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Zusammenfassung

Gegenstand dieser Arbeit ist die experimentelle Realisierung eines Bose-Einstein-

Kondensats (BEK) mit Chrom-Atomen [1]. Darüber hinaus konnte in diesem Konden-

sat erstmalig ein mechanischer Effekt der magnetischen Dipol-Dipol-Wechselwirkung

(MDDW) der Atome in einem Gas experimentell nachgewiesen werden [2]. Damit ist

das Chrom BEK das derzeit einzige System für die Untersuchung von Dipol-Dipol-

Wechselwirkungen in entarteten Quantengasen.

Die Erzeugung eines BEK, also eines makroskopischen Quantenzustands in einem

Vielteilchen-System, in einem ultrakalten verdünnten atomaren Gas gelang erstmals

1995 fast zeitgleich in den Gruppen von Eric Cornell und Carl Wieman sowie Wolfgang

Ketterle mit Rubidium- bzw. Natrium-Atomen [3, 4] und Randy Hulet mit Lithium [5].

Dieser experimentelle Fortschritt, der den Beweis eines 70 Jahre zuvor von Bose und

Einstein theoretisch vorhergesagten Effektes darstellt, hat eine neue, faszinierende

Richtung der modernen Atom- und Quantenphysik geprägt und inzwischen unzählige

experimentelle sowie theoretische Arbeiten nach sich gezogen. Nur sechs Jahre später

wurden Wieman, Cornell und Ketterle für ihre Arbeit zur Erforschung der Eigenschaften

dieses neuen Materiezustandes mit dem Nobel-Preis für Physik 2001 ausgezeichnet.

In den vergangenen zehn Jahren gelang, neben den bereits erwähnten Elementen Ru-

bidium, Natrium und Lithium, die Erzeugung von BEK in Gasen der Alkalimetalle,

Kalium [6] und Cäsium [7], sowie mit Wasserstoff [8], metastabilem Helium [9] und

Ytterbium [10].

Im Gegensatz zu einem klassischen Gas spielen Wechselwirkungen zwischen den

Atomen eines Bose-Einstein-Kondensates eine wichtige Rolle. Tatsächlich bestimmen

die vorhandenen Wechselwirkungen trotz ihrer geringen Stärke alle grundlegenden

physikalischen Eigenschaften der BEK. Ihre Stärke, Symmetrie und Reichweite sowie

das Wechselspiel der damit verbundenen Energieskalen mit den äußeren (magnetischen

und optischen) Potentialen, in denen die BEKs gehalten werden, sind für die faszinieren-

den Phänomene verantwortlich, die in Bose-Einstein-Kondensaten beobachtet werden

können. Alle Spezies, die bislang kondensiert werden konnten, wechselwirken praktisch

ausschließlich über die kurzreichweitige und räumlich isotrope Kontaktwechselwir-

kung, die durch die s-Wellen-Streuung der Atome zustande kommt. Diese Art der
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Zusammenfassung

Wechselwirkung kann durch einen einzigen Parameter, die sog. s-Wellen-Streulänge

a, charakterisiert werden und ist vergleichbar mit dem harten, elastischen Stoß zweier

Billardkugeln auf dem Tisch. Zu den wohl spektakulärsten Effekten die daraus resul-

tieren, zählen die Erzeugung quantisierter Wirbel und Wirbel-Gitter [11, 12, 13], die

Implosion (“Bosenova”) eines Kondensates, die durch einen plötzlichen Vorzeichen-

Wechsel der Kontakt Wechselwirkung von repulsiver zu attraktiver Wechselwirkung

vermittelt wird [14], sowie der Quanten-Phasenübergang von der superfluiden in die

Mott-Isolator-Phase in einem drei-dimensionalen optischen Gitter [15, 16]. Optische

Gitter wurden auch eingesetzt, um das sogenannte Tonks-Girardeau-Regime zu erre-

ichen, in dem die “Fermionisierung” bosonischer Teilchen aufgrund ihrer repulsiven

Wechselwirkung beobachtet werden kann [17]. Die beiden letzteren Effekte sind beson-

ders von Bedeutung, da sie eine Verbindung zwischen der Atomoptik und der Physik

stark korrelierter Vielteilchen-Systeme in der Festkörperphysik herstellen. In diesem

Sinne können atomoptische Experimente als idealisierte Systeme zum Studium typischer

Festkörper-Phänomene eingesetzt werden [18].

Gegenüber den atomaren Spezies, die bisher erfolgreich für die Erzeugung von Bose-

Einstein-Kondensaten verwendet werden, besitzen Chrom-Atome zusätzlich zur Kon-

taktwechselwirkung eine signifikante magnetische Dipol-Dipol-Wechselwirkung. Auf-

grund ihrer elektronischen Struktur mit sechs ungepaarten Elektronen mit paralleler

Spin-Ausrichtung im Grundzustand (Gesamtspin S = 6), besitzen Chrom-Atome

ein außergewöhnlich großes magnetisches Dipolmoment von 6µB
1. Da die Stärke

der MDDW mit dem Quadrat des magnetischen Moments skaliert, ist sie in einem

Chrom-BEK 36 mal größer als bei Alkali-Atomen, die nur ein ungepaartes Elektron

besitzen. Die relative Stärke der MDDW zur Kontaktwechselwirkung wird durch den

Parameter εdd = µ0µ2
mm

12π~2a
charakterisiert. Dieser Parameter ist für Chrom εdd = 0.15,

wobei a = 103 a0 ≈5.45 nm die von uns durch Feshbach-Resonanz-Messungen [19]

experimentell bestimmte s-Wellen-Streulänge von Chrom ist2. Damit ist die Stärke der

MDDW von Chrom-Atomen mit der Kontaktwechselwirkung vergleichbar.

Die MDDW unterscheidet sich dabei wesentlich von der Kontaktwechselwirkung, da

sie zum einen langreichweitig ist, also statt der lokalen Dichte die gesamte Dichtever-

teilung herangezogen werden muss, um das Wechselwirkungpotential eines Teilchens im

Kondensat zu berechnen. Zum anderen ist sie anisotrop, d.h. ihr Vorzeichen und ihre

Stärke hängen vom Winkel ab, unter dem die in einem äußeren magnetischen Feld aus-

gerichteten Dipole zueinander stehen. Durch diese grundlegend anderen Eigenschaften

der MDDW kommen neue kollektive Phänomene zustande, die in den letzten Jahren

wachsendes theoretisches und experimentelles Interesse geweckt haben. Ein Überblick

1Das “Bohr-Magneton” µB = ~e
2me

≈9.27·10−24 J/T ist die natürliche Einheit des magnetischen
Dipolmoments.

2a0 ist der sog. “Bohrradius” – der Radius der niedrigsten Elektronenbahn im Bohrschen Atommod-
ell.
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über einige der erwarteten Eigenschaften dipolarer Kondensate findet sich weiter unten

im Text.

Experimente zur Bose-Einstein-Kondensation in verdünnten Gasen werden in magne-

tischen oder optischen Atomfallen im Ultrahochvakuum durchgeführt. Der Übergang

von einem klassischen Gas in ein BEK erfolgt dabei typischerweise bei kritischen Tem-

peraturen unterhalb 1µK. Zum Erreichen dieser Temperaturen werden meist mehrere

Kühlverfahren eingesetzt. Üblicherweise beginnt die Präparation mit dem Einfang

und der Laserkühlung der Atome in einer magneto-optischen Falle (MOT). Die hier

erreichbaren Temperaturen und Dichten sind jedoch durch inelastische Wechselwirkun-

gen der Atome in Gegenwart des für solche Fallen nötigen nahresonanten Laserlichts

begrenzt. Erreichen Dichte und Atomzahl in der MOT ihre stationären Werte, werden

die Atome daher meist in magnetische Fallen überführt. In diesen Fallen wird die

atomare Wolke durch Verdampfungskühlung [20, 21, 22, 23] bis zum Erreichen der

kritischen Temperatur gekühlt. Durch die starke Dipol-Dipol Wechselwirkung der

Chrom-Atome ist die Erzeugung eines Chrom BEK mit diesen Standardverfahren

jedoch nicht möglich. Mit starken Dipolmomenten geht neben den interessanten Effek-

ten, die auf dem elastischen Teil der Dipol-Dipol Wechselwirkung beruhen, auch eine

erhöhte Wahrscheinlichkeit inelastischer Stoßprozesse durch dipolare Relaxation einher.

Diese inelastische Wechselwirkung kommt dadurch zustande, dass die Anisotropie der

Dipol-Dipol Wechselwirkung Stoßprozesse erlaubt, bei denen ein oder beide Stoß-

partner ihre magnetische Quantenzahl mJ ändern, wobei eine Konversion zwischen

innerem Drehimpuls der Spins und äußerem Drehimpuls der beiden Stoßpartner in

ihrem Schwerpunktssystem stattfindet. Dabei wird, je nach Anfangs- und Endzustand

der Atome, innere (Zeeman-)Energie in äußere, kinetische Energie umgewandelt oder

umgekehrt. Da statische magnetische Fallen lediglich durch ein lokales Minimum des

magnetischen Feldes realisierbar sind3, befinden sich Atome in einer magnetischen Falle

notwendigerweise in energetisch hohen Zeeman-Zuständen. In der Magnetfalle, die im

Rahmen dieser Arbeit zum Fangen ultrakalter Chrom-Atome eingesetzt wird, sind die

Atome im energetisch höchsten Zeeman-Niveau (magnetische Quantenzahl mJ = +3)

des Grundzustands 7S3 Spin-polarisiert. Bei dipolaren Relaxations-Stößen wird daher

stets Zeeman-Energie freigesetzt, was zum Aufheizen der Atomwolke und zum Verlust

von Atomen aus der Falle führt. In vorangegangen Arbeiten wurde gezeigt, dass die

Wahrscheinlichkeit solcher inelastischer Prozesse während des evaporativen Kühlens

von Chrom-Atomen in einer Magnetfalle durch die Dichtezunahme so stark anwächst,

dass die Erzeugung eines Chrom-BEK in solchen Fallen nicht möglich ist [25].

Zur Vermeidung der inelastischen Verluste war es nötig, die Atome aus der Magnetfalle

in eine weit rot-verstimmte optische Dipolfalle zu transferieren. Solche Fallen sind in

3Die Erzeugung eines lokalen Magnetfeldmaximums in einem statischen Magnetfeld ist nach den
Maxwell-Gleichungen im freien Raum nicht möglich [24].
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der Lage, Atome unabhängig von ihrem Zeeman-Zustand zu halten. Nach dem Transfer

in die optische Falle konnten die Atome daher durch optisches Pumpen im energetisch

niedrigsten Zustand (mJ = −3) polarisiert werden, in dem in Gegenwart eines (rel-

ativ schwachen) Magnetfeldes eine Änderung des Zeeman-Zustandes durch dipolare

Relaxation energetisch verboten ist. Dadurch konnte die Lebensdauer des gefangenen

Ensembles von 6.3 s auf 142 s gesteigert werden. Diese Erhöhung der Lebensdauer

ist eine entscheidende Voraussetzung für das Erreichen der kritischen Temperatur

durch Verdampfungskühlung in der optischen Falle. Um für die Verdampfungskühlung

ausreichende elastische Stoßraten der Atome zu erzielen, war die Erhöhung der zen-

tralen Dichte der Wolke nötig. Die optische Falle wurde daher als gekreuzte Falle

durch zwei Laserstrahlen realisiert. Durch die experimentelle Optimierung der Ver-

dampfungskühlung, sowie durch systematische Verbesserung der Systemstabilität und

Atomzahl, konnte schließlich die kritische Temperatur für den Übergang zum Bose-

Einstein-Kondensat von 450 nK erreicht werden. Zu diesem Zeitpunkt befanden sich

noch etwa 105 Atome in der optischen Falle. Inzwischen sind wir in der Lage, fast reine

Kondensate mit bis zu 105 Atomen zu erzeugen.

