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Zusammenfassung

Im Rahmen dieser Arbeit wurde erstmals eine Supraflüssigkeit realisiert, die eine starke Dipol-
Dipol-Wechselwirkung zwischen ihren mikroskopischen Bestandteilen aufweist [1]. Diese Su-
praflüssigkeit kann in Analogie zu klassischen Ferroflüssigkeiten eine Quanten-Ferroflüssigkeit
genannt werden. Die Dipol-Dipol-Wechselwirkung unterscheidet sich durch ihren anisotro-
pen — also symmetriebrechenden — und langreichweitigen Charakter fundamental von der
Kontakt-Wechselwirkung, welche bisher in allen Experimenten mit ultra-kalten atomaren
Gasen dominierend war. Die Realisierung einer Quanten-Ferroflüssigkeit ist daher der erste
Schritt zur Untersuchung einer Fülle neuer physikalischer Phänomene in ultra-kalten Ga-
sen [2].

Eine Supraflüssigkeit weist einige außerordentliche Eigenschaften auf, z.B. fliesst sie ohne
Reibung und hat eine unendliche thermische Leitfähigkeit. Diese Eigenschaften sind eine di-
rekte Folge der bosonischen Natur ihrer Bestandteile. Das erste System in dem suprafluide
Eigenschaften beobachtet wurden war flüssiges Helium 1937 [3, 4]. Hierbei wurde das bosoni-
sche Isotop 4He verwendet. Aber auch in flüssigem Helium bestehend aus dem fermionischen
Isotop 3He wurde 35 Jahre später Suprafluidität nachgewiesen [5]. Dies ist durch eine Paar-
bildung der 3He Atomen zu Bosonen möglich. Ein weiterer Meilenstein in der Untersuchung
von Supraflüssigkeiten war die Realisierung eines Bose-Einstein Kondensats in verdünnten
atomaren Gasen 1995 [6, 7]. Diese Systeme erlauben einer hervorragende Kontrolle der expe-
rimentellen Parameter und haben eine Vielzahl grundlegender Untersuchungen suprafluider
Phänomene erlaubt. Aber auch in fermionischen atomaren Gasen wurde zehn Jahre später
Suprafluidität nachgewiesen [8], die wiederum nur durch eine Paarbildung der Atome möglich
ist. In diesen Experimenten mit ultra-kalten bosonischen oder fermionische Gasen war bisher
die Kontakt-Wechselwirkung dominierend, deren Stärke durch einen einzigen Parameter, die
Streulänge a, beschrieben werden kann.

Trotz des vergleichsweise großen Dipolmoments von 6 µB von 52Cr Atomen ist die Kontakt-
Wechselwirkung auch in einem Chrom Bose-Einstein Kondensat dominierend. Die Dipol-
Dipol-Wechselwirkung kann als Störung in der Beschreibung des Kondensats berücksichtigt
werden. Das erste Chrom Bose-Einstein Kondensat wurde 2004 von Griesmaier und Mit-
arbeitern realisiert [9]. Ein Jahr später konnte der Effekt der Dipol-Dipol-Wechselwirkung
erstmalig anhand einer Modifizierung der Form des Kondensates nachgewiesen werden [10].

Eine Methode, die die Stärke der Dipol-Dipol-Wechselwirkung relativ zur Kontakt-Wechsel-
wirkung erhöht, ist die Verwendung einer Feshbach Resonanz um die Streulänge und somit
die Stärke der Kontakt-Wechselwirkung zu verringern. Feshbach Resonanzen wurden 1998
erstmals in einem ultra-kalten atomaren Gas nachgewiesen [11]. Sie erlauben es durch Anlegen
eines Magnetfelds die Streulänge über einen weiten Bereich von positiven bis hin zu negativen
Werten zu varriieren. Auch in einem ultra-kalten Gas aus 52Cr Atomen wurden im Jahr 2004
Feshbach Resonanzen nachgewiesen [12].

Im Rahmen dieser Arbeit wird die breiteste dieser Resonanzen verwendet, um die Streulän-
ge von Chrom auf ein Fünftel des ursprünglichen Wertes zu verringern. Diese Verringerung
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Zusammenfassung

führt gleichzeitig zu einer Erhöhung der relativen Stärke der Dipol-Dipol-Wechselwirkung
um einen Faktor fünf. Somit wird erstmals eine Supraflüssigkeit erzeugt, die stark durch
den dipolaren Charakter ihrer Bestandteile beeinflusst ist. In einer Serie von Experimenten
wird die Anwendbarkeit der Methode demonstriert, um diese Quanten-Ferroflüssigkeit zu
untersuchen. Diese Arbeit enthält neben einer ausführlichen Beschreibung der durchgeführ-
ten Experimente eine Einführung in die theoretische Beschreibung von Feshbach Resonanzen
und dipolaren Kondensaten, sowie eine Beschreibung der Modifikationen des Experiments,
die nötig waren, um die Ergebnisse zu ermöglichen. Ein ausführlicher Anhang berichtet über
den ebenfalls im Rahmen dieser Arbeit realisierten akusto-optischen Modulator (AOM) Trei-
ber, welcher durch Verwenden von zwei verschiedenen Radiofrequenzsignalen die Stabilität
der Dipolfallen-Laserstrahlen signifikant erhöht [13].
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1. Introduction

A superfluid is a quantum fluid. The quantum character of any microscopic particle, which
is usually not visible in macroscopic bodies, gives rise to their exceptional properties, like
zero viscosity or infinite thermal conductivity. The quantum character is visible, because the
phase relation between the quantum particles of which it is composed of is fixed, whereas it
is random in classical bodies, leading on average to the classical properties. The collective
behaviour of the quantum particles arises from the Bose statistics describing their many-body
state [14]. The first system to show superfluid character was liquid helium in 1937 [3, 4]. Not
only the bosonic 4He undergoes the phase transition to a superfluid, also 3He condenses to
a superfluid via a pairing mechanism of the fermionic atoms [5], analogous to the Cooper
pairing responsible for superconductivity. The symmetry-breaking interaction in 3He, caused
by the p-wave pairing, substantially enriches the physical properties of the 3He superfluid
compared to the 4He system [15].

A new system that allows to study superfluidity are quantum-degenerate bosonic or fermio-
nic gases. The narrow path to cool down an atomic sample to a state which reveals the
quantum nature — without solidifying the sample — has prevented the realization of such
systems until 1995. First the group of Wieman and Cornell [6] and shortly afterwards the
group of Ketterle [7] produced quantum-degenerate bosonic gases of 87Rb and 23Na atoms.
These Bose-Einstein condensates (BECs) of dilute gases, later also realized with 7Li [16], spin-
polarized hydrogen [17], 85Rb [18], metastable Helium [19], 41K [20], 133Cs [21], 174Yb [22],
52Cr [9] and recently with 39K [23], led to many experiments on superfluid properties, for
example on collective oscillations [24] or vortices [25]. The dominant interaction underlying
these experiments is the isotropic and short-range contact interaction, which for ultra-cold
atoms is described by a single parameter, the scattering length a [26]. The tunability of this
parameter via Feshbach resonances [11] is an important tool to study a wide range of physical
regimes.

A quantum-degenerate gas of fermions, first realized in 1999 with potassium atoms [27],
shows superfluidity via a pairing of the atoms like in 3He [8]. Two atoms in different spin
states form a weakly bound Cooper pair, which is a boson and can undergo condensation.
The theory describing the paring was developed in 1957 mainly by Bardeen, Cooper and
Schrieffer [28]. The condensed state of Cooper pairs is therefore called BCS state. The
pairing mechanism depends strongly on the interaction between the atoms. Like for bosons
the dominant interaction is the contact interaction. Hence, it is tunable via Feshbach reso-
nances [29, 30, 31], which allowed to study the crossover of the BCS state to a condensate
of diatomic molecules [32, 33, 34]. A quantum gas of fermions is an ideal model system
to explore the formation of a superfluid made of paired fermions. Besides the interaction
strength, also the ratio of the atoms in different spin states can be controlled precisely. Thus,
the formation is studied over a wide parameter range (see for example [35]).

Another interaction, which promises the realization of a new type of superfluid, is the
dipole-dipole interaction. It attracts a large attention of theoreticians currently, apparent
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1. Introduction

through about 60 publications on this topic over the last 5 years. Dipole-dipole interaction
has long-range character and is anisotropic. This distinguishes it significantly from contact
interaction. The symmetry-break corresponding to the anisotropy is predicted to give rise to a
variety of new physical phenomena [2], similar to the enrichment of the physical properties of
3He compared to 4He. Among these new phenomena are e.g. novel quantum phases in optical
lattices, such as checkerboard or supersolid phases [36], or structured density profiles [37],
including biconcave density distributions in pancake-shaped traps [38]. Dipolar effects should
also enrich the field of spinor physics [39, 40, 41]. Another interesting prediction for these
systems is a roton-like excitation spectrum [42].

A superfluid with strong dipolar interaction can be called a quantum ferrofluid, in analogy
to classical ferrofluids. Polar molecules in their vibrational ground state are a possibility to
realize them with electric dipoles. Although progress has been made recently in slowing and
trapping of polar molecules (see for example [43]), the densities and temperatures reached
are still far from quantum-degeneracy. Polar molecules created from two ultra-cold atomic
species via Feshbach resonances [44] are an actively explored alternative [45]. However, until
now it is not possible to bring these molecules to their vibrational ground state [46]. Electric
dipoles induced by dc electric fields [47] or by light [48] might be an alternative.

The first quantum ferrofluid was realized with magnetic dipoles [1] and is presented in
this thesis. Our experimental approach makes use of the large magnetic dipole moment of
6µB of Chromium atoms to realize such a quantum system. Important steps that paved the
way towards this development were the observation of Feshbach resonances in 2004 [12] and
the condensation of Chromium in 2004 [9]. Besides, experiments on the expansion dynamics
of Chromium showed in 2005 [10] for the first time dipolar effects in a BEC. However, the
relative strength of the dipole-dipole interaction to the contact interaction in these measure-
ments corresponded only to a small perturbation, although the dipole-dipole interaction is
36 times larger than in standard alkali quantum gases. This is changed with the experiments
that are a part of this thesis. By using a Feshbach resonance to tune the scattering length
a, the relative strength of the dipole-dipole interaction is increased by a factor of 5. This
modifies the condensate properties way beyond the perturbative regime and constitutes the
first realization of a quantum ferrofluid.

This thesis is organized as follows:
In chapter 2 the theory of Feshbach resonances is introduced. To provide a theoretical ba-
sis to understand the physics of Feshbach resonances, the first section reports on scattering
theory with a focus on the scattering properties of ultra-cold atomic gases. The second sec-
tion discusses the phenomenological properties of Feshbach resonances, which supports the
theoretical description in section 3. The theoretical approach presented follows closely [44]
and [49]. The last section describes the Feshbach resonances of Chromium, which have been
observed in a series of measurements in 2004 [12].

Chapter 3 gives an introduction to the theoretical description of Bose-Einstein condensates
with dipole-dipole interaction. To introduce the theoretical methods used to describe BECs,
and to allow a comparison of condensates with and without dipole-dipole interaction, the first
two sections take only contact interaction into account. The first section discusses important
properties of the steady-state of BECs. The mean-field description with a macroscopic wave
function and the Thomas-Fermi approximation are introduced. The second section reports
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on the hydrodynamic description of the condensate dynamics. In the third section this hy-
drodynamic theory is expanded to include dipole-dipole interaction. The main results of this
theory, which are used in the data analysis of the experiments on strong dipolar effects, are
presented.

The apparatus that is used for the experiments is described in chapter 4. The first sec-
tion gives a coarse overview of the experiment, more details can be found for example in [50].
The important steps to produce a quantum-degenerate gas of Chromium atoms are described.
The second section reports on the measurements of the trapping frequencies of the optical
dipole trap, which are performed with a new method, that has not been used in our setup
before. Next, I discuss modifications of the apparatus, which are done to perform the ex-
periments presented in this thesis. The third section reports on the production of a stable,
homogenous magnetic field at ∼ 600 G, which is needed to tune the scattering length a via a
Feshbach resonance. Also described is the calibration of the curvature compensation, which
allows us to produce BECs at these high magnetic fields. The last section discusses the
high-field imaging system, which is used to image the atoms at the high magnetic fields.

Finally, in chapter 5 the experimental results on strong dipolar effects in a quantum gas
are presented. In the first section the broadest Feshbach resonance at 589.1 G is character-
ized. This resonance is used to tune the scattering length a. Both measurements on the
lifetime and the variation of a in the vicinity of the resonance are described. In the second
section the observation of strong dipolar effects is discussed, which are apparent through a
change of the condensate shape. In a time-of-flight series our control on the system is demon-
strated.

An appendix provides additional information. In particular it reports on a two-frequency
acousto-optic modulator driver realized as a part of this thesis [13], which is included in the
setup to improve the stability of the optical dipole trap.
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2. Scattering Theory and Feshbach
Resonances

In the experiments presented in this thesis a Feshbach resonance is used to tune the
contact interaction strength. The theoretical description of Feshbach resonances is
introduced in this chapter. For a basic understanding of these resonances, scatter-
ing theory is required. Hence, section 2.1 gives an overview on scattering theory,
focusing on the collision dynamics of ultra-cold atoms. The presentation follows
closely [26] and chapter 8 in [51]. The partial wave decomposition for spherically
symmetric potentials is not discussed. I chose a more general approach to prepare
the theoretical description of Feshbach resonances and for brevity. For information
on the partial wave decomposition the reader is referred to the standard literature
on scattering theory [51, 52, 53]. In section 2.2 the physical process underlying a
Feshbach resonance is discussed and their properties are described phenomenolog-
ically. With this background, in section 2.3 the theory of Feshbach resonances is
introduced. The main steps to obtain an expression for the scattering length as a
function of the magnetic field B are presented. The last section 2.4 reports on the
Feshbach properties of 52Cr.

2.1. Collisional Dynamics of Ultra-Cold Atomic Gases

A basic knowledge of collision physics is important to understand the properties of ultra-
cold atomic gases. Elastic collisions for example ensure the thermalization of a gas, which
is crucial for evaporative cooling. A second example is the expansion of a BEC which is
governed by the mean-field interaction. For a dilute gas the interaction range r0 between
two atoms (typically on the order of a few nm) is much smaller than the mean distance
between them (typically a few 100 nm). This allows to reduce the theoretical description
of the collisions to the scattering problem of only two atoms [26]. They interact via their
molecular potential, which consists of several contributions like the exchange interaction or
the van der Waals interaction. For ultra-cold atomic samples a detailed knowledge of the
molecular potential is not needed to describe the collision process: The thermal de Broglie
wavelength

λth =

√
2π~2

mkBT
, (2.1)

where m is the atomic mass and T is the temperature of the gas, is larger than r0 and
the details of the potential are not resolved. As we shall see, the scattering process is then
isotropic and is described by a single parameter, the scattering length a. The complicated
molecular potential is replaced by a simple contact interaction potential.
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V (r)

Scattering
potential

Incoming
particle

Detector

ϑ
∆Ω

x

z

y

rd

∆A

Figure 2.1.: Sketch of a scattering process in the center-of-mass system. The incoming relative
particle is scattered by the fixed potential V (r) into the solid angle ∆Ω(ϑ, ϕ). The detector with the
detecting area ∆A is placed at a distance rd and thus ∆Ω = ∆A/r2d.

2.1.1. Scattering Theory

The scattering problem of two distinguishable particles 1 and 2 with equal mass m interacting
via the potential V (r1 − r2) is reduced to the scattering of one relative particle with the
reduced mass mr = m/2 on a fixed target potential V (r) by separating the center-of-mass
motion and using relative coordinates

r = r1 − r2 , (2.2)
p = (p1 − p2)/2 . (2.3)

Here r1 and r2 are the positions and p1 and p2 are the momenta of the particles. Figure 2.1
shows a sketch of a collision process. The incoming relative particle is scattered to an angle (ϑ,
ϕ) and detected with a detector that covers a solid angle ∆Ω. Let us now assume that we
have an incoming flux of particles j0, i.e. a certain amount of particles per time interval
and unit area, interacting with V (r). The probability that a particle is scattered into the
direction of the detector is related to the differential cross section dσ(ϑ, ϕ), which is defined
as the number of scattered particles going through the area ∆A = r2

d∆Ω divided by the
incoming flux j0. With the scattered flux js(r, ϑ, ϕ) this becomes

dσ(ϑ, ϕ) =
js(r, ϑ, ϕ)r2

ddΩ

j0
, (2.4)

if we make ∆Ω infinitesimally small1. dσ has the dimension of an area, i.e. it corresponds to
a surface that scatters particles into the direction (ϑ, ϕ).

A quantum-mechanical description of the scattering problem starts from the hamiltonian
H, which is given by the sum of kinetic and potential energy

H =
p2

2mr

+ V (r) (2.5)

1Later in this section it is shown that the radial dependence cancels out in Eq. (2.4). Hence, dσ(ϑ, ϕ) does
not depend on r.
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2.1. Collisional Dynamics of Ultra-Cold Atomic Gases

of the relative particle. With the time-independent Schrödinger equation

Hψk(r) = Ekψk(r) (2.6)

we can calculate the stationary scattering eigenstates of H. We are interested only in the
asymptotic behavior of these states as the mean distance between the atoms is much larger
than the interaction range r0. To calculate the asymptotic behavior, Eq. (2.6) is written in
the form

(∆ + k2)ψk(r) = U(r)ψk(r) , (2.7)

with the notations
k2 =

2mrEk

~2
, U(r) =

2mr

~2
V (r) . (2.8)

The concept of Green’s functions, known e.g. from the theory of electrodynamics, is a pow-
erful tool to tackle a differential equation of the form of Eq. (2.7). With the Green’s function
Gk(r), which is defined through the following equation

(∆ + k2)Gk(r) = δ(r) , (2.9)

where δ(r) is the Dirac delta function, a formal solution of Eq. (2.7) is

ψk(r) = ψ0(r) +

∫
d3r′Gk(r − r′)U(r′)ψk(r′) . (2.10)

The first term ψ0(r) on the right hand side is the solution of the homogeneous differential
equation

(∆ + k2)ψ0(r) = 0 . (2.11)

It describes the incoming particle in the asymptotic limit. We choose the easiest non-trivial
solution of Eq. (2.11), a plane wave traveling in z direction ψ0(r) = eikz, not taking into
account the normalization problem.

It can be shown (see for example [53]), that the Green’s functions has two linear indepen-
dent solutions

G±
k (r) = − 1

4π

e±ikr

r
(2.12)

corresponding to an outgoing, respectively incoming, spherical wave. Only the outgoing
spherical wave G+

k is a physically sensible solution, because the scattered wave cannot exist
before the particle is interacting with the potential. Let us now evaluate the asymptotic form
of Eq. (2.10). If we look at a spot S far from the interaction range of V (r) (see Fig. 2.2), the
argument |r − r′| of Gk in Eq. (2.10) is approximately given by

|r − r′| ≈ r − r̂ · r′ (2.13)

with r̂ = r/r. Hence it follows for large r

G+
k (r − r′) = − 1

4π

eik|r−r′|

|r − r′|
≈ − 1

4π

eikr

r
e−ikr̂·r′ . (2.14)

If we insert this result into Eq. (2.10) together with the homogeneous solution ψ0(r), we end
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V (r)
r

r − r′

r′

S

P
O

α

r̂

Figure 2.2.: Illustration of the approximation |r − r′| ≈ r − r̂ · r′. If S is far from the interaction
region, the angle α between SO and SP is small, which means that the distance SP is approximately
equal to the projection of SP on SO.

up with

ψk(r)
r→∞∼ eikz − 1

4π

eikr

r

∫
d3r′e−ikr̂·r′U(r′)ψk(r′) . (2.15)

The interpretation of expression (2.15) is more evident, if we write it in the following form

ψk(r)
r→∞∼ eikz + fk(ϑ, ϕ)

eikr

r
, (2.16)

with the scattering amplitude

fk(ϑ, ϕ) = − mr

2π~2

∫
d3r′e−ikr̂·r′V (r′)ψk(r′) . (2.17)

The asymptotic scattering state consists of the superposition of an incoming plane wave and
an outgoing spherical wave with an angle-dependent pre-factor fk(ϑ, ϕ). To connect the
scattering amplitude with the differential cross section, the flux of the incoming plane wave
and the scattered wave has to be calculated (see Eq. (2.4)). The stationary flux of a wave
function is defined by [51]

j(r) :=
1

m
Re

[
ψ∗(r)

~
i
∇ψ(r)

]
. (2.18)

Hence, the incoming flux is

j0 =
~k
mr

. (2.19)

The scattered flux is easiest calculated in spherical coordinates. At a distance r large com-
pared to the interaction region the flux in ϑ and ϕ direction, jϑ and jϕ, are negligible compared
to the radial component jr, which is calculated to be [51]

jr(r, ϑ, ϕ) =
~k
mr

1

r2
|fk(ϑ, ϕ)|2 . (2.20)
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2.1. Collisional Dynamics of Ultra-Cold Atomic Gases

Inserting j0 and js(r, ϑ, ϕ) ≈ jr(r, ϑ, ϕ) into Eq. (2.4) results in a simple relation between the
differential cross section and the scattering amplitude

dσ

dΩ
(ϑ, ϕ) = |fk(ϑ, ϕ)|2 . (2.21)

The scattering amplitude is thus directly connected to the experiment.

