group velocity with the ex-
perimental approachable magnitudes σp and l:

vgr =
c

1 + c Ω2
c

4 l σ2
p Γ

(4.30)

Therefore, the rapid change in the refractive index explains the strong reduction
of the group velocity in EIT. Contrary to the two-level atom, it can theoretically
be reduced to zero (for a vanishing decay rate γ).
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4.3.1 EIT in the experiment

To reveal the dispersive properties of the medium, some σ−-polarized light is
mixed to the otherwise σ+-polarized probe beam. The relative electric field am-
plitude is denoted with a and thus the intensity admixture with a2. Behind the
atomic cloud, both polarizations are rotated to have the same linear orientation,
so that they can interfere behind a polarizing beamsplitter. This setup is sketched
in figure 4.5.

Fig. 4.5: Setup for revealing
the dispersive properties of the
medium. The probe and the
coupling laser are overlapped in
a polarizing beamsplitter (PBS).
With the following λ/4-plate the
polarizations of the pulses are
adjusted before they enter the
cloud. With the second λ/4-
plate the polarizations are turned
again to separate the probe from
the coupling beam in the follow-
ing polarizing beamsplitter. Due
to lenses (not shown in the pic-
ture), the cloud is imaged onto a
high efficiency CCD camera.

Due to birefringence in the optical viewports of the vacuum chamber, the σ−-
polarized beam collects an additional phase φ relative to the σ+-polarized beam.
The total electric field acting on the atoms can then described by

|Ein|2 = |Ein,σ+ + Ein,σ− |2

= |(1 − a)E0 + aE0 exp{iφ}|2

= E2
0

(
1 − 2a+ 2a2 + 2a(1 − a) cosφ

)
. (4.31)

As a high magnetic offset field is applied during these measurements, the atoms
experience a large Zeeman-shift. Therefore, the σ−-polarized beam does not fulfill
the Raman-condition and thus its susceptibility can be described by the two-level
atom. As can be seen in figure 4.6, one has to sum over the susceptibilities of all
four independent two-level systems, that can interact with the beam.
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4.3. EIT and slow light

Due to the large detuning from resonance, absorption can be neglected (< 0.04 %
in our system), but the phase shift can become considerable.

Fig. 4.6: Level scheme for the
σ−-polarized component of the
probe light: the detunings of
the respective transitions j are
marked as ∆j. The dotted lines
indicate the unshifted atomic
levels and the solid lines the
Zeeman-shifted levels.

The susceptibility of the σ−-polarized beam on one transition is given by equa-
tion 3.41 and therefore the susceptibility of all transitions becomes

χ(−) =
4∑

j=1

|µj|2 n0j

~ǫ0

∆j + iΓ
2

(Γ
2
)2 + ∆2

j

. (4.32)

Here, n0j are the population densities in the respective ground states, µj the dipole
matrix elements and ∆j the detunings relative to the respective transition, while
the decay rate Γ is the same for all of them. The detunings ∆j depend on the
Zeeman shift of the atomic levels as well as on the probe detuning ∆p.
The electric output field is then given by

|Eout|2 = |Eout,σ+ + Eout,σ−|2

=
∣∣∣Ein,σ+ exp{iχ(+)kl/2}

+Ein,σ− exp{iχ(−)kl/2}
∣∣∣
2

=
∣∣∣(1 − a)E0 exp{iχ(+)kl/2}

+aE0 exp{iφ} exp{iχ(−)kl/2}
∣∣∣
2

= a2 exp{−Imχ(−)kl}E2
0

+ (1 − a)2 exp
{
− Imχ(+)kl

}
E2

0

+ 2a(1 − a) exp
{
−

(
Imχ(−) + Imχ(+)

)
kl/2

}

× cos
{
φ+

(
Reχ(−) − Reχ(+)

)
kl/2

}
E2

0 . (4.33)
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It can be seen that the first two terms of equation 4.33 describe the usual trans-
mission spectrum, described by the respective susceptibility, while the last term
is responsible for the interference and results in the appearance of the dispersive
properties of the medium.
Together with equations 4.21, 4.31 and 4.32, this yields the total transmission
through the medium via

Tr(∆p) =
|Eout|2

|Ein|2
. (4.34)

Because we are probing the sample with relatively short pulses, the pulse length
limits the minimal EIT bandwidth. The intensity of the Gaussian pulses is defined
as

I(t) = I0 exp

{
− t2

τ 2

}
, (4.35)

where τ denotes the Gaussian pulse length. To include this limitation, we first
Fourier-transform the Gaussian pulse into frequency space (denoted by ∆)

F (∆) =

+∞∫

−∞

I(t) exp {i2π∆ t} dt = I0
√
πτ exp

{
−π2τ 2∆2

}
, (4.36)

and then carry out the convolution integral between this Fourier transformed
pulse and the transmission (equation 4.34), which finally yields the transmission
through the cloud:

Tr, pulse(∆p) =

+∞∫

−∞

Tr(∆
′)F (∆p − ∆′) d∆′ (4.37)

Unfortunately, there exists no analytic solution to this integral. Thus, the integral
has to be evaluated numerically, as it has been done in chapter 9.

50



4.4. Dark state polaritons and stored light

4.4 Dark state polaritons and stored light

As mentioned above, mapping of light onto a collective atomic state, is accom-
panied by the creation of a quasi-particle, which is called a dark state polariton
(DSP). Because the dynamics of these DSPs are not part of this thesis, I refer to
the literature [FL00], [FYL00] and [FL02].
Here it shall be noted that the photonic state can be completely mapped onto the
spin wave and afterwards transformed into light again. This can be used to store
photons temporarily and transform them back to photons afterwards. However,
due to short coherence times in atomic ensembles, the lifetimes of DSPs are still
very short (< 1 ms) and long time storage of light is not yet achievable. The stor-
age of light has first been demonstrated experimentally in a cloud of ultracold
sodium atoms [LDBH01].

4.5 Coherent Population Trapping

Using strong lasers, where the number of photons exceeds the number of atoms,
the complete population of an atomic ensemble can be transferred from one state
to another. If this is done coherently, it is called coherent population trapping.
To explain this effect, it is convenient to introduce the so-called dressed states.
Assuming two-photon-resonance ∆c = ∆p = ∆, we can define the two mixing
angles θ and φ via

tan(θ) =
Ωp

Ωc

(4.38)

tan(2φ) =

√
Ω2

p + Ω2
c

∆
. (4.39)

Using these mixing angles, we can define new states, which are the eigenstates of
the coupled atom-light system:

|Ψ+〉 = sin(θ) sin(φ)|a〉 + cos(θ) sin(φ)|b〉 + cos(φ)|c〉
|Ψ0 〉 = cos(θ)|a〉 − sin(θ)|b〉
|Ψ−〉 = sin(θ) cos(φ)|a〉 + cos(θ) cos(φ)|b〉 − sin(φ)|c〉 . (4.40)

Because |Ψ0〉 doesn’t contain any admixture of the excited state |c〉, the atom
does not scatter any light when being in this state. Thus, |Ψ0〉 is a dark state.

As has been shown in [AT55], the states |Ψ±〉 are shifted by the energy

~ω± =
~

2

(
∆ ±

√
∆2 + Ω2

p + Ω2
c

)
(4.41)
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4. Multilevel atoms

relative to the state |c〉, which is equivalent to an Autler-Townes-Splitting.

For further simplification we assume also one-photon-resonance ∆ = 0 (as
we have done before) and get φ = π/4 .
Now we assume a strong coupling laser and a weak probe laser (Ωc ≫ Ωp), which
finally reduces equations 4.40 to

|Ψ+〉 ≈ 1√
2

(|b〉 + |c〉)

|Ψ0 〉 ≈ |a〉

|Ψ−〉 ≈ 1√
2

(|b〉 − |c〉) . (4.42)

Now one can see, that the pure atomic state |a〉 is identical to the dark state |Ψ0〉.
Hence, all atomic population will be transferred into this state. An example for
this is shown in figure 4.7.

Fig. 4.7: Adiabatic transfer be-
tween two atomic states. ρaa

equals the population in the first
state, ρbb the population in the
final state. The plot is created
with maximum Rabi-frequencies
of Ωp = 2π · 1.5 · 106 Hz and Ωc =
2π · 2.4 · 106 Hz.

If the laser intensities are varied until the opposite case is reached at Ωp ≫ Ωc,
the systems ends in the state

|Ψ+〉 ≈ 1√
2

(|a〉 + |c〉)

|Ψ0 〉 ≈ |b〉

|Ψ−〉 ≈ 1√
2

(|a〉 − |c〉) . (4.43)

Thus, the atomic population has been transferred from state |a〉 to state |b〉. If
this is done so slowly that the atoms can adiabatically follow the change in the
light intensities [OHE84], it is a coherent process and therefore called coherent
population trapping.
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4.6. Stimulated Raman Adiabatic Passage

4.6 Stimulated Raman Adiabatic Passage

In section 4.5 we have assumed that there is enough light to transfer all atoms
to the dark state. But this process can also be performed with weak laser pulses.
Then, only some atoms will be transferred to the other state, but the complete
photonic state can be mapped onto an atomic state.
This can be done when the laser intensities perform the STIRAP sequence,
which is shown in figure 4.8.

Fig. 4.8: The counterintuitive
STIRAP pulse sequence of the
coupling and the probe laser.
Furthermore, the second cou-
pling laser is shown. This addi-
tional pulse can be used to trans-
fer the dark state polariton back
to light.

Here, it is assumed that the atoms are initially in state |a〉, which is a dark
state for the coupling laser. Nevertheless, the coupling laser is turned on first
to ensure that the atoms stay permanently in the dark state. While it is slowly
turned off, the probe laser is turned on and off again. The pulses are assumed
to be Gaussian, which can e.g. be approximated as sin4-pulses [FSB97]. These
are not infinitely long and resemble Blackman pulses [KC92]. An additional
coupling laser pulse can be used to transfer the DSPs, which have been created
in this process, back to light. This has first been experimentally demonstrated
in cold molecules [GRSB90].

As mentioned before, the laser intensities have to be changed slowly. For
a given pulse length Tp ≈ 4τ (with τ being defined in equation 4.35), the
adiabatic criterion is given by [KGHB89]

√
Ω2

c + Ω2
p · Tp

!≫ 1 , (4.44)

where Ωc and Ωp denote the maximum values of the respective Rabi-frequencies.
The efficiency of this process can theoretically reach unity.
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4. Multilevel atoms

4.7 4-level atoms and offresonant scattering

In section 4.1, the level scheme of an atom was approximated with three levels.
Of course, a real atom has far more states and some of these are also coupled to
the laser fields. Figure 4.9 shows an example of further states, coupled by the
probe and the coupling laser.

Fig. 4.9: Three atomic levels
in Λ-configuration. Furthermore,
the disturbing levels |d〉 and |e〉
are shown. The probe laser also
couples to state |d〉, the coupling
laser to states |d〉 and |e〉.

In this case, the Hamiltonian and density matrix can be extended to include these
states. But the numerical calculation time for time-dependend Rabi-frequencies
increases quadratically with the number of states. Instead, it is possible to
assume the disturbance due to these levels to be small and calculate them
seperately:
if the state |c〉 (figure 4.9) corresponds to the |5P1/2, F = 1〉 state of rubidium 87,
state |d〉 corresponds to the same magnetic substate of the |5P1/2, F = 2〉 state.
This state is then approximately 800 MHz detuned and scattering due to it can
in EIT be neglected. But in a single photon detection scheme, the low scattering
rate can become relevant. In this case it is possible to assume the perturbation
of this transition on the other transitions to be small and calculate the scattering
rate of the |a〉–|d〉 transition with the two-level approximation (see equation 3.39).

The level |e〉 in figure 4.9 corresponds to a different magnetic substate of
the same excited state as |c〉. For EIT this can also be neglected because the
detuning of this transition is usually very large. For single photon detection,
this can again become important: the coupling laser can pump atoms on this
transition to an undesirable ground state. As above, the scattering rate of
this transition can then be calculated with the two-level approximation (see
equation 3.39).
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5. Vacuum chamber

Using experimental values of previous experiments on optically trapped ru-
bidium atoms [CRGW03], calculations on single photon detection were made
before designing the chamber. These calculations showed the feasibility of the
experiment and the chamber could then be designed to match the following
demands:
For an optimimal transfer of the single photons onto the atomic state, a high
Rabi-frequency is required. For a given atomic density, the Rabi-frequency and
thus the transfer efficiency increase for an increasing optical path length through
the cloud (see equation 3.21). This can be achieved by sending the laser along
the long axis of an elongated cloud.
Furthermore, a high and homogeneous magnetic offset field must be applied
during the optical pumping and the single photon transfer. This allows one to
address the magnetic sublevels and defines a homogeneous quantization direction
for the light vector.
Additionally, the unwanted atoms in the trap have to be removed with a
magnetic field gradient. According to section 2.3.1 and appendix B, a higher
atomic density can be obtained in a deeper trap for a given atom number. As a
higher gradient can pull the atoms out of a deeper trap, the gradient should be
as strong as possible.

It will be shown in the following sections how these requirements were ac-
complished in the design of the chamber. Figure 5.1 shows an evolution of the
chamber design.

5.1 Dipole trap beams

A single beam dipole trap creates an elongated cloud, but then the single photons
laser would have to be overlapped with the CO2-laser, which is not possible
because the ZnSe lenses and windows would absorb the single photons. But an
elongated cloud can also be created in a crossed beam geometry. If the two beams
meet under an angle of e.g. 60◦, the cloud has a lower aspect ratio than in the
single beam trap but a higher than in the perpendicular geometry.



5. Vacuum chamber

Fig. 5.1: The evolution
of the vacuum chamber
design:

(A) The first design
step starts with the
CO2-laser beams and
the path of the single
photon.

(B) Subsequently, the
optical access for the
MOT beams is reserved.
The radial and axial
MOT beams refer to the
orientation of the mag-
netic quadrupole field
(created by the coils
shown in figure E).

(C) Then, necessary
viewports and the main
chamber, which is cir-
cular around the z-axis,
are put around the trap
center and the pumping
cross is attached to
them.
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5.1. Dipole trap beams

(D) The buckets and
elliptical windows are
mounted to the chamber.

(E) The magnetic coils
are attached to the cham-
ber.

