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VI Zusammenfassung



Zusammenfassung

In dieser Arbeit präsentiere ich einen neuartigen Aufbau für Experimente mit Bose-Einstein Kon-
densaten bestehend aus 87Rb Atomen und die ersten experimentellen Ergebnisse, die an dieser
Apparatur erbracht wurden. Der Fokus liegt dabei in der Untersuchung von Fragestellungen aus
der Festkörperphysik sowie der Eigenschaften von Rydberg Materie bei sehr hohen Dichten und
Temperaturen nahe des absoluten Nullpunktes.

Als im Jahr 2002 Eric Cornell, Carl Wieman and Wolfgang Ketterle den Nobelpreis für die Erzeu-
gung eines Bose-Einstein Kondensates (BEK) und für erste fundamentale Untersuchungen daran
überreicht bekamen, war dies nicht nur eine Auszeichnung für eine nun historische wissenschaftliche
Leistung, sondern auch der Startschuss für ein überaus lebendiges Forschungsgebiet. Diese Aus-
sage wird durch die Entwicklung der wissenschaftlichen Verö�entlichungen im Forschungsgebiet
der quantenentarteten Gase gestützt, die der Abbildung 1.1 entnommen werden kann. Dabei wur-
den nur Fachartikel gewertet, die auf experimentellen Daten basieren. Zu diesen Artikeln kommen
dreiÿig mal soviele theoretische Verö�entlichungen hinzu, sodass nun seit der ersten Erzeugung eines
BEKs in 1995 bis heute mehr als 20.000 wissenschaftliche Abhandlungen entstanden sind. Dabei
zeigt die Steigung der Verö�entlichungskurve bislang keine Ab�achung, was auf eine lebendige
Zukunft der Quantengase hindeutet. Diese Zukunft wird von inzwischen weltweit über fünfzig
Arbeitsgruppen mit circa achtzig funktionstüchtigen BEK-Aufbauten gestaltet werden. In diesen
Gruppen konnten bislang die Elemente 1H [1], 4He [2], 52Cr [3], 133Cs [4], 41K [5], 7Li [6], 23Na
[7], 85Rb [8], 87Rb [9], and 174Yb [10] erfolgreich kondensiert werden. Seit kurzem wurden die
BEKs basierend auf atomaren Gasen noch um zwei festkörperartige Systeme erweitert. So kon-
nte nun auch die Existenz einer quantenentarteten Phase mit Polaritonen [11] und Magnonen [12]
nachgewiesen werden.

Die Forschung an Quantengasen erstreckt sich heute über fast alle klassischen Gebiete der Physik
und hat so eine Vielfalt angenommen, dass es unmöglich ist, sie in ein einfaches Struktogramm
zu pressen. Darum sei im Folgenden eine subjektive Übersicht über die verschiedenen Aktivitäten
gegeben.

In fast allen bislang durchgeführten Experimenten ist die Wechselwirkung zwischen den Atomen
von entscheidender Bedeutung, welche hier als kleinster gemeinsamer Nenner herangezogen wer-
den soll. Typischerweise ist die Wechelwirkungsenergie von magnetisch oder optisch gefangenen
BEKs eine Gröÿenordnung gröÿer als der entsprechende Quantendruck durch den Falleneinschluss.
Diese Energie drückt die BEKs auseinander und macht sie damit für optische Abbildungssysteme
wesentlich leichter zugänglich. Die dadurch entstandenen detailierten Aufnahmen von BEKs waren
sicherlich maÿgeblich für den groÿen Erfolg dieses Gebietes verantwortlich.

In den ersten Jahren nach der ersten erfolgreichen Kondensation in 1995 wurden alle möglichen
Arten von elementaren hydrodynamischen Anregungen untersucht, wie z.B. Dipoloszillationen,
Quadrupolanregungen, Formoszillationen, Atmungsmoden und Scherenmoden [13, 14, 15, 16, 17]
sowie deren korrespondierenden Dämpfungsmechanismen. Eine ganz andere Art von kollektiver
Anregung, die erst durch die Präsenz einer Wechselwirkung möglich ist, sind Phononen, die auf
verschiedene Arten [18, 19, 20] untersucht wurden. Die Kombination von makroskopischer Quan-
tenkohärenz und einer phononenartige Dispersionsrelation verbietet die Anregung von Quasiteilchen
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unterhalb einer kritischen Geschwindigkeit[21, 22], was gemeinhin als Super�uidität bezeichnet
wird. Der Nachweis einer super�uiden Phase in einem BEK wurde auf verschiedene Arten er-
bracht [23, 24, 25], manifestiert sich aber am schönsten durch die Existenz von quantisierten
Wirbeln [26, 27, 28]. Durch interferometrische Methoden konnte auch gezeigt werden, dass
die beobachteten Wirbel tatsächlich quantisiert sind [29]. Interferometrie ist überhaupt eines
der wichtigsten Werkzeuge, um BEKs zu untersuchen, und wurde erstmals zum Nachweis der
makroskopischen Kohärenz der Materiewellen verwendet [30]. Bald wurde sie aber auch benutzt,
um z.B. die Phase eines Kondensats zu bestimmen [30] oder um Beschleunigungen [31, 32] und
fundamentale Konstanten [33] zu messen.

Wie schon gesagt wurde, sind Wechselwirkungen von fundamentaler Bedeutung und machen sich
vor allem in Experimenten bemerkbar, in denen sie als Nichtlinearität auftauchen. Hier sei zum
Beispiel die Erzeugung von Solitonen [34, 35, 36] oder der Nachweis von Vierwellenmischung [37]
genannt. Mit Hilfe von Feshbachresonanzen ist es möglich, die Stärke der Wechselwirkung durch
Magnetfelder annähernd beliebig zu verändern [38, 39, 40, 41, 42], was viele neue experimentelle
Möglichkeiten erö�net. Dieser E�ekt wurde zum Beispiel ausgenutzt, um BEKs, bestehend aus
Molekülen, herzustellen [43, 44]. Dazu werden zwei Atome eines BEKs mittles einer Feshbachreso-
nanz adiabatisch in ein Molekül umgewandelt. Diese Moleküle müssen aber nicht zwangsläu�g aus
zwei Bosonen bestehen, sondern können auch Fermionen enthalten [45, 46, 47].

Diese knappe Übersicht soll noch um einige wichtige Ergebnisse von fundamentaler Bedeutung
erweitert werden. Die Verwirklichung von verschiedenen Atomlasertypen [48, 49, 50] zeigte ein-
drucksvoll die nahe Verwandschaft zwischen den Kohärenzeigenschaften eines normalen Lasers zu
dem eines Strahls von kohärenten Materiewellen. Weiterhin wurde ein kohärenter Verstärker für
Materiewellen entwickelt [51, 52], Licht auf wenige Meter pro Sekunde abgebremst [53, 54] oder
die Physik der Spinorkondensate eingehend untersucht [55, 56, 57]. Zuletzt sei noch auf die Her-
stellung eines Gases im Tonks-Girardeau Regime [58, 59], der Nachweis von E�mov Zuständen [60]
und die Erzeugung von Verschränkung [61] verwiesen.

Nachdem ich die Forschung der letzten zehn Jahre grob umrissen habe, stellt sich nun die Frage,
was die Zukunft bringen wird. Aktuell ist ein Hauptgebiet die Untersuchung von quantenentarteten
Gasen in optischen Gittern, die auch ein Ziel des hier vorgestellten experimentellen Aufbaus ist
und darum in einem eigenen untenstehenden Abschnitt behandelt wird. Mit der erfolgreichen Kon-
densation von Chromatomen [3] steht nun erstmalig ein System mit einer spürbaren dipolaren
Wechselwirkung zur Verfügung, was innerhalb kürzester Zeit zu einer überaus groÿen Anzahl von
theoretischen Arbeiten führte und viel erwarten lässt. BEKs wurden aber auch intensiv als ein
System für Präzisionsmessungen von Naturkonstanten [62], als Sensor für Beschleunigungen und
Rotationen [63] oder zum Nachweis eines permanenten Dipolmoments des Elektrons [64] diskutiert.
Weitere Anwendungen ergeben sich in der Atomlithographie [65] oder dem Aufbau von Hybridsys-
temen, die Kondensate mit makroskopischen Festkörperelementen kombinieren [66].

Festkörperphysik mit ultrakalten Atomen

Die experimentelle und theoretische Festkörperphysik behandelt fast ausschlieÿlich die Eigen-
schaften von Elektronen in kristalliner Materie und deren Struktur. Ultrakalte Gase be�nden sich
dagegen normalerweise in einem ungeordneten Zustand, können aber mit Hilfe von optischen Git-
tern periodisch angeordnet werden. Nun übernehmen die Atome die Rolle der Elektronen und das
optische Gitter stellt das tight-binding Potential der remanenten Ionen dar. Die schwache Wech-
selwirkung zwischen den Atomen, die vielfältigen Einstellmöglichkeiten der Potentiallandschaft und
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die Kontrolle über den Quantenzustand der Atome macht dies zu einem idealen Modellsystem, um
festkörperphysikalische Fragestellungen zu untersuchen.

Der erste Versuch optische Gitter mit einem BEK zu kombinieren wurde im Jahre 1998 vorgenom-
men und lieferte sogleich den Nachweis von Blochoszillationen [67], was gerade mal fünf Jahre zuvor
in einem Festkörpersystem erreicht wurde [68]. Die Untersuchung der Dynamik von Atomen in op-
tischen Gittern erbrachte auch den Nachweis von Wannier-Stark Leitern [69] und Landau-Zener
Tunneln [70].

Der gröÿte Erfolg der optischen Gitter ist sicherlich die Erzeugung eines Mott-Isolator Zustands
eines BEKs in einem dreidimensionalen optischen Gitter [71, 72], was bis heute nicht in Festkörpern
erreicht wurde. Die theoretische Beschreibung dieses stark korrelierten Zustands erfolgt mit Hilfe
des Bose-Hubbard Modells [73]. Dieses Modell ist aufgrund seiner groÿen Komplexität schwierig
handzuhaben und weitere Experimente werden sicher zum Verständnis dieses Systems beitragen
[74].

Ein weiteres festkörpertheoretisches Modellsystem ist das Spin-Boson Modell [75], welches die Kop-
plung eines Pseudo-Spins an ein bosonisches Bad beschreibt. Die Kopplung induziert Dissipation des
Spinzustands abhängig von den Eigenschaften des thermischen Bades. Wie auch das Bose-Hubbard
Modell kann das Spin-Boson Modell auf BEKs übersetzt werden [76, 77]. Die Untersuchung dieses
Quanten-Dissipation Modells ist ein Hauptziel des hier vorgestellten Aufbaus. Die experimentelle
Umsetzung erfordert im Prinzip nicht die Periodizität eines optischen Gitters, welches aber als Hil-
fsmittel zur Erzeugung des thermischen Bades eingesetzt genutzt werden kann. Solch ein Gitter
wurde im Rahmen dieser Arbeit schon erfolgreich implementiert.

Rydberg Materie

Neben der Untersuchung des Spin-Boson Modells ist die Erforschung von ultrakalten Rydberggasen
die zweite Hauptrichtung dieses Projektes. Rydbergatome sind hoch angeregte Atome mit einem
oder mehreren Elektronen in Zuständen mit hohen Hauptquantenzahlen [78]. Erste Untersuchun-
gen zu den Eigenschaften von Rydbergzuständen waren nur in hochangeregten Plasmen oder durch
astronomische Beobachtungen möglich [79], wo sie durch Rekombination von Ionen und Elektronen
entstehen. Die Er�ndung des Lasers ermöglichte es schlieÿlich, Atome in wohlde�nierte Zustände
anzuregen, was hinreichend ausgenutzt wurde [80]. Als Quellen dienten dabei meist Dampfzellen
oder thermische Atomstrahlen. Mit der Entdeckung der Laserkühlung [81, 82, 83] waren nun
atomare Wolken im �K Bereich verfügbar, was das Forschungsgebiet der gefrorenen Rydberggase
initiierte [84, 85]. Der Name spiegelt dabei die Tatsache wieder, dass auf der Zeitskala der durchge-
führten Experimente oder der Lebensdauer der angeregten Zustände die Atome sich nicht merklich
bewegen und somit eingefroren sind. Damit ist es nun möglich, die Wechselwirkungen zwischen
den Atomen weitaus genauer zu untersuchen als je zuvor. Rydbergatome haben eine groÿe Polar-
isierbarkeit, was eine starke van-der-Waals Wechselwirkung nach sich zieht [86, 87, 88, 89, 90].
Legt man zusätzlich noch ein elektrisches Feld an, ergibt sich für die meisten Zustände ein groÿes
elektrisches Dipolmoment. Die Dipol-Dipol Wechselwirkung führt für zwei nahe beieinanderliegende
Atome zu einem Blockadee�ekt der Anregung, welche als Grundlage eines c-NOT Gatters für die
Quanteninformationsverarbeitung dienen könnte [91].

Die Erweiterung der Rydbergforschung auf lasergekühlte Atomwolken erweiterte den Parameter-
raum um mehrere Gröÿenordnungen und erö�nete damit neue physikalische Situationen. Eine lo-
gische Konsequenz ist es nun, BEKs für Experimente heranzuziehen, da sie eine wesentlich höhere
Dichte bei extrem kleinen Temperaturen aufzeigen. Weiterhin hat man nun auch die Möglichkeit,
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die internen und externen Freiheitsgrade kohärent zu kontrollieren, wie die obige Au�istung der
Experimente deutlich gezeigt hat. Auf der Agenda steht zunächst die Untersuchung der dipolaren
Wechselwirkung und der Nachweis des Blockadee�ekts. Hiermit läÿt sich nun in Kombination
mit einem kohärenten Anregungsschema ein c-NOT Gatter bewerkstelligen. Weiterhin wird die
Möglichkeit untersucht, inwiefern sich Rydbergatome in elektrostatischen Fallen einfangen lassen
oder die ob die Erzeugung von Molekülen bestehend aus einem Rydbergatom und einem Grundzu-
standsatom machbar ist [92].

Experimenteller Aufbau

Bose-Einstein Kondensate werden unter Einsatz verschiedener Kühlmechanismen und Fallentypen
erzeugt. Hierzu wurde zunächst eine Ultrahochvakuum-Kammer aufgebaut, die bei 10�11 mbar
betrieben wird. Das Kammerdesign beinhaltet, unüblich zu sonstigen Aufbauten, zusätzlich acht
Feldplatten zur Erzeugung komplexer elektrischer Feldgeometrien, sowie zwei Multikanalplatten zur
Detektion von Ionen und Elektronen. Dies wurde in Hinblick auf die geplanten Experimente mit Ryd-
bergatomen vorgenommen. Dabei war es wichtig, dass die Komponenten zur Erzeugung eines BEK
nicht beeinträchtigt werden. Das wäre zum einen ein guter optischer Zugang zur Laserkühlung aus
drei Raumrichtungen sowie eine Möglichkeit, eine spezielle Magnetfalle zur Speicherung der Atome
möglichst nah an die Atome heranzubringen. Weiterhin muss noch ein Atomstrahl zum Laden der
magneto-optischen Falle (MOT) hinzugefügt werden, eine Antenne innerhalb der Kammer, um ra-
diofrequenzinduzierte Verdampfungskühlung vornehmen zu können und zwei Achsen zur optischen
Abbildung der kalten Atomwolke. All dies wurde bewerkstelligt, und es können Kondensate mit
mehreren hunderttausend Atomen erzeugt werden. Hierzu wird zunächst ein Atomstrahl mit einem
e�usiven Ofen erzeugt, der mittels eines Zeeman-Abbremsers vorgekühlt wird und eine MOT lädt.
Die Funktionsweise einer MOT basiert auf einer geschickten Kombination von sechs Laserstrahlen
und einem magnetischen Quadrupolfeld, das es erlaubt, die Atome nicht nur zu kühlen, sondern auch
räumlich einzufangen. Mit dieser Methode werden typischerweise 1010 Atome in der MOT gefangen
und anschlieÿend mittels Molassenkühlung auf wenige 10 �K heruntergekühlt. Als nächstes wird
diese so vorgekühlte Wolke in eine rein magnetische Falle transferiert. In unserem Fall handelt es
sich dabei um eine Io�e-Pritchard artige Kleeblattfalle. Eine weitere Verringerung der Temperatur
wird durch evaporatives Kühlen erreicht. Bei dieser Methode werden Atome mit hoher kinetischer
Energie aus der Falle durch das Einstrahlen einer passender Radiofrequenz entfernt. Über elastis-
che Stöÿe rethermalisieren sie zu einer tieferen Temperatur und erreichen schlieÿlich bei wenigen
100 nK die kritische Temperatur, bei der der Grundzustand der Falle makroskopisch besetzt wird
und das BEK entsteht. Dabei wurden alle wichtigen Kenngröÿen der einzelnen Kühlschritte sowie
des Kondensats ausführlich untersucht, sodass es nun möglich ist, im täglichen Betrieb zuverlässig
Kondensate im Minutentakt herzustellen.

Experimentelle Ergebnisse

Nachdem der Aufbau charakterisiert wurde, konnten erste Experimente durchgeführt werden, die
für die beiden angestrebten Projekte (Rydberg-Materie und Spin-Boson Modell) entscheidende
Grundlagen darstellen.

Die Rydberganregung in einen de�nierten Zustand erfolgt mittels eines schmalbandigen Lasersys-
tems durch eine zwei-Photonen Anregung. Um die Rydbergatome selektiv detektieren zu kön-
nen, wurden zwei Multikanalplatten (MCP) eingebaut. Durch Anlegen eines starken elektrischen
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Feldes, das durch die Feldplatten erzeugt wird, werden die Rydberatome feldionisiert und mit einem
geeigneten Feldgradienten in die MCP gelenkt und dort detektiert. Mit dieser Anordnung wurde
eine Au�ösung von ca. 100 Rydbergatomen erreicht. Um die Felder die durch die acht Feldplatten
erzeugt werden zu testen, wurde die Starkverschiebung des 43S Zustandes für verschiedene Feld-
kon�gurationen ausgemessen und mit theoretischen Modellen verglichen, was zu einer sehr guten
Übereinstimmung führte. Weiterhin wurde die Lebensdauer des 43S Zustandes gemessen, und auch
diese Resultate stimmen gut mit den theoretischen Modellen überein.

Für das zweite Projekt, der experimentellen Untersuchung des Spin-Boson Modells, wurde ein eindi-
mensionales Gitter aufgebaut und charakterisiert. Dieses Gitter wird in einem nächsten Schritt auf
zwei Dimensionen erweitert um eindimensionale Quantengase erzeugen zu können, die später mal
das bosonische Bad darstellen sollen. Um die Gittertiefe bestimmen zu können, wurde ein BEK an
dem Gitterpotential gebeugt und die Beugungsordnung als Funktion der Wechselwirkungszeit de-
tektiert. Durch Vergleich mit einem theoretischen Modell konnte die Gittertiefe auf 5% Genauigkeit
bestimmt werden.

Als drittes Resultat wurde ein Mikrowellensystem bei 6.8 GHz aufgebaut, was gerade der Hyperfein-
aufspaltung von 87Rb entspricht. Mit einer speziellen Helixantenne wurde die Mikrowellenstrahlung
auf eine lasergekühlte Atomwolke gerichtet, und es wurden kohärente Rabioszillationen beobachtet.
In Kombination mit dem Radiofrequenzsystem der Verdampfungskühlung ist es nun möglich, die
Atome in jeden beliebigen magnetischen Grundzustand kohärent zu transferieren.

Theoretische Ergebnisse

Schlieÿlich wird noch ein Vorschlag zur experimentellen Untersuchung der lichtinduzierten Dipol-
Dipolwechselwirkung vorgestellt. Wenn Atome einer elektromagnetischen Welle ausgesetzt sind,
verhalten sie sich wie ein gedämpfter harmonischer Oszillator und weisen ein oszillierendes Dipol-
moment auf. Die Atome erfahren eine Kraft über die Potentiale, die durch die Dipolmomente aller
Atome in einer atomaren Wolke erzeugt werden und werden darin beschleunigt. Jedoch weisen die
Dipolpotentiale eine Retardierung auf der Längenskala der Wellenlänge des eingestrahlten Lichts
auf. Damit sich die einzelnen Potentiale nicht zu Null mitteln, ist es nötig, die Dichteverteilung
der Atome auf wenige Wellenlängen einzuschränken, was mit Hilfe von optischen Gittern möglich
ist. Der resultierende Impulsgewinn durch die Wechselwirkung sowie der Beitrag durch spontane
Streuung wird im Detail diskutiert.
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When in 2002 the Nobel prize was given to Eric Cornell, Carl Wieman and Wolfgang Ketterle
for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early
fundamental studies of the properties of the condensates [93, 94, 95], did this not denote the
end of a well settled research �eld but rather a beginning. This notion is propped by �gure 1.1.
It shows the annual amount of published articles in the �eld of quantum degenerate gases, which
must include some experimental results to be counted. The annual number of publications with
only theoretical content is roughly thirty times as large [96] and reached in the year 2005 a value of
more than 3500 articles. All in all more than 20.000 articles have been written on this topic since
the �rst experimental observation of Bose-Einstein condensation in 1995 until the end of 2006.
The relative increase of publications is more or less constant over the last ten years and seems
not to level o� in the near future. This ascent is also owed to the number of experimental groups
working worldwide on degenerate quantum gases, which reached by now roughly eighty running
individual experimental setups distributed among �fty research groups worldwide.
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Figure 1.1: Publications per year in refereed journals with an experimental content regarding quantum

degenerate gases. This includes Bose-Einstein condensates as well Fermi-gases below the Fermi temperature.

The bar chart was compiled with the help of the homepages of the individual experimental groups, the ISI

web of knowledge, google scholar and the journals themselves. The error of the annual count is at most

underestimated by 10%.

The year 1924 was decisive for nowadays cold atom physicists in three manners. Satyendra Nath
Bose and Albert Einstein established theoretically the existence of a Bose-Einstein condensate
[97, 98, 99] by using statistical physics. In the same year published Louis-Victor de Broglie his
PhD-thesis on quantum theory in which he proposed the wave-particle duality [100]. The matter-
wave character of a Bose-Einstein condensate is a direct implementation of this idea. Finally
received Karl Manne Georg Siegbahn the nobel prize for his discoveries and research in the �eld of
X-ray spectroscopy [101], which led in combination with the advancements in quantum theory to
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a full understanding of the internal structure of atoms.

It took another 14 years until the idea of the Bose-Einstein statistic received a broader attention,
when Fritz London and Laszlo Tisza revived it to explain super�uidity in liquid 4He in 1938 [21, 102].
Although the properties of super�uid liquids or superconductors are closely related to the Bose-
statistics, is the description as an ideal gas not su�cient to describe this systems. A loophole from
this strongly interacting systems is the changeover to weakly interacting gases. The �rst notion of
gases of Hydrogen atoms as a system for Bose-Einstein condensation was given by C.E. Hecht in
1959 [103] and emphasized by a more quantitative analysis by W.C. Stwalley and L.H. Nosanow in
1976 [104].

But it needed the development of methods to cool and trap atoms with laser light [105], also
honored with a Nobel prize in 1997 [81, 82, 83], which pioneered the breakthrough of the the �rst
observations of a Bose-Einstein condensate in a dilute gas of 87Rb [9], 23Na [7] and 7Li [6] in 1995.
In the following years researchers also managed to condense 1H [1], 4He [2], 41K [5], 52Cr [3],
85Rb [8], 133Cs [4] and 174Yb [10].

The research on quantum degenerate gases has evolved in such a diversity and is by now connected
to almost any �eld of physics, that it is impossible to reduce it to a simple �ip chart. In the
following I want to give a small overview over the di�erent research activities without aiming for
completeness.

As a superior topos may act the interaction among the atoms, which is a key ingredient in almost
all conducted experiments. The interaction energy in magnetically or optically trapped condensates
is about an order of magnitude larger than the quantum pressure, which pushes the atoms apart
and makes condensed clouds by this much better accessible to optical imaging techniques. By
this researchers could produce detailed pictures of BECs and was probably crucial for the tremen-
dous success of the whole research �eld. In the beginning researchers investigated all kind of
collective (hydrodynamic) excitations of trapped condensates as dipole modes, quadrupolar modes,
shape oscillations, breathing modes or scissor modes [13, 14, 15, 16, 17] and their corresponding
damping mechanisms. Another kind of collective excitation are phonon modes [18, 19, 20] with
their corresponding structure factor [106]. A phonon-like energy-momentum dispersion relation
in combination with a macroscopic quantum coherence does not allow the generation of elemen-
tary excitations below a critical velocity [21, 22], which is commonly known as super�uidity. The
existence of a super�uid phase has been shown with several methods [23, 24, 25], but has its
most intriguing proof by the generation of quantized vortices [26, 27, 28]. The evidence that the
produced vortices are really quantized ones, has been provided by an interference experiment [29],
which clearly showed the azimuthal phase twist by 2�. Interferometric techniques have been used
in the �rst place to show the macroscopic coherence of Bose-Einstein condensates [30], but were
soon expanded to measure the phase of condensates [31, 32], accelerations [67] or fundamental
constants [33].

As claimed before interactions are the heart of Bose-Einstein condensate physics. This is most
noticeable in a set of diverse experiments based on a nonlinearity imparted by the interactions
among the atoms. This arises for example in four wave mixing of matter waves [37] or in the
existence of solitons [34, 35, 36]. Nature delivered by chance a knob to adjust the scattering length
of the atoms by applying a certain magnetic �eld, the Feshbach resonances [38, 39, 40, 41, 42].
This e�ect made the �rst production of a molecular Bose-Einstein condensate possible [43, 44].
But molecular condensates do not have to consist only of bosonic atoms but can also be created
with two fermionic atoms [45, 46, 47].

This racy overview omitted some major achievements which shall not be forgotten. This are the
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demonstration of several atom lasers [48, 49, 50], matter wave ampli�ers [51, 52], slow light
propagation [53, 54], spinor condensates [55, 56, 57], the generation of a Tonks-Girardeau gas
[58, 59], the detection of an E�mov state [60], the generation of entanglement [61] and �nally
all the e�ort put into the miniaturization of the experimental setups for generating Bose-Einstein
condensates [107, 108]. A major domain of current research are solid state related topics, which
will be presented in the following chapter separately, because of its special connection to this thesis.

After recapitulating the research of the last ten years remains the question on the future of cold
atom physics. A survey of recent theoretical publications allows one to distill future research
tendencies but one has to be aware that experimental research often discover new e�ects which
were on no ones mind.

With the successful condensation of Chromium [3], one has the �rst BEC with a noticeable dipolar
interaction [109] at hand, which has triggered already a large amount of theoretical work. Bose-
Einstein condensates have also been widely discussed as a source for precision experiments for e.g.
measuring accelerations and rotations [63] or fundamental constants [62]. But the major fraction
of theoretical publications deals with solid state related topics, which are partly discussed in the next
section. Other directions may be the measurement of the permanent dipole moment of the electron
[64], the usage of condensates as a coherent source for atom lithography [65] or building hybrid
systems made of condensates and some solid state device [66]. Finally it should be mentioned that
there is condensate physics beyond cold atoms, as was shown just recently by reaching quantum
degeneracy with exciton polaritons at room temperature [11] and also with magnons [12].

1.1 Cold atoms meet solid state physics

Experimental and theoretical solid state physics mostly focuses on the electronic properties and the
structure of crystal matter. Ultra-cold atomic gases are usually in an unordered state, but they
can be structured by transferring them into a periodic potential, for instance into one produced by
the interference pattern of two laser beams. Now the atoms adopt the role of the electrons in a
solid and the optical lattice potential the tight-binding potential of the remanent ions. The weak
interactions among the cold atoms, the variability of the optical lattices (depth, geometry, lattice
constant) and the control over the internal and external quantum state of the atoms makes this
an ideal construction kit for many fundamental questions.

The conjunction of a Bose-Einstein condensate with an optical lattices was achieved for the �rst
time in 1998 [67]. Bloch oscillations [110, 111] were observed, when a condensate was falling
downwards in a vertical lattice potential [67]. The corresponding con�rmation of Bloch oscillations
in a solid state system happened only �ve years earlier in a semiconductor superlattice [68]. Further
experiments with one-dimensional lattices also established Wannier-Stark ladders [69] and Landau
Zener tunneling [70]. Of large interest in solid state physics are Josephson junctions [112] which
are widely discussed as qubits for quantum information processing. Also this can be imprinted on
cold atom physics with the help of optical lattices [113].

A major breakthrough constitutes the experimental realization of a Mott-Insulator [71, 72] with a
Bose-Einstein condensate con�ned in a three-dimensional optical lattice. Up to now there exists no
analogous �nding in a solid state system. The theoretical description of bosonic atoms in optical
lattices is usually done with the Bose-Hubbard model [73]. The investigation of strongly correlated
atomic systems is just at a start and much insight into theoretical intractable problems can be
expected [74]. Another famous model in solid state physics is the Spin-Boson model [75], which
describes the coupling of a pseudo-spin to a bosonic bath. This coupling induces a dissipation on
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the spin depending on the properties of the bath. Also this model can be translated, as in the case
of the Bose-Hubbard model, into cold atom physics [76, 77]. Such an implementation requires in
principle not the periodicity of an optical lattice, but systems of lower dimensionality, which are
best doable with them. The investigation of such quantum dissipative systems is a major goal of
the experimental setup described in this thesis and will be discussed in more detail in chapter 6.2.1.

There exists also another way to do solid state physics with ultracold atoms. Quantum degenerate
Fermi gases [114, 115, 116] are an ideal system to study high temperature superconductivity. The
super�uidity of a Bardeen-Cooper-Schrie�er state of strongly interacting Fermions at only a tenth
of the Fermi temperature has been shown by monitoring quantized vortices [117].

1.2 Rydberg matter

Joseph von Fraunhofer discovered in 1814 in the spectrum of the sun light distinct dark lines, which
was the �rst indication for a discretization of the energy levels in atoms [118]. About half a century
later Gustav Kirchho� and Robert Bunsen noticed that all elements exhibit characteristic spectral
properties [119]. They actually also discovered the element Rubidium by doing spectroscopy on
mineral water from Bad Dürkheim (Rheinland Pfalz). Johannes Rydberg established then in 1888
an empirical equation, which described the wavelengths of the spectral lines of a Hydrogen atom
[120]. But it was not until the discovery of quantum mechanics, that a full understanding of the
spectral properties were possible [121].

Rydberg atoms are excited atoms with one or more electrons that have a very high principal quantum
number [78]. First experimental investigations of Rydberg atoms were only possible in plasmas or by
astronomical observations, where they arise from ion-electron recombination [79]. The invention of
lasers made it eventually possible to excite atoms into a speci�c state. The properties of Rydberg
atoms where examined in the following years in a broad manner [80], but until a decade ago only
in room temperature vapor cells or atomic beams. The development of laser cooling [81, 82, 83]
provided at once atomic samples in the �K regime. The combination of both techniques founded
the research �eld of frozen Rydberg gases [84, 85]. The name re�ects the fact, that during
the time-scales of the conducted experiments or the excited state lifetime of the Rydberg states,
the atoms are only minimally displaced by thermal motion. This allows a much more sensitive
investigation of the interactions among the atoms. This can be the dipole-dipole interaction or
the van-der-Waals interaction, which can be quite large due to the large polarizability of Rydberg
states. Such an interaction can induce a blockade e�ect for excitation of close by atoms, which
has been studied by several groups [86, 87, 88, 89, 90]. This nonlinearity of the dipole blockade
e�ect was proposed to be used as a c-NOT gate for quantum information processing [91].

The advancement of Rydberg research to ultra-cold and also much denser samples of gases ex-
panded the parameter range for researchers by several orders of magnitude and opened by this
many new opportunities. A logical consequence is the next step towards even colder and denser
samples, the Bose-Einstein condensates. The control over the internal and external states of Bose
condensed samples expands the possibilities to a large variety of novel experiments. This is the
other main route of the experimental setup described in this thesis and more details on planned
experiments can be found in chapter 6.2.2.
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1.3 This thesis

In this thesis I present the realization of an experimental setup for up-to-date research on degenerate
quantum gases. The performance of the assembly with all its components was tested carefully and
�rst experimental results on Bose-Einstein condensates were achieved. The presetting for this
project was to create a setup, which is as versatile as possible, but avoids any disturbance for an
e�cient performance of BEC production. By including components for electric �eld generation
and specialized charged particle detectors is this vacuum chamber in combination with degenerate
quantum gases a unique tool for the experimental investigation of ultra-cold Rydberg matter. Just
as well innovative is the e�ort to explore the physics of the Spin-Boson model, which will be a
major advancement for a better understanding of decoherence in many systems.