Die Anisotropie der Dipol-Dipol Wechselwirkung führt, wie in [26, 27, 28, 29] theo-

retisch vorhergesagt und in der vorliegenden Arbeit experimentell gezeigt wurde, zu einer

Anisotropie der Dichteverteilung eines dipolaren Bose-Einstein-Kondensates. Durch

diese Anisotropie hängen viele der für ein solches Kondensat erwarteten Phänomene

von der Symmetrie des Fallenpotentials ab. Es wurden Stabilitäts-Kriterien für

dipolare Kondensate in unterschiedlichen Fallengeometrien hergeleitet [27, 26, 30],

sowie Modifikationen der Grundzustands-Wellenfunktion und des Anregungsspek-

trums berechnet [26, 28, 30, 31]. So wird in einem scheibenförmigen Potential bei

dominanter Dipol-Dipol Wechselwirkung das Auftreten eines Roton-Maxons [32] im

Anregungsspektrum erwartet. In Spinorkondensaten [33, 34] führt die Kombination von

großem Dipolmoment und großem Spin der Chrom-Atome zu neuen Effekten wie der

Konversion von Spin in äußeres Drehmoment [35]. In 2-dimensionalen optischen Gittern

wurden neue Quantenphasen theoretisch gefunden. Hierbei finden abhängig von der

Tiefe des optischen Gitters Übergänge zwischen der superfluiden Phase mit homogener

makroskopischer Wellenfunktion, der “supersoliden” Phase, bei der eine periodische

Modulation der makroskopischen Wellenfunktion vorliegt, und der “Schachbrett” Phase,

die eine isolierende Phase mit abwechselnd besetzten und unbesetzten Gitterplätzen

darstellt, statt [36]. Auch die Bildung von quantisierten Wirbeln und Wirbel-Gittern

in rotierenden dipolaren Kondensaten wird durch die relative Stärke der MDDW stark

beeinflusst [37, 38, 39].

Die MDDW kann durch rotierende Magnetfelder in ihrer Stärke und ihrem Vorzeichen

abgestimmt werden [40]. Wir erwarten, dass wir durch den Einsatz dieser Technik und

mit Hilfe von Feshbach Resonanzen zur Einstellung der Kontaktwechselwirkung in der

Lage sein werden, die relative Stärke der MDDW über weite Bereiche zu variieren und
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deren Einfluss auf die oben genannten Effekte zu untersuchen.

Der Nachweis der MDDW zwischen Chrom-Atomen im BEK stellt ein weiteres zen-

trales Kapitel der vorliegenden Arbeit dar. Er konnte durch die Untersuchung der

Expansionsdynamik von Kondensaten mit unterschiedlicher Polarisation der atomaren

magnetischen Dipolmomente bezüglich der Fallengeometrie erbracht werden. Durch die

Anisotropie der MDDW wird eine Anisotropie in der Dichteverteilung eines in einer

Atomfalle gefangenen BEK erzeugt. Diese Anisotropie gegenüber einer rein isotropen

Wechselwirkung beruht darauf, dass in Gegenwart einer anisotropen Wechselwirkung

die Gesamtenergie des Systems durch Umlagerung der Atome verkleinert werden kann.

Dabei führt diese Umordnung im Falle der MDDW zu einer Elongation in Richtung

eines äußeren homogenen Magnetfeldes und zu einer Kontraktion in transversaler

Richtung. Die Feldstärke des homogenen Magnetfelds spielt hierbei keine Rolle, da

es lediglich als Quantisierungsachse zur Ausrichtung der vorhandenen Dipolmomente

dient. Die Anisotropie der Dichteverteilung bleibt auch nach dem Abschalten der Falle,

während der freien Expansion des BEK, bestehen. Sie äußert sich bei der Analyse

von Absorptionsbildern der fallenden Atomwolke durch ein gegenüber reiner Kontakt-

wechselwirkung verändertes Längenverhältnis R‖/R⊥, wobei R‖ und R⊥ die räumliche

Ausdehnung des Kondensats in Richtung des äußeren Magnetfeldes bzw. in einer dazu

senkrechten Richtung sind. Der experimentelle Nachweis dieser Anisotropie in der

Expansion eines Chrom Bose-Einstein-Kondensates in einem externen Magnetfeld stellt

neben der Erzeugung des BEK das zentrale experimentelle Ergebnis dieser Arbeit dar.

Die Messungen wurden mit einem BEK durchgeführt, das in einer ebenfalls anisotropen

Falle präpariert wurde. Der Vergleich von Messreihen, in denen das Magnetfeld parallel

bzw. orthogonal zur elongierten Achse der Atomfalle ausgerichtet war, zeigt eindeutig

die erwartete Elongation entlang der Feldrichtung und die dazu orthogonale Kontrak-

tion. Durch die Bestimmung des Längenverhältnisses eines expandierenden Chrom

BEK nach unterschiedlich langen Flugzeiten, konnte die Dynamik der Expansion mit

theoretischen Berechnungen verglichen werden. Dieser Vergleich zeigt eine nahezu per-

fekte Übereinstimmung des erwarteten mit dem beobachteten Verhalten und liefert zum

einen den Beweis des dipolaren Charakters eines Chrom Bose-Einstein-Kondensates,

zum anderen zeigt er die Richtigkeit der theoretischen Beschreibung dieses Systems,

die auf den hydrodynamischen Gleichungen eines Superfluids unter Hinzunahme der

anisotropen Wechselwirkung basiert.

Die asymptotische Ausdehnungsgeschwindigkeit der Atomwolke für lange Flugzeiten

mit unterschiedlichen Magnetfeldrichtungen (Polarisationen) wurde darüber hinaus

benutzt, um die relative Stärke εdd der MDDW im Vergleich zur Stärke der Kontakt-

wechselwirkung zu bestimmen. Um diese Messgröße von der jeweiligen Atomzahl N

in einer Messung unabhängig zu machen, wurde die Eigenschaft ausgenutzt, dass die

Ausdehnung des expandierten BEK mit N1/5 skaliert. Durch eine Reskalierung der

Expansionsdaten mit der mittleren Atomzahl aller Einzelmessungen, wird der statis-
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tische Fehler der Expansionsgeschwindigkeit deshalb stark reduziert. Dadurch konnte

εdd = 0.159± 0.034. mit sehr kleinem relativen Fehler bestimmt werden. Da die Stärke

der MDDW exakt berechenbar ist, konnte aus dem gemessenen Wert von εdd die Stärke

der Kontaktwechselwirkung berechnet und damit ein sehr genauer experimenteller Wert

für die s-Wellen-Streulänge von aCr = (96 ± 20) a0 angegeben werden. Diese Art der

Streulängen-Bestimmung ist ausschließlich durch die starke Dipol-Dipol Wechselwirkung

der Chrom-Atome möglich und zeichnet sich gegenüber vielen anderen Methoden durch

ihre weitgehende Unabhängigkeit von der in Einzelmessungen vorhandenen Zahl der

Atome aus. Die erhaltene Streulänge und relative Dipol-Dipol-Wechselwirkungsstärke

sind in sehr guter Übereinstimmung mit der aus Feshbach-Resonanz-Messungen be-

stimmten Streulänge von aCr = (103±13) a0, sowie der daraus zu erwartenden relativen

Stärke der MDDW von εdd = 0.148.
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Abstract

In this thesis, I present the generation of a Bose-Einstein condensate (BEC) of chromium

atoms. This constitutes the first realisation of a Bose-Einstein condensate of atoms with

strong dipole-dipole interaction. Due to the special electronic and magnetic properties

of chromium atoms, standard methods cannot be applied to generate a chromium BEC.

The production of a chromium BEC requires novel experimental strategies involving

magneto-optical, magnetic and optical trapping, cooling, and pumping techniques which

are discussed in this thesis. The BEC transition occurs at a temperature of Tc =450 nm

in our crossed optical dipole trap. We are able to create almost pure BECs consisting of

105 atoms. I investigate in detail the transition from a classical gas to the BEC phase.

An efficient algorithm for classical molecular dynamics simulation of the evaporative

cooling sequence is used to model the evaporative cooling process in the optical dipole

trap. The results of this simulation are in very good agreement with the experimental

findings and are used to develop more efficient cooling strategies in the optical trap.

Compared to all other BECs that have been created so far, chromium atoms have an

extraordinarily large magnetic dipole moment and therefore underlie strong magnetic

dipole-dipole interaction. This interaction is, in contrast to the contact interaction that

stems from s-wave scattering of the atoms, long-range and anisotropic. In a chromium

BEC, the strength of the dipole-dipole interaction is comparable to the contact inter-

action. A steadily growing number of theoretical publications (triggered also by the

successful generation of the chromium BEC) show that many interesting new phenom-

ena are expected to occur in a “dipolar” BEC where atoms interact significantly via

dipole-dipole forces. The experimental investigation of the expansion dynamics of the

chromium BEC that is presented in this thesis provides the first experimental proof of

a mechanical effect of (magnetic) dipole-dipole interaction in a gas. In this regard, the

chromium condensate has shown to be a dipolar BEC.

As compared with the case of a BEC interacting solely via the common contact inter-

action, magnetic dipole-dipole interaction leads to an elongation along the direction of

an external magnetic field and a contraction orthogonal to it. The condensate is de-

scribed by a hydrodynamic model of superfluids considering dipole-dipole interaction

and the experimental results are in excellent agreement with the theoretical predictions.
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Abstract

By a quantitative analysis of the expansion dynamics, I determine the relative strength

parameter of the dipole-dipole interaction εdd = 0.159 ± 0.034 and deduce the s-wave

scattering length a = (96± 20) a0. These two quantities allow us to completely describe

the interaction of the atoms in the condensate. The experimental results presented in

this thesis – the successful generation of a chromium BEC and the proof of its dipolar

character – make the chromium BEC the most promising system for further investiga-

tions of dipolar effects in degenerate quantum gases.

xii



Introduction

The first observation of Bose-Einstein condensation in a dilute atomic vapour – the

emergence of a macroscopic quantum state in a many body system – marked the start

of a new era in quantum and atomic physics. Within only a few months in 1995, three

groups reported the successful generation of Bose-Einstein condensates (BEC) in ultra-

cold rubidium [3], sodium [4], and lithium [5] gases. Only six years later, Carl Wieman,

Eric Cornell, and Wolfgang Ketterle were honoured with the 2001 Nobel prize in physics

for their pioneering work on the physics of this new state of matter. Since then, the field

has gained the ever growing interest of experimentalists as well as theoreticians. In the

following years BECs succeeded in vapours of hydrogen [8] in 1998, potassium [6] and

metastable helium [9] in 2001, and cesium [7] and ytterbium [10] in 2003.

All of these elements have their own characteristics. Rubidium and sodium are the

“working horses”. They are very well understood systems which permit the routine

production of very large condensates [41] with comparably low technical effort. Lithium

is outstanding due to its effective attractive interaction, and the existence of bosonic

and fermionic isotopes which have been brought to degeneracy at the same time [42].