(F) An exploded view of
the chamber. It shows
how the ZnSe lens hold-
ers, the chamber, the
buckets and the ellipti-
cal windows are put to-
gether.
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5. Vacuum chamber

As the ZnSe lenses must be very close to the trap center to focus the dipole trap
beams tightly (due to the large wavelength) and thus block other optical ports,
the design of the chamber starts with the light course of the CO2-laser.
For the path of the single photon beam that leads through the space between
the two lenses, we will reserve an angle of ∼ 2 · 7◦ = 14◦. Since the ZnSe lenses
require a mounting device, some additional space (2 · 3◦) will be lost. When we
assume an angle of 2 · 30◦ = 60◦ between the two CO2-laser beams, we get an
opening angle for the CO2-laser beams of ∼ 2 · 20◦, which equals a ratio between
the lens diameter and the focusing length of ∼ 2/3. If the angle between the
CO2-laser beams is increased, the ratio between the diameter of the ZnSe lens
and its focusing length can be increased. This leads to larger trap frequencies,
but also lowers the aspect ratio of the cloud. If the angle between the CO2-
laser beams is decreased, the ratio between the diameter of the ZnSe lens and
its focusing length must be decreased. This leads to a larger aspect ratio of the
cloud, but also lowers the trap frequencies. Hence, the choice of 60◦ states a
good compromise. The opening angle can be achieved with a lens diameter of
25.4 mm (=1 inch) and a focusing length of 38.1 mm (=1.5 inch). Because the two
CO2-laser foci must be aligned exactly and vacuum chambers cannot be produced
that precisely, the ZnSe lenses must be attached to a movable mount that can be
adjusted from outside the chamber. These mounts are shown in figure 5.1 A: the
mount is welded to a double-sided DN 40CF flange. On its inside, this flange is
screwed on a flexible coupling (bellow), which will be mounted on the chamber.
Three adjustment screws in a rectangular alignment can be used to move the
lens inside the vacuum, while two strong springs between the adjustment blocks
(squeezed on the bellows ) create the required stability. The springs, which are
not shown in the figure, are streched parallel to the adjustment screws. The
vacuum is maintained by ZnSe windows, which are screwed on the outside of the
lens mount. The assembly of all these parts can be seen in figure 5.1 F.

5.2 MOT beams

Although there is enough space for the tightly focused single photon beam
between the ZnSe lenses, there isn’t enough space for sufficiently large MOT
beams. The only remaining axis in this plane is orthogonal to the single photon
beam. These MOT beams, which are referred to as axial beams, are shown in
figure 5.1 B. Then, the radial beams must be orthogonal to the axial beams, with
the maximum angle of 45◦ between them and the single photon beam. The ZnSe
lenses are then still a limiting factor for the size of the MOT beams (∅ ≈ 2 cm).
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5.3. Viewports and pumping cross

5.3 Viewports and pumping cross

Now, the viewports, through which the single photon and the axial MOT beams
enter the chamber can be placed (figure 5.1 C). Because there is enough space,
DN 63CF flanges can be used. The least used port (exit window of the single
photon beam) will be used to attach the pumping cross and thus the remaining
space in the mayor plane can be filled up with DN 35CF viewports. These
viewports can e.g. be used to image the cloud onto a CCD camera. The angle
between any of the twelve viewports is 30◦.
The pumping cross consists of 160 mm tubing, which is connected to the main
chamber via 120 mm tubing, to ensure a proper pumping cross section. A larger
cross section would hinder the radial MOT beams from entering the chamber.
The top part of the pumping cross contains a titanium sublimation pump (Varian
TSP cartridge filament source), which is far enough away to prevent sputtering
titanium on the viewports. An ion pump (Varian starcell 75) and an ion gauge
(Varian UHV-24 Nude Bayard-Alpert) are attached to a tubing that is placed
rectangular on the bottom of the main pumping tubing to avoid getting damaged
by sputtering titanium. The optical access to the chamber is given by a DN 100CF
viewport.
At the bottom of the pumping cross is a right angle valve to attach a turbo-
molecular pump. Remaining space along the connection between the pumping
cross and the main chamber as well as the space between the main chamber and
the viewport for the single photon beam were filled up with DN 16CF flanges.
They are used for electrical feedthroughs that are connected to the rubidium
dispensers and the RF coils in the chamber.

5.4 Elliptical windows and magnetic coils

To seal the main chamber along the z-axis, two buckets will be put into the
main chamber (see figures 5.1 A and 5.1 E and section 5.5). The buckets contain
an elliptical viewport, which must be very close to the trap center to provide a
large solid angle, from which the fluorescence light of the single atoms will be
collected. To provide optical access for the radial MOT beams, this viewport
has to be large along the x-axis (figure 5.1 E).
To perform the required ∆mF = +1 transition, the single photon and the
coupling laser must be orthogonal to each other. It is possible to use the states
|5P1/2, F = 1, mF = −1〉, |5P1/2, F = 2, mF = −1〉, |5P1/2, F = 1, mF = 0〉 and
|5P1/2, F = 2, mF = 0〉 as the intermediate state. As the Clebsch-Gordan-
coefficient is highest for the |5S1/2, F = 1, mF = −1〉–|5P1/2, F = 2, mF = −1〉
transition, the |5P1/2, F = 2, mF = −1〉-state will be used as intermediate state.
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5. Vacuum chamber

This ensures the maximum possible optical density for the single photon (the
coupling laser intensity can simply be increased). To use these transitions,
the single photon laser beam must be π-polarized, while the coupling laser is
σ−-polarized.
Thus, the coils, which create the magnetic offset field, must be placed to create
the field along the y-axis (figure 5.1 E). These coils can also be used to create the
quadrupole field for the MOT. The chosen position is the closest one to the trap
center, as all possibly closer positions are blocked by viewports. An additional
coil is attached to the MOT coil in the foreground (QUIC-coil, see section 6.4).
Because it is easiest to apply a gradient along an offset field (instead of orthogonal
to it), the gradient coils can be put into the buckets. This is also the place, where
they can get closest to the trap center and create the highest possible gradient.
The part of the coils, which runs parallel to the x-axis is then responsible for
producing the gradient along the y-direction. To increase the gradient, this part
of the coils must then be close to the trap center, while the other part must be
far away to provide optical access for the radial MOT beams.
This leads to elliptical coils, which are put on top and around an elliptical
window. Futhermore, the elliptical coils have to ’open’ under an angle of 45◦

from inside to outside while viewed from the bottom of the bucket to the top of
the coils. In other words, they are wrapped around the 45◦ MOT beams.

5.5 Buckets

Figure 5.2 shows a bucket from the bottom side: the rubidium dispensers, which
contain solid rubidium (that is evaporated by electric heating and used as the
atomic source), are screwed onto mounts, which are welded on the upper of the
two buckets. Furthermore, there are several mounting brackets (semicircle-shaped
metal rings with r = 2 mm) welded on the inner sides of the buckets. These are
used to mount RF-coils and the supply lines of the rubidium dispensers, as it
is shown for one of the dispensers. The RF-coils (two on the upper and two
on the lower bucket in Helmholtz-configuration) might for example be used for
evaporative cooling in the Quic trap (see sections 2.5 and 6.4).
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5.6. Elliptical sealing

Fig. 5.2: Bottom view
of a bucket. The ru-
bidium dispensers, the
RF coils and one supply
line can be seen. When
the buckets are mounted
to the chamber, the dis-
tance between their bot-
toms is 36 mm.

The assembly of the bucket and the chamber can be seen in figure 5.1 F.

5.6 Elliptical sealing

Only for circular CF flanges, high vacuum sealings are commercially avaible.
The buckets already provide an elliptical analogon to a CF flange cutting edge
(custom made by TRINOS, the company that welded the whole chamber). Hence,
an elliptical copper sealing had to be made, as it has been described in [NK94].
This sealing uses a copper ring, which is flat on one side and has a cutting edge
on the other side. Here, the CF cutting edge is pressed into the flat side of the
copper ring and the glass window is pressed onto the cutting edge of the copper
ring.
But this works only with small radii [Pet05, Ada06]. Furthermore, the elliptical
copper rings had to be milled instead of turned. This resulted in tiny scratches,
which were perpendicular to the copper cutting edge and a minimum vacuum
pressure of 10−6 mbar could be produced (with the turbo-molecular pump). To
bypass this problem, a new kind of copper sealing had to be made. This is
sketched in figure 5.3.
The semi-major axis of the elliptical window is 52 mm and the semi-minor axis
21.9 mm to leave space between the window and the slightly larger containing
ring (52.1 mm and 22.1 mm, respectively). The window is made of anti-reflex
coated BK7 glass and only 6 mm thick (this is the minimum thickness required to
prevent the glass from breaking). 52 M4-screws are distributed around the ring
to allow for smooth tightening.
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5. Vacuum chamber

Fig. 5.3: Sketch of the elliptical seal-
ing before and after tightening the
screws. Also, the retaining ring is
shown. Its inner dimensions are
slightly larger than the ones of the
window to allow for some clearance.

A main part of the sealing is a copper ring with a triangular goose, that is
slightly larger than the CF cutting edge on the vacuum chamber. It has to be
larger to ensure that the cutting edge does not hit the copper ring. This would
cause leaks for low clamping forces.

We place an indium ring into the goose and a second one on the other
side of the copper sealing. After slowly tightening the screws in a crossed pattern
to a maximum of 2 Nm, the first indium ring seals between the copper ring and
the chamber, the second one between the copper ring and the window. The
lead ring (modulus of elasticity E ∼ 18 GPa) compensates local variations in the
clamping force.
The advantage of this method is that the cutting does not have to be pressed
into relatively hard copper (E ∼ 117 GPa). Instead, we only have to squeeze the
soft indium ring (E ∼ 10 GPa).

Using a helium leakage tester, we measure leakage rates of 10−10 mbar · l/s
for each of the two elliptical windows at our UHV chamber. After baking the
chamber for three weeks at 150◦C (higher temperatures are not possible as the
indium sealing melts at 157◦C), we pump with an ion pump (Varian starcell
75) and a titanium sublimation pump (Varian TSP cartridge filament source)
and measure a pressure of 10−10 mbar with an ion gauge (Varian UHV-24 Nude
Bayard-Alpert). Together with the pumping cross-section of the chamber, this
pressure also corresponds to a leaking rate of 10−10 mbar · l/s and supports the
helium-measured leaking rate.
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5.7 Framework

As can be seen in figure 5.4, the whole chamber is finally supported by a frame-
work of aluminium bars and breadboards. These are used to mount optics, the
magnetic coils, the CCD cameras and supply lines around the chamber.

Fig. 5.4: Picture of the final chamber. An aluminium framework, that holds all
the optics, is placed around the chamber.
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6. Magnetic fields

In this chapter, the details of the magnetic coils and the fields produced by them
will be given. This includes the field for operating the MOT, the offset field for
the single photon detection, the magnetic gradient for pulling the atoms out of
the dipole trap and the field for capturing the atoms magnetically in the Quic
trap.

All magnetic coils have been wound with hollow copper wire, whose inner
tube is used for water cooling. The outer wire diameter is 3 mm and the inner
one 1.5 mm. Because the water flow gets too low to cool the coil sufficiently after
about 7 windings, the coils consist of several sub-coils. While the electric current
runs serial through all sub-coils (to ensure a stable current and field), the water
flows parallel through the sub-coils. The coils are designed to carry maximum
currents of 250 A. With a voltage of 60 V (maximum of the power supplies,
type Lambda/Emi ESS60-250), a current of 170 A could be achieved. At these
operating conditions, the temperature in the coils increases to a maximum of
60◦C (at a water pressure of ∼ 5 bar and a water temperature of ∼ 12◦C). The
currents are all switched with IGBTs (switching time < 1 ms). The direction of
the currents in the individual coils can be seen in figures 6.1 and 6.2.

6.1 MOT field

The magnetic field gradient for the MOT is created by the two MOT coils (which
are also used for the offset field), shown in figures 5.1 E, and 6.1. Their average
radius is 149 mm and their average distance from the trap center 152 mm. With
the maximum current of 170 A, the gradient at the trap center is 16.9 G/cm along
the y-axis and 8.45 G/cm along the x- and z-axes.



6. Magnetic fields

Fig. 6.1: The direction of the elec-
tric currents for creating the mag-
netic quadrupole field required for
the MOT is shown with red arrows,
the direction of the magnetic field in
the trap center with blue arrows. It
can be seen that the coil on the left
contains more windings. The addi-
tional windings can be used to en-
hance the confinement in the Quic-
trap (see sections 2.5 and 6.4).

Fig. 6.2: The direction of the electric
currents for creating the magnetic
offset field is shown with red arrows,
the direction of the magnetic offset
field in the trap center with blue ar-
rows. The currents for creating the
magnetic gradient (see section 6.3)
are shown with brown arrows and its
field with green arrows. The result-
ing field is shown in figure 6.3.

6.2 Offset field

A high and homogeneous magnetic offset field is required for optical pumping and
the single photon transfer. This offset field is created by the same coils as used
for the MOT. The current direction of the coil in the foreground (figures 5.1 E,
and 6.2) flows in the same direction as for the MOT, while the current direction
in the other one is switched. The chosen offset field of 100 G can be obtained
with a current of 102 A. With the maximum current of 170 A, the offset field can
be increased up to 167 G. Due to the size of the coils, the curvature of the field
and the change in the field direction are negligible over the size of the cloud.

6.3 Gradient field

To pull the atoms out of the optical dipole trap, a strong magnetic gradient is
required. This gradient must be applied parallel to the magnetic offset field. It is
created by the elliptical coils, shown in figures 5.1 E and 6.2. With the maximum
current of 170 A, the gradient at the trap center is 380 G/cm.
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6.3. Gradient field

The absolute value of the magnetic field is shown in figure 6.3 with an offset field
of 100 G.

Fig. 6.3: The gradient,
that pulls the atoms out
of the trap. The atoms
are collected in the field
minimum, that is 2.5 mm
away from the trap cen-
ter. Once the field is
switched off, the atoms
are lost.

Figure 6.4 shows the potential for magnetically neutral atoms in the crossed dipole
trap (see section B) with an optical power of 570 mW (see section 8.1) in each
beam, as well as the potential for atoms in the |5S1/2, F = 1 mF = −1〉 state in
the same dipole trap with applied magnetic field gradient. It can be seen that
the magnetic potential opens the trap and the atoms get lost.

Fig. 6.4: Potential for
magnetically neutral (1,
blue) and magnetically
sensitive (3, red) atoms
and the magnetic gradi-
ent field (2, green). The
neutral atoms remain in
the dipole trap, the sen-
sitive ones are pulled out
of it.
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6. Magnetic fields

6.4 Quic trap

The experiment also provides a magnetic trap. Due to the existing coils, the
so-called Quic-trap [EBH98] has been chosen. Here, the opposing coils create a
quadrupole field and the field of a third coil, that is arranged orthogonal to the
others, is slowly increased to transfer the atoms into a Ioffe-type trap [Pri83]. To
create the quadrupole field, the elliptic gradient coils are used in anti-Helmholtz
configuration, as they are used for pulling the atoms out of the dipole trap (see
figure 6.2 and section 6.3). The dipole coil on the left (figure 6.2) can be used as
the third coil. As the dipole coil is the limiting factor for the trap, an additional
coil has been mounted on it. Then, the maximum current of 170 A can be sent
through the double coil and keep up with a current of 30 A through the much
stronger elliptical coils. The field created by this setup is shown in figure 6.5.
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Fig. 6.5: Magnetic field of the Quic
trap. The offset field is chosen to
be 1 G. This shifts the trap center
38 mm along the y-direction.

With these currents, the trap frequencies are νx = 34 Hz, νy = 5 Hz and νx =
33 Hz. Especially the trap frequency in y-direction is very low and it should be
noted that this kind of trap was only included to make the chamber more flexible
for further experiments.
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7. Laser systems

Here, all relevant information on the setup of the MOT and repumping laser
system, the Raman laser system and the CO2-laser system will be given.