In chapter 1 I recapitulate the research �eld of quantum degenerate gases and show in which
manner this project will contribute. The required theoretical tools for laser cooling, Bose-Einstein
condensation, manipulation of matter waves and and the basic properties of Rydberg atoms are
reviewed in chapter 2. Chapter 3 deals then with the whole experimental setup and characterizes
the system performance starting from the thermal gas in the oven step by step till the generation
of Bose-Einstein condensates. With this chapter is the basic operation of the system demonstrated
and I present in chapter 5 three experiments, which are important foundations for both planned
projects. Chapter 4 presents a proposal to measure the e�ects of light induced dipole potentials in
momentum space. The thesis closes with chapter 6, which summarizes the work done and gives
an detailed description and working plan for the intended experiments on Rydberg matter and the
Spin-Boson model.





2 Theoretical foundations

The production of Bose-Einstein condensates (BEC) consists of many di�erent experimental steps
[122]. The interactions of the atoms with light �elds, magnetic �elds, radio-frequency �elds or
among themselves is used in each step in di�erent combinations to cool down an atomic sample
to quantum degeneracy. This chapter gives an outline of the required theoretical background for
each type of interaction and its physical implementation. Almost all experimental steps exploit the
interaction of atoms with electromagnetic �elds. The basic theoretical description of atom light
interaction and its extension to laser cooling methods is given in chapter 2.1. Magnetic �elds are
used to design conservative potentials, especially trap con�gurations as shown in chapter 2.2. The
inherent limitations of laser cooling are bypassed by the evaporative cooling method (see chapter
2.3) which leads �nally to quantum degeneracy. The basic properties of BECs and the in�uence of
interactions among the atoms is discussed in chapter 2.4. Another way to generate conservative
potentials besides magnetic �elds is given by far o� resonant dipole potentials (see chapter 2.5),
which �nds an applications in the generation of an optical lattice. Finally is an outline on the
properties of Rydberg atoms given in chapter 2.6.

2.1 Atom-light interaction

For a simpli�ed description of the the atom-light interaction we assume a two level system with a
ground state jgi and an excited state jei which are separated by an energy ~!0. This two level
system is exposed to a single mode light �eld with energy ~!L. Furthermore is the atom coupled to
all modes of the vacuum, which can be modeled by a damping � [123]. The following abbreviated
treatment follows the articles [124, 125, 126]. The full Hamiltonian of this system is given by

Hges = HA +HL +HAL +HAV : (2.1)

The kinetic energy part of the atomic Hamiltonian HA = p2=2m+~!0jeihej is from now on treated
classically. The Hamiltonian of the light �eld HL = ~!L(a

ya+ 1=2) can be omitted by assuming a
general classical light �eld ~E = ~"(~r)E(~r) cos(!Lt � �(~r)). The electric �eld component ~E of the
light �eld is de�ned by the amplitude E, the polarization ~" and the phase �. The coupling between
the atom and the light �eld is given then by HAL = �~d � ~E = �~!R

2 (e i!Lt + e�i!Lt)(jeihgj+ jgihej)
where the Rabi-frequency !R = jhgj~d � ~"jeijE0=~ was introduced. The dipole matrix element
~dge = hgj~r jei is the overlap integral between the ground stated and the excited state and is
proportional to the transition strength. The dipole moment is given by ~d = e~r and ~" is the unit
polarization vector. The damping �, given by the coupling HAV of the atom to all modes of the
vacuum, is inserted into the Liouville equation in the jgi = (0; 1) and jei = (1; 0) basis

_� =
i

~
[H; �] + �D̂� (2.2)
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by the Lindblad superoperator D̂ [127], also known as the decoherence superoperator or Dee-
operator. The application of D̂ on the density matrix � gives

D̂� = ����+ � 1

2
(�+���+ ��+��) =

( ��ee ��eg
2

��ge
2 +�gg

)
; (2.3)

where we used the raising and lowering matrices �+ and �� de�ned as

�+ =

(
0 1

0 0

)
and �� =

(
0 0

1 0

)
: (2.4)

To eliminate the terms oscillating with !L the equations are transformed into a new basis as
�ge = �gee

i!Lt , �eg = �ege
�i!Lt , �gg = �gg and �ee = �ee . Further all terms with 2!L are

eliminated (rotating wave approximation) and one obtains as a result four coupled equations:

_�ee = i!R
2 (�eg � �ge) � ��ee

_�gg = � i!R
2 (�eg � �ge) + ��ee

_�ge = � i!R
2 (�ee � �gg) � i�L�ge � �

2�ge

_�eg = i!R
2 (�ee � �gg) + i�L�eg � �

2�eg:

(2.5)

The time evolution of this equations are now dominated by the coupling !R and the laser detuning
�L = !L�!0. As a �nal step this system of di�erential equation can be reduced to three equations
without loss of information by setting u = (�ge��eg)=2, v = (�ge��eg)=2i and w = (�ee+�gg)=2.
These are the three components of a so called Bloch-vector ~� = (u; v ; w) and the equations of
motion are �nally

_u = �Lv � �
2u

_v = ��Lu � !Rw � �
2v

_w = !R � �w � �
2 :

(2.6)

By setting ~
 = (!R; 0; �L) equations (2.6) can be rewritten as _~� = ~
 � ~� which is analogous to
the motion of a spin in a magnetic �eld or a classical spinning top on which acts a torque. The
Bloch-vector precesses around ~
 with the e�ective Rabi frequency


e� =
√
!2
R + �2L: (2.7)

Of interest is the steady state solution _~�st = 0 since most experimental steps happen on a time
scale long compared to the damping �.
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ust = �L
!R

s
s+1

vst = �
!R

s
s+1

wst = �1
2

1
s+1 :

(2.8)

Here we introduced the saturation parameter s

s =
!2
R=2

�2L + �2=4
=

I=Isat

1 + 4�2l =�
2
; (2.9)

where I � E2 is the intensity of the applied light �eld and the saturation intensity is

Isat =
~!3

0�

12�c2
=
�hc�

3�30
: (2.10)

The saturation intensity depends on the wavelength �0, respectively the frequency !0 of the tran-
sition and the lifetime � of the excited state. In steady state the most relevant result is the
spontaneous scattering rate of photons �scatt = �

2
s

s+1 which is determined by the spontaneous
decay rate � of the steady state excited state fraction. This inelastic scattering rate is directly
connected to cooling or heating rates of atomic samples.

To extract the forces an atom experiences in the generalized light �eld ~E = ~"E(~r) cos(!Lt ��(~r))
it is advantageous to use the Ehrenfest theorem ~F = mh�~ri = hr(~d � ~E)i. In steady state the time
averaged force consists of two parts:

~F = �~ustr!R︸ ︷︷ ︸ �~!Rvstr�︸ ︷︷ ︸
~Fdip ~Fspont

: (2.11)

The �rst term ~Fdip is the dipolar force, which is a conservative force and allows coherent manipu-
lation of matter waves like e.g. di�raction in optical lattices [128]. The second term ~Fspont is the
spontaneous force which is dissipative and can be used to heat or cool atomic samples [125].

2.1.1 Doppler-cooling

The second term in equation (2.11) can be used to slow down and therefore cool atoms. Let
us assume an atom located within one laser beam which is set to be a plane wave with wave
vector ~kL. The phase of the light �eld is then � = ~kL � ~r . The spontaneous force calculates to
~Fspont = !Rvst~~kL = �

2
s

s+1~
~kL where the steady state values of equation (2.8) have been inserted.

The atom absorbs photons from the laser beam and receives with each scattering process one
photon recoil in the direction of the wave vector. After excitation the atom decays within in the
lifetime � back into the ground state and receives a nondirectional momentum due to the emitted
photon. The spatial symmetry of the radiation pattern of the spontaneous emission (see appendix
D) entails that the center of mass of multiple recoils add up to zero. But there remains a random
walk in momentum space which is equivalent to a heating process that only scales with the square
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Figure 2.1: Spontaneous force on an atom in an one dimensional Doppler-cooling setup. The atom is

irradiated by two counter-propagating laser beams denoted with +, respectively -. The red and green line

represent the forces induced by each individual laser beam. The sum (blue line) of both forces can be

approximated linearly (grey line) for small velocities.

root of scattered photons [125]. This heating can be modeled by a Brownian motion in momentum
space.

In a next step one has to include the Doppler-shift of the atoms, which move with a certain velocity
~v relative to the propagation of the laser beam. The Doppler-shift ~kL � ~v alters the resonance
frequency of the atomic transition and with this the scattering rate. The �rst proposal to use the
Doppler e�ect of the atoms and laser radiation for cooling dilute gases was already released in
1975 [129]. The idea consists of two parallel, but counter-propagating laser beams. The so called
Doppler-cooling technique requires, that both laser frequencies are detuned to the red relative to
the atomic resonance frequency. In one dimension the entire force on the atoms is then

~F = ~kL

 I=Isat

1 + I=Isat + 4
(
�L � ~kL � ~v

)2
=�2

� I=Isat

1 + I=Isat + 4
(
�L + ~kL � ~v

)2
=�2

 : (2.12)

For small velocities, namely jkv j � �, this force can be linearized and is equivalent to an ordinary
friction term.

~F � �8~k2L�LI=Isat ~v
�(1 + I=Isat + (2�L=�)2)2

= ��~v: (2.13)

The atoms motion is damped in this frictional environment which is commonly known as optical
molasses [130].

The heating rate of the cloud by the momentum di�usion combined with the cooling rate results
in an optimum steady state temperature at �L = ��=2 [130]. The obtained temperature is the so
called Doppler-temperature TD. In one dimension it is given by

TD =
~�

2kB
(2.14)
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Figure 2.2: Principle of magneto-optical trapping of atomic clouds. Depicted are the Zeeman shifted energy

levels (black lines) for a J=0!J=1 system. The strength and the direction of the magnetic �eld is indicated

by the green arrows. If an atom is located to the left, with respect to zero magnetic �eld at z=0, it is shifted

into resonance with respect to the laser beam coming in from the left and is pushed back to the center.

and is e.g. for Rubidium 146 �K [131].

2.1.2 Magneto-optical trapping

The Doppler-cooling mechanism described in the section before is unfortunately space invariant
and can not be used to trap a sample of cold atoms in space. But by combining the spontaneous
force with a spatial dependent magnetic �eld this becomes possible. Such a magneto-optical trap
(MOT), consisting of three orthogonal pairs of counter propagating laser beams and a magnetic
quadrupole �eld, was �rst demonstrated in 1987 [132]. The magnetic �eld shifts the atomic
transition frequencies as (g0Fm

0
F � gFmF )�BB where the primes denote the excited state, �B

the Bohr magneton and B the magnetic �eld. It is the magnetic sublevels of the atoms and their
di�ering Zeeman shifts, which make spatial dependent forces possible. The magnetic �eld is chosen
to be a three dimensional quadrupole with a zero magnetic �eld at the center, which coincides with
the center of the trap. The detuning �L is again negative and the polarizations have to be circular
as shown in �gure 2.2

To calculate the forces in a MOT equation (2.12) has to be expanded by the Zeeman term �e�B
0z=~

where B0 is the magnetic �eld gradient. The e�ective magnetic moment �e� is the median of the
magnetic moment of all possible transitions and is 5/6�B for the F=2 !F=3 transition in 87Rb.
The total force in one dimension is then

~F = ~kL

 I=Isat

1 + I=Isat + 4
(
�L�~kL�~v��e�B0z=~

�

)2 � I=Isat

1 + I=Isat + 4
(
�L+~kL�~v+�e�B0z=~

�

)2
 : (2.15)

This force can also be linearized for small velocities and small distances and yields

~F � ��~v � �~r : (2.16)
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The friction coe�cient � is identical to the coe�cient calculated for pure Doppler-cooling in section
2.1.1. The second term �~r adopts the form of a restoring force in a harmonic oscillator. Both
forces together are equivalent to a damped harmonic oscillator. The spring constant calculates to
� = �e�B

0�=~kL. Starting from this equations several properties of the MOT can be calculated
analytical as e.g. the density distribution, size, capture range and so on [132, 133]. These solutions
are valid for noninteracting samples, hence samples with small atom numbers up to one million
atoms. There exist several semi-empirical results on larger clouds up to 107 atoms [134, 135, 136,
137, 138, 139] but this is still a small atom number compared to our MOTs with well more than
1010 atoms. In this regime the properties of the cold cloud are dominated by the high optical
density and radiation trapping e�ects which make a theoretical description up to now impossible.

2.1.3 Polarization gradient cooling

In experiments with small magneto-optical traps the measured temperatures are up to ten times
smaller than the expected Doppler-temperature. The reason for this is the magnetic substructure
of the atoms and optical pumping between these levels. This method is called polarization gradient
cooling, optical molasses or Sysiphus cooling depending on the polarization properties of the laser
beams and is discussed to quite some extend in [140, 130].

The physical situation in our experimental setup consists of three pairs of counter propagating laser
beams with �+ and �� polarization respectively. The light creates a periodic potential which di�ers
for the di�erent magnetic substates. The atoms are preferentially pumped from one magnetic
sublevel of one hyper�ne state at a potential maximum into another magnetic sublevel within the
same hyper�ne state into a minimum of the potential. By this the atom climbs repeatedly uphill in
the optical potential and looses by this kinetic energy.

We use the grey molasses scheme, where the detuning of the cycling laser is negative by some
line widths with respect to resonance [141]. This limits multiple scattering e�ects by the reduced
optical thickness. To ensure that all atoms within the cloud see the same potential, all magnetic
�elds have to be switched o�. Furthermore additional coils are used to compensate the earth
magnetic �eld, which already causes a disturbance for this cooling scheme. The temperature of an
atomic cloud cooled in such a manner scales as T � I=�L [140, 130] and is ultimately limited by a
single photon recoil, which corresponds for Rubidium to a temperature of 392 nK [131].

2.2 Magnetic trapping

The interaction of atoms with magnetic �elds can be used to create conservative potentials, partic-
ulary traps, for cold atom clouds. The advantage of such traps is the absence of heating processes
as found in MOTs (see chapter 2.1.2). To actually trap neutral particles one has to generate a local
�eld minimum or a local �eld maximum. But the latter is forbidden by the Maxwell equations [142].
The magnetic dipoles interact with the �eld by the Zeeman-e�ect. For not too large magnetic
�elds, the energy shift of the atoms is linear with the magnetic �eld strength as

E = gfmF�Bj~Bj: (2.17)

If now the Zeeman energy for a magnetic sub-level of an atom increases with increasing magnetic
�eld, they will feel a force towards the �eld minimum. Such states are commonly referred to as
weak �eld seekers. At larger �elds the hyper�ne coupling is lifted and the energy shift can be
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Z

Figure 2.3: The cloverleaf magnetic trap. Two identical units are mounted on the opposite sides of the

vacuum chamber to trap atoms in the geometric center of the setup. In each unit four gradient coils (blue)

are aligned in one plane with two circular coils (green). By increasing the distance between the small pinch

coils (green) along z, compared to a Helmholtz con�guration, one achieves a curvature of the magnetic �eld

in the center. To compensate the o�set �eld, produced by the pinch coils one has to add two bias coils

(red) in Helmholtz con�guration. The arrows indicate the direction of the applied currents.

described with the Breit-Rabi equation [143] (see also Appendix B). In conventional experimental
setups, the magnetic �elds are generated by current carrying loops, which has the advantage that
the trapping geometry can easily be changed in time.

As long the magnetic �eld varies slowly compared to the energy splitting between di�erent magnetic
sub-states, the orientation of the magnetic moment will follow the magnetic �eld adiabatically. A
change in the magnetic �eld can be caused either by the motion of the atoms within the inho-
mogeneous �eld or by temporal change of the applied �elds. This limitation can be expressed
as

!Larmor �
∣∣∣∣∣ ddt

(
~B(t)

j~B(t)j

)∣∣∣∣∣ ; (2.18)

with the Larmor-frequency !Larmor = �B=~. If this constrain is violated the atoms can change their
spin in a so called Majorana spin �ip process [144, 145] and get transferred into other magnetic
sublevels, likely non-trapped states.

2.2.1 Cloverleaf trap

There exist several methods to generate a minimum in a magnetic �eld distribution by current
carrying coils. The simplest realization is an arrangement of two coils in anti-Helmholtz con�gu-
ration which gives a three dimensional quadrupolar �eld [146]. This is also the �eld con�guration
needed for magneto-optical trapping. The spherical quadrupole trap can be used to store atoms,
but is disadvantageous due to a point of zero magnetic �eld in the center. At this point the atoms
can easily undergo Majorana spin �ips and leave the trap. There are di�erent designs for static
magnetic traps with a non-zero magnetic �eld at its minimum. These are Io�e-Pritchard type traps
[147, 148], optically plugged Io�e-Pritchard traps [7], top traps [149], baseball traps [150], quic
traps [151], circular waveguides [152] and micro-structured planar z-traps [153].
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A special version of a Io�e Pritchard trap is a so called cloverleaf trap [154, 155]. The principal
geometry of a cloverleaf trap is shown in �gure 2.3 and the actual design as used in our experimental
setup is shown in �gure 3.9. The magnetic �eld generated by this con�guration of coils can be
approximated in second order to

~B(~r) =

 0

0

1

B0 +

 x

�y
0

B0

 �xz
�yz

z2 � 1
2(x

2 + y2)

 B00

2
: (2.19)

B0 is the magnetic �eld o�set, B0 the �eld gradient and B00 the curvature. The potential seen by
the atoms is given by U = gFmF�Bj~B(~r)j, with

j~B(~r)j =
√(

B0 +
B00

4
(2z2 � x2 � y2)

)2

+

(
B0y +

B00

2
yz

)2

+

(
B0x +

B00

2
xz

)2

: (2.20)

For small distances this potential can be expanded to second order

Uharm = gFmF�B

(
B0 +

1

2

(
B02

B0
� B00

2

)
(x2 + y2) +

1

2
B00z2

)
; (2.21)

which represents a harmonic oscillator potential U = 1
2m!

2
��

2 + 1
2m!

2
z z

2. The oscillation frequen-
cies exhibited by particles in such a potential are commonly referred to as trapping frequencies:

!� =

√
gFmF�B

m

(
B02

B0
� B00

2

)
!z =

√
gFmF�B

m B00;
(2.22)

where � =
√
x2 + y2.

For larger temperatures or small o�set �elds the atomic cloud extends radially far into regions
beyond the harmonic oscillator approximation and the trapping potential can be approximated
linearly as

Ulin = gFmF�B

(
B0�+

1

2
B00z2

)
: (2.23)

The axial harmonic oscillator approximation is retained.

From interest are the density distributions and the peak densities in the di�erent regimes. Gen-
erally the density distribution is given by n(~r) = n0 exp(�U(~r)=kBT ) with the peak density
n0 = N=

∫
exp(�U(~r)=kBT )d3r . Explicit expressions are given in the table 2.2.1.

The linear regime is separated by the harmonic one, when the cold cloud extends in the linear
regime into a magnetic �eld comparable with the o�set �eld as ��B0 � B0, where �� was de�ned
in table 2.2.1. To calculate reliable peak densities in this intermediate regime one has to use a
numerical integration algorithm. 1

1Reliable results were produced with the Monte-Carlo Method from Mathematica (Wolfram Research).
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Harmonic regime Linear regime

Radial width �� =
√

kBT

gFmF�B

�
B02

B0
�B00

2

� = 1
!�

√
kBT
m �� =

kBT
gFmF�BB0

Axial width �z =
√

kBT
gFmF�BB00 =

1
!z

√
kBT
m �z =

√
kBT

gFmF�BB00 =
1
!z

√
kBT
m

Density distribution n(~r) = n0 exp
(
� �2

2�2�
� z2

2�2z

)
n(~r) = n0 exp

(
� �

��
� z2

2�2z

)
Peak density n0 =

N
(2�)3=2�2��z

n0 =
Np

8��2��z

Mean density n = n0
23=2

n = n0
25=2

Table 2.1: Properties of an atomic cloud con�ned in a magnetic trapping potential. The harmonic regime

is described by an three-dimensional harmonic oscillator potential as given in equation (2.21). In the linear

regime the axial potential remains harmonic, but is radially changed to a constant gradient potential B0� as

indicated by equation (2.23).

The axial curvature B00 has also a contribution into the radial direction as can be seen in equation
(2.20). At some point this part cancels out the curvature of the radial con�nement and the atoms
can get lost at these so called instability points. These points are given by solving |.B(x; 0; z)j=dx =

0 and are located at

zinst = �
(
B0

B00 �
B0

2B0

)
: (2.24)

Another aspect of magnetic trapping is the in�uence of gravity. The atoms get dragged down
in a harmonic trap by the gravitational force as �sag = 2g=!2

� , with g = 9:81m/s2 being the
acceleration due to gravity. In a purely linear trap, the �eld gradient has to be larger than mg

mF gf �B

to keep the atoms trapped.

In the experimental procedure of BEC-production di�erent trapping �eld geometries are needed.
The cold atomic cloud, which was prepared by laser-cooling methods as described above, has to
be transferred into a suitable magnetic trap. This means during transfer the loss in temperature,
density and atom-number should be minimized. The density distribution of the cold cloud after
molasses cooling is in a good approximation Gaussian in all three directions. The parameters B0,
B0 and B00 have to be adjusted such, that for the given temperature the widths �i of the trapped
cloud match. With an increasing size of the molasses cooled cloud the curvatures of the magnetic
�eld potential have to be reduced more and more. This can be done axially only by reducing the
currents in the Pinch-coils. Radially one can either reduce the currents in the clover-leaf coils or
increase the o�set �eld via the current in the Bias coils. This procedure causes several problems. A
reduction of the currents comes along with a reduced trap depth and hotter atoms will be lost from
the trap. Another problem is the nearly isotropic shape of the laser-cooled cloud. If the radial and
axial curvature converge to the same value, then the instability points migrate towards the trapping
center and even less atoms can be trapped. It is even impossible to generate an isotropic trapping
potential with Io�e-Pritchard type traps [155]. The last complicacy is the increased gravitational
sag. This can be handled either by shifting the magneto-optical trap downwards with an additional
gradient �eld along the direction of gravity to the new minimum position of the catching potential
or by shifting the magnetic trap minimum upwards by an constant magnetic �eld along gravity.
The latter is harder to do, since the �elds in the catching trap are larger than in a magneto-optical
trap.
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After the atoms were successfully transferred into a mode-matched trap, the density of the cloud
has to be increased. This increases the elastic collision rate, which is necessary for e�cient evap-
orative cooling. The con�nement of the trap is done adiabatically, which causes also a rise of the
temperature as

Tlin =

(
�

e

gFmF�B
kB

B0;harm

B02
lin

√
B00
lin

B02
harm

√
B00
harm

)1=4

T
3=4
harm: (2.25)

The trap geometry changes during compression from a three dimensional harmonic (harm) oscillator
to a radially linear (lin) trap. Although this compression is done adiabatically the phase space density
is increased by Euler0s constant e, which is caused by the di�erent geometries of the traps.

The increased density allows now for e�cient evaporative cooling. The peak density in the linear
case scales as n0 � T�5=2 whereas in the harmonic trap only as n0 � T�3=2. But sometimes it is
advantageous to reduce the con�nement during evaporation, to avoid density dependent inelastic
three body collisions as described in chapter 2.4.

2.3 Evaporative cooling

Laser cooling has its limits in temperature and density as discussed in chapter 2.1.3. There exists
up to day no concept to reach quantum degeneracy by pure optical cooling techniques, therefore
a di�erent kind of cooling method is needed2. The principle of the forced evaporative cooling
method is to remove above average hot atoms from the atomic cloud and let the remaining atoms
rethermalize [157]. By the truncation of the hottest atoms of a Maxwell-Boltzmann distribution,
the remaining atoms reside in a non-equilibrium situation. If the energy of the remaining atoms
is redistributed along all atoms according to a Maxwell-Boltzmann distribution, is the temperature
reduced. Essential for this thermalization process are collisions between the atoms. It takes only
about �ve collisions per atom to �nd the cold cloud again in thermal equilibrium, after the hot atoms
were removed [158]. The elastic scattering rate is given by �scatt = n�v . Although the velocity
drops with falling temperature, does the scattering rate increase with proceeding evaporation, due
to the larger gain in density. This regime is called runaway evaporation. The time needed to reach
quantum degeneracy is limited by the losses of atoms due to background collisions, namely the
trap lifetime.

To quantify the performance of an experimentally conducted evaporative cooling step it is common
to express it as the gain in temperature or phase space density with respect to the lost atoms. The
e�ciency � of the evaporative process is expressed in temperature gain per atom loss

� =
d(lnT )

d(lnN)
=

_T=T

_N=N
(2.26)

and the e�ciency � is the gain in phase space density (psd) per atom loss

� =
d(ln psd)
d(lnN)

=
_psd=psd
_N=N

: (2.27)

2The evaporation to quantum degeneracy in a purely optical dipole trap [156] is sometimes referred to as an all

optical method.
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Figure 2.4: Schematic sequence of the evaporative cooling technique. From an sample with a Maxwell-
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and a temperature Ti the hottest atoms (T >

Ecut=kB) are removed. The remaining atoms are not anymore in thermal equilibrium. After some collisions

the cloud follows again a Maxwell-Boltzmann distribution, but at lower temperature Tf .

The truncation parameter � gives the ratio of the temperature of the cold cloud and the cuto�
energy.

� =
Ecut

kBT
: (2.28)

The removal of the hottest atoms can be either done by lowering the trap depth, as it is done in
dipole traps [156], or by addressing them with radio-frequency �elds. The �rst method has the
disadvantage that with the reduction of the trap depth, usually also the con�nement is reduced
and by this the elastic scattering rate. This is for magnetically trapped particles not the method of
choice, since evaporation can be accomplished at full con�nement. In a magnetic trap the atoms
are located in the minimum of a magnetic �eld. The hotter atoms extend in regions with higher
magnetic �elds and experience a larger Zeemann-shift which allows a spatial dependent resonance
condition for the radio-frequency �eld. The rf-�eld transfers by a magnetic dipole transition the
atoms into a non-trapped state and they get lost. This is only possible if the two states coupled by
the rf-�eld have di�erent Zeeman-shifts. In 87Rb exist two di�erent transitions to do so. The most
common one is the transfer of the atoms within one hyper�ne manifold into non-trapped magnetic
sub-states by high-frequency-�elds (HF). The other one is the transfer of the trapped atoms into
an other non-trapped hyper�ne state by microwave radiation (MW). The resonance condition for
both methods is

(g0Fm
0
F � gFmF )�bjB(~r)j = ~!r f ; (2.29)

where gF is the Landé factor and mF the projection of the magnetic moment.

For a constant frequency !r f the atoms move through the region of resonance with a velocity
v . The transition probability into a non-trapped state can be derived by using the Landau-Zener
picture. The probability depends on the Landau-Zener parameter [159] which is valid for transitions
within one hyper�ne manifold

�LZ =
~!2

R

gF�B2v(dB=dr)
: (2.30)



18 2 Theoretical foundations

with the Rabi frequency !R = gF�BBr f =2~. Br f is the amplitude of the magnetic �eld produced
by the rf-�eld and dB=dr the gradient of the magnetic �eld at the position where the atoms are
in resonance. A numerical calculation for Rubidium atoms [160] showed that for a Landau-Zener
parameter more than 1 almost all atoms are transferred into non-trapped states.

2.4 Bose-Einstein condensation

As the forced evaporation cooling proceeds, the phase space density increases until the cold atomic
cloud undergoes at a critical temperature a phase transition to a Bose-Einstein condensate. The
existence of such a phase transition was already postulated in 1925 by Albert Einstein [98] based
on an article of Satyendra Nath Bose [97]. A more extended derivation of the phase transition for
a non interacting bosonic gas is given in [161]. The physics of Bose-Einstein condensates of dilute
atomic gases is reviewed in [22, 162].

2.4.1 The non-interacting Bose gas

For a theoretical description of the phase transition from a thermal gas with Bose-statistics to
a Bose-Einstein condensate we assume a non interacting Bose gas con�ned in a potential U(~r).
To model its thermodynamic properties we assume a grand canonical ensemble, which allows the
exchange of energy and particles with a reservoir [161]. The occupation number nk of a state k at
a given temperature T is given by the Bose-distribution

hnki =
1

e(�k��)=kBT � 1
; (2.31)

�k is the energy of a state k and � the chemical potential. For high temperatures this distribution
is equivalent to a Boltzmann-distribution of a classical gas. A given total atom number N �xes the
chemical potential.

N =
∑
k

hnki: (2.32)

As the temperature is reduced, the chemical potential approaches the ground state energy �0 of
the potential and the ground state population hn0i becomes a macroscopic number N0.

As a next step we want to calculate the number of atoms N �N0 not occupying the ground state

N � N0 =

1∑
k=1

1

e(�k��)=kBT � 1
�
∫ 1

0
�(�)

1

e(���)=kBT � 1
d�: (2.33)

The sum over all states (except the ground state) can be approximated by an integral with a
continuous density of states function �(�). This is allowed as long the temperature is large compared
to the level spacings. Since the density of states goes to zero for �! 0 the error made by starting
the integral from zero is negligible. The density of states is given by
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�(�) = 1
(2�~)3

∫1
�1

∫1
�1 �

(
�� U(~r)� p2

2m

)
d3rd3p

=
2�(2m)3=2

(2�~)3

∫
U<�

√
�� U(~r)d3r:

(2.34)

For temperatures above the phase transition, the density distribution n(~r) can be calculated with
the help of the normalization N =

∫
n(~r)d3r

n(~r)d3r =
1

�3dB
g3=2

(
e(��U(~r))=kBT

)
; (2.35)

where the thermal deBroglie wavelength

�dB =

√
2�~2

mkBT
(2.36)

was introduced. The poly-logarithmic function is de�ned as g�(x) =
∑1

j=1 x
j=j� [163]. For any

trapping potential reaches the poly-logarithmic function a critical value, if x ! 1, which is equivalent
with a chemical potential that approaches 0. If the phase space density (psd) reaches this point
the phase transition to the Bose-Einstein condensate occurs:

psd = max (n(~r))�3dB = g3=2(1) = 2:612::: (2.37)

In a three dimensional harmonic oscillator potential U(~r) = m
2 (!

2
xx

2 + !2
yy

2 + !2
z z

2) the density
of states is given by �(�) = 1

2(~!)3
�2. The mean trapping frequency is given by ! = (!x!y!z)

1=3.
The fraction of atoms N � N0 remaining in an arbitrary excited state evaluates to

N � N0 = g3(1)

(
kBT

~!