Hydrogen is the simplest atomic system which allows for exact calculations of inter-

atomic potentials. Potassium is also interesting because it has bosonic and fermionic

isotopes, and metastable helium is outstanding due to its high internal energy which of-

fers distinguished diagnostic possibilities [43]. Cesium atoms show a very broad Feshbach

resonance [44, 45, 46] which makes them perfectly suited for control of the scattering

properties, besides being of technical interest since cesium atomic clocks define our time

standard. Ytterbium – so far the only non-alkali, non-rare gas atom in the BEC family –

stands out due to its vanishing magnetic moment which makes it a promising candidate

for precision measurements.

With chromium, the ninth element joins the family of Bose-Einstein condensates [1, 47].

The peculiarities of chromium point in yet another direction. It is outstanding because

it introduces a new kind of interaction into the field of degenerate quantum gases. In

contrast to all chemical elements that have been successfully brought to quantum de-

generacy, chromium atoms have an extraordinarily large magnetic moment of 6µB in

their 7S3 ground state. Since the long-range and anisotropic magnetic dipole-dipole
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Introduction

interaction (MDDI) scales with the square of the magnetic moment, this comes along

with a MDDI between two chromium atoms that is a factor of 36 higher than in alkali

BECs. The large magnetic moment stems from the unique electronic structure. While

the alkalis, which form the largest group among the Bose-Einstein condensates, all have

rather simple electronic configuration with only one valence electron, chromium has six

valence electrons with aligned spins (total spin quantum number S = 3). In contrast

to a classical gas, interactions play an important role in a BEC. In fact, although these

interactions are very weak, all essential properties of Bose-Einstein condensates of dilute

atomic gases are determined by the strength, range, and symmetry of the interactions

present.

In all Bose-Einstein condensates that have been created so far, the short-range and

isotropic contact interaction that arises from s-wave scattering between the atoms is by

far dominating. Many exciting phenomena based on this type of interaction have been

studied (reviews are given in [48, 49]). Early experiments with the newly available state

of matter aimed at studies of the influence of interactions on the thermodynamic proper-

ties of the gas. Deviations of the specific heat and the transition temperature from ideal

gas theory were studied [50] and the mean-field interaction energy was measured [51].

Interactions also manifest in the excitation spectrum of a Bose-Einstein condensate by

a modification of the eigenfrequencies of elementary excitations [52, 53, 54]. With the

generation of quantised vortices and vortex latices [11, 12, 13] in Bose-Einstein conden-

sates, another spectacular type of collective excitations was observed, a phenomenon

characteristic for superfluid systems.

The use of Feshbach resonances to tune the contact interaction has opened new pos-

sibilities of control over such systems. The fact that the s-wave scattering length is

not fixed but can be tuned by application of an external magnetic field allows one to

explore extreme regimes from strongly repulsive to very small and strongly attractive

interaction. One prominent example called “Bosenova” is the collapse and explosion

of a BEC when the contact interaction is suddenly changed from repulsive to attrac-

tive [14]. Feshbach resonances have also been used to create BECs of bosonic molecules

formed by fermionic atoms [55, 56, 57] and to study the BEC-BCS crossover in these

systems [58, 59, 60, 61, 62, 63].

The quantum-phase transition from a superfluid to a Mott-insulator state [15, 16] ob-

served in three- and one-dimensional lattices, respectively, is also a result of the so-

phisticated interplay between external potentials, quantum-statistics, and inter-particle

interaction. Optical lattices were also used to enter the Tonks-Girardeau regime [17],

where the so called “fermionisation” of bosonic atoms due their repulsive interaction

is observed when the dimensionality of the confining potential is reduced. With these

experiments, Bose-Einstein condensates and dilute gases entered the field of strongly

correlated many-body systems – a regime that had previously been a domain of solid-

state physics. In this sense, an atomic gas can act as a model system for solid-state
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physics [18].

Having this in mind, it is evident that creating a Bose-Einstein condensate of atoms that

are subject to an interaction with different symmetry and range than the contact interac-

tion will also introduce new collective phenomena. It has been shown in [26, 27, 28, 29],

that the anisotropy of the MDDI introduces an anisotropy in the density distribution

of a trapped dipolar condensate. The experimental observation of a modification of the

condensate expansion due to the MDDI that was proposed in [64] is a central point of

this thesis. The regime of dominant dipole-dipole interaction can be entered by using a

Feshbach resonance to lower the contact interaction,. Moreover, a continuous transition

between both regimes of dominant dipole-dipole or contact interaction is possible.

Many exciting phenomena are expected in a system with dominating dipole-dipole in-

teraction. Due to the anisotropic character of the MDDI, most of them depend strongly

on the symmetry of the trap. Modifications of the ground state wave function were

predicted [26, 28] and the stability criteria of dipolar condensates in different trap ge-

ometries were studied [27, 26, 30]. In pancake-shaped traps [32], modifications of the

eigenmodes of elementary excitations are expected [30, 31], as well as the occurrence

of a roton-maxon in the excitation spectrum. The existence of new quantum phases

was proposed for the case of a dipolar condensate in a two-dimensional optical lattice.

Depending on the angle between the magnetic moments and the lattice plain and on

the lattice depth, transitions between the superfluid, the supersolid (a superfluid with a

periodic modulation of the macroscopic wave function) and the insulating checkerboard

phase (similar to a Mott-insulator but where occupied lattice-sites are neighboured by

unoccupied ones), are predicted to occur [36]. Dipolar BECs are also discussed in the

context of spinor condensates [33, 34]. The combination of large spin and magnetic

moment leads to interesting new effects like the conversion of spin into angular momen-

tum [35]. Very recently, the influence of MDDI on the formation of vortex lattices in

rotating dipolar BECs has been studied [37, 38, 39]. In these publications, a dramatic

influence of the relative strength of the MDDI with respect to the s-wave interaction on

the symmetry of the generated lattice structure was found. If the dipole-dipole interac-

tion is strong enough, the existence of 2D-solitons is expected [65]. Tuning of the MDDI

is possible by spinning the quantisation axis of the atomic dipoles [40] together with

Feshbach tuning of the contact interaction. This allows for the exploration of all these

effects in regimes of almost arbitrary different ratio between the two types of interac-

tion. The huge variety of physical phenomena that are predicted for dipolar BECs and

the steadily growing number of theoretical work on these effects make dipolar quantum

gases one of the most exciting fields of atom optics. With the generation of a Bose-

Einstein condensate of dipolar chromium atoms, it becomes possible to start exploring

these fascinating phenomena experimentally, too.
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The path, however, that finally led to the generation of a chromium BEC was long and

required a lot of important experimental and theoretical work on all aspects of cooling

and trapping. Two experimental setups and a yearly growing number of lasers involved

in the experiment were needed. In contrast to the alkalis, only little was known about

the spectroscopic and scattering properties of atomic chromium when our chromium ex-

periment was started. The complex electronic structure made ab-initio calculations of

the molecular potentials difficult and important spectroscopic properties and trapping

strategies were unknown. The s-wave scattering length – the most important parame-

ter for evaporative cooling, of which neither sign nor modulus was known – had to be

determined experimentally to find out whether the generation of a Cr-BEC would work

at all. The successful operation of a chromium magneto-optical trap and repumping

on the intercombination lines [66] as well as the development of a continuous loading

scheme [67, 68, 69] of chromium atoms into a magnetic trap were important steps to-

wards the production of a chromium BEC.

Further progress was achieved with the first measurement [70] of the s-wave scatter-

ing length aCr =170±39 a0 and the development of a Doppler cooling technique that

allowed us to cool the sample optically within the magnetic trap [71]. Later, the scat-

tering length was determined with much higher accuracy to be aCr =102±13 a0 at zero

magnetic field from a comparison of experimentally observed Feshbach resonances to

theoretical results [19](see also Appendix B).

With respect to magnetic trapping and evaporative cooling in a magnetic trap, an

extraordinary large magnetic moment is not always of advantage. Besides the many

promising possibilities of studying dipole-dipole interaction in a quantum gas with

chromium, the dipole-dipole interaction also induces new loss mechanisms. The prob-

ability of inelastic collisions due to dipolar relaxation [25] scales with the third power

of the total spin. This leads to very large loss rates of magnetically trapped chromium

atoms of βdr =2.5·10−12 cm3/s at B =1G and T =10µK. This extreme dipolar re-

laxation rate causes standard condensation techniques to fail in a magnetic trap and

necessitates much more elaborate methods for the creation of a chromium BEC. Also

a different approach relying on cryogenic buffer gas loading and evaporative cooling of

chromium did not succeed due to large losses [72, 73].

The preparation technique that is finally used to generate a chromium Bose-Einstein con-

densate combines magneto-optical, magnetic and optical cooling, pumping, and trapping

techniques [47]. It requires novel strategies, that are adapted to the special electronic

structure of chromium and the need to circumvent relaxation processes that originate

from the dipolar character of the atoms.

4



This thesis

In this thesis, I present the all important experimental aspects of the first realisation

of a Bose-Einstein condensate of 52Cr atoms. Bose-Einstein condensation of chromium

is achieved by evaporative cooling in a far-off-resonant crossed optical dipole trap. I

analyse and document the preparation techniques, starting with a pre-cooled sample of

108 atoms in a static magnetic trap at roughly the Doppler temperature of 124µK and a

phase space density of ∼ 10−9. Quantum degeneracy is finally reached at a temperature

of 450 nK. Meanwhile, we are able to produce pure condensates containing up to 105

atoms. In this sense, this thesis also documents a trip through phase-space over nine

orders of magnitude in phase-space density.

The magnetic dipole-dipole interaction among chromium atoms manifests itself in

the direct observation of a polarisation dependence in the expansion dynamics of the

chromium BEC. This constitutes the first observation of a mechanical effect of dipole-

dipole interaction in a gas, similar to magnetostriction and electrostriction which are

well known effects in solids.

Analysing the expansion of the dipolar condensate, I determine the relative strength

of the dipole-dipole interaction of εdd =0.159±0.034 which is in excellent agreement

with the theoretical prediction of 0.148 . Based on the measured value of εdd, I present

a novel way to determine the s-wave scattering length. It is noteworthy that this kind

of measurement is independent of the determination of the number of atoms. This is a

clear advantage over many other techniques that are commonly used to determine the

scattering length, e. g. by a measurement of the mean-field potential. The chromium

scattering length is determined to be (96 ± 20) a0, also in very good agreement with

previous measurements.
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The thesis is structured as follows:

In Chapter 1, I give a summary of basic BEC physics, starting with an illustrative in-

troduction to the phenomenon of Bose-Einstein condensation. The theoretical concepts

that are used later on for comparison with experimental findings are discussed. Start-

ing from BEC in a free ideal gas, the theory is extended to real, interacting gases in

external potentials. Anisotropic and long-range dipole-dipole interaction in a BEC are

considered in the first sections of Chapter 8.

Chapters 2 to 5 are devoted to the experimental techniques used to produce and detect

a chromium BEC. These Chapters may be skipped by the reader who is not so interested

in the technical parts. References to the relevant parts and formulas are found in the

experimental chapters.

The experimental apparatus that was used for all measurements presented in this thesis

is briefly discussed in Chapter 2. In Chapter 3, I present the methods used for taking,

processing and evaluating absorption images.

Chapter 4 discusses the theoretical and experimental aspects of trapping chromium

atoms in an optical dipole trap. I give an overview of the cooling and trapping tech-

niques that are used to prepare a cloud of chromium atoms first in a magnetic trap

which is later on transferred to an optical trap. Further cooling of the chromium sample

by evaporation in the optical dipole trap is treated in the subsequent Chapter 5.