7.1 MOT and repumping laser system

The laser system for operating the MOT consists of two individual laser systems,
one for the MOT transistion and one for the repumping transition. They connect
the |F = 2〉 ground state, respectively the |F = 1〉 ground state with the excited
|5P3/2〉 states. As there is enough optical power available, the lasers are also
used for the optical pumping, absorption imaging and the single atom detection.
These laser systems are shown in figure 7.1.

The setup for both laser systems is similar: a weak part is split from the main
beam of a grating-stabilized diode laser (M1, M2). This part enters a rubidium
vapor cell. The signal behind the cell is used for stabilizing the laser. The setup
of such a cell can be found in [PFL+03].
Another weak part is split up for analyzing the beam in a wavemeter and a
Fabry-Pérot-interferometer.

Subsequently, both lasers enter an acousto-optical modulator (AOM) in
double-pass configuration. This AOM (Crystal Technology) has a very large
bandwidth of ±50 MHz and allows for a wide detuning of the beam without
moving it.

After these AOMs, the beam of the MOT laser system injects a tapered
amplifier (TA) while the beam of the repumping system seeds another diode
laser. The advantages of the tapered amplifier are its enhanced optical power
(we use it at 600 mW) and its wide frequency spectrum.

The amplified beams finally pass through λ/2-plates and polarizing beam-
splitter cubes (PBS). These split up the beams for the different tasks, like e.g.
the optical pumping. The single beams pass through AOMs, before they are fed



7. Laser systems

Fig. 7.1: Schematic of the MOT (left) and the repumping laser system (right),
consisting of the respective master lasers M1 and M2, the tapered amplifier (TA)
and the slave laser S. AOM 3 switches the light that can be used for taking
absorptive pictures of the cloud, AOM 4 switches the light for optical pumping,
AOM 5 the light for operating the MOT and AOM 6 the light for the single
atom detection. AOM 9 switches the repumping light for operating the MOT
and AOM 10 the repumping light for the optical pumping. The frequencies of
the AOMs are:

f1 = +105 MHz; f2 = +200 MHz; f3 = +140 MHz; f4 = −80 MHz;
f5 = +140 MHz; f6 = +160 MHz; f7 = +105 MHz; f8 = +200 MHz;
f9 = +60 MHz; f10 = −130 MHz

into optical fibres, which bring them to the experiment. All AOMs have different
frequencies, depending on the required frequency of the respective beam and are
used for switching the lasers. Figure 7.2 shows a picture of the laser systems,
while the optical path of the lasers at the experiment is sketched in figure 7.4.

7.2 Raman laser system

The Raman laser system is used for measurements on electromagnetically induced
transparency and will be used for the single photon detection. As no deterministic
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7.2. Raman laser system

Fig. 7.2: Picture of the laser systems. The laser system for operating the MOT
is in the foreground of the picture, the repumping laser system on the right in
the background and the Raman laser system is on the left in the background.

single photon source is available, the single photons will be created by decreasing
the power of the probe beam, which yields Poisson-distributed pulses (see ap-
pendix E). To perform a Raman transition in ultracold atoms, the difference in
the two laser frequencies must be stable within the kHz-range because the ground
states have very narrow linewidths.

The stable frequency difference of 6.8 GHz is created by passing the light through
a 1.7 GHz AOM in quad-pass configuration (see figure 7.3):
the light of a grating-stabilized master laser (same spectroscopy as in the MOT
laser system) passes through a Faraday isolator and subsequently through a po-
larizing beamsplitter cube and an AOM at 1.7 GHz. The light is reflected after
it passes through a λ/4-plate and is thus reflected at the PBS. Due to the low
efficiency of the AOM (∼ 8.5 % in the single pass), only 160µW laser power is
left. Thus, the light is amplified by injecting a slave laser. The light of this
laser goes exactly in the opposite direction of the first beam. Thus, it passes
twice through the 1.7 GHz AOM, and is reflected at the beamsplitter cube of the
Faraday isolator. This light has been shifted -6.8 GHz relative to the light of the
master laser and is used to inject a second slave laser. The light of the second
slave laser and the zeroth order of the master laser beam at the 1.7GHz AOM
are used as slave- and coupling laser, respectively.

73



7. Laser systems

Fig. 7.3: Schematic of the Raman laser system, consisting of the master laser M,
the intermediate slave S1 and the final slave S2. The frequencies of the AOMs
are f1 = −1.709 GHz and f2 = f3 = −91 MHz for the single photon detection,
while the latter one is f2 = f3 = +91 MHz for the EIT measurements.

For switching them, the beams pass through AOMs, before they are fed into
optical fibres, that transfer the light to the optical table. The radio frequency
of these two AOMs comes from the same driver to ensure the high frequency
stability. The optical path of the probe and coupling lasers at the experiment is
sketched in figure 7.4.

7.3 CO2-laser system

A Coherent GEM 100L CO2-laser, that produces up to 130 W is used to create
the optical dipole trap. Its beam is split into two equal parts for the crossed
dipole trap. Each of the beams passes through an AOM, that is used to control
the intensity of the beam. Subsequently, the beams are expanded to a diameter
of 16 mm before they enter the chamber. Each AOM needs an RF power of
30 W. This power heats up the AOM and when the RF power is ramped down
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Fig. 7.4: Schematic of the CO2-laser system and the setup for measurements
around the chamber. It can be seen how the MOT lasers, the coupling and the
probe laser are overlapped. Furthermore, the future path of the single photon
(s.p.) is shown. The frequencies of the AOMs in the CO2 beams are f1 =
+30/+ 50 MHz and f2 = −30/− 50 MHz. They have an opposing algebraic sign
to prevent interference effects in the dipole trap.

to decrease the laser intensity, the AOM cools down and the beam moves. To
overcome this shortcoming, a second frequency with 50 MHz is added to the used
frequency of 30 MHz. This created an additional beam behind the AOM, which
can be neglected, as it is blocked. Using an electronic circuit, the power of the
second frequency is adjusted to keep the total RF power constant at 30 W. Then,
the beam does not move when the power is reduced.

7.4 Setup for the measurements

Figure 7.4 also shows the complete laser setup around the chamber in 2
dimensions and the radial MOT beams, which are sent under an angle of 45◦
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7. Laser systems

into the chamber (see figure 5.1 B). It is also shown how the probe and the
coupling laser are overlapped with the MOT beams to ensure the respective po-
larizations. A high efficiency Em-CCD camera (Andor iXon) is used to perform
absorption measurements of the cloud, using the Raman laser system. λ-
plates and polarizing beamsplitter cubes are used to ensure that only the desired
lasers arrive at the camera. Using the lenses, the cloud is imaged onto the camera.

Analogously, lenses are used to image the cloud onto a CCD camera (PCO
Pixelfly), which is used for fluorescence measurements of the cloud.

As the single photons will need to be π-polarized, they will enter the chamber
along the x-direction. The directions are the same as in figures 5.1.

Before the MOT lasers, which are overlapped with the repumping lasers,
enter the chamber, they are expanded to a diameter of 10 mm, with a power of
20 mW in each beam. The overlapped repumping laser beams have an intensity
of 1 mW each.
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8. Single Photon Detection

After the vacuum chamber and thereto fitting magnetic coils had been designed,
precise calculations on single photon detection could be made. The properties
of the atomic cloud, that were expected due to the design of the chamber, were
used to perform these calculations, which are presented in this chapter.

For the single photon detection process, we continue sticking to single
photon Fock states and neglect states with two or more photons, as they can in
principle be calculated the same way.

There are then two different efficiencies in the single photon detection
process:

• a single photon arrives, but is not detected (η1pd)

• no photon arrives but the detector counts one (η0pd)

The first case can occur if the single photon transfer is insufficient ηipt, the single
photon has the wrong polarization ηwp, the single atom changes its state due to
a collision when the other atoms are pulled out of the trap ηcol, if the single atom
decays into the wrong state during its detection process ηws or if the single atom
is lost due to the finite lifetime ηlt in the trap.

η1pd = (1 − ηipt) · (1 − ηwp) · (1 − ηcol) · (1 − ηws) · (1 − ηlt) (8.1)

The second case can occur when an atom is initially in a magnetic |mF = 0〉
substate ηmF 0 or gets there by scattering light of the coupling laser ηcls

η0pd = (1 − ηmF 0) · (1 − ηcls) . (8.2)

8.1 Adiabatic transfer

The scheme of the adiabatic transfer is shown in figure 8.1. Here, the atoms have
all been collected in the |5S1/2, F = 1, mF = −1〉 state. The Rabi-frequency for



8. Single Photon Detection

Fig. 8.1: Level scheme and time
evolution of the laser intensities
for the adiabatic transfer of the
single photons.

the adiabatic passage can be obtained from equation 3.21. The time evolution of
the probe laser power is approximated via

Pp(t) = Pp0 sin8

(
(t− τ)

Tp

π

)
, (8.3)

because then the Rabi-frequency is approximated with a sin4-function [FSB97]
that begins at t = τ and ends at t = Tp − τ Relatively to the coupling pulse, the
probe pulse is delayed by the time constant τ .
According to equation 3.6, the normalization constant is given by

τ+Tp∫

τ

Pp(t) dt =
35

128
TpPp0

!
= n ~ω , (8.4)

where we now choose n = 1. This means the pulse shall contain exactly one
photon.
Hence, we finally get for the Rabi-frequency (equation 3.21)
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√
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The two pulses shall be equally long and their length, the maximum coupling
Rabi-frequency and the time delay τ are varied to obtain the highest efficiency.
According to the literature, the Rabi-frequencies should have the same magni-
tude and the optimal time delay is τ = 0.2Tp [FSB97]. Thus, we will start the
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8.1. Adiabatic transfer

calculations with these assumptions.

We will now estimate the size of the cloud via the maximum trapping po-
tential that allows for magnetic pulling of the atoms.
As shown in section 6.3, the maximal achievable magnetic gradient is 380 G/cm.
This gradient can pull atoms in the |mF = −1〉 state with maximum force of
Fmagn = 1.76 · 10−23 N (equation 2.28). Given a crossed dipole trap under
an angle of 2ϕ = 60◦ and a beam waist of 35µm, a numerical evaluation of
equation B.13 shows that this magnetic gradient can pull atoms out of a trap
with a maximum of 570 mW power in each beam.

Under these conditions, the trap depth is V = 1.03 · 10−28 J (equation B.12).
Due to collisions, the temperature in the trap converges to a temperature T .
This temperature is connected to the trap depth by

T =
1

η

V

kB

, (8.6)

where the ratio η in a dipole trap is typically η = 10 [LRW96, OGGT01]. This
yields a temperature T = 750 nK.
Finally, the distribution widths are given by equations 2.18, B.10 and B.11:

σy = 5.35µm

σz = 4.64µm (8.7)

The beam waist of the single photon laser is assumed to be wy = wz = 10µm
(a value that can be achieved easily) and the saturation intensity for the single
photon transition (see figure 8.1) is [Ste02]

Isat =
4

3
· 4.484

mW

cm2
, (8.8)

where the factor 4/3 reflects the ratio of the squared Clebsch-Gordan-
coefficients of the transitions |5S1/2, F = 2, mF = 2〉–|5P1/2, F = 2, mF = 2〉 and
|5S1/2, F = 1, mF = −1〉–|5P1/2, F = 2, mF = −1〉.

To calculate the number of atoms with equation 2.19, we assume an atomic
density of n0 = 1.2 · 1013 cm−3 [CRGW03], which yields N = 4.3 · 104.

Hence, we can calculate the single photon Rabi-frequency

Ωp(t) = sin4

(
(t− τ)

Tp

π

)
· 6.6 · 104

√
1

Tp/s
· 1

s
, (8.9)
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8. Single Photon Detection

where the pulse length Tp is the parameter that will be varied in the calculations.
The atomic populations were then calculated with equations C.4. The additional
state

ρ̇decay = +Γρcc (8.10)

was added to the system. This state collects all population that decays due to
spontaneous emission from the excited state.
Figure 8.2 shows an example of a successful single photon transfer.

Fig. 8.2: Single photon passage in
the adiabatic regime. The prob-
ability to transfer the single pho-
ton is close to unity. ρaa equals
the population in the collective
ground state, ρbb the population
in the collective single excitation
state. The Rabi-frequency of the
coupling laser is Ωc = 1.6 Ωp and
the pulse length is 50µs.

Using Ωp = 2π · 1.5 · 106 Hz, the adiabatic criterion (equation 4.44)

√
Ω2

c + Ω2
p · Tp

!≫ 1 . (8.11)

yields 750, which is much larger than 1. This results in a very high transfer
efficiency, which is the population in state |ψ〉e (the collective single excitation
state) after the transfer. Here, it is 99.99 %.
The result of the simulations is shown in figure 8.3. Here, the transfer efficiency is
plotted in dependence of the coupling laser Rabi-frequency and the pulse length.

In general, the efficiency increases for longer pulses, which comes from the adi-
abatic criterion. To show this, we approximate Ωc ∼ Ωp , extract Ωp ∼ 1/

√
Tp

from equation 8.9 and get

√
Ω2

c + Ω2
p · Tp ∼

√
2Tp . (8.12)

This shows that the adiabatic criterion gets more satisfied for longer pulses. On
the other hand, shorter pulses are desirable because of collisional loss mechanisms
that have not been included in the calculation.
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8.1. Adiabatic transfer

Fig. 8.3: Transfer-
efficiency for single
photons, depending on
the pulse length and the
Rabi-frequency of the
coupling laser. The latter
one is given in units
relative to the Rabi-
frequency of the single
photon Rabi-frequency.

Additionally, the transfer efficiency depends on the Rabi-frequency of the
coupling laser. This can also be seen for shorter pulses in figure 8.3. The
transfer efficiency shows maxima around 1 ≤ Ωc/Ωp ≤ 1.6. But especially
for short pulses and low coupling Rabi-frequencies, it does not show a simple
monotonic increasing and afterwards decreasing function. This occurs because in
the non-adiabatic regime the transfer gets superimposed with Rabi-oscillations
of the population. An example for this is shown in figure 8.4.

Fig. 8.4: Single photon passage
in the non-adiabatic regime. The
population transfer is incomplete
and the non-adiabaticity can be
also seen in the oscillations in the
population. The Rabi-frequency
of the coupling laser is Ωc =
0.7 Ωp and the pulse length is
20µs. The transfer occurs ear-
lier than in the adiabatic regime
because here the coupling laser
Rabi-frequency drops faster be-
low a limit where the velocity of
the transfer suddenly increases.

Here, the adiabatic criterion (equation 4.44) yields 390. Due to the large value
(≫ 1), the transfer efficiency is very high (99.8 %) but on the other hand it is
still too low to suppress the superimposed Rabi-oscillations.
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8. Single Photon Detection

The numerical simulations showed an optimum in the time delay between
the two pulses of τ = 0.2, which agrees with the values given in the literature
[FSB97].

The influence on the adiabatic passage due to the |5P1/2, F = 1, mF = −1〉
state can be neglected here. On the one hand, this level is detuned 800 MHz from
one-photon-resonance and thus the absorbtion as well as the adiabatic passage
via this level are strongly suppressed. Additionally, the ratio between passage and
absorbtion is strongly enhanced [JK02], which also results in a successful passage.