2.1.2. Low-Energy Limit

Let us now discuss the low-energy limit and show that the scattering is isotropic in this
regime. In the low-energy limit the thermal de Broglie wavelength is large compared to the
interaction range (λth � r0). In terms of the k-vector this is equivalent to k � 1/r0. The
main contributions to the integral of Eq. (2.17) are given for |r′| . r0, where the potential
V (r) has significant values. The factor e−ikr̂·r′ in Eq. (2.17) is therefore approximately 1 as
kr̂ · r′ . kr0 � 1 and hence

fk ≈ −
mr

2π~2

∫
d3r′V (r′)ψk(r′) . (2.22)

Consequently the interaction is isotropic, because the amplitude is independent of ϑ and ϕ.
The integral equation (2.22) for fk is implicit, i.e. fk appears on both sides of Eq. (2.22)2.

The scattering length3 a is defined as

a := − lim
k→0

fk . (2.23)

It can be shown that a depends strongly on the details of V (r) and that a small variation
in V (r) can lead to a divergence of a. This is the case e.g. for Feshbach resonances (see
section 2.2 and 2.3). For potentials with a finite a, the total cross section σ, given by the
integral of dσ/dΩ over the full 4π solid angle, is 4πa2. σ is thus equal to the scattering area
of a classical hard sphere with a radius given by twice the scattering length. This analogy
helps to get a descriptive understanding of a. However, it is only valid if a is positive, which
is not necessarily the case.

The total cross section changes, if the colliding particles are indistinguishable. In this
case it cannot be distinguished which particle is going in which direction after the collision
(see Fig. 2.3). Therefore the wave function ψk(r) has to be symmetrized (anti-symmetrized)
for bosons (fermions) against particle exchange. For the scattering amplitude the particle
exchange is equivalent to a substitution of (ϑ, ϕ) by (π−ϑ, ϕ+π) [26]. Hence the differential
cross section is

dσ

dΩ
(ϑ, ϕ) = |fk(ϑ, ϕ) + εfk(π − ϑ, ϕ+ π)|2 , (2.24)

with ε = +1 for bosons and ε = −1 for fermions. Consequently, at low energies collisions are
strongly suppressed for fermions in the same quantum state and enhanced by a factor of 2

2This is changed with the Born approximation, where the scattered wave function ψk(r′) is replaced by
the incoming plane wave eikz (see for example [51] or [53]). The Born approximation is valid for weak
interacting particles. It cannot be applied in case of contact interaction, but is used to describe dipole-
dipole interaction (see section 3.3).

3Equal to the s-wave scattering length in the description by partial waves if only l = 0 contributes.
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1

Figure 2.3.: Scattering of identical particles. For identical particles the two processes shown in the
figure are indistinguishable. The scattering amplitude fk(ϑ, ϕ) describing the left process is equal to
fk(π − ϑ, ϕ+ π), which describes the right process.

for bosons, leading to a total cross section4 of 8πa2 instead of 4πa2.
To obtain the macroscopic properties of an atomic gas from the microscopic theory of

binary collisions, a mean field description is used. The mean field description makes use of
a pseudo-potential, which replaces the complicated molecular potential between two atoms.
This pseudo-potential must have the same scattering length a. A natural choice is a contact
interaction potential [26]

Vcontact(r) = gδ(r) . (2.25)

This potential has the same scattering length a for5

g =
2π~2a

mr

=
4π~2a

m
. (2.26)

The form of the potential indicates the physical meaning of the sign of a, it determines
whether the contact interaction is attractive (a < 0) or repulsive (a > 0).

2.2. Tuning the Scattering Length via Feshbach
Resonances

The previous section has shown that the collisional properties in the low-energy limit are
completely determined by a single parameter, the scattering length a. It has also been stated
that a small variation of the scattering potential can have a strong effect on a. This is the
case for Feshbach resonances, which allow to tune a with a magnetic field B over a wide
range. To understand this phenomena, one needs to take a closer look at the atom-atom
interaction. The molecular potential between two atoms depends on the internal atomic
quantum states. For example, for two atoms with spin 1/2 the total spin can be either 0 or 1,
leading to a singlet and a triplet potential with different strengths. To describe the physics
behind a Feshbach resonance it is not enough to take into account only a single molecular
potential between the atoms, Feshbach resonances occur due to a coupling between different
potentials.

This is illustrated in Fig. 2.4. Two molecular potentials are indicated in the figure. The

4As the state specified by (ϑ, ϕ) is identical to (π− ϑ, ϕ+ π), Eq. (2.24) has to be integrated only over half
of the 4π solid angle to avoid double counting. Therefore the total cross section is enhanced only by a
factor of 2 [54].

5To be more precise, the form (2.25) is applicable only for regular wave functions which do not have a 1/r
divergence. For none-regular functions a regularizing operator has to be included (see for example [26]
for details).
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Figure 2.4.: Coupling between molecular potentials that leads to a Feshbach resonance. The asymp-
totic value E∞ of the higher lying (blue) potential exceeds Ekin and can thus usually be neglected in
the description of a scattering process. If a bound state of this potential comes close to Ekin, the
coupling changes the scattering properties and the potential has to be taken into account.

lower lying (red) potential has an asymptotic energy E∞ = limr→∞ V (r) smaller than the
relative kinetic energy Ekin of the atoms, for the other (blue) one E∞ > Ekin. Without
coupling only the lower lying potential would contribute to the scattering amplitude. The
internal quantum states corresponding to a potential with E∞ < Ekin (E∞ > Ekin) define an
open (closed) channel. The situation with only one open channel is realistic for cold atoms
experiments, as the atoms are often prepared solely in one quantum state6.

With coupling, for example due to exchange interaction or spin-spin interaction, the scat-
tering properties are determined also by the closed channel. However, the scattering length
a is affected significantly only if a bound state of the closed channel is close to Ekin. If this
is not naturally the case, a difference in the magnetic moments of open and closed channel
µres = µclosed − µopen can be used to vary the relative energy between the channels with a
magnetic field B and to bring a bound state close to Ekin. The atoms can then undergo a
virtual transition to this bound state. The duration of the transition scales with the inverse
of the energy difference between bound state energy Eb and Ekin [49]. If Eb − Ekin is tuned
with B to small values, the virtual molecule lives long compared to the time the scattering
process takes. This has a dramatic effect on the scattering properties. In the vicinity of a
resonance the scattering length a varies as

a(B) = abg

(
1− ∆B

B −Bres

)
, (2.27)

where Bres is the resonance position, ∆B is the resonance width and abg is the scattering
length with no bound state close (see Fig. (2.5)). At Bres the scattering length diverges. It
goes to +∞ when approaching the resonance from below Bres (Ebound < Ekin) and to −∞
when approaching from above (Ebound < Ekin).

Hence, a Feshbach resonance allows in principle to tune the scattering length to any positive
or negative value. Nevertheless, the scattering cross section is limited and reaches a constant
value proportional to λ2

th and independent of a for |a| � λth. This limit is called the unitarity

6Provided that the atoms cannot undergo transitions to other states during the collision.
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Figure 2.5.: Variation of the scattering length in the vicinity of a Feshbach resonance. At the
position of the resonance Bres the scattering length diverges. The resonance width ∆B, defined as
the magnetic field difference between Bres and the zero crossing of a, depends on the coupling strength
between open and closed channel.

limit (see for example [55]). The width of the resonance ∆B is defined as the magnetic field
difference between Bres and the zero crossing of a. It depends on the coupling strength,
which means that a broad resonance corresponds to a strong coupling between open and
closed channel. In fact, the resonance position Bres does not coincide with the crossing of Eb

and Ekin, because the coupling leads to a shift. It induces a mixing of open and closed channel
states resulting in a Landau-Zener type behavior of the energies of these mixed states. The
details of this are discussed in the next section.

In the vicinity of a Feshbach resonance not only the probability for elastic collisions
increases, also inelastic three-body collisions are more likely. In a three-body collision a
molecule is formed with the participation of a third atom. Without the third atom, which
carries away a part of the momentum, energy and momentum could not be conserved at the
same time. The binding energy of the molecule is set free as kinetic energy in the process.
As the binding energy is usually much larger than the trap depth, both molecule and atom
are lost from the trap. If both background collisions and two-body losses are neglected, the
relation

ṅ = −L3n
3 (2.28)

holds for the decrease of the atomic density with time. The three-body loss coefficient
scales universally like L3 ∝ a4 for scattering lengths much larger than the characteristic
interaction range of the atoms [56]. This relation predicts thus enhanced inelastic losses close
to a Feshbach resonance, where a diverges. But also on the side of a resonance where the
scattering length decreases strongly enhanced losses are observed [57]. This enhancement has
to be explained with a different theoretical treatment of the ultra-cold three-body collisions
(see for example [58]). Due to the dependence of ṅ on the third power of n, at the high
atomic densities reached in a Bose-Einstein condensate (on the order of 1014 cm−3) the losses
can be so large that they prevent a crossing of a Feshbach resonance without destroying the
quantum degeneracy.
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2.3. Theory of Feshbach Resonances

To derive a theoretical description of Feshbach resonances, this section recapitulates scatter-
ing theory taking into account a coupling between different molecular potentials. Only one
bound state is considered, which is the single resonance approach. The presentation follows
mainly [49] and [59]. For more details the reader is referred also to [54, 60].

2.3.1. Formal Solution

As explained in the previous section, a coupling between open and closed channel is crucial
for a Feshbach resonance. This coupling leads to a mixing of the open and the closed channel
state |ψop〉 and |ψcl〉. The scattering state has thus the following general form

|ψ〉 = α |ψop〉+ β |ψcl〉 . (2.29)

As was done in section 2.1, we calculate the stationary scattering eigenstate with the time-
independent Schrödinger equation. Though, we now have two coupled differential equations
due to the coupling [59]

Hop |ψop〉+ W |ψcl〉 =E |ψop〉 , (2.30)
Hcl |ψcl〉+W |ψop〉 = E |ψcl〉 , (2.31)

and two scattering eigenstates7 |ψop
k 〉 and

∣∣ψcl
k

〉
. Here Hop (respectively Hcl) is the Hamilton

operator for the open (respectively closed) channel without coupling and W denotes the
coupling. Hop is thus equal to Eq. (2.5).
Hcl is of the same form as Hop, but its potential energy is given by the closed channel

potential Vcl(r). The eigenfunctions of interest of Hcl are all bound states, because the
asymptotic energy of Vcl(r) is larger than the relative kinetic energy of the atoms. Hcl can
therefore be written as

Hcl =
∑

ν

Eν |ψν〉 〈ψν | , (2.32)

with the bound states |ψν〉 and their energy Eν . This allows us to write Eq. (2.31) as∑
ν

(E − Eν) |ψν〉 〈ψν | ψcl〉 = W |ψop〉 . (2.33)

We are interested in the behavior of a when a bound state is close to the relative kinetic
energy Ekin of the atoms. Therefore we can neglect all eigenstates of Hcl other than |ψb〉, the
bound state that is close to Ekin. Consequently Eq. (2.33) can be rewritten as

(E − Eb) |ψb〉 〈ψb| ψcl〉 = W |ψop〉 . (2.34)

This approach is called the single resonance approximation.
To get to a formal solution of the coupled Schrödinger equations (2.30) and (2.31), the

concept of Green’s functions — in this case Green’s operators — is used like in the previous

7Also called dressed states.
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section. With the Green’s operators

Gop(z) =
1

z −Hop

, (2.35)

Gcl(z) =
1

z −Hcl

, (2.36)

where z is a complex number with the dimension of an energy, the scattering states be-
come [49]

|ψop
k 〉 = |ψk〉+Gop(E + iε)W

∣∣ψcl
k

〉
, (2.37)∣∣ψcl

k

〉
= Gcl(E)W |ψop

k 〉 . (2.38)

Let us first discuss expression (2.37): |ψk〉 is the solution of Eq. (2.30) without coupling W
and therefore in position-space given by Eq. (2.15). The argument z = E + iε of the Green’s
operator ensures that the second term has the asymptotic behaviour of an outgoing spherical
wave. Equation (2.38) has no scattered component8 for W = 0, because for Hcl exist only
bound states, as was stated above. In this equation we can include the single resonance
approximation. The Green’s operator Gcl(E) becomes then

Gcl(E) =
1

(E − Eb) |ψb〉 〈ψb|
=
|ψb〉 〈ψb|
(E − Eb)

. (2.39)

Consequently
∣∣ψcl

k

〉
is proportional to |ψb〉

∣∣ψcl
k

〉
= |ψb〉

〈ψb|W |ψop
k 〉

E − Eb

. (2.40)

If we now insert (2.40) into (2.37), after some algebra an expression for |ψop
k 〉 is obtained,

which depends only on the states |ψk〉 and |ψb〉

|ψop
k 〉 = |ψk〉+Gop

W |ψb〉 〈ψb|W
E − Eb − 〈ψb|WGopW |ψb〉

|ψk〉 . (2.41)

2.3.2. Derivation of the Scattering Properties

With Eq. (2.41) the scattering properties in the vicinity of a Feshbach resonance are deduced.
Only zero-energy resonances are considered, which means Ekin = 0. Here the zero of energy
is set as the dissociation threshold of the open channel. As already discussed above, the first
term on the right hand side of Eq. (2.41) describes the scattering in the open channel with
no coupling W . The scattering length corresponding to this is called background scattering
length abg. The resonance behaviour of a is caused by the second term of Eq. (2.41). The
scattering amplitude, given by its asymptotic behaviour, diverges when the denominator
vanishes, i.e. if

E = Eb + 〈ψb|WGopW |ψb〉 . (2.42)

8Hence, z is chosen real.
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2.3. Theory of Feshbach Resonances

For small E the second term on the right hand side of Eq. (2.42) becomes [49]

〈ψb|WGopW |ψb〉 = 〈ψb|W
1

E −Hop + iε
W |ψb〉

E→0
≈

∑
k

| 〈ψb|W |ψk〉 |2

−~2k2

2mr
+ iε

:= ~∆0 . (2.43)

The approximate expression for 〈ψb|WGopW |ψb〉 has a form that is well-known from per-
turbation theory9. The expression describes the shift of the resonance position due to second
order coupling induced by W on |ψb〉. Consequently the resonance does not occur when Eb

is close to zero, but when
Eres = Eb + ~∆0 = 0 . (2.44)

As was already stated in the previous section, the energy difference between open and
closed channel is tunable with a magnetic field B, if the two states have a difference in
magnetic moment µres = µclosed − µopen. Hence, Eb = Eb(B) = µres(B − Bb), where Bb is
the magnetic field value at which Eb = Ekin. Therefore the magnetic field value Bres that
corresponds to the resonance position is defined by

Bres = Bb +
~∆0

µres

. (2.45)

To get an expression for the total scattering amplitude ftot, we include Eq. (2.44) in
Eq. (2.41) and multiply with 〈r| from the left, which gives the total scattered wave function

ψop
k (r) = 〈r| ψop

k 〉 = ψk(r) +
〈r|GopW |ψb〉 〈ψb|W |ψk〉

E − Eres

. (2.46)

It takes some effort to calculate the asymptotic behaviour of this expression [49], hence I only
state the result

ψop
0 (r)

r→∞
≈ ψ0(r) +

1

r

4π2mr

~2

| 〈ψ0|W |ψb〉 |2

Eres

, (2.47)

here E and k are set to zero. The factor behind 1/r is the contribution fres to the total
scattering amplitude, thus we finally get to Eq. (2.27) for the scattering length

a(B) = − lim
k→0

ftot = abg −
4π2mr

~2

| 〈ψ0|W |ψb〉 |2

Eres

= abg

(
1− ∆B

B −Bres

)
, (2.48)

with the width of the resonance

∆B =
4π2mr

~2

| 〈ψ0|W |ψb〉 |2

abgµres

. (2.49)

It depends on the coupling strength W between open and closed channel, as already discussed
in the previous section.

9Strictly speaking ∆0 has also an imaginary part due to iε. It can be shown that in the low-energy limit we
can neglect this part which would lead to a damping term, because the density of states of the continuum
of Hop vanishes near k = 0 [49].
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Figure 2.6.: Avoided crossing of the bound state energy of the closed channel (blue dashed line) and
the open channel energy (red dashed line). Due to the coupling the two states mix near the crossing
to dressed states. The energies of these dressed states do not cross (black solid lines). This allows
to produce weakly bound Feshbach molecules by ramping the magnetic field adiabatically from values
above the resonance to values below (Landau-Zener transition). The coupling results also in a shift
of the resonance position by ~∆0/µres.

Figure 2.6 illustrates the results described above. It shows the energy dependence of the
open (red dashed) and closed channel (blue dashed) energy and the dressed states energies
(black solid lines). The open channel energy is set to zero, hence the closed channel energy
increases with a slope given by µres. The shift of the position of the singularity in a is
indicated for a negative ~∆0. The Landau-Zener behaviour of the dressed states allows to
produce molecules by sweeping the magnetic field over the resonance from above, similar to
a radio-frequency sweep to transfer atoms between different magnetic states. The resulting
Feshbach molecules are weakly bound with an binding energy depending on B (see [59] for
details on Feshbach molecules).

2.4. Feshbach Resonances of Chromium

Until now I did not talk about the details of the internal atomic structure that causes the
coupling between various molecular potentials. This section summarizes experimental and
theoretical work [12, 60, 61] on Chromium atoms (52Cr), for which 14 resonances below 600 G
have been found. The assignment of these resonances to internal quantum states allowed to
determine the background scattering length abg of Chromium atoms in the 7S3 ground state
with MS = −3 to be 112(14)a0, where a0 is the Bohr radius. 52Cr is a bosonic isotope with
no nuclear spin I (see appendix B.1). This is a main difference to alkali atoms which are
often used for experiments with ultra-cold atoms, as there is no hyperfine structure. It has
an comparatively large magnetic dipole moment of 6 µB, because the spins of the 6 outer
electrons couples to a total spin S = 3.
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The molecular interaction potential of 52Cr atoms consists of the following contributions

Vmol =
2∑

k=1

V k
Z + VE + VvdW + VSS + VSO . (2.50)

The various terms are:

Zeeman interaction V k
Z : The magnetic dipole moment of the atoms k = 1, 2 leads to a

shift of their energy if a magnetic field B is applied. It is given by the well-known formula

V k
Z = −µk ·B = −µBgJMJ,kB . (2.51)

Here MJ,k is the projection of the total angular momentum Jk of atom k on the quantization
axis defined by the magnetic field. The Landé-factor gJ of the 7S3 ground state of Chromium
is negative and close to the electron g factor, namely gJ = −2.00183 [62]. The Zeeman
interaction is crucial for Feshbach resonances, as it allows to shift molecular potentials with
different projections of the dipole moment relative to each other.

Exchange interaction VE: The electronic exchange interaction has no classical analogy
and has therefore to be described quantum mechanically [63]. It arises from the fact that
the valence electrons cannot be allocated to a specific atom any more if the electron clouds
overlap. It is a short range interaction because this overlap decays exponentially with the
distance of the atoms. At small distances it is strongly repulsive because of the fermionic
nature of electrons.

Van der Waals interaction VvdW: The atoms induce mutually an electric dipole moment
if they are close. These dipole moments interact with each other, leading to an attractive
potential falling of as −C6/r

6. C6 is the van der Waals coefficient determining the interaction
strength. There exist also higher multipole contributions decaying as −Cn/r

n, with n = 8,
10, . . ..

Spin-spin interaction VSS: Also referred to as dipole-dipole interaction in this thesis. VSS

is the most important coupling interaction for 52Cr, as coupling due to exchange interaction
does not lead to Feshbach resonances (see below). The potential energy is dependent on the
relative alignment of the dipoles and falls of with 1/r3. For a polarized sample it is given by

VSS =
µ0µ

2

4π

(
1− 3 cos2 θ

r3

)
, (2.52)

with the atomic dipole moment µ = gJµBMJ and with θ being the angle between the magnetic
field and the connection line between the atoms.

Second order spin-orbit interaction VSO: Besides the direct spin-spin interaction VSS,
there is an indirect interaction between the spins, the second-order spin-orbit interaction
VSO. It occurs when the atomic charge clouds overlap as a molecule is formed, and the in-
teraction between the ground state spins are modified due to couplings mediated through
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Figure 2.7.: Molecular potentials of 52Cr resulting from theoretical ab-inito calculations for ground
state atoms (see text for the notation of the molecular states). The total spin of the atoms can couple
to values between 0 and 6 and therefore results in 7 potentials. The potential with molecular spin
SM = 0 has the strongest binding energy. The depth of the potentials decreases then for higher SM

up to the comparatively shallow one with SM = 6, which is shown in detail in the inset. Figure taken
from [61].

distant excited electronic states of the molecule [64]. For heavy species like Rb and Cs these
indirect terms can be much larger than VSS at short distances. However, for the discussion
of the Feshbach resonances of Chromium it is not relevant and will not be discussed further.