Chapters 6 to 8 contain the important experimental results of this thesis. A fast classical

molecular dynamics simulation program that is capable of simulating the evaporation

process in arbitrary external potentials is presented in Chapter 6. The program is used to

develop new strategies for optical trapping and evaporative cooling of chromium atoms.

The generation of a Bose-Einstein condensate of chromium atoms will be presented in

Chapter 7. Special attention is given to the dependence of the condensate fraction on

the temperature and to the lifetime of the condensate.

In Chapter 8, I present the first experimental observation of a direct, mechanical ef-

fect of dipole-dipole interaction in a gas. The expansion of a dipolar condensate with

different alignment of the atomic magnetic dipole moments is examined and compared

to the theoretical predictions of dipolar superfluid hydrodynamic theory which is also

introduced at the beginning of this chapter. The experimental results are used for a pre-

cise determination of the relative strength of dipole-dipole interactions and the s-wave

scattering length of chromium.

The general and spectroscopic properties of chromium that are relevant for the ex-

periments or experimental techniques described in this thesis, are summarised in Ap-

pendix A. In Appendix B, I will a give a brief overview of the Feshbach resonances that

we have found in collisions of ultra-cold chromium atoms. I conclude with a summary

of the experimental findings and an outlook to future experiments.
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1 Bose-Einstein condensation

Abstract

This chapter is devoted to the theoretical description of Bose-Einstein condensa-

tion in a dilute atomic vapour. The specific statistical properties of Bosons as well

as Bose-Einstein condensation of a free ideal gas in the thermodynamical limit

and sometimes even a trapped gas are treated in almost all textbooks on statistical-

mechanics (see e.g. [74]). These basic physical concepts of Bose-Einstein con-

densation are important to distinguish between a classical thermal sample and a

Bose-Einstein condensate and thus to be able to discern the appearance of this

strange kind of matter in the experiment. I will therefore summarise also these

basics in the next sections as an introduction to condensate physics.

The observation of a Bose-Einstein condensate in a dilute gas is an interesting

effect in itself due to its quantum-statistical origin. But what is really making a

gaseous Bose-Einstein condensate such an exciting system is in fact the non-ideal

character of real Bose condensed gases - the small repulsive or attractive forces

which act between the particles and the sophisticated interplay of the energy scales

related to these internal and the external forces. Section 1.4 will therefore treat

the more important and realistic case of a finite number of non-ideal, interacting

atoms trapped in an external potential. The influence of the trapping potential will

be discussed in 1.4.1 and the consequences of the limited number of atoms in real

systems will be analysed in 1.4.2. Section 1.4.3 treats Bose-Einstein condensation

under the influence of weak isotropic interaction among the atoms. Finally, the

expansion of a condensate released from a trap is discussed in Section 1.5. The

experimental observation of long-range dipolar interaction in a Bose-Einstein con-

densate is a central point of this thesis and the consequences of such interactions

are astounding and might seem a little counterintuitive. The theoretical background

of dipole-dipole interaction in BECs will therefore be discuss together with the ex-

perimental findings in Chapter 8.
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1 Bose-Einstein condensation
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Figure 1.1: Dependence of the statistical weight of degenerate and non-degenerate states on
indistinguishability explained with the example of three cubes being arranged in different ways.
In the top figure, the cubes are distinguishable. There are 6 = 3! ways to arrange the cubes in
a non-degenerate way whereas only the rightmost arrangement represents a fully degenerate
state. With indistinguishable, grey cubes, all three possible types of arrangements have the
same statistical weight. In this case, the degenerate state has N ! larger weight statistical
weight than before.

1.1 Indistinguishability and statistics

In contrast to other condensation phenomena where particles start to build compounds

due to their interaction, Bose-Einstein condensation –the macroscopic occupation of

one state– is driven only by the indistinguishability and the symmetry properties of

the particles. In this context, indistinguishability not only means particles which have

identical properties and ”look” the same but a principle impossibility to distinguish

them. This is a pure quantum effect since classical particles could – even if they all

have the same properties – be distinguished by means of their trajectories if one would

only look close enough. Once the position and momentum of a classical particle and

the surrounding potential are known, its trajectory can be predicted for all times. For

a quantum mechanical particle, the Heisenberg uncertainty principle forbids such a

localisation with a resolution better than the volume of a unit phase space cell of h3.

Hence such a particle’s position is always smeared out over a volume in phase space

instead of being localised at one point. If two quantum mechanical particles come closer

than this volume in phase space, it is impossible to tell afterwards which was the one or

the other. This intrinsic indistinguishability influences the statistical properties of such

particles. Consider three cubes like in Figure 1.1, distinguishable by their colour. Now

we ask for the ways how they can be arranged by stacking them on the floor. Let us

distinguish 3 different situations: 1) if the cubes all sit on top of each other and only one

touches the floor, we call this a non-degenerate state because each cube is found on a
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1.2 The Bose-Einstein distribution

different level; 2) if two of the cubes are lying on the floor, the state is partly degenerate;

and 3) if all cubes are lying on the floor, we call the system fully degenerate because

all cubes are found on the same level. Now we want to know how likely the system is

to be found in a degenerate or non-degenerate state. The non-degenerate state can be

produced by six different arrangements of the three cubes, the partly degenerate state

by three, and the fully degenerate state by only one arrangement. If all arrangements

of the cubes have the same a priory probability, the relative probability of finding the

system in a fully degenerate state is one in ten or 10%. With a probability of 30%, it will

be found in a partly degenerate state, and 60% of the arrangements are non-degenerate.

Now we make the cubes indistinguishable by taking away their colour. We ask again

for the probabilities of degenerate and non-degenerate states and find that in contrast

to the coloured cubes, there is only one non-degenerate state and also only one which

is partly degenerate. Still, there is one arrangement representing the fully degenerate

state. Thus, the relative probabilities of partly and fully degenerate states of the system

have grown to one third of all possible arrangements whereas the probability of finding a

non-degenerate arrangement of cubes is now also only one third. The fact that the cubes

are indistinguishable increased the probability of finding the system in a degenerate state

in our simple model by more than a factor of three. Compared with the non-degenerate

state, the fully degenerate state has gained a factor of six in statistical weight. This

gain of statistical weight of degenerate states grows with the faculty of the number of

particles. It seems that the consequent way to approach degeneracy is by adding more

and more bosonic particles to the system until non-degenerate arrangements become so

unlikely that one observes a macroscopic occupation of one state. The way in which

Bose-Einstein condensation in an atomic vapour is motivated in the following sections

is very similar to this way of thinking.

1.2 The Bose-Einstein distribution

The ground state, i.e. the distribution of particles among the states | i 〉 with energies

Ei of a system S in thermodynamic equilibrium is easily treated in the grand-canonical

ensemble which allows exchange of particles and energy between S and a much larger

reservoir R. Assuming equal a priori probabilities for every micro-realisation of a given

total energy Etot and number of particles Ntot in the system (the micro-canonical en-

semble1), it turns out that in the grand-canonical ensemble the probability of finding S
in any of the micro-realisations of a certain Etot and Ntot is proportional to the Boltz-

mann factor e
−Etot−µNtot

kBT . This is found by applying the micro-canonical ensemble to

the complete system S +R. The state of a system filled with indistinguishable bosons

1 In the micro-canonical ensemble, S contains a fixed total energy and number of particles.
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1 Bose-Einstein condensation

is fully specified by the set of occupation numbers {ni} of the states | i 〉. The total

energy of a certain configuration {ni} is found by summing over all energy levels times

their occupation numbers E
{ni}
tot =

∑
i niEi and the total number is given by the sum

of the occupation numbers of all states Ntot =
∑

i ni. Knowing that the Pauli-principle

restricts occupation numbers for fermions to values ni = 0 or 1, whereas for bosons

in principle arbitrary ni = 0, 1, 2, 3, ...∞ are allowed, one can already anticipate here

that there will be a fundamental difference in the statistics of bosons and fermions. In

the following, only bosons are being considered. At a certain temperature T the parti-

tion function Ξ(T, µ), where µ is the chemical potential2, is obtained by summing the

Boltzmann factors e
−Etot−µNtot

kBT of all possible micro-configurations {ni}:

Ξ(T, µ) =
∑
{ni}

e−β(E
{ni}
tot −N

{ni}
tot µ) =

∑
{ni}

e−β
P

i(niEi−niµ) =
∑
{ni}

∏
i

e−β(niEi−niµ). (1.1)

The chemical potential µ is the energy needed to add a particle to the system and

β ≡ 1
kBT

was introduced for simplicity. If we define the fugacity z = eβµ, the partition

function reads

Ξ(T, µ) =
∑
{ni}

∏
i

znie−βniEi =
∞∑

n0=0

zn0e−βE0n0 ·
∞∑

n1=0

zn1e−βE1n1 · ... =
∏

i

Ξi (1.2)

where Ξi are the single particle partition functions

Ξi =
∞∑

ni=0

znie−βniEi =
1

1− ze−βEi
. (1.3)

A certain number ni of particles in state i is then found with the statistical prob-

ability 1/Ξi · znie−βEini , where the normalisation factor 1/Ξi accomplishes the con-

straint that the probability of finding any number of particles in state | i 〉 be one,∑∞
ni=0 1/Ξi · znie−βEini = 1. Now we have everything at hand to calculate the average

occupation number of state | i 〉 for bosons, the Bose-Einstein distribution function:

〈ni〉 =
1

Ξi

∞∑
ni=0

niz
nie−βEini = z

∂

∂z
lnΞi =

1

z−1eβEi − 1
=

1

eβ(Ei−µ) − 1
(1.4)

1.3 Bose-Einstein condensation of a free ideal gas

From Eqn. (1.4) follows that µ be smaller than the smallest single-particle energy E0

to provide that a) 〈ni〉 stays positive for all states and b) the occupation number 〈n0〉
2The chemical potential is a measure of how much the free energy of a system changes by adding
or removing a number of particles while all other variables of the system (such as temperature and
pressure etc.) are kept constant.
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1.3 Bose-Einstein condensation of a free ideal gas

does not diverge which would happen if E0 = µ. This leads to the dilemma that for

T → 0, all occupation numbers ni and therefore also Ntot would be 0. If one demands a

fixed non-zero number of particles Ntot in the system, the only way to circumvent this

problem is that for T → 0, the chemical potential µ tends towards E0 in such a way

that the lowest single-particle state has a macroscopic but not infinite occupation.

The total number of particles in the system can be easily calculated using Eqn. (1.4):

〈Ntot〉 =
∑

i

〈ni〉 =
∑

i

1

z−1eβEi − 1
=
∑
Ej

gj

z−1eβEj − 1
. (1.5)

Here we have replaced the summation over the different states by the sum over all

existing energies and account for the possibility of finding the same energy for different

states by introducing the degree of degeneracy gj. In the thermodynamic limit for a

homogeneous system, the energy difference between the levels tends to 0, leading to

a continuous distribution of states with infinitesimally small energy difference. In this

case the degree of degeneracy is replaced by the density of states D(E) which is

D(E) =
V

(2π)2

(
2m

~2

)3/2√
E (1.6)

for free particles in a box with volume V . In the thermodynamical limit of an infinite

system, the total number of particles diverges as well as the size of the system, thus one

calculates the density instead of the number of particles:

n =
〈N〉
V

=
1

V

∫ ∞

0

D(E)

z−1eβE − 1
dE +

1

V

z

1− z
=

1

λ3
dB

g3/2(z) +
1

V

z

1− z
, (1.7)

where the ground-state population is treated separately in the right term because

D(E = 0) = 0. Here we have introduced the thermal deBroglie-Wavelength λdB =√
2π~2/mkBT and the polylogarithm or Bose-Einstein integral [75]

gα(z) =
∞∑

j=1

zj

jα
. (1.8)

When the density on the left side of Eqn. (1.7) is increased, the chemical potential

included in the fugacity z on the right increases continuously (z → 1). As the chemical

potential approaches its upper bound given by the ground state energy E0, the density

in the excited states saturates at a maximum value of

nex
max = g3/2(1)/λ

3
dB.