As the result of these calculations, we note the probability for an inefficient
photon transfer ηipt = 10−4.

8.2 Polarization dependence

The linear polarization of the single photons should be oriented parallel to the
magnetic field. But due to imperfect optical devices, there is always a small
admixture of orthogonal, linear polarized light, that splits up into σ− and σ+.

Fig. 8.5: Polarization split-
ting of the single pho-
tons. The wrong polariza-
tions drive different transi-
tions and are detuned from
resonance.

Although there is a Zeeman shift of the other levels, there is a non-negligible
chance that the photon gets absorbed.
If the polarization of the single photon is σ−, the atom cannot decay into a
magnetically neutral ground state and would be pulled out of the trap when the
magnetic gradient is applied. This would imply a loss of the single photon.

If the polarization is σ+, the absorption probability can be assumed to be
unity because of the high optical density and the low detuning of 24 MHz. Then,
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8.3. Collisions

due to the Clebsch-Gordan-coefficients, the chance to end up in a magnetic
ground state is 2/3, while it is 1/3 to end up in one of the desired magnetically
neutral states.
Finally, these factor must be multiplied with the probability of finding the
photon in the wrong polarization, which we assume to be 1‰, as this is the
purity that can be achieved with polarizing beamsplitter cubes [BHN07]

ηwp =

(
1

2
+

1

2

2

3

)
· 1 h = 0.8 h . (8.13)

8.3 Collisions

Directly after the adiabatic passage, the magnetic gradient will be applied to
pull the unwanted atoms out of the dipole trap. During this process, a collision
between such an atom and the desired single atom can occur. Due to the low
temperature of 750 nK, we have to consider only elastic s-wave collisions.
If we assume to have the atom at the edge of the cloud (which we set to infinity)
and must drag all atoms along, the number of these collisions is given by

Ncol =

∞∫

−∞

n(~r)σsc dy , (8.14)

where n(~r) denotes the atomic density and σsc the scattering cross section. For
low temperatures (only s-wave collisions), the latter one is given by σsc = 4πa2.
(As the single atom is in a different magnetic substate, the additional factor of 2
for indistinguishable bosons does not have to be included.) Here, a denotes the
scattering length, which is a = 109 a0 in the case of rubidium-87 and a0 denotes
the Bohr radius.
The atomic density along the y-direction at x = z = 0 is given by

n(~r) = n0 exp

(
−y

2

σ2
y

)
. (8.15)

Assuming a density of 1.2·1013 cm−3 and a width of σy = 5.35µm (see section 8.1),
we get

Ncol = 0.048 . (8.16)

As the magnetic gradient is able to pull the atoms out of the trap, the magnetic
energy gained by an atom is large enough to kick the single atom by a collision out
of the trap. To circumvent this problem, the magnetic gradient can be ramped
up slowly. The atoms will then be pulled slowly out of the trap and if a collision
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occurs, the transferred kinetic energy will not be large enough to kick the single
atom out of the trap. This could only happen if many collisions occur.
As also the spin-changing collisions [BMV96] and the low three-body collision
rate [SGOD+99] are strongly suppressed, the collisions with the unwanted atoms
can be neglected (ηcol ≈ 0).

8.4 Single atom detection

As shown in figure 8.6, the single atom is initially in state |b〉 and has to
be pumped into state |j〉, from there it can scatter light on the closed |j〉–|g〉
transition. The excited states for optical pumping are all |F = 3〉 states and thus
the atom cannot decay into an |F = 1〉 ground state and get lost. But the atom
can offresonantly get excited to an |F = 2〉 state and then decay to an |F = 1〉
ground state. To avoid this case, an additional repumping laser must be used:

Fig. 8.6: Level scheme of
the single atom detection.
The atom is initially in state
|b〉 and will be transferred
to state |j〉, from where
it can scatter light on the
closed |j〉–|g〉 transition.

Due to the Clebsch-Gordan-coefficients [Ste02], after scattering 4 photons at low
intensity, the probability to be in state |j〉 is 69 % (where we neglect the strongly
suppressed σ−-polarized light admixture in the otherwise σ+-polarized light).
Thus, we will use this rather conservative number to approximate an average
number of 2 scattered photons on the |b〉–|e〉 transition and 2 on the |h〉–|f〉
transition.

For the single atom detection, the magnetic offset field at 100 G will be
used. When we tune the detection light to resonance on the |j〉–|g〉 transition,
the detuning is −49 MHz on the |b〉–|e〉 transition and +270 MHz on the
|b〉–|5P1/2, F = 2 mF = 1〉 transition, while it is +2 MHz on the |h〉–|f〉 transition
and +317 MHz on the |h〉–|5P1/2, F = 2 mF = 2〉 transition [BR31, Ste02].
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The ratio between the respective |F′ = 3〉 and |F′ = 2〉 transition is given by
equation 3.39 and yields 3.3 % for the |b〉–|e〉 transition and 2 · 10−4 for the |h〉–
|f〉 transition. To calculate the total loss probability we note that the probability
to decay into an |F = 1〉 ground state is 50 % for each decay. Thus, we finally get

ηws = 3.3 % . (8.17)

This rate is too high for high efficiency photon counting and an additional, well
polarized repumping laser must be used. It causes

ηws ≈ 0 . (8.18)

8.5 Lifetime

It is possible that the single atom gets lost due to a background collision during its
detection. If we assume a lifetime of τlt = 5 s and a detection time of Tdet = 10 ms,
the probability to loose the atom in this time is given by

ηlt = exp(−Tdet/τlt) = 2 · 10−4; . (8.19)

Hence, we finally get for the achievable single photon detection efficiency (equa-
tion 8.1)

η1pd = (1 − ηipt) · (1 − ηwp) · (1 − ηcol) · (1 − ηws) · (1 − ηlt)

= 99.9 % . (8.20)

8.6 Optical pumping

Before the adiabatic passage is performed, all atoms must be pumped into
the |5S1/2, F = 1, mF = −1〉 state. Because there exists no excited state
which provides a closed transition to this ground state, it is not possi-
ble to pump into this state with high efficiency. Thus, the atoms will be
collected in the |5S1/2, F = 2, mF = −2〉 state and then transferred to the
|5S1/2, F = 1, mF = −1〉 state with a microwave Landau-Zener sweep [RKLK81].
This sweep will exchange the populations of the two states with high efficiency.
The remaining population can be neglected because only the population in the
two |mF = 0〉 states disturbs the single photon detection. This pumping scheme
is shown in figure 8.7.
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Fig. 8.7: Level scheme for
the optical pumping. The
pumping is mainly done via
the F ′ = 2 states. But due
to the required very high
population purity, all levels
have to be taken into ac-
count. Furthermore, as an
example, the σ+-admixture
is shown for one transition.

To simulate the optical pumping, a rate equation system for the eight magnetic
ground states had to be solved. Here, the change in the population of a state is
proportional to the scattering rate of the light that pumps its population away.
Additionally, this pumped population ends up in another state (defined by the
Clebsch-Gordan-coefficients) and one has to find the steady state solution.

For simplicity it was assumed that the light is applied with one frequency
and the resulting detuning on each transition was considered. This is a conserva-
tive estimate because the frequency of the monochromatic light can be changed
within the pumping sequence and thus the efficiency can be further increased.
For the calculation we have assumed a σ+-polarized intensity admixture of
1‰ [BHN07] to the otherwise σ−-polarized light.

The assumed intensity on the MOT transition is 0.22 · Isat and the one on
the repumping transition 4 · Isat.
Normalized to a total population of 43000 atoms (see section 8.1), the rate
equations revealed a population of 10−3 atoms in the |5S1/2, F = 1, mF = 0〉
state and a population of 5 · 10−3 atoms in the |5S1/2, F = 2, mF = 0〉 state.

Thus, we get a probability to detect a photon although none arrived of

ηmF 0 = 6 · 10−3 . (8.21)

Most of the remaining population is caught in the |5S1/2, F = 2, mF = −2〉
state. The only other significant population of 25 atoms ends in the
|5S1/2, F = 2, mF = −1〉 state. But this can be neglected, as the atoms
will also be pulled out of the trap with the magnetic gradient.

The pumping time was 10 ms, which is necessary to reach the steady state
solution. As this is a rather long time for optical pumping, the pumping sequence
can already be applied during the evaporative cooling in the dipole trap.
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The detuning on the MOT transition was −314 MHz, relative to the unshifted
|F = 2〉–|F′ = 3〉 transition, while the detuning on the repumping transition was
−179 MHz, relative to the unshifted |F = 1〉–|F′ = 1〉 transition. It should be
noted that the population in the magnetically neutral states can be further low-
ered, when the detuning is not held constant but modified in a ramping sequence.
The simulation showed that the population in the magnetically neutral states can
be further lowered when microwave radiation is applied between the two |mF = 0〉
ground states during the optical pumping process.

8.7 Offresonant scattering

The σ−-polarized coupling laser interacts not only on the |5S1/2, F = 2, mF = 0〉–
|5P1/2, F = 2, mF = −1〉 transition. It also couples the |5S1/2, F = 1, mF = −1〉
ground state, in which the atoms are collected, with the excited state
|5P1/2, F = 2, mF = −2〉. Due to the large detuning of 6.8 GHz, the influence
on the adiabatic passage can be neglected. The atoms, which are excited, decay
back to a ground state with mF < 0 and are thus magnetically pulled out of the
trap afterwards.

Fig. 8.8: The excited states,
which are coupled to the
populated ground state by
the σ+-polarized part of the
coupling laser. Further-
more, the intended transi-
tion with the σ−-polarized
part is shown. The detun-
ings are indicated by arrows
that don’t hit the respective
levels.

But the coupling laser also has a small admixture of σ+-polarized
light. This couples the |5S1/2, F = 1, mF = −1〉 ground state, in which
the atoms are collected, with the excited states |5P1/2, F = 1, mF = 0〉 and
|5P1/2, F = 2, mF = 0〉. These states can decay into the magnetically neutral
ground states |5P1/2, F = 2, mF = 0〉 and |5P1/2, F = 1, mF = 0〉. Integrating in
time over the scattering rate (equation 3.39) and using the Rabi-frequency, atom
number and pulse length given in section 8.1, the Clebsch-Gordan-coefficients
for the respective transitions [Ste02] and assuming a σ+ intensity admixture of
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8. Single Photon Detection

1‰ [BHN07], we find that the coupling pulse transfers 2.9 · 10−4 atoms (nor-
malized to 43000 atoms) into each of the two magnetically neutral ground states.
This yields an efficiency of

ηcls = 5.8 · 10−4. (8.22)

Hence, we finally get for the efficiency of not detecting an absent photon

η0pd = 99.3 % . (8.23)

As the coupling laser also couples the |5S1/2, F = 2, mF = −2〉–
|5P1/2, F = 2, mF = −1〉 transition, one has to ensure that this ground
state gets fully emptied by the microwave sweep.
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9. Electromagnetically Induced
Transparency

As we have measured EIT in optically trapped rubidium atoms, I will discuss in
this chapter, how narrow the EIT bandwidth can get in such a system.

The bandwidth (transparency width) is responsible for the velocity of slowed
light as well as for the maximum possible storage time of stopped light and thus
it is the most interesting EIT quantity.
As has been shown in section 4.3, the transmission spectrum depends on the
density and length of the cloud, the polariton loss due to collisions, the length
of the probe pulse, the Rabi-frequency of the coupling laser and the probe laser
detuning.

For the cloud, we will take the values necessary for the single photon de-
tection (see chapter 8): the length of the cloud is given by twice its width,
l = 2σy = 10.7µm and the atomic density is n0 = 1.2 · 1013 cm−3.

In a chamber with ultra high vacuum, the lifetime of a cold cloud can be
several seconds [CRGW03]. Therefore, we will assume a conservative collisional
decay rate of γ = 1 Hz. This rate limits the pulse length: if longer pulses are
used, the polaritons would decay before they could be read out. Therefore, I will
choose the total pulse length (equation 8.3) to match the collisional decay rate,
that is Tp = 1 s, which equals τ = 0.25 s in equation 4.35. Then it is unlikely to
get unity transparency, but still enough signal to keep the photon number low.

To estimate the required coupling laser Rabi-frequency, we assume to detect
20 % of the initial photons of the probe beam (due to insufficient transparency
and detection efficiency). If we want to detect at least 30 photons, we need the
statistics of many experiments to measure an EIT spectrum, but this can be
done experimentally.
The assumption of 150 probe photons leads to maximum probe laser Rabi-
frequency of Ωp = 64.9 kHz (equation 8.5). Thus, we estimate the required
coupling laser Rabi-frequency via Ωc = 1.6 · Ωp = 104 kHz (see section 8.1).
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To get a first result, we assume the coupling laser to be resonant (∆c = 0) and
get from equation 4.25 the width of the EIT resonance

σp = 24.3 Hz , (9.1)

where the transparency on resonance is T = 0.88.

Using these values in equations 4.36 and 4.37 leads to

Tr, pulse(∆p) = 0.88π τ

+∞∫

−∞

e−∆′2/σ2
p e−π2τ2(∆p−∆′)2 d∆′

= 0.879 e−∆2
p/(24.3 Hz)2 . (9.2)

This shows that the pulse length is not a limiting factor in this regime.

The probe laser detuning can be zero if we simply tune the laser to reso-
nance. But the two involved atomic ground states experience different quadratic
Stark shifts (see section 2.4), depending on their position in the trap. If an atom
is at the edge of the trap, the quadratic stark shift of both levels is zero. At the
trap center, their shift is given by equations B.12, 2.20 and 2.21.
For a narrow bandwidth EIT measurement, we choose the states
|5S1/2, F = 2, mF = −1〉 and |5S1/2, F = 1, mF = 1〉 as they shift equally in
the same direction in the linear Zeeman effect, which decreases magnetic
broadening due to inhomogeneities in the magnetic offset field.

Fig. 9.1: Level scheme for
a narrow bandwidth EIT-
measurement.

At an offset field of 100 G, the different quadratic Stark shift of these states is
∆qss = 27.4 Hz.
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Then, as a conservative estimate we assume to have the atoms equally distributed
over all possible values 0 ≤ ∆qss ≤ 27.4 Hz. Therefore we can average over all
possible transfer functions, which yields the final result

σmin = 25.5 Hz . (9.3)

It should be noted that the assumed values, especially the low photon number
at the relatively long pulse length, are experimentally demanding. Also, the two
lasers must be very stable, which means the relative drift to each other must be
much less than 25.5 Hz.

In a magnetic trap, the quadratic Zeeman shift is analogous to the quadratic
Stark shift of the dipole trap. For a typical magnetic trap [Pri83, MAvD+96], the
maximal difference in the shift is ∆qzs ≈ 20 Hz. Thus, the minimum achievable
linewidth is comparable to the one in a dipole trap. But in a magnetic trap
the field is not homogeneous and thus it is not possible to clearly address the
different magnetic substates of the medium.