Taking all these contributions into account leads to the potential curves shown in Fig. 2.7.
These potentials are results of theoretical ab-inito calculations for 52Cr atoms in their ground
state without an external magnetic field B [61]. The interaction of two ground state 52Cr
atoms is best described by Hund’s case (a), i.e. a strong coupling of the motion of the
electrons to the internuclear axis. This means, that the quantum numbers of the orbital
angular momenta Lk and of the spins Sk of the atoms are no good quantum numbers any
more. Instead, the quantum numbers of the projection of these quantities on the internuclear
axis have to be used [65]. This leads to the notation 2SM+1Λσ

πe
for the different molecular

states, where Λ = |
∑

k ML,k| and SM = |
∑

k MS,k|. Λ is 0 (denoted with Σ) for two atoms
in the 7S3 ground state, whereas SM can take values between 0 and 6, resulting in seven
different potentials. The parity of the wave functions corresponding to these potentials is
denoted with πe = g, u (for gerade, ungerade) and their symmetry upon reflection at a plane
through the internuclear axis with σ = +, −.

In our experiment we start with a spin polarized sample of atoms in the 7S3 ground state
with MS = −3. When two colliding atoms are still far apart, the total orbital angular
momentum L and the total spin S of the dimer are still good quantum numbers, with ML

and MS being the projection on the magnetic field B, which is required to keep the sample
polarized. In the course of the collision, the total projection M = ML +MS and the parity
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1st order 2nd order

∆L 0, ±2 0, ±2, ±4

∆ML 0, ±1, ±2 0, ±1, ±2, ±3, ±4

∆S 0, ±2 0, ±2, ±4

Table 2.1.: Selection rules for a first and second order dipole-dipole transition. ∆ML = 0 is not
allowed for L = 0 → L′ = 0 in first order.
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Figure 2.8.: (a) Theoretical prediction of the variation of the scattering length a of 52Cr with an
applied magnetic field B. The scattering length shows singular behaviour at the position of the 14
Feshbach resonances below 600 G. Except the resonances at 290.3, 499.9 and 589.1 G, all resonances
are due to second order coupling and therefore narrow. Around 290 G two resonances almost coincide.
This double structure is resolved in the inset (b). Figure taken from [60].

(−1)L are conserved [60]. The symmetrization needed because the nuclei of the atoms are
identical leads to an exclusion of states with (−1)S+L 6= 1. Only VE, VSS and VSO lead to
a coupling. The exchange interaction VE is the dominating coupling term for alkali atoms,
but does not lead to Feshbach resonances for Chromium. VE conserves MS and therefore
the Zeeman energy of open and closed channel are equal. Of the two remaining terms the
spin-spin interaction VSS is much stronger and VSO can be neglected. Therefore the selection
rules of VSS, in addition to the rules described above, determine which states lead to a
Feshbach resonance. Table 2.1 summarizes all possible first and second order transitions for
L, ML and S. Taking this into account allowed to assign quantum numbers to 13 out of
14 Feshbach resonances that were found experimentally in 2004 [12]. Figure 2.8 shows the
resulting scattering length a(B). Most of the resonances are due to second order coupling
and thus quite narrow. Only three first order resonances occur, of which the broadest is at
589.1 G. This resonance is used to tune the scattering length a (see chapter 5). For more
details on the Feshbach resonances of Chromium, for example on the assignment procedure,
the reader is referred to [60].
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3. Dipolar Bose-Einstein Condensates

Chromium has an comparatively large magnetic dipole moment of 6 µB. Hence, a
theoretical description of a Chromium Bose-Einstein condensate has to include also
dipole-dipole interaction. This chapter discusses an extension of the mean-field the-
ory for condensates with only contact interaction to dipolar condensates. In the first
two sections the theory including only contact interaction is described. Section 3.1
reports on the in-trap properties of such a condensate. The mean-field approxima-
tion and the Thomas-Fermi regime are introduced. The theoretical description of
the condensate dynamics by hydrodynamic equations is discussed in section 3.2. Fi-
nally, section 3.3 includes dipole-dipole interaction in this theory. All important
results that are used for the data evaluation are presented.

3.1. Bose-Einstein Condensation

The new state of matter called Bose-Einstein condensate (BEC) that was first realized in 1995
in the group of Wieman and Cornell [6] and shortly afterwards in the group of Ketterle [7],
had been predicted already 70 years before by Einstein [14]. Bose-Einstein condensation is
based on the indistinguishability and wave nature of particles [66]. The phase transition
from a thermal gas of trapped bosonic atoms to a condensate appears, when the thermal de
Broglie wavelength λth (Eq. (2.1)) starts to be on the order of the mean atomic distance (given
approximately by n−1/3, where n is the particle density). Therefore the wave functions of the
atoms start to overlap and the indistinguishability becomes important: Bosons accumulate
in the ground state which leads to a collective macroscopic behaviour of the atoms (see
Fig. 3.1). The sample can then be described by one macroscopic wave function with a
fixed phase throughout the whole sample. BECs are a macroscopic probe to study quantum
phenomena, which explains the huge interest they have attracted over the last years.

3.1.1. Statistical Description

Before I introduce the mean-field description, I summarize important results of the statistical
description of Bose-Einstein condensation. For a derivation of these results see for exam-
ple [54, 55, 67] or standard textbooks on statistical physics [68, 69]. For a Bose gas without
interactions in a box with periodic boundary conditions, the phase transition to a condensate
appears when the phase space density, defined as ρ := nλ3

th, is equal to1 ζ(3/2) ≈ 2.612. This
corresponds to a critical temperature

T box
c =

2π~2

mkB

(
n

ζ(3/2)

)2/3

. (3.1)

1Here ζ(x) is the Riemann Zeta function, defined as ζ(x) =
∑∞

k=1 k
−x.
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(a) (b) (c) (d)

v

d λ th

Figure 3.1.: Illustration of Bose-Einstein condensation. (a) At high temperatures T the atomic gas
is treated in a particle picture. The atoms act like ’billiard balls’ with a Maxwell-Boltzmann velocity
distribution. The mean distance d is approximately n−1/3. (b) If the temperature is lowered, the
wave nature of the atoms gets apparent. The thermal de Broglie length is still too small to lead to an
overlap of the different wave packets. (c) At T = Tc the wave packets start to overlap and the atoms
accumulate in the ground state. (d) At T = 0 the condensate is pure, all atoms are in the ground
state. A ’giant matter wave’ is formed. Figure similar to [66].

At T = T box
c a macroscopic number of atoms start to occupy the motional ground state |φ0〉.

The condensate fraction, i.e. the ratio of ground state atoms all atoms, is

N0(T )

N
= 1−

(
T

T box
c

)3/2

. (3.2)

These properties change when the realistic case of trapped atoms is considered. For the
simple and often realized case of a harmonic trap the condensate fraction is given by

N0(T )

N
= 1−

(
T

Tc

)3

, (3.3)

with the critical temperature

Tc =
~ωho

kB

(
N

ζ(3)

)1/3

. (3.4)

The trap geometry enters the formula for the critical temperature through the geometric
mean of the trapping frequencies in x, y and z direction

ωho = (ωxωyωz)
1/3 . (3.5)

For typical experimental parameters the critical temperature is on the order of a few 10 nK
to 1 µK. Here it should be stressed that at Tc the level spacing in the trap, ~ωho, is still 10 to
100 times smaller than the thermal energy kBT . Bose-Einstein condensation is a statistical
effect.

3.1.2. Mean-Field Approximation and Thomas-Fermi Limit

The results discussed above are not exactly valid anymore if the atoms interact with each
other. I do not discuss the influence of the interaction on the critical temperature and
the condensate fraction as this effect corresponds only to a few percent change (see for
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3.1. Bose-Einstein Condensation

example [54]). Nevertheless, the interaction is important for the structure of a BEC. The
many-body hamiltonian of a cloud of interacting atoms includes the potential energy between
each pair of atoms. Typical BECs contain 104–106 atoms, it is clear that the many-body
problem can thus not be solved exactly. Because BECs are dilute gases with n|a|3 � 1
for sufficiently small interaction, we can neglect the correlations between the atoms and
assume that they move in a mean-field potential created by the other atoms. The mean-field
potential has to be defined in a self-consistent way. This mean-field approximation simplifies
the theoretical description vastly.

In the fully condensed state (T = 0) all atoms occupy the same motional ground state
|φ0〉. In the mean field approximation the whole condensate is then described by one wave
function2. It is useful to define the wave function as

ψ(r) :=
√
Nφ0(r) , (3.6)

because then the particle density n(r) is given by |ψ(r)|2. A non-linear Schrödinger equation
for this wave function, the (time-independent) Gross-Pitaevskii equation (GPE), is obtained
by using variational methods [54](

− ~2

2m
∇2 + Vext(r) + g|ψ(r)|2

)
ψ(r) = µψ(r) . (3.7)

Here m is the atomic mass, Vext(r) is the confining potential and µ is the chemical potential
of the system, i.e. the energy needed to add a particle to the system. The derivation of
Eq. (3.7) makes use of the simple pseudo-potential introduced in section 2.1 to describe the
atom-atom interaction. This leads to the mean-field interaction term gn(r) = g|φ(r)|2. As
already stated above, dipole-dipole interaction is first not taken into account. Equation (3.7)
is the key tool in the mean field description of BECs.

The GPE simplifies a lot if the kinetic energy term is neglected. The kinetic energy is
caused by the confinement of the atoms due to the Heisenberg principle. It can be shown
(see for example [54]) that for large atom numbers and repulsive interaction the kinetic energy
is negligible3. This regime is called Thomas-Fermi limit, it is valid if

Na

aho

� 1 , (3.8)

where aho =
√

~/(mωho) is the oscillator length of the trapping potential. In this case we
directly obtain a solution of the GPE

n(r) = |ψ(r)|2 =


µ− Vext(r)

g
: Vext(r) ≤ µ

0 : otherwise
. (3.9)

The density profile of the BEC reflects the shape of the confining potential. For harmonic
traps it is thus parabolic (see Fig. 3.2). With the Thomas-Fermi radii, which are defined by

2Please note that the wave function is the order parameter of the BEC phase transition.
3It is intuitively clear that for repulsive interaction the size R of the BEC increases and hence the kinetic

energy (∼ ~2/(mR2)) decreases.
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Figure 3.2.: Potential energy Vext and density n in the Thomas-Fermi limit. The density profile has
the inverted shape of the harmonic trapping potential. The trap is ’filled’ up to the Thomas-Fermi
radius R, where Vext = µ.

Ri :=

√
2µ

mω2
i

, i = x, y, z , (3.10)

we can express Eq. (3.9) like

n(r) = max

{
n0

(
1−

∑
i

(
xi

Ri

)2
)
, 0

}
, (3.11)

with the peak density n0 = µ/g. The normalization of the wave function ψ(r) allows us
to express the chemical potential in terms of atom number N , trapping frequencies ωi and
scattering length a:

µ =
1

2
~ω̄
(

15Na

aho

)2/5

. (3.12)

Hence, the Thomas-Fermi radii scale as (Na)1/5. To get the typical size of a condensate,
we assume N = 105, ωho = 2π × 100 Hz and a = 100 a0. With the mass of Chromium
m = 8.7× 10−26 kg, this gives R ≈ 8 µm.

3.2. Hydrodynamic Description of the Condensate
Dynamics

The previous section showed that the typical in-trap size of a BEC is on the order of a
few µm. This is close to the resolution limit of the light that is used to image the condensate.
Therefore condensates are usually imaged after a short time of free expansion (a few ms).
This time-of-flight simplifies the detection and reveals information on the gas properties,
like the mean-field interaction energy. The free expansion of a condensate is described by a
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3.2. Hydrodynamic Description of the Condensate Dynamics

scaling law. It is deduced by reformulating the time-dependent GPE

− i~
∂

∂t
ψ(r, t) =

(
− ~2

2m
∇2 + Vext(r, t) + g|ψ(r, t)|2

)
ψ(r, t) (3.13)

as a set of hydrodynamic equations. For this, we rewrite the condensate wave function
Eq. (3.6) in polar form

ψ(r, t) =
√
n(r, t)eiα(r,t) , (3.14)

where α(r, t) is the phase of the condensate. After some algebra (see for example [67]) the
following expressions are obtained

∂n

∂t
= −∇ · (nv) (3.15)

m
∂v

∂t
= −∇

(
− ~2

2m

∆
√
n√
n

+
mv2

2
+ Vext + gn

)
. (3.16)

Equation (3.15) has the form of a continuity equation and Eq. (3.16) is similar to the Euler
equation for a superfluid. The superfluid velocity v(r, t) is proportional to the gradient of
the phase

v(r, t) =
~
m

∇α(r, t) . (3.17)

Hence, the condensate motion is equivalent to the potential flow of a superfluid4 in the
presence of Vext and the mean field potential gn. A difference in Eq. (3.16) to classical
hydrodynamics is the quantum pressure term

− ~2

2m

∆
√
n√
n
. (3.18)

It can be estimated by
∆
√
n√
n
∼ 1

d2
, (3.19)

where d denotes the typical length scale for the variation of the condensate density n(r) [67].
Like the termmv2/2 it originates from the kinetic energy of the condensate, but it corresponds
to a different physical effect: Whereas mv2/2 describes the kinetic energy of the particle
motion, Eq. (3.18) describes the zero point motion (hence the name quantum pressure) [54].
For a moderate excitation of the condensate or in the course of ballistic expansion, d is on
the order of the size of the condensate itself. It can be shown that the quantum pressure
term is then negligible in the Thomas-Fermi regime [67].

Thus, the condensate motion is described by a set of classical hydrodynamic equations in
this regime. In this model each particle experiences a force

F (r, t) = −∇(Vext(r, t) + gn(r, t)) . (3.20)

At t = 0 the system is assumed to be in steady state, meaning that the density distribution
is given by Eq. (3.9). If Vext is then switched off, the condensate motion corresponds to a

4The velocity potential is given by ~α/m.
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Figure 3.3.: (a) Thomas-Fermi radii Ry(t) and Rz(t) after sudden switch-off of a trap with
(ωx, ωy, ωz) = 2π × (200, 200, 100) Hz. At approximately 2.3 ms the ellipticity of the condensate
inverts. (b) The aspect ratio Ayz crosses 1 at this time.

dilatation of the cloud, with any small piece of the fluid moving along the trajectory

Ri(t) = λi(t)Ri(0) , (3.21)

where Ri(0) are the initial Thomas-Fermi radii. An exact solution of the dynamics of the
condensate can be calculated for harmonic potentials [70]. In this case the λi(t) fulfill the
following coupled differential equations5

λ̈i =
1

λxλyλz

ω2
i (0)

λi

− ω2
i (t)λi , i = x, y, z . (3.22)

Figure 3.3 (a) shows how the Thomas-Fermi radii Ry and Rz evolve after a sudden switch-
off of a trap with (ωx, ωy, ωz) = 2π × (200, 200, 100) Hz. Starting at t = 0 with a quadratic
behavior, the radii increase almost linearly for times t > 1/ωi. The slope of Ry is steeper,
leading to a crossing of the radii after approximately 2.3 ms: The condensate inverts its
ellipticity. Unless the ratio ωy/ωz is initially exactly one, the condensate always inverts its
ellipticity6, i.e. the aspect ratio Ayz(t) = Ry/Rz changes from values smaller (larger) than
one to values larger (smaller) than one (see Fig. (3.3) (b)). This is a ’smoking gun’ evidence
for quantum degeneracy. It can be easily understood in the classical hydrodynamics model.
The density gradient ∇n(r) is larger in the direction of higher trapping frequencies, leading
to a faster acceleration in this direction (see Eq. (3.20)).

5The equations are exact not only for a sudden switch-off, but for any change of the external potential at
t = 0.

6If only contact interaction is present.
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Figure 3.4.: Anisotropy of the dipole-dipole interaction. Due to the angular dependence of Vdd(r)
the interaction is attractive for 0 ≤ cosϑ <

√
1/3 and (π −

√
1/3) < cosϑ ≤ π, and repulsive for√

1/3 < cosϑ ≤ (π −
√

1/3).

3.3. Dipole-Dipole Interaction in a Bose-Einstein
Condensate

An important difference of 52Cr compared to other atomic species condensed to date is the
large magnetic dipole moment of 6 µB. As already explained in section 2.4, the spins of the 6
outer electrons couple to a total spin of 3, leading to the comparatively large dipole moment.
This property of Chromium enabled Stuhler and coworkers [10] in 2005 to show for the first
time dipolar effects in a quantum gas. For other species the dipolar effects are masked by
the contact interaction, as the relative strength of dipole-dipole to contact interaction is too
small. A useful dimensionless parameter to measure the relative strength is

εdd =
µ0m

12π~2

µ2

a
, (3.23)

where µ is the atomic dipole moment and a is the scattering length. The dipolar parameter
εdd is defined in a way that a homogenous condensate is unstable if εdd ≥ 1. Alkali atoms,
which are most commonly used for ultra-cold atoms experiments, have a dipole moment of
1 µB. Hence εdd of Chromium is 36 times larger, with a being on the same order.

3.3.1. In-Trap Condensate Shape

The interaction potential between two dipoles that are aligned by an external magnetic field
B,

Vdd(r) =
µ0µ

2

4π

(
1− 3(eµ · r̂)2

r3

)
, (3.24)

is anisotropic. Here eµ is the unit vector in the magnetic field direction and r̂ = r/r.
Vdd(r) is partially attractive and partially repulsive (see Fig. 3.4). Another major difference
to the contact interaction is that it is long range due to its 1/r3 dependence. This means
that it cannot be described by a simple pseudo-potential, the scattering length as defined
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3. Dipolar Bose-Einstein Condensates

in Eq. (2.23) diverges7 [26]. Although the dipole-dipole interaction differs significantly from
contact interaction, it is relatively easy to include in the mean-field description of BECs. As
stated in [71] (explicitly shown in [72]), the mean-field dipole-dipole potential entering the
GPE has the intuitive form

V mean
dd (r) =

∫
dr′3Vdd(r − r′)n(r′) . (3.25)

This equation corresponds to the Born approximation for binary collisions (see section 2.1)
and is accurate for dipole moments on the order of 1 µB and far away from shape reso-
nances [73].

It is remarkable that the parabolic density distribution is also a self-consistent solution of
the GPE including V mean

dd , if εdd does not exceed one. This is shown by integrating (3.25) with
a density distribution of the form (3.11). It turns out that the physical dipolar contributions
of V mean

dd are then also quadratic like the trapping potential Vext(r) = 1/2m
∑

i ω
2
i x

2
i and the

mean field energy gn(r) of the contact interaction [73]. Therefore, the GPE contains only
parabolic and constant terms in the Thomas-Fermi limit and the inverted parabola profile is
still an exact solution of the problem. However, it is not trivial to obtain the condensate radii
with dipole-dipole interaction present. Here I will only discuss the results, see for example [73]
for details on the derivation.

The in-trap radii Ri for a magnetic field pointing in z direction are obtained by solving
the following equations

ω2
j =

(
15N~2a

m2RxRyRz

)
1

R2
j

[
1− εddf(Axz, Ayz) + εddAjz

∂f(Axz, Ayz)

∂Ajz

]
, j = x, y , (3.26)

ω2
z =

(
15N~2a

m2RxRyRz

)
1

R2
z

[
1− εddf(Axz, Ayz)− εddAxz

∂f(Axz, Ayz)

∂Axz

− εddAyz
∂f(Axz, Ayz)

∂Ayz

]
. (3.27)

The function f(Axz, Ayz) of the aspect ratios Axz = Rx/Rz and Ayz = Ry/Rz depends on the
incomplete elliptic integrals of the first and second kind and is discussed in appendix C.1.
With the radii the mean-field potential can be calculated. I will not discuss the complete
expression here (for details see [10]), but discuss only the simpler case of a spherical con-
densate with radius RTF. This example contains already the relevant main characteristics.
Equation (3.25) integrated with a spherical density distribution is

V mean
dd (r) =

εddmω
2
0

5
r2(1− 3(ez · r̂)2) , r ≤ RTF . (3.28)

The potential has a saddle-shape with a negative curvature when moving along the z direction
from the saddle point and a positive curvature when moving along x or y (see Fig. 3.5). This
means that compared to a condensate with only contact interaction, the dipolar condensate
is elongated in the dipole direction and compressed in the directions perpendicular to it.
This is a bit counterintuitive, as from the simple two-body interaction of dipoles (Eq. (3.24))

7In the description by a partial wave decomposition this means that all partial waves contribute.
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zy

B
Figure 3.5.: Saddle-shape mean field potential for a spherical dipolar condensate. The curvature
is negative in z direction and positive in y direction. Therefore the condensate is elongated in the
magnetic field direction compared to a condensate without dipole-dipole interaction.

one could expect the opposite, because this interaction is attractive in the magnetic field
direction. But the attractive interaction does not lead to a shrinking of the BEC, instead it
results in a realignment of the dipoles. It is energetically favorable for the system to have
more dipoles aligned in a way that they attract each other. In terms of aspect ratio this
means that Axz and Ayz are always smaller than without dipole-dipole interaction. This
result is still valid for the free expansion, as will be shown in the next subsection.