For z = 1, the Einstein integral gα(1) is identical to the Riemann-ζ function ζ(α). If

the density is increased further (by adding more and more particles to the system with

11



1 Bose-Einstein condensation

constant volume and temperature), the occupation of excited states can not increase

anymore and thus all the excess particles have to populate the ground state of the

system and form a Bose-Einstein condensate (BEC). The product ρ = nλ3
dB is called

phase-space density (PSD). This dimensionless quantity measures the number of atoms

per unit cell in phase space with 6-dimensional volume ∆p3∆x3 = h3. Equation (1.3)

formulates a critical phase-space density of

ρc = nλ3
dB = ζ(3/2) = 2.612... (1.9)

for which the occupation of the excited states saturates and the atoms of a free ideal

gas start to populate the ground state macroscopically.

Instead of increasing the number of particles, the temperature can be lowered to saturate

the excited state population, too. At the critical temperature for the occurrence of Bose-

Einstein condensation, the number of particles in the system is equal to the maximum

number of atoms in excited states N = Nmax(Tc) = 1/λdB(T free
c )3ζ(3/2)V . If we use the

definition of the deBroglie wavelength and resolve this equation, we get an expression

for T free
c :

T free
c =

2π~2

mkB

(
n

ζ(3/2)

)2/3

. (1.10)

If the sample is cooled below T free
c , the population of the ground state grows. Using

Eqn. (1.7) and the fact that below T free
c the number of ground state particles is N0(T ) =

N −Nmax(T ), one gets the expression

N0(T )

N
= 1− ζ(3/2)

λ3

V

N
= 1− T 3/2

(
mkB

2π~2

)3/2
ζ(3/2)

n
= 1−

(
T

T free
c

)3/2

(1.11)

for the fraction of particles in the ground state3 depending on the temperature. Obvi-

ously, the condensate fraction depends on the ratio T/Tc
4.

1.4 Real gases and external potentials

So far neither external forces nor forces between the atoms have been discussed. Instead,

we have only treated the case of an ideal gas of an infinite number of non-interacting

particles in a homogeneous surrounding. In contrast, experiments on Bose-Einstein

condensates are carried out in atomic traps with a limited number of atoms that interact

with each other. In the following sections, Bose-Einstein condensation under these

realistic conditions will be discussed.

3This quantity is often referred to as the condensate fraction.
4 t = T/Tc is often referred to as the reduced temperature.
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1.4 Real gases and external potentials

1.4.1 Ideal Bose-gases in harmonic traps

The traps used to generate Bose-Einstein condensates of dilute gases can usually be

approximated by a 3-dimensional harmonic oscillator potential Uext = m/2(ω2
xx

2+ω2
yy

2+

ω2
zz

2). The energy of a quantum mechanical state in this potential, characterised by the

quantum numbers ~n = (nx, ny, nz) is E~n = ~(ωx(nx+1/2)+ωy(ny +1/2)+ωz(nz +1/2)).

In such a trap the phase space distribution of non-interacting thermal Bosons is

f(~r, ~p) =
1

(2π~)3

1

exp
(

Uext(~r)+~p2/2m
kBT

)
and the spatial distribution is given by the integral over momentum space

nT (~r) =

∫
f(~r, ~p)d3p =

1

λ3
dB

g3/2(e
−Uext(~r)

kBT ).

In a similar way, one obtains the momentum distribution

nT (~p) =

∫
f(~r, ~p)d3r =

1

(λdBmωho)3
g3/2(e

− p2

2mkBT ),

where ωho = (ωxωyωz)
1/3 is the geometric mean of the trap frequencies.

At a given temperature, the total number of atoms is now determined in analogy to

Eqn. (1.5) by

N =
∑

nx,ny ,nz

1

eβ(Enx,ny,nz−µ) − 1
. (1.12)

As in the case of a uniform gas, the ground state population becomes macroscopic when

the chemical potential approaches the ground state energy

µ → µC =
3

2
~ω, (1.13)

where ω = (ωx + ωy + ωz)/3 is the arithmetic mean of the trapping frequencies. The

population of the excited states is

N −N0 =
∑

nx,ny ,nz 6=0

1

eβ(ωxnx+ωyny+ωznz) − 1
=

∫ ∞

0

dnxdnydnz

eβ(ωxnx+ωyny+ωznz) − 1
, (1.14)

where the sum on the left may be replaced by the integral on the right if the level spacing

~ω is much smaller than the thermal energy kBT , allowing to treat these states like a

continuum. Solving the integral leads to

N −N0 = ζ(3)

(
kBT

~ωho

)3

. (1.15)
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1 Bose-Einstein condensation

Following the argumentation of the previous section, we make use of the fact that the

excited states saturate for T → T 0
c to calculate the transition temperature [76] which

results in

T 0
c =

~ωho

kB

(
N

ζ(3)

)1/3

≈ 0.94
~ωho

kB

N1/3. (1.16)

Below this temperature, the ground state population grows as

N0

N
= 1−

(
T

T 0
c

)3

. (1.17)

In a system of non-inreacting particles, the ground state of N particles is given by

a simple product state5 Φ(~r1, ~r2, ..., ~rN) =
∏

j φ0(~rj), where φ0(~r) is the lowest single

particle state

φ0(~r) =
(mωho

π~

)3/4

e−
m
2~ (ωxx2+ωyy2+ωzz2),

and the density distribution

n(~r) = N |φ0(~r)|2

has therefore a Gaussian shape with a size that is independent of the number of particles.

The size is given by the oscillator lengths σx,y,z = 1/
√

(2)aho,x,y,z = ( ~
2mωx,y,z

)1/2. The

ratios of the trapping frequencies are reflected by the ratios of the widths in x, y and z

direction: σx : σy : σz = 1
ωx

: 1
ωy

: 1
ωz

. which can be compared to the size of a thermal

cloud at a temperature kBT � ~ω given by the Maxwell-Boltzmann distribution. Such

a thermal distribution has a width σT = aho(kBT/~ω)1/2 – always much larger than

that of the condensate. The appearance of a sharp peak in the density distribution is

therefore one indication of the presence of a Bose-Einstein condensate in a trapped gas.

In analogy to Eqn. (1.4.1) for the thermal cloud, the momentum distribution in the

condensate can be calculated by integrating the density distribution (1.4.1) over space.

The thermal distribuion is always isotropic, whereas the condensed particles are lo-

calised with an uncertainty of h3 in phase space. Hence their momentum distribu-

tion in an anisotropic potential is anisotropic, too. The variance σp,i of their momen-

tum distribution in direction i is inverse proportional to the harmonic oscillator length

aho,i =
√

~/(mωi) in that direction:

σp,i =
~√
2aho

=
√

~mωi/2.

If a gas is released from a non-spherical trap and allowed to expand freely by a sudden

switch-off of the confining potential, the way it expands is a clear indication of whether

it is a thermal gas or in a Bose-condensed state. After long expansion times, a thermal

5Writing the state of the system as a product of identical single particle states implies the assumption
that the state of a particle be independent of the states of all other particles.
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cloud will always obtain a spherical shape due to its isotropic momentum distribution

whereas a condensate expands anisotropically with a larger momentum in the direction

where it initially obeyed the stronger confinement. The aspect ratio of the condensate

is hence inverted during time of flight.

1.4.2 Finite systems

In experiments, the number of trapped atoms is limited. Very large traps contain up to

1010 atoms and condensates containing more than 107 atoms have been realised [77, 41].

Although these are large samples from an experimentalist’s point of view, the thermo-

dynamical limit is never truly reached. Compared to the case of the thermodynamical

limit, in systems with finite numbers of particles, the onset of degeneracy in the ground

state is smeared out and shifted. To obtain a correction for the transition temperature

we consider a cloud of atoms confined in a 3d harmonic potential. For simplicity, we

assume equal trap frequencies ω in all directions. Again, the total number of particles

is given by the sum over the populations nj of all states but the ground state (j > 1).

If the summation

N =
∞∑

j=1

zj

(
∞∑

n=0

e−jnβ~ω

)3

=
∞∑

j=1

zj

(1− e−jβ~ω)3
(1.18)
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1 Bose-Einstein condensation

is carried out numerically, one can find the value of z corresponding to a certain tem-

perature and number of atoms Ñ by iteratively varying z and comparing the result of

Eqn. (1.18) with Ñ . To obtain an approximation for the condensate fraction without

this numeric approach, the sum can be rewritten as N = 1/(1 − z) +
∑∞

j=1 zj(1/(1 −
e−jβ~ω)3 − 1) and expanded in powers of j. Keeping the two highest powers of kBT/~ω

results in6

N −N0 = g3(z)

(
kBT

~ω

)3

+
3

2
g2(z)

(
kBT

~ω

)2

. (1.19)

Ketterle and van Druten have calculated the transition temperature for finite systems

under this approximation in [78] using again saturation of the excited states as the

criterion. They get a corrected value for the critical temperature of

Tc = T 0
c + δTc = T 0

c

(
1− ζ(2)ζ(3)−2/3

2

1

N1/3

)
≈ (1− 0.7275

1

N1/3
)T 0

c . (1.20)

Figure 1.2 shows that equations (1.19) and (1.20) provide a good approximation of

the exact solution except for temperatures very close to the critical temperature (see

e.g. [79]).

In the case of non-isotropic trapping potentials, a correction factor of 1
3

∑
ωi/(

∏
ωi)

1/3 =
ω

ωho
has to be applied to the shift of the transition temperature δTc = Tc − T 0

c in

Eqn. (1.20):

Tc = (1− 0.7275
ω

ωho

1

N1/3
)T 0

c . (1.21)

This factor is always larger than 1, thus the transition temperature in a system with

a finite number of atoms is lower the more anisotropic the trap is. Figure 1.3 shows

the dependence of the shift of the critical temperature for different numbers of atoms.

Ketterle and van Druten also derive a finite-size correction to the condensate fraction

of Eqn. (1.11):

N0

N
= 1−

(
T

T 0
c

)3

− 3ωζ(2)

2ωho[ζ(3)]2/3

(
T

T 0
c

)2

N−1/3.

1.4.3 Weak interactions in a Bose-gas

For a real gas with interactions between the atoms, the calculation of the ground state

and thermodynamic properties becomes much more difficult because the Hamiltonian

now contains interaction terms which depend on the interatomic distances. Usually, this

problem is solved by treating it in a mean field approach (described in detail in [79]).

6As shown by Ketterle and van Druten [78], the same result can also be obtained by choosing the
approximation D(E) = 1/2((E/~ω)2 + 3(E/~ω)) for the density of states and proceeding like in
Section 1.3.
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1.4 Real gases and external potentials

In second quantisation, the Hamiltonian that describes a system of N interacting bosons

trapped in an external potential is given by

Ĥ =

∫
d~rΨ̂†(~r)

[
− ~2

2m
∇2 + Uext(~r)

]
Ψ̂(~r) +

1

2

∫
d~rd~r′Ψ̂†(~r)Ψ̂†(~r′)V (~r − ~r′)Ψ̂(~r)Ψ̂(~r′),

where Ψ̂†(~r) and Ψ̂(~r) are the bosonic creation and annihilation operators at position

~r, respectively. V (~r − ~r′) is the two-body interaction potential.