)3

: (2.38)

At the phase transition the ground state fraction can be set to zero (N0 = 0) and the critical
temperature in an harmonic oscillator is

Tc =
~!

kB

(
N

g3(1)

)1=3

: (2.39)

With this we can give an expression for the fraction of atoms in the condensed state

N0

N
= 1�

(
T

Tc

)3

: (2.40)

The above treatment of the phase transition is only valid for large atom numbers N ! 1. For a
�nite atom number one can not assign a de�nite critical temperature to the system. The initial
transition point is softened in a region around Tc . Theoretical and experimental studies of the �nite
size e�ects can be found in [22, 164, 165].
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2.4.2 The interacting Bose gas

Until now the interaction among the atoms was omitted, which shall now be included. It is su�cient
for dilute Bose gases at very low temperatures to model the interaction by pairwise elastic scattering
events. The scattering potential can be described by a pseudo potential [22]

V (~r � ~r 0) = g�(~r � ~r 0); (2.41)

with the interaction parameter g = 4�~2a=m and the s-wave scattering length a. The temperature
in Bose condensed gases is typically so low, that higher partial waves of the scattering amplitude can
be neglected [166]. The atoms in a Bose-Einstein condensate happen to be all in the same internal
as well external quantum state and the condensate fraction can be described with a macroscopic
wave-function �(~r). This mean �eld approach results �nally the so called Gross-Pitaevskii equation
which is a nonlinear Schroedinger equation.(

�~
2r2

2m
+ U(~r) + gj�(~r)j2

)
�(~r) = ��(~r): (2.42)

At very low temperatures or high densities the kinetic term in equation (2.42) can be neglected.
With this so called Thomas-Fermi approximation the solution is algebraic and the density distribution
calculates to

n(~r) = j�(~r)j2 = 1

g
(�� U(~r)) : (2.43)

In a harmonic oscillator potential the density distribution adopts a parabolic shape. The extension
of the condensate is given in this case by the Thomas-Fermi radius rTF, which can be calculated
by setting �� U(~r) = 0:

r2TF;i =
2�

m!2
i

: (2.44)

By using the normalization N =
∫
n(~r)d3r for the given atom number N one can also calculate the

chemical potential as [162]

� =
152=5

2

(
Na

aho

)2=5

~! =
152=5

2
(!3

p
m~

2aN)2=5; (2.45)

where we used the width aho of the harmonic oscillator ground state eigen-function, given by

aho;i =
√
~=(m!i): (2.46)

The bars indicate the geometric mean for the trapping frequencies de�ned as ! = (!x �!y �!z)1=3
and is analogous given for the harmonic oscillator ground state. Finally one can calculate the peak
density of the interacting condensate wave function

n0 =
!m

8�~a

(
15Na

aho

)2=5

: (2.47)

With the equations given in this chapter it is now possible to characterize quantitativly all physical
properties of the condensate fraction and will �nd their usage in chapter 3.11.
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2.4.3 Collisional processes

We have seen that the dominant collisional process in a Bose-Einstein condensate is elastic the
s-wave scattering and the corresponding scattering rate is given by

�elastic = nhvi�0; (2.48)

where hvi is the mean velocity in the center of mass frame of the two colliding particles and n is
the mean density. For identical bosons is the total scattering cross section given by 8�a2 with a
being the s-wave scattering length. For distinguishable particles is the total scattering cross section
reduced by a factor two to 4�a2.At such cold temperatures as found in Bose-Einstein condensates
it is fair to omit the corrections to the scattering cross section for higher temperatures.

Beyond this elastic scattering events, there exist also inelastic two body processes, by which the
internal state of the atoms is changed and they may be lost from the trap. The �rst one is a
spin exchange collision between two atoms. In this process the total magnetic moment of the two
particles mtot = m1+m2 is redistributed within the the two particles. However the total magnetic
moment has to be conserved. The spin exchange collisions rate scales with the third power of the
total magnetic moment [167]. But if all the trapped atoms are in the same stretched state as e.g.
F = 2; mF = 2, which is the case for our trapped sample of atoms, this collision will not occur
since there exists no other combination of magnetic moments which conserves the total moment.

The second inelastic two body scattering process is the dipolar relaxation. In this case the atoms
transfer during the scatterung event angular momentum, given by the kinetic energy, into the
internal state. This process scales with the velocity of the atoms and can also be neglected for
very small temperatures.

One inelastic process, which can not be neglected is the inelastic three body decay. Here are
three particles involved, where two of them create a molecular state and the third atom takes
away the excess energy of the bound state. This process determines the lifetime of Bose-Einstein
condensates, if other heating processes are absent. The decay rate can be calculated by

dN

dt
= �L

∫
Nn2(~r)d3r; (2.49)

where L is the rate constant for inelastic three body collisions [168, 169].

2.5 Dipole potentials

Atoms can not only be stored in magnetic traps but also in dipole potentials made of light [170,
171, 172, 173]. The dipole force arises from the dispersive part of the atom light interaction (see
chapter 2.1) in a light �eld with an intensity gradient. The resultant conservative potential Udip is
given by the shifted energy levels of a two-state atom dressed with the light �eld I(~r) and can be
approximated for large detunings and small saturation parameters as

Udip(~r) = �3�c2

2!3
0

(
�

!0 � !L +
�

!0 + !L

)
I(~r): (2.50)

The frequency of the light �eld is !L, and the resonance frequency of the atom is !0. � is the
natural linewidth of the transition. Although the dispersive part of the atom light interaction
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is conservative remains in the presence of a light �eld always a contribution of the spontaneous
scattering rate �sc which is given by

�sc =
3�c2

2~!3
0

(
!L
!0

)3(
�

!0 � !L +
�

!0 + !L

)2

I(~r): (2.51)

Advantageous is that the scattering rate drops quadratically with the detuning � = !0 � !L
where as the potential depth only drops linearly. This allows one to generate potentials at a large
enough detuning which can trap atoms without su�ering heating or optical pumping by spontaneous
scattering events. For detunings relatively close to resonance equations (2.50) and (2.51) can be
simpli�ed in a rotating wave approximation by dropping the counter-rotating (second) term. A
detailed treatment for multi-level atoms is given in Appendix E.

If the detuning � is negative (red detuned) the atoms experience a force towards higher intensity.
For � > 0 (blue detuned) the situation is vice versa and the atoms move to regions of lower
intensity. Let us assume a focused Gaussian beam, which has a maximum intensity at its geometric
center. In the case of red detuning the atoms are attracted towards the focus of the beam and can
by this be trapped. The intensity distribution of Gaussian beam propagating along z is given by

I(~r) =
2P0

�wx(z)wy (z)
exp

(
� 2x2

wx(z)

)
exp

(
� 2y2

wy (z)

)
: (2.52)

The total light power in the laser beam is given by P0. The functions wx(z) and wy (z) describe
the radial extension of the beam while it propagates along z and are given by

wx;y (z) = w0
x;y

√
1 +

(
�Lz

�w0
x;y

)2

: (2.53)

The radius of a Gaussian beam is de�ned by the length at which the intensity drops to 1=e2. The
radii w0

x;y are the extensions of the beam at the position of the focus and �L is the wavelength of
the laser. The distance from the focus to the point at which the beam waist expands by a factor
of
p
2 is called the Rayleigh-range

zR =
�w0

x;y
2

�L
: (2.54)

If the trapped cloud is small compared to the radii, the intensity distribution can be expanded
quadratically by

Iharm(~r) =
2P0

�w02
�

(
1� �2

�2w04
�

z2 � 4

w02
�

�2

)
; (2.55)

where we assumed a spherical beam with wx(z) = wy (z) = w�(z).

One can easily extract from this intensity distribution the trapping frequencies in rotating wave
approximation as
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!z =

√
6c2�P0�

2

L

!3
0
��2w06

� m

!� =

√
24c2�P0
!3
0
�w04

� m

: (2.56)

With these trapping frequencies all properties of a trapped cold cloud or a Bose-Einstein condensate
[174] can be extracted with the methods described in chapter 2.2 and 2.4.

2.5.1 Optical lattices

An optical lattice is a periodic potential that is formed due to interference of two or more laser
beams [175, 74]. Depending on their polarizations, directions and intensity distributions a large
variety of optical potentials can be generated. The simplest case emerges if a linear polarized laser
beam is retro-re�ected into itself. By this a cosine shaped intensity distribution arises along the
direction of the k-vector of the laser beams. The intensity distribution of such an optical lattice is
radially still Gaussian in shape as in the case of an ordinary single beam dipole trap. The associated
potential for a constant intensity distribution of both beams is

Ulat = 4Udip cos
2(kz): (2.57)

The potential Udip is the potential of a single laser beam and can be calculated with the methods
presented in the section before. The factor 4 in the lattice potential Ulat arises from the interference
of the electric �eld components. k = 2�=� is the wave-number of the laser and z is the axis of
propagation.

To explore the dynamics of an atom in such an optical lattice potential it is bene�cial to calculate
�rst the eigen-energies. This is done by solving the time independent Schroedinger equation

(
~
2

2m

d2

dz2
+ U0 cos

2(kz)

)
 = E ; (2.58)

with U0 = 4Udip. This Schrödinger equation is now rescaled with � = kz , q = U0=4Er and
a = E

Er
� U0

2Er
, where Er is the recoil energy of one photon, to obtain the form of the well known

Mathieu di�erential equation [163]:

d2

d�2
+ (a � 2q cos(2�)) = 0 (2.59)

The solutions to the Mathieu di�erential equation are given by the Mathieu functions which can
be looked up in [163]. As consequence the eigen-energies of the optical lattice system appear only
in bands separated by band gaps as commonly found in solid-state systems [176].

With the knowledge of the time independent solution of the Schrödinger equation it is straight-
forward to calculate the dynamics of a particle in an optical lattice as long the quantum state is
known at a certain time. Let us assume an atom with an external state wave-function  which
is suddenly superimposed by an optical lattice with a depth U0. At time t = 0 the optical lattice
is switched on and the wave function of the formerly free particle has to be projected in the new
basis set of Bloch-states jn; }i, the eigen-states of the optical lattice as
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Figure 2.5: Dispersion relation of a particle in an optical lattice. Depicted are the allowed Eigen-energies for

a given quasi-momentum q. The left �gure is calculated for a lattice depth of U = 4Erec and the right for

U = 40Erec. The left �gure resembles still the unperturbed parabolic dispersion relation for a free particle.

On the right the bands are nearly �at for small band indices. For very deep potentials the band structure

approaches that of a harmonic oscillator.

j (t = 0)i =
1∑
n=0

jn; }ihn; }j (t = 0)i: (2.60)

The Bloch states are characterized by a band index n and the quasi-momentum in the lattice }.
With the eigen-energies En(}) the evolution of the wave function is given by

j (t)i =
1∑
n=0

hn; }j (t = 0)ie�iEn(})t=~jn; }i: (2.61)

After a certain time � the lattice is switched o� again. The wave function j (t)i has now to be
projected into the basis set of plane waves, since the detection of the atoms happens in momentum
space (see chapter 3.3). The resulting wave function is then

j (�) =
1∑
�1

b}(n)j2n~klatti; (2.62)

with the coe�cients

b}(m) =

1∑
n=0

hn; }j (t = 0)ih2m~klatt jn; }ie�iEn(})�=~: (2.63)

The coe�cients b}(n) are the probability amplitudes to �nd a population in the m-th di�raction
order. If the particle was initially at rest it is su�cient to use a reduced momentum spectrum with
2n~klatt for integer n, since by symmetry only this momenta occur.
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For very small interaction times the whole problem reduces to the di�raction of a plane wave at a
thin phase-grating [177, 178]. In this so called Raman-Nath regime does the density distribution not
change during the interaction time but the particle wave function accumulates a space dependent
phase. The Raman-Nath approximation is valid, as long the interaction time is well shorter than
the oscillation period T of the harmonically approximated optical lattice potential and is given by

T =
1

2�

√
m

U0k
2
latt

: (2.64)

The acquired phase is proportional to the applied intensity times the interaction time and with this
the wave function evolves like

j (t)i = j (0)ie iUlatt(~r)t=~: (2.65)

The free evolution after the interaction time � during the time of �ight phase is the determined by
the gradients of the accumulated phase. The probability to �nd a population in the n-th momentum
state is then easily obtained by a Fourier transformation of equation 2.65 and yields

p(n) =

∣∣∣∣Jn ( U0

4Erec
�

)∣∣∣∣2 ; (2.66)

where the Jn are Bessel functions of the �rst kind.

The results derived above are not only valid for a single particle but to some extend also for
Bose-Einstein condensates. The spatial extension of a BEC is typically well larger than the lattice
constant and can therefore be assumed to be a planar wave. On the other hand is the interaction
energy among the atoms in most cases much smaller than the depth of the optical lattice and
by this is the dynamics determined by the lattice potential. An exception are very shallow optical
lattices, where a modi�cation of the dynamics due to interactions are expected [179, 180].

2.6 Rydberg atoms

This sections reviews the basic properties of Rydberg atoms. If one or several electrons in an
atom are excited to a large quantum number n one speaks of a Rydberg atom. The electron is
now far separated from the core which leads to a reduced interaction with the nucleus and the
remaining electrons. The energy level of the excited electron is very close to the vacuum level
and therefore only weakly bound. Such an almost free electron reacts very sensitive to electric
�elds. The electron orbital can be easily deformed if an external electric �eld is applied and leads
to an enhanced polarizibility of Rydberg states. The large polarizability entails a strong van der
Waals interaction among the Rydberg atoms, as well large dipole moments. A strong dipole-dipole
interaction, which is in its nature long range and anisotropic, is from special interest for further
investigations. The interactions of ultracold atomic samples are typically dominated by the short
range, isotropic and much weaker s-wave scattering length. The dipole-dipole interaction among
Rydbgerg atoms is even discussed as a tool for quantum computing [91]. One further aspect of
Rydberg atoms, among many others [78], is the long excited state lifetime. For Rydberg states
with a principle quantum number of n=40 is the lifetime already three orders of magnitude larger
compared to the excited states used for laser cooling.
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State n 2S1=2 n 2P1=2 n 2P3=2 n 2D3=2 n 2D5=2 n 2FJ

�0 3.131 180 4(10) 2.654 884 9(10) 2.641 673 7(10) 1.348 0917 1(40) 1.346 4657 2(30) 0.016 312

�2 0.178 4(6) 0.290 0(6) 0.295 0(7) -0.602 86(26) -0.596 00(18) -0.064 007

�4 -1.8 -7.904 0 -0.974 95 -1.505 17 -1.505 17 -0.360 05

�6 - 116.437 3 14.600 1 -2.420 6 -2.420 6 3.239 0

�8 - -405.907 -44.726 5 19.736 19.736 -

valid for n> 14 11 13 4 4 4

�E (mK) � 0.5 � 3 �3 �3 �3 �10

Ei ,cm
�1 33 690.798 9(5) 33 690.799(3) 33 690.797(3) 33 690.797 8(30) 33 690.797 8(30) 33 690.799 (10)

Source [183, 183, 184] [183, 183, 185, 185, 185] [183, 183, 185, 185, 185] [183, 183, 186, 186, 186] [183, 183, 186, 186, 186] [187]

Table 2.2: Rydberg-Ritz-Parameter for 85Rb. All data are relative to the center of mass values of the

hyper�ne splits. The errors of the calculated energies are given in the column �E. The ionization energies

Ei and the errors are taken from [185], the sources of the Rydberg-Ritz parameters are given at the bottom

of each column.

There exist many di�erent ways to generate Rydberg atoms. The simplest method is given by the
recombination of ions and free electrons [80] as it occurs in all kinds of plasmas. Another method
is the excitation of ground state atoms by inelastic collisions with an energetic charged particle
beam. However, this are random processes and are useless if one wants to populate selectively one
and only one excited state. Such a controlled way of excitation into a de�nite quantum state is
possible with the help of narrow band lasers, which is also the approach in our setup (see chapter
5.3).

2.6.1 General properties of Rydberg atoms

If only one electron of an alkali atom is excited to a large quantum number n the system is
very similar to the Hydrogen atom. The other electrons remain close to the core in a noble gas
con�guration and interact by this only minor with the excited electron. The large distance of the
excited electron orbit to the core lifts also the coupling to the angular momentum to that of the
nuclear spin. The quantum numbers F and mF of the total angular momentum are now not suitable
anymore. Nevertheless remains the LS-coupling and J and mJ are now the quantum numbers of
choice. The e�ective charge seen by the excited electron is +e, since the N protons of the nucleus
are shielded by the N � 1 core electrons. By this Rydberg states of alkali atoms are very similar to
that of a Hydrogen atom.

This simplest possible description of the energy levels in atomic Hydrogen was already given in the
late 19th century by W. Hartley [181] as

� = R1

(
1

4
� 1

n2

)
: (2.67)

This equation describes the position of the �uorescence line of the Balmer series in wave numbers
� with positive integers n and the Rydberg constant R1 = 1:097 � 107 1/m. Johannes Rydberg
extended the research on the atomic structure to highly excited states of alkalis and their appendant
�uorescence lines [182]. This endeavor resulted in a modi�ed version of equation (2.67), which
now also describes the level structure of alkali atoms

� l = �1l �
R1

(n � �l)2 : (2.68)

The position of the �uorescence lines (given in wavenumbers) are now characterized with the help
of an index l which includes the di�erent angular momentum states s; p; d (l=0,1,2). Further is the
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Property Expression (n�)x Rb(41d) Rb(43s)

Binding energy Wn = � R01
(n�)2

(n�)�2 8.65 meV 8,56 meV

Level spacing Wn �Wn�1 (n�)�3 107.8 GHz 109.66 GHz

Orbit-radius <r> ' 1
2

(
3(n�)2 � l(l + 1)

)
(n�)2 2355.46 a0 2384.2 a0

Geom. size �<r>2 (n�)4 1:74 � 107a20 1:78 � 107a20
Lifetime (spontaneous decay) � = � 0 � (n � �n;j;l)
 (n�)3 78 �s 99 �s

Lifetime (black body radiation) �bb =
3~(n�)2

4�3kBT
(n�)�2 82 �s 90 �s

Fine-structure splitting (for d) 10.8 (n�)�3 THz (n�)�3 172 MHz no fss

Table 2.3: properties of Rydberg atoms calculated for Rb(41d)- and Rb(43s)-states following the calculation

in [78].

element speci�c quantum defect �l and the series limit �1l introduced. They have their nature in
the altered electrostatic potential seen by the excited electron due to the remaining electrons close
to the nucleus. The dependence on the angular momentum l is caused by the di�erent shapes of
the orbitals. The electron in the excited state has a di�ering probability to be found within the
cloud of the core electrons depending on l . The Coulomb interaction with the core electrons and
the exchange interaction leads then to corrections, embedded in the quantum defect and the series
limits.

The absolute binding energy of an electron in a Hydrogen atom can be calculated with the atom
model by Niels Bohr. The binding energy W decreases quadratically with increasing quantum
number as

W = � e2me

32�2"20~
2

1

n2
= �R1

1

n2
: (2.69)

The size r of the hydrogen atom scales as n2

r =
4�"0~

2

e2me
n2 = a0n

2; (2.70)

where the Bohr radius a0 = 5:29 � 10�11 m is given by the width of the Gaussian ground state
electron distribution of a Hydrogen atom. The extension of this theory to alkali atoms, particulary
Rubidium is given in the next section.

2.6.2 General properties of Rubidium Rydberg atoms

Throughout all experiments presented in this thesis 87Rb was used. The excited electron sees for
high lying Rydberg states a nucleus with 37 protons shielded by 36 nearby electrons. This leads to
an alternation of the level structure as explained in the chapter before. The altered energy levels
of non-hydrogenic atoms can be calculated by introducing an e�ective quantum number

n� = n � �n;j;l (2.71)
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Figure 2.6: Lifetime of Rubidium-Rydberg states following equation (2.75). The calculated lifetimes for S,

P and D states are given at 0 K. The black line is the lifetime �bb due to black-body radiation at 300 K.

where �n;j;l is the quantum defect [188] which depends on the main quantum number n, the coupled
angular momentum j and the orbital angular momentum l . The quantum defects can be calculated
with the Rydberg-Ritz equation [185] as

�n;j;i =
∑

i=0;2;4;:::

�i
(n � �i)i (2.72)

The coe�cients �n;j;i have been determined experimentally and are summarized in the table 2.2.
The energies W of the Rydberg states can now be calculated with

W = �R
01
n�2

(2.73)

where R01 is an element speci�c Rydberg constant. The ionization energy for the two Rubidium
isotopes di�ers only by ~ � 174 MHz [184] and are in wave-numbers E85

i = 33690:7989(2) cm�1

and E87
i = 33690:8048(2) cm�1.

Further physical properties of Rubidium Rydberg states are given in table 2.3. This scaling laws
are important for many aspects when doing experiments with Rydberg atoms. As an example
a Rubidium atom in the 43S state has a diameter of about 250 nm, which is larger than the
inter-particle distance in a typical Bose-Einstein condensate, but well below the distances in a
magneto optical trap. On the other hand is the lifetime of the 43S state about 100 �s and
the corresponding line width is about 10 kHz. This narrow line width in combination with a
comparable narrow excitation scheme results in a very sensitive spectroscopy tool of external �elds
or interaction energies. Another feature is the small gapping between di�erent Rydberg states which
can be addressed by simple micro-wave techniques. This opens manifold options for manipulating
the internal quantum state of Rydberg atoms. Chapter 6.2.2 gives an outlook on several possible
experiments, which can be done with the available system.
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State � 0th(ns) 
th � 0exp(ns) 
exp

S 1.43 2.94 1.45 � 0.03 3.02 � 0.02
P 2.76 3.02 2.80 � 0.03 3.01 � 0.03
D 2.09 2.85 2.10 � 0.03 2.89 � 0.02

Table 2.4: Parameters to calculate the lifetimes of Rydberg states according to equation (2.75). The values

are either experimental (exp) or theoretical (th) results [191, 190].

2.6.3 Lifetime of Rubidium Rydberg atoms

The lifetime of any excited state jn0; l 0i is determined by the Einstein-coe�cients � = 1=An0;l 0;n;l .
If there exist several possible decay channels to lower lying states jn; li the lifetime contains all
allowed transition by summation of the individual Einstein coe�cients 1=� =

∑
n;l An0;l 0;n;l . With

the knowledge of the eigenfunctions jn; li and the corresponding eigen-energies of the Rydberg
states [189] it is straightforward to calculate the Einstein coe�cients by integration of the dipole
matrix elements

An0;l 0;n;l
2

3

e2!3
n0;l 0;n;l

"0c3h

∣∣hn0; l 0j~r jn; li∣∣2 (2.74)

The lifetimes for S, P and D states have been measured up to n=44 [190] and the acquired data
can be condensed in an empirical equation for the lifetime:

� = � 0(n � �n;j;l)
 : (2.75)

The quantum defects �n;j;l can be found in table 2.3 and the state dependent parameters � 0 and 

in table 2.4.

The lifetimes calculated above are only valid at T=0. For temperatures above zero the black-body
radiation induces transitions into other states. This is caused by the enlarged number of allowed
transitions at low frequencies. The corrected lifetime is then [78]

1

�
=

1

�T=0K
+

1

�bb
with �bb =

3~n�2

4�3kBT
: (2.76)

A further correction of the lifetime arises, if one includes the altered black body spectrum of
electromagnetic modes in a �nite size cavity. This corrections are carried out in appendix I.





3 Experimental setup and performance of

Bose-Einstein production

This chapter reviews the experimental setup and the techniques used to achieve Bose-Einstein
condensation (BEC). Figure 3.1 illustrates the main steps starting from an ordinary thermal gas
in an e�usive oven towards the quantum degenerate regime. To reach quantum degeneracy, the
temperature has to be reduced by nine orders of magnitude and the phase space density has to be
increased by almost 14 orders of magnitude starting from a saturated Rubidium gas at 160 �C. The
phase space density is given by n�3dB with the density n and the deBroglie wavelength �dB. If the
phase space density approaches unity, the trapped atoms undergo a phase transition as described
in chapter 2.4. Below a critical temperature the ground state of the system is macroscopically
occupied by the BEC. The immense gain in phase space density is realized by several cooling
techniques which will be presented in the following.

As a starting point an ultra-high vacuum chamber is needed to isolate the ultracold atomic ensemble
from its thermal environment. Its geometrical layout and its features are addressed in section 3.1.
The element of choice is 87Rb, which is by now the most common atom used in cold atom
experiments and therefore also the best characterized element. Since it is an alkali atom with only
one electron in the outer shell the complexity of the electronic level scheme is not too branched
out. The required transitions for laser cooling can be addressed by standard, well developed,
laser systems. A further advantage of 87Rb is its well behaved scattering properties which allow
for e�cient evaporative cooling. The basic optical and physical properties of 87Rb are given in
appendix A.

The description of the laser system and the methods for data acquisition are given in chapter 3.2
and 3.4. The chapters 3.5 to 3.11 follow the atoms on their way from the e�usive oven, through
the Zeeman-slower, laser cooling steps, pure magnetic trapping, evaporative cooling and �nally to
the phase transition to a Bose-Einstein condensate. Some aspects of the setup can be found in
more detail in [192].

The time table below gives an idea of the time-scales needed to setup up and debug such an
experiment.

� January 2004 - Starting point of designing the vacuum chamber

� August 2004 - First bake-out of the main chamber. Some leaks made some re-welding
necessary.

� September 2004 - Bake-out of the full vacuum assembly. A leaky ion gauge and a leaky high
voltage feedthrough had to be exchanged.

� November 2004 - Observation of the �rst magneto-optical trap.

� December 2004 - First transfer of atoms in the magnetic trap. Due to a problem with the
cloverleaf trap we had to exchange some of the magnetic coils.
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Figure 3.1: The graph depicts the di�erent experimental steps from the e�usive oven to a Bose-Einstein

condensate in phase space density. First a magneto-optical trap (MOT) is loaded for ten seconds by atoms

decelerated with a Zeeman-slower. The temperature of the fully loaded MOT is then reduced by molasses

cooling. Directly after this the atoms are transferred into a mode matched purely magnetic trap which is

subsequently compressed within one second to the full con�nement. Finally evaporative cooling for about

half a minute delivers the desired Bose-Einstein condensate (BEC).

� April 2005 - The refurbished cloverleaf trap is running. First observation of radio-frequency
evaporation in the magnetic trap

� June 2005 - One of the power supplies for the magnetic trap exhibits too much current noise
and has to be exchanged.

� June 2005 - First Bose-Einstein condensate

� August 2005 - First di�raction of a BEC in an optical lattice

� August 2005 - A defective high voltage feedthrough for the multi-channel plate had to be
exchanged, for which the vacuum had to be opened.

� November 2005 - Ultra-high vacuum is restored, the laser optics in place and the MOT is
running again.

� December 2005 - A short circuit in the magnetic trap has to be �xed

� February 2006 - The BEC and the optical lattice is working again and the apparatus is ready
for new physics.

� March 2006 - First excitation of Rydberg atoms in a MOT and detection of �eld ionized
atoms on the multi-channel plates.

� April 2006 - First Rydberg excitation in a Bose-Einstein condensate.
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3.1 The vacuum system

Figure 3.2: Schematic view of the whole vacuum setup. The construction can be divided into four segments.

On the upper right is the oven assembly depicted, which provides an intense beam of Rubidium atoms. The

hot atoms enter the Zeeman-slower, which connects the oven part with the main chamber. In the center of

the main chamber the slowed down atoms are caught in a magneto-optical trap, transferred into a purely

magnetic trap and cooled down to a Bose-Einstein condensate. The main chamber combines very good

optical access, nonetheless nearby strong magnetic �eld coils, high voltage �eld plates, two multi-channel

plates for charged particle detection and an antenna to expose the atoms to radio frequencies. On the lower

right of the main chamber the pumping cross is attached, which consists of an 200 l/s ion pump (green

edges) and an Titan sublimation pump, opposite of the ion pump.

The vacuum chamber consists mainly of two parts as depicted in �gure 3.2. The oven assembly
is operated at high vacuum (10�7 mbar) and delivers a thermal beam of gaseous Rubidium into
the ultra high vacuum part of the chamber (< 2 � 10�11 mbar) for further processing. The BEC-
setup located at Wolfgang Ketterles group in MIT [193] acted as a template for our design. Its
elementary concept can be found in several groups worldwide [2, 194, 195, 196]. In addition to
the usual requests for cold atom experiments, we expanded our system by two components. First
we inserted several �eld plates inside the vacuum chamber to apply well controlled electric �elds
across the atoms and second we installed two multi-channel plates for ion and electron detection.
This combination of techniques is to this day unique in the world, but several groups are planning
to set up similar experiments.

There are many constraints, which have to be accomplished simultaneously, but are most likely to
hinder one another.

� Good optical access to the atoms from all directions for laser cooling, imaging, optical lattices
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and etc. This demands large windows close to the atoms.

� A small volume of the vacuum chamber to allow for high pumping rates. This particulary
forbids narrow apertures.

� The ultra-high vacuum restricts the materials, which can be used, to steel, better stainless
steel, Titanium, noble metals, glass, ceramics, oxygen free copper and special purpose glue.

� High �ux of cold atoms into the ultra-high vacuum part of the chamber without polluting the
vacuum.

� Close by coils to apply strong enough magnetic �elds with moderate currents to trap the
atoms.

� Field plates, which can be set very fast to high voltages. This demands spacious high voltage
feedthroughs into the vacuum chamber.

� Two multi-channel plates close to the atoms and electrically well shielded to avoid stray �elds.

� A radio-frequency antenna inside the vacuum chamber close to the atoms for evaporative
cooling.

All this requirements are ful�lled by the experimental setup presented in this theses and their
implementations are presented in the following chapters in detail.

3.1.1 E�usive oven

The starting point for the Rubidium atoms is an e�usive cell which contains a Rubidium vapor. A
vial with 5 g of a natural mixture of 85Rb and 87Rb (ratio 72:28) is heated to typically 160 �C. This
results in a vapor pressure of about 8 � 10�3 mbar [131]. The oven assembly contains several units
to divide the high pressure part from the ultra high vacuum side and to produce a well collimated
atomic beam.

In �gure 3.3 a schematic view of the oven is depicted and �gure 3.4 shows a photo of the real
setup. All elements are based on standard ConFlat �anges. The temperature of the e�usive cell 1

is heated up with a strip heater and controlled by a two step control. The oven can be brought up
to 160 �C within 2 hours. A faster heating would result in a temperature gradient within the oven
part and by this in mechanical stress on the vacuum �ttings, which has to be avoided. The atoms
leave the cell through the nozzle 2
, which is just a hole with 3 mm in diameter. Right behind the
nozzle the atoms pass a cooling shield made of copper 3
. The copper tube is thermally contacted
by a copper rod to a peltier element outside the vacuum. The peltier element cools the copper tube
to about 5 �C and all atoms, which do not follow the straight trajectory get adsorbed. The vapor
pressure of Rubidium at a temperature of 5 �C is a few times 10�8 mbar. To switch on and o�
the atomic beam a motorized shutter 4
 can be moved into the beam within several milliseconds.
An ion pump1 is mounted with a right angle to the six-way cross 4
 to avoid direct deposition of
Rubidium into the pump. An ion gauge2 also connected to the cross 4
 measures a pressure below
10�7 mbar. At position 5
 a di�erential pumping tube of 120 mm length and 3 mm diameter
separates the oven part from the ultra-high vacuum side. A �exible coupling 7
 is necessary to

1VacIon, 40 l/s, Varian
2Bayard-Alpert ion gauge UHV-24, Varian
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Figure 3.4: Picture of the oven. 1
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align the whole rigid oven assembly parallel to the Zeeman-slower. Finally a gate valve 8
 allows
to disconnect the ultra-high vacuum of the main chamber completely form the oven, which is only
done for exchanging the Rubidium vial in 1
 and other maintaining work. Behind the valve follows
the Zeeman-slower, which will be discussed in chapter 3.6.

3.1.2 Main chamber

The main vacuum chamber depicted in �gure 3.5 and �gure 3.2 is the heart of the whole setup. It
was built completely in the machine shop of the University of Stuttgart. All elements are made of
stainless steel and welded together from the vacuum side. The principle of the design is a tube on
which radially all the ports ( 1
- 12
) point towards the center. The angle between each port is 30�.
Into this tube extend two buckets, which give space for the magnetic trap. To get also optical
access in the third dimension a one inch glass-metal view-port is welded centered onto each bucket.
They are made of a one inch steel tubing, on which a window is directly fused. By this the radial
extension is minimized and allows a better insertion of the magnetic trapping coils. The buckets
are connected to the main chamber with CF250 �anges (outer diameter 304.8 mm), the distance
between the two �ttings is 249.2 mm. A more detailed description of the physical dimensions of
the main vacuum chamber is given in appendix F. This rather large layout was chosen to minimize
eddy-currents when switching o� the magnetic trap suddenly, since the high conductive copper
gaskets are by this further away from the atoms. The main tubing, which holds the radial ports
( 1
- 12
) has an inner diameter of 200 mm and an outer diameter of 205 mm. The buckets have an
inner diameter of 155 mm and an outer diameter of 159 mm. The inner diameter of the bucket is
important for the design of the magnetic trap, which will be set into the bucket. There is enough
space between the bucket and the main tube, such that good pumping speed is ensured. Between
the two buckets is an open area with a distance between of 28 mm. We used for the inner surface
steel with 2 mm thickness, which limits the minimum distance of the magnetic trapping coils to
32 mm.