3.3.2. Expansion Dynamics

The dynamics of a dipolar condensate is determined analogous to the pure contact case: With
a hydrodynamic description the scaling factors of the radii are obtained through differential
equations (see previous section). These equations are [74]

d2λj

dt2
= −ω2

j (t)λj +
1

λxλyλz

ω̄2
j

λj

[
1− εddf

(
λx

λz

A0
xz,

λy

λz

A0
yz

)
+ εddλj

∂f

∂λj

(
λx

λz

A0
xz,

λy

λz

A0
yz

)]
, j = x, y, z , (3.29)

where A0
xz = R0

x/R
0
z and A0

yz = R0
y/R

0
z are the initial in-trap aspect ratios and

ω̄2
j =

15N~2a

m2R0
xR

0
yR

0
z

1

(R0
j )

2
. (3.30)

The equations (3.29) have to be solved numerically.
Figure 3.6 shows how well the theory fits to experimental data. Shown is the evolution of

the aspect ratio Ayz with time of a 52Cr BEC for two different magnetic field directions [10]. If
the field points along the long axis of the trap (red diamonds), the condensate is elongated in
this direction compared to pure contact interaction (dashed line). If it is perpendicular (blue
circles), the condensate is elongated in this perpendicular direction. In contrast to contact
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Figure 3.6.: Evolution of the aspect ratio Ayz after a sudden switch-off of the trap. The figure
shows experimental data for 52Cr with εdd = 0.16. The theory curves are obtained by using the
hydrodynamical theory described in this section. The expansion of the condensate was measured for
two different magnetic field configurations. Red (diamonds): The magnetic field pointed along the
long axis (z) of the trap (with trapping frequencies (ωx, ωy, ωz) = 2π × (942, 712, 128)). The dipole-
dipole interaction leads to an elongation of the condensate compared to pure contact interaction
(dashed theory curve). Blue (circles): The magnetic field points along y and thus the aspect ratio
decreases. Figure taken from [10].
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Figure 3.7.: Stable and unstable regions for a dipolar condensates in a cylindrical symmetric trap.
The aspect ratio Ayz = Axz of radial to axial Thomas-Fermi radii is plotted as a function of εdd for
various ratios of the radial and axial trapping frequency γ = ωz/ωy. In (a) the region for small εdd of
(b) is magnified. The value of γ can be read at εdd = 0 as this corresponds to pure contact interaction
with Ayz = γ. The dashed lines indicate unstable branches. The metastable region corresponds to a
local minimum of Eq. (3.26) and (3.27) (see text). Figure taken from [73].

interaction, where the condensate expansion velocity depends on the gradient of the density,
the dipole-dipole interaction does not lead to a faster expansion in the more compressed
direction of the trap. The aspect ratio Ayz stays always smaller than without dipole-dipole
interaction (if the magnetic field points in z direction).

Feshbach resonances allow to tune the scattering length a and therefore to tune the relative
strength of the dipole-dipole interaction to the contact interaction expressed by εdd. Because
Vdd is partially attractive, a dipolar condensate is unstable if εdd is larger than a critical

32



3.3. Dipole-Dipole Interaction in a Bose-Einstein Condensate

value εcrit
dd . Already with the equations (3.26) and (3.27) important predictions can be made

on the stability properties. This was done in [73] for a cylindrical symmetric trap with the
magnetic field pointing in axial direction. Figure 3.7 shows stable and unstable regions for
various trap geometries. In the Thomas-Fermi limit the trap geometry is the only parameter
that determines if a condensate is stable for a given εdd. It turns out that for 0 ≤ εdd < 1
the solution of Eq. (3.26) and Eq. (3.27) corresponds to a global energy minimum and the
condensate is stable for all geometries. For εdd ≥ 1 and a ratio of radial to axial trapping
frequency γ = ωz/ωx = ωz/ωy ≤ 5.17 two solutions exist: While one is unstable, the other
one is only a local energy minimum and thus metastable. Above γ = 5.17 both solutions are
metastable for all εdd. For these extreme pancake-shaped (oblate) traps the repulsive part
of Vdd leads to a stabilization. To summarize, cigar-shaped (prolate) traps with the dipoles
aligned along the long axis are unstable for εdd ≥ 1, whereas for pancake traps larger εdd are
possible.
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4. Experimental Setup

The experiment that is used to investigate strong dipolar effects in a Chromium
BEC was set up mainly by J. Stuhler [75], P. O. Schmidt [76], S. Hensler [77],
J. Werner [60] and A. Griesmaier [50]. Section 4.1 gives a coarse overview over the
apparatus. For details the reader should consult the above mentioned references (see
also [78] for an overview, or the diploma theses [79, 80, 81, 82]), which provide a
great amount of detailed information on the setup. Section 4.2 reports on a method
to measure the trapping frequencies of the optical dipole trap more precisely than with
the parametric heating method which has been used before. The modifications to the
setup, which are necessary to perform the experiments presented in this thesis, are
described in the last two sections. Section 4.3 reports on the production of the stable,
homogeneous magnetic field of 600 G to tune the scattering length. The calibration
of the extra current, which runs in opposite direction in the pinch coils to compensate
the curvature of the offset coils, is discussed in detail. In the last section 4.4, the
high-field imaging system is described. This system allows to image the atoms at the
high magnetic field close to the broadest Feshbach resonance.

4.1. Bose-Einstein Condensation of Chromium

The production of a BEC of 52Cr atoms starting from 1600 ◦ C hot atoms which are sublimated
from an oven, requires an elaborate series of trapping and cooling steps:

1. Decelerating of the hot atoms in a Zeeman Slower.

2. Trapping and cooling in a magneto-optical trap (MOT) and continuous loading of a
magnetic trap (MT).

3. Doppler cooling and radio-frequency (RF) evaporation in the magnetic trap.

4. Loading into a crossed optical dipole trap (ODT) and optical pumping to the lowest
Zeeman sub-state to avoid dipolar relaxation.

5. Forced evaporation in the ODT until quantum-degeneracy is reached.

This chapter will shortly describe the various parts of the experimental setup (see Fig. 4.1)
following the steps sketched above.

4.1.1. Preparation of a Cold Sample in the Magnetic Trap

The Chromium atoms are sublimated from a high-purity sample of Chromium (99.99%) that
is held within a specially designed crucible [60] in a high temperature effusion cell1. The oven

1VTS Schwarz GmbH, model HT-TA-35-10/W.
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Figure 4.1.: Scheme of the Chromium BEC experiment. (a) View of the complete vacuum chamber.
Chromium is sublimated in a 1600 ◦ C hot oven. The atoms are then decelerated in a Zeeman
slower before they are trapped and cooled in a MOT. The magnetic trap is continuously loaded via
a metastable dark state. (b) 90 ◦ rotated view of the upper chamber. The two dipole trap beams
are indicated. This crossed optical dipole trap is loaded from the magnetic trap after RF cooling.
By ramping down the horizontal beam a BEC is produced through evaporative cooling. Figure taken
from [50].
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is connected through an 80 cm long spin-flip Zeeman slower to the main chamber [81]. The
Zeeman slower, which acts also as an differential pumping stage2, decelerates atoms with an
initial velocity smaller than ∼ 600 m/s to the capture velocity of the MOT (∼ 30 m/s). The
MOT is operated on the 7S3↔7P4 transition (see Figure 4.2 and appendix B.1 for details on
the level structure of 52Cr).

The magnetic fields for the MOT are provided by the coils of the Ioffe-Pritchard type
magnetic trap [81] (see also section 4.3). In MOT operation the cloverleaf coils create a radial
gradient (x and y direction) of ∼ 10 G/cm and the pinch coils an axial curvature (z direction)
of ∼ 15 G/cm2. The offset coils compensate the offset field of the pinch coils. Two orthogonal
pairs of counter-propagating σ+/σ−-polarized laser beams confine and cool the atoms radially.
In axial direction the magnetic field does not allow a MOT operation. Therefore the atoms
are only Doppler-cooled in this direction using a σ+/σ+ optical molasses [76].

With a ratio of approximately 1/250000 the Chromium atoms do not decay back into the
7S3 ground state, but into the metastable 5D4 or 5D3 states. These states have a magnetic
dipole moment of 6 µB and 4 µB, respectively. Atoms that are in a low-field seeking sub-state
and are sufficiently cool are thus trapped in the weak confining potential of the magnetic field.
As these atoms are decoupled from the light field without a repumping laser, this allows to
continuously load the magnetic trap. After about 10 s a steady-state is reached, where the
loading rate of the magnetic trap is equal to the losses due to light-induced collisions [76]. If
the MOT beams are then switched-off and the atoms are pumped back into the ground state
with the repumper3 at 663 nm (shone in along the z axis), a sample of approximately 108

atoms is prepared in the MT close to the doppler temperature of 124 µK (phase space
density ∼ 10−9) [50]. The atoms are pumped back via the 7P3 state, as this allows faster
pumping than via the 7P4 state. Subsequently, the magnetic trap is compressed by ramping
up the current in the cloverleaf, offset and pinch coils to 300 A. This leads to a heating of the
cloud to ∼ 1 mK. At this stage the gas is Doppler cooled with the axial σ+/σ+ beams. After
the rethermalization of the sample the phase space density has increased by about 2 orders
of magnitude without atom loss. The current is then ramped down adiabatically to form a
magnetic trap with the highest possible overlap to the trapping potential of the horizontal
dipole trap beam. In this magnetic trap RF cooling is performed. Due to the high magnetic
moment of Chromium atoms it is important to have a low magnetic offset field at this stage,
otherwise spin-changing collisions lead to too high atom losses at the densities that are
reached during RF cooling [77]. With an additional current running through the offset coils,
offset fields on the order of a few 10 mG are reached, which allow to cool down the sample to
a temperature of approximately 22 µK without too high inelastic losses. About 5×106 atoms
remain at a phase space density of 10−5. However, quantum-degeneracy cannot be reached
in this way. Hence, the sample is pumped into the lowest Zeeman state MS = −3, where
spin-changing collisions cannot occur. This is done with a σ−-polarized optical pumping laser
at 427 nm, which pumps the atoms to the MS = −3 state via the 7P3 state (see Fig. 4.2 (b)).
As the MS = −3 state is high-field seeking, the MT has to be switched off before. The
horizontal ODT beam, which is on during the whole first part of the experimental sequence,
provides then the trapping potential. After ramping up also the vertical ODT beam in 5 s
about 106 atoms remain trapped [50].

2Allowing to have a 2 orders of magnitude lower pressure in the upper science chamber (about 10−11 mbar).
3The gain in atom number by repumping also the 5D3 state atoms is small compared to using only the

663 nm repumper. Thus the 5D3 atoms are not pumped back.
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Figure 4.2.: (a) Level scheme of 52Cr. The transitions that are used to cool the Chromium gas to
quantum-degeneracy are indicated. The MOT and the Zeeman slower are operated on the 7S3↔7P4

transition. The atoms decay with a ratio of ∼ 1/250000 to the metastable 5D4 or 5D3 levels. Without
repumping lasers these are dark states and allow to continuously load the MT. After the MOT is
switched off, the atoms in the MT are pumped back to the 7S3 ground level with a repumper3 at
663 nm. (b) Atoms in the low-field seeking substates MJ = 1, 2, 3 are trapped in the MT. To produce
a BEC the atoms are transferred into an ODT and pumped into the lowest Zeeman level MJ = −3.
The optical pumping is done via the 7P3 level.

4.1.2. Forced Evaporation in the Optical Dipole Trap

The ODT beams, which are crossed in the center of the MT, are produced by an Ytterbium
fibre laser4 at λL = 1076 nm. Although this laser has an output power of up to 100 W, it
is typically operated with ∼ 40 W. Higher powers lead to a deformation of the spatial laser
mode. Whether this deformation is caused by the laser itself or by the optics, is not clear.
However, it prevents the production of larger condensates and causes stability problems.
The 40 W are split with a ratio of approximately 2 : 1 to produce the two trapping beams,
whose intensities are controlled by acousto-optic modulators (AOMs)5. As a part of this
thesis a two-frequency AOM driver was developed, which increases the pointing stability of
the beams [13]. This driver is described in detail in appendix A. Behind the AOMs a maximal
power of 16 W in the horizontal and 9 W in the vertical beam remains. The waist sizes w0

at the focus position are 29 µm for the horizontal and 50 µm for the vertical beam [50].
Hence, typical trapping frequencies for the trap in which quantum degeneracy is reached
(3 % of horizontal and 100 % of vertical power) are (ωx, ωy, ωz) = 2π × (650, 360, 550) Hz
(see section 4.2).

In the crossed region (dimple) of the ODT, forced evaporative cooling is performed by
ramping down the power of the horizontal beam in stepwise linear ramps. The hottest atoms
fall out of the trap, leaving after rethermalization a colder sample. The speed of the ramps
is optimized for maximal atom number in the condensate. Condensation occurs at about
4 % power in the horizontal beam. The BECs have a typical size of 40000 atoms. Figure 4.3
summarizes the route to a BEC in more detail in a phase space density ρ vs. atom number

4IPG, VLR-100-L.
5Crystal Technology, 3110-125 and 3110-199.
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Figure 4.3.: Evolution of the phase space density ρ vs. atom number during the preparation process.
Steps I–III correspond to MT, Doppler cooling and RF cooling. At step IV the MT is switched of
and the atoms are held only with the horizontal trapping beam. Between IV and V the second ODT
beam is ramped up to 100 %, plain evaporation leads to atom losses and increases ρ. From step V
on both the atom number in the crossed region (open circles) and the total atom number in the ODT
(closed circles) is shown. The horizontal beam is ramped down in stepwise linear ramps from 100 %
to a value < 4 % to reach quantum-degeneracy. This is done in about 10 s. Figure taken from [50].

plot. The total experimental sequence to create a BEC of Chromium atoms takes about 40 s.
At the end of the sequence a picture is taken of the cloud after a short time of free expansion
(a few ms) by absorption imaging. A σ−-polarized beam resonant on the MOT transition
is shone in along the x axis. The beam is detected with a CCD camera, which allows to
measure the density profile integrated over the x direction (see also section 4.4).

4.2. Measurement of the Trapping Frequencies

For any theoretical prediction of the condensate dynamics, it is important to know the trap-
ping frequencies of the optical dipole trap precisely. In principle the frequencies can be
calculated, if waist size and power of the two beams at the position of the trap are known.
The depth of the trapping potential is then obtained with the following formula [77]

Vdip(I(r)) = −0.273× 10−36 J
m2

W
× I(r) , (4.1)

where I(r) is the laser intensity. For a Gaussian beam a harmonic approximation around the
focus position gives the trapping frequencies

ωr =

√
4V0

mw2
0

, ωz =

√
2V0

mz2
r

(4.2)
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in radial and axial direction, where

V0 = |Vdip(I0)| , I0 =
2P

πw2
0

, (4.3)

with the laser power P and the Rayleigh range

zr = πw2
0/λL . (4.4)

As the square of the frequencies is proportional to the trapping potential, a quadratic sum-
mation of the frequencies of horizontal (ωh

r , ωh
z ) and vertical (ωv

r , ωv
z ) beam give the total

trapping frequencies in x, y and z:

ωx =
√

(ωh
r )2 + (ωv

r )
2 , (4.5)

ωy =
√

(ωh
r )2 + (ωv

z )
2 , (4.6)

ωz =
√

(ωh
z )2 + (ωv

r )
2 . (4.7)

However, the real trapping frequencies depend strongly on the exact waist sizes and the
relative position of the two beams at the crossing point. If the beams are for example
astigmatic or elliptic, or slightly misaligned, the theoretical values are only a good estimate
and have to be measured to obtain accurate values. There are two methods at hand to
measure the frequencies: Heating by parametric resonances and a direct measurement by
exciting a center-of-mass motion of the cloud in the trap. A parametric resonance occurs
when the trapping potential is modulated at

ωmod =
2ωtrap

n
, n ∈ N (4.8)

with a small sinusoidal perturbation. The theory of parametric resonances is well known
from classical mechanics (see for example [83]) and is described by the following differential
equation in one dimension:

ẍ(t) + ω2
trap (1 + ε sin (ωmodt)) x(t) = 0 . (4.9)

It can be shown that the strongest resonance occurs at ωmod = 2ωtrap.
In our setup the method is realized by modulating one of the two trapping beams with ε on

the order of 5 %. A modulation at a resonance frequency leads to heating and atom losses. If
the horizontal (respectively vertical) beam is modulated, resonances occur only if Eq. 4.8 is
fulfilled for ωx or ωy (respectively ωz), as the axial contributions to the trapping frequencies
are negligible (see Eq. (4.5)–(4.7)). Figure 4.4 shows a spectrum measured by modulating the
horizontal beam. The spectrum was recorded for a trap with 8 % of the maximal power in
the horizontal (approximately 1.3 W) and 100 % power in the vertical beam (approximately
9.3 W). It is evident that the assignment of the resonances is not trivial and needs a good
initial guess for the frequencies. Especially in this case, were two frequencies coincide and
cannot be resolved.

The direct measurement does not have this drawback. The frequencies are measured
directly by applying a magnetic field gradient to the cloud in the trap. This results in a
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Figure 4.4.: Parametric heating spectrum for the horizontal beam. Shown is the cloud size in y
direction after 3 ms time-of-flight. The modulating time is 400 ms and ε ≈ 0.05. Five resonances
occur, of which the ones corresponding to fy and fz cannot be separated.

Trap fy [Hz] fz [Hz]

7/42 (543± 16) (371± 8)

3/100 (357± 6) (566± 30)

8/100 (575± 10) (599± 18)

Table 4.1.: Trapping frequencies measured with the direct method for traps used in the experiments
on strong dipolar effects. The notation a/b stands for percent of total power in the horizontal/vertical
beam.

constant force on the atoms which shifts the zero position of the trap. If the gradient is then
switched off abruptly, the cloud oscillates in the trap. The oscillation frequency is obtained
by measuring the cloud position after a short time-of-flight by varying the holding time in the
trap. Figure 4.5 shows the y position for a variable holding time for a trap with 3 % power
in the horizontal and 100 % in the vertical beam. For these measurements a single pinch
coil6 was used to produce a gradient on the order of 10 G/cm. The gradient is ramped up
in 100 ms to adiabatically shift the center-of-mass position. Directly after this it is switched
off and the cloud is held in the trap for a variable time up to 5 ms. This procedure results in
a 20 µm large oscillation amplitude of the y position after 10 ms of time-of-flight. Table 4.1
summarizes the trapping frequencies obtained with this method for three different traps,
which are used in the experiments on strong dipolar effects. The frequency in x direction
cannot be measured, because the cloud is imaged in the yz-plane. But fx = (f 2

y + f 2
z )1/2 is

already a very good estimate, as the unknown axial contributions to fy and fz are negligible.

6At the end of this thesis new electronics were set up, which allow now to produce a ten times larger gradient
by using both pinch coils with conversely running current (see section 4.3).
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Figure 4.5.: Direct measurement of the trapping frequencies. The cloud position after 10 ms of
time-of-flight is measured for a variable holding time after exciting a center-of-mass motion of the
cloud. Shown here is the y position of the cloud. A sinusoidal fit (red line) to the data gives
fy = (357± 6) Hz.

4.3. Producing a Homogeneous Magnetic Field of
600 Gauss

The stability of the magnetic field B to tune the scattering length a with a Feshbach resonance
has to be much better than the width of the resonance ∆B. Therefore, in the experiments
described in this thesis the broadest resonance at 589.1 G is used, as it allows to fulfill
this condition most easily. However, for magnetic fields on this order of magnitude even
small inhomogeneities lead to forces on the atoms which can significantly disturb the forced
evaporative cooling in the ODT and even prevent the formation of a BEC7. Nevertheless,
the evaporative cooling has to be done in the presence of B, as the Feshbach resonance
cannot be crossed without destroying the quantum-degeneracy at the densities reached in a
BEC (typically on the order of 1014 cm−3). Due to the geometric constraints of the vacuum
chamber, the currents to provide a magnetic field of ∼ 600 G at the position of the atoms are
on the order of 400 A. The water-cooled coils of the magnetic trap are thus a natural choice
to create the B field. This section describes the steps that are necessary to produce a stable
and homogeneous enough magnetic field with these MT coils.

4.3.1. Curvature Compensation

The coils are sketched in Fig. 4.6. They consist of two pairs of: pinch, offset and 4 cloverleaf
coils (for technical details on the coils see [81]). In MT operation the current runs conversely
in pinch and offset coils. The pinch coils create an axial curvature with an offset field, which
is compensated by the current in the offset coils. The cloverleaf coils provide the gradient
for radial confinement. Only the offset coils create a relatively homogenous field, as they are
almost in Helmholtz configuration (distance approximately 75 mm and radius approximately
60 mm).