In special vapor cells, containing an additional buffer gas that reduces
spin-changing collisions between the atom, the narrowest EIT lines at widths of
∼ 30 Hz have been measured [BNWM97, ENH00]. Here, one is not limited by
pulse lengths and very low Rabi-frequencies can be used.
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Experimental Results





10. Magneto-optical trap and Dark
MOT

For loading the magneto-optical trap (MOT), a rubidium dispenser with an
electric current of 5.6 A was used. The optical power in each of the MOT beams
was 20 mW on the MOT transition and 1 mW on the repumping transition.
Furthermore, a magnetic gradient of ∼ 11.9 G/cm (depending on the following
sequence) was applied during the 2 seconds long MOT phase.

The measurements were performed with the time-of-flight method (TOF).
Here, a picture of the free-falling cloud is taken after several time steps, where
a new cloud has to be prepared for each measurement. As the momentum
distribution of the atoms is transformed into a spatial distribution during the
expansion, one can estimate the temperature of the cloud by its expansion rate.
The pictures were taken with the fluorescence method, where the camera collects
light that is emitted by the cloud when it is illuminated with resonant light.
Here, two pictures have to be taken: one with the atoms and one without the
atoms. The latter one is used to determine the ambient background and is
subtracted from the first one. The calibration of the imaging system is used to
determine the size of the cloud while the amount of collected light reveals the
number of atoms. Combining these quantities finally yields the density in the
cloud.
Up to ∼ 1.7 · 109 atoms at temperatures of ∼ 400µK could be captured in the
MOT.

Since the atoms in the MOT are too hot to be transferred into the dipole
trap, a dark MOT phase [CRGW03] has to be applied on the atoms.
During this dark MOT phase (DM), which is applied for 17 ms, the frequency of
the cooling light for operating the MOT was detuned −100 MHz from resonance.
Furthermore, the repumping power was reduced to 1 % of its value. Because
of this, the atoms scatter less photons and thus their temperature decreases
significantly. As one also looses confinement in real space, a portion of the atoms
is lost. To reduce this loss, the magnetic gradient is ramped up to its maximum
value of 16.9 G/cm.



10. Magneto-optical trap and Dark MOT

The atom number was then reduced to 9.3 · 108 and the density was n0 = 1.4 ·
1012 cm−3. This high density could only be achieved because the dipole trap had
been turned on already. The temperature of the ensemble was again determined
with the time-of-flight method. Figure 10.1 shows the time evolution of the cloud
radius in two dimensions.

Fig. 10.1: Expansion of the free-falling dark MOT cloud in x- and z-direction.
The green crosses indicate the measured data points, while the blue line is fitted
into them.

Here, the ensemble is in thermal equilibrium and the obtained temperatures are
Tx = 40µK and Tz = 37µK. The measured size of the captured cloud was
σx = 400µm and σz = 260µm.
Figure 10.2 shows a fluorescence picture of the dark MOT.

Fig. 10.2: A fluorescence
picture of the cloud after
the dark MOT sequence. It
contains 9.3 ·108 atoms. Ar-
eas with a higher atomic
density scatter more light
and are indicated red in the
miscolored picture.
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11. Dipole Trap

The dipole trap (DT) was already turned on during the MOT and DM phases.
After the DM phase, the MOT lasers were turned off and up to 3.4 · 107 atoms
could be captured in the DT. The atom number was also determined by taking
fluorescence pictures.

As the frequency range of the Raman laser system is limited, the Stark
shift of the dipole trap must be used to shift the atomic levels into resonance
with the Raman lasers. For performing the EIT measurements at an offset field
of 100 G, the optical power in each CO2-laser beam had to be reduced from the
maximum of 42 W to 13.1 W (see chapters 12 and 13). Thus, I will present the
cloud parameters for this optical power.

Figure 11.1 shows the time evolution of the cloud radius in two dimen-
sions. The data was taken 30 ms after the DM was turned off. Then, the plain
evaporation (see section 11.1) had not yet stopped, but that didn’t affect the
EIT measurements.

Fig. 11.1: Expansion of the free-falling dipole trap cloud in x- and z-direction.

The temperature obtained from the expansion at large radii yields Tx = 200µK
and Tz = 80µK. This shows clearly that the cloud is not in thermal equilibrium.



11. Dipole Trap

The collision rate is given by

Γcol = n0 σsc v , (11.1)

where v denotes the average velocity of the atoms and σsc = 8πa2 denotes the
scattering cross section. The latter one includes a factor of 2, corresponding to
the indistinguishability of bosons. Here, a denotes the scattering length, which
is a = 109 a0 in the case of rubidium-87 and a0 denotes the Bohr radius.
Using an average temperature

Tav =
{
Tx T

2
z

}1/3
= 109µK , (11.2)

we get an average velocity of

v =

√
3kBTav

m
= 0.18 m/s. (11.3)

Together with the measured density of n0 = 2.3 · 1011 cm−3, this yields a collision
rate of

Γcol = 32 1/s . (11.4)

As about 3 collisions per atom are necessary to bring the cloud into thermal equi-
librium, the thermalization time is about τtherm ≈ 100 ms. Due to the lifetime of
770 ms, this collision rate is too low for effective evaporation. Thus, the transfer
from the DM to the DT has to be modified. By changing the parameters of the
DM phase, the density in the DT can be enhanced by accepting a lower number
of atoms.
The achieved optical densities (see chapters 12 and 13) were sufficient for measur-
ing narrow bandwidth EIT, but they will not be sufficient for the single photon
detection (see chapter 8). Thus, a higher number density has to be achieved
before the cooling sequence can be started.
The measured radii of the cloud were σx = 272µm and σz = 126µm. A fluores-
cence picture of the dipole trap is shown in figure 11.2.

Fig. 11.2: A fluorescence
picture of the dipole trap
sample. It contains 3.4 ·
107 atoms. Contrary to the
picture of the dark MOT
sample, a part of the total
picture is enlarged here.
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11.1. Lifetime

11.1 Lifetime

The lifetime in the dipole trap has been measured for the two possible single
beam traps as well as for the crossed beam dipole trap. Here, the maximum
optical power of 42 W in each beam could be used. The time evolution of the
atom number is shown in figure 11.3.

Fig. 11.3: Semilogarithmic
plot of the atom number in
the dipole trap. The plain
evaporation takes place
within the first 600 ms.
After that, an exponential
fit to the data yields the
lifetime of the ensemble
and the pressure in the
chamber.

Due to the logarithmic scale it can be seen that initially the atom number de-
creases very fast until it reaches an exponential decay. The initial decay is at-
tributed to plain evaporation. It results from the fact that the dipole trap is
initially filled up to the edge. Then, the hottest atoms can gain enough energy
to leave the trap in a collision until a ratio between the trap depth and the tem-
perature of η ≈ 10 (see section 8.1) is reached. As the trap depth is V = 4.4 mK
(see section 12.1) and the average temperature (equation 11.2) after 660 ms is
Tav = 350µK, this ratio is experimentally confirmed.
30 ms after loading the dipole trap, the atomic density is n0 = 1.6 · 1011 cm−3 and
the average temperature Tav = 570µK. Using equations 11.1 and 11.3, we get a
collision rate of

Γcol = 54 1/s , (11.5)

which is large enough to perform the plain evaporation within 660 ms.

The subsequently following decay is exponential and yields the lifetime τ
in the trap via

N(t) = N0 e
−t/τ . (11.6)

This exponential curve was fitted to the data points past 660 ms (to ensure that
the plain evaporation had finished). The lifetimes in the single beam trap were
τA = 670 ms and τB = 630 ms, while the lifetime in the crossed beam trap was
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11. Dipole Trap

τCB = 770 ms. This corresponds to the fact that the crossed beam trap is deeper
than the single beam traps and an atom has to gain more energy to leave the trap.

As the exponential decay corresponds to collisions with the background
gas, the pressure in the chamber is given by (see section 2.6)

p ≈ 1.3 · 10−8 1

τD/[s]
mbar . (11.7)

Using the lifetime in the crossed beam dipole trap, this yields a pressure of

p ≈ 1.7 · 10−8 mbar . (11.8)

This pressure is two magnitudes higher than the pressure obtained from the Ion
gauge and the leak test (see section 5.6). Since the dispensers evaporate the ru-
bidium into the main chamber, the pressure there is higher than at the pumping
cross. Also, some of the evaporated rubidium atoms hit the cloud directly, that
means without having any collisions with other atoms or the chamber. The colli-
sions between these atoms and the captured atoms lead to lower lifetimes, which
results in an supposed higher pressure.
The same effect occurs due to heating mechanisms in the dipole trap. When
atoms in the dipole trap heat up, e.g. due to fluctuations in the light intensity
(parametric heating), some of the hot atoms leave the trap, which also results in
an supposed higher pressure.
To reduce the collisions with atoms from the rubidium dispensers, many experi-
ments use lower currents through the dispensers or use the dispensers in a pulsed
mode [FGHZ98, GP03]. Initially, this results in longer MOT loading times (up to
30 s) and nevertheless lower atom numbers. But the reduced background collision
rate finally leads to higher atom numbers after forced evaporation.
In this experiment, high cw currents were used because this yields an initially
higher optical density while the disadvantage of the higher pressure did not influ-
ence the experiment since forced evaporation couldn’t be performed due to low
number densities in the dipole trap.
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12. Absorption Measurements

For the absorption measurements, the laser passes through the atomic cloud to
the camera, which is placed behind the cloud. Three pictures have to be taken:
one with the atoms (A), one without the atoms and the laser turned on (B) and
a last one with the laser turned off (C). The last one is used to determine the
ambient background and is respectively subtracted from the other two. These
pictures are then divided through each other: (A− C)/(B − C). This yields the
transmission through the cloud via

T = 1 − A− C

B − C
(12.1)

and therefore the optical density

OD = − log10 T . (12.2)

This signal can be combined with the calibration of the CCD camera to obtain
the atom number of the cloud [KDSK99]. For the measurements, the probe laser
of the Raman laser system was used.
Lenses were adjusted to image the cloud onto the CCD camera (see figure 7.4).
As described by Marte [Mar03], it is possible to adjust the imaging lenses by tak-
ing absorbtion pictures at several lens positions: depending on the lens position
and the laser detuning, a focused or expanded image of the cloud will be recorded.

For measuring the absorption spectra, the atoms were captured in the
crossed beam dipole trap with 13.1 W in each beam. In this trap, the atoms
experience a position-dependent potential and thus a position-dependent Stark
shift on their levels.
To get rid of this shift, the dipole trap must be turned off before the absorption
picture is taken. Figure 12.1 shows such an absorption spectrum of the optically
trapped ensemble.



12. Absorption Measurements

Fig. 12.1: An absorption spec-
trum of the optically trapped
cloud. It has been taken 30 ms af-
ter the DM was turned off. Then,
the plain evaporation had just fin-
ished. The probe laser is applied
for 200µs.

12.1 Stark shift

As the atoms in the dipole trap experience a position-depended Stark shift, it is
possible to measure this shift by taking absorption spectra while the dipole trap
is turned on.

The energy distribution in the dipole trap is given by the Boltzmann function.
In terms of the frequency shift it reads

N(ν) = p
Eν

ET
3/2
e
− Eν

ET . (12.3)

Here, Eν = h(∆ν − ν0) denotes the energy of an atom and ET = kBT the
temperature of the cloud. p, ν0, ∆ν and T are the parameters, that were fitted
to the data. Hereby, ν0 denotes the Stark shift of the trap. Figure 12.2 shows
the excited state, that is subject to this distribution.

Fig. 12.2: The Stark shift ef-
fects the ground as well as
the excited state. The fre-
quency distribution is shown
along the excited state, where
the ground state has been set
as reference. Ωp denotes the
Rabi-frequency of the probe
laser and ∆p its detuning from
resonance.
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12.1. Stark shift

Figure 12.3 shows an example of a measurement in the single beam dipole trap
for three different powers in the CO2-laser.

Fig. 12.3: Three absorp-
tion spectra in the single
beam optical dipole trap.
The colored curves show
the measured data and the
black lines the fitted theory
curves. The blue curve cor-
responds to a laser power of
7 W, the green curve to a
laser power of 16 W and the
red one to a laser power of
43 W.

It can be seen that the Stark shift on the atomic levels increases for higher laser
powers.

Since the EIT measurements were taken in the crossed dipole trap, the
Stark shift was quantitatively measured therein. Figure 12.4 shows this mea-
surement for several different powers in the CO2-laser.

Fig. 12.4: Measurement
of the Stark shift in the
crossed beam optical dipole
trap. For a better survey,
the different measurements
have been shifted along the
y-axis. Since the optical
density is subject to fluctu-
ations, the peaks have a dif-
ferent relative intensity.

The parameter ν0 determines the maximum frequency shift in the dipole trap
and reflects the dipole potential, given by equation B.12

|V (x = 0, y = 0, z = 0)| =
2αP

πc ε0w2
0

. (12.4)
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12. Absorption Measurements

Using V (0, 0, 0) = hν and taking into account that the polarizabilities of the
ground state α5S1/2

and the excited state α5P1/2
are responsible for the transition

frequency leads to

ν0 =
2(α5P1/2

− α5S1/2
)

hπc ε0w2
0

P . (12.5)

Plotting this shift versus the total laser power 2P , this yields a straight line
ν0 = m2P + b with a slope

m =
2(α5P1/2 − α5S1/2)

hπc ε0w2
0

. (12.6)

With our laser locking technique (see section 7.1 and reference [PFL+03]), the
absolute value of the probe laser frequency is only known within several MHz.
This can result in a possible offset b. Furthermore, the offset corresponds to the
natural line width of rubidium and the additional Doppler shift, which are about
−4.3 MHz (see chapter 12). In figure 12.5, the shift and the fitted line are plotted
versus the total laser power.

Fig. 12.5: Maximum ac
Stark shift on the atomic
levels in the crossed beam
dipole trap versus the total
CO2-laser power.

Using α5P1/2
− α5S1/2

= h · 0.122306 Hz/(V/cm)2 [Ste02], the fit of the line finally
yields m = 1.78 ± 0.08 MHz/W and a realistic offset of −4 MHz. Together with
equation 12.6, this yields the waist of the dipole laser beams

w0 = 28.7 ± 0.7µm . (12.7)

As a waist of 35µm was initially assumed (calculated via the beam diameter, the
focussing length of the lens and Gaussian optics), this is a very encouraging result.

At a laser power of 42 W in each beam, this yields a trap depth of (equa-
tion 12.4)

|V (x = 0, y = 0, z = 0)| = 4.4mK . (12.8)
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12.2. Magnetic offset field

12.2 Magnetic offset field

A magnetic offset field can be used to address magnetic substates individually.
It can be seen in figure 12.4 that the absorption spectrum in the dipole trap
is ∼ 40 MHz wide. Therefore, the transitions should be separated by at least
50 MHz. The σ+-polarized probe laser couples the |F = 2〉 ground state to the
excited |5P1/2, F = 2〉 state. Figure 12.6 shows an absorption spectrum with an
offset field of 118.7 G.

Fig. 12.6: Absorp-
tion spectrum of
optically trapped
atoms at an offset
field of 118.7 G. Four
addressed substates
can be seen. The
indicated absorption
peaks correspond
to the likewise in-
dicated transitions
in the figure below.
The transition peaks
increase from A to
D as the atoms are
unequally pumped
in the respective
ground states during
prior optical pump-
ing. The offset in
the optical density of
∼ 0.1 corresponds to
noise.