Optical access to the atoms is possible through one of the 11 radial viewports 2
 to 12
, except
the ports 4
 and 10
 (see �gure F.1), which are occupied by the high voltage feedthroughs3 for
the two multi-channel plates. Port 1
 is used to connect the Zeeman-slower to the main vacuum
chamber. For laser cooling and trapping an optical access in the third dimension is indispensable.
This is accomplished by two viewports 18
 inside the buckets as mentioned above. The magneto-
optical trap is then operated with the ports 2
, 5
, 8
, 11
 and the two ports 18
. There are two
larger ports 3
 and 6
 for the imaging system to improve the numerical aperture and with this the
optical resolution. When using light with a wavelength of 780 nm for imaging the maximum spatial
resolution is limited to 2.8 �m. All ports can be used manifold as e.g. for optical lattices. The
table 3.1 gives an overview of all optical ports and their usage.

The large �ange 11
 connects the pumping cross to the main chamber. The main chamber is kept at
ultra-high vacuum with a 200 l/s ion-getter pump4 and a titan sublimation pump. A liquid nitrogen
container is connected to the titan sublimation pump to increase the pumping e�ciency. After a
bake-out of the whole vacuum setup at about 200 �C for one week the pressure in the UHV region
is measured with an ion gauge 20
 to be below 2 � 10�11 mbar. The lifetime of the magnetic trap,
which is a direct measure of the background pressure, is 163 s as can be seen from �gure 3.6.

Uncommon to standard Bose-Einstein condensation setups, we included two multi-channel plates
and �eld plates, which are used for experiments with Rydberg atoms and their detection. The
34 pin HV feedthrough, 3 kV, Hositrad
4Meca 2000, Meca
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Figure 3.5: Schematic view of the main vacuum chamber and a picture into the chamber, both with one

bucket removed.

1
 CF16 �ange for Zeeman-slower

2
 CF35 optical port for the magneto-optical trap (MOT)

3
 CF63 optical port for absorption imaging, alternative optical lattice

4
 CF35 Multi-channel plate attached to a fourfold high voltage feedthrough (ion detection)

5
 CF35 optical port for the MOT

6
 CF63 optical port for �uorescence imaging, alternative absorption imaging or optical lattice.

7
 CF35 optical port for the Zeeman-slowing light

8
 CF35 optical port for the MOT

9
 CF35 optical port for absorption imaging, alternative optical lattice

10
 CF35 Multi-channel plate attached to a fourfold high voltage feedthrough (electron detection)

11
 CF150 �ange towards pumping cross and optical port for the MOT

12
 CF35 optical port for optical lattice, alternative absorption imaging

13
 Radiofrequency antenna, the second antenna is symmetrically attached to 2)

14
 High voltage �eld plates, isolated by a ceramic spacers

15
 Recessed bucket containing the magnetic coils

16
 and 17
 Multi-channel plates deployed in a Faraday cage

18
 One inch optical viewport for the MOT and optical lattice

19
, 21
 and 22
 High voltage feedthroughs, e.g. for connection to �eld plates

20
 Ion gauge

23
 Dual electric feedthrough for the radiofrequency antenna

24
 CF250 main �ange, on which the buckets are mounted
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Flange ] CF-size usage distance to window NA

1 16 Zeeman-slower - -

2 35 MOT 215.4 mm 0.09

3 63 Imaging 184.7 mm 0.17

4 35 MCP - -

5 35 MOT 220.4 mm 0.09

6 63 Imaging 184.7 mm 0.17

7 35 Zeeman-slowing light 220.7 0.09

8 35 MOT 170.4 mm 0.11

9 35 Imaging 145.5 mm 0.13

10 35 MCP - -

11 150 MOT 652.4 mm 0.10

12 35 Imaging 255.4 mm 0.07

18 front 1 inch MOT/lattice/Rydberg/pumping 46 mm 0.28

18 back 1 inch MOT/lattice 46 mm 0.28

Table 3.1: Characteristics of all �anges and their usage. The right column gives the numerical apertures

(NA) including the optical viewports. The optical resolution is then given by the Rayleigh criterion �x =

0:61�=NA, where �x is the smallest resolvable structure and � the wavelength of the light.

materials used in multi channel plates5 are stainless steel, glass and chromium and suitable for
our extreme ultra-high vacuum condition. The eight �eld plates are electrically isolated to the
chamber walls with ceramic spacers and are glued onto them with a special vacuum glue6. The
outgassing rate of this glue is low enough, to maintain the low pressure. The plates are connected
to Kapton-isolated copper wires with special vacuum copper-beryllium clamps.

3.2 The laser system

In our experiments laser light is used to slow, cool, pump, polarize and detect the atoms. For this
we set up two laser-systems to generate all necessary frequencies. For all transitions ascending
from the F = 2 ground state, we use an Titanium:Sapphire laser7 pumped by an 10 W solid state
laser8. About one Watt of resonant light is now available for further processing. Most of the laser
power is taken for the cooling light of the magneto-optical trap (MOT) and the Zeeman-slower.
The cooling cycle is tuned to the F = 2; mF = 2 ! F 0 = 3; m0

F = 3 transition, which behaves
nearly as a two level system. For more details on the optical properties of 87Rb see appendix A.

Two further beams are detached for resonant absorption imaging and polarizing the atoms. Polar-
izing stands for transferring all atoms after the last laser cooling step into the F = 2; mF = 2 state,
which can be caught by a purely magnetic trap. The polarizing light is tuned to the F = 2! F 0 = 2

5Type B012VA, El-Mul
6High temperature epoxy EpoTek 377, Epoxy Technology
7MBR 110, Coherent
8Verdi V10, Coherent
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Figure 3.6: Measured lifetime in the magnetic trap. Atoms were stored in a pure conservative trapping

potential. After 163 s the initial atom number dropped due to background gas collisions to 1/e in an

exponential (solid line) decay.

transition and is �+ polarized. By this the atoms are shu�ed from anymF state in themF = 2 state
which is a dark state with respect to the light, which is on resonance with the F = 2 ! F 0 = 2

transition. The imaging beam is tuned resonantly to the F = 2; mF = 2 ! F 0 = 3; m0
F = 3

transition, and is also � polarized. Details of our imaging system will be discussed in chapter 3.3.

The second laser system used for trapping and cooling, is the repumping system tuned to the
F = 1! F = 2 transition. This is inevitable, since the light of the cooling laser is still transferring
atoms into the F 0 = 2 state although it is 267 MHz detuned from the F 0 = 3 state. From there
the atoms decay with a 50 % probability into the F = 1 state and do not participate anymore in
the cooling cycle. Since high laser power is not required here, we use a standard laser diode9 in an
Littrow setup [198], which was developed in our group. With this setup we obtain about 80 mW
of laser power after the optical diode.

To stabilize the laser frequencies within 1 MHz we use a polarization spectroscopy method [197].
The Titanium:Sapphire laser is stabilized to the F = 2! F 0 = 3 transition line and the diode laser
to the F = 1 ! F 0 = 0 transition. To shift the light to the desired frequencies, we use accusto-
optical modulators10 (mostly) in a double pass con�guration. These modulators are also used for
fast switching the laser power within typically 30 nano-seconds. Since there remains always some
leakage of light through the modulators, every laser beam is equipped additionally with a mechanical
shutter11 to switch the light entirely o�.

All driving unit assemblies for the accusto-optical modulators are homebuild with a similar design.
The radio-frequency is generated by voltage controlled oscillators (VCO)12 and its frequency can
be tuned with an external control voltage. The signal level of the VCO is subsequently adjusted
with either a frequency mixer13 controlled by an emitter follower or a bi-phase attenuator14. The

9LD-07800-P250-1, Toptica
103200-121, 3110-120 and 3080-120, Crystal Technology
11LS2, Uniblitz, Vincent Associates
12ZOS 300, ZOS 200 and ZOS 150, Mini Circuits
13ZAD 1.1, Mini Circuits
14ZMAS-1, Mini Circuits
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Figure 3.7: Schematic view of the laser system for trapping and cooling. All necessary beams are extracted

from two lasers, a pumped Titanium:Sapphire laser and an external cavity diode laser. In the �gure all lenses,

apertures, shutters, motorized mirrors are omitted for clarity. A detailed description of the spectroscopy setup

and its functionality can be found in [197].



3.3 Imaging system 41

Figure 3.8: Locking scheme of the laser system. Shown are the lock-points for the Titanium:Sapphire laser

(right) and the diode laser system (right). The arrows indicate the shift of the laser frequencies to the

desired transitions by accusto-optical modulators.

rf-switch15 which follows next is used to attenuate the rf-power in the o�-state by at leasr 40 dB.
Finally the radio-frequency is ampli�ed to a maximum power of 33 dBm (2 W) by a high power
ampli�er16 and delivered with an ordinary SMA cable to the transducer of the accusto-optical
modulator. The suppression of the laser light in the �rst order beam in the o�-state is typically
better than 1:1000.

3.3 Imaging system

To obtain quantitative information about the atomic ensemble it is su�cient to measure the spatial
density distribution of the atomic cloud for example with a CCD camera. If this measurement is
repeated for di�erent times, after the cloud was released from its trapping potential, one can
derive from this pictures the temperature, the atom number and with the knowledge of the shape
of the con�ning potential the density inside the trap. In most imaging techniques resonant, or
near resonant light, is used and the atoms are imaged by suited optics onto a CCD-chip. The
pictures taken by the CCD-chip contain only two-dimensional information about the cloud since
the signal along the imaging axis is integrated. Typically one assumes radial symmetric samples for
computation. But it is also possible to take pictures simultaneously in two directions and extract
from this the real three dimensional situation.

If the atoms are not Bose condensed, but establish a classical thermal gas, they adopt a Gaussian
density distribution n(~r ; t) after they are released from any trapping potential for a certain time
of �ight. This is valid as long as the expanded cloud is well larger than in the initial trapped
situation and the velocities in the trap follow a Maxwell-Boltzmann distribution [137]. The density
distribution of a su�cient expandend cloud is then given by

n(~r) = n0 exp

(
� x2

2�2x
� y2

2�2y
� z2

2�2z

)
: (3.1)

15ZYSWA-2-50 DR, Mini Circuits
16ZHL-1-2W, Mini Circuits
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Figure 3.9: Schematic setup of the absorption (abs) and �uorescence (�uo) imaging system.

The �i 's are the 1=
p
e radii of the cloud. The peak density is determined by n0 = N

(2�)3=2�x�y�z

with N being the total atom number. Integrating the Gaussian curve over one axis, e.g. the x-axis,
gives the corresponding signal on the CCD-camera.

~n(y ; z) = n0
p
2��xexp

(
� y2

2�2y
� z2

2�2z

)
: (3.2)

After a certain time of �ight the size of the cloud increases as

�(t) =

√
�20 +

kBT

m
t2: (3.3)

This is valid as long the initial density distribution at t = 0 is also Gaussian with a width �0. This
is true for atomic clouds in harmonic trapping potentials or to some extent for magneto-optical
traps with a Gaussian shape. For large time of �ights dominates the second term in (3.3) and the
temperature is simply given by

T =
m�2(t)

kBt2
: (3.4)

The analysis of Bose-Einstein condensed samples in time of �ight will be discussed in chapter 3.3.3.

3.3.1 Fluorescence imaging

In �uorescence imaging the spontaneous emitted light of an atomic sample is detected. This is
usually done by irradiating the atomic cloud resonantly with the six beams for magneto-optical
trapping (MOT). The glowing cloud is imaged with a diminution optic onto a CCD-chip17, be-
cause the magneto-optically trapped cloud is usually larger than the chip size. The signal level is
proportional to the collected light, which is constrained by the numerical aperture of the imaging

17Slow Scan Imaging System SIS 9, ThetaSystems
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system. In our case this is the �rst lens (see �gure 3.9) of our objective. Although the distance
to the atoms is larger than necessary and the entrance aperture of the objective relatively small, is
the signal level su�cient down to 106 atoms.

For a quantitative analysis of the CCD-pictures it is necessary to estimate the scattering rate of
the atoms and the radiation pattern of the emitted light. The atoms are exposed in six directions
with circular polarized light, thus it is fair to assume that the directions of the spontaneous emitted
photons are isotropic. The light is tuned into resonance with the F = 2 ! F 0 = 3 transition. It
remains the scattering rate of the atoms on resonance

�sc =
�

2

�cgs

1 + �cgs
: (3.5)

The saturation parameter was de�ned in chapter 2.1. I introduced here an e�ective Clebsch-Gordan
coe�cient �cg which takes the di�ering transition strengths, given in appendix A, into account.
By assuming that the atomic sample is uniformly distributed among the magnetic sublevels of the
F = 2 ground state and every atom is irradiated in equal shares circular polarized light (by the six
MOT-beams), one obtains �cg=7/15. The intensity in each beam is about 18 Isat which gives an
saturation parameter of s = 6 � 18 on resonance. With such a high intensity the scattering rate is
within 1 % accuracy �=2.

Although the detuning in respect to the next possible transition F = 2! F 0 = 2 is quite large, the
high intensity provokes every 75 cycles an o�-resonant excitation into the F 0 = 2 state and every
200 cycles into the F 0 = 1 state. The probability for a decay from the F 0 = 2 state into the F = 1

ground state is 50 % and for a decay from F 0 = 1 80 %. To return the atoms into the cycling
transition F = 2! F 0 = 3 the repumping laser has also to be present.

There are several e�ects, which can alter the actual physical situation by the presence of the
imaging light. The major deviation is due to the optical density of the cloud, which causes the
intensity of the resonant laser beam to be reduced while it intrudes into the cloud. The atoms in
the center of the cloud scatter less photons due to the reduced intensity. These are lacking on the
CCD-camera and pretend a smaller atom number. On the other hand is the light emitted by the
atoms inside the cloud also hindered to propagate outwards by multiple scattering events. This
e�ect is commonly known as radiation trapping. This deviations can be avoided by detuning the
laser away from resonance to obtain a more transparent cloud by reducing the e�ects of multiple
scattering events.

Finally it should be mentioned, that the cold cloud is heated by the spontaneous scattered photons.
The heating scales with the square root of scattered photons, which gives in our case of 100 �s
irradiation time at full saturation a temperature gain of about 22 �K.

3.3.2 Absorption imaging

The spontaneous scattering events in �uorescence imaging alter the velocity distribution of the
atomic cloud. For very cold and small samples this leads already to an alternation of the density
distribution within the exposure time (typically 100 �s) of the resonant imaging light. To avoid
this, one uses the absorption imaging technique, where the applied intensity is reduced well below
the saturation intensity and by this the number of spontaneous scattered photons. In spite to
�uorescence imaging the absorption imaging method detects the photons not being absorbed by
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the sample. One laser beam is shone onto the atoms and a shadow picture is recorded on the
CCD-chip18. The absorption of photons in the atomic cloud follows simply Beer's law

I(x) = I0e
�OD�x : (3.6)

The cross section �(�) for light scattering at a two level atom with detuning � is given by

�(�) =
3�2=2�

1 + 4 �2

�2

: (3.7)

For small intensities (I � Isat) the amount of scattered power is linear to the incident laser intensity
Pscattered = �(�)I. The attenuation dI of the intensity I of the laser intruding a cloud with a density
distribution n(~r) is given by

dI = ��(�)n(~r)Idx: (3.8)

Integration along x gives

OD(y ; z) = �(�)

∫ 1

�1
n(x 0; y ; z)dx 0: (3.9)

The intensity at the position (y ; z) is then I(y ; z) = I0e
�OD. By recording the unperturbed intensity

distribution I0(y ; z) and the diminished distribution I(y ; z) one can reconstruct the two-dimensional
density distribution of the cloud with

n(y ; z) =
1

�(�)
ln
I0(y ; z)

I(y ; z)
: (3.10)

The spontaneous emitted light does not contribute to the image since it is scattered into the
complete solid angle and only a very small fraction reaches the chip. The integration of n(y ; z)
along y and z yields the total atom number N. To recover the the full three-dimensional density
distribution one has to use the knowledge of the existing symmetries of the atomic samples.

For large column densities is the incident light almost blackened out. At an optical density of three
already 95 % of the initial intensity is lacking. It depends on the dynamic range of the camera
and the noise level in the pictures if this information is still valuable. In our experiments the limit
of resolution is reached at an optical density of about 3.5, which is due to the remanent noise
level. To circumvent this problem, the imaging frequency can be shifted away from resonance and
the sample becomes more transparent. However, the density distribution is not uniform and the
the refractive index of the cloud acts as a lens on the imaging light and leads to distorted images
[199]. A secure way to reduce the optical density is a large expansion time of the cold cloud, which
is usually the procedure in our experiment. Another way to image very dense clouds is the phase
contrast imaging method, which also makes use of the refractive index of the atoms [200] and is
planned to be implemented in our setup.

The depth of focus of the absorption imaging system is given by the Rayleigh range (see equation
2.54) and is in our case 55 �m. Since the imaging axis is parallel to gravity the atomic sample falls

18NTE/CCD Detector, Princeton Instruments
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downwards during the free expansion and the imaging system has to be adjusted for each time of
�ight. For example the cloud drops by 4.4 mm for a time of �ight of 30 ms.

Usually we apply absorption imaging only to atomic clouds, which were already evaporatively cooled
down in a magnetic trap (see chapter 3.10). The atoms are captured in the F = 2; mF = 2 ground
state. To imaging the atoms they are released from the trap and a magnetic �eld of a few Gauss
is applied parallel to the resonant beam to de�ne a quantization axos. One has to assure that
the atoms follow adiabatically the magnetic �eld, so we switch on the quantization �eld already
before they are released from the magnetic trap. The �+ polarization of the beam only couples
the ground state atoms to the F 0 = 3; m0

F = 3, which always decays back into the initial state
F = 2; mF = 2. An admixture of � polarization would pump the atoms away from the closed cycle,
and the scattering rate would drop according to the Clebsch-Gordan coe�cients. The evaluated
atom number is then underestimated.

In absorption imaging it is not necessary to have any repumping light present. First of all the
polarization hinders an excitation into the F 0 = 2 state. But a �nite contribution of � light is likely
to be present. At small intensities every 8000 cycles an atoms enters the F 0 = 2 state from which
it decays with 50 % probability into the F = 1 state. With an exposure time of typically 100 �s
about 200 Photons are scattered on the cycling transition and only a negligible fraction of atoms
gets pumped away.

3.3.3 Time of �ight expansion of a Bose-Einstein condensate

The time of �ight method is mostly applied to the analysis of Bose-Einstein condensed samples.
In spite to thermal clouds is the dominant e�ect on the expansion no longer the thermal motion
of the atoms but the chemical potential �, given by the interaction among the atoms (see chapter
2.4.2). This is valid as long the chemical potential is larger than the energy of the lowest eigenstate
in the trap and larger than the temperature of the sample. The following treatment follows [201].
The force on a particle inside the condensate is

~F (~r ; t) = �r (g n(~r ; t)) ; (3.11)

where the interaction parameter g = 4�~2a=m was de�ned in chapter 2.4. The simplest ansatz is
a scaling law for the Thomas-Fermi radii rTF;i(t):

rTF;i(t) = �i(t)rTF;i(t = 0): (3.12)

This takes already into account, that the parabolic density distribution of the trapped condensate
is conserved. The condensates produced in a cloverleaf trap are cigar-shaped with an aspect ratio
� = !z=!�. With re-scaling the time as � = !�t and using that usually � � 1 one gets in lowest
order in � for the two scaling factors

��(�) =
p
1 + �2

�z(�) = 1 + �2
(
� arctan � � ln

p
1 + �2

)
:

(3.13)

The expansion of the condensate can be expressed with the aspect ratio @ of the Thomas-Fermi
radii which is independent of the atom number.
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Figure 3.10: Snapshot of the computer control software. More details are given in the text.

@ =
�z(t)

��(t)

!�

!z
(3.14)

It is also possible to solve the three coupled di�erential equations (3.11) numerically.

The distinct expansion behavior of a BEC compared to a thermal cloud can be used as evidence
for the successful production of a quantum degenerate Bose gas.

3.4 Computer control

The creation of a Bose-Einstein condensate and experiments with them is a procedure consisting
of many single steps. About �fty devices have to be controlled time sensitive. This are namely
actions like opening and closing mechanical shutters, altering frequencies and intensities of the
lasers, triggering cameras, controlling the magnetic �elds and many more actions which cannot
be treated here entirely. A Bose-Einstein condensate is typically produced within 45 seconds and
requires a sequence of more than thirty steps. In principle one must be able to vary every parameter,
which forbids mostly hard-wired solutions. In our experiment the sequences are programmed in an
graphical interface19 based on LabView 7 (National Instruments). Each word in the sequence de�nes
the state of the experiment for a certain time, until it proceeds to the next word. It is possible
to use many basic programming tools, as loops, subroutines, state dependent functions and similar

19The programming of the interface was done by Rolf Heidemann and Jörg Werner. More details about the coding

can be found in [202]
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elements. With this it is possible to implement experimental scans, which run independently up to
several hours.

The control program runs on an ordinary IBM-PC under Windows XP. The interface to the ex-
periment is given by one digital PCI card20 and two analog PCI cards21. All in all we have 64
TTL-channels and eight analog channels with 12 bit resolution and eight further analog channels
with 16 bit resolution. The digital channels are isolated by opto-couplers and a transistor circuit
for each channel allows us to drive devices with 200 mA at 50 
. The analog signals are all piped
through a discriminator to vary the ampli�cation or the o�set of the output voltage. There exists a
bunch of electronic circuits for further processing of the signals, like basic logical operations (AND,
OR, XOR, NOT), multiplexers to generate with one TTL signal two arbitrary voltages and pulse
generators. The latter is necessary since the time resolution of the control program is limited to
100 �s. The pulse generators can create TTL pulses down to 20 ns. To generate even shorter
pulses we use specialized signal generators.

The control software not only takes care of the progression during the experiment, but also saves
any desired parameter and the sequence itself to a �le and takes care of the paths, where the
pictures have to be recorded. This records also serves as additional documentation of the con-
ducted experiments. The control of the cameras is also done by home-made LabView (National
Instruments) programs. On a second computer the analysis of all accumulated data can be done
simultaneously to the experiments. A large library22 of self written MatLab (MathWorks) routines
allows us to combine the recorded pictures (or any other signal) with the data exported from the
control program and to do any wished analysis in real time.

3.5 An intense Rubidium source

There exists a wide range of atomic sources to load e�ciently magneto-optical traps (MOT).
Most common in present Bose-Einstein condensation setups are double-MOT systems [203, 204],
two-dimensional MOTs [205, 206], dispensers [189, 207] and e�usive cells in combination with
a Zeeman-slower [208]. The latter delivers compared to all other sources the highest �ux of
cold atoms and is also used in our setup. Another advantage of the Zeeman slowing technique
is the little amount of cooling light needed and the rather simple adjustment of just one optical
axis. Disadvantageous is the necessity of elaborate magnetic �eld distributions, which have to be
manufactured very carefully, and its rather bulky layout. However, the elongated tubing of the
Zeeman-slower serves as an additional di�erential pumping stage between the oven and the main
chamber and improves by this the quality of the ultra-high vacuum.

The oven in our experiment is usually heated up to 160 �C which corresponds to a vapor pressure
of 8 � 10�3 mbar. The nozzle of the oven is simply a circular aperture with 4 mm in diameter. To
speak of an e�usive oven it is necessary that the mean free path of the particles is larger than the
wall thickness of the ori�ce. One can estimate the cross section of any atom with the Massey-Mohr
formula [209] (given in atomic units)

� = 8:083

(
C6

~vr

)2=5

; (3.15)

20DIO-64, Viewpoint Systems
21PCI NI 6733 and PCI NI 6713, National Instruments
22Most of the procedures for data analysis were written by Piet Schmidt [166].
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where C6 = 4426 [a:u:] is the C6-coe�cient for Rubidium [210, 211] also given in atomic units
and vr the relative velocity of the two colliding particles in the center of mass frame. With an oven
temperature of 160 �C the mean free path is about 300 �m and therefore comparable with the
wall thickness of 1 mm, hence we assume our source to be e�usive [212].

The �ux d�0 of atoms per second emitted into a solid angle d
 is given by [213]

d�0 =

√
2

�mkbT

�2
oven

8
p(T ) cos �d
; (3.16)

where �=4 mm is the diameter of the nozzle, p(T ) the vapor pressure of Rubidium (see equation
A.1) and � the angle with respect to the normal of the aperture area.

To obtain the total �ux �0 leaving the oven within the full cosine distribution, one has to integrate
over d


�0 =

√
2�

mkBT

�2
oven

8
p(T ): (3.17)

.

At 160 �C the total �ux of atoms leaving the ori�ce is 1:4 � 1017 atoms/s. But a small fraction
the integrated �ux reaches the center of the main vacuum chamber, where the magneto-optical
trap is located. Figure 3.11 depicts the geometric situation. The atomic beam is trimmed by two
apertures, the exit area of the di�erential pumping tube and the end of the Zeeman-slower. Atoms
which hit any part of the vacuum chamber stick to the wall and are therefore lost from the beam.
Without any apertures the intensity distribution is constant over the small orientational changes
of d
. To obtain the real intensity distribution (�ux per unit area) one has to weight equation
(3.16) with a weight function as depicted in �gure 3.11. This function was determined straight
forward by a geometric treatment [213]. The central part of the beam is not a�ected by the
apertures and stays unaltered. There exists an area which cannot be reached geometrically by any
atom and the intensity is set to zero. The region in between is a penumbra in which the intensity
decreases linearly. The integration of the di�erential �ux including the weight function at an oven
temperature of 160 �C gives a total �ux into the MOT-area of 2:7 � 1012 atoms/s. This includes
both Rubidium isotopes.
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The longitudinal velocity distribution of the emitted atoms follows a modi�ed Maxwell-Boltzmann
distribution [213]

f (v) =
2

�
v3e�

v2

�2 ; (3.18)

with � =
√
2kBT=m. The mean velocity is given by v =

√
8kBT=(�m) and is at 160 �C 325 m/s.

The radial velocity is limited by the apertures for a particle with a mean velocity of 325 m/s to a
maximum value of 2.6 m/s.

3.6 The Zeeman slower

A magneto-optical trap (MOT) is unfortunately not able to catch most of the atoms of a thermal
beam emitted by an e�usive oven. The capture range of a MOT of about 30 m/s is ten times
smaller than the mean velocity of the atomic beam leaving an e�usive oven at 160 �C. However,
the thermal atoms can be slowed down by scattering resonant photons from a counter-propagating
laser beam. With each photon absorbed, the momentum of the atom is reduced in average by
~k . The recoil velocity per absorption is 5.88 mm/s and assuming an initial velocity of 300 m/s
an atom has to scatter roughly 5 � 104 photons to bring it to a halt. Including the maximum
scattering rate �=2 (see table A.2) the atoms come to rest within 3 ms. The maximum acceleration
amax = 1:1 � 105 m/s2 reduces the minimum length of the slower to less than half a meter. The
downside of the longitudinal slowing is a radial increase of momentum by spontaneously emitted
photons. Although the center of mass of all emitted photons add up to zero, remains a contribution
of the mean square deviation, which scales with the square root of number of scattered photons.
For the parameters given above the increase of the radial velocity is about 1.3 m/s.

The technical implementation of such a slowing method is the Zeeman-slowing technique [214].
The altering Doppler shift of the atoms during deceleration is compensated by suitable magnetic
�elds to keep them in resonance by the Zeeman shift. A much more detailed description of the
Zeeman-slowing technique than given here, can be found in [215].

The necessary slower length to stop Rubidium atoms with an initial velocity of 305 m/s is 0.422 m.
In our actual slower design this length was doubled to be 0.850 m to ensure robust operation. By
this, irregularities in the magnetic �eld and scattering rates below �=2 can be corrected.

As the atoms are slowed down, the reduced Doppler shift has to be compensated with a spatial
dependent magnetic �eld appropriate to the velocities of the atoms. There are two ways to compen-
sate the Doppler shift, �rst using the jF = 2; mF = �2i ! jF 0 = 3; m0

F = �3i cycling transition
with a decreasing magnetic �eld for slower atoms or the jF = 2; mF = 2i ! jF 0 = 3; m0

F = 3i with
an increasing magnetic �eld. The latter has the advantage that the large magnetic �eld at the end
of the slower for the stopped atoms results in a large detuning of the �+ polarized cooling light
and is not disturbing the MOT when it passes through it. One can take advantage of this e�ect
by even enlarging this detuning with an additional magnetic o�set �eld. The disadvantage of this
method is an additional magnetic �eld at the position of the MOT, which has to be compensated
by some extra coils.

To determine the geometry of the actual slower design and the required magnetic �eld distributions
we start with the maximum acceleration acting on the atoms

a =
~k�

2m
; (3.19)
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which is valid for large intensities. An atom starting from the oven with a velocity v0 will be
decelerated as

v(z) =

√
v20 � 2az: (3.20)

The length of the slower is therefore L = (v20 � v2end)=2a. The magnetic �eld shifts the atomic
transition as

� = (m0
F g

0
F �mF gF )�BBz=~; (3.21)

assuming that there is only a magnetic �eld along the z-direction present. For any stretched
transition, as we use it here, becomes the detuning � = �BBz=~. Putting everything together the
progression of the magnetic �eld has to be

B(z) =
~

�B

(
�kv0 + k

√
v20 � 2az

)
+ B0; (3.22)
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where B0 is the additional constant magnetic �eld along the z-direction.

Of interest is �nally only the loading rate of Zeeman slowed atoms into the MOT. For this the
atoms have to be at �rst slow enough to be in the capture range of the MOT. But they also have
to be spatially inside the capture radius of the MOT which is on the order of a few centimeters.
There are in principal three spatial broadening mechanisms which have to be taken into account.
First of all we have seen in chapter 3.1.1 that there is a principal broadening of the hot atom beam
due to the geometrical constraints of the apertures (see �gure 3.11). This radial distribution is
additionally broadened by the increased time of �ight time of the slowed atoms. The radial heating
by the spontaneous emitted photons has to be added to the radial temperature by geometrical
constraints. The transversal velocity due to heating at the end of the slower is given by

v� =
~k

m

p
n: (3.23)

The number n of scattered photons is n = m(vi �vf )=~k with vi the initial velocity and vf the �nal
velocity. For an atom starting with 300 m/s and decelerating it down to standstill, the transversal
velocity calculates v� = 1:3 m/s. Adding the radial velocity of 2.6 m/s from geometrical constraints
with the radial heating in quadrature, the transversal velocity is approximately 2.9 m/s. More details
of this additional broadening e�ects can be found in [215].

There are two laser frequencies required to operate the Zeeman-slower. Besides the cooling laser
one has to include a repumping laser, which transfers atoms from the F = 1 state into the F = 2

ground state. The repumper is tuned to the F = 1! F 0 = 2 transition from which the atoms can
decay into the F=2 state. Since the Landé factor for F = 1 (gF=1 = �1=2) di�ers from F = 2

(gF=1 = 1=2) it is not possible to keep the repumping laser in resonance over the full length of the
slower. So it is best to tune the repumper such, that the atoms leaving the oven are as soon as
possible transferred into the F = 2 state. It is also advantageous to have the same polarization for
the repumping laser and the cooling laser, because this transfers the equally occupied mF states
towards the desired mF = 2 state. Inside the slower the atoms stay most likely within the cycling
transition, even with an imperfect circular polarization of the cooling beam. The di�ering Zeeman-
shifts for �-transitions (or even larger shifts for ��) reduces the pumping into wrong states. Table
3.2 summarizes the experimental speci�cations of our Zeeman-slower.

Length 0.850m

Maximum capture velocity 305m/s

O�set �eld 150 G

Field at slower end 428 G

Total detuning of cooling laser 599 MHz

Detuning due to Doppler shift 389 MHz

Detuning due to o�set �eld 210 MHz

Table 3.2: Properties of the Zeeman-slower.

Finally the loading rate R of the magneto-optical trap shall be estimated.

R = �1�2�3�: (3.24)
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The initial �ux � reaching the region of the magneto optical trap (MOT) is reduced by several
constraints. First of all �1 = 0:28 (see chapter A.1) takes care of the natural abundance of 87Rb.
The next factor accounts for the capture range of the Zeeman-slower which was designed to be
at 305 m/s. For an oven temperature of 160 �C one can calculate the reduced �ux with equation
(3.18) to �2 = 0:309. The last factor �3 is the contribution of the �nite spatial capture range
of the MOT. Since this last factor depends on the size of the laser beams, the magnetic �eld
gradients of the MOT and the detailed radial �ux distribution of the Zeeman-slowed atoms, is it
di�cult to give an exact value. A reasonable elaborate estimation following [192] gives �3 = 0:2.
With an initial �ux of � = 2:7 � 1012 atoms/s at 160 �C is the expected loading rate of the MOT
R = 4:7 � 1010 atoms/s.