7Also the field should vary much less than ∆B over the cloud, because otherwise the scattering length
depends on the position in the cloud.
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Pinch coil
Offset coil

Cloverleaf coil

z

y

x

Figure 4.6.: Coils of the magnetic trap. The pair of pinch coils create an axial curvature with an
offset field. This field is compensated by the offset coils. The two pairs of 4 cloverleaf coils create
the gradient for radial confinement.

First tests showed quickly that the field of the offset coils is still not homogenous enough:
In the presence of their magnetic field it is not possible to cool down to quantum degeneracy.
The absolute value of the field at the center of the coaxial coils — where the atoms are held
in the ODT — has a saddle-shape with an axial curvature b′′ that has opposite sign and is
twice as large as the radial curvature:

B = B0 +
1

2
b′′
(
z2 − 1

2
r2

)
. (4.10)

Expressed in terms of trapping frequencies8

fj =
1

2π

√
−6µB

m

∂2B

∂j2
, j = r, z (4.11)

for atoms in the MJ = −3 state, this condition reads as

f 2
z = −2f 2

r . (4.12)

The derivation of Eq. (4.10)–(4.12) is given in appendix C.2. Figure 4.7 (a) shows a theoretical
calculation of the field of the offset coils in axial direction for a current of 385 A. The
calculation shows that the axial curvature is positive. Hence, the atoms are repelled in axial
direction and trapped radially. This radial trapping prevents efficient evaporative cooling, as
some of the atoms that fall out of the ODT stay trapped.

As the pinch coils create an approximately 25 times larger curvature than the offset coils
(for the same offset field), they can compensate the curvature created by the offset coils with

8To simplify the theoretical description, the concept of imaginary trapping frequencies is used. Imaginary
frequencies result in an repulsive force on the atoms (anti-trapping).
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Figure 4.7.: Compensation of the curvature of the offset coils. (a) Without the extra current
in the pinch coils the magnetic field has a saddle shape with a positive curvature in axial direc-
tion. (b) With a small current (about 16 A in the experiment) running in opposite direction in the
pinch coils, the curvature is compensated. The ratio in this theoretical calculation is approximately
Ipinch/Ioffset = 0.06, which is in reasonable agreement with the experimental determined value of 0.04
(see subsection 4.3.3) taking into account that the exact distances, diameters and relative alignment
of the coils are known only to about 5 %.

a small current running in opposite direction (see Fig. 4.7 (b)). Let us discuss this in more
detail. The magnetic field close to the center of two coaxial coils has the following form (see
appendix C.2):

B(r, z) = −1

2
b′′zr er +

[
B0 +

1

2
b′′
(
z2 − 1

2
r2

)]
ez . (4.13)

Adding the pinch and offset field with b′′offs = b′′pinch = b′′ results in

B(r, z) = (Boffs
0 −Bpinch

0 ) ez − b′′zr er . (4.14)

Up to second order in r and z the absolute value is therefore constant

B = (Boffs
0 −Bpinch

0 ) . (4.15)

If b′′pinch < b′′offs, a radial trapping and axial repulsive curvature remains. If b′′pinch > b′′offs, the
curvature is over-compensated, leading to an axially trapping and radially repulsive potential.
The complete compensation is possible of course only under perfect conditions. If the centers
of the two coil pairs do not coincide, or if any of the coils is tilted or not coaxial, the curvature
cannot be compensated completely. In addition to the remaining curvature a gradient occurs,
as is shown in subsection 4.3.3.
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Figure 4.8.: Scheme of the electronics to provide the current for pinch and offset coils. The
electronics is divided in three parts. The MT part (blue) is used for the MOT and MT. The Feshbach
part (red) was set up to be able to create a stable, homogeneous magnetic field at 600 G. The gradient
part (green) is used to measure trapping frequencies. The usage of the numbered IGBTs is explained
in the text. Sketched in red is the closed-loop control of the current for the high magnetic field. For
a clear illustration some varistors and diodes are not shown in the scheme. They are used to protect
the power supplies and IGBTs against high induction voltages.

4.3.2. Technical Realization

To provide the large current in the offset coils and the small conversely running current in the
pinch coils, the experimental setup is modified. Figure 4.8 shows a scheme of the modified
electronics to control the currents. The electronics is divided in three groups: The magnetic
trap (blue), Feshbach (red) and gradient (green) part. The diodes that are in series with the
insulated gate bipolar transistors (IGBTs) separate the different circuits. The MT electronics
is used in the first part of the experimental sequence. The IGBT©1 switches the current of the
Hewlett Packard power supply9 which runs through the offset coils and in opposite direction
through the pinch coils. IGBT ©2 allows to by-pass the pinch coils, but is not used at the
moment. As stated in section 4.1, during RF cooling the magnetic offset field has to be as

9Hewlett Packard, 6682A.
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low as possible. Hence, an additional current running in the offset coils is used to compensate
the remaining offset field. This current is switched with IGBT ©3 and can be send in either
direction through the offset coils by the use of two switches (connected with the dashed line
in Fig. 4.8). Parallel to offset and pinch coils are ring-down circuits consisting of a small
resistor and a diode to protect the system against high induction voltages caused by fast
switching of the magnetic fields.

The Feshbach part is used to produce the homogenous 600 G field. IGBT ©4 and ©5 control
the current of the PowerTen power supply10. The current is actively stabilized with a closed-
loop control. The set-point is given by a voltage (0 to −10 V), which is produced by a 12 bit
digital-to-analog board. This results in a resolution of about 80 mG for a control range
of 100 A. The actual value is measured with a high precision current transducer11 with an
output noise (rms) and a linearity on the order of 10−6. An additional TTL signal is used
to switch on the current initially with the proportional-integral controller (PI). With this
setup a peak-to-peak magnetic field stability of 10−4 (3× 105 rms) is reached. The magnetic
field is switched on to 600 G in about 5 ms. This corresponds to a speed of approximately
50 G/ms at the position of the 589.1 G resonance. This speed is necessary to minimize
inelastic losses when crossing the resonance. IGBT ©6 switches the pinch current of the
curvature compensation. It is controlled by a push-pull circuit with a TTL signal to be able
to switch on fast.

The gradient part was set up at the end of this thesis. The IGBTs ©7 and ©8 switch up to
26 A each, which run conversely through the two pinch coils. This produces a gradient of
up to 100 G/cm. The gradient can be used to measure trapping frequencies (see section 4.2)
and was used in the experimental efforts to detect Cr2 molecules (see outlook).

4.3.3. Calibration of the Curvature Compensation

In order to calibrate the ratio Ipinch/Ioffset for the best curvature compensation, a series of
measurements of the remaining curvature is done in a single optical dipole trap beam. The
single beam confines the atoms in two dimensions, which allows us to measure oscillations on
a few seconds timescale in the third dimension. The remaining curvature is extracted from
the oscillation period. Depending on the current in the pinch coils the potential produced by
the magnetic field is either trapping in radial or in axial direction: At small currents Ipinch the
curvature of the offset coils is larger and the atoms are trapped radially and repelled axially.
It is the inverse, if the offset curvature is over-compensated. Hence, for small currents the
single vertical beam and for larger currents the single horizontal beam is used to measure the
oscillations in the inhomogeneous magnetic field.

The measurements are done with a sample of approximately 30000 atoms at a temperature
and density close to quantum-degeneracy. The preparation of the sample is sketched in
Fig. 4.9. The figure shows the experimental sequence after the vertical ODT beam has been
ramped to full power. The power of the horizontal beam is then ramped down to 2.5 % of its
initial value in approximately 8 s. At the time it reaches 30 %, the current in offset and pinch
coils is switched on. This switch-on point is chosen because atom losses are minimal at this
time: If the current is switched on earlier, some atoms are still in the wings of the horizontal
trapping beam and not in the strongly confined crossed region. These atoms are lost from
10PowerTen, R63D-20500.
11Danfysik, ULTRASTAB 860R.
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Figure 4.9.: Preparation sequence of the cold atomic sample. Sketched is the power in the horizontal
ODT beam and the current in the offset and pinch coils during the sequence. The power in the
horizontal beam is ramped down in stepwise linear ramps to 2.5 % of its initial value. The current in
the offset and pinch coils is switched on when the power reaches 30 %. In order to cross all Feshbach
resonances as fast as possible, the current in the offset coils is switched on to ∼ 450 A (∼ 700 G).
This takes about 5 ms. After this the current is ramped down to Ioffset = 390 A (∼ 615 G) close to
the broadest resonance at 589.1 G. The current in the pinch coils is switched on to a constant value
Ipinch. Due to the lower inductance of these coils this takes only ∼ 100 µs.

the trap due to the inhomogeneity of the magnetic field, which cannot be avoided during the
∼ 5 ms it takes until the field reaches its maximum value. If the current is switched on at a
later stage when the density of the cloud is already much higher, the crossing of the Feshbach
resonances leads to inelastic atom losses.

After the 2.5 % power in the horizontal beam are reached, either the vertical or the hor-
izontal beam is switched off, depending if the curvature is over-compensated or not. To
provide a sufficient stabilization against gravity for measurements in the single horizontal
beam, its power is ramped back up to 30 % in 100 ms before the vertical beam is switched
off. Subsequently, the cloud position is determined after a variable holding time in the single
beams. Figure 4.10 (a) shows absorption images of oscillations in the horizontal beam for
Ipinch = 20 A. The cloud oscillates around a zero position that is shifted by approximately
2 mm from the center of the coils due to a magnetic field gradient. This gradient is a first
indication that pinch and offset coils are not aligned in a cylindrically symmetric way. It is
on the order of 1 G/cm (see subsection 4.3.4). The shape oscillations of the cloud at twice
the frequency of the center of mass motion correspond to the monopole mode12.

In Fig. 4.10 (b) the variation of the z position with time is shown. A fit allows to determine
the oscillation frequency precisely. This is done for three values of Ipinch with radial trapping
and two with axial trapping (see table 4.2). The measured values have to be corrected for
the weak axial trapping potentials of the single dipole trap beams. In the vertical beam the
12When releasing the atoms from the tight ODT potential into the weak potential of the magnetic field, first

the cloud expands. Due to the harmonicity of the potential, all particles oscillate with the same frequency
and thus the initial cloud shape is recovered twice in an oscillation period of the center-of-mass motion.
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Figure 4.10.: (a) Absorption images of the oscillations of the atomic cloud in the horizontal ODT
beam. The time between two subsequent pictures is 100 ms. The field of view for each picture
is 0.1 × 4.1 mm (b) z position of the cloud corresponding to the oscillation shown above. The fit
frequency (red line) is 10.3± 0.1 Hz.

Pinch current [A] Direction Measured [Hz] Corrected [Hz]

0 radial (11.6± 0.1) 11.3± 0.3

5 radial (9.2± 0.1) 8.8± 0.3

10 radial (6.1± 0.1) 5.6± 0.2

20 axial (10.3± 0.1) 7.5± 3.9

23 axial (13.2± 0.1) 11.2± 2.6

Table 4.2.: Measured and corrected oscillation frequencies for various pinch currents.

cloud oscillates in a range smaller than the Rayleigh length zr (Eq. (4.4)) and the harmonic
approximation (Eq. (4.2)) is a good estimate. It gives ωy = 2π× 2.5 Hz. As the waist of the
horizontal beam is smaller, the cloud in the horizontal beam moves in a range larger than
zr of this beam. Therefore the influence of the beam can only be estimated. A numerical
simulation showed it should be approximately ωz ≈ 2π × 7 Hz. Whereas the uncertainty
of ωy is smaller than 10 %, because waist and power of the vertical beam are known quite
precisely, the uncertainty of ωz is estimated to be on the order of 30 % due to mainly two
reasons: The influence of the anharmonicity is not exactly known, as well as the exact focus
position. The corrected values of the measured frequencies are also listed in table 4.2.

Subsection 4.3.1 showed that for perfect coaxial alignment of pinch and offset coils, the
axial curvature would have opposite sign and be twice as large as the radial curvature. This
is valid for small currents Ipinch leading to radial trapping, as well as for large Ipinch, which
over-compensate the curvature. Hence, to obtain the current corresponding to the best

48



4.3. Producing a Homogeneous Magnetic Field of 600 Gauss

(a) (b)

�

�

�

�

�

0 5 10 15 20 25
-300

-200

-100

0

100

200

Pinch current [A]

f
2

[H
z2

]

0 A 2 A 4 A 6 A 8 A 10 A 12 A 14 A 16 A

∆I = 3.5 A

-13 Hz2

-49 Hz2

Figure 4.11.: (a) Determination of the optimal curvature compensation. Plotted is −2f2
r (red

circles) and f2
z (blue squares) for the corrected radial and axial trapping frequencies as a function

of compensation current Ipinch. The lines correspond to an extrapolation to higher (lower) currents
in the pinch coil. The gray-shaded area indicates the systematic uncertainty of f2

z due to the error
arising from the uncertainty of the effect of the horizontal trapping beam. With the condition f2

r = f2
z

the current range of ∆I = 3.5 A is obtained (see text). The blue-shaded area indicates the uncertainty
of f2

z in this range. The vertical dashed line corresponds to the value Ipinch = 15.6 A, which is used in
the experiments on strong dipolar effects. (b) Absorption images for various compensation currents.
The field of view is 2.9× 0.3 mm for each picture. The pictures show that for higher pinch currents
the radial confinement decreases: the hot atoms that are trapped below the ODT move away. Above
16 A condensation is possible, as the hot atoms do not prevent the condensation anymore.

curvature compensation, −2f 2
r and f 2

z are plotted vs. Ipinch in Fig. 4.11 (a). For a perfect
alignment of the coils the 5 data points would fall on a straight line and the zero crossing
of this line would correspond to complete compensation. It is obvious that this is not the
case. Even including the systematic error due to the 30 % uncertainty of the effect of the
horizontal trapping beam (gray-shaded area) the deviation is significant. Thus, the coils
are not aligned symmetrically. Nevertheless, the current Ipinch of optimal compensation can
be determined. As shown in the Fig. 4.11 (a) this current lies in the range 14.5 to 18 A
for an offset current of 390 A. To determine these values, the simple condition f 2

r = f 2
z is

applied to the linear extrapolation function of the values measured radially (red line) and
the extrapolation function corresponding to the upper (respectively lower) error-bars. At
Ipinch = 14.5 A the condition is f 2

r = f 2
z = −13 Hz2 and at Ipinch = 18 A it is f 2

r = f 2
z =

−49 Hz2 (dotted lines). Thus, within this current range the potential of the magnetic field
is repulsive radially (fr imaginary), with 3.5 ≥ |fr| ≥ 7 Hz. It is either repulsive or trapping
axially with fz lying in the blue-shaded area. The current used in the experiments on strong
dipolar effects is Ipinch = 15.6 A. At this current, the axial frequency fz is smaller than 10 Hz
and the radial |fr| is smaller than 5 Hz.

Figure 4.11 (b) shows how the curvature compensation effects the evaporative cooling
process. For small values of Ipinch hot atoms are trapped below the ODT and quantum-
degeneracy is not reached. At 16 A this changes, as the hot atoms are so weakly confined
(or repelled, respectively), that an effective evaporation is not prevented. This does not
change for higher currents, as the potential stays repulsive in radial direction. However, the
curvature has of course also an effect on the expansion of the BEC. Thus, the curvature has
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Figure 4.12.: Determination of the magnetic field gradient. Shown in the figure is the movement of
the atomic cloud in z direction (a) and y direction (b), respectively, after releasing it from the ODT.
Due to the constant force caused by the gradient, the trajectory is parabolic. With a polynomial
fit (red lines) up to second order the resulting gradient of the magnetic field in both directions is
obtained.

to be compensated as good as possible.

4.3.4. Magnetic Field Gradient

As could already be seen by the shift of the zero position of the oscillations in the horizontal
beam, the misalignment of pinch and offset coils results also in a magnetic field gradient. This
gradient can be determined if both beams are switched off and the atoms expand freely. The
motion of the cold cloud at timescales much smaller than the oscillation period (caused by the
remaining curvature) is determined by gravity and the magnetic field gradient. Figure 4.12
shows the time dependence of y and z position after releasing the atoms from the ODT. A
constant force gives rise to a quadratic increase of the cloud position with time, therefore the
axial and radial gradient of approximately 1.2 G/cm (exact within 5 %) is obtained by fitting
the movement with a polynomial up to second order. In radial direction the acceleration due
to gravity has to be subtracted to determine the magnetic field gradient. Both gradients are
on the order of gravity (for Chromium mg/µ ≈ 1.5 G/cm). They have no effect on the atoms
besides a small shift of the trap position and a constant acceleration of the atoms during the
TOF. They do not change the expansion dynamics of the cloud.

4.4. High-Field Imaging System

The broadest Feshbach resonance of 52Cr occurs at a magnetic field of 589.1 G [12]. To
provide such a high magnetic field (for brevity called high-field (HF)) at the position of the
atoms, the coils of the magnetic trap are used, as explained in the previous section. The
imaging of the BEC has to be done at HF, since too many atoms are lost if the magnetic
field is switched off first. The reason for this is that all 14 resonances are crossed during
the switch-off process. Hence, Cr2 molecules are produced coherently due to the ramp over
the resonances and via three-body collisions (see section 2.2 and 2.3). The molecules are not
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Figure 4.13.: Scheme of the imaging transition to determine the Zeeman shift. To scatter enough
photons the atoms in the MJ = −3 substate of the 7S3 ground state are imaged with σ−-polarized light.
This light drives the ∆MJ = −1 transition to the MJ = −4 substate of the 7P4 level. The Zeeman
shift ∆ω of this transition is given by ∆ω = ∆ω2−∆ω2 = µBB(−4g7P4

J
+3g7S3

J
)/~ ≈ −µBB/~. Here

B is the magnetic field applied. Thus, the frequency of the imaging light ωP has to be ωP = ω0 +∆ω.

detected with the absorption imaging, or even lost from the trap in the case of the inelastic
three-body collisions. In addition, the lifetimes of the molecules are expected to be extremely
short [84]. The binding energy released in the dissociation process leads to a heating of the
cloud and atom losses. In this section I first describe the imaging system used to detect the
atoms at low magnetic fields (LF), and then based on this discussion report on the realization
of the HF system.

4.4.1. Imaging at Low Magnetic Fields

Absorption imaging requires a cycling transition, because the atoms need to scatter many
photons to be detectable with a CCD camera. In LF this is realized with σ−-polarized light
on the 7S3 ↔7P4 transition (see Fig. 4.13). The LF imaging system is able to detune the
425 nm light by −10Γ to +15Γ (−50 to +75 MHz) relative to the unperturbed resonance
frequency ω0.

Figure 4.14 shows a scheme of the LF and HF imaging system. The path of the LF imaging
light is depicted in blue. With the magnetically mounted mirrors M1 and M2 the light can
be redirected (red line) through the HF setup. I first discuss only the LF part. The light has
initially a detuning of −200 MHz. It is a reflex of about 15 mW of the frequency-doubling
cavity (for details on the laser system see e.g. [50]). The light is shifted to the required
frequency with an AOM in double-pass operation. In LF the 1st order beam of an AOM13

with center frequency 110 MHz is used. This allows to tune the light in the above mentioned
range. After the double pass the light is injected into a polarization-maintaining fibre and
brought to the experiment. It is shone into the chamber along the x axis, allowing to image
the atoms in the yz plane. The magnetic field to keep the atoms polarized is approximately
11 G and points also into the x direction (see Fig. 4.15 (a)). Therefore the light is polarized
left-circular with retarding plates after the fibre to drive the cycling σ−-transition.

To extract the atom number from an absorption image, the cross section of a photon-atom

13AA Optoelectronic, AA.MT.15.
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Figure 4.14.: Low-field and high-field imaging setup. With the magnetically mounted mirrors M1

and M2 (green) the light of the LF imaging (blue line) is redirected through the HF setup (red line).
In both cases a double-pass is used to shift the light to the right frequency. The AA Optoelectronic
has a center frequency of 110 MHz, the Crystal Technology a center frequency of 270 MHz. In the LF
system the 1st order is used, whereas in the HF system the −1st order is used. The light is brought
to the experiment with a polarization-maintaining fibre.

scattering process has to be known. For a two-level system the resonant scattering cross
section is given by the expression

σ0 = 6π

(
λ0

2π

)2

, (4.16)

where λ0 is the resonance wavelength (see for example [85] for details on atom-light interac-
tion). In real atoms also the polarization has to be taken into account. The scattering cross
section depends on the orientation of the electrical atomic dipole moment with respect to the
polarization of the light. In the resonant case the relation holds

σ ∝ µ2
eg ∝ |〈ψe| ε̂ · r |ψg〉|2 , (4.17)

where µeg is the dipole moment matrix element, |ψe〉 and |ψg〉 represent the excited and
ground state and ε̂ is the polarization unit vector. With the Lambert-Beer’s law

Iout = Iine
−σ0

R
dx n(r) , (4.18)

the integrated density profile of the atomic cloud in x direction is obtained by the logarithm
of incoming and outgoing light intensity:∫

dxn(r) = − 1

σ0

ln

(
Iout

Iin

)
=

OD

σ0

. (4.19)
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Figure 4.15.: Light polarization for LF and HF imaging. (a) In LF the magnetic field points in
x direction. Left-circular polarized light (σ−) drives therefore the ∆MJ = −1 transition. (b) In HF
there are only the possibilities of linear polarized light perpendicular to the magnetic field (σ) and
parallel light (π). The π light cannot be used as it leads to ∆MJ = 0 transitions, which is not cycling.