As peak C has been used for the EIT measurements, figure 12.7 shows a scan of
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12. Absorption Measurements

this peak at higher resolution.
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Fig. 12.7: Scan of the |5S1/2, F = 2, mF = −1〉–|5P1/2, F = 2, mF = 0〉 transition
at an offset field of 118.7 G. The peak is centered around ∆p ≈ −7 MHz, which
corresponds to the differential quadratic Zeeman shift between the ground states
|5S1/2, F = 2, mF = −1〉 and |5S1/2, F = 1, mF = +1〉. Due to the frequency lock
of the Raman laser system, the probe laser detuning refers to the latter state.
Here, the background noise in the optical density is ∼ 0.2.
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13. Electromagnetically Induced
Transparency

After measuring the absorption spectrum, the peak on the
|5S1/2, F = 2, mF = −1〉–|5P1/2, F = 2, mF = 0〉 transition was used to measure
electromagnetically induced transparency in an optically trapped cloud.

Fig. 13.1: Level scheme
for the EIT-measurement.
The coupling laser in-
duces transparency on the
|5S1/2, F = 2, mF = −1〉–
|5P1/2, F = 2, mF = 0〉
transition. The ground
states have been chosen
because of their equal linear
Zeeman shift.

At the high magnetic offset field of 118.7 G, the two involved ground states shift
unequal because of the quadratic Zeeman shift. At this field, the differential
shift is ∼ −7 MHz.
Between the absorption measurements and the EIT measurements the locking
point of the probe and the coupling laser had slightly shifted. With the new
lock, the magnetic field had to be increased to 129.7 G (=̂129A current) because
then the maximum of the absorption peak was around −7 MHz.

So far, the results of the absorption measurement have been presented as
optical density OD, but from now on the transmission T itself will be used, as
in the theoretical part. They can be transformed into each other via T = 10−OD.



13. Electromagnetically Induced Transparency

We have measured the EIT-resonance spectrum for three different lengths of the
probe pulse: τ = 5µs, τ = 20µs and τ = 100µs. Figure 13.2 shows the data of one
measurement with a pulse length of 20µs and a coupling laser Rabi-frequency of
1.2 MHz. In this measurement, it can be seen, that the signal contains an ab-
sorptive (the peak itself) as well as a dispersive part (the asymmetry).

−7.7 −7.6 −7.5 −7.4 −7.3 −7.2 −7.1 −7 −6.9 −6.8
0.4

0.5

0.6

0.7

0.8

0.9

1

δ / MHz

T
ra

ns
m

is
si

on
 T

Fig. 13.2: Transmission spectrum of a 20µs pulse at a coupling laser Rabi-
frequency of 1.2 MHz. The absorptive and dispersive parts in the signal can
be seen. The frequency offset of δ0 = −7.27 MHz corresponds to the differential
quadratic Zeeman shift between the two ground state levels. This offset does
not depend on the lasers and can thus be used to calibrate the magnetic offset
field. From the fitted blue line we obtained B = 129.7 G, which verified the nu-
merical simulation of the magnetic coils. For the fit we used equation 4.34 as an
approximation.

The value for the phase φ = 4.95 was obtained from the fits of all measurements.
The curve was fitted with equation 4.34 and yielded a bandwidth of σ = 100 kHz,
a ground state decay rate γ = 8 kHz and δ0 = −7.27 MHz for the frequency off-
set due to the quadratic Zeeman shift. The ground state decay rate γ usually
corresponds to collisions between the atoms as well as collisions with the back-
ground gas. The collision rate can usually be neglected, especially in case of large
coupling laser Rabi-frequencies. But it can also correspond to a transient effect:
for low coupling laser Rabi-frequencies, a steady state in the atomic population
cannot be reached within the time of a short probe pulse. Thus, photons can be
absorbed without being re-emitted, which shows the same empiric behavior as
the collisional loss of polaritons and leads to non-negligible values of γ.
The data in figures 13.3 and 13.4 show the results of the measurements with the
5µs and the 20µs pulses, respectively. For large coupling laser Rabi-frequencies,
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the coupling laser broadens the line width, while for lower Rabi-frequencies, the
pulse length is the limiting factor.
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Fig. 13.3: Theory curve and EIT measurement with 5µs pulses. The figure shows
the transparency width (Gaussian 1/e-radius of the symmetric part) depending on
the Rabi-frequency of the coupling laser. The probe pulses contain 3 ·105 photons
within the size of the cloud, which correspond to a maximum Rabi-frequency of
190 kHz. The error bars reflect the uncertainty in the phase φ.
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Fig. 13.4: Theory curve and EIT measurement with 20µs pulses. The figure shows
the transparency width (Gaussian 1/e-radius of the symmetric part) depending
on the Rabi-frequency of the coupling laser. The pulses contain 2 · 106 photons
within the size of the cloud, which correspond to a maximum Rabi-frequency of
220 kHz. The width is much narrower than the one of the 5µs pulses.
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13. Electromagnetically Induced Transparency

The solid curves show the line width that should in theory be obtainable with our
achieved cloud parameters. For 5µs probe pulses with large Rabi-frequencies,
the measurements are in good accordance with the theory. For all others,
the measured line widths are broader than the theory for an optical density
of 0.76 predicts. We attribute these small discrepancies to a decrease in the
optical density of the trapped cloud during the experimental measurements.
Smaller optical densities can be caused by a reduced number of optically trapped
atoms, which is typically observed in the course of the day, and lead to broader
theoretically expected line widths. The theory curve is plotted for an optical
density of 0.76.
The lack of sufficient coupling light results in an incomplete transparency and
limits the relative hight of the EIT peak in the signal. This can be seen in
figure 13.5.
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Fig. 13.5: EIT measurement with 5µs and the 20µs pulses. The figure shows the
relative hight of the EIT peak depending on the Rabi-frequency of the coupling
laser. The decrease for small Rabi-frequencies corresponds to the transient effect
that a steady state cannot be reached here within the time of a short probe pulse.

To obtain a very narrow line width, a measurement was made with 100µs
long pulses, containing 3.9 · 106 photons within the size of the cloud, which
corresponds to a maximum Rabi-frequency of 360 kHz. Figure 13.6 shows the
result for a coupling laser Rabi-frequency of 590 kHz. For lower values, the
induced transparency was too low.
Due to inefficient EIT, the absorptive part is so low that it is not visible
anymore. Instead, due to a large phase shift, the dispersive part of the signal
gets enhanced, compared to the measurements shown before.
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Fig. 13.6: EIT measurement with a 100µs pulse: the line width was reduced to
4 kHz. The transparency is so low that only the dispersive part of the signal can
be seen.

To enhance the dispersive effect, the σ−-intensity admixture a2 was increased to
25 %, which also resulted in a different differential phase shift φ = 4.1. With
a Gaussian 1/e-half width of 4 kHz, this is the narrowest EIT signal measured
in ultracold atoms [HHDB99, BBG+04]. A similar method of measurement
has recently been demonstrated with a vapor cell in a Sagnac interferometer
[PAH06, XLJGB95].
Narrower signals of ∼ 30 Hz have been measured in buffer gas cells, where one is
not limited by pulse lengths [BNWM97, ENH00].

Now we can finally use equation 4.30 to calculate the velocity of light in-
side the atomic medium. Using the values from the narrowest measurement,
Ωc = 590 kHz, σp = 4 kHz and l = 2 · 126µm= 252µm, we get

vgr =
c

1 + c Ω2
c

4 l σ2
p Γ

=
c

1.8 · 108
= 1.7

m

s
. (13.1)

Also, first measurements were made on light storage in the atomic cloud. But
as the density was far too low (see appendix D), the results remain questionable
and will not be presented here.
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14. Summary and Outlook

In this thesis, I have shown the design of an experiment that provides the feasi-
bility to detect and count single photons with near unity efficiency. Furthermore,
this experiment has been used to measure electromagnetically induced trans-
parency in optically trapped rubidium atoms with very narrow linewidths.

Experimental Setup

In this experiment, atoms are first captured magneto-optically in a vacuum cham-
ber before they are transferred into an optical dipole trap, which is operated in a
crossed beam geometry. The laser system for operating the MOT consists of three
diode lasers and a tapered amplifier, while the laser system for the optical dipole
trap consists of one CO2-laser. For generating the single photons, a Raman laser
system has been set up. It consists of three diode lasers and has been used to
measure electromagnetically induced transparency in optically trapped rubidium
atoms.

Calculations

The feasibility to detect and count single photons has been shown theoretically
with extensive calculations. They yielded a probability of detecting a single
photon of

η1pd = 99.9 % . (14.1)

The other important quantity is the probability of not detecting a single photon
when none arrives, which is

η0pd = 99.3 % . (14.2)

Furthermore, calculations on electromagnetically induced transparency and pho-
ton storage have been performed. These showed that very narrow EIT linewidths
and long photon storage times can be achieved in sufficiently dense optically
trapped rubidium clouds.



14. Summary and Outlook

Experimental Results

The experiment has been used to capture up to ∼ 1.7 ·109 atoms at temperatures
of ∼ 400µK in the MOT.
Subsequently, a dark MOT phase was applied. There, the atom number was
reduced to 9.3 · 108 and the density was n0 = 1.4 · 1012 cm−3. The temperature
of the ensemble was reduced to Tx = 40µK and Tz = 37µK and the measured
size of the cloud was σx = 400µm and σz = 260µm.
These atoms have been transferred into a single beam dipole trap as well as into
a crossed beam dipole trap.

In the crossed beam trap, up to 3.4 · 107 atoms could be captured at a
density of n0 = 2.3 · 1011 cm−3. The temperatures were Tx = 200µK and
Tz = 80µK, which shows that the cloud is not in thermal equilibrium.
The cold sample has been used to perform absorption measurements, which
have been used to characterize the dipole trap. Furthermore, absorption
measurements have been made with an applied homogeneous offset field. This
has been used to address the magnetic substates individually.
Finally, the setup has been used to measure electromagnetically induced
transparency in pure optically trapped rubidium atoms for the first time. With
a linewidth of 4 kHz, these measurements showed the narrowest EIT-based
linewidth that has been measured in ultracold atoms. From this linewidth, a
reduction of the group velocity of light to 1.7 m/s was deduced.

Outlook

The optical density achieved in this experiment is comparable to other experi-
ments [CRGW03]. Since it has to be higher for efficient single photon detection,
the next step will be to increase it. This can be done by forced evaporation of
the atomic cloud. So far, this is not efficiently possible, as the atomic density in
the dipole trap is too low, while the pressure in the chamber is too high.
Thus, the transfer of the atoms from the dark MOT into the dipole trap has to
be optimized for getting a higher density. Additionally, the elliptical windows
have to be sealed in a different way in order to decrease the leaking rate through
them, which will result in a lower pressure and thus a longer lifetime.
With these conditions, the detection of single photons can be performed.
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Appendix A

Constants

A.1 The element rubidium

All relevant information on rubidium-87 can be obtained from [Ste02]. Here I
will briefly summarize the most important magnitudes:

Symbol Denotation Value [Ste02]

λD2 Wavelength D2-transition 780.246291629(11) nm

λD1 Wavelength D1-transition 794.9788509(8) nm

α0 Ground state polarizability h · 0.0794(16) Hz/(V/cm)2

Isat, D2 Resonant saturation intensity D2 1.669(2) mW/cm2

Isat, D1 Resonant saturation intensity D1 4.484(5) mW/cm2

〈g|~d|e〉D2 Transition matrix element D2 3.584(4) · 10−29 C·m

〈g|~d|e〉D1 Transition matrix element D1 2.537(3) · 10−29 C·m

dD2 Effective far-detuned dipole moment D2 2.069(2) · 10−29 C·m

dD1 Effective far-detuned dipole moment D1 1.4646(15) · 10−29 C·m
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Symbol Denotation Value [Ste02]

TM Melting point 39.3 ◦C

TB Boiling point 688◦C

I Nuclear Spin 3/2

η(87Rb) Natural abundance 27.8 %

A.2 General constants

Symbol Denotation Value [NIST07]

kB Boltzmann’s constant 1.3806505 · 10−23 J/K

~ Planck’s constant 1.05457168 10−34 Js

c Light speed 2.99792458 · 108 m/s

u Atomic mass unit 1.66053886 · 10−27 kg

µB Bohr magneton 9.27400949 · 10−24 Am2

a0 Bohr radius 0.5291772108 · 10−10 m

ε0 Electric constant 8.854187817 · 10−12F/m
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Appendix B

Crossed beam dipole trap

In this experiment it is advantageous to use a dipole trap that is created by two
laser beams in a crossed geometry (see chapter 5.1). The two laser beams meet
under an angle of 2ϕ. We continue to denote the virtual axes of the two laser
beams with the greek characters (ξ1, υ1, ζ1) and (ξ2, υ2, ζ2) to distinguish between
them and the real axes of the laboratory system, denoted in latin characters
(x, y, z), as shown in figure B.1).

Fig. B.1: The coordinate
systems of the two dipole
lasers (blue and green)
and the one of the labo-
ratory (black).

We assume that both beams have the same power P as well as the same waist
and can transform the total potential

V = − αP

c ε0πw2
0

1

(1 +
ζ2
1λ2

π2w4
0
)

exp



− 2ρ2
1

w2
0(1 +

ζ2
1λ2

π2w4
0
)





− αP

c ε0πw2
0

1

(1 +
ζ2
2λ2

π2w4
0
)

exp



− 2ρ2
2

w2
0(1 +

ζ2
2λ2

π2w4
0
)



 (B.1)
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via the substitutions

ρ1 =
√
ξ2
1 + υ2

1 (B.2)

ρ2 =
√
ξ2
2 + υ2

2 (B.3)

and the coordinate transformations



ξ1
υ1

ζ1



 =




sinϕ cosϕ 0

0 0 1
cosϕ − sinϕ 0








x
y
z








ξ2
υ2

ζ2



 =




− sinϕ cosϕ 0

0 0 1
cosϕ sinϕ 0








x
y
z



 (B.4)

into the lab frame:

V = − αP

c ε0πw2
0

1(
1 + (cos ϕ x−sin ϕ y)2λ2

π2w4
0

) exp



−2((sinϕx+ cosϕy)2 + z2)

w2
0

(
1 + (cos ϕ x−sin ϕ y)2λ2

π2w4
0

)





− αP

c ε0πw2
0

1(
1 + (cos ϕ x+sin ϕ y)2λ2

π2w4
0

) exp



−2((cosϕy − sinϕx)2 + z2)

w2
0

(
1 + (cos ϕ x+sin ϕ y)2λ2

π2w4
0

)





(B.5)

Now we can analogous to section 2.3 derive the potential to the three axes and
compare it with the harmonic oscillator:

Vx(y = 0, z = 0) = − 2αP

πc ε0w2
0

1

(1 + cos2ϕ x2λ2

π2w4
0

)
exp



− 2 sin2ϕx2

w2
0(1 + cos2ϕ x2λ2

π2w4
0

)





≈ 2αP

πc ε0w4
0

(
2 sin2ϕ+

cos2ϕλ2

π2w2
0

)
x2 (B.6)

Vy(x = 0, z = 0) = − 2αP

πc ε0w2
0

1

(1 + sin2ϕ y2λ2

π2w4
0

)
exp



− 2 cos2ϕy2

w2
0(1 + sin2ϕ y2λ2

π2w4
0

)





≈ 2αP

πc ε0w4
0

(
2 cos2ϕ+

sin2ϕλ2

π2w2
0

)
y2 (B.7)

Vz(x = 0, y = 0) = − 2αP

πc ε0w2
0

e
− 2z2

w2
0

≈ 4αP

πc ε0w4
0

z2 (B.8)
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This leads to the trapping frequencies:

ωx, y=0, z=0 =
2

w2
0

√
αP

mπ c ε0

(
2 sin2ϕ+

cos2ϕλ2

π2w2
0

)
(B.9)

ωy, x=0, z=0 =
2

w2
0

√
αP

mπ c ε0

(
2 cos2ϕ+

sin2ϕλ2

π2w2
0

)
(B.10)

ωz, x=0, y=0 =
2

w2
0

√
2αP

mπ c ε0

(B.11)

Because the situation is not circular anymore, there are now three different trap
frequencies instead of two (equations 2.14 and 2.15).