3.7 Magneto-optical trap and molasses cooling

This chapter presents the experimental results of the di�erent laser cooling steps. Since the �rst
realization of a magneto-optical trap (MOT) in 1987 [132] several hundred articles dealing with all
kind of aspects of laser cooling have been published till today. The physics of MOTs with not a too
large atom number is understood very well [81, 82, 83, 216]. But with an increasing atom number
the complexity of interactions raises and only phenomenological models [217, 136] are available.
For even larger numbers of trapped atoms, as we realized it in our setup, no theoretical description
is available at all.

3.7.1 Magneto-optical trap

The cold atomic beam, described in the chapter before, is now used to load a MOT. The MOT
operates with three orthogonal pairs of counter-propagating circular polarized laser beams and a
magnetic quadrupole �eld (see chapter 2.1.2). The laser beams enter radially the vacuum chamber
at the ports 2, 5, 8 and 11 and axially through ports 18 as de�ned in �gure 3.2. There is a total
power of 300 mW cooling light available, which is detuned to the red by about 2.5 � from the
F = 2 to F 0 = 3 transition. The beam size of the radial beams is roughly (1/e2 radius) 2.5 cm and
axially, limited by the size of the viewport, about 1.2 cm. The measured intensities in the center
of each radial beam are about 8 saturation intensities (Isat=1.6W/m2) and axially 23 saturation
intensities.

In addition to the cooling light the repumping light is overlapped in two axes of the radial ports.
The repumper returns the atoms via the F = 1 to F 0 = 2 transition, from which they decay with
a 50 % probability into the F = 2 ground state, back into the cooling cycle. The total available
repumping power for the MOT is 40 mW.

The magnetic quadrupole �eld is generated by two coils in anti-Helmholtz con�guration (see section
3.9). A current of 17.5 A in each coil results in an axial gradient of 17 G/cm and radially of
8.5 G/cm.

It is preferable to have a large atom number in the MOT because it eases the succeeding evaporative
cooling. In �gure 3.13 some properties of the MOT are depicted. The oven temperature was set
to 160 �C. We are able to load the MOT with well more than 1010 atoms, which is on the large
side of all reported MOTs. The largest reported atom number of 6 � 1010 atoms in a MOT has
been achieved by [179]. The loading curve was �tted to the solution of simple rate equation
_N = R� �MOTN with an atom number N in the MOT. The measured loading rate into the MOT
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is R = 1:3 � 109 atoms/s and the loss rate is �MOT = 0:1 1/s. The appendant curve is plotted in
the upper left of �gure 3.13. The measured loading rate is by more than an order of magnitude
lower than the expected R = 4:7 � 1010 atoms/s given in chapter 3.6. The major forfeit of �ux
is probably due to a slight misalignment of the oven nozzle, the di�erential pumping tube and the
Zeeman-slowing tube, which clips a part of the thermal beam leaving the oven.

The advantage of a large atom number in the MOT comes along with a temperature increase up
to several milli-Kelvin and a distinct loss in density. Both reduces the phase space density by nearly
three orders of magnitude. The reason for this is the large optical density of the cloud, such that
the cooling light cannot reach anymore the inner lying atoms. This also leads to multiple scattering
of light inside the cloud (radiation trapping) and by this to heating. The high temperature is not a
problem, as the sample can be shock-frosted by molasses cooling as shown in the next section. The
density could also be increased, by compressing the MOT via rising the current for the magnetic
quadrupole �eld quickly at the end of the loading step [122, 218]. However we are hindered to do
so right now, since the currently used power supplies feature not enough current.

After the mechanical shutter in the oven part is closed, disrupting the atomic �ux, the MOT starts
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Figure 3.14: Non-exponential decay of the atom number in a magneto-optical trap.

to decay. Looking at the semi-log representation of the decay in �gure 3.14, it exhibits a clear
nonlinear behavior. At high enough densities two-body losses by light assisted collisions [219] have
to be added in the rate equation

dN

dt
= ��MOTN � �Nhni: (3.25)

The two-body loss is proportional to the mean density hni which is itself a function of the atom
number N (see �gure 3.13). To solve this di�erential equation I extracted from the data an inter-
polating function hni(N) and integrated the di�erential equation numerically. The best agreement
was reached for � = 4:6 � 10�18 m3/s and �MOT = 0:023 s�1. A previous measurement gave
� = 3:4 �10�18 m3/s [219]. The lifetime of the MOT is about ��1

MOT = 43 s which is much shorter
than the sole lifetime due to background pressure of about 163 s. But atoms are also lost from
the MOT by imbalance of the intensities of the laser beams or by regions with a speckled patterns
contribution.

3.7.2 Molasses cooling

The temperature of the MOT is way too large to be caught in a pure magnetic trap and a further
cooling step is inevitable. The so called molasses cooling [141] is such a method and can be
implemented with the same arrangement of the lasers as used for the MOT. The polarization is
the same, but one has to set the frequency of the cooling light by some linewidths into the red and
switch of all magnetic �elds. To be sure that there is not any magnetic �eld present, we added
three pairs of Helmoltz coils, one for each axes, to tune the magnetic �eld to zero. By this the
earth magnetic �eld and stray �elds from the ion pumps can easily be compensated.

After the MOT is loaded, all magnetic �elds are switched o� and the compensation �elds are
switched on. Simultaneously the detuning of the laser is switched to -15.5 �. The intensity drops
due to the reduced e�ciency of the accusto-optical modulator by 30 %. The molasses is kept on
for 10 ms, after which the atoms have reached their equilibrium temperature. There is an initial
atom loss of more than 50 % compared to the MOT, but the atom number stays nearly constant
if the molasses time is extended to 50 ms. Figure 3.15 shows the temperatures after 10 ms of
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molasses cooling time for di�erent detunings. The solid line follows the expected course of the
temperature as T � I=� [217, 137]. The loss in density after the molasses cooling stage can be
attributed to the loss of atoms.

The cold atomic cloud after the molasses cooling step is typically quite large with an 1/e width of
� = 3 mm. It is very hard to catch such a large cloud in a magnetic trap without loss of phase
space densitity, since the trapping frequencies for a mode matched trap have to be very small (see
chapter 3.9). One possibility to avoid this problem is to introduce a compression step at the end
of the loading of the MOT [220].

3.8 Optical pumping

After the molasses cooling step the atoms are equally distributed over all mF levels and have to
be transferred into the trapable F = 2, mF = 2 state. This is done by an axial circular polarized
pumping beam. We apply this beam for 1 ms while the magnetic trapping �elds are switched on.
Doing so, we end up with about three times more atoms caught in the magnetic trap. Without
pumping we would expect to catch only 2/5 of the atoms, which gives a maximum gain of trapped
atoms by a factor of 2.5. The explanation for this even better gain in trapped atom numbers is
most likely given by an unequal distribution over the �ve magnetic sub-levels of the F = 2 state
after the molasses cooling step. Finally it should be mentioned that the cloud is not noticeable
heated by the pumping light.

3.9 Magnetic trapping

In our setup we use a magnetic trap in the so called cloverleaf con�guration [154, 155]. The design
of the actual trap is limited by the geometric boundary conditions given by the physical dimensions
of the vacuum chamber (see appendix F) and the resistance of the copper wires.
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Figure 3.18: Circuits for magnetic �eld generation. The elementary circuit consists of a power supply, an

IGBT switch (insulated-gate bipolar transistor), a diode to avoid opposite currents and a ring-down assembly.

The coils exhibit an ohmic resistance as well an inductive load. When switching o� the current with the

IGBT switch, the stored inductive energy is transferred via an ultra fast recti�er diode into the ring down

circuity, where it is dissipated in a small ohmic resistor (0.5 
 or 1 
). A parallel resistor (1 k
) discharges

remanent voltages on the ring down diode. To protect the power supplies, IGBTs and diodes against high

voltage pulses we inserted on several places varistors and transient voltage suppressors. Additionally the

power supplies are protected against opposite currents with bypassing diodes.

The �eld gradients for the MOT are generated by the two ZUP6-33 power supplies and closing the switches

(1), (2) and (3). Pinch 1 and pinch 2 refer to the pinch coils on each side of the vacuum chamber. The

catch trap is operated with the three Power Ten supplies and the IGBTs (4), (5) and (6). The opened IGBT

(1) takes care, that no current is bypassed via the ring down of the upper ZUP6-33. During compression

of the trap, the current of the Power Ten 62B supply is ramped down and �nally switched o� with IGBT

(5). The full compressed trap is operated at 400 A in the pinch coils, the bias coils and the electronically

separated cloverleaf coils (CL).

To achieve adequate �eld strengths it turns out that the needed current densities are to large
for simple copper wires. Therefore we use hollow copper tubings through which cooling water is
pumped. The used tubing has an outer diameter of 4 mm and an inner diameter of 2 mm. One
leaf of the cloverleafs is made of about 20 m of copper tubing. At a pressure of 12 bar is the
cooling water �ux through one leaf about 2 l/min, which allows us to apply currents up to 500 A
continuously. The temperature of the coils increases then only by a few degree Celsius. The
detailed geometry of the coils is shown in �gure 3.9.

To obtain the actual absolute value of the magnetic �eld distributions we either gave the atoms a
kick by an magnetic �eld pulse and measured the oscillation of the center of mass or we recorded
directly the density distribution inside the trap. We did so for di�erent temperatures of the clouds
and combinations of currents. The axial curvature is given by B00 = 0:5 G/cm2 per Ampere and a
radial gradient of B0 = 0:607 G/cm per Ampere. The o�set �eld is about 1 G, when 400 A are
running through the cloverleaf coils and as well through the pinch and bias coils. With additional
axial coils in Helmholtz con�guration one can �ne tune the o�set by a few Gauss.

By applying 400 Amperes in all coils the trapping frequencies are measured to be 18 Hz axially and
310 Hz radially. Figure 3.9 shows the distribution of the absolute value of the magnetic �eld and
the shape of a trapped atomic cloud. The simulation of the magnetic �eld is done by decomposing



58 3 Experimental setup and performance of Bose-Einstein production

the windings into small linear sections and calculating the �eld of each piece with Biot-Savarts law
[221].

The requirements on the high current power supplies are very demanding. Any current noise of the
source leads to parametric heating of the trapped atoms [222, 223]. We estimated that the noise
level has to be lower than 10�5 to be on the save side. This speci�cations are ful�lled by the power
supply units used in our setup23. It is also necessary to switch the currents very fast on and o�.
The detailed electronic circuits are explained in �gure 3.18. The switch on time is on the order of
a few 100 �s, which is achieved by biasing the supplies to a certain voltage. The switch o� time
has to be short compared to the trapping frequency to avoid any adiabatic e�ects for the time
of �ight expansion. This is accomplished by special ring-down circuits, which pick up the currents
and dissipate them within 50 �s in a specialized low-ohmic resistor. However, there remain some
magnetic �elds due to eddy currents in the copper gaskets of the CF250 �anges (see �gure F.1).
These �elds do not signi�cantly alter the expansion of the cloud but make it impractical to do
absorption imaging within the the �rst milliseconds after releasing the cloud from the magnetic
trap.

After the molasses cooling step and the optical pumping the atoms are initially transferred into
a mode matched magnetic trap. This catching trap ideally exhibits the same temperature and
density distribution for the trapped atoms as it does for the molasses cooled cloud. This would
allow to transfer all atoms without loss in phase space density from the molasses cooled cloud
to the magnetic trap. In our case we have to deal with rather large sized magneto-optical traps,
which demand small curvatures and leads to a too large gravitational sag. To optimize the transfer
we shifted the magneto-optical trap by an additional constant �eld downwards to the equilibrium
position of the catch trap. Since the trap is too shallow for the desired parameters, we have to use
a steeper con�nement than desired. This leads to an loss in phase space density by more than one
order of magnitude (see �gure 3.1).

The catch trap is only kept on for one millisecond during which the polarizing light is applied. In a
last step the trap is compressed to the �nal setting within 600 ms. The peak phase space density
increases by such a compression from a harmonic trap to a linear one by an factor of e = 2:718:::,
which is due to the altered geometry [224].

3.10 Evaporative cooling

About 2 � 109 atoms at 600-700 �K are initially trapped in a magnetic trap in the F = 2; mF = 2

state. The trap has an o�set B0 of 1.5 G, a radial gradient B0 of 243 G/cm and an axial curvature
of 200 G/cm2. The initial scattering rate n � � � v is about ten per second. Contrary to this stands
the trap loss collision rate of 1/163 per second (see �gure 3.6). This gives a ratio of good (elastic)
to bad (trap loss) collisions of 1600.

The forced evaporation cooling scheme for our experimental situation is shown in �gure 3.19.
The magnetic trap creates a space dependent Zeeman shift for the trapped atoms. A radio
frequency �eld is tuned to the di�erence of the Zeeman shift between two magnetic sublevels. In
our case we only address states within one hyper�ne manifold, but with the usage of the microwave
setup (see chapter 5.2) we also demonstrated evaporative cooling by transferring the atoms form
F = 2; mF = 2 state into the untrapped F = 1; mF = 0 state.

23P63D 20330, P63D 20500 and P66D 30550, PowerTen
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Figure 3.20 shows the geometry of the radio frequency antenna used for evaporative cooling. The
coils had to be placed beyond the recessed buckets, since the center of the trap is already reserved
for the �eld plates (see chapter 5.3). The consequence is, that the atoms are not located in the
near �eld of the antenna, since the distance to the antenna is larger than the extensions of the coil.
It is also disadvantageous that parts of the antenna are hidden (from the atom perspective) behind
the recessed buckets and that the distance of the buckets is much smaller than the wavelength.
The measurement of the evanescent �eld at the position of the trapped atoms, shows that the
magnetic �eld strength is still su�cient for evaporative cooling.

The e�ciency � of the evaporative cooling can be expressed in the gain of phase space density
versus atom loss.

� =

∣∣∣∣d psd=psddN=N

∣∣∣∣ : (3.26)
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Figure 3.19: Evaporation of magnetically trapped atoms by radio frequency �elds. Depicted are the Zeeman

energies of the magnetic sub-states. The top shows a schematic distribution of a thermal atomic cloud. The

atoms are trapped in the F = 2; mF = 2 state. Atoms with more than average energy extend to regions of

larger magnetic �eld, where they undergo a Landau-Zener transition into lower lying states due to a radio

frequency �eld with energy h�. After two transitions the atoms are in a mF = 0 state and are not anymore

trapped. With this technique it is possible to extract only the most energetic atoms out of the trap as

demanded in chapter 2.3

In our experiment we reach a value of �=2.6 by drawing a line connecting the initial cloud before
evaporation and the point of the phase transition as shown in �gure 3.21. Other groups [159, 225,
226, 147] reported values of about three.

Figure 3.22 shows the same set of data as in �gure 3.21 but now as a function of temperature. In
this �gure are the truncation energies Ecut of the radio-frequency �eld included (horizontal lines),
which are de�ned by

Ecut = 2h� �mF gF�BB0: (3.27)

Every atom with an energy larger than Ecut will be removed from the trap. The truncation energy
has to be corrected by the o�set of the magnetic trap. The horizontal lines on �gure 3.22 represent
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Figure 3.20: Magnetic �eld generated by the antennas inside the chamber versus applied frequency. The

antenna (red) consists of a pair of two windings in Helmholtz con�guration (see F.1). The �eld was measured

with a single pick-up loop. The loop was aligned such, that the measured magnetic �eld component was

perpendicular to the quantization �eld of the magnetic trap. The applied power was 500 mW. In the �nal

setup we used a homebuild frequency generator which is capable to generate arbitrary frequencies up to

45 MHz. The synthesizer has also an analog input to adjust the power. The rf signal from the frequency

generator is subsequent ampli�ed (AP5500-2, FPA) to a maximum power of 2 W. This is a factor of 2 in

the magnetic �eld as depicted above.

the truncation temperature, which is simply Tcut = Ecut=kB. Finally one can de�ne a truncation
parameter � as

� =
Ecut

kBT
: (3.28)

The optimum truncation parameter should be between 4 and 8 [158] to reach the regime of the
so-called runaway evaporation [158]. In our experiment the initial truncation parameter is 6.8 and
increases during evaporation continuously to about 30 close to the phase transition. The accuracy
of the position of the truncation parameter decreases with lower temperatures. Although one can
obtain reliable values for the temperatures of the cloud and the frequency of the rf �eld, it is much
harder to get an exact value for the o�set �eld. If the measured o�set �eld of 1.5 G is only lower
by 10 % changes the �nal truncation parameter from 30 to 20. Nevertheless it still seems that
the truncation parameter is too large at very cold temperatures. This could have its reason in a
too strong coupling of the radio-frequency �eld to the magnetic transition which is equivalent to a
undesired broadening of the rf knife.

One can also de�ne an e�ciency for the evaporative cooling process in the temperature versus
atom number representation

� =
dT=T

dN=N
: (3.29)

In our measurement we reached a value of � = 0:99 by again connecting linearly the data point
of the initial atomic cloud and the point of the phase transition. In [159] a value of � = 1:1 was
reached.
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Figure 3.21: Phase space density versus atom number. The dots are acquired with �uorescence imaging

and the squares with absorption imaging. The black dot on the lower right represents the initial situation in

the magnetic trap. As a �rst evaporative step (red dots) a constant radio frequency of 36 MHz is applied

for di�erent times. The arrow indicates the direction of increasing time from 1 s to 60 s. The best value of

15 s is taken and the next step, a linear ramp (green dots) from 36 MHz down to 18 MHz is added. The

time steps were altered again from 1 s to 60 s with 3 s being the best value. The blue dots represent a linear

ramp from 18 Mhz to 5.625 Mhz within 1 s up to 60 s and the best result at 6s. The magenta colored dots

are a ramp from 5.625 MHz to 3.94 MHz from 1 s to 15 s and 3 s best. This is followed by the cyan ramp

from 3.94 MHz to 2.25 MHz, lasting 1 s to 30 s, and optimal at 3 s. The red squares are ramped from

2.25 MHz down to 1.4 MHz from 1 s to 9 s. The green squares are ramped from 2.25 MHz to 1.35 MHz

within 1 s to 12 s. Additionally a constant rf �eld at 1.35 MHz was added for 100 ms. The �nal ramp which

reaches the critical phase space density of 2.612 (blue line) starts also at 2.25 MHz and stops at 1.32 MHz

within 3 s plus 100 ms at 1.32 MHz. The total evaporation takes 33.1 s. The bottom of the trap is 1.51 G

which corresponds to a frequency of 1.06 MHz. The slope of 2.6 of the solid black line is the e�ciency � of

the evaporation as de�ned in equation (3.10).



62 3 Experimental setup and performance of Bose-Einstein production

10
6

10
7

10
8

10
9

10
10

10
-1

10
0

10
1

10
2

10
3

10
4

Atom number

Te
m

p
e
ra

tu
re

[
K

]
�

0.99

Figure 3.22: Temperature versus atom number. The color coding is identical to �gure 3.21. The arrow

within the cyan dots shows the direction of increasing time as explained in the caption of �gure 3.21. The

horizontal solid lines indicate the truncation energy for each step in the same color according to equation

(3.10). For all linear ramps the �nal value of the the rf-sweep is taken. The slope 0.99 of the solid black

line is the e�ciency � as de�ned in equation (3.29) .

The measured phase transition occurs approximately at 400 nK with 1.5�106 atoms. The trapping
frequencies for the given o�set �eld of 1.5 G are radially 250 Hz and axially 18 Hz. The theoretically
expected temperature of the phase transition is for this parameters 537 nK (see equation 2.39)
and is in good agreement with the measured value.

3.11 Bose-Einstein condensation

When the evaporative cooling proceeds towards the critical temperature for the phase transition
the density distribution undergoes an alteration from a pure Gaussian shape via a thermal Bose
distribution to the parabolic shape of a pure Bose-Einstein condensate at T=0 K. Figure 3.23
shows the condensate fraction of the cold cloud as a function of temperature. The solid line refers
to equation (2.40) with a critical temperature of 375 nK. The expected critical temperature (see
equation 2.39) should be at 537 nK for the measured atom number and trap parameters. The
temperatures for each data point in �gure 3.23 have been extracted from a single absorption picture
after 21 ms time of �ight by �tting a Gaussian to the wings of the density distribution and is correct
within 10 %. The deviation of the measured transition temperature can be caused by the �nite
number of particles as well by the interaction among the atoms. This e�ects are discussed in detail
at the end of this chapter.

Figure 3.24 illustrates the analysis of the absorption images carried out on clouds after 21 ms time of
�ight. This analysis yields the temperature, the number of thermal atoms, the number of condensed
atoms and the fraction of condensed atoms. Well above Tc the density distribution follows a simple
Boltzmann distribution which has a Gaussian shape in real space as well in momentum space for a
harmonic trapping potential. The widths � of the cloud after a time of �ight t can be converted
into a temperature by assuming that the initial widths are negligible small by kbT = m(�=t)2.

At temperatures close to Tc one has to take the enhanced occupation probability of lower lying
states into account. This is caused by the Bose-distribution, which favors the lower lying states
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Figure 3.23: Fraction of Bose condensed atoms versus temperature. At the critical temperature Tc a

macroscopic fraction of the atoms populates the ground state as described in chapter 2.4. The three

absorption pictures are taken after 21 ms time of �ight. The cloud well above Tc has a Gaussian distribution

and is isotropic as expected for a thermal cloud. At T = Tc the atomic cloud in the absorption picture is

already anisotropic as one expects to see for a Bose-Einstein condensate. But the �tted cloud (right picture

in �gure 3.24) shows that there exists no condensate fraction. The anisotropy is caused by the distinct

increase of the peak density due to the Bose enhancement. Finally the last absorption picture shows a clear

Bose-Einstein condensate with about 55 % of the atoms in the condensate phase.

compared to the Boltzmann distribution. It has been shown [227, 228] that there exists a semiclas-
sical description of the density distribution. This is valid in the ideal gas limit when the temperature
is much higher than the level spacings of the con�ning potential U(~r). The density distribution is
then given by

n(~r) =
1

�3dB

1∑
j=1

e j(��U(~r))=kBT

j3=2
=

1

�3dB
g3=2

(
e(��U(~r))=kBT

)
: (3.30)

To compare the theoretical density distribution with the two dimensional absorption pictures we
have to integrate equation (3.30) along the y -axis.

nBose(x; z) = nBose;0
p
�y0g2

(
e�(x=x0)

2�(z=z0)
2
)

(3.31)
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Figure 3.24: Density distribution at di�erent temperatures. The picture show a central slice of two absorp-

tion images taken after 21 ms time of �ight. The �gure on the right is a thermal cloud just at the critical

temperature as shown in �gure 3.23. On the left an atomic cloud well below Tc is shown, which correspond

to the data point with a condensate fraction of 55 % in �gure 3.23. The vertical black lines indicate the

part of the cloud which was taken for �tting the thermal contribution. The green curve is a Gaussian �t on

the wings beyond the black lines. The blue line is the Bose enhanced distribution which shows, that there

is actually no condensate present in the right �gure. Finally the red line is the condensate in Thomas-Fermi

approximation. The condensate fraction is reduced by the enhancement of the Bose distribution compared

to the Gaussian distribution.

The trap is radially symmetric along z and one can set x0 = y0. The free parameters for a full two-
dimensional �t are the peak column density and the widths x0 and z0. The fugacity24 was set to one
which corresponds to a chemical potential of � = 0. By this one neglects the e�ect of interactions
in the non-condensed part of the atomic clouds. In order to use the density distribution (3.31) as a
�tting function one has to expand the poly-logarithmic function according to g2(x) =

∑1
j=1 x

j=j2.
In our case we included the �rst twenty terms.

The fraction of atoms, which is not �tted by the Bose distribution can be assigned to the Bose-
Einstein condensate. For the degenerate part of the cloud we include again the interaction among
the atoms and use also the Thomas-Fermi approximation. In a parabolic trap the density distribution
has also a parabolic shape. Integration along the y -axis gives

nBEC(x; z) = max

4

3
nBEC,0rTF;y

(
1� x2

r2TF;x
� x2

r2TF;z

)(3=2)

; 0

 ; (3.32)

with the Thomas-Fermi radii rTF as de�ned in chapter 2.4. Also the condensed fraction of the cloud
is radially symmetric along z and one can set rTF;y = rTF;x . The free parameters for �tting the
measured distributions in the absorption pictures are, similar to the case of the Bose-distribution,
the column peak densities nBEC,0 and the two Thomas-Fermi radii rTF;y and rTF;x .

The sequence of �tting the data includes three steps. First a rectangular region in the center
of the cold cloud is removed from the data and the remaining wings are �tted with a Gaussian

24The fugacity is de�ned as z = e��, with � = kBT
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to extract the temperature from their widths. The same wings are then �tted with the Bose-
distribution to obtain the thermal fraction of the atomic ensemble. In the third step the �tted
Bose distribution is subtracted from the complete cloud and the remaining data is �tted with the
parabolic Bose-Einstein distribution.

The Bose-Einstein condensates contain about 3 � 105 atoms in a trap with a radial frequency of
250 Hz and axially of 18 Hz. This gives a peak density of 3:5 � 1014 cm�3 and an interaction
energy (chemical potential) of � = 3 kHz. The radial size is rTF;x = rTF;y = 3:3�m and axially
rTF;z = 46�m.

With the knowledge of the density it is possible to estimate the lifetime of the condensate due to
three body recombination. The coe�cient for this inelastic process is � = 1:8 � 1029 cm6/s. The
total scattering rate in the center of the cloud is then 2.2 s�1, which corresponds to a lifetime of
about 450 ms.

Now the e�ect of a �nite particle number and the interaction among the atoms on the transition
temperature shall be discussed. The �nite size e�ect of a �nite atom number shifts the transition
point to lower temperatures and can be approximated by [164]

Tc(N) =

(
1� �(2)�(3)�2=3

2

1

N1=3

)
T 0
c �

(
1� 0:7275

1

N1=3

)
T 0
c ; (3.33)

where T 0
c is the critical transition temperature in the thermodynamic limes, N the atom number

and �(x) Riemann8s zeta-function [163]. For atom numbers above one million, close to the critical
temperature, this shift is less than 1 % and can be neglected in our case.

For a trapped gas in a harmonic oscillator potential is the shift due interactions given to the lowest
order in the coupling constant 4�~2a=m given by [229, 230]

Tc(a; N) =

(
1� 1:33

a

�aho
N1=6

)
Tc ; (3.34)

where a is the scattering length and �aho the mean harmonic oscillator length of the trap. For our
parameters the evaluated correction is well beyond the validity of the expansion and one can state
that the critical temperature is shifted by more than 10 % due to interactions. A more detailed
treatment of the real critical temperature has to be done numerically and is beyond the scope of
this thesis.

In conclusion this chapter on the experimental methods shows that the performance of the setup
is as desired and BECs can be produced reliably. The functionalities of the individual steps are well
understood and quantitative speci�cations have been produced. With the full characterization of
the BEC is the system now ready for exploring novel physics.





4 Theoretical results

4.1 The light induced dipole-dipole interaction

In this chapter, I investigate new physical aspects that arise in dense cold atomic samples irradiated
by a near resonant laser beam. Atoms exposed to an electromagnetic wave respond as damped
harmonic oscillators and exhibit an alternating electric dipole moment. The interaction energy of
such dipoles can exceed the one of magnetic dipoles in atomic ground states by several orders of
magnitude.

The idea of the proposed experiment described here is to study the coherent interaction of laser
induced electric dipoles by transferring the interaction energy among the dipoles into kinetic energy,
which can be probed with standard time of �ight techniques. Initially, the dipoles are generated for
a certain �ash time by a laser beam with linear polarization in a spin polarized sample of cold atoms.
During the �ash time, the dipole moments reach a steady state and the light-induced dipole-dipole
interaction potential is build up. As a �rst step, I calculate these potentials for a certain density
distribution including the retardation e�ects of the dipolar �elds and the driving electromagnetic
wave. The �ash time is chosen long enough that the atoms can evolve in the induced potential,
namely to gain momentum, but short enough not to change the initial density distribution. As a
next step I discuss the change of the initial momentum distribution for di�erent geometries of the
atomic cloud and as a function of the angle with respect to the linear polarization of the laser light.

The results of this chapter were published in [231] and are discussed in more detail in [232].

4.1.1 Light-induced dipole moments

In the following I assume a two level atom with an excited state lifetime � and an energy separation
!0. The dynamics of an atom irradiated by coherent light with frequency ! can be treated with
the optical Bloch equations as introduced in chapter 2.1. The operator of the dipole moment can
be written as

d̂ = dge (jgihej+ jeihgj) ; (4.1)

where dge is the dipole matrix element .

dge =

√
3"0hc3

2!3
0

�: (4.2)

The expectation value hd̂i of the dipole moment is

hd̂i = 2dge (u cos(!t)� v sin(!t)) : (4.3)
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Figure 4.1: Expectation value of the amplitude of the dipole moment as given in equation (4.5).

The steady state expectation value dst of this dipole moment is then, by inserting the steady state
solutions for u and v

dst =
2dge

!R

s

s + 1

(
� cos(!t)� �

2
sin(!t)

)
; (4.4)

where � = ! � !0 is the detuning of the driving �eld. The dipole moment oscillates with the laser
frequency with a phase shift depending on the detuning. The amplitude d of this oscillating dipole
moment is

d =

√
3�"0hc3

!3

√
I0
Isat

(
1 + 4�2

�2

)
1 + 4�2

�2
+ I0

Isat

: (4.5)

As can be seen in �gure 4.1 there exists for any detuning � an intensity I0 which maximizes the
amplitude of the dipole moment to dmax =

√
3�"0hc3=4!3. This happens if the intensity is set to

I0 = Isat

(
1 +

4�2

�2

)
: (4.6)

4.1.2 Potentials of interacting dipoles

In the following, I am dealing with oscillating dipoles driven by an electromagnetic wave with linear
polarization and wave vector k . I assume that all dipole moments are of equal strength, oriented
parallel and oscillate with the same frequency !. The phase between two dipoles depends on the
position of the atoms with respect to the electromagnetic wave phase fronts and the interatomic
distance. The retarded interaction potential for two interacting dipoles with one dipole located at
the origin and the other at ~r0 reads [233]

~Vdd(~r0; 0) =
d2 cos(~k � ~r0)

4�"0r
3
0

� (4.7)

�∑i ;j [(�i j � 3
r0;i r0;j
r2
0

)(cos(kr0) + kr0 sin(kr0))� (�i j � r0;i r0;j
r2
0

)(k2r20 cos(kr0))]; i ; j = x; y ; z;
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Figure 4.2: Retarded interaction potentials of two oscillating dipoles driven by an electromagnetic wave

according to equation (4.7). The laser �eld is in both �gures linearly polarized along the z-direction and the

wave vector k of the traveling wave points in the y-direction. The two dipoles are separated by ~r , where one

is placed at the origin. The yellow regions correspond to a repulsive, the blue to an attractive potential. In

the left �gure the two dipoles lie in the yz-plane and in the right �gure in the xz-plane.

where d is the absolute value of the dipole moment and ~k the wave vector of the driving �eld. The
potentials generated by equation (4.7) are illustrated in �gure 4.2. The retardation generates a
potential pattern, where the potential is depending on the position either attractive or repulsive.

In a Bose-condensed sample we are typically dealing with many atoms. So I want to extend the
description to a system of N pairwise interacting dipoles with a density distribution n(~r). The
superposed potential Vdd(~r0) for a dipole at position ~r0 is given by

Vdd(~r0) =

∫
~Vdd(~r0; ~r)n(~r)d

3r: (4.8)

Replacing ~Vdd(~r0; ~r) by d2 cos(~k � (~r0 � ~r))V0
dd
(~r0 � ~r), it is possible to rewrite the integral as a

convolution

Vdd(~r0) =

∫
d2 cos(~k � (~r0 � ~r))V0

dd(~r0 � ~r)n(~r)d3r; (4.9)

to which the convolution theorem can be applied.
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Figure 4.3: A Bose-Einstein condensate within an one-dimensional optical lattice. The resulting density

distribution is a stack of pancake-shaped condensates. A laser along the y-direction induces the dipole-

dipole interaction. The linear polarization of the �ash beam can be altered from x-polarization ('=0�) to

z-polarization ('=90�). The altered momentum distribution is either projected onto the x-z plane or the y-z

plane.