Here I introduced the optical density

OD := − ln

(
Iout

Iin

)
. (4.20)

To prepare the discussion of the scattering cross section in HF, I now describe the effect
of the polarization on the cross section in LF. The LF imaging light is resonant on the
∆MJ = −1 transition only. Therefore the exited state in Eq. (4.17) is in good approximation
solely given by the MJ = −4 substate. The system is an effective two-level system and the
cross section is equal to σ0. This is of course valid only for σ−-photons. If the imaging beam
contains also a σ+-component, the absorption of these σ+-photons is strongly suppressed,
because the light is not in resonance with the ∆MJ = +1 transition. Thus, the cross section
for σ+-photons is close to zero. Linear polarized light shone in along the x direction can
be decomposed in σ− and σ+-light, which means that a maximum of 50 % of this light is
absorbed by the atomic sample. In terms of optical density this means that the OD cannot
exceed − ln (1/2) ' 0.693 (see Fig. 4.16). The functional form

y = −ln
(

1 + e−x

2

)
(4.21)

of the dependence of the OD of linear polarized light (y) on the OD of σ−-light (x) is derived
in appendix C.3.

4.4.2. Imaging at High Magnetic Fields

The LF imaging system cannot detune the light far enough to image the atoms in HF, because
the Zeeman shift is too large. The shift is approximately −µBB/~ (see Fig. 4.13). This gives
a detuning of −840 MHz at 600 G. Therefore a new HF imaging system had to be set up.
As already described in the previous subsection, magnetically mounted mirrors are used to
redirect the LF light through the HF imaging system (see Fig. 4.14). With the −1st order
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Figure 4.16.: Measured optical density for linear polarized light (y) compared to σ−-light (x). The
optical densities of both polarizations were measured for various atomic densities. The blue line
shows the expected relation. In the limit of total absorption for σ− light, the OD of linear polarized
light goes to − ln (1/2). The error-bars correspond to the standard deviation of 3 measurements.

of an AOM14 with a center frequency 270 MHz in double pass operation, a detuning range
of about −600 to −900 MHz is realized. This light is brought to the chamber with the same
polarization-maintaining fibre as in LF. The magnetic field in HF points in z direction (see
Fig. 4.15 (b)), because it is produced with the offset coils of the magnetic trap. As the light
is still sent in along the x axis, a different polarization than in LF has to be chosen, because
left-circular polarized light does not correspond to σ−-light any more. Linear polarized light
in z direction is π-light driving the ∆MJ = 0 transition. It cannot be used as this is not a
cycling transition and the atoms scatter not enough photons. This leaves only the alternative
of linear polarized light in y direction (σ).

Hence, the question of the scattering cross section of this light arises. As the traveling
direction of the light is perpendicular to the magnetic field, a decomposition in σ− and σ+

light looses its physical meaning. Still, mathematically it can be used to give a simple argu-
mentation that the cross section σperp is σ0/2 for σ-light: We can decompose the polarization
vector ε̂ = ŷ in spherical unit vectors [85]

ûσ− =

√
1

2
(x̂− iŷ) , ûπ = ẑ , ûσ+ = −

√
1

2
(x̂ + iŷ) . (4.22)

Thus,

ŷ =
i√
2
(ûσ− + ûσ+) . (4.23)

Like in LF the light is detuned to be resonant on the ∆MJ = −1 transition only15, conse-

14Crystal Technology, 3250-190.
15The cross section for the π-component of the light is therefore close to zero, similar to the σ+-component

in the LF case.
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Figure 4.17.: Optical elements after the polarization-maintaining fibre that brings the imaging light
to the vacuum chamber. The first lens after the fibre collimates the beam coming out of the fibre.
With the two lambda plates and the cube the intensity of the beam is controlled. After the cube an
additional λ/2 in HF (λ/4 in LF) polarizes the beam before it is enlarged with a telescope. The iris
is placed after the telescope, before the beam is directed into the chamber with a mirror.

quently just ûσ− contributes to µeg (Eq. 4.17). It is therefore smaller by a factor of
√

2 than
in the LF case and the cross section σperp is smaller by a factor 2. But in contrast to linear
polarized light propagating in x direction, all photons of σ-light can be absorbed.

4.4.3. Fringe Reduction

With the factor 2 smaller cross section in HF the quality of the absorption images decreases,
as the optical density is lower. Therefore it is more difficult to determine the density profile
of the atomic cloud, because the influence of fringes increases. These interference patterns
are produced by any small dust particle on the optical elements behind the fibre that brings
the imaging light to the chamber. These optical elements are shown in Fig. 4.17. Besides
a λ/2 and a λ/4 retarding plate and a polarizing beam-splitter to adjust the intensity, and
a λ/2 (respectively λ/4 in LF) retarding plate for the polarization, there are three lenses to
collimate and enlarge the beam before it is sent into the chamber with a mirror under 45 ◦.
If the position of the dust particles on these elements was stable in the first two of the three
images that are taken for absorption imaging (see for example [50] for information on the
exact procedure), the fringes would cancel out in the final processed image. However, on the
timescale of 350 ms between these two pictures, the position is not stable and fringes remain.
Figure 4.18 (a) shows an absorption image of a condensate in HF after 8 ms time-of-flight.
It is evident that the interference pattern deforms the absorption profile of the cloud.

In reference [50] a method is described to reduce the fringes in the images by postprocessing
the images. Here I describe a very effective experimental method to reduce the fringes. It
does not need a postprocessing of the images and works at least as good as the method
described in [50]. The idea is to place an iris in the optical path of the imaging light to
spatially filter it. The iris is placed after the telescope to enlarge the beam. It diffracts the
light, which reduces the spot size on the camera to about 1×1 mm. The method is therefore
only applicable for atomic clouds with a size smaller than 1 mm. This condition is fulfilled
for a Bose-Einstein condensate, even after long time-of-flights. The diffracted light on the
camera has a shape similar to a Gaussian profile with almost no fringes visible. If the cloud
is imaged with this light, absorption pictures as shown in Fig. 4.18 (b) are obtained. Shown
is a condensate in HF after 8 ms time-of-flight like in Fig. 4.18 (a). This high quality images
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(a) (b)

Figure 4.18.: Fringe reduction with the iris method. (a) Absorption image with the normal imaging
without using the iris. The interference pattern deforming the absorption profile makes it more
difficult to determine the density profile of the cloud. (b) With the two irises in the optical path
of the imaging light, the spatial filtering leads to a suppression of the fringes and the quality of the
images improves significantly. The field of view is 450× 450 µm in both pictures.

allow to determine the density profile even for low optical densities. It is not completely
clear, why the method works so well. It seems that dust particles in the outer regions of the
imaging beam cause most of the fringes which occur without the iris. The influence of these
dust particles is strongly reduced by the cut-off of the iris, as well as by the reduced beam
size after the iris.
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5. Strong Dipolar Effects in a
Chromium Bose-Einstein
Condensate

This chapter summarizes the experimental results on strong dipolar effects in a Bose-
Einstein condensate. With a Feshbach resonance the scattering length is reduced by
up to a factor of 5 and thus the dipolar parameter εdd is increased accordingly. This
means that the dipolar parameter is tuned close to one, where a dipolar collapse of
the BEC is expected for the trap geometries used. Our experimental control on the
system is demonstrated with a series of time-of-flight measurements for various rel-
ative strengths of the dipole-dipole interaction. For the largest values reached it is
shown, that even the standard ’smoking gun’ evidence for Bose-Einstein condensa-
tion, an inversion of the ellipticity of the condensate during the free expansion, does
not apply anymore. The results presented here constitute the first realization of a
quantum-degenerate gas with such strong dipolar effects [1]. They are the first step
in the exploration of the unique properties of quantum ferrofluids. This chapter is
organized as follows: In section 5.1 the Feshbach resonance at 589.1 G is character-
ized, which is used to tune the scattering length. Both the lifetime of the condensate
and the scattering length close to the resonance are presented. In section 5.2 the
enhancement of the relative strength of the dipole-dipole to the contact interaction is
investigated. The dependence of the condensate aspect ratio on the dipolar parame-
ter is discussed. Finally the series of time-of-flight measurements for various εdd is
presented.

5.1. Lifetime and Scattering Length Close to a
Feshbach Resonance

The realization of a Bose-Einstein condensate at high magnetic fields (described in section 4.3)
allows us to study the properties of the quantum-degenerate gas in the vicinity of the Feshbach
resonance at 589.1 G. This resonance is chosen for the experiments, as it is predicted to have
the largest width (∆B = 1.7 G) of the 14 resonances found in 2004 [12]. Therefore the
requirement on the magnetic field stability is least stringent and the condensate properties
are measured with the highest precision. The absolute position Bres of the resonance is found
to coincide with the value measured in [12] by observing enhanced inelastic losses in a thermal
cloud. The magnetic field is calibrated both with the knowledge of the position of lower lying
resonances, which have been determined precisely with RF spectroscopy in [12], and with the
measured optimal detuning of the high-field imaging system. The error in the determination
of the absolute position is approximately 1 %.
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Figure 5.1.: (a) Decay curve of a condensate at a magnetic field 10 G below the resonance. For
simplicity the data is fitted with an exponential decay law (red line) to obtain the lifetime ( 1.4± 0.3 s).
(b) 1/e lifetimes determined with this fit function for various magnetic fields close to the resonance
position Bres = 589.1 G (dashed line). On both sides of the resonance the lifetime decreases strongly.

5.1.1. Lifetime of the Condensate

In a first series of measurements the lifetime of the BEC close to the resonance is measured.
Already in these measurements a variation of the condensate size and shape close to the
resonance is apparent. However, this effect has been studied in more detail in separate
experiments, which is described in subsection 5.1.2 and section 5.2. Three-body losses are
greatly enhanced near a resonance and lead to a rapid decay of the condensate. As discussed
in section 2.2, the three-body loss coefficient L3 is predicted to scale universally with the
fourth power of a for large scattering lengths [56]. This scaling law explains enhanced losses
for a diverging scattering length. But also for a decreasing scattering length enhanced losses
were observed, for example in [57]. In our case we observe also enhanced inelastic losses on
both sides of the Feshbach resonance.

The experimental sequence to measure the lifetime is as follows: First a Bose-Einstein con-
densate is produced with the sequence described in section 4.3. The curvature compensation
current is set to Ipinch = 15.6 A to be able to condense. Due to the enhanced three-body
losses, the resonance cannot be crossed without destroying the BEC. Therefore the magnetic
field at which the forced evaporation is done in the dipole trap is set to 600 G or 575 G
respectively, depending whether the resonance is approached from above or below in the
measurement. After the evaporation the magnetic field is ramped to a value B close to the
resonance in 50 ms. The cloud is kept at the field B for a variable holding time and imaged
after 6 ms of free expansion. If both background collisions and two-body collisions are ne-
glected, the decrease of the atom number with the holding time is determined by Eq. (2.28).
However, for simplicity the decay curves are fitted with an exponential decay law.

Figure 5.1 (a) shows the decrease in atom number with time at a magnetic field about 10 G
below the resonance. The 1/e lifetime determined with the exponential fit (red line) is 1.4±
0.3 s. The relatively large deviation of the fit curve cannot be contributed to the too simple
fit function used, as the typical dispersion of the measured atom number is on the order of
the deviation. In Fig. 5.1 (b) the 1/e lifetime is plotted for various magnetic fields close to
the resonance. Similar to the observations in [57], the lifetime decreases strongly when the
resonance is approached from either side. However, the lifetime of about 40 ms at 2 G above
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Figure 5.2.: (a) Series of absorption images for various magnetic field values close to the resonance
(B − Bres = 2, 2.2, 2.7 and 9 G for (i),(ii),(iii) and (iv), respectively). The images are taken after
5 ms of free expansion. The field of view is 260× 260 µm. The cloud shrinks when approaching the
resonance because the scattering length decreases. Moreover a significant change of the condensate
shape is visible, a clear sign of strong dipolar effects. (b) Relative variation of the scattering length
with the magnetic field. The scattering length is deduced from the absorption images by using the
hydrodynamic theory described in section 3.3 (see text). The scattering length shows the expected
dispersive shape. A fit with the function a(B) describing this behaviour (solid line) yields a width of
∆ = 1.4± 0.1 G.

the resonance is still large enough to observe an enhancement of dipolar effects due to the
decreasing scattering length.

5.1.2. Tuning the Scattering Length

The variation of the scattering length in the vicinity of the Feshbach resonance leads to a
decrease (respectively increase) of the Thomas-Fermi radii of the condensate. This is clearly
visible in the absorption images shown in Fig. 5.2 (a). The images are taken after 5 ms of time-
of-flight at various magnetic field values above the resonance (see caption of Fig. 5.2) with
an experimental sequence that is optimized for a minimal time spent near the resonance.
The first part of this sequence is equal to the sequence described in the previous section.
After quantum-degeneracy is reached, the ramp to the final value B is done in tramp = 10 ms
instead of tramp = 50 ms, which is used in the lifetime measurements. The condensate is
then held at this field B for 2 ms to allow eddy currents induced by the magnetic field
change to settle down. Subsequently, the dipole trap with trapping frequencies (ωx, ωy, ωz) =
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2π × (885, 575, 599) Hz (8/100, see section 4.2) is switched off to let the condensate expand
freely. From the absorption images the atom number N of the BEC (taking into account
the smaller cross section of the high-field imaging) and the Thomas-Fermi radii in y and z
direction are obtained by a fit of the density profile.

Without dipole-dipole interaction the relative change of the scattering length to the back-
ground value abg far from the resonance could be easily extracted from the absorption images
by using the fact that both Thomas-Fermi radii would scale as (Na)1/5 (see section 3.1). This
is not applicable in our case due to the strong dipole-dipole interaction between Chromium
atoms. Already the absorption images shown in Fig. 5.2 (a) clearly demonstrate that the con-
densate shape changes when the scattering length decreases. This effect is a clear indication of
the relative enhancement of the anisotropic dipole-dipole interaction close to the resonance,
it cannot be explained with the isotropic contact interaction. Because the Thomas-Fermi
radii of the BEC change significantly due to the dipole-dipole interaction, the extraction of
the scattering length has to be done by using the hydrodynamic equations (3.29), which
describe the condensate dynamics including dipole-dipole interaction. The equations have to
be solved for the scattering length with the observed Thomas-Fermi radii Ry and Rz, atom
number N and trapping frequencies as parameters.

The results of this evaluation are shown in Fig. 5.2 (b). The scattering length is plotted
vs. the magnetic field in the vicinity of the resonance. Each data point corresponds to the
evaluation of one absorption image. The characteristics of the Feshbach resonance (position
Bres and width ∆B) are extracted by fitting the data with the function a(B) (Eq. (2.27))
derived in section 2.3. The position Bres obtained with this fit is used only to determine the
relative position of the magnetic field value B to the resonance, as the uncertainty of the
absolute position is much larger. The width obtained with the fit is ∆B = 1.4± 0.1 G. This
is in good agreement with the theoretical prediction of 1.7 G [12]. Figure 5.2 (b) shows that
in total the scattering length is tuned by one order of magnitude. Above the resonance a is
reduced by a factor of 5. This reduction allows us to observe strong dipolar effects, which is
discussed in the next section.

In the remaining part of this subsection I discuss the assumptions that are underlying the
data analysis. Three assumptions are made:

1. The remaining curvatures in radial and axial do not influence the condensate expansion
on the time-of-flight timescale.

2. The condensate stays in equilibrium during the magnetic field ramps.

3. The Thomas-Fermi approximation is valid and thus also the classical hydrodynamics
approximation described in chapter 3.

The first assumption can be checked with a small calculation. The cloud has a size of about
100 µm after 5 ms time-of-flight. With a maximal remaining curvature corresponding to
10 Hz (see section 4.3) two atoms separated by 100 µm are accelerated with a difference
of ∆a ≈ 0.4 m/s2. In 5 ms this leads to a relative change of their positions by 5 µm, which
is still smaller than the resolution of our imaging system and therefore negligible.

The second assumption is checked with the adiabaticity criterion Ė/E � ωmin, where ωmin

is the smallest trap frequency. The important energy in this context is the chemical potential
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µ (Eq. (3.12)). Hence, the conditions that have to be checked are

ȧ/a� ωmin and Ṅ/N � ωmin . (5.1)

Whereas the condition Ṅ/N � ωmin is largely fulfilled for our data, checked with the mea-
sured lifetimes, the used ramp speed results in an ȧ/a which starts to be on the order of ωmin

for the measurements closest to the resonance. For these data points ȧ/a is approximately
2.3 ms−1, whereas ωmin ≈ 3.6 ms−1. Therefore it is ensured in an additional series of exper-
iment, that no collective oscillations of the condensate are excited. This is done by varying
the holding time at the magnetic field B before the condensate is released from the trap. No
temporal change of the Thomas-Fermi radii of the condensate is observed. Hence, the second
assumption is also fulfilled, the scattering length is changed adiabatically.

The third assumption is valid if the parameter Na/aho describing the applicability of
the Thomas-Fermi approximation (see section 3.1) is much larger than 1. Indeed, when
calculating this value with the atom number N , the extracted scattering length a and the
measured trapping frequencies, it turns out to be always larger than ∼ 60 for our parameters.
Thus, also the third assumption is fulfilled.

5.2. Strong Dipolar Effects

This section discusses the main results of this thesis. The tuning of the scattering length a
allows us to observe strong dipolar effects in a Bose-Einstein condensate way beyond the
perturbative regime. These dipolar effects induce a change of the condensate shape, which
is measured with the aspect ratio Ayz = Ry/Rz of the Thomas-Fermi radii. For the smallest
values of the scattering length reached, the dipolar parameter εdd is close to one, leading even
to a suppression of the inversion of the ellipticity of the condensate. The results constitute
the first realization of a quantum ferrofluid.

5.2.1. Variation of the Condensate Aspect Ratio

In the absorption images shown in the previous section (Fig. 5.2 (a)) the change of the
condensate aspect ratio when approaching the resonance is evident. The deviation of the
condensate shape compared to a BEC with pure contact interaction depends on the relative
strength of the dipole-dipole interaction, expressed by the dipolar parameter εdd (Eq. (3.23)).
This dipolar parameter is calculated with the scattering length obtained in the previous
section. The analysis shows that εdd is tuned reliably in a range of approximately 0.1 to 0.8
from the background value of εbg

dd = 0.16.
In Fig 5.3 the variation of the aspect ratio with εdd is shown. One can clearly see, that

with increasing εdd the dipole-dipole interaction starts to dominate the cloud shape. The
condensate gets elongated in the magnetic field direction (z), leading to a decrease of the
aspect ratio Ayz. As explained in section 3.3 this is a clear indication of the dipole-dipole
interaction: The mean-field potential V mean

dd (Eq. (3.25)) has a saddle shape, which results
in an elongation in the magnetic field direction and a reduction of the size in the directions
perpendicular to it. With increasing εdd the influence of the contact interaction on the
condensate shape decreases and this effect becomes more apparent. The data is in very
good agreement with the hydrodynamic theory describing a quantum-degenerate gas with
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Figure 5.3.: Variation of the aspect ratio Ayz with increasing dipolar parameter εdd. The diamonds
(blue) correspond to data taken below the resonance, the circles (red) to data taken above. The
vertical dashed line indicates εbg

dd = 0.16 which corresponds to the background scattering length abg.
The solid theory curve is obtained by solving the hydrodynamic equations (3.29), without any ad-
justable parameter. The gray shaded area results from the uncertainty of the trapping frequencies of
approximately ±5 % (see text). The inset in the top right corner shows the variation of Ayz with
the magnetic field. It changes significantly only just above the resonance, where the scattering length
approaches zero. The absorption image shows an example of a condensate with strong dipole-dipole
interaction.

dipole-dipole interaction (solid line). No adjustable parameter is used to calculate the theory
curve.

Let us discuss the results in more detail. The diamonds (blue) correspond to data taken
below the resonance. As can be seen in the inset of Fig. 5.3, the aspect ratio does not vary
significantly when the resonance is approached from below. In the Ayz vs. εdd plot nearly
all of these data points are left to the vertical dashed line, which marks εbg

dd = 0.16, in
full consistency with the hydrodynamic theory. Approaching the resonance from above, the
aspect ratio does not vary significantly, too, until B − Bres . 3 G. At this point it starts to
decrease strongly in the range down to B − Bres ≈ 2 G, which is still addressable without
a collapse of the condensate. The used trap geometry is cigar-shaped, which is predicted to
lead to instabilities if εdd exceeds one (see section 3.3). However, this dipolar collapse cannot
be distinguished from a collapse due to a negative scattering length for our parameters. With
the realization of a pancake-shaped trap and a better magnetic field stability it should be
possible to explore also the stability properties (see outlook).