The trap depth of a red detuned laser is given by the potential at the ori-
gin

|V (x = 0, y = 0, z = 0)| =
2αP

πc ε0w2
0

. (B.12)

For pulling unwanted atoms out of the dipole trap, a magnetic field gradient will
be applied. This gradient is parallel to the y-axis (see figure B.1) and must be
higher than the maximum gradient of the dipole trap along the same direction.
The gradient for the dipole trap is given by the derivative of the exact term of
equation B.7

dVy(x = 0, z = 0)

dy
= . . . , (B.13)

which yields a quite long expression. The maximum gradient of the trap is found
at a distance y given by

d2Vy(x = 0, z = 0)

dy2

!
= 0 , (B.14)

which has unfortunately no analytic solution. Thus, the gradient has to be de-
termined numerically, as it has been done in section 8.1.
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Appendix C

The 3-level-Λ-system in second
quantization

Another extension of the three-level-atom occurs, when light fields with only few
photons are used. Then, the so far classical light fields must be quantized as well,
which is called the second quantization [Sch01]. We assume to have a classical
coupling laser and a quantized probe laser field (as it is the case for single photon
detection). Then, every atomic state corresponds to a photon number state in
the probe field. When the atom is in state |a〉, there shall be m + 1 photons in
the probe beam. When the atom absorbs one photon and gets into state |b〉 or
|c〉, there will be m photons left.

|a,m+ 1〉 =




0
0
1



 ; |b,m〉 =




0
1
0



 ; |c,m〉 =




1
0
0



 (C.1)

The coupled atomic-photonic state is then given by

|ψ〉 = c|a〉|a,m+ 1〉 + c|b〉|b,m〉 + c|c〉|c,m〉 =




cc
cb
ca



 , (C.2)

where c|a〉, c|b〉 and c|c〉 denote the populations in the indicated states. Analogous
to section 4.1, this leads to the Hamiltonian

Ĥ

~
= ω|a〉 |a,m+ 1〉〈a,m+ 1| + ω|b〉 |b,m〉〈b,m| + ω|c〉 |c,m〉〈c,m|

+ gp cos(ωpt)
√
m+ 1 |a,m+ 1〉〈c,m|

+ g⋆
p cos(ωpt)

√
m+ 1 |c,m〉〈a,m+ 1|

+ Ωc cos(ωct) |b,m〉〈c,m|
+ Ω⋆

c cos(ωct) |c,m〉〈b,m| (C.3)
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and via the rotating wave approximation and the Liouville equation to the density
matrix elements

ρ̇cc = −Γρcc −
i

2
(Ωcρcb − Ω⋆

cρbc) −
i

2

√
m+ 1 (gpρca − g⋆

pρac)

ρ̇bb = +
i

2
(Ωcρcb − Ω⋆

cρbc)

ρ̇aa = +
i

2

√
m+ 1 (gpρca − g⋆

pρac)

ρ̇cb = (−Γ

2
+ i∆c)ρcb −

i

2
Ω⋆

c(ρbb − ρcc) −
i

2

√
m+ 1 g⋆

pρab

ρ̇bc = (−Γ

2
− i∆c)ρbc +

i

2
Ωc(ρbb − ρcc) +

i

2

√
m+ 1 gpρba

ρ̇ca = (−Γ

2
+ i∆p)ρca −

i

2

√
m+ 1 g⋆

p(ρaa − ρcc) −
i

2
Ω⋆

cρba

ρ̇ac = (−Γ

2
− i∆p)ρac +

i

2

√
m+ 1 gp(ρaa − ρcc) +

i

2
Ωcρab

ρ̇ba = (i∆p − i∆c)ρba −
i

2
(Ωcρca −

√
m+ 1 g⋆

pρac)

ρ̇ab = (i∆c − i∆p)ρab +
i

2
(Ω⋆

cρac −
√
m+ 1 gpρcb) . (C.4)

Here, the Rabi-frequency of the probe laser Ωp has been replaced with the vacuum
Rabi-frequency gp [Sch01]. The vacuum Rabi-frequency is identical to the single
photon Rabi-frequency described in section 3.1. It can be seen that the equations
above are identical to the equations in section 4.2. This shows that the Rabi-
frequency of single photons described in section 3.1 is identical to the second
quantization.
The equations above have been used to calculated the transition probabilities of
the single photon detection scheme.
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Appendix D

Stimulated Raman Adiabatic Passage

In this chapter, I will briefly describe the main condition for storing light in an
atomic medium: the stored pulse must spatially fit into the atomic cloud. If not,
only a part of it will be stored and the other part will be transmitted due to EIT.
The length of the stored pulse is given by its velocity vgr and its total duration
Tp, which must match the length l of the cloud. They are connected via

vgr =
l

Tp

. (D.1)

Combining this with equation 4.28, we get the required Rabi-frequency

Ωc =
√

4Γσ2
p (Tp − l/c) . (D.2)

Using the measured cloud length of l = 2 ·σy = 2 ·126µm= 252µm, the minimum
used total pulse length Tp = 20µs and the minimum possible EIT width σp =
63 kHz at this pulse length (see chapter 13), we get

Ωc = 2π 3.2 · 106 s−1 . (D.3)

Then, we can use equation 4.26 to achieve the minimum required atomic density

n0 =
Ω4

cε0~

8σ2
pΓ|µac|2kl

= 3 · 1012cm−3 . (D.4)

As the achieved density in the dipole trap was a factor 20 lower (see chapter 11),
the density will have to be increased before a meaningful measurement on photon
storage can be performed.





Appendix E

Photon statistics

To perform the single photon detection, it would be desirable to use single
photons from a deterministic source. As deterministic high efficiency narrow
bandwidth single photon sources are not yet available, classical light pulses have
to be used instead. Therefore, I will briefly discuss the behavior of such pulses
in this chapter.

Even if the parameters for classical light pulses are identical, the photon
number within a pulse varies due to quantum theory from pulse to pulse [Sch01].
When we denote the average number of photons within a pulse with α, the
average pulse energy is given by

Epulse = ~ωα. (E.1)

The probability to find m photons within this pulse is given by the Poisson
distribution

Wm =
α2

m!
e−|α|. (E.2)

The normalization of this equation is given by

∞∑

l=0

Wl = 1, (E.3)

which leads to
∞∑

l=0

Wl l = α. (E.4)

This photon number distribution is obtained from any classical pulse and compli-
cates the single photon detection: if one puts in average one photon into a pulse,
it is not known how many photons have been in each pulse. Therefore, only a
statistical result can be obtained.
This problem can be circumvented by the use of a deterministic single photon
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source, that creates single photon Fock states instead of the coherent states de-
scribed above.
As these photon sources are not yet available, another possibility to circumvent
this problem is the use of parametric down-conversion. Here, always an even
number of photons is created from one pulse. One photon is used as a reference
photon and detected by a classical photo detector, the other one goes to the single
photon detector, which yields a correlation measurement.
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Appendix F

Deutsche Zusammenfassung

Im Rahmen dieser Arbeit wurde ein Experiment zur Kühlung von Rubidiu-
matomen bis in den µK-Bereich aufgebaut. Das Ziel dieses Experiments ist die
Verwendung dieser ultrakalten Atomwolke zur Detektion von Einzelphotonen.
Dieser Detektor stellt einen wichtigen Bestandteil eines Quantencomputers
dar, der Einzelphotonen als Informationsträger nutzt [KLM01]. Der Aufbau
wurde genutzt um Messungen zur elektromagnetisch induzierten Transparenz,
einem Effekt der lichtundurchlässige Materie transparent macht, durchzuführen.
Dieser Effekt kann genutzt werden, um die Gruppengeschwindigkeit von Licht
zu reduzieren.
Die Hauptbestandteile des Experiments sind eine Vakuumkammer, Magnet-
spulen und verschiedene Lasersysteme: die Vakuumkammer besteht aus einer
Hauptkammer, in der die Atome zuerst von Rubidiumdispensern verdampft,
dann magneto-optisch und anschließend in einer optischen Dipolfalle gefangen
werden, und einem Pumpkreuz, wo das Ultrahochvakuum erzeugt wird. Mehrere
Magnetspulen befinden sich an der Kammer um die erforderlichen Magnetfelder
zu erzeugen.

Schema des Experiments

Sobald die Atomwolke die idealen Parameter in Temperatur, Dichte und
Atomzahl erreicht, werden die Einzelphotonen in die Wolke geschossen, wo
sie den Zustand eines Atoms pro eintreffendem Photon verändern. Ein soge-
nannter Koppellaser wird zusammen mit den Einzelphotonen auf die Wolke
geschossen. Dieser sichert eine effiziente Veränderung des atomaren Zustands.
Diese Veränderung wird anschließend durch Fluoreszenz detektiert. Weil dieses
Schema sehr empfindlich auf die Polarisation der Einzelphotonen ist, wird eine
wohl definierte Magnetisierungsachse benötigt. Diese kann nur von einem hohen



Appendix F. Deutsche Zusammenfassung

und homogenen Magnetfeld erzeugt werden. Die einzige Atomfalle, die bei so
einem Magnetfeld effizient betrieben werden kann ist eine Dipolfalle, die deshalb
in diesem Experiment benutzt wird.

Da die Atome, welche nicht durch Einzelphotonen in einen anderen Zustand
transferriert wurden, ebenfalls Licht streuen und damit den Detektionsprozess
stören, müssen sie vor der Detektion der transferierten Atome aus der Falle
gebracht werden. Dies kann mit einem starken magnetischen Gradienten
erzielt werden: dieser zieht alle Atome, welche in einem magnetischen Un-
terzustand gesammelt wurden, aus der Falle, während die in einen magnetisch
neutralen Zustand transferierten Atome in der Falle zur Detektion zurückbleiben.

Damit sieht der komplette Detektionsprozess folgendermaßen aus:

1. Kühlung der Atome
Zuerst werden ultrakalte Rubidiumatome in einer Ultrahochvakuumkammer
gefangen. Dabei werden sie zunächst in einer magneto-optischen Falle (MOT)
eingeschlossen und gekühlt, bevor sie anschließend in eine optische Dipolfalle
transferiert werden. In dieser werden sie weiter gekühlt und in einem definierten
Unterzustand präpariert.

2. Adiabatischer Transfer
Anschließend werden die Einzelphotonen zusammen mit einem Koppellaser in
die Wolke geschickt. Dieser stellt sicher, dass jedes Photon ein Atom in einen
definierten Zustand transferiert. Dabei durchlaufen die Laserintensitäten eine
STIRAP-Sequenz.

3. Entfernen der unerwünschten Atome
Nach diesem Transfer müssen die Atome, welche nicht transferiert wurden, mit
einem starken Magnetfeldgradienten aus der Falle gezogen werden.

4. Der Detektionsprozess.
Nun werden die transferierten Atome durch Fluoreszenzdetektion gezählt.

Die Idee

Im Unterschied zu dem oben beschriebenen Schema besteht die ursprüngliche Idee
[Ima02] darin, die ultrakalten Atome in einer Magnetfalle zu fangen. Wie in den
nächsten Abschnitten gezeigt wird ist der Einzelphotonentransfer sehr empfind-
lich auf die Polarisationen der Einzelphotonen und des Koppellasers und eine
falsche Polarisation würde eine Verringerung der Detektionseffizienz bedeuten.
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Die Reinheit der Polarisation, die mit polarisierenden Strahlteilerwürfeln und
λ-Platten erreicht werden kann, liegt in der Größenordnung von 1‰ [BHN07],
welche für das vorgeschlagene Schema ausreichend ist. Aber gleichzeitig muss
die Quantisierungsachse, welche durch das Magnetfeld vorgegeben wird, sehr
homogen sein. Weil das Feld in einer Magnetfalle nicht homogen ist gibt es
keine Quantisierungsachse, die über die ganze Wolke parallel zum Lichtvektor
ist. Deswegen kann diese Art von Falle nicht benutzt werden.
Außerdem existieren immer Streufelder, welche von Tag zu Tag variieren und
deshalb niemals vollständig kompensiert werden können. Deswegen ist ein hohes
Offsetfeld notwendig, weil dadurch der Einfluss der Streufelder auf das Gesamt-
feld verringert wird. Dieses hohe Offsetfeld ist ein weiterer Grund, warum eine
Magnetfalle nicht benutzt werden kann. Es existieren zwar Magnetfallen mit
hohem Offsetfeld, aber der Aufwand für die hierbei verwendeten supraleitenden
Spulen ist nicht gerechtfertigt.

Kühlung der Atome

Die Lösung besteht nun darin, nach der MOT-Ladephase eine optische Dipolfalle
zu benutzen. Diese Falle erzeugt den Einschluss der Atome und ein zusätzliches
hohes magnetisches Offsetfeld erzeugt bezüglich des Lichtvektors eine gut
definierte Richtung der Quantisierungsachse.
In dieser Falle werden die Atome evaporativ bis auf ∼ 750 nK gekühlt. Zu diesem
Zeitpunkt sind die Dichte und Temperatur nur knapp oberhalb der kritischen
Parameter zum Erreichen eine Bose-Einstein-Kondensats (BEC).
Dipolfallen können bei Wellenlängen um 1064 nm relativ einfach realisiert
werden, weil dieses Licht die üblichen optischen Fenster von Vakuumkammern
durchdringt. Dieses Licht ist sowohl gegenüber dem D1 als auch dem D2
Übergang in Rubidium stark verstimmt, weshalb die Streuung dieses Lichts
stark unterdrückt ist. Trotzdem sind Streuprozesse möglich, wenn die Intensität
des Lichts entsprechend erhöht wird. Dies führt zum Übergang von Atomen von
dem anfänglichen Grundzustand in einen unerwünschten Grundzustand. Weil
bereits ein einzelnes Atom in einem unerwünschten Zustand den kompletten
Detektionsprozess zerstören würde (ein Photon würde gezählt obwohl keines
vorhanden war) wird in diesem Experiment ein CO2-laser eingesetzt. Dessen
Licht im fernen Infrarot ist gegenüber der D1 als auch der D2 Linie so stark
verstimmt, dass Streuprozesse auf weniger als 1 Photon pro Sekunde unterdrückt
sind [CRGW03]. Der Nachteil ist, dass dieses Licht nicht durch gewöhnliche
Glasfenster geschickt werden kann und stattdessen Zinkselenid (ZnSe) Fenster
benutzt werden müssen.
Um die optische Dichte der Wolke zu erhöhen wird diese in länglicher Form
präpariert. Obwohl eine Einstrahlfalle dafür ideal wäre kann diese nicht benutzt
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werden, weil die Einzelphotonen mit dem CO2-Laser nicht überlagert werden
können, da die ZnSe-Fenster die Einzelphotonen absorbieren würden. Als Lösung
wurde nun eine gekreuzte Dipolfalle gewählt. Die Strahlen der Dipolfalle treffen
sich unter einem Winkel von 60◦ und erzeugen eine leicht verlängerte Wolke.
Die Einzelphotonen werden dann entlang der langen Achse in die Wolke geschickt.