4.1.3 The experimental situation

The underlying geometries of the proposed experiment are shown in �gure 4.3. The desired para-
meters are realistic in a typical Bose-Einstein condensate experiment with 87Rb atoms in the F=2,
mF=2 ground state. The atomic cloud is con�ned in a cigar-shaped magnetic trap with the long
axes along z as depicted in �gure 4.3. In addition, I adiabatically switch on a retro-re�ected laser
beam with a wavelnegth of 785 nm to create an optical lattice along the z-axis to increase the
density. The depth of the lattice is set to 100 recoil energies, which results in an axial trapping
frequency of 105 kHz. The additional axial con�nement due to the magnetic trap is neglected in
the following. Radially, the trapping frequency is set to 1 kHz which can either be generated by the
magnetic trapping potential or the dipole potential of the optical lattice. Due to the strong axial
con�nement, the density distribution of the ground state can not be calculated in the Thomas-Fermi
approximation. I solved the full Gross-Pitaevskii equation [22] numerically with an imaginary time
Schrödinger equation for 250 atoms in a single lattice site for the given trapping frequencies. The
resulting pancake-shaped density distribution can be approximated in radial direction by a parabola
with a Thomas-Fermi radius of 1.15 �m and axially by an Gaussian distribution with a 1/e2 radius
of 34.2 nm. The resulting peak density is 9:7 � 1020 m�3 and the chemical potential is 5.8 kHz. In
the following, I assume an in�nite stack of equal pancakes separated by �/2=785/2 nm.

The intensity of the �ash beam is set to 1120 Isat and its frequency is blue-detuned by 100 MHz
from the F=2 to F=3 transition (D2 multiplet of Rubidium) at 780.249 nm, which corresponds to a
detuning of 16.7 �. Using such a large detuning, one can neglect an inhomogeneous illumination of
the atomic cloud since only a small fraction of the light is absorbed. The induced dipole potentials
alters the e�ective detuning to the �ash beam which results in an altering phase and magnitude of
the oscillating dipoles within the cloud. This e�ect can also be neglected, since the detuning of the
�ash beam is much larger than the induced dipole potential. Also nonlinear e�ects as lensing by
the inhomogeneous density distribution [199] and radiation trapping [234] are strongly suppressed.
The �ash beam propagates along the y-direction and its polarization angle ' can be altered from
0� (polarization along the x-axis) to 90� (polarization along the z-axis). The steady state dipole
moment with this parameters is 5.26 Debye. The �ash beam is applied for 300 ns with constant
intensity, which is long compared to 1=� and allows all atoms to reach the steady state. The



4.1 The light induced dipole-dipole interaction 71

-4 -3 -2 -1 0 1 2 3 4

� �=0.27 m

0.55 m�

2.20 m�

1.10 m�

0.0

-0.5

-1.0

-1.5

-2.0

-2.5

-3.0

U
[

]
�

m
a
x(

|
d

U
/d

y
|
)/

m
[m

/s
]

2 10
5

10
4

10
3

� �[ m]

0 1 2 3 4

�y [ m]

Figure 4.4: The left �gure shows the induced potentials along the y-axes at x=z=0 for di�erent radial

widths � of the atomic clouds. The vertical red bars at each plot indicate the radial Thomas-Fermi radius.

The peak atomic density was kept constant at 9:7 � 1020m�3 for all widths. The polarization of the �ash

beam points always along the x-axis. On the right side, the maximum acceleration as dependence of the

radial Thomas-Fermi radius � is depicted. The data shows the maximum gradient of the potentials divided

by the mass of a Rubidium atom (m=1.44 �10�25kg). The horizontal line a) gives an upper limit for the

unidirectional acceleration ( dhpidt =m = ~k�=4m) due to radiation pressure. The horizontal line b) marks the

maximum acceleration due to momentum di�usion caused by spontaneous emission processes (
d
p

hp2i

dt =m).

The �ashing laser has a detuning of 100 MHz and an intensity of 1120 Isat.

switching time of the light can be reduced to several tenth of nano-seconds with an accusto-optical
modulator and is therefore short compared to the 300ns �ashing time.

4.1.4 Outline of the calculation and results

For a given density distribution and with the knowledge of the retarded dipole potentials one can
calculate the potential within a single pancake. Since there exists no analytical solution to equation
(4.9), the integral is discreticized on a simple cubic lattice for a numerical calculation. The grid
for the numerical calculation is chosen to be 64 � 64 � 128 = 65:536 lattice points and the grid
lattice spacing is �l=32 = 24:5 nm where �l is the wavelength of the laser generating the optical
lattice. By using the convolution theorem one can straightforward use a common FFT algorithm
for evaluation. The full potential, including all lattice sites, is simply obtained by superposing
the calculated single pancake potential in an in�nite one dimensional chain. The result of such a
calculation is shown in �gure 4.4

The induced dipole potential Vdd changes the momentum distribution of the atomic cloud. In the
following, I assume a density distribution of a Bose-Einstein condensate with all atoms having the
same phase. The undisturbed wave function can be written as  0(~r) = e i'(t)

√
n0(~r). The wave

function is an eigen-state of the unperturbed situation and therefore the time evolution operator
of the system, after the interaction is switched on, writes Û(~r ; t) = exp(�iVdd(~r)t=~) and with
this  ( ~r; t) = Û(~r ; t) 0(~r). Here I demand that the density distribution does not change during
the interaction time, which is legitimate in the so called Raman Nath regime [235]. The Raman-
Nath approximation is valid as long the gained kinetic energy is much smaller than the interaction
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Figure 4.5: The two graphs depict the width of the momentum distribution of the atomic cloud after the

light-induced dipole-dipole potential was applied for 300ns. The Thomas Fermi radius was set to 1.15 �m.

The graph on the left shows the broadening in momentum space projected onto the y-axes as a function of

the polarization angle and the right the projection onto the x-axes. The slash-dotted line includes the e�ect

of the light-induced potentials and the chemical potential. The solid line is the incoherent background of

the spontaneous scattered photons as a function of the polarization angle '. To receive the full width in

momentum space one has to add the two curves in quadrature.

potential. The momentum distribution after the interaction time t is given by

~n(~k; t) =
1

8�3

∣∣∣∣∫ e i
~k~r Û(~r ; t) 0(~r ; 0)d

3r

∣∣∣∣2 : (4.10)

During the interaction time of 300ns the atoms experience a maximum acceleration of about
5 � 104m=s2 (see �gure 4.4) which results in a spatial displacement of less than 1% of the
wavelength of the driving �eld. The kinetic energy after such an acceleration is about 1% of
the calculated interaction energy. Therefore it is a fair approximation to carry out the simulation
in the Raman-Nath regime. This means also that superradiant e�ects can be neglected [236].

To account for additional broadening e�ects of the momentum distribution by spontaneous scat-
tering events, the time evolution of the full atomic density matrix was carried out see appendix D.
This includes the di�erent polarizations of the driving �eld, the pumping of the atoms into other
mF states and the angular distribution of the acquired recoil. For given parameters, about three
photons are scattered per atom. The amount of scattered photons can be experimentally checked
for consistency purposes by the shift of the center of mass position after some time of �ight of the
atom cloud.

The �nal momentum distribution is then given by the convolution of the momentum gain due to the
induced dipole potential, the mean �eld of the Bose-Einstein condensate and the spontaneously
scattered photons. To extract a mean momentum broadening, the convoluted distribution was
�tted with very good agreement by a Gaussian distribution.

In �gure 4.4 the distribution of the light-induced dipole-dipole interaction potential through the
center of a pancake along the y-axis is shown. The contribution of the neighboring pancakes is
included by periodic boundary conditions. The di�erent curves represent pancakes with di�erent
radial sizes but at �xed axial size and constant density and show the dependence of the induced
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potentials on the geometry of the atomic cloud. In the limit of an in�nite cloud with a constant
density distribution, the potential would be just a constant and its mechanical e�ect on the atoms
vanishes. The increase of the induced potentials in the center of the cloud with larger radii arises
form the greater atom number within the cloud, since the density is kept constant. The interaction
potential is on the order of several MHz, which is large compared to all other energy scales in the
system like the trapping frequencies and the chemical potential due to the interaction via s-wave
scattering.

The right hand side of �gure 4.4 shows the maximum acceleration extracted from the potentials.
For su�ciently small radial sizes of the atomic cloud, the maximum acceleration prevails the uni-
directional acceleration ~k�

4 due to the spontaneous light force. This allows to clearly distinguish
the e�ects emerging from the dipole-dipole interaction from spontaneous scattering events.

Finally the slash-dotted curves in �gure 4.5 show the calculated widths of the momentum distri-
bution for the previous parameters along the x and y direction as a function of the polarization
angle. Not included in the slash-dotted curves is the contribution of the spontaneous scattering
events represented by the solid lines. The broadening in momentum space can be up to 10 recoils,
which is fairly larger than the contribution of the chemical potential. Noticeable is the existence
of a strong dependence of the broadening on the polarization angle '. In both directions exists an
angle at which the e�ect of the dipole-dipole interaction nearly vanishes and the momentum distri-
bution is dominated by the released chemical potential. The plot on the left side shows a minimum
close to the so-called magic angle at 54.74� where the interaction of two dipoles vanishes. Such a
minimum broadening is a clear signature of the dipolar character of the potentials since it can not
be explained by other light-atom interaction mechanisms.

This theoretical treatment of the light induced dipole-dipole interaction identi�es a new regime of
coherent atom-light interaction. The mechanical e�ect of this interaction can be detected in a
standard BEC-setup as we use. The smoking gun of the dipolar character is the angular dependence
of the momentum distribution, which can not be explained by spontaneous scattering events.
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In this chapter I review the results of three distinct experimental projects, which were accom-
plished during the last year. Each of them involved an additional setup, which will be presented
in detail. The projects were realized with the help of three diploma students and more details on
the conducted experiments can be found in [180, 237, 238]. The outcome of these experiments
are important cornerstones towards the two main research routes of this project, namely Rydberg
matter and the Spin-Boson model (for more details on these see chapter 6.2).

5.1 Bose-Einstein condensates in an optical lattice

The �rst result is the observation of di�raction of a Bose-Einstein condensate in a one-dimensional
electromagnetic standing wave. The comparison of the experimental data with the theoretical
predictions derived in chapter 2.5.1 allows the assignation of the experimental conditions needed for
future experiments involving optical lattices. The focus hereby is on the experimental investigation
of the Spin-Boson model which is addressed in chapter 6.2. A more detailed discussion of the
accomplished experiments with optical lattices and the technical background of the experimental
setup, as well the theoretical treatment, can be found in [180]. The general status of research
involving cold atoms and optical lattices is reviewed in chapter 1.1.

5.1.1 Experimental setup

To test the performance of the laser setup shown in �gure 5.1 we implemented as a �rst step a
one-dimensional optical lattice with a wavelength of 820 nm. By monitoring the di�raction orders
in dependence of the interaction time of the BEC with the optical lattice, we can draw conclusions
about the geometry of the lattice, the achieved potential depths and its reproducibility.

The two laser beams generating the optical lattice were aligned through the viewport 18
 (see �gure
3.5) along the long axis (z-axis) of the cigar shaped BEC. The signal of an external reference
cavity was used to stabilize the frequency of the Titanium:Sapphire laser. The light was brought
to the vacuum chamber by a polarization maintaining �ber. This increases the pointing stability of
the laser beams with respect to the atoms, since the free propagation in air is reduced to about
half a meter. The polarization of the light is cleaned after the �ber additionally by a polarizing
beam splitting cube. To avoid additional optics for beam expansion we use a collimation package1

which delivers right away a parallel beam with an 1/e2 waist of 600 �m. This collimated beam is
then focused onto the atoms with a f=300 mm lens, which yields at the position of the atoms a
beam waist of 130 �m with the corresponding Rayleigh-range of 7.1 mm. The Thomas-Fermi radii
3.3 �m � 3.3 �m � 46 �m of the magnetically trapped BEC are in both directions well smaller than
the extension of the focused laser beam. By this one can assume the intensity distribution to be
constant over the condensate. For retro-re�ecting the laser beam we mounted another f=300 mm

160FC-4-A6.2S, Schäfter-Kirchho�
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Figure 5.1: Laser-system for experiments with optical dipole traps and optical lattices. A Titanium:Sapphire

laser (TIS-SF07, Tekhno-Scan), pumped by a solid-state laser (Verdi-10, Coherent), delivers about 1 Watt

of laser power at a wavelength of 820 nm. The signal of an external cavity resonator is used to control the

resonator length of the Ti:Sa laser, which is equivalent to stabilize the laser frequency. An accusto optical

modulator (AOM) is used to adjust the depth of the dipole potentials. By implementing a photo diode after

the optical �ber we can control the intensity by regulating the rf power entering the AOM with a PID loop.

The response time of the loop circuitry is su�cient for adiabatic ramping of the dipole potentials but not

for the short time scales required in di�raction experiments. For such experiments only the passive stability

of the intensity is used.

lens in a 2f-setup behind the vacuum chamber. To ensure a good overlap between the two beams,
we installed a photo-diode in front of the �ber and aligned the retro-re�ected beam with a 0� mirror
again through the �ber.

5.1.2 Results

To optimize the alignment of the lattice we transferred in a �rst step thermal atoms with a
temperature of a few �K into the focus of a single laser beam (without the retro-re�ected beam).
The position of the dipole trap was then optimized on the transfer e�ciency of the atoms. By
increasing linearly the power of the light trap to a maximum value of about 200 mW and then
switching o� suddenly the magnetic trap, we achieved a transfer e�ciency of almost 100 %. As a
next step we added the retro-re�ected laser beam to generate an optical lattice. To transfer the
atoms into the optical lattice potential we proceeded in the same manner as for the single beam
trap. Also in this case we transferred almost all atoms into a pure dipole potential. We tested the
adiabaticity of the transfer by �rst ramping up the laser power within 100 ms, holding the atoms for
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Figure 5.2: Absorption images of a Bose-Einstein condensate di�racted in an optical lattice. The lower part

of the �gure shows absorption images of the di�racted atoms for di�erent interaction times. The numbers

below indicate the exposure in �s. The color coding re�ects the number of detected atoms (from little

atom number colored blue to high ones in red). Above the experimental result is a theoretical simulation for

a potential depth of 91 Erec depicted. With the great agreement between experiment and theory, we can

specify the depth of the lattice potential within 5% accuracy.

several ms in the combined potential of the magnetic trap and the optical trap and then decreased
the power again within 100 ms. For thermal clouds at a temperature of a few �K we measured
almost no heating of the cloud. But when transferring a Bose-Einstein condensate into the lattice
the atoms were severely heated. Since we monitored also a loss in the atom number, we identi�ed
this heating with inelastic three body collisions (see chapter 2.4.3).

To determine the depth of the optical lattice potential we conducted a standard di�raction exper-
iment [179]. After the generation of a BEC with about 2 � 105 atoms (as described in chapter
3.11) the lattice laser light was switched on for a chosen time with constant power of about 200
mW, while the condensate was still con�ned in the magnetic trap. The �ashing time was varied
from 200 ns to 12.6 �s by switching on and o� the radio-frequency power of the accusto-optical
modulator and with this the laser light. The rise and fall times of the intensity was on the order
of 25 ns. This switching time is of 25 ns was included in a numerical simulation of the experiment
and it turned out that it is not changing the time evolution of the di�raction patterns severely. 100
�s after the lattice light pulse was switched on, we released the atoms from the magnetic trap for
a time of �ight measurement. The momentum distribution of the atoms was detected after 17 ms
of free evolution by absorption images (see chapter 3.3.2).

In �gure 5.2 absorption images for increasing interaction times are shown. The upper part of
the �gure shows a theoretical calculation following chapter 2.5.1 for a lattice depth of 91 Erec.
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Figure 5.3: Occupation fraction of the di�erent di�raction orders. Each plot shows the normalized atom

number for each order as function of the interaction time with the optical lattice potential. The atom number

per order is the sum of the two symmetric di�raction peaks. The solid lines are theoretical calculation for

three di�erent potential depths, namely 86 Erec (blue), 91 Erec (green) and 96 Erec (magenta).
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Di�raction peaks up to the fourth order are clearly visible. A more detailed analysis of the data is
shown in �gure 5.3. The �ve plots show the time dependent occupation of the individual di�raction
order from 0th to 4th order. The fraction of each order was determined by summing the number of
atoms for the two symmetric di�raction orders and normalizing it to the total atom number. The
intensity �uctuation of the laser was about of 5% from shot to shot, since the PID-loop for the
intensity stabilization could not be used for such short pulses. The variation of the intensity is most
likely due to the pointing instability of the Ti:Sa laser, which leads to a reduced injection e�ciency
into the optical �ber. The di�ering intensities are re�ected in �gure 5.3 by three theoretical curves
for potential depths at 86 Erec (blue), 91 Erec (green) and 96 Erec (magenta).

The available laser power of about 200 mW leads at the position of the atoms to a peak intensity
of Imax=980 W/m2. The expected potential depth (see Appendix E) is then about 130 Erec. The
observed potential depth of about 91 Erec is 30% below the expected value, which can be explained
by several circumstances. The two viewports (made of fused silica) through which the laser beams
enter the vacuum chamber feature no antire�ection coating, which reduces the potential depth of
the optical lattice already by 15%. A further e�ect for a decreased potential depth is the slight
change of the linear polarization by the optical viewports which exhibit some birefringence. Because
of the large detuning are single beam dipole traps almost immune to this e�ect, but the optical
lattice depends on the interference of the electric �eld components. If the direction of the electric
�eld component of the linear polarization is tilted by an angle � with respect to the initial beam
and the retro-re�ected on changes the potential depth as cos2 �. Finally remains a uncertainty
in the overlap of the two foci, since the focus of the retro-re�ected beam can not be adjusted
independently as it is done for the primary beam. However is this e�ect rather negligible at such
large Rayleigh ranges as used in our case.

The observation of the di�raction peaks gives not only information about the depth of the optical
potential, but can also be used to calibrate the imaging system. Each di�raction order n corresponds
to a recoil mode of �2n~k . With the well known recoil velocity at 820 nm and the knowledge of
the time of �ight duration it is possible to calibrate the magni�cation very accurately.

The absorption pictures in �gure 5.2 show not only distinct di�raction peaks but also a cloud
of scattered atoms. To estimate the number of scattered atoms one has to include the time
dependence of the density distribution. The total number of scattering events is given by the
integrated scattering rate

∫
n(t) ��vdt. The evolution of the density distribution consists of three

steps. In the �rst step the lattice potential is applied to the magnetically trapped atoms from a few
ns up to to 13 �s. The density of the cloud does almost not change during this pulse and can be set
to be constant. The velocity of the di�racted atoms for the nth order is n times the recoil velocity
�11:2 mm/s. For a mean density of 1014 cm�3 only a few percent of the atoms are scattered.
The atoms reside after the pulse for 100 �s in the magnetic trap. The center of mass of the �rst
di�raction order moves in this time about 1 �m, which is much less than the Thomas-Fermi radius
of about 50 �m along the z-axis. Also here one can assume the density to be constant, and about
10 % of the atoms moving with two recoil velocities get scattered during this time. Finally the
atoms are released from the magnetic trap and undergo a free expansion as described in chapter
3.3.3. During the expansion the scattering rate drops accordingly to the reduction of the density. In
the case of cigar shaped condensates, as given in our case, the density drops roughly quadratically
in time. If one takes for example a situation where about half of the atoms are di�racted into
the �rst di�raction order (see absorption �gure at 1.7 �s) the integration of the scattering rate
results in a total scattering probability of about 50%, which is in good agreement with the observed
fraction.

To obtain a better visibility of the di�raction peaks, one has to reduce in future experiments the
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density of the initial cloud either by reducing the strength of the con�ning magnetic trap or by
applying the lattice potential after some time of �ight. If for example the radial trapping frequency
of the magnetic trap is reduced by a factor of ten, one limits the scattering events already to only
a few percent.

This realization of a one-dimensional lattice is an important step towards the investigation of the
Spin-Boson model (see chapter 6.2.1). The next step is the extension of the setup to a two-
dimensional lattice in the same manner as described above. With a lattice depth of 30 Erec for
each axis one reaches the regime of one-dimensional gases as required for the implementation of
the Spin-Boson model.

5.2 Rabi oscillations between the two hyper�ne ground states

To transfer atoms coherently between the two hyper�ne ground states of 87Rb one needs either
a microwave �eld at 6.8 GHz or two phase locked lasers for Raman transitions. The latter is
already available in our institute [239] and will be implemented in our setup for experiments 6.2.1
in the framework of the Spin-Boson model. The combination of the rf-�elds used for evaporative
cooling (see chapter 3.10) and this microwave assembly will be used to transfer the atoms in any
desired magnetic sublevel of the F = 1 or F = 2 ground state manifold. The availability of a
�exible microwave assembly is a powerful tool for many experimental situations. The major aim is
on the ability to transfer atoms into arbitrary magnetic sub-level of both hyper�ne ground states
or mixtures of di�erent states, also called spinor condensates [55]. But it can also be used for
evaporative cooling, driving clock transitions or for sensitive spectroscopy with a resolution well
below 1 kHz [240].
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Figure 5.4: Schematic setup for microwave generation. A detailed description is given in the text.

The setup for generating microwave radiation at 6.8 GHz is shown in �gure 5.4. The key design
criteria were excellent frequency stability, with a frequency drift better than 1 kHz per hour, a
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Figure 5.5: Damped Rabi oscillations in the time domain. The three data sets show Rabi oscillations

between the F = 1; mF = 0 and F = 2; mF = 0 state for three di�erent detunings �=0 kHz (red), �=2

kHz (green) and �=7 kHz (blue). By �tting the data (crosses) with an exponentially damped cosine (solid

line) one can extract the e�ective Rabi frequency 
e� and the damping �. On resonance (�=0 kHz) is the

�tted e�ective Rabi frequency 
e�=1.10 kHz, for 2 kHz detuning 1.24 kHz and for 7 kHz detuning 2.45

kHz. The e�ective Rabi frequency is plotted in �gure 5.6 as a function of the detuning. The damping � is

on resonance 900 Hz, at 2 kHz detuning 702 Hz and for 7 kHz detuning 356 Hz.

phase noise below -100 dBc/Hz and high power of several Watts in the radiation �eld. The heart
of the system is a YIG-oscillator2 at 6.4 GHz, which is subsequently frequency mixed3 with a signal
generator4 to obtain the desired 6.8 GHz. By controlling the signal generator either by GPIB or
TTL signals one can generate almost arbitrary frequency ramps (between 5.4 GHz and 7.4 GHz)
and pulse sequences respectively. The mixed signal is cleaned by a bandpass �lter5 and ampli�ed
in two steps6 7 up to 4 Watt. The monitoring of the signal is either done via a directional coupler8

or directly inline by a zero-biased Schottky-diode9.

The hole setup is terminated with a homebuild impedance matched helical antenna [241]. Its special
winding pattern produces a directional radiation pattern of circularly polarized microwaves. The
antenna itself consists of a helical wire wound on a rod made of plexiglass10. The dimensions of
the antenna can be reduced by the value of the refractive index ("r=2.475) of the plexiglas used.
One side of the antenna is terminated by a baseplate, which acts as an re�ector for the microwave.
There are eight windings on a rod of 77.6 mm length and 11 mm diameter, which gives a forward
gain of 17 dBm compared to an ordinary dipole antenna. The baseplate has a diameter of 21 mm
and is furnished with a SMA connector on the backside. More details about the antenna design
and its radiation performance can be found in [237].

Microwave radiation at 6.8 GHz has a vacuum wavelength of 44.1 mm. The open aperture between

2Agate Series Crystal Oscillator, Wenzel Associates, Inc.
3Double balanced mixer J-4080 M, Eclipse Microwave, Inc.
4SSG MG3641A, Anritsu
5AAMCS-BPF-250M-3dB-Sf, AA-MCS, Inc.
6ZX60-8008E, Mini-Circuits
7AM53-6.3-73-35-35, MA-LTD, Inc.
8780-30-6.000, Meca Electronics
9DZR124AA, Herotek

10PMMA, Degussa
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Figure 5.6: Analysis of the Rabi oscillations between the F = 1; mF = 0 and F = 2; mF = 0 state as shown

in �gure 5.5. On the left side is the dependence of the e�ective Rabi-frequency on the detuning shown.

The blue line is a plot of the e�ective Rabi frequency 
ef f =
√
!2
R + �2 (see equation 5.1) with a coupling

strength of !R = 3:55 kHz. To the right is the dependence of the amplitude versus detuning depicted.

The blue line is proportional to the expected amplitude
!2

R

!2

R
+�2

and plotted again for a coupling strength of

!R = 3:55 kHz.

the two resessed buckets of 28 mm is larger than half the microwave wavelength, which allows a
traveling wave inside the buckets. The antenna is placed in front of the viewport 11
 (see �gure
3.5), which is no handicap for the radiation because of its large diameter. The actual radiation
pattern at the position of the atoms is probably quite complicated due to the complex geometry of
the vacuum chamber. To gain more insight about the intensity distribution inside the chamber one
has to use advanced numerical methods, which has not been done yet. Nevertheless is the �eld
distribution more or less independent over the typically used frequency range of a few MHz, which
was not the case for the radio-frequency �elds used for evaporative cooling (see chapter 3.10).

We tested the performance of the setup by observing Rabi oscillations between the two hyper�ne
ground states of 87Rb. For this we prepared initially a laser cooled cloud in the F = 1 state with a
temperature of about 20 �K. In order to achieve a two-level system, we applied a small magnetic
�eld of 200 mG in z-direction and tuned the microwave frequency to the F = 1; mF = 0 ! F =

2; mF = 0 transition. This so called clock transition exhibits only a quadratic Zeeman shift with
the magnetic �eld strength and is by this comparatively insensitive to magnetic �elds (see appendix
B).

The driven two level system can be described by optical Bloch equations (see chapter 2.1) and has
for a constant driving �eld following solution

p2 =
!2
R

!2
R + �2

1

2

(
1� cos

√
!2
R + �2

)
; (5.1)

where p2 is the population fraction of atoms in state F = 2; mF = 0. The fraction p1 in F =

1; mF = 0 is then 1 � p2. The e�ective Rabi-frequency is given by 
e� =
√
!2
R + �2 with the

ordinary Rabi frequency !R and the detuning �. The coupling strength for the given transition is
given by
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!R =
�B
~
j~Br f � ~ez j; (5.2)

where the direction of the magnetic �eld ~Br f has to be parallel to the quantization axis ~ez . For
a measured coupling strength of 3.55 kHz gives this a perpendicular magnetic �eld component of
3 mG.

The experimental results on coherent Rabi oscillations are combined in �gure 5.6. The radio
frequency was applied to the atoms in the F = 1 state for a certain time, after which the atoms
in the F = 2 state were selectively detected. The collected data (up to 10 ms) exhibited damped
oscillations shown in �gure 5.5, which were analyzed in time- and frequency-space. On resonance
a clear damping with corresponding line width of 900 Hz was apparent, which is most likely due
inhomogeneities of the microwave �eld within the vacuum chamber. By this inhomogeneities exhibit
the atoms a di�ering e�ective Rabi frequency depending on their position. In the case of large
detuning this e�ect does contribute less and for �=10 kHz was the damping already reduced to 76
Hz. More details to the microwave-setup, its performance and experimental implications can be
found in [237].

As mentioned above this system will be used to manufacture the initial state for investigating
the Spin-Boson model (see chapter 6.2.1) but has also many other applications. It can be used
to generate mixtures of di�erent spin states for studying Spinor condensates [55] or to measure
the interaction energy among the atoms [240]. But it has also manifold implementations for
investigating Rydberg matter (see chapter 6.2.2). By applying Landau-Zener sweeps [242] on the
magnetically trapped atoms one can remove a certain fraction of atoms and adjust by this the
atomic density at constant temperature. This method is ideal to study the density dependence of
blockade e�ects of the Rydberg excitation due to van-der-Waals or dipole-dipole interaction. A
further application is given by the Stark e�ect of Rydberg states as depicted in �gure C.1. At certain
electric �elds the level splittings are on the same order as the available microwave frequencies. With
this one can transfer the atoms within one L-manifold to any angular momentum state. Of special
interest are here the stretched states with maximum L which exhibit extremely long lifetimes [78].

5.3 Experiments with Rydberg atoms

The focus of the experiments presented subsequently was mainly put on the characterization of the
multi-channel plates and the electric �eld con�gurations. We tested the �eld plates by measuring
the quadratic Stark-e�ect of Rydberg atoms in the 43S1=2 state. The laser system and the data
acquisition has been already examined carefully on a di�erent setup [189]. One step beyond testing
the setup is the measurement of the excited state lifetime of the 43S1=2 state at a temperature of
20 �K and a density of 5 � 1012 cm�3. Samples at such low temperatures and high densities were
until now not available in any experiment on Rydberg atoms.

5.3.1 Laser system for a two photon excitation into Rydberg-states

The excitation into Rydberg states with main quantum numbers ranging from n=20 up to the
ionization threshold is accomplished by a two-photon excitation scheme as introduced in appendix
G. For this transition two wavelengths at 780 nm and 480 nm are needed, whereas the latter one
is generated by frequency doubling of light at 960 nm. Figure 5.3.1 depicts the schematic setup
of the laser system. The two diode lasers systems for the red (780 nm) and the infrared (960 nm)
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light, as well all elements for frequency stabilization are located in a separate room to increase the
stability. By this we reached an overall line-width of the two laser frequencies well below one MHz.
The infrared light is brought to the laboratory by an optical �ber, passes a tapered ampli�er, a
frequency doubling cavity11 and is �nally delivered by another �ber to the experiment. A third �ber
takes the red light (780 nm) directly from the secluded room to the experiment.

Our setup shown in �gure 5.3.1 allows us to choose easily di�erent laser frequencies for manifold
experimental situations. The red light at 780 nm can be locked to any line of the polarization
spectroscopy. Before it enters the vacuum chamber, it passes an accusto-optical modulator12 in
a double-pass con�guration. With this AOM we can tune the frequency of the light by 100 MHz
with almost constant intensity. In combination with the locking scheme we can tune the light
right on a resonance, or detune it at most by 400 MHz to any transition with respect to the
5S1=2(F = 2)! 5P3=2(F

0 = 3) transition. The transfer cavity is used to stabilize the infrared light
(960nm) with respect to the already stabilized red light (780 nm). The 30 cm long cavity is made
of stainless steel and has a mode spacing of 125 MHz. The length of the cavity can be altered by
a piezo actuator, which are also used to stabilize the length of the cavity onto the red light (780
nm). Additionally we evacuate the cavity to avoid changes in the refractive index of the air due
to atmospheric pressure and humidity. The master laser at 960 nm can now be stabilized to any
mode of the cavity in steps of 125 MHz. A subsequent AOM in double pass con�guration, allows
us to scan the infrared light by 250 MHz, which corresponds to 500 MHz of the frequency doubled
blue light at 480 nm. To scan a larger frequency region than available by the AOMs, we control
the grating of the infrared diode laser directly and scan by this the frequency without mode-jumps
for more than 6 GHz. To calibrate the frequency of the scanned array we simultaneously record
the signal from the Fabry Perot resonator.

The two laser beams for the two-photon excitation have been overlapped before entering the
vacuum chamber at an dichroic mirror. The overlapped beams were aligned parallel to the long
z-axis, which is also the quantization axis of the magnetic trap. The polarization of the red and
blue light was set to �+ respectively ��. At the position of the atoms the 1/e2 radius of the red
light (780 nm) was set to 550 �m and the blue (480 nm) to 40 �m which yields roughly a constant
intensity distribution across the atoms.

5.3.2 Electric �eld con�gurations and ion detection

The high sensitivity of Rydberg atoms to electric �elds is a bene�cial tool to do experiments with
them. To produce electric �eld shapes as versatile as possible, we installed eight �eld plates close
to the atoms. The spatial arrangement can be seen in �gure 5.8 and �gure 3.5. Each of these
plates can be addressed individually, which allows us to generate nearly any �eld con�guration
starting from constant �elds in arbitrary directions, to one dimensional gradients, two dimensional
quadrupoles, hyperbolic concave saddles or hyperbolic convex �elds with a positive curvature in all
three dimensions. Some realizations are shown in �gure 5.9 and discussed in more detail in H.