The Gross-Pitaevskii equation and Thomas-Fermi approximation

The equation of motion for the condensate wave function is derived by writing down

the Heisenberg equation i~ ∂
∂t

Ψ̂(~r, t) = [Ψ̂, Ĥ] with the Hamiltonian from Eqn. (1.4.3).

Without going into detail, this is the point where the symmetry properties of the Bosons7

come into play by the commutator relations of the bosonic field [Ψ̂(~r), Ψ̂†(~r′)] = δ(~r−~r′),

[Ψ̂(~r), Ψ̂(~r′)] = 0, and [Ψ̂†(~r), Ψ̂†(~r′)] = 0. This equation can usually not be solved ana-

lytically and numerical solutions are also not convenient. The problem can be simplified

using a mean field approach by replacing the field operator Ψ̂ with its expectation value

φ(~r) = 〈Ψ̂(~r, t)〉. In doing so one neglects fluctuations of the ground state wave function,

assuming that the physical properties do not change dramatically by annihilating a par-

ticle at one position and creating one at another. To justify this, most of the particles

have to be in the ground state, which means that this approximation can be good only

in systems far below the transition temperature. In such a fully condensed state, all

atoms are in the same single particle ground state where φ(~r) is given by the product

of the single particle states (compare Eqn. (1.4.1)) and condensates containing N or

N ± 1 particles are almost identical. The classical field φ(~r) is related to the condensate

density by n0(~r) = |φ(~r)|2 and often referred to as the condensate wave function.

The relevant interactions in ultra-cold gases are collisions which can be described by

a single parameter, the s-wave scattering length [80, 81, 82], independent of the exact

details of the interaction potentials. Therefore the interaction term V (~r − ~r′) can be

replaced by a δ-like contact potential

V (~r′ − ~r) = gδ(~r′ − ~r) =
4π~2a

m
δ(~r′ − ~r)

with a coupling constant g that is only related to the s-wave scattering length a and

mass m. The scattering length a characterises the range of the interaction. If this

range is much smaller than the average inter-particle distance (n|a|3 � 1), the total N-

particle interaction can be represented by the sum of all pair interactions and the above

7The corresponding commutator relation of Fermions would be [Ψ̂(~r), Ψ̂†(~r′)]+ = δ(~r − ~r′).
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Figure 1.4: Influence of s-wave interaction on the condensate density distribution in the trap,
calculated for 105 atoms in a trap with frequencies fx = 150Hz, fy = 900Hz and fz = 700Hz.
Dashed line: ideal gas, solid line: interacting gas with the chromium scattering length of
aCr = 102 a0. Note the different scales for the two distributions.

treatment is justified. If we use this contact potential and replace the field operator Ψ̂

by the expectation value, we get the time dependent Gross-Pitaevskii equation (GPE)

i~
∂

∂t
φ(~r, t) =

(
− ~2

2m
∇2 + Uext(~r) + gφ2(~r, t)

)
φ(~r, t) (1.22)

which describes the atomic motion in the external field and the molecular field generated

by all the other atoms in the condensate. In the stationary case where the only time

dependence is in the global phase φ(~r, t) = φ(~r)e−iϕt = φ(~r)e−
iµ
~ t and φ(~r) is a real

function, the time dependence can be separated out and one gets the time independent

stationary Gross-Pitaevskii equation which is similar to the Schrödinger equation but

additionally contains a nonlinear interaction term which depends on the local density

n(~r) = φ(~r)2: (
−~2∇2

2m
+ Uext(~r) + g|φ(~r)|2

)
φ(r) = µφ(~r). (1.23)

Although in the experiments discussed in this thesis, the gases are always dilute and

weakly interacting systems (n|a|3 � 1), interactions can contribute significantly to

the GPE. The average total interaction energy in Eqn. (1.23) is Eint = Ngñ, ñ being

the average density which is of the order of N/a3
ho. The interaction energy is thus

Eint ≈ N2ga−3
ho ∝ N2a/a3

ho. To have an intuitive feeling of the importance of the

interactions, this value can be compared to another important energy in the system: the

kinetic energy of the atoms. The average kinetic energy is on the order of the ground

state energy of the harmonic oscillator Ekin ≈ N~ω and thus proportional Ekin ∝ Na−2
ho .

A measure for the ratio of interaction energy to kinetic energy is then given by

Eint

Ekin

≈ N
a

aho
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1.4 Real gases and external potentials

In typical experiments, a/aho is on the order of 1/1000 which means that for atom num-

bers of 103 and more, interactions play an important role. Typical BEC experiments

realise condensates containing 100 to 107 atoms and the chromium condensates that will

be discussed in this work contained up to 105 atoms. Hence in most experimental situ-

ations and particularly our chromium condensates, interactions are not only important

but are the dominating contribution to the GPE.

In this case, the contribution of the quantum pressure (kinetic energy) term ~2∇2/2m ·√
n(~r) in the GPE (1.23) only plays a role in the very outer regions of the condensate

and can be neglected to find a direct solution for the condensate wave function and

density distribution: [
Uext(~r) + g|φ(~r)2

]
φ(~r) = µφ(~r)

with the solution

nTF (~r) = φTF (~r)2 = max(
1

g
(µ− Uext(~r), 0).

This is the so called Thomas-Fermi (TF) approximation. The relation between chemical

potential, number of particles, and trapping frequencies is fixed by the normalisation of

the density nTF (~r):

µ =
~ωho

2

(
15Na

aho

)2/5

.

This implies that the energy that is needed to add a particle to the system is the same

everywhere and is equal to the chemical potential, given solely by the sum of the external

potential and interaction energy µ = Uext(~r)+Eint = Uext(~r)+gn(~r). As a consequence,

the condensate has in this approximation a sharp boundary where the condensate density

vanishes (n = 0). This boundary is given by the condition Uext(~r) = µ which defines the

Thomas-Fermi radii of the cloud in terms of trap frequencies and the chemical potential

(Eqn. (1.4.3)):

Ri =

√
2µ

mω2
i

, i = x, y, z.

As becomes clear from Eqn. (1.4.3), the density profile in the Thomas-Fermi approxi-

mation recovers the inverse shape of the trapping potential with aspect ratios of

Ri

Rj

=
ωj

ωi

The density n0 in the center of the cloud where Uext ≡ 0 is given by the interaction

energy

n0 =
µ

g
.

The solution given by Eqn. (1.4.3) is a good approximation of the condensate density

when N |a|
aho

is a large number compared with 1 or in other words if Eint � Ekin in
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1 Bose-Einstein condensation

Eqn. (1.4.3). The total interaction energy stored in the system is E =
∫

gn(~r)2d3r =

2/7µN0. The influence of interaction on the density distribution of a Bose-Einstein

condensate is shown in Figure 1.4.3. The figure shows the density distributions of an

ideal gas and of an interacting gas with a scattering length of a = 102 a0 in a trap with

a frequency of 150Hz. The peak density of the interacting gas is more than a factor

of 100 lower than that of an ideal gas and the Thomas-Fermi radius of the interacting

gas is 16 times larger than the width of the ideal condensate. The distributions were

calculated for trap-parameters that are very close to the parameters of the trap where

finally a BEC of chromium was created.

Critical temperature of a trapped interacting gas

To calculate the influence of interactions on the ground state occupation and its tem-

perature dependence, the use of the Gross-Pitaevskii equation (1.23) is not sufficient. It

seems obvious, that due to the interaction between the condensed particles, in the case

of repulsive interaction, the peak density is reduced and one can expect the transition of

the critical pase space density npeakλ
3
dB > ζ(3/2) at lower temperatures compared with

a non interacting system. Interaction among atoms in the thermal cloud and between

thermal atoms and the condensate fraction leads also to a suppression of the thermal

density in the center and to occupation of higher energy states than without interaction.

Since the classical field Φ describes only the ground state atoms, such interaction effects

where thermal atoms are involved are not incorporated in this equation.

To estimate the influence of interaction on the critical temperature, one can use an ap-

proach similar to the one for trapped ideal gases in Section 1.4.1. The atoms are now

not only trapped in an external potential but additionally feel the interaction with the

self-consistent mean field such that they are moving in an effective potential [83]:

H =
−~2∇2

2m
+ Ueff (~r) =

−~2∇2

2m
+ Uext(~r) + 2gn(~r),

where n(~r) is the total density n = nc + nT . The thermal density can be calculated by

replacing Uext(~r) in Eqn. (1.4.1) by Ueff (~r)− µ:

nT (~r) =
1

λ3
dB

g3/2e
−

Ueff (~r)−µ

kBT .

Right at the critical temperature Tc, the total number of atoms has to fulfill the condition

N =

∫
nT (~r, µc, Tc)d

3r

where the critical chemical potential µc is the lowest energy eigenvalue of the Hamilto-

nian (1.4.3), similar to the considerations made in Sections 1.3 and 1.4.1. The leading
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1.4 Real gases and external potentials

contribution to the total energy in a large system stems from the interactions, thus it

can be approximated by

µ0
c = 2gn(0).

The central density n(0), which one would gain from a self consistent solution of the

Schrödinger equation using the Hamiltonian (1.4.3), can be approximated by the peak

density of the non interacting model (1.4.1). In [84, 79] Giorgini et al. have calculated

the shift δTc = Tc − T 0
c of the critical temperature in presence of interaction by an

expansion of the right-hand side of Eqn. (1.4.3) around µc = mu0
c and Tc = T 0

c :

δTc = −1.33
a

aho

N1/6Tc.

Including also finite size corrections (Eqn. (1.20)), the relative shift of the critical tem-

perature of an interacting trapped gas [84] is

δTc

T 0
c

≈ −0.728
ωho

ω
N−1/3 − 1.33

a

aho

N1/6.

For a simpler representation of the condensate fraction in presence of interactions, we

first define the following two parameters: The first one is the ratio between the chemical

potential (Eqn. (1.4.3)) of the interacting system calculated with the Thomas-Fermi

approximation at T = 0 and the critical temperature T 0
c of the non-interacting model:

ϑ =
µ

kBT 0
c

= α

(
N1/6 a

aho

)2/5

,

where additionally the numerical coefficient α = 152/5ζ(3)1/3/2 ' 1.57 has been intro-

duced. The second parameter is the reduced temperature t = T
T 0

c
, i.e. the ratio between

the temperature of the system and the critical temperature of the ideal gas. The tem-

perature dependence of the condensed number of atoms can be calculated by integrating

the distribution function (1.4.1) over the whole phase space:

NT =
1

(2π~)3

∫
1

exp[(p2/2m + Ueff (~r)− µ)/kBT ]− 1
d3rd3p,

where one neglects the kinetic term and takes the Thomas-Fermi approximation for the

effective mean field potential Ueff (~r) − µ ≡ |Uext(~r) − µ|. With the parameters ϑ and

t that we have introduced above, the condensate fraction of an interacting gas is given

by [79]

N0

N
= 1− t3 − ζ(2)

ζ(3)
ϑt2(1− t3)2/5.
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1.5 A free falling interacting condensate

The treatment of the expansion dynamics of an interacting condensate released from a

trap is not as simple as for an ideal gas that was discussed in Section 1.4.1. In that case,

we found that a condensate released from an anisotropic trap expands anisotropically.