Da es nicht möglich ist alle Atome effektiv in den Zustand |a〉 zu pumpen,
werden die Atome zuerst in den Zustand |m〉 gepumpt und dann mit einem
Mikrowellen-π-Puls in den Zustand |a〉 transferiert. Das komplette Detektionss-
chema ist in Abbildung F.1 zu sehen.

Abb. F.1: Niveauschema
von 87Rb, welches benutzt
wird um die Einzelphoto-
nen zu detektieren. Alle
relevanten Zustände wer-
den gezeigt, inklusive der
Laser, welche die Zustände
während dem Einzelpho-
tonentransfer und der
anschließenden Detektion
miteinander koppeln. Des
weiteren wird der Mikrow-
ellenübergang, welcher
am Ende des optischen
Pumpens benutzt wird,
als grauer Pfeil gezeigt.
Die D1 Linie wird für den
Einzelphotonenübergang
benutzt und die D2 Linie
für den Detektionsprozess.

Adiabatischer Übergang

Dann werden die Einzelphotonen, welche auf dem |a〉–|c〉-Übergang resonant
sind, zusammen mit einem Koppellaser in die Wolke geschickt. Der Koppel-
laser, welcher auf dem |b〉–|c〉-Übergang resonant ist, sorgt dafür, dass die Atome
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in dem definierten Zustand |b〉 enden. Um einen effizienten Übergang zu erhalten
werden die Intensitäten gemäß einer stimulierten adiabatischen Ramanpassage
(STIRAP) moduliert [BTS98]. Mit dieser ist es möglich, eine 100 %ige Transfer-
effizienz zu erreichen [GRSB90]. Sie wird in Abbildung F.2 gezeigt.

Abb. F.2: Pulssequenz des
Koppel- und des Einzelphoto-
nenlasers.

Bei dieser Sequenz wird der Koppellaser noch ehe die Einzelphotonen ankom-
men hochgefahren um eine Quanteninterferenz zwischen zwei Zuständen (z.B.
|b〉 and |c〉) zu erzeugen. Dann wird er langsam heruntergefahren, während der
Probelaser (hier die Einzelphotonen) langsam hochgefahren (und anschließend
wieder heruntergefahren) wird.
Die Polarisationen der Ramanlaser sind so eingestellt, dass sie die Zustände |a〉,
|c〉 and |b〉 mit den in Abbildung 1.1 gezeigten Polarisationen koppeln. In dieser
Konfiguration sind die Einzelphotonen π-polarisiert, weil der Clebsch-Gordan-
Koeffizient des |a〉–|c〉-Übergangs höher ist als der Clebsch-Gordan-Koeffizient
des |a〉–|d〉-Übergangs, was in einer höheren optischen Dichte für die Einzelpho-
tonen resultiert.

Entfernen der unerwünschten Atome

Der ursprüngliche Vorschlag gibt noch ein weiteres Problem auf: ein detek-
tierbares Atom streut etwa 104 Photonen pro ms. Aufgrund des Raumwinkels
(∼ 1 %) und der Detektionseffizienz (∼ 70 %) werden etwa 70 gestreute Photo-
nen detektiert. Aber die Atome, welche im Zustand |a〉 bleiben streuen ebenfalls
das für sie nichtresonante Fluoreszenzlicht. Aufgrund der hohen Verstimmung
(6.8 GHz) ist die Streurate um einen Faktor 106 unterdrückt. Bei angenommenen
106 Atomen in diesem Zustand addiert dies einen Offset in der Größenordnung
von 1 zum Detektionssignal. Dies stellt soweit kein Problem dar, weil dieser Off-
set wegen der hohen Atomzahl sehr konstant ist. Aber aufgrund des atomaren
Zerfalls endet im Schnitt nach zwei Streuprozessen ein Atom in einem |F = 2〉
Grundzustand, in dem es von den Atomen, welche durch Einzelphotonen trans-
feriert wurden, nicht mehr unterscheidbar ist. Somit nimmt das Fluoreszenzlicht
exponentiell zu und eine Einzelphotonendetektion ist nicht mehr möglich. De-
shalb müssen alle Atome im Zustand |a〉 vor dem Detektionsprozess entfernt
werden.
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Dies kann durch Anlegen eines starken magnetischen Feldgradienten parallel
zum Offsetfeld erreicht werden. Bei dieser Konfiguration bleibt die magnetische
Feldrichtung erhalten und der Gradient kann leichter erzeugt werden. Dieser Gra-
dient zieht nun alle Atome, die sich nicht in den magnetisch neutralen Zuständen
|k〉 und |b〉 befinden, aus der Dipolfalle.
Dafür muss die Dipolfalle flach genug sein und wird deshalb vor der STIRAP-
Sequenz heruntergefahren.

Der Detektionsprozess

Die transferierten Atome werden nun durch Fluoreszenz detektiert. Nach einige
Übergängen zwischen den Zuständen |b〉, |e〉, |h〉 und |f〉 werden die Atome im
Zustand |j〉 enden und Licht auf dem geschlossenen |j〉–|g〉-Übergang streuen.
Dieses Licht wird dann mit einer hocheffizienten Em-CCD-Kamera detektiert
[MSK+03, DAK+05, WVS+06].
Die Intensität des gestreuten Lichts ist dann proportional zur Anzahl der
Atome im Zustand |j〉, welche selbst proportional zur Anzahl der ankommenden
Einzelphotonen ist.

Über diese Arbeit

Im Rahmen dieser Arbeit wurde das Experiment entworfen und aufgebaut.
Um die optimalen Parameter zu bestimmen wurden Rechnungen durchgeführt.
Die Rubidiumatome wurden in der MOT und anschließenend sowohl in einer
Einstrahl-Dipolfalle als auch in der gekreuzten Dipolfalle gefangen. Diese optisch
gefangen Atome wurden letztendlich verwendet um mit dem Ramanlasersystem
elektromagnetisch induzierte Transparenz zu messen.
Der Entwurf, der Aufbau und die Messungen sind der Inhalt dieser Arbeit.

Experimenteller Aufbau

Wie in den vorherigen Abschnitten erwähnt, wurde eine gekreuzte Dipolfalle
unter einem Winkel von 60◦ verwendet. Da die ZnSe-Linsen aufgrund der großen
Wellenlänge des CO2-Lasers sehr nah an das Kammerzentrum gebracht werden
müssen, blockieren sie einen Großteil des optischen Zugangs zur Kammer, welche
in Abbildung F.3 dargestellt ist.
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Abb. F.3: Eine CAD-
Simulation der Vaku-
umkammer. Links auf
dem Bild befindet sich
die Hauptkammer, in
der die Experimente
stattfinden. Das Pump-
kreuz mit den daran
befestigten Pumpen
dient zur Erzeugung des
Ultrahochvakuums.

Deshalb müssen vier der sechs MOT-Strahlen aus der Hauptebene (x–y)
herausgenommen werden (normalerweise nur zwei). Deshalb werden bei den
optischen Zugängen ober- und unterhalb der Kammer große Fenster entlang
der x-Achse benötigt. Gleichzeitig müssen an diesen Fenstern die Spulen
zur Erzeugung des magnetischen Gradienten angebracht werden. Da diese
Spulen entlang der y-Achse ziehen, müssen sie sich in dieser Richtung nah am
Kammerzentrum befinden. Deshalb wurden elliptische Spulen gewickelt und an
den elliptischen Fenstern angebracht.

Berechnungen

Es wurden Berechnungen zur Einzelphotonendetektion und zur elektromagnetisch
induzierten Transparenz durchgeführt. Die Rechnungen zur Einzelphotonendek-
tion zeigten, dass die Detektionseffizienz von Einzelphotonen bei über 99.9 %
liegt. Wenn kein Photon ankommt liegt die Wahrscheinlichkeit auch keines zu
detektieren bei 99.3 %.

Die Rechnungen zur elektromangetisch induzierten Transparenz zeigten,
dass es theoretisch möglich ist, Linienbreiten von 25.5 Hz zu messen. Allerdings
benötigt man dazu eine Atomwolke, deren Dichte die bisher erzeugte übersteigt.
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Experimentelle Ergebnisse

Magneto-optische Falle und dunkle MOT

Für die die magneto-optische Falle wurden Laserstrahlen mit einer Leistung
von 20 mW auf dem MOT-Übergang und 1 mW auf dem Rückpumpübergang
verwendet. Dabei wurde ein magnetischer Gradient mit ∼ 11.9 G/cm angelegt
und es konnten bis zu 1.7 · 109 Atome bei Temperaturen um 400µK gefangen
werden.

Da die Atome in der MOT zu heiß waren, um in die Dipolfalle umgeladen
zu werden, wurden sie mit einer dunklen MOT weiter gekühlt. Dabei werden die
MOT-Laser für eine Dauer von 17 ms 100 MHz rot verstimmt und die Leistung
des Rückpumpers auf 1 % reduziert. Dadurch streuen die Atome weniger Licht
und kühlen ab, wobei allerdings auch ein Großteil der Atome verloren geht. Um
diesen Verlust zu reduzieren wurde der Magnetfeldgradient auf 16.9 G/cm erhöht.

Die Atomzahl reduzierte sich auf 9.3 · 108 und die Dichte auf n0 = 1.4 · 1012 cm−3.
Die Temperatur wurde dabei auf Tx = 40µK bzw. Tz = 37µK reduziert, wobei
die gemessene Ausdehnung der Wolke σx = 400µm und σz = 260µm betrug.

Dipolfalle

Die Daten über die Dipolfalle wurden mit Fluoreszenzmessungen gewonnen. Hier-
bei wurden 3.4 · 107 Atome detektiert. Da in beiden Richtungen unterschiedliche
Temperaturen von Tx = 200µK und Tz = 80µK gemessen wurden, befindet
sich die Dipolfalle aufgrund zu weniger Stöße nach der Thermalasierungszeit
von 30 ms nicht im thermischen Gleichgewicht. Die gemessene Dichte betrug
n0 = 2.3 · 1011 cm−3 und die Ausdehnung σx = 272µm bzw. σz = 126µm.
Dabei wurden Lebensdauern von τB = 630 ms in der Einstrahlfalle und τCB =
770 ms in der Zweistrahlfalle gemessen. Eine Fluoreszenzaufnahme der Dipolfalle
ist in Abbildung 11.2 dargestellt.

Absorbtionsmessungen

Bei den Absorbtionsmessungen wird der Probelaser durch die Wolke geschossen
und dahinter mit einer Kamera detektiert. Dabei wird gemessen, wie viel Licht
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Abb. F.4: Fluoreszenzauf-
nahme der Wolke mit 1.7 ·
107 Atomen in der Dipol-
falle.

die Wolke aus dem Strahl absorbiert hat.
Mit dieser Methode wurde die Starkverschiebung durch die Dipolfalle gemessen:
durch den ac-Starkeffekt verschiebt sich die Resonanz der Atome in der Dipolfalle
in Abhängigkeit von Laserleistung. Damit konnte der Radius des Dipollasers
im Fokus zu w0 = 28.7 ± 0.7µm bestimmt werden. Da urspünglich mit einem
Radius von 35µm geplant wurde, übertrifft dieses Ergebnis die Erwartungen.

Mit dem magnetischen Offsetfeld von 118.7 G wurden die Resonanzen der
einzelnen Übergänge verschoben, so dass die Atome eines einzelnen Unterzus-
tandes angesprochen werden können. Abbildung F.5 zeigt diese Messung.

Abb. F.5: Ab-
sorbtionsspektrum
von optisch gefan-
genen Atomen bei
einem Offsetfeld
von 118.7 G. Vier
adressierte Un-
terzustände können
erkannt werden.
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Elektromagnetisch induzierte Transparenz

Der Peak um −20 MHz, welcher dem |5S1/2, F = 2, mF = −1〉–
|5P1/2, F = 2, mF = 0〉-Übergang entspricht, wurde nun für die Messungen
zur elektromagnetisch induzierten Transparenz verwendet. Hierbei wurde das
Magnetfeld leicht auf 129.7 G erhöht.
Die Messungen wurden mit τ = 5µs, τ = 20µs und τ = 100µs langen (annähernd
gaussförmigen) Pulsen durchgeführt. Um sowohl die absorbtiven als auch die
dispersiven Eigenschaften der Wolke gleichzeitg zu messen wurde dem σ+-
polarisierten Probestrahl ein kleiner Anteil σ−-polarisiertes Licht beigemischt.
Abbildung F.6 zeigt den EIT-peak einer Messung mit 20µs Pulslänge und
einer Koppellaser-Rabifrequenz von 1200 kHz. Bei dieser Messung kann erkannt
werden, dass das Signal sowohl über absorbtive (der Peak selbst) also auch
dispersive (die Asymmetrie) Komponenten verfügt.
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Abb. F.6: Transmissionsspektrum eines 20µs Pulses bei einer Koppellaser-
Rabifrequenz von 1200 kHz. Sowohl der absorbtive als auch der dispersive Anteil
können erkannt werden. Der Frequenzoffset von δ0 = −7.27 MHz entspricht der
differentiellen Zeemanverschiebung durch das Magnetfeld. Da dieser Offset nur
vom Magnetfeld abhängt kann er benutzt werden um es zu kalibirieren.

Die schmalste Linie konnte mit einem 100µs-Puls gemessen werden. Hierbei
wurde eine Koppellaser-Rabifrequenz von 360 kHz verwendet. Hierbei ist die
Transparenz so niedrig, dass der absorbtive Teil nicht mehr erkannt werden
kann. Diese Messung ist in Abbildung F.7 dargestellt.
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Abb. F.7: EIT Messung mit einem 100µs Puls: die Linienbreite wurde auf 4 kHz
reduziert. Die Transparenz ist so gering, dass nur der dispersive Anteil des Signals
erkannt werden kann.

Mit einer gaussförmigen 1/e-Breite von 4 kHz ist das die bisher schmalste Linie,
die bislang in ultrakalten Atomen gemessen wurde. Die damit verbundene Licht-
geschwindigkeit wurde zu vgr = 1.7 m/s bestimmt.
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