The largest uncertainty in the theoretical prediction of Ayz(εdd) arises from the trapping
frequencies. As described in section 4.2, the frequencies can be determined with high pre-
cision by exciting a center of mass motion. However, the frequencies depend strongly on
the alignment of the dipole trap beams. The accuracy of the measured values is therefore
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Figure 5.4.: Comparison of (a) the dispersion of a presentation of Ayz vs. the measured magnetic
field, with (b) the dispersion of Ayz vs. the extracted magnetic field. Shown is in both cases the
variation of the aspect ratio when approaching the resonance from above. In the presentation vs. the
measured magnetic field, systematic errors in the magnetic field determination lead to a dispersion of
approximately 0.3. If Ayz is plotted vs. the magnetic field value that is extracted from the absorption
images (see text for details), the dispersion decreases by a factor of 3.

estimated to be ±5 %. This 5 % uncertainty gives rise to the gray shaded area indicated in
Fig 5.3. Nearly all data points lie within this area. Whereas the dispersion in the Ayz vs. B
graph is relatively large close to the resonance (about 0.3), the dispersion in the presentation
vs. εdd is about 3 times smaller1. This is because the presentation vs. εdd is not sensitive
to systematic errors arising from an uncertainty in the determination of the magnetic field.
The aspect ratio Ayz and εdd are extracted directly from the absorption images without using
the measured magnetic field value. The magnetic field drift, which is on the order of 0.5 G
during several hours, has therefore no influence.

One can even go a step further and make a reversed analysis: The magnetic field value
corresponding to each absorption image can be calculated from the scattering length which
is obtained from the image. If the aspect ratio Ayz is plotted as a function of this extracted
magnetic field value, the systematic error of the measured magnetic field is avoided. Figure 5.4
compares the dispersion of the aspect ratio when using the extracted B with the dispersion
when plotting vs. the measured magnetic field. It is evident that the dispersion is reduced
by a factor of 3 in this way like in the graph of Ayz(εdd) (Fig. 5.3). With the reduced
dispersion the data agrees much better with the solid theory curve (again calculated using
the hydrodynamic theory without any adjustable parameter).

5.2.2. Time-of-Flight Measurements

As an application of the tunability of the dipolar parameter εdd, the expansion of the BEC is
studied for two different orientations of the magnetic dipoles with respect to the trap. This
measurement has been done already at low magnetic fields by Stuhler and coworkers [10]
for the background value εbg

dd. However, in these measurements the dipole-dipole interaction
corresponded only to a small perturbative effect. The tunability of εdd allows us now to
access a much larger parameter range. The method described in [10] consisted of changing

1Excluding data points that are obviously far off the typical range.
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the orientation of the magnetic field with respect to the trap. This method is not applicable
in our case, as the high magnetic field required to tune εdd can only be produced along the z
direction. Therefore, in our case the trap orientation is changed with respect to the magnetic
field. This is done by exchanging ωy and ωz, while keeping the same frequency in x direction.

Two traps that fulfill this condition are found experimentally by measuring trapping fre-
quencies: Trap 1 (3/100) has the frequencies (ωx, ωy, ωz) = 2π × (669, 357, 566) Hz and trap
2 (7/42) has (ωx, ωy, ωz) = 2π × (658, 543, 371) Hz (see section 4.2). Hence, within the es-
timated 5 % accuracy level, ωy (respectively ωz) of trap 1 is equal to ωz (respectively ωy)
of trap 2 and ωx stays constant. Without dipole-dipole interaction the aspect ratio Ayz of
a BEC released from these traps would evolve inversely, as in this case the Thomas-Fermi
radius in y direction of the one trap would be equal to the radius in z of the other trap and
vice versa (see Eq. (3.22)). Thus, if we define the aspect ratio A1 of trap 1 as A1 := Rz/Ry

and the aspect ratio A2 of trap 2 as the inverse A2 := Ry/Rz, A1 and A2 would evolve equally.
Due to the anisotropy of the dipole-dipole interaction this is not valid in our case. The

elongation in the magnetic field direction z (respectively reduction of the size in y) results
in a difference of the y radii to the z radii of the different traps. The difference of A1 to A2

is equal to the difference of Ayz for a magnetic field pointing in z direction to Ayz for a field
pointing in y direction, which was measured in [10]. Our experimental protocol is completely
equivalent to the change of the magnetic field orientation with respect to the trap.

Figure 5.5 presents experimental results on the temporal evolution of A1 and A2 at various
magnetic field values in the vicinity of the Feshbach resonance. Before I discuss these results,
I describe the additional measurement shown in panel (a), which is done to confirm that the
two trap configurations are equal except for an exchange of ωy and ωz. The measurement is
done with the magnetic field of 11.5 G which is used for the low-field imaging (see section 4.4).
This field points in x direction and therefore the magnetic dipoles of the atoms are aligned
perpendicular to the observation plane (see inset in panel (a)). An exchange of the trapping
frequencies does thus not affect the aspect ratio, as the interaction between two aligned
dipoles is cylindrically symmetric. Consequently, with the rotation of the trap (and hence
the density distribution) around the magnetization axis also the dipole-dipole mean-field
potential is rotated, leading to A1 = A2 for the two traps, similar to the situation with pure
contact interaction described above. Indeed, the experimental data shows that the evolution
of the aspect ratios is the same and agrees well with the theory curve (black solid line).

The aspect ratios A1 and A2 are measured for 5 different time-of-flights in total. The
shortest time-of-flight is 4 ms. Even shorter times would allow us to investigate also the
initial increase of the aspect ratios and not only the approximately constant part after ∼ 2 ms.
However, at shorter time-of-flights the condensate is too small to obtain reliable values of
the Thomas-Fermi radii with the imaging system as it is now. This could be changed for
example by using a larger magnification and using a weaker trap with larger Thomas-Fermi
radii of the condensate.

The figures 5.5 (b)–(f) present the aspect ratios of trap 1 and 2 at the five different time-
of-flight values for the high magnetic field pointing in z direction. The diamonds (blue)
correspond to an alignment of the long axis of the trap perpendicular to the field, the circles
(red) to an alignment in the field direction (see inset in panel (b)). In Fig. 5.5 (b) the
magnetic field is set to a value about 10 G above the Feshbach resonance. At this value the
dipolar parameter εdd is approximately given by the background value εbg

dd. Therefore the
measurement is equivalent to the situation in [10]. The results presented in this reference
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are recovered, the aspect ratios A1 and A2 differ due to the dipole-dipole interaction. The
hydrodynamic theory curves (red and blue solid line) are in good agreement with the data,
without any adjustment of the parameters.

In the figures 5.5 (c)–(f) the magnetic field is subsequently set to values closer to the reso-
nance (2.6, 2.5, 2.3 and 2.2 G respectively). With εdd approaching one, these measurements
are far beyond the perturbative regime. The deviation of A1 and A2 increases, indicating
the enhancement of the relative strength of the dipole-dipole interaction. At εdd = 0.75
(panel (f)) even the standard ’smoking gun’ evidence of quantum-degeneracy, an inversion
of the ellipticity (see section 3.1) of the condensate, does not apply anymore. The dashed
line indicating the inversion is not crossed by both the blue and the red line. Rz stays al-
ways larger than Ry for both traps. The black solid line indicates the theory curve without
dipole-dipole interaction. The large deviation of the data to this curve is evident. However,
the hydrodynamic theory including dipole-dipole interaction does still describe the evolution
of the aspect ratios correctly.

In conclusion, the experiments demonstrate the first investigation of the unique properties
of a quantum ferrofluid. We observe a strong modification of the condensate shape when the
contact interaction is reduced. In a series of time-of-flight measurements our control on the
system is demonstrated. The hydrodynamic theory introduced in section 3.3 is in excellent
agreement with the measured data.
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Figure 5.5.: Series of time-of-flight measurements for the two traps with interchanged trapping
frequencies in y and z direction (see text). The diamonds (blue) correspond to trap 1, the circles
(red) to trap 2. The theory curves are obtained with the hydrodynamic theory including dipole-dipole
interaction. As an example for the typical dispersion of the measured aspect ratios an error bar is
included in panel (d). (a) The magnetic field points in x direction (see inset), therefore the trap
is rotated around the magnetization axis and A1 = A2. (b)–(f) The trap is rotated relative to the
magnetic field direction z (see inset in (b)). Therefore A1 and A2 start to differ. The difference
increases with increasing εdd (see lower, respectively upper right corner of the figures). At εdd = 0.75
(panel (f)) the inversion of the condensate ellipticity is suppressed by the dipole-dipole interaction.
The dashed line indicating the inversion point is not crossed by both blue and red line. In this
panel also the theory curve for an expansion without dipole-dipole interaction is shown (black line)
to demonstrate the large deviation of the measured data to the pure contact case.
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6. Conclusion and Outlook

This thesis presented an experimental demonstration of strong dipolar effects in a quantum
gas. Such a quantum ferrofluid is a novel kind of superfluid that promises the discovery of
many new physical phenomena. The approach used in this work is based on decreasing the
contact interaction with a Feshbach resonance, which results in an enhancement of the relative
strength of the dipole-dipole interaction. The parameter describing the relative strength, εdd,
has been increased reliably by a factor of five to εdd = 0.8. This corresponds to dipolar effects
way beyond the perturbative regime.

The first two chapters introduced the theoretical concepts underlying the physical phenom-
ena studied in this work. Chapter 2 discussed the theory of Feshbach resonances in general
and specialized on the resonances of Chromium. Chapter 3 reported on the properties of
dipolar quantum gases. After setting up this theoretical background, chapter 4 presented the
apparatus that has been used to perform the experiments. The chapter focussed on the mod-
ifications of the setup which have been necessary to tune the contact interaction at the high
magnetic fields. In addition, a method was described to measure the trapping frequencies of
our optical dipole trap with high precision.

Finally in chapter 5 the experiments on strong dipolar effects were presented. In the first
part the broadest Feshbach resonance at 589.1 G was characterized. The measured width of
1.4± 0.1 G was found to be in good agreement with the theoretical prediction of 1.7 G. The
lifetime of the condensate near the resonance was found to decrease rapidly probably due to
enhanced three-body losses. By approaching the resonance from above, the scattering length
has been reduced by up to a factor of five. In the second part the effect of this reduction
on the condensate properties was discussed. The condensate dynamics in this strong dipolar
regime has been studied in a series of time-of-flight measurements.

The realization of a two-frequency acousto-optic modulator driver was another part of this
thesis. The measurements on its performance to improve the pointing stability of a laser
beam, were described in the appendix A. It has been shown that the stability is increased
by a factor of ∼ 20. Additionally it has been shown that also the laser power is stabilized
after rapidly switching the RF driving power. Two of these drivers are now included in the
experimental setup to control the intensity of the optical dipole trap beams.

The future perspectives of the experiment are very promising. The realization of a quantum
gas with strong dipolar effects opens up many avenues to study the properties of this system.
The next step will be to study the stability properties of a dipolar condensate. To be able
to address a wide parameter range, a one-dimensional optical lattice has been set up, which
now allows us to realize a stack of pancake-shaped traps. This lattice is produced by two
linearly polarized laser beams at 1064 nm sent in under an angle of about ±4 ◦ to the imaging
axis. The beams are produced with an Ytterbium fibre laser1 with a linewidth of 70 kHz.

1IPG, YLR-20-1064-LPSF.
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Figure 6.1.: Interference pattern produced with the newly set-up one-dimensional lattice. The
pattern results from an overlap of condensates of two or more different lattice sites after 15 ms time-
of-flight. The phase information imprinted in these images could be used in future experiments to
explore for example the physics of a double well system with dipolar interaction.

This results in a lattice spacing of about 8 µm. The condensate can be loaded into a variable
number of the lattice sites. Figure 6.1 shows an absorption image of the interference pattern
produced by overlapping condensates of different sites after a time-of-flight of 15 ms. Al-
though the near future experiments will not make use of the phase information imprinted in
these interference patterns, but make use only of the new trap geometry, this is an interesting
prospect for future investigations. For instance it could allow to investigate a double-well
system of dipolar condensates.

For the condensate stability experiments also the magnetic field stability has to be im-
proved further. For this reason new more stable power supplies are installed in the setup.
Furthermore the closed-loop control will be replaced and the switching of the magnetic field
will be separated from the current stabilization. With this steps a field stability of 10−5

peak-to-peak should be realizable, resulting in a much higher control on the scattering length
a.

Another future direction could be the production of Cr2 molecules by magnetic field ramps
over one of the Feshbach resonances. These molecules will show even stronger dipole-dipole
interaction, as their magnetic dipole moment can be as large as 12 µB. In a first series
of experiments molecules produced with the resonances at 589.1 and 499.9 G could not be
detected. Two different detection schemes were tested. The first one was to blow away
remaining atoms in the condensate with resonant light after the field was ramped over the
resonance, and then dissociate the molecules by ramping back and detect them. The second
scheme consisted of separating remaining atoms and molecules with a gradient produced by
the pinch coils and then dissociate and detect. Also a combination of the two schemes was
tested.

It is most likely that a detection failed due to the extremely short lifetime of the molecules [84]
and the enhanced inelastic three-body losses. The production efficiency for molecules should
be on the order of a few percent [86, 87, 88], hence, starting with ∼ 30000 atoms in a conden-
sate, a few thousand molecules should be produced. The speed of the magnetic field ramps is
limited due to the electronics used and eddy currents. Therefore the sequence of producing
molecules, blowing away the atoms or separating them and ramping back takes ∼ 5 ms.
With an estimated lifetime of less than 1 ms, the signal of the molecules is too weak to be

68



detectable. In the future the experiments could be redone with the use of the one-dimensional
lattice. The quasi two-dimensional confinement in the stack of pancake traps could lead to a
stabilization of the molecules due to the repulsive interaction in the pancake plane.
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6. Conclusion and Outlook
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A. Two-Frequency Acousto-Optic
Modulator Driver

This appendix describes the two-frequency acousto-optic modulator (AOM) driver
that is used to improve the pointing stability of our optical dipole trap beams [13].
Section A.1 gives an introduction to acousto-optic modulation. Based on this, the
problem of beam movement due to thermal effects is introduced in section A.2 and the
two-frequency method is presented as a way to suppress this movement. Section A.3
reports on the technical realization of a two-frequency driver, including the details
of an electronic circuit used for it. The last section A.4 presents the measurements
that were done to test the performance of the two-frequency method.

A.1. Introduction to Acousto-Optic Modulation

Acousto-optic modulators are an important tool to manipulate laser beams. They are used
mainly for three purposes: to deflect, to shift in frequency and to modulate the intensity of
a beam [89]. Technical applications exist among many others in telecommunications or laser
printing. In Atomic, Mesoscopic and Optical Physics (AMO) especially their ability to tune
frequencies and modulate intensities is widely used, for example in cold atoms experiments
these parameters need to be controlled precisely for many laser beams. This section gives a
short introduction to the theory of acousto-optic modulation following mostly the treatment
in [90]. A more detailed description can be found also in [91].

The working principle of an AOM is Brillouin scattering [92], i.e. the diffraction of light
by a sound wave inside a crystal. A sound wave is a periodic density perturbation, which
causes also a periodic change of the index of refraction. This ’grating’ with a lattice spacing
given by the sound wavelength λs diffracts an incoming optical beam. In the limit of a
thick grating, i.e. the optical path length in the perturbed region is large compared to λs,
a theoretical description is given by the Bragg diffraction analogous to the diffraction of X-
rays in a crystal: If the path difference 2d between reflection on two adjacent acoustic wave
fronts (see Fig. A.1) is an integer multiple m of the light wavelength λ1, the reflected beams
interfere in phase, which leads to a bright diffraction peak. The angle of incidence at which
this condition is fulfilled is called Bragg angle θB. It can be calculated by using d = sin θiλs,
where θi is the angle between incoming beam and sound wave. Hence, the condition reads

2λs sin θB = mλ . (A.1)

In the Bragg limit it is possible to diffract up to 100% of the light in one order m, whereas in

1Actually one has to use the wavelength in the crystal λ/n, where n is the refractive index. But, due to
refraction at the surface air - crystal, the n cancels out in the final equation for the Bragg angle and is
not taken into account.
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Figure A.1.: Diffraction of an optical beam by a sound wave with wavelength λs and velocity cs.
The periodic modulation of the index of refraction leads to a partial reflection of the incoming beam
on the acoustic wave fronts at an angle θr = θi. The distance d, which is half the path difference
between reflection on two adjacent wave fronts, is given by d = λs sinα, where α is equal to θi.

the limit of a thin grating (the so called Raman-Nath regime) the periodic modulation leads
only to a small phase shift and the light is diffracted in many orders [93]. This regime is not
discussed here, as acousto-optic devices are operated usually in the Bragg regime.

Up to now the fact that the ’grating’ is moving has not been taken into account. With
the picture in mind that the wavefronts act as small partially reflecting mirrors it is easy
to understand that the movement gives rise to a Doppler shift of the diffracted light. A
different approach of understanding this is by the use of phonons. In a particle picture
diffraction corresponds to absorption or stimulated emission of phonons by photons. An
incoming photon with energy ~ωi and momentum ~k

i
absorbs/emits one or more phonons

with ~ωs and ~ks. Energy and momentum are conserved in such a process, hence for one
absorption this gives

ωd = ωi + ωs , (A.2)
kd = ki + ks (A.3)

for the outgoing photon. Thus, the diffracted light is shifted in frequency by fs = ωs/2π. The
momentum conservation is equivalent to the Bragg condition since the sound frequencies of
interest are on the order of 108 Hz (radio-frequencies) and therefore much smaller than the
light frequency (around 1014 Hz). Hence, ωd ≈ ωi and consequently kd ≈ ki, which gives

ks = 2ki sin θB (A.4)

(see Fig. A.2) and recovers Eq. (A.1) by using ks = 2π/λs.
The intense sound wave in the crystal is generated with a radio-frequency (RF) signal

by a piezo-electric transducer. Commonly used crystals consist for example of Tellurium
Dioxide (TeO2) for the visible and near-infrared, or of Germanium (Ge) for the mid-infrared.
The creation of a standing wave is avoided by absorbing the sound wave at the end face.
The fraction of light that is diffracted out of an incoming laser beam is determined by the
intensity of the acoustic wave Iacoustic, and thus by the power of the RF signal PRF. The ratio
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Figure A.2.: Momentum conservation in a phonon absorption process. The momenta of photon
~ki and phonon ~ks add up to the momentum of the diffracted photon ~kd. Using kd ≈ ki recovers
the Bragg condition (see text).

of diffracted to incoming light
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= sin
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πl√
2λ

√
MIacoustic

)2

, (A.5)

depends on the diffraction figure of merit M [90]. The figure of merit is equal to

M =
n6p2

ρc3s
, (A.6)

when expressed in terms of sound velocity cs, refractive index n, photo-elastic constant p and
mass density ρ. cs depends on the direction of propagation and the polarization, which is
either longitudinal or transversal (sheer mode). Therefore Eq. (A.5) shows that the RF power
Pmax needed for maximum diffraction efficiency is determined by the material and the acoustic
mode. A typical value for a TeO2 crystal using a longitudinal mode with cs = 4200 m/s is
Pmax = 2.5 W. The Bragg angle is 13.9 mrad for a wavelength λ = 1060 nm and a radio-
frequency of f = 110 MHz.

A.2. Improving the Beam Stability with the
Two-Frequency Method

In our setup one important application of AOMs is to control the intensity of the optical
dipole trap beams. As explained in section 4.1 our trap is formed by two far off-resonant
beams which are overlapped on a 10 µm scale. The depth and shape of this trap is changed
by varying the power of either beam. In addition, the trap characteristics depend on the
relative position of the beams, which has to be controlled on the 10 µm length scale. This
requirement gets even more stringent with the newly set up one-dimensional optical lattice
(see outlook). It turns out that the pointing stability of a beam that is diffracted by an AOM
can thus cause problems: When the RF power PRF driving the AOM is changed in order to
change the diffracted light intensity, thermal effects inside the AOM lead to a movement of
the beam which is on the order of 1 mrad and takes place on a timescale of several seconds.
One way to circumvent this, is to use a single-mode optical fibre behind the AOM, but
this cannot be done for high power lasers2. Another option is to adjust the RF frequency

2Such as CO2 or Ytterbium fibre lasers.
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Figure A.3.: Schematic of an AOM that is driven by two frequencies. The incoming laser beam is
diffracted in many different orders. The image shows a picture of these multiple diffraction orders,
whose frequency shifts are indicated on the right hand side of the image.

to compensate the movement. However, in this section a different approach is discussed,
which is adaptable to any AOM and easier to realize than a compensation by changing the
frequency3. Furthermore, it stabilizes also the diffracted light intensity.