The reason was an inhomogeneous momentum distribution due to the uncertainty prin-

ciple which revealed an anisotropy opposite to the anisotropy of the spatial distribution

in the trap. This argumentation can not be kept in the Thomas-Fermi approxima-

tion where the kinetic energy term is neglected. Instead, the expansion dynamics is

determined by the interaction energy where the problem in describing the expansion

theoretically is that after the trap is switched off, the interaction energy is converted

into kinetic energy. The kinetic term can therefore not be neglected anymore and the

Thomas-Fermi approximation is not suited to describe the expansion. Castin and Dum

have used a classical model to describe the evolution of the density distribution after

release from a trap [85] (compare also Section 8.1.3). They show that also in this case,

the condensate expansion is anisotropic.

Their approach is to use a classical gas as a model where the force given by the gradient

of the total energy

~F (~r, t) = −∇ (Uext(~r, t) + gncl(~r, t))

acts on every particle. In the equilibrium situation, just before switching off the trap

at t = 0, this force vanishes (~F (~r, 0) = 0) and the classical steady state density is equal

to the Thomas-Fermi solution of Eqn. (1.4.3): ncl(~r, 0) = nTF (~r, 0) = N0|ΦTF (~r)|2.
When the trap potential is switched off suddenly at t = 0, the first term in Eqn. (1.5)

vanishes and the atoms experience a force F (~r) = −∇(g nTF (~r, 0)) = ∇Uext(~r, 0),

accelerating them outwards8. Obviously, the initial acceleration is proportional to the

gradient of the confining potential in every direction. Hence, if the cloud was trapped in

an anisotropic potential, the expansion of a condensate is anisotropic like in the case of

a non-interacting gas. In the classical model used by Castin and Dum and in the case of

harmonic external potentials, the cloud experiences only a dilatation without changing

the shape of the distribution. Every infinitesimal volume element with initial position

ri(0) (where i = [x, y, z]) of the expanding condensate moves along a trajectory given

by the simple scaling law

ri(t) = λi(t)ri(0), i = [x, y, z]

8Here Uext(~r, 0) is the external potential just before the trap is switched off.
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1.6 Conclusion

with the global scaling parameters λi(t) which do not depend on the position. The

density distribution of the condensate at a time t is therefore given by

ncl(~r, 0) = max

 µ−
∑

i
mω2

i r2
i

2λ2
i (t)

gλx(t)λy(t)λz(t)
, 0

 ,

which has still the shape of an inverted parabola having widths of Wi = 2λi(t)Ri.

Newton’s law m~̈r(t) = ~F (~r(t), t) with ~F from Eqn. (1.5) leads to a set of coupled

differential equations for the scaling parameters λi(t):

λ̈i =
ωi(0)

2

λiλxλyλz

i = [x, y, z].

The starting conditions are λi(0) = 1 and λ̇i(0) = 0 since the gas is initially at rest. In

the case of an axially symmetric trap with ωx = ωy = ω⊥ and ωz = εω⊥, the scaling

parameters can be expanded in powers of ε and the set of differential equations (1.5) is

solvable. To zeroth order in ε one obtains

λ⊥(t) =
√

1 + ω2
⊥(0)t2,

and λz(t) = 1 and to second order in ε, the time dependence of the axial scaling param-

eter λz is

λz(t) = 1 + ε2

(
ω⊥(0)t arctan(ω⊥(0)t)− ln

√
1 + ω2

⊥(0)t2
)

+ O(ε4).

Where one sees that after some time (ω2t2 � 1), both directions tend to expand linearly.

After a certain time, the width W⊥ of the expanding condensate in radial direction will

overhaul the axial radius Wz, changing the aspect ratio of the condensate

W⊥(t)

Wz(t)
= ε

λ⊥(t)

λz(t)

from W⊥(t)/Wz(t) < 1 to W⊥(t)/Wz(t) > 1. Monitoring the aspect ratio in depen-

dence of the time of ballistic expansion is thus a powerful technique because unlike the

widths W⊥ and Wz, the aspect ratio does not depend on the number of atoms. In the

limit of large times (t � 1/ωbot), the aspect ratio approaches an asymptotic value of

W⊥(t)/Wz(t) = 2/πε.

1.6 Conclusion

In this chapter I have summarised the basic theoretical concepts of Bose-Einstein con-

densation that are used in the later discussion of the experimental findings in Chapters 7
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1 Bose-Einstein condensation

and 8. Starting from a descriptive approach to BEC, the theoretical description was ex-

tended from BEC in a free ideal gas to trapped gases and finite systems. Finally, it

was shown that interactions among atoms influence the properties of a Bose-Einstein

condensate significantly. Although BECs are dilute systems, the interaction energy has

turned out to be much larger than the kinetic energy if the number of atoms in the

condensate and the scattering length are large enough. This causes a dramatic change

of the density distribution of a trapped BEC compared to an ideal gas. Interactions

also manifest themselves in a shift of the critical temperature and modified dynamics of

expanding BECs.
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2 The apparatus

Abstract

All experiments that are discussed in this thesis have been carried out in an ultra

high vacuum steel chamber. An outline drawing of the main parts is depicted

in Figure 2.1. Large parts of the whole experimental setup like the cooling and

repumping lasers, the chamber, the magnetic trap and computer control facilities

have been developed and installed by the team of people working in our lab and have

already been discussed in several previous works [86, 87, 88, 89, 68, 90]. They shall

only be summarised in this chapter to give the reader the core information needed

to understand the experimental procedure. Within the framework of this thesis,

a frequency-doubled laser system for optical pumping was assembled (Section 2.5)

and a new setup of the optical dipole trap was implemented (Section 2.4).

2.1 Chamber

The setup of the vacuum apparatus [86, 87] consists of two chambers: the lower oven

chamber and the upper trapping chamber. A beam of chromium atoms is generated in

the lower chamber by a resistively heated high temperature effusion cell operating at

1600 oC. The pressure in this chamber is held on a 10−9 mbar level by a 75 l/s Ion getter

pump during operation of the effusion cell. An 80 cm long Zeeman slower connects the

oven to the upper science chamber which contains the magneto-optical, magnetic and

optical traps and where all experiments are performed. This chamber is also pumped by

a 75 l/s Ion getter pump and additionally by a thin layer of titanium as a getter material

on the inner walls of the chamber which can be refreshed by a titanium sublimator from

time to time. The pressure in the upper chamber stays beyond the range of our ion gauge

of <10−11 mbar all the time during operation of the apparatus. This low pressure in the

region of the trap is a very important prerequisite to keep the probability of collisions

between trapped atoms and molecules from the background gas low which allows for

long storage time of the trapped atoms.

25



2 The apparatus

Zeeman-Slower

beam

CCD

imaging system

cloverleaf

coils

cooling

beams

ODT

beams

optical

pumping
Zeeman

slower

Cr effusion cell

1600°C

probe

beam

y

x

y

z

I

II

optical

pumping

y

90°

(A)

(B)

Figure 2.1: Schematic setup of our experiment: a) whole apparatus, b) upper chamber seen
in the direction of the probe beam. The horizontal beam I of the dipole trap propagates in
z-direction and carries a power of up to 9.8 W. The vertical beam II defines our y-direction
and has a maximum power of 4.8 W.
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2.2 Magnetic trap

2.2 Magnetic trap

The magnetic trapping potential [87] is generated by a set of water-cooled coils in clover-

leaf configuration [51]. The currents through the coils can be ramped up to 300A to

generate a maximum axial curvature of 324G/cm2 and a maximum radial gradient of

201G/cm resulting in typical trap frequencies of 73Hz in axial and 800Hz in radial

direction at 1G offset field. All currents can be set and switched by our Labview based

computer control system [88, 89]. The symmetry axis of the magnetic trap is in hor-

izontal direction and defines the z-axis of the experimental setup. The vertical axis is

referred to as the y-axis and the third one as the x-axis. Three extra sets of coils are

wound around the body of the chamber to produce additional homogeneous magnetic

fields (∼2G/A per pair of coils) in all three directions. They are separately controllable

to compensate for external fields and the offset field produced by the magnetic trap as

well as to apply the quantisation fields necessary for imaging and optical pumping. Fast

switching of all magnetic fields is provided by the use of MOSFETs and – particularly

for large currents – IGBTs (insulated gate bipolar transistors) 1.

2.3 Cooling and repumping lasers

The main laser system of the apparatus produces the blue light at 425.6 nm that is needed

for optical cooling and imaging on the 7S3 ↔ 7P4 transition [68, 90]. Infrared light with a

wavelength of 851.1 nm from a Titanium:Sapphire laser2 pumped by an argon ion laser3

is frequency-doubled by a brewster cut Lithium Triborate (LBO) crystal in a monolithic

ring cavity. The system is stabilised by Doppler-free polarisation spectroscopy of the
7S3 ↔ 7P4 transition in a chromium hollow cathode lamp with a lock-in technique to

reduce noise. With a pumping laser power of 17W and an infrared power of 2W, we

are able to produce 800mW of blue light. In normal experimental operation, we limit

the blue power to ∼500mW because higher intensities lead to thermal lens effects in

the crystals of the acousto-optical modulators (AOM) used to adjust frequencies and

intensities.

Atoms can decay from the excited state 7P4 of the cooling transition to the metastable
5D4 and 5D3 states in which they are decoupled from the cooling light. To transfer the

atoms in 5D4 back to the ground state via the 7P3 state, we use a 5mW external cavity 4

diode laser system [92] resonant with the 5D4 ↔ 7P3 transition at 663.2 nm. A second

1Semikron
2Coherent, MBR110
3Coherent, Sabre R 25 TSM
4Littrow configuration [91]
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Figure 2.2: Outline of the optical dipole trap setup. Beam I is in horizontal (z-) direction,
Beam II is in vertical (y) direction.

laser system with identical setup is available for the 5D3 ↔ 7P3 transition at 654 nm but

is usually not used because the gain in atom number is small compared to the previous

one and not worth maintaining this system. These lasers are locked to the modes of a

Fabry-Perot resonator close to the transition wavelength using the Pound-Drever-Hall

sideband modulation scheme [93]. The cavity is made of Zerodur and Invar – which have

very low thermal expansion coefficients – and it has a free spectral range of 75MHz. A

small part of the light is used for locking and can be shifted by double-pass AOMs, such

that the output of the laser systems are on resonance with the atomic transitions. The

thermal drift of the cavity is about 2MHz/h.

All lasers can be switched on and off by mechanical shutters and the cooling and imaging

light can additionally be dimmed and tuned in a range of ±10Γ around resonance by

AOMs.
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2.4 Optical dipole trap

The laser that is used to generate the light for the optical trap is an Yb-fibre laser5 that

operates at a wavelength of 1064 nm and provides a maximum power of 20W. This laser

has a linewidth of ∆λ =1.65 nm, corresponding to a coherence length of λ2/∆λ =0.7mm

which prevents the formation of a standing wave in the optical trap. The optical setup

that is used to prepare two TEM00 mode beams and to focus them to the center of

the experimental chamber is depicted in Figure 2.2. The light coming from the laser is

collimated to a diameter of 4.7mm by the head of the fibre. The linear polarisation of

the light allows one to split it up into two beams with adjustable intensity ratios using

a polarising beam splitter and a λ/2-plate. Acousto-optical modulators in both optical

beam paths allow for a precise, independent control of both laser intensities and the

possibility of a rapid switch-off for time of flight imaging with a suppression of the laser

intensity of ∼45 dB. Two telescopes in each of the beam paths are used to expand the

beams before they are focussed by two f =500 nm lenses with 5 cm diameter. The main

beam is focussed to a waist of 29.5µm and shone in in horizontal direction through the

center of the cloverleaf coils of the magnetic trap. It usually carries optical powers of

9W to 12W. The second beam is shone in in vertical direction through a viewport from

below the chamber. It is focussed to 50µm and used to form a dimple in the potential

of the horizontal beam (see Chapter 4). Usual operation of this beam is at 4-5W. In

the center of the chamber, the two beams cross under an angle of 90 o. The two final

mirrors before the chamber are equipped with coatings that are highly reflective for the

1064 nm trap light and highly transmissive at 425 nm. In this way, the horizontal MOT

beam and the vertical pumping beam on the 7S3 → 7P3 transition can be shone in from

behind these two mirrors. The properties of the trap for chromium atoms are discussed

in Sections 4.4 and 4.5.

2.5 Laser system for optical pumping

Optical pumping (see Section 4.8) of the atoms from mJ = +3 to mJ = −3 on the
7S3 ↔ 7P3 transition requires light with a wavelength of 427.6 nm. To generate this

light, an additional laser system was set up in the framework of this thesis. It is based

on an injection locked master-slave [94] diode laser system operating at twice the blue

wavelength (855.2 nm). This infrared light is frequency doubled by a potassium-niobate

(KNbO3) crystal [95, 96] in a home made monolithic ring cavity [97]. A schematic

representation of the laser setup is found in Figure 2.3.

Once the laser is on resonance, the grating of the master diode is locked to the nearest

5 IPG PYL-20M-LP
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Figure 2.3: Schematic setup of the frequency doubled master-slave diode laser system used
to generate the 427.6 nm light for optical pumping.

lock point of the Pound-Drever error signal of the same reference cavity on which also

the repumping lasers for the metastable states (see Section 2.3) are locked. Due to the

free spectral range of 75MHz, this lock point is at most 37.5MHz (in the infrared light)

away from resonance. The slave laser is shifted back on resonance by a double-pass

acousto-optical modulator (AOM) between master and slave diode. With about 70mW

of infrared power coming from the slave diode, the system produces up to 6mW of blue

light at 427.6 nm. However, for the pumping only a few hundred microwatt are needed.

2.6 Computer Control

Two standard PC computer systems are used to control the apparatus and take and

save the camera images. Additionally, a third PC allows on-the-fly evaluation of the

images. The current setup uses 32 digital6 and 16 analog7 channels to control the most

important experimental parameters. The analog cards provide ±10V output and can

additionally be amplified, damped, and biased by a stack of isolated amplifiers to adapt

the output to the range required by the device. In this way one can make use of the

full 12Bit resolution of the D-A-converter for any kind of required input range. All

digital channels are isolated from the computer output by opto-couplers and provide

50Ω outputs with a maximum load of 50mA per channel. We are able to trigger

arbitrary sequences on all analog and digital channels at a rate of 10 kHz. A command

6National Instruments type PCI-6533 PCI card
7National Instruments type PCI-6713 PCI card
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interpreter [89] is capable of generating sequences of patterns which define the system

status for a certain period of time. The input to this interpreter can be generated very

comfortably by a graphical user interface8. The system allows the use of constants

and variables, provides the possibilities to programm loops of sequences, supports the

call of external modules, and is able to interpret standard mathematical operations

within the sequences. It is therefore possible to write very complex programs that

vary a system parameter in a certain way within a loop. It is also possible to program

time varying ramps for the analog channels which makes programming evaporation

ramps very comfortable. The relevant system parameters of a sequence are saved to a

file format that is readable by our Matlab9-based evaluation software and can thus be

easily incorporated in the data acquisition procedure. The LabView-patterns are saved

together with the images of one experimental run, such that it is always possible to

reconstruct or repeat the complete experiment.

8National Instruments Labview
9Mathworks
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Abstract

In all experiments that are described in this thesis, data acquisition is based on

only one very powerful measurement technique, namely the optical imaging of a

free falling cloud of atoms. With a proper model to describe the behaviour of the

cloud during ballistic flight and knowledge of the initial trap parameters, all ther-

modynamic quantities can be extracted from only these pictures. All experiments

follow the same basic cycle: 1) the preparation of a cold atomic cloud within the

dipole trap, either purely thermal at a temperature above Tc or below Tc with a

condensate fraction present, 2) the sudden release of the atoms from the trap and

3) subsequent mapping of the spatial density distribution after a time of free fall

(TOF) and expansion (typically between 1-20ms).

The methods that have been used to take and process images for this thesis will be

presented in this chapter. It starts with a general discussion on how to take and

process absorption images. This is followed by a description of the imaging system

used in our setup. Subsequently, I will discuss a scheme to improve the quality of

absorption images by reducing fringe patterns by mathematical means. Finally, the

way of extracting the interesting thermodynamic quantities out of the processed im-

ages will be explained. From a single image taken after a time t of free expansion,

one obtains the current density distribution nTOF (t). With the knowledge of the

trap parameters ωi, the temperature T of the cloud can be determined from a single

image. Even more precise measurements of T that do not require exact knowledge

of the trap parameters are obtained when analysing the dependence of nTOF (t) of

the density distribution on the expansion time in a series of images.

3.1 Absorption imaging

Throughout the experiments presented in this thesis, the method used to image the

atomic cloud is absorption imaging. In this technique, the cloud is illuminated with a

probe beam of resonant light in the direction of the imaging system (see Figure 3.1) and
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casts a shadow on the photosensitive chip of a CCD (charge coupled device) camera.

While passing in x-direction through a cloud of atoms with density distribution n(~r),

the intensity I(~r) of the probe beam with frequency ωp is reduced by

dI(~r) = −σ(ωp)n(~r)I(~r)dx,

where σ(ωp) is the photon scattering cross section. With the considerations made in

Appendix C, this cross section can be calculated from the power of light scattered by

an atom:

Psc = σ(ωp)I = ~ωpΓsc(ωp).

From the scattering rate Γsc in the low intensity limit1 and from Eqn. (3.1), one obtains

the light scattering cross section

σ(ωp) = Psc/I =
~ωpΓsc(ωp)

I
=

~ωpΓ

2Is

1

1 +
(

2δ
Γ

)2 .

Integration of Eqn. (3.1) along x yields:

I(~r) = I(x, y, z) = I0e
−σ(ωp)

R x
−∞ n(x′,y,z)dx′

which is equal to Beer’s law I(x) = I0e
−ρOx for constant density n where ρO is the optical

density. As a result, the intensity profile I(x, y, z) of the probe beam after crossing the

cloud contains information on the column density

n(y, z) =

∫ ∞

−∞
n(x′, y, z)dx′ =

1

σ(ωp)
ln

(
I0(x, y)

I(x, y)

)
In practice, three images are taken with the CCD camera after every experiment: first

the absorption image of the cast shadow of the cloud which delivers the intensity profile

Ia(y, z), and second a reference image Ir(y, z) of the probe beam intensity profile with-

out atoms present. For technical reasons, the exposure time of the camera chip is much

longer than the time for which the atoms are illuminated by the probe beam. Hence,

we finally take a background image Ib(y, z) where the probe beam is off to identify stray

light and electronic background noise in the camera picture. The first two images are

taken in quick succession (a delay of 350ms) to prevent large fluctuations of the probe

beam power and pointing between the images. After the first image is taken, resonant

light is shone on the atoms for 100ms to blow away the cloud making use of the light

pressure force (see Eqn. (C.7)). To prevent the cloud from being disturbed too much by

the momentum diffusion induced by resonant scattering during probe light exposure, we

chose the shortest exposure time that can be triggered with our setup which is 100µs.

1 In the low intensity limit s = I/Is � 1 and is therefore neglected in the denominator of Eqn. (C).
Is is the saturation intensity defined in Eqn. (C.5).
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Figure 3.1: Outline of the imaging system. FC: Fiber coupler; PBC: polarising beam splitter;
λ/2, λ/4: wave plates; M: mirror; L1, L2: lenses used to expand the probe beam; A1, A2
achromats f =300 mm; CCD: camera.

The density profile n(y, z) (Eqn. (3.1)) is then calculated from the three intensity dis-

tributions:

n(y, z) = − 1

σ(ωp)
ln

Ia(y, z)− Ib(y, z)

Ir(y, z)− Ib(y, z)
.

Imaging system

The experimental setup allows photographs of the cloud from two directions: from

above the chamber (y-direction) and from the side (x-direction, compare Fig. 3.1).

Both imaging systems use two lenses to map the cloud onto the chip of a progressive

scan CCD-camera2. Because of the limited optical access and the resulting small

numerical aperture in the vertical axis, images taken in this direction are of rather

poor quality. Therefore we use pictures taken in the vertical direction only to control

the proper alignment of the dipole trap and for similar qualitative purposes. The

setup of the imaging system in horizontal direction is outlined in Fig. 3.1. It mainly

consists of two identical 2 inch achromats with a focal length of 300mm and a measured

magnification of 1.0. The probe light is guided to the chamber via a polarisation

maintaining optical fibre. Fast switching is provided by a double-pass AOM in front

of the fibre coupler. After the fibre, the light passes a λ/2-wave plate and a polarising

beam splitter cube to adjust the intensity of the probe beam. A λ/4-wave plate provides

the possibility to generate σ+ or σ− light, depending on which Zeeman state has to

be detected. Sharp focussing of the imaging system is achieved by moving the first

achromat which is mounted on a translation stage as such that the object plane of the

2PCO Pixelfly QE
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system runs through the cloud.

A standard USAF-1951 test target3 was used to determine the spatial resolution of

the imaging system. The measured resolution of ∼ 8µm is just above the diffraction

limit of ∆x = 2.44λf/d = 6.2µm. Here f = 300mm is the focal length of the lenses,

d = 5 cm is the lens diameter and λ = 425 nm is the wavelength of the light used

for imaging. The resolution coincides with the pixel size of the CCD of 6.45µm in

both, horizontal and vertical direction on the image. Before an image is taken, a small

homogeneous magnetic field is applied along the direction of the probe beam to align

the atomic dipole moments. The direction of this field is the same for the detection of

both, mJ = +3 or mJ = −3 atoms in the ground state. Its magnitude corresponds to

a detuning of ±2.5Γ from the mJ = ±3 → mJ = ±4 transition, respectively. In both

cases, the σ-polarised light pumps the atoms to the extreme Zeeman-state mJ = ±3

from where they can only be excited to mJ = ±4, permitting to treat them as two-level

atoms.

Sharp focussing of the cloud is provided by minimising refraction effects, a method that

has been discussed by A. Marte in [98].

3.2 Reduction of fringe patterns in absorption images

Due to the many optical elements in the path of the probe beam, the presence of fringe

patterns in the images originating from smallest dust particles on some of these elements

is almost unavoidable. In principle, if all the setup was absolutely stable in a mechanical

sense, these fringes would be identical in both the absorption and reference image and

would thus vanish after application of Eqn. (3.1). Small fluctuations of the position of

the scattering dust particles however, even on the order of a fraction of a micron with

respect to the camera chip, lead to a phase shift between the patterns in absorption

and reference images. A position change of half the wavelength of the imaging light

already leads to the maximum shift of π of the pattern phase and a full visibility in

the processed image. As a result, the final processed image is distorted by numerous