The eight �eld plates are made of stainless steel with a thickness of 0.5 mm. They are glued with
1 mm thick ceramic spacers onto the resessed buckets. The dimensions of the spacers have to be
small enough, that they are completely hidden behind the �eld plates from the viewpoint of the
atoms. Any insulating surface can accumulate charge and falsify the desired �eld con�guration. To
charge the �eld plates they are spot welded to a stainless steel wire, which are radially led outwards

11TA-SHG 110 1V0-00025, Toptica
123200-121, Crystal Technology
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Figure 5.7: Laser-system for two photon excitation of 87Rb into Rydberg states. The red light at 780 nm

is generated by a standard diode laser system identical to the repumping system discussed in chapter 3.2.

The production of blue light in the range of 475 nm to 483 nm is more involved. For this purpose we use a

master slave setup, where a standard diode laser setup delivers infrared light at 960 nm which is ampli�ed

by a tapered ampli�er. A subsequent frequency doubling cavity delivers the desired wavelength. The two

laser frequencies are stabilized against each other by a transfer cavity, which is itself stabilized with the red

laser system to a spectroscopy signal in a Rubidium gas cell.

as can be seen best in �gure 3.5. At the edge of the resessed bucket the wires are �xed in position
by short ceramic tubings, which are also glued to the buckets and are subsequently connected to
capton-insulated copper wires. These copper wires are then �nally connected to one of the fourfold
high voltage feed-throughs. To avert breakthroughs inside the chamber induced by sharp edges we
rounded o� all four edges of each plate with a radius of 1.5 mm. Finally we etched and electro-
polished all �eld plates including the spot welded wires to burnish also small spikes. The polishing
was done in a acid bath consisting of one part of 96% sulfuric acid, two parts of 85% phosphoric
acid and six parts of distilled water [243]. After two minutes at a current of 5 Amperes about 70
�m of stainless steel from the plates was removed and they exhibited a semi gloss surface. After
installation of the �eld plates and evacuating the chamber we measured no current leakage up to
3000 Volts for all plates.

During the experimental course it is necessary to switch the applied voltages within short times.
To do so we use bipolar high voltage switches13 which have an intrinsic rise-time of 60 ns. The

13HTS-6103 GSM, Behlke
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Figure 5.8: Electric �eld plates (A-H) and Faraday cages (I and J) for the multi-channel plates. Four �eld

plates are glued onto each of the resessed buckets (see appendix F), such that plate A, B, C, and D lie

vis-a-vis to the plates E, F , G and H. The inner distance between the plates is 25 mm. All dimensions given

in the �gure are in millimeters. The MCPs were located as close as possible to the center of the vacuum

chamber without loosing any optical access, which resulted in the two di�erent distances.

push-pull circuit of the switch has to be adjusted to match the capacitive load of 50 pF of each
�eld plate as well the 300 pF load of the high voltage coax cable, which connects the switch to
the high voltage feedthroughs.

Three di�erent �eld distributions are shown in �gure 5.9. The calculations have been done with a
�nite element method14, which included the most relevant (grounded) parts of the vacuum chamber
as well the eight �eld plates and the two Faraday-cages of the MCPs [238]. The results show,
that we are able to generate �elds, which are almost constant, linear or quadratic. This examples
do not include the cages of the MCPs, which can be added to generate even more complex �eld
distributions. With the help of the analytical expressions for a generalized octopole given in appendix
H) one can design all kind of desired �eld con�gurations.

For a high detection sensitivity of Rydberg atoms, we installed two MCPs15 inside the vacuum
chamber. After �eld ionization of the Rydberg atom, we use already one of the MCPs to detect
the ions. The second one is planned to detect simultaneously the electrons. An MCP consists
mainly of a thin (500 �m) glass-plate with about one million holes (10 �m) in it. Between the
front and the back side of the plate one applies several thousand volts. If now a charged particle
hits one of the channels, it produces secondary electrons, which produce by striking the walls further
electrons. This electron avalanche is then detected by an anode, which sits behind the glass plate
that collects the electrons. To improve the ampli�cation even further, we use MCPs in a Chevron
con�guration, which consists of two successive glass plates with a small spacing in-between. The
electron current arriving at the anode is converted by a large resistor to a voltage and then ampli�ed
by a homebuild circuit [189]. The whole MCP Chevron-assembly is boxed into a Faraday cage,
which shields the atoms in the center of the chamber from the biased front side, typically with
-2000 V. The Faraday cage is closed in the front by a grid with an diameter of 12 mm and a
transmissibility of 85%. The active area of the MCP front side has an diameter of 8.5 mm. It is
not possible to switch any voltage of the MCP very fast because of the large capacitance of the
stacked plates. On the other hand the anode is also shielded by the Faraday cage from capacitive
cross-talking to the �eld plates, when their voltages are switched during the experiment.

14Comsol, Femlab
15Type B012VA, Tectra
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Figure 5.9: Simulated electric �eld con�gurations. The three �gures show the realization of a constant

electric �eld distribution (top), a gradient �eld (middle) and a �eld with constant curvature (bottom). On the

left are the potentials in the x-z plane as well in the y-z plane shown. The small squares in the center of each

potential plot indicates the plotting range for the absolute value of the electric �eld components depicted

on the right. The green curve �Ey displays the derivation of the desired gradient �eld Ey = 1 V/cm2 � y ,
respectively curvature �eld Ey = 1 V/cm3 � y2. To obtain a constant electric �eld of 1 V/cm the plates

A, B, C and D have to be charged to +2.6 V and E, F , G and H to -2.6 V. In the case of the gradient

�eld the plates A, C, E and G were set to +2.7 V and B, D, F and H respectively to -2.7 V. For the third

con�guration for a �eld with a constant curvature the plates A, C, F and H are set to -3 V and B, D, E

and G to +3 V.
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To detect the Rydberg atoms with an MCP, one has at �rst to �eld ionize the excited atoms. This
can be done by a large enough electric �eld as described in appendix C, which is in the case of an
43S1=2 state about 160 V/cm. In our case we want to detect the ions and and one has to provide
a suitable electric �eld distribution which guides the ions into the MCP J.

Usually the magnetic �elds of the trapping potential are still switched on, when the ions �y towards
the MCP. The combination of electric and magnetic �elds provoke a drift on the ions according to
the force F = q(~E + ~v � ~B). A numerical simulation for the given experimental situation, shows
that the drift is in our case in the order of 1 mm and by this well below the aperture of the MCP
of 8.5 mm.

We calibrated the MCP ion signal by monitoring the losses in a cold atomic cloud due to Rydberg
excitation and the corresponding voltage signal on the anode. After ampli�cation, which is the
same for the subsequent experiments, we acquire 1 Vs per 3:65 �1010 atoms. In principal one could
distinguish between single ion events, but the noise level of the signal limits our minimum sensitivity
to about a few hundred ions.

5.3.3 Stark e�ect in a magnetically trapped cloud

To examine the electric �elds generated by the �eld plates, we make use of the quadratic Stark
e�ect exhibited by the 43S1=2 state. The energy shift �W of this state located in an electric �eld
E is given by [189]

�W =
1

2
�E2 (5.3)

with �=2 = 8:06 MHz/(V/cm)2.

The electric �eld for the Stark shift was provided by the �eld plates B and H, which was tuned
from -15 V to +15 V. All other �eld plates as well the cage of the MCP I was set to ground. The
simulation of the emerging �eld gives in the geometric center a �eld of 0.14 V/cm per applied
unit of voltage on �eld plate B and H. The orientation of the �eld is parallel to the x-axis. The
intrinsic asysmmteric con�guration of the �eld exhibits additionally an gradient along the x-axis of
0.1 V/cm2 per applied unit of voltage. This �eld is superposed with a remanent �eld of the faraday
cage of the MCP J, which was set to -15 V. The calculated �eld remaining from the cage at the
center is 0.2 V/cm plus a gradient of 2 V/cm2. For detection of the Rydberg atoms we switch
after excitation the voltage on plate B and H to +1000 V, which is su�cient for �eld ionization.
The �eld con�guration with the plates B and H at a positive voltage and the Faraday cage at -15 V
drags the positive ions towards the MCP for detection.

As an atomic cloud for excitation we used a evaporative cooled sample con�ned in the magnetic
trap as described in chapter 3.10. At a temperature of 40 �K the cloud is in the harmonic regime
of the magnetic trap with an radial width of about 40 �m. For such small clouds one can neglect
the broadening of the spectroscopic lines due to inhomogeneties of the electric �eld. For the given
parameters above, the broadening is less than one percent of the magnitude of the Stark shift
energy.

Figure 5.10 shows the result on the measured Stark shift. The parabolic �t (blue line) is shifted
by 1.337 V with respect to 0 V, which is caused by the additional o�set �eld of the Faraday cage.
At 0 V one gets an Stark shift of 0.58 MHz which corresponds to an o�set �eld of 0.27 V/cm
(calculated 0.2 V/cm). The curvature of the �tted parabola can be used to calibrate the electric
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Figure 5.10: Stark shift of the 43S1=2 state. The black dots represent the maxima of the measured Rydberg

signals (red). The �eld was applied to the atoms by charging the �eld plates B and H with a certain voltage.

The blue line is a parabolic �t to the data: Detuning(MHz)=�0:3252(UB;H � 1:337V )2 MHz/V2 + 412:8

MHz

�eld for the applied voltages at �eld plate B and H. To achieve 1 V/cm at the position of the atoms
one has to apply 5 V at both �eld plates. The expected value from the theoretical calculation has
been 7.2 V. Both deviations from the theoretical can be explained if the atomic cloud is shifted
along the x-axis by a few millimeters away from the geometric center. More likely are imprecisions
of the numerical calculations, since the parametrization of the full vacuum chamber geometry is
not feasible.

The spectroscopic lines (plotted in red) exhibit a broadening which is not independent on the applied
electric �eld. There are two possible paths for the two photon transition 5S1=2 ! 5P3=2 ! 43S1=2.
The desired transition ends in the j = +1=2 state of the 43S1=2 manifold, which is the only one
allowed by the chosen polarizations. Nevertheless is the direction of the magnetic �eld adjacent
to the trapping center not anymore parallel to the z-axis and atoms can also be transferred to the
j = �1=2 which is not anymore insensitive to the magnetic �eld. The gj factor of the Rydberg
state is 2 and the total change in magnetic momentum is 2 �B. For the given width of the of
atomic cloud this results in a broadening of about 3 MHz, which explains the observed widths very
well. The magnetic �eld o�set of the magnetic trap of about 1 G leads to an line shift of 2.8 MHz
which is barely resolved in the available data.

5.3.4 Lifetime of the 43S1=2 state

The measurement of the lifetime has been carried out on a magnetically trapped cloud at 20 �K
and a density of about 5 � 1012 cm�3 of ground state atoms. The mean distance between the
magnetically trapped atoms of only 600 nm becomes comparable to the diameter of 250 nm of
a Rydberg atom in the 43S1=2 state (see table 2.3). The question is wether the excited state
lifetime is altered by the nearby ground state atoms or not. The con�guration of the laser beams
is the same as before. The power of the laser beams was set to 200 �W (780 nm) and to 45
mW (480nm). We excited about 3 � 107 trapped atoms for 20 �s and �eld ionized the remaining
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Figure 5.11: Measurement of the 43S1=2 state lifetime. The blue line is an exponential �t to the red data

points with a time constant of � = 98:8�s. The o�set of the MCP signal is 0.36 Vs.

Rydberg atoms after a certain delay time �t and detected the ions on the MCP.

The results are shown in �gure 5.11. Each data point is an average of 200 measurements. The loss
of Rydberg atoms follows very well a simple exponential decay with a time constant of 99 �s �15
�s. This corresponds exactly to the expected theoretical value of 99 �s given by equation (2.76).
On the other hand a reduction of the lifetime by an factor of two due to black body radiation is
expected. A more detailed treatment of the in�uence of black body radiation in a �nite size cavity
in appendix I shows, that the reduction of the lifetime is only about 5% which is consistent with
the measurement. This shows on the other side, that for the given density of 5 � 1012 cm�3 the
lifetime is not in�uenced noticeable by nearby ground state atoms or by the interaction among the
Rydberg atoms.

In conclusion these results on the measurement of the Stark e�ect and the excited state lifetime
show that all components for experiments with Rydberg atoms are running properly and are cali-
brated carefully. This system establishes a completely new regime for research of Rydberg matter
and some future projects are illustrated in chapter 6.2.2.
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The goal of this thesis was to set up a Bose-Einstein condensation experiment, which can be used
to address many novel questions connected to quantum degenerate systems, atomic physics and
solid state theory. During the course of the last three years I designed the experimental setup
from scratch and planned its realization. The successful conversion of the blueprints into a real
experimental setup was realized within a year with the help of an enduring diploma student [192].
At the end of this process we can produce quantum degenerate samples on demand and use them
as a launching pad for physical investigations. These require suitable tools, of which several were
developed alongside and are summarized in the milestones below.

6.1 Milestones

All in all we set up an ultra-high vacuum system, three complex laser systems, elaborate high
current and high voltage electronics, specialized magnetic coils, �eld plates for manifold electric
�eld con�gurations, sensitive ion detectors, a complex control- and analysis software and many
small gadgets alongside.

6.1.1 A running Bose-Einstein condensation machine

The precondition for experiments with Bose-condensed atoms is a reliable, e�cient, calibrated and
�exible setup. With the setup presented in this thesis, we are able to produce on a daily basis every
45 seconds a Bose-Einstein condensate consisting of half a million atoms. The maintenance of
the whole system requires every other week an alignment of the laser systems and the adjustment
of the orientation of the laser beams for laser cooling. The vacuum system needs no attendance,
besides a new layer of Titanium in the sublimation pump once per year and the exchange of the
Rubidium vial in the oven every second year. All other components, as e.g. the imaging system,
the high current electronics, the control program, the analysis software, etc. are debugged and
ready set.

The combination of a Zeeman-slower with a clover-leaf trap is up to date the most e�cient way
to produce large Bose-Einstein condensates with long lifetimes. The repetition rate of 45 seconds
can still be improved, but will be ultimately limited to about 20-30 seconds [122].

The reliability of the system also includes the calibration of its detection methods and its tools
for manipulation, which allow the deduction of quantitative information. For detection we use
the imaging systems and the multi-channel plates. The two imaging setups, �uorescence and
absorption, are both calibrated in their magni�cation scaling and detection e�ciency to an absolute
accuracy of about 90 %. The detection e�ciency of the �eld ionized Rydberg atoms is accurate
to roughly 75 %.

The major tools tested in this thesis are the magnetic �elds produced by the clover-leaf trap, the
electric �eld con�gurations for experiments with Rydberg atoms, the far-o� resonant light potentials
generating optical lattices and the properties of the microwave generation at 6.8 GHz.
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The versatility of this setup is innately given by the extremely good optical access of the vacuum
chamber to the atomic samples. Almost all experiments conducted so far with quantum degenerate
gases require more or less complex combinations of several laser beams. What distinguishes the
present setup from all other existing assemblies worldwide is its speci�c layout for experiments with
Rydberg atoms.

6.1.2 Experimental realization of an optical lattice

With the observation of the time dependent di�raction of a Bose-Einstein condensate in an optical
lattice and its agreement with the theoretical treatment, we could determine all relevant parameters.
The theoretical tools developed to describe the observed di�raction peaks are also capable to
simulate time dependent lattice potentials or varying interactions among the atoms, which leads to
new physical insights [180]. Optical lattices are going to be a major ingredient for future experiments
dealing with the spin-Boson model, but are also relevant for experiments with Rydberg atoms.

6.1.3 Coherent coupling of two hyper�ne ground states

We have set up a high-class system for microwave generation and tested its performance by driving
a two level system coherently [237]. The observation of Rabi �opping and its excellent agreement
with the theoretical predictions, endows us a calibrated tool for manifold applications. In combi-
nation with the radio-frequency setup for evaporative cooling, we are now able to transfer atomic
populations coherently in any magnetic sub-level in both hyper�ne state. This will be either used
in the context of the spin-Boson model, but can also be used to manipulate the atomic samples
for Rydberg experiments.

6.1.4 Investigation of ultra-cold Rydberg atoms

To connect the physics of quantum degenerate gases with the �eld of Rydberg atoms, we success-
fully installed and tested several novel technologies into our setup. Novel has to be read in the
context of traditional trapping and cooling setups. The excitation of Rubidium atoms is done by a
laser system, which was previously built and tested on a separate setup [189]. To make use of the
sensitivity of Rydberg atoms we installed eight �eld plates inside the vacuum chamber to generate
complex �eld con�gurations [238]. The functionality of the plates was tested and calibrated by
measuring the Stark shift for di�erent electric �elds. The detection of Rydberg atoms is only made
possible by the �eld plates, which are used to �eld ionize the Rydberg atoms and to guide the
remaining ions into a multi-channel plate. We installed two MCPs inside the vacuum chamber,
one for electron detection and the other one for ion detection. Both of them are working, but we
used in the experiments, presented in this thesis, only one for ion detection. The calibration of the
detection e�ciency allows us, together with the knowledge of the atom numbers deduced from the
imaging systems, to extract quantitative excited state fractions. Finally we measured the lifetime
of the 43S1=2 state, which is in accordance with the theoretical predictions. We conclude from
this, that the in�uence of nearby ground state atoms onto the Rydberg atoms is small enough,
which actually permits one to conduct experiments at such densities.
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6.1.5 Theoretical treatment of light induced dipole-dipole interactions

The proposed experiment [231, 232] on measuring the light induced dipole-dipole interaction illus-
trates how coherent, long-range and anisotropic interactions can be brought together with quantum
degenerate gases. Beyond this e�ect exists up to date only one experimental system, which exhibits
such natured interactions. The con�rmation of the dipolar character in a Chromium condensate
[165] has triggered a huge amount of theoretical proposals to investigate such systems in more
detail.

6.2 What0s next?

The experimental setup presented in this thesis has a disposition for many di�erent scienti�c �elds,
but in the end one has to focus on a few distinct topics. The investigation of Rydberg excitations
from a BEC was already the motivation for the experimental layout of the whole experiment and
is one of the key enterprises. As a second goal is the experimental realization of the spin-Boson
model with the help of a BEC.

6.2.1 The spin-Boson model

Quantum impurity systems have been studied extensively by many theoretical groups [75, 244, 245]
but only little experimental insight is available [246, 247]. The key idea of the so called spin-
Boson model which describes the decoherence of a generalized spin S, which couples to a bosonic
environment E. Degenerate quantum gases can be used to realize such models with the possibility
to adjust the fundamental parameters over a wide range [77, 76].

|a>

|b>
Reservoir

BEC
� �

VabVb

Figure 6.1: The spin-Boson model. The left part of the �gure shoes the two states jai and jbi of a

generalized spin S embedded in a bath E of bosonic excitations. The two spin states are separated by an

bias energy " and are coupled by a tunneling coupling �. On the right side is an experimental implementation

of the spin-Boson model shown. The two spin states are now represented by the two di�erent hyper�ne

ground states of 87Rb and the bath by the excitations in a Bose-Einstein condensate. The atoms of the

condensate in state jai are con�ned in potential Vab which acts on both spin states. An additional potential

Vb only acts on the spin state jbi. The tunneling coupling is obtained by coherent Raman transitions between
the two hyper�ne states.
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A schematic illustration of the underlying physical system is given in �gure 6.1. It consists of a
two level system with states jai and jbi, also referred to as a quasi-spin, which is embedded in
an environment. The spin is coupled to the bosonic excitations, described as harmonic oscillator
states, of the environment. The large degrees of freedom of the bath causes a decoherence of the
coherent evolution of the spin state. Such a coherent evolution is for example given by a tunnel
coupling as shown in the right part of �gure 6.1 or by an external driving �eld as is it planned in
our realization (see right part of �gure 6.1). The spin-Boson Hamiltonian HsB is then [76] given
by

HsB = �~�

2
�x +

∑
q

~!qb
y
qbq +

~

2
�z

(
�

~
+
∑
q

�q(bq + b
y
q)

)
: (6.1)

The spin states are now given by jai = (1; 0) and jbi = (0; 1) and �x and �z are the ordinary
Pauli spin matrices. The �rst term describes the coherent coupling between the two spin states
and the second term the bosonic bath in second quantization description, where bq and byq are
the annihilation and and creation operators of the phonon modes. They are characterized by a
momentum q and the dispersion relation !q = u � q, where u is the speed of sound. With the last
term the spins are coupled to the bath. The bosonic bath can be reduced to an e�ective density
of states for su�cient low frequencies as

J(!) = �2q�(! � !q) = 2�!s : (6.2)

One can distinguish between di�erent physical cases depending on the exponent s and the dissipation
parameter �. The most interesting case is the so called ohmic one with s = 1, which is our goal.
For a damping � > 1 one expects at T = 0 a localization in one spin state, which is not feasible
with Bose-Einstein condensates. The interesting regime is for � ranging between 0 and 1/2, which
results in undamped Rabi oscillations at � = 0, damped oscillations for 0 < � < 1=2 and a purely
exponential decay at � = 1=2. Experimentally we will be able to vary � from 0 to 0.08 as will be
discussed below with all the other required preconditions.

Preparation of the environment E Ohmic damping with s = 1 is given in the case of a one
dimensional Tonks-Girardeau gas, also known as Luttinger liquid [58, 59]. This regime can be
realized with the help of a two dimensional optical lattice (see chapter 5.1), which delivers into the
bargain up to 100 identical and independent reservoirs. The condensate is initially prepared in the
F = 2; mF = +2 state and then transferred adiabatically into the optical dipole trap. With the help
of a microwave �eld (see chapter 5.2) the atoms are then transferred into the F = 1; mF = +1

which is equivalent to the state jai.
Preparation of the quasi-spin S and the coupling � The other spin state jbi is equivalent to
the F = 2; mF = �1 state. The coupling � between the two spin states is then done by driving
coherent Raman transitions with laser light [19]. Such a laser system is already available and was
tested extensively by observing electromagnetically induced transparencies in a vapor cell [239]. It is
important that only one atom per reservoir undergoes Rabi oscillations. To assure that an additional
potential Vb is superposed, which only acts on state jbi but not on state jai. The selectivity is
achieved by tuning the Raman transition such, that it is in resonance with the ground state energy
of the potential Vb. On the other hand has the on-site interaction to be large enough that it shifts
the niveau out of resonance, if more than one atom is con�ned in the potential Vb. This requires
a quite steep potential, which involves a sharp focused laser beam. The state selectivity of the
dipole potential is given for linear polarized light at 787 nm, as described in appendix E. With an
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available laser power of 300 mW and a width of 5 �m of the focused Gaussian beam one achieves,
in combination with the two-dimensional lattice, in all three dimensions a con�nement with more
than 200 kHz.

Variation of the coupling strength to the bath To distinguish between the desired decoherence
due to the coupling to the bath and other unwished disturbances, is one possibility to alter the
coupling � to the reservoir. This can be achieved in two ways. There exists an interstate Feshbach
resonance between the two states F = 1; mF = +1 and F = 2; mF = �1 at 9.1 G [42] by which
� can be altered continuously from 0 to 0.03. Another possibility is to change the one dimensional
density by a factor of two, which extends the range of � up to 0.08.

Detection Finally one has to detect the atoms state dependent to acquire the damped Rabi-
oscillations. The experiment will be executed on about 100 identical systems, with each containing
only one driven spin state. This demands a detection sensitivity of better than 100 atoms. The
detection e�ciency of �eld ionized Rydberg atoms is already on the order of a few hundred ions 5.3
and is presently limited by the quality if the detection circuitry. An improvement of the detection
e�ciency by a factor of ten should be su�cient. The state selective excitation into a Rydberg state
has been shown in [189] for our laser system and is adequate for our scope.

6.2.2 Rydberg matter

In most quantum optical systems the interactions among the particles are the key to novel phenom-
ena. These are in the �eld of quantum gases the short range contact interaction and in experiments
dealing with ion taps the long-range Coulomb repulsion. One exception to this restriction is the
�rst realization of a dipolar quantum �uid, in which the magnetic dipole-dipole interaction becomes
comparable to the contact interaction and thus visible.

Rydberg atoms can exhibit large permanent electric dipole moments, which lead to anisotropic and
long-range interactions among the atoms. The investigation of the coherence properties and the
possibilities to control this dipolar interactions in a many particle system will be a major task. This
is also interesting with a vision of realizing quantum logical elements with the help of Rydberg
states. The interaction of the dipoles with electric �elds can also be used to exert forces on the
Rydberg atoms or even to store them in an conservative potential. Finally we are interested in the
generation of molecules consisting of Rydberg atoms and ground state atoms.

Dipole blockade The energy levels among two neighboring Rydberg atoms are shifted by either the
van der Waals interaction or their dipolar moment. For large enough shifts, or to small interatomic
distances, leads this to a blockade e�ect, which was already observed for the van der Waals
interaction [87, 86]. The goal is the measurement of a dipole blockade e�ect, which will be a
�rst step towards quantum information processing with Rydberg atoms [91]. The strength of the
dipolar interaction can be controlled by the induced dipole-moments of a state exhibiting a quadratic
Stark e�ect via the strength of the electric �eld.

Trapping Rydberg atoms With the help of the eight �eld plates we are able to generate an electric
�eld distribution with a �eld minimum in the center. In this geometry we are able to catch weak
�eld seeking states. The strongest con�nement is achieved with the most extremal hydrogen-like
state exhibiting the largest dipole moments. For atoms in n = 40 state and voltages up to 3000 V
at the �eld plates result in trapping frequencies of 1 MHz. This is compared to the excited state
lifetime large enough, that one can clearly talk about trapped Rydberg atoms. The evidence will
be a measurement of the trapping frequency of a kicked Rydberg atom. With the control over
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the position of Rydberg atoms one can manipulate and examine the interactions of Rydberg states
with a independently trapped (magnetically or optically) Bose-Einstein condensate.

Molecules The existence of polar molecules consisting of one Rydberg atom and one ground state
atom has been postulated in [92]. The vibrational states of such a molecule would have a level
spacing ranging from MHz to GHz. This could be resolved spectroscopically with our laser system.

Quantum Information Processing (QIP)

The realization of QIP [248, 249] requires several conditions, which have to be accomplished
simultaneously:

� A scalable physical system with well-characterized qubits

� The ability to initialize the qubit state

� Decoherence times much longer than the quantum gate operation

� A universal set of quantum gates

� The ability to measure speci�c qubits

A regular pattern of N 87Rb atoms con�ned in an optical lattice can be the starting point for QIP
with N qubits. The two states of the qubit are the two hyper�ne ground states F = 1 and F = 2

of 87Rb. Initially all atoms are prepared in identical quantum state, which is made possible by a
Mott-insulating phase [72]. Now all atoms exhibit the same internal (e.g. jF = 1i) and external
quantum state. The next step is the generation of a quantum input register by transferring speci�c
qubits into the other spin state jF = 2i by a 1-qubit operation. This can be done by combining
the narrow line width of microwave transitions with a space dependent Zeeman shift. This requires
a spatial resolution of the di�erent lattice sites by suitable magnetic �eld gradients.

Now is the application of 2-qubit operations with the help of the dipole-blockade e�ect among
Rydberg-atoms [91] possible. The dipole-dipole interaction among the Rydberg atoms suppresses
the excitation of an atom into a Rydberg-state, if a neighboring atom is already in a Rydberg
state. A more detailed discussion how to realize a c-NOT quantum gate is given in [189]. A
implementation of this gate, requires that only two nearby lattice sites are involved. The selection
of two speci�c lattice positions can be achieved with the help of the Stark-shift and the narrow
line widths of Rydberg excitations. Unfortunately it is not possible in our setup to generate electric
�elds, which have only at two distinct positions the same �eld strength. To get around this problem,
one can use two laser beams, with each being in resonance at one lattice site. As a last step one
has to readout the result, which is stored in the spin states. To do so, one addresses again a
speci�c lattice site with an electric �eld and excites the atom state selectively into a Rydberg state.
Subsequently the Rydberg atom is �eld ionized and detected with a multi-channel plate.



A The element Rubidium

The element Rubidium is since almost 20 years the standard atom for cold atom physics. Although
the �rst trapping and cooling experiments were done with Sodium [132], the development of cheaper
diode laser systems made Rubidium more and more attractive [250]. Its simple electronic level
scheme, common to all alkali elements, gives experimentalists almost a two-level system at hand.

In nature Rubidium is found in two stable isotopes, namely 85Rb and 87Rb [251]. The latter is used
in our experiments due to its well behaved scattering properties at low temperatures. 85Rb exhibits a
negative scattering length at small magnetic �elds which makes Bose-Einstein condensation di�cult
[8]. The natural ratio between this two isotopes is 72 to 28, with 87Rb holding the smaller fraction.
87Rb is radioactive and decays with a rate of 4.9 1010 years into 87Sr [252]. The other isotopes,
82Rb, 83Rb and 84Rb, can be created arti�cially but are not found in nature.

A.1 Physical properties of 87Rb

The vapor pressure of 87Rb in torr in the liquid phase can be modeled by

log10 Pv = 15:88253� 4529:635

T
+ 0:0058663T � 2:99138 log10 T; (A.1)

with T being the temperature in Kelvin [131]. All further important properties are listed in table
A.1.

Atomic number 37

Total nucleons 87

Relative natural abundance 27.83

Atomic mass (SI) 1.443 160 60(11) �10�25 kg

Atomic mass (a.u.) 86.909 180 520(15) u

Melting point 39.31�C
Boiling point 608�C

Vapor pressure at 25�C 3.0 �10�7 torr

Table A.1: Physical properties of 87Rb

A.2 Optical properties of 87Rb

For a more detailed description of the optical properties of Rubidium than given here see [131, 125].
The electronic ground state con�guration of Rubidium is 1s22s22p63s23p63d104s24p65s1, with
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Figure A.1: Level scheme of the D-line doublet with its hyper�ne structure of 87Rb.

one solely electron in the 5s shell. The energetically next excited state is a doublet due to the �ne
structure splitting, which are commonly known as the D1 line 5 2S1=2 ! 5 2P1=2 and the D2 line
5 2S1=2 ! 5 2P3=2. The nucleus has a spin of I=3/2, which gives an hyper�ne structure on top of
the �ne structure doublet.

The calculation for each transition strength within in the manifolds can be simpli�ed by extracting
the angular dependence of the transition dipole moments [125]. To calculate the dynamics of the
multilevel system irradiated by a laser of a certain polarization, intensity and detuning, one needs
to know the Rabi frequency for each transition 
 = ��egE0=~ and the spontaneous decay rates
for each decay channel � = !3�2eg=(3�"0~c). E0 is the amplitude of the electric �eld of the driving
light �eld and ~! the energy di�erence between the ground and excited state. The dipole matrix
element is given by

�eg = ehej"̂ � ~r jgi = ehn0L0m0
Lj"̂ � ~r jnLmLi; (A.2)

with elementary charge e and the unity vector of the polarization "̂ of the electric �eld. The primes
indicate the excited state. The atomic eigen-states are given in the F;mF -basis of the hyper�ne
manifold. To calculate (A.2) one can make use of the Wigner-Eckhardt theorem [253, 254] to
decompose the couplings of the angular momenta

�eg = (�1)1+L0+S+J+J 0+I�m0

F

√
(2J + 1)(2J 0 + 1)(2F + 1)(2F 0 + 1)

�
{
L0 J 0 S

J L 1

}{
J 0 F 0 I

F J 1

}(
F 1 F 0

mF q �m0
F

)
ehn0L0jjr jjnLi: (A.3)

The reduced matrix element hn0L0jjr jjnLi depends only on the radial distribution of the atomic
wave function. For transitions within the D2 manifold is J = 1=2, J 0 = 3=2, L = 0, L0 = 1 and
I = 3=2. The polarization of the light is given by q = 0 for linear polarized light and q = �1 for
�+ respectively �� polarized light. The expression in curly brackets are 6j-symbols and in round
brackets 3j-symbols. The reduced matrix element can be derived indirectly from the measured life
time of the excited state or by straight forward by integration of the dipole matrix element. The
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Figure A.2: Transitions strengths within in the D2 manifold for linear and circular polarized light. The
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latter method requires a very good knowledge of the radial wave function and is therefore not trivial
[189]. The optical properties of the D1 and D2 manifold are given in the table A.2.