If PRF is reduced, less power has to be absorbed at the end face of the crystal. This changes
the temperature of crystal and surrounding parts, which causes the beam movement. The
idea of the two-frequency method is to drive the AOM always with the same power PRF

and thus keep the temperature stable. For this, the AOM is driven with two frequencies
f1 and f2 and the power P2 of f2 is adjusted relative to P1 of f1 to keep the total power
PRF = P1 + P2 constant. Light diffracted by an AOM driven by two frequencies is diffracted
in many different beams, as is shown in Fig. A.3. Besides the zeroth and first order of f1 and
f2, second and even third order beams corresponding to multiple absorption and stimulated
emission of phonons can be seen [94].

Three things have to be kept in mind when choosing the frequencies f1 and f2: The
difference f2−f1 has to be sufficiently large to ensure that the two first order beams are easy
to separate. However, the frequencies have to be still within the bandwidth of the AOM. In
addition, the power reflected of the AOM at the two frequencies should be approximately
equal, which guarantees that PRF is constant not only after the RF source, but also in the
AOM.

A.3. Technical Realization of a Two-Frequency Driver

As a part of this thesis 2 two-frequency drivers were realized, which are now included in
the setup to control the intensity of the dipole trap beams. They were built using standard
Mini-Circuits RF components and are described in this section. A schematic illustration of
a two-frequency driver is shown in Fig. A.4, together with a single frequency driver. The
latter one consists of a voltage-controlled oscillator (VCO)4, which generates an RF signal

3Because it does not need a calibration that is dependend on the speed of the change of PRF, which is crucial
for the frequency compensation.

4Mini-Circuits, POS-150.
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Figure A.4.: (a) Typical setup for driving an AOM with variable RF power. A voltage-controlled
oscillator (VCO) generates the radio-frequency f1 (blue line), which is attenuated to a value given
by the control voltage Uin. The signal is then amplified before going to the AOM. (b) For the two-
frequency driver an extra VCO and attenuator is added. The additional VCO generates the second
RF signal f2 (red line), whose power is adjusted relative to f1 to keep the total power in the AOM
constant. This adjustment is done by modifying the control voltage Uin with an electronic circuit.

whose amplitude can be changed by an electronic attenuator5 before it is amplified with a
constant gain6. Hence, by changing the voltage applied to the attenuator the output power
of the driver is changed. For the two-frequency driver a second identical VCO and attenuator
is added. The power P2 of frequency f2 generated by the second VCO is adjusted relative to
the power P1 of f1 by modifying the control voltage Uin. The electronic circuit used for this
is explained in detail in the next paragraph. The transfer function of the circuit Uout(Uin)
has to be a nonlinear function due to the nonlinear dependence of the output power on the
control voltage. The required transfer function is obtained by measuring the control voltage
of frequency f2 which keeps the total power PRF constant behind the amplifier, for various
powers of f1. It is important to measure the total power behind the amplifier, as saturation
effects can have an influence on the calibration of PRF.

Figure A.5 shows a diagram of the electronic circuit that is used to generate the nonlinear
function. The circuit approximates the measured calibration curve by a stepwise linear
function7. The main idea of the circuit is to use an inverting amplifier whose gain is changed
when a Zener diode gets conducting. For example, if Uin is smaller than 4.3 V, the Zener
voltage of the first diode, the gain of the first amplifier is just given by

− R11 +R12

R1 +R2

. (A.7)

5Mini-Circuits, PAS-3.
6Mini-Circuits, ZHL-1-2W.
7With this circuit only monotonic functions can be approximated.
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Figure A.5.: Diagram of the electronic circuit for adjusting the control voltage. The gain of the
first inverting amplifier depends on the voltage Uin due to the Zener diodes. After inverting the
amplified voltage U ′ of this first stage to U ′′, it is added with a variable gain to Uoff to obtain the
output voltage Uout.

If 4.3 V 6 Uin 6 6.3 V, the first Zener diode gets conducting and the gain increases to

− (R11 +R12)

(R1 +R2) ‖ (R3 +R4)
, (A.8)

where ‖ means parallel connection of the resistors. Hence, by using many diodes a stepwise
linear function is generated. In our case four diodes with Zener voltages of 4.3 V, 6.3 V,
8.2 V and 10 V are used8. The 50 kΩ and 100 kΩ potentiometers allow for a flexible transfer
function. The voltage U ′ at the output of the first operational amplifier is inverted to U ′′

before the offset voltage Uoff is added. The potentiometer R16 allows for an extra gain in
the last step. The transfer function of the circuit is shown in Fig. A.6, together with PRF

(measured after the amplifier). PRF stays constant within 10 %, which is enough to strongly
suppress the beam movement. However, if required, the system could be improved with a
more exact calibration.

A.4. Measurements of the Position Stability

The experimental setup that is used to measure the position stability of a beam diffracted by
an AOM is shown in Fig. A.7. The 1/e2 beam radius of an Ytterbium fibre laser9 at 1064 nm
with 10 W output power is reduced from 2.1 mm to 0.7 mm with a telescope before going
through the AOM. Behind the AOM all beams are blocked except one, which is attenuated
by using only the transmission through two dielectric mirrors. The remaining laser power of
less than 1 mW is monitored with a charged coupled device (CCD) camera at a distance of
1.4 m from the AOM. The images taken with this camera are evaluated by using a Matlab

8The use of Zener diodes with even smaller Zener voltages did not improve the quality of the transfer
function, because their increase of conductivity at the Zener voltage is not as abrupt as for diodes with
higher Zener voltages.

9IPG,YLR-20-1064-LPSF.

76



A.4. Measurements of the Position Stability

2

4

6

8

10

12

0 2 4 6 8 10

��
��

��

��

��

��

��

��

��

��

��

Uin[V ]

U
ou

t[
V

]

0.5

1

1.5

2

2.5

3

��

�� �� �� �� ��
�� �� �� ��

��
�� ��

��

R
F

po
w

er
[W

]

Figure A.6.: Measured transfer function of the circuit for adjusting the control voltage Uin (red
squares). The blue line shows that PRF stays constant within 10 % when the circuit is used. PRF is
measured after the amplifier with a spectrum analyzer.
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Figure A.7.: Setup for measuring the position stability of a beam that is diffracted by an AOM.
The size of the laser beam is reduced with a telescope before it enters the AOM. One diffracted beam
is attenuated and monitored with a CCD camera, while the others are stopped with a beam block.

routine, which fits a two-dimensional Gaussian profile to the images and records the peak
position and beam size in the plane of diffraction (x) and perpendicular to it (y) about every
0.5 s.

Figure A.8 shows the time dependence of beam size and position on the camera in x and
y direction of the first order beam for a Crystal Technology (CT) AOM10 . At t = 0 the RF
power is decreased from 2 W to 0.2 W, which leads to a beam movement due to thermal
effects. Directly after switching the beam intensity drops, therefore the Matlab routine is
not able to fit the images correctly for about 2 s. This leads e.g. to the peak of the y size.
After this it takes about 30 s until a new steady state is reached. Whereas the y position
changes by more than 1 mm, the x position stays relatively constant. The sizes change both
by approximately 0.05 mm, but in different directions.

To compare the position stability of the CT AOM using the above mentioned two-frequency
driver with single frequency operation, the steady state value11 is recorded for various RF
powers. Figure A.9 shows the angular movement relative to the initial position as a function
of laser power in the first order12. Also included in the figure are the results of two different
10Crystal Technology, 3110-199.
11Average of 20 fit values.
12For the two-frequency method the first order of f1 is used. The two frequencies are: f1 = 99 MHz and
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Figure A.8.: Data taken with the experimental setup. Shown is the time dependence of size (a)
and position (b) of the diffracted beam on the camera in x (red line) and y direction (red line) after
decreasing the RF power by a factor of 10.
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Figure A.9.: Measured angular movement of the first order beam in x and y direction as a function
of laser power in this beam. The movement is shown for the CT AOM both with and without the
second frequency, and in addition for two other models driven with one frequency (see legend and
text). For visibility reasons the movement is plotted only up to 0.25 mrad. The values at about 10 %
laser power are indicated, if this range is exceeded.

AOM models13 that are driven by one frequency. The beam movement is smallest for the CT
AOM with two frequencies, only up to 0.03 mrad in x and 0.02 mrad in y direction. This is
a reduction by a factor of 7 in x and 30 in y direction compared to the same AOM driven
by only one frequency. The NEOS AOM shows the largest movement (1.1 mrad in x). Its
movement in x is much larger than in y, whereas it is the opposite for the CT AOM. This
is probably due to the different design of the AOMs, as both use the same crystal (TeO2)
and acoustic mode (longitudinal, sound velocity 4200 m/s). The A-A Opto-Electronic model
is an acousto-optic deflector. It uses a sheer-mode acoustic mode with a 6 times smaller
sound velocity and thus a 6 times larger deflection angle. It needs only 0.5 W RF power
for maximum diffraction efficiency, which is the reason why its beam movement is nearly as
small as for the two-frequency AOM. However, a drawback of this model is that (due to the

f2 = 123 MHz. They are well within the bandwidth of the AOM, which is determined by measuring the
back-reflected power of the AOM with a directional coupler (Mini-Circuits ZDC-10-1).

13A-A Opto-Electronic, MTS80-A3-1064Ac; NEOS Technologies, 23080-3-1.06-LTD.
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Figure A.10.: Time dependence of the laser intensity when switching the RF power rapidly. With-
out the second frequency (red) it takes nearly 10 seconds for the intensity to stabilize to its steady
state value. With the second frequency (blue) there is only a small transient effect in the first second.

smaller sound velocity) the rise time, i.e. the time it takes until the diffracted laser power
reaches its maximum, is 10 µs14. This limits the bandwidth for modulating laser light, e.g.
to measure trap frequencies with parametric excitation.

The two-frequency method stabilizes also the laser power PL in the first order when switch-
ing the RF power rapidly. This can be seen in Fig. A.10, which shows the time dependence
PL(t) for the CT AOM with and without the second frequency. With only one frequency it
takes about 10 seconds until the steady state value is reached when switching PL abruptly
from 10 to 100%. The beam movement takes place over the same time scale. The intensity
changes only by less than 2 % in the first second after switching when the second frequency is
used. Although no quantitative statement can be made on the dependency of the waist size
on the RF power15, it seems clear that it is not affected by the two-frequency method. This
suggests that it has a different origin than the movement of the beam, like thermal lensing
in the crystal.

In conclusion, the measurements have shown that the beam properties strongly improve
when an AOM is driven with two frequencies. The beam movement is reduced by a factor of
7 in x and 30 in y direction. The intensity is stabilized after a fast switching of the RF power
to a variation of less than 2 %. These results have been confirmed by Bernd Kaltenhäuser,
Harald Kübler and Stefan Müller with a CO2 laser16 and an AOM using a Germanium
crystal17. Although the AOM needs 30 W RF power for maximum diffraction efficiency, the
movement could be reduced by a factor of 10. The method is easy to implement in existing
experimental setups and does not have the disadvantage of long rise times. Therefore its use
is reasonable whenever a high position stability is needed and no single-mode fibre can be
used.

14This value is measured with a photodiode.
15Whereas the peak position could be determined very precisely, the sizes depended strongly on the amount

of light on the camera and its settings.
16Coherent, GEM100L.
17IntraAction Corp., AGM-406B1.
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B. Chromium

B.1. General Properties

Chromium is a transition metal. It has an atomic number of 24 with 4 stable isotopes (see
table B.1). 52Cr has the highest natural abundance of 83.79 % and is a Boson. The six outer

Mass [au] Natural abundance Nuclear spin I statistics

50 4.35 % 0 bosonic

52 83.79 % 0 bosonic

53 9.5 % 3/2 fermionic

54 2.36 % 0 bosonic

Table B.1.: Natural abundance, spin and statistics of the four Chromium isotopes.

electrons couple to a total spin of S = 3, leading to the total angular momentum of J = 3 of
the 7S3 ground state. The level scheme of Chromium is fortunate for the applicability of laser
cooling techniques. The relevant transitions for the cooling are depicted in Fig. B.1. The

Figure B.1.: Level scheme of 52Cr. Shown are the transitions that are relevant for laser cooling
(see text).

magneto-optical trap is operated on the 7S3↔7P4 transition with a wavelength of 425.6 nm.
The atom decays to the metastable D states with a ratio of ∼ 1/250000 from the excited
P state. This λ-scheme is used to continuously load the magnetic trap. The repumping
wavelength of the 5D4 state via the 7P3 state is 663.2 nm. The 7P3 state is also used to
optically pump the Chromium atoms into the lowest Zeeman stateMJ = −3. The wavelength
of the 7S3↔7P3 is 427.2 nm. More properties of 52Cr are summarized in table B.2.
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Mass 8.7× 10−26 kg

Landé factor of 7S3 gJ = −2.0018

Landé factor of 7P4 gJ = −1.751

Doppler temperature TD 124 µK

Recoil temperature Trec 1.02 µK

Line width Γ/2π 5.02 MHz

Saturation intensity Isat 8.52 mW/cm2

Scattering length a6 [12] 102± 13 a0

Table B.2.: Properties of 52Cr.

B.2. Feshbach Resonances

Table B.3 summarizes the properties of the 14 Feshbach resonance that have been found for
52Cr [12]. For more information see also [60].

Exp. Pos. [G] Theo. Pos. [G] Exp. ∆ ( 1√
e
) [mG] Theo. ∆ [mG] L3 [cm6/s] li;SMS ;lml

4.1 4.0 40 . . . 3× 10−28 2; 6, −4; 0 , 0
6.1 . . . 8 . . . 8× 10−29 . . .

8.2 8.1 100 . . . 4× 10−27 2; 6, −5; 0 , 0
50.1 50.1 140 < 1× 10−3 2× 10−26 0; 6, −2; 4, −4
65.1 64.9 90 6× 10−3 5× 10−26 0; 6, −3; 4, −3
98.9 98.5 90 0.30 1× 10−24 0; 6, −4; 4, −2
143.9 143.2 120 0.12 1× 10−26 0; 4, −2; 4, −4
188.3 187.9 150 0.22 4× 10−26 0; 4, −3; 4, −3
205.8 205.6 420 12 4× 10−24 0; 6, −5; 4, −1
286.6 288.0 430 12 6× 10−25 0; 4, −4; 4, −2
290.3 290.7 470 51 1× 10−25 0; 6, −4; 2, −2
379.2 379.2 140 0.42 1× 10−25 0; 2, −2; 4, −4
499.9 499.2 370 81 1× 10−24 0; 4, −4; 2, −2
589.1 589.2 680 1700 3× 10−24 0; 6, −5; 2, −1

Table B.3.: Feshbach resonances of 52Cr observed in [12]. Besides the experimental determined
widths, also the theoretical values arising from multi-channel calculations are given. L3 is the theoret-
ical three-body loss coefficient. In the last column quantum numbers are assigned to the resonances.
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C. Mathematical Supplement

C.1. Incomplete Elliptic Integral Function

The function f(Axz, Ayz) that appears in the hydrodynamic equations describing a dipolar
condensate depends on the incomplete elliptic integrals of the first and second kind F(ϕ/α)
and E(ϕ/α) [95]. The discussion of the function in this appendix follows closely [74]. The
function is given by the following expression

f(Axz, Ayz) = 1 + 3AxzAyz
E(ϕ/α)− F(ϕ/α)

(1− A2
yz)
√

1− Axz2

, (C.1)

with

sinϕ =
√

1− A2
xz , (C.2)

sin2 α =
1− A2

yz

1− A2
xz

(C.3)

(see Fig. C.1). It is symmetric
f(x, y) = f(y, x) (C.4)

and a smooth and limited function with the property that

1 ≥ f(x, y) ≥ −2 . (C.5)

If one of its arguments is zero, the function is equal to one

f(x, 0) = f(0, y) = 1 . (C.6)

The asymptotic behaviour, if one of the arguments is very large, is

f∞(x) = f(x,∞) = 1− 3
(1− x)x

1− x2
. (C.7)

For both arguments large, f becomes

f(∞,∞) = −2 . (C.8)

The special case of equal arguments results in

fs(A) = f(A,A) =
1 + 2A2

1− A2
− 3A2 tanh−1

√
1− A2

(1− A2)3/2
, (C.9)
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Figure C.1.: Log-linear plot of the function f(x, y) vs. x and for different y (dashed lines). The
solid line corresponds to f∞(x) defined in Eq. (C.7). Figure taken from [74].

which corresponds to a cylindrically symmetric trap. Moreover f obeys the sum rule

f(x, y) + f

(
y

x
,
1

x

)
+ f

(
1

y
,
x

y

)
= 0 , (C.10)

with the physical meaning that the average over all directions of the polarization gives zero
contribution to the dipolar energy [74]. One can use this expression to calculate a polynomial
expression of f around the point (x, y) = (1, 1), which represents a spherical condensate. A
third order approximation which gives an error smaller than 7 % for aspect ratios in the
range A = 0.5 to A = 1.6 is

f(1 + x, 1 + y) ≈ −2(x+ y)

5
+

9(x2 + y2)− 8xy

35
+

12(x2y + xy2)− 16(x3 + y3)

105
. (C.11)

C.2. Magnetic Field of a Cylindrically Symmetric
Current Distribution

In this appendix C.2 I derive the relation f 2
z = −2f 2

r , which is used to calibrate the curvature
compensation. The relation is valid close to the origin (r = 0, z = 0) for a magnetic field
produced by a cylindrically symmetric current distribution with a parabolic field distribution

B(0, z) = f(z) ez =

(
B0 +

1

2
b′′z2

)
ez (C.12)

on axis. The on-axis field (up to second order in z) of a pair of coaxial coils with the current
running in the same direction is exactly of this kind (see for example [96]).

Symmetry considerations (see Fig. C.2) show that the field of a cylindrical current distri-
bution has the following form:

B(z, r) = Br(r, z) er +Bz(r, z) ez . (C.13)
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r

z

I

I

Figure C.2.: Illustration of the magnetic field produced by a cylindrically symmetric current distri-
bution. Due to the symmetry the field has only components in r and in z direction. Upon reflection
on a plane including the z axis, the z component is symmetric, whereas the r component is antisym-
metric.

Moreover, Br(r, z) depends only on odd powers of r, as for this component Br(r, z) =
−Br(−r, z), and Bz(r, z) depends only on even powers (Br(r, z) = Br(−r, z)). If the co-
efficients are expanded around the origin, this implies that

Br(r, z) =
∞∑

n=0

c2n+1(z)r
2n+1 , (C.14)

Bz(r, z) =
∞∑

n=0

d2n(z)r2n . (C.15)

For n = 0 we see that d0(z) = f(z) because of Eq. (C.12).
In a current-free region both divergence and curl of the magnetic field are zero. Expressed

in cylindrical coordinates this gives:

∂

∂z
Br −

∂

∂r
Bz = 0 , (C.16)

1

r

∂

∂r
(rBr) +

∂

∂z
Bz = 0 . (C.17)

If we now include Eq. (C.14) and (C.15) into Eq. (C.16) and (C.17), we get recursion relations
for the expansion coefficients:

c′2n+1(z) = (2n+ 2)d2n+2(z) , (C.18)

c2n+1(z) = − 1

2n+ 2
d′2n(z) . (C.19)

The coefficients d2n(z) are obtained by inserting Eq. (C.19) in Eq. (C.18) and solving the
resulting equation. With this solution also the c2n+1(z) are obtained. Knowing that d0(z) =
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f(z), we get:

c2n+1(z) =
(−1)n+1

22n+1(n+ 1)!n!
f (2n+1)(z) , (C.20)

d2n(z) =
(−1)n

22n(n!)2
f (2n)(z) . (C.21)

Please note that these relations are of course valid also for an arbitrary function f(z).
Let us now calculate Br and Bz up to second order in r and z for the parabolic field

distribution on axis. With Eq. (C.20) and (C.21) we directly obtain

Br(r, z) ≈ −1

2
b′′zr , (C.22)

Bz(r, z) ≈ B0 +
1

2
b′′
(
z2 − 1

2
r2

)
. (C.23)

Thus, B2 up to second order is

B2 = B2
r +B2

z ≈ B2
z ≈ B2

0 +B0b
′′
(
z2 − 1

2
r2

)
. (C.24)

Hence, finally we get to f 2
z = −2f 2

r , if we recall that f 2
z ∝ ∂2

zB and f 2
r ∝ ∂2

rB and use

B = B0

√
1 +

b′′

B0

(
z2 − 1

2
r2

)
≈ B0 +

1

2
b′′
(
z2 − 1

2
r2

)
. (C.25)

C.3. Dependence of the Optical Density of Linear
Polarized Light to σ−-Light

Linear polarized light traveling in the magnetic field direction can be decomposed in σ− and
σ+-light. Thus the linear polarized light can be written in terms of the spherical unit vectors
introduced in section 4.4

Ein = E0(ûσ+ + ûσ−) . (C.26)

Only the σ−-component is absorbed, which results in an outgoing electric field

Eout = E0(ûσ+ + e
−x
2 ûσ−) , (C.27)

where x denotes the optical density that is observed for σ−-light. With the definition of the
optical density (4.20) we get the dependence of the OD of linear polarized light (denoted
with y) on x:

y = −ln
(
Iout

Iin

)
= −ln

(
|Eout|2

|Ein|2

)
= −ln

(
1 + e−x

2

)
. (C.28)
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