Property Value

D2-line (5S1=2 ! 5P3=2)

Frequency 2� 384.227 981 877 3(55) THz

Wave length (vacuum) 780.246 291 629(11) nm

Lifetime 5P3=2 26.24(4) ns

Line width 5P3=2 2� 6.065(9)MHz

Saturation intensity 16.7 W/m2

Recoil velocity 5.8845 mm/s

Recoil energy 2� 3.7710 kHz

Recoil temperature 361.96 nK

Doppler shift with vatom=vrecoil 2� 7.5419 kHz

Doppler temperature 146 �K

Hyper�ne splitting F=1, F=2 (ground state) 6.834 682 610 904 29(9) GHz

Hyper�ne splitting F0=0, F0=1 (excited state) 72.218(4) MHz

Hyper�ne splitting F0=1, F0=2 (excited state) 156.947(7) MHz

Hyper�ne splitting F0=0, F0=1 (excited state) 266.650(9) MHz

D1-line (5S1=2 ! 5P1=2)

Frequency 2� 377.107 463 5(4) THz

Wave length (vacuum) 794.978 850 9(8) nm

Lifetime 5P3=2 27.70(4) ns

Line width 5P3=2 2� 5.746(8) MHz

Saturation intensity 14.9 W/m2

Recoil velocity 5.7754 mm/s

Recoil energy 2� 3.6325 kHz

Recoil temperature 348.66 nK

Hyper�ne splitting F0=1, F0=2 (excited state) 816.656(30) MHz

Table A.2: Optical properties of the 87Rb D1 and D2 manifold



B Rubidium atoms in magnetic �elds

The Zeeman energy of the di�erent hyper�ne ground states in Rubidium can be calculated by
using the Breit-Rabi formula [143, 213]. For the case of zero angular momentum second order
perturbation theory gives

EF;mF
(B) = (�1)F ~!hf

2

√
1 +

4mF

2I + 1
x + x2 + const (B.1)

with

x =
(gI + gs)�BB

~!hf
(B.2)

The spin of the nucleus is I = 3=2, the g-Factor of the nucleus gI = 0:995 10�3 and the g-
Factor of the electron gs = 2:0023. The hyper�ne splitting of the two ground states is !hf =

2� 6:8346826128(5) Hz.
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Figure B.1: Zeeman shift of magnetic sub-levels of 87Rb in the presence of a magnetic �eld.

For not to large magnetic �elds the Zeeman splitting can be approximated to second order as long
the Zeeman splitting EF;mF

(B)� !hf .

EF;mF
(B) = (�1)F

(
~!hf
2

+mF gF�BB +
(4�m2

F )

16

(gs�BB)
2

~!hf

)
+ const (B.3)
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with

gF = (�1)F 1

2I + 2
gs (B.4)

For this approximation also gI � gs was assumed. For large magnetic �elds the hyper�ne coupling
of the nucleus spin I and the angular momentum J breaks down and the lines group into two pairs
J = �1=2 (orbital momentum L=0) and the four projections of the nucleus I = �3=2;�1=2.
From special interest are the so called clock-transitions between two mF = 0 magnetic sub-levels,
since they are least sensitive to magnetic �elds. The energy shift for a clock transition from
F = 1; mF = 0! F = 2; mF = 0 depends only quadratically on the magnetic �elds as

�E =
(gs�B)

2

2~!hf
B2: (B.5)

This gives a frequency shift of 575.15 Hz/G2.



C Rubidium Rydberg atoms in electric �elds

Since the highly excited electron is only weakly bound to the core, the Rydberg atoms exhibit
strong interactions with electric �elds. The energies of the new eigen-states of a Rydberg atom in
an constant electric �eld are shown in the Stark map in �gure C.1. The denotation of the states is
only valid for zero electric �eld. With increasing electric �eld the unperturbed states acquire more
and more admixtures by other states. The calculation of the eigen-energies for Rubidium was done
carefully in [189] including the �ne-structure and the hyper�ne structure. The contribution of the
latter is on the order of a few kHz and shall be omitted here.

The Hamiltonian of an atom in an constant electric �eld E along z is given by

H = H0 +Hf s + Ez (C.1)

where H0 is the unperturbed atom and Hf s the �ne structure energy due to the coupling of the
orbital momentum to the electron spin. To calculate the Stark map by diagonalization the full
Hamiltonian H one has to know the unperturbed Rubidium eigen-states and the matrix elements
due to the electric �eld.

〈
n; l ; m jEz j n0; l 0; m0〉 = �m;m0�l ;l 0�1E

〈
l ; m jcos �j l 0; m0〉 � 〈n; l jjr j jn0; l 0〉 (C.2)

The contribution of the orbital part hl ; m jcos �j l 0; m0i can be calculated algebraically [255]. The
reduced matrix elements hn; l jjr j jn0; l 0i are overlap integrals of the radial part and have to integrated
numerically.

Now we have to include the �ne structure which couples the orbital momentum l with the spin
s = �1=2 to a new angular momentum j = l � 1=2. The coupling matrix elements are now

〈
n; l ; j; mj jEz j n0; l 0; j 0; m0

j

〉
= �mj ;m

0

j
�l ;l 0�1

〈
n; l ; j jjr j jn0; l 0; j 0〉E (C.3)

�
∑

ml=mj� 1

2

〈
l ;
1

2
; ml ; mj �ml jj; mj

〉〈
l 0;

1

2
; ml ; mj �ml jj 0; mj

〉
� 〈

l ; ml jcos �j l 0; ml

〉
;

The �rst line in equation (C.3) are again the reduced matric elements of the radial part. The
second line is a sum over Clebsch-Gordan coe�cients which can be looked up in [253, 254] and
the last line are the angular overlap integrals as introduced in equation (C.2).

The 43S1=2 state is of special interest, which was also used throughout in our experiments (see
chapter 5.3), since it only exhibits a quadratic Stark e�ect. The calculated Stark shift �� = pE2

gives a value of -8.06 MHz/(V/cm)2 for p.
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Figure C.1: Calculated Stark map including the LS-coupling [189]. The angular momentum states with

l � 3 exhibit a quadratic dependence on the electric �eld and the states with l>3 are linear.

By increasing the electric �eld more and more it is possible to detach the weakly bound electron
from the core. This process is called �eld ionization. The two emerging charged fragments, a solely
electron and a Rn+ ion, can be detected with multi-channel plates with a high e�ciency. Let us
assume classically the Coulomb potential of Hydrogen atom in an constant electric �eld E.

V = � e2

4�"0r
+ eEr (C.4)

Figure C.2 shows the unperturbed (blue) and the perturbed (red) Coulomb potential. The new
local maximum of the combined potential is given by

Vmax = �2
√
Ee3

4�"0
(C.5)

The ionization �eld can be calculated [189] to be

E =
E0

16n4
(C.6)
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Figure C.2: Coulomb potential of a charge +e perturbed by a constant electric �eld along z with a �eld

strength of 106 V/m.

where E0 =
e5m2

e

64�3"3
0
~4
. The Rydberg states can ionize even at lower �elds by tunneling through the

barrier.

The �eld ionization can be used in an experiment to gain detailed information about the physical
situation. Since the ionization energy depends on the Rydberg state one can detect the population
of the states by slowly increasing the electric �eld. By this method one detects �rst the higher
excited states followed by the lower ones. Beyond this, the arrival time of the ions on the multi-
channel plates gives valuable information about time-dependent processes in an frozen Rydberg
gas. A detailed experimental investigation of the Stark map close by the 43S1=2 state can be found
in [189, 256].
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D Optical Bloch equations in a multi-level atom

The master equation (2.5) for a two-level system irradiated by an light �eld was given in chapter
2.1. This system of coupled equations can be expanded to a multi-level as exhibited by 87Rb [131].

�ee = i
2

∑
g 
eg(�eg � �ge)� ��ee

�gg = i
2

∑
e 
eg(�ge � �eg) +

∑
e �eg�ee

�eg = i
2
eg(�ee � �gg)� �

2�eg � i�eg�eg
�ge = i

2
eg(�gg � �ee)� �
2�ge � i�eg�ge

(D.1)

The excited states are labeled with e and the ground states with g. The coupled equations (D.1)
only include density matrix elements which are coupled by a driving �eld or a spontaneous decay
channel. The Rabi-frequencies between the magnetic sub-levels are given by


eg = �2hFe jjer jjFgiE�q
~

= �

√
I

2 Isat

(
F 1 F 0

mF q �m0
F

)
(D.2)

which is valid for transitions within in the D2 manifold of 87Rb. The excited states are labeled with
a prime. The lifetime of any excited state is � which was given in table A.2. An excited state can
decay in di�erent magnetic levels of the ground state with following rates

�eg =

(
F 1 F 0

mF q �m0
F

)2

� (D.3)

The polarization of the light is taken into account by setting q = 0 for linear polarized light and
q = �1 for �� light. If a magnetic �eld B is present the detuning �eg has to be corrected according
to the Zeeman-shift of the magnetic sub-levels.

�eg = �0 + (mF 0g0F �mF gF )�BB (D.4)

By solving the coupled equations (D.1) numerically one can extract from this the time dependent
population of the magnetic sublevels and the heating of the cloud due to the number of scattered
photons. The radiation patterns for circular and linear polarization are anisotropic and so is also
the momentum transfer to the atoms anisotropic. The probability to �nd a scattered photon in a
solid angle d
 is given by

P�(�) = 3
8� sin2 �

P�(�) = 3
16� (1 + cos2 �)

(D.5)
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D.1 Spontaneous scattering and the light induced dipole-dipole

interaction

In chapter 4.1 I presented a proposal to measure the e�ect of a light induced dipole-dipole potential
in momentum space. Beyond the desired momentum gain of the atoms due to the induced potential
one acquires also momentum by the recoils of spontaneous scattering events. To calculate this
contribution one has to solve the time evolution of the density matrix. For intensities well below
the saturation intensity, which is not the case here, one could also use a rate model, which neglects
the coherences of the o�-diagonal density matrix elements.

The linear polarized laser light couples the atoms from the 5S1=2, F=2 ground state to the excited
5P3=2, F=3 state. Due to momentum conservation spontaneous decay can only happen back into
F=2. The frequency of light is shifted by � = 16:7� to higher energies with respect to resonance,
which reduces o�-resonant excitation into other F-states. If the direction of the polarization is
parallel to the quantization axes of the atoms, one can write down the coupled equations of
motion:
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The notation is an abbreviated form for e.g �(20;2) = �jF 0=2;m0

F=2ihF=2;mF=2j, where the primes
denote the excited state. The coupling between the states is established by the Rabi-frequency
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Figure D.1: Time evolution of the diagonal matrix elements. The numerical simulation was done for atoms

initially in the F = 2; mF = 2 state irradiated by a linear polarized beam with 1120 Isat and 16.7 � detuning.

The polarization is parallel to the quantization axis of the atoms. In this con�guration are the matrix elements

~� equivalent to � The left �gure shows the population of the di�erent magnetic sublevels of the ground state

and the right �gure the excited states.

!R = �
√
I=2Isat . The Rabi-frequency for each transition has to by weighted with the according

Clebsch-Gordan coe�cients taken from appendix A. The intensity I was set to 1120 saturation
intensities Isat .

The twenty equations (D.6) are not the complete set of coupled equations. The full system consists
of 100 coupled equations, which can be sorted to be in a Jordan form (diagonal block matrix), with
a 20x20 and 80x80 sub-matrix. The 80x80 matrix sub-matrix contains no explicit coupling to the
light-�eld and the corresponding density matrix elements (for example �(2;0)) decay to zero within
�=2.

To solve the coupled equations numerically (with e.g. Mathematica, Wolfram Research) one has to
de�ne the starting conditions at t=0. If the Bose-condensed atoms are initially in the F = 2; mF = 2

ground state and the quantization axis (here the direction of the magnetic �eld) is parallel to the
electric �eld of the linear polarization, one hast to set �(2;2)(t = 0) = 1 and all other elements to
zero. This is only one special situation of the proposed experiments and usually the polarization
and the magnetic �eld are not parallel. This problem can be solved either by transforming the
light �eld into the reference frame of the atoms [166] or vice versa. The �rst method introduces
new polarization components, which leads to more coupled equations and is avoided here. It is
easier to rotate the J = 2 spinor of the atoms into the reference frame of the light �eld [254]. If
the angle between the magnetic �eld and the electric �eld is � and the trapped atoms are in the
F = 2; mF = 2, they can be represented in the reference frame of the light �eld as

~�(2;2) = cos4( �2)�(2;2)
~�(1;1) = �1

2 sin �(1 + cos �)�(2;2)

~�(0;0) =
√

3
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~�(�1;�1) = 1
2sin�(cos� � 1)�(2;2)

~�(�2;�2) = sin4( �2)�(2;2)

(D.7)
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Figure D.1 shows a numerical integration of the di�erential equations (D.6) for the parameters
given above and in the caption. The saturation parameter for the given intensity and detuning is
s = 1, which gives in steady state an excited state fraction of 1/4 (see equation 2.8). With the full
knowledge of the time evolution one can directly calculate the number of spontaneous scattering
events. Every excited state decays with � into one of the allowed ground states, whereas each
decay channel has to be weighted by its Clebsch-Gordan coe�cient. By this one can distinguish
between the emission of �- and �-polarized light. The number N of scattered photons is then
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∫ (

1
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)
dt

(D.8)

The spontaneous emissions of the photons follow the radiation patterns given in equations (D.5).
The reference frame for these distributions is given by the polarization of the light �eld. For the
parameters given above, each atom scatters on average during the �rst 300ns 1.52 circular polarized
and 1.28 linear polarized photons.

Of interest is the projection of the emission patterns on the x- respectively the y -axes as the
proposed measurement in chapter 4.1 requires. The de�nition of the coordinates and of the angle �,
which determines the direction of the polarization, are also taken from chapter 4.1. The projections
of the probability distribution (D.5) on the y-axis, which is independent of the orientation of the
polarization, and the x axis are:

P�(�)jy = �3
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16(3� �2)

P�(�)jx = �3
8

(
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P�(�)jx = � 3
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2 + 2�2 cos2 �+ (1� �2) sin2 �) :

(D.9)

The projected distributions are spanned for � = [�1; 1]. As a last step one has to calculate the

standard derivatives for each distribution
√∫ 1

�1 P (�)d�, which gives
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2
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��jx =
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3
10

��jy =
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1
10(3� cos(2�))

��jy =
√

1
20(7 + cos(2�))

(D.10)

The width in momentum space is then simply given by the product of the standard derivative, the
number of scattered linear or circular polarized photons and the recoil momentum. The results for
all angles � are shown in �gure 4.5.



E Optical dipole potentials in a multi-level atom

The approximation of a two level system coupled to a light �eld (see chapter 2.1 is in many
cases not valid and one has to expand the theory for multilevel atoms by including all allowed
transitions. In our case we can restrict the allowed transitions to the D1 and D2 manifold which
were speci�ed in appendix A. For small saturation parameters or adequate detuning one can derive
explicit expressions for the dipole potentials and the scattering rates for multilevel atoms [172].
The approximative expressions (E.1) and (E.2) are valid, as long the excited state fraction is still
small compared to the ground state one. The energy shift of an atom situated in a light �eld with
frequency ! is

Udip =
∑
j

�3�c2

2!3
i j

(
�i j

!i j � ! +
�i j

!i j + !

)
I(~r) (E.1)

The atom in state jii is coupled by the light �eld I(~r) with frequency ! to all allowed states jji
with a transition strength �i j . Also the scattering rate can be calculated and is given by

�sc =
∑
j

� 3�c2

2~!3
i j

(
!

!i j

)3(
�i j

!i j � ! +
�i j

!i j + !

)2

I(~r) (E.2)

With this two equations it is possible to calculate state dependent potentials as required for the Spin-
Boson model (see chapter 6.2.1), the potential depth of the optical lattice used in our experiments
(see chapter 5.1) and the corresponding scattering rates.

In most cases laser light is applied to atoms in the F = 2; mF = 2 state which is the case for
our Bose-Einstein condensates. For this situation are the expected potentials and scattering rates
explicitly carried out and the results are plotted in �gure E.1 as a function of the wavelength. The
color coding in the two graphs represents the three di�erent polarizations of the light �eld. They
are valid as long the k-vector of the circular polarized light, or the electric �eld vector of the linear
polarized light, is parallel to the quantization axis of the atoms.



112 E Optical dipole potentials in a multi-level atom

�

�+

�
_

-4000

-2000

0

2000

4000

-0.4

-0.2

0.0

0.2

0.4
U

/k
[n

K
]

B
U

/k
[n

K
]

B

770 780 790 800 810 820
Wavelength [nm]

157 MHz267 MHz

Wavelength [nm]
780.250 780.253 794.983 794.986

Wavelength [nm]

818 MHz

D2 D1

F'=3 F'=2 F'=1 F'=1 F'=2

x10

-4000

-2000

0

2000

4000

U
/k

[n
K

]
B

�

�+

�
_

770 780 790 800 810 820
Wavelength [nm]

157 MHz267 MHz

Wavelength [nm]
780.250 780.253 794.983 794.986

Wavelength [nm]

818 MHzD2 D1

F'=3 F'=2 F'=1 F'=1 F'=2

�
s
c

[H
z]

�
s
c

[H
z]

10
3

10
5

10
7

10
-1

10
-3

10
-5

10
3

10
5

10
7

�
s
c

[H
z]

Figure E.1: Dipole potentials and spontaneous scattering rate for an 87Rb-atom in a F = 2; mF = 2 state

for �+, �� and � polarized light. The intensity of the light �eld was set to 16 W/m2.



F Physical dimensions of the main vacuum

chamber

Figure F.1: Sheer plan of the main chamber.

1
 CF16 �ange for Zeeman-slower

2
 CF35 optical port for the magneto-optical trap (MOT)

3
 CF63 optical port for absorption imaging, alternative optical lattice

4
 CF35 Multi-channel plate attached to a fourfold high voltage feed-through (ion detection)

5
 CF35 optical port for the MOT

6
 CF63 optical port for �uorescence imaging, alternative absorption imaging or optical lattice

7
 CF35 optical port for the Zeeman-slowing light

8
 CF35 optical port for the MOT

9
 CF35 optical port for absorption imaging, alternative optical lattice

10
 CF35 Multi-channel plate attached to a fourfold high voltage feed-through (electron detection)

11
 CF150 �ange towards pumping cross and optical port for the MOT

12
 CF35 optical port for optical lattice, alternative absorption imaging

24
 CF250 main �ange, on which the buckets are mounted
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G Three level systems

The excitation of Rydberg states was done in our experiments (see chapter 5.3) with a two photon
excitation scheme. The underlying theory of this technique is similar to the treatment of the two-
level systems introduced in chapter 2.1. A more detailed of three level systems can be found in [257]
Figure G.1 shows schematically the three level system with an ground state j1i, an intermediate
state j2i and the Rydberg state j3i. The laser frequencies for excitation may be detuned to the
energy di�erence between the electronic states by �1 relative to ~!1 (blue arraow) and �2 relative
to the total energy di�erence ~!1 + ~!2 (red + blue arraow).

|1>

|2>

|3>

�
1

�
2

h�
�

h�
�

Figure G.1: Two photon excitation scheme. The population of state j1i is transferred by two photons, here

labeled as the red and blue arrows, into an excited state j3i.

The Hamilton operator for this system in the basis set j1i = (1; 0; 0), j2i = (0; 1; 0), j3i = (0; 0; 1)

and after applying the rotating wave approximation [258] is

H =

 0 1
2!R1 0

1
2!R1 �1

1
2!R2

0 1
2!R2 �2

 : (G.1)

The Rabi-frequencies !Ri are analogous to the de�nition in chapter 2.1. The time evolution of the
populations is given by the Liouville equation

_� =
i

~
[H; �] +

(
�2D̂2 + �3D̂3

)
�+ �̂�: (G.2)

The decay rates �2 and �3 are as usual the lifetimes of state j2i respectively state j3i. The damping
of the o�-diagonal density matrix elements is determined by the reduced Lindblad operators D̂i

[127], analogous to the two-level systems ontroduced in chapter 2.1.

D̂i� = � (��i �+i �+ ���i �+i ) (G.3)

Here we introduced the raising and lowering operators ��i de�ned as



116 G Three level systems

��2 =
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1 0 0

0 0 0
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 (G.4)

��3 =

 0 0 0

0 0 0

0 1 0

 �+3 =

 0 0 0

0 0 1

0 0 0

 (G.5)

The diagonal damping terms have to be included by a separate operator �̂. The atoms in state j3i
decay with a rate a�3 into state j1i and with rate b�3 into state j2i. Further all atoms in state j2i
decay with a rate �2 into state j1i. If other decay channels are excluded then holds a+ b = 1 and
the trace of the density matrix is conserved. The diagonal damping is then

�̂� =

 �2�22 + a�3�33 0 0

0 b�3�33 � �2�22 0

0 0 ��3�33

 : (G.6)

If one chooses a large detuning �2 with j�2j � !R1; !R2, the population of the intermediate state
j2i goes to zero and can be neglected. By this one reaches again a two-level system with an
e�ective 1-Photon coupling


e� =

√
!2
R1!

2
R2

4�22
+ �23 (G.7)

which can be treated with the optical Bloch-equations (2.6).



H Taylor expansion of a generalized octopole

If the eight �eld plates (see chapter 5.3) are treated as point charges located at the corners of a
cuboid, it is possible to give analytical expressions for the electric �eld distributions. The potentials
and the electric �elds can be expanded into a Taylor series in cartesian coordinates. This is done
to obtain analytical expressions in an polynomial form and by this a better approach to desired �eld
con�gurations. The model potential consists of eight point charges qi located at the positions ~rci
as shown in �gure H.1.

x

y

z

A

B

C

D

G

F

E

H

a

a

b

Figure H.1: Generalized Octopole. The eight charges of the octopole are located at the corners of a cuboid

with length b, height a and width a, which re�ects the symmetry of the actual �eld plates inside the vacuum

chamber. The labeling A � H of the charges as well the orientation of the coordinate system is equivalent

to that in chapter 5.3.

Each point charge can be set independently to any value, such as in reality also each �eld plate.
The total potential Utot is then simply obtained by superposing the individual potentials Ui as
Utot =

∑8
i=1 Ui . Actually there are also the two Faraday cages of the multi-channel plates available

for �eld generation, but they will be excluded in the following discussion.

The expansion of the potential of a single point charge at position ~rci is carried out around ~r = 0

up to �fth order and yields
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From interest is the electric �eld distribution which is determined by ~Etot = �rUtot. Again this is
done for a single charge at position ~rci
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(H.2)

The combined electric �eld ~Etot of all eight charges is also given by summation of the individual
�elds as ~Etot =

∑8
i=1

~Ei .

The distance between the facings of the �eld plates is 28 mm and by this is b set to 14 mm.
The e�ective distance a between the four �eld plates remains to be determined. In �gure 5.9
are electric �eld distributions shown, which were calculated with a �nite element method1 for the
real geometries of the �eld plates including the surrounding vacuum chamber. By expanding the
simulated �eld con�gurations also into a Taylor series and comparing the individual orders with
equation (H.1) and (H.2) one obtains a good agreement if a is set to about 15 mm in all orders.
The error in the electric �eld norm at the origin is then below 10 % compared to the full simulation
shown in �gure 5.9. To do even better one can assign a distance a for each expansion order.

When a is altered from 14 mm to 16 mm the basic geometry of the potential and the electric �eld
does not change. To discuss some basic con�gurations it is set for now to a = b. For this cubical
octopole are now four di�erent con�gurations of the electric �elds explicitly written out according
to the expansion (H.2). This four con�gurations are also depicted in �gure H.

1Comsol, Femlab
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Constant electric �eld For this situation are the charges A, B, C and D set to �q and E, F , G,
H to +q. The electric �elds along the three coordinate axes are then
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 :
(H.3)

A constant electric �eld along z can also be generated by only charging the plates B and D to �q
and the opposite plates F and H to +q. This increases the curvatures roughly by an factor of two.
In the experimental investigation of the Stark shift of the 43S state (see chapter 5.3) we actually
used an even simpler con�guration by just charging only two plates, B and H to +q.
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3

 :
(H.4)

This produces already a gradient �eld along the x-axis, which guides the �eld ionized ions towards
the multi-channel plate. On the other hand is the gradient small enough, that for small atomic
samples it does not contribute to the linewidth as it is the case for the spectroscopic results shown
in �gure 5.10.

Linear gradient �eld A �eld which exhibits a linear gradient in all directions is simply fabricated
by setting all charges to +q:

~Etot(y ; z = 0) �
 x + 1

8x
3

0

0


~Etot(x; z = 0) �

 0

y + 1
8y

3

0


~Etot(x; y = 0) �

 0

0

�2z + 13
14z

3

 :
(H.5)
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Figure H.2: Four di�erent �eld con�gurations. For all four cases was a set to 15 mm and b to 14mm.

The individual graphs show the absolute value of the electric �eld along the three coordinate axes. On top

are the two con�gurations (H.3) and (H.4) for constant �eld generation shown. The charges were chosen

such, that the �eld norm at the origin is 1 V/cm. For the upper left case the charges A, B, C and D were

set to �q and E, F , G, H to +q. The realization of electric �elds as used in the experiments with Rydberg

atoms (see chapter 5.3) uses only the plates B and H at positive values and is shown on the upper right.

A quadrupolar �eld with constant gradients along all three coordinate axes (see equation H.5) is realized

by setting all all charges to the same value and is depicted on the lower left. The magenta colored line

represents a constant gradient �eld with 1 V/cm2. Finally is on the lower right the situation for a �eld with

constant curvatures shown as stated by equation (H.6). In this case the plates A, C, F and H are charged

to +q and B, D, E and G respectively to �q. The magenta colored line is a �eld with a constant curvature

of 1 V/cm3.
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Quadratic �elds The last con�guration can be used to generate a quadratic �eld dependence in
two directions and zero �eld along z . To do so one can charge the plates for example alternately
with +q (A, C, F and H) and �q (B, D, E and G) to obtain

~Etot(y ; z = 0) �
 0

0

x2 � 7
16x

4


~Etot(x; z = 0) �

 0

0

�y2 + 7
16y

4


~Etot(x; y = 0) �

 0

0

0

 :
(H.6)

In �gure H is the absolute value of the electric �eld for this four con�gurations shown. The plotted
�elds show the Taylor series (H.3) to (H.6) up to the fourth order. At this order there is almost
no di�erence of this approximation to the real electric �eld distribution.

The Taylor series of the electric �eld can also be seen as a set of linear equations in qi . By
setting boundary conditions on the shape of the electric �eld, one can solve the equations for each
expansion order to obtain the required charges. All in all there are three �eld components for
each expansion order, which are well-de�ned by the eight charges. For a given electric �eld is the
system over-determined and no solution for the charges may be available. Easier to handle are the
potentials, which reduces the number of equations by a factor of three. Now one starts with a
conservative potential Utot and proceeds as before.
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I Reduction of the lifetime of Rydberg states

due to black body radiation

The lifetime of Rydberg states can be calculated with the help of equation (2.75) and yields for an
atom in the 43S1=2 state a lifetime of � = 99 �s. In [78] is a correction for the lifetime due to black
body radiation given (see equation 2.76), which reduces it at a temperature of 300 K to � = 47 �s.
For this correction it was assumed that the atoms change their internal state by induced emissions
or absorptions of photons given by an ordinary black body radiation spectral density:

�(�)d� =
8�h�3

c3(eh�=kBT � 1)
: (I.1)

This equation is valid in free space, but gets altered for the mode distribution in a �nite size cavity
[259, 260]. For a parallelepiped with sides Lx , Ly and Lz with conducting walls the eigenfrequencies
are given by

�nx ;ny ;nz =
c

2

√
n2x
L2x

+
n2y
L2y

+
n2z
L2z

with ni = 0; 1; 2; ::: (I.2)

With the inner dimensions of the vacuum chamber of 28 mm x 200 mm x 200 mm (see appendix
F) has the lowest lying mode a frequency of about 5 GHz and is well below the lowest possible
transition frequency at 50 GHz of the 43S1=2 state. By this it is a fair approximation to express
equation (I.2) with an e�ective length �L = (LxLyLz)

1=3 as

�n =
c

2�L
(2n)1=3 with n = 0; 1; 2; ::: (I.3)

which depends now only on one index n. The frequency distance between two successive modes
�� calculates then to

�� =
c3

12�2�L3
; (I.4)

which is plotted in �gure I.1. To calculate actual transition rates it is convenient to express the
radiation �eld in terms of number of photons �N per mode [261]

�N =
1

eh�=kBT � 1
; (I.5)

which is also plotted in �gure I.1 for T = 300 K. What is left to calculate the lifetime of any state
are the Einstein A coe�cients for all possible transitions, which are given by [121]

An0;l 0;nl =
2

3

e2!3
n0;l 0;n;l

"0c3h
jhn0; l 0jr jn; lij2 (I.6)
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Figure I.1: Einstein A coe�cients and properties of the black body radiation in a �nite size cavity. Each

cross represents the Einstein A coe�cient for transitions from the 43S1=2 state to a nP1=2 state (blue) and

nP3=2 state (green). The coe�cients are plotted again the energy di�erence ~!n0;l 0;n;l in THz from n = 5

(ground state) to n = 200. The orange line depicts the average photon number per mode with frequency �

as given by equation (I.5). The graph also includes the mode spacing (red line) at a certain frequency � for

a �nite size cavity with the dimensions of the vacuum chamber according to equation (I.4).

The initial state is denoted with jn0; l 0i and is separated by an energy ~!n0;l 0;n;l to a state jn; li.
The energy di�erences can be calculated with equation (2.73). To calculate the dipole matrix
elements hn0; l 0jr jn; li one has to solve the time-independent Schrödinger equation, including the
quantum defect for Rubidium, to obtain the necessary wave-functions. With the knowledge of the
wave-functions one can simply calculate the overlap integral of the 43S1=2 with all states allowed
by a dipole transition, here nP1=2 and nP3=2. This was carried out up to n = 200 and the result is
depicted in �gure I.1.

As a �rst step shall the lifetime � of the 43S1=2 without the in�uence of the black body radiation
be calculated [78]

��1 =

42∑
n=5

3=2∑
j=1=2

A: (I.7)
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This gives an value of � = 123 �s which is in good agreement with the 99 �s calculated previous
with equation (2.75). The deviation is most likely due to the quality of the calculated wave-
functions for small quantum numbers at which the quantum defect model is less accurate. With
the knowledge of the Einstein A coe�cients is it now possible to calculate explicitly the in�uence
of the ordinary black body radiation. The stimulated emission rate is simple �N times as large as the
spontaneous rate, where �N is the average photon number given by equation (I.5). This statement
also holds for absorption processes to states with a higher energy. The correction to the lifetime is
then

��1
bb =

42∑
n=5

3=2∑
j=1=2

�N(�)A+

1∑
n=43

3=2∑
j=1=2

�N(�)A: (I.8)

The �rst term corresponds to stimulated emission and the second to absorption processes and the
evaluation yields �bb = (4099 1=s + 3460 1=s)�1 = 132 �s. The e�ective lifetime is then reduced
to

1

�e�
=

1

�
+

1

�bb
(I.9)

and evaluates to �e� = 64 �s which is about 50% of the undisturbed lifetime of 123 �s. This
reduction of the lifetime is almost identical to the one calculated with the help of equations (2.75)
and (2.76). The sum was carried out to n=200 for which it already converged. There exists also
absorption of photons to continuum states, which was neglected since the corresponding Einstein
coe�cients are very small.

To include the discrete spectrum of a �nite size cavity the Einstein coe�cients are additionally
weighted by the ratio of the Einstein coe�cient and the mode spacing ��. This re�ects the
probability that a cavity mode is in resonance with a possible transition. The correction of the
lifetime is now

��1
cbb =

42∑
n=5

3=2∑
j=1=2

�N(�)
A2

2���(�)
+

1∑
n=43

3=2∑
j=1=2

�N(�)
A2

2���(�)
: (I.10)

Carrying out this evaluation one receives for ��1
cbb = (1093:3 1=s + 1:4 1=s)�1 = 1=9:1 �s�1 which

gives an e�ective lifetime of �e� = 118 �s and corresponds to a reduction of roughly 5% of to the
undisturbed lifetime of 123 �s.
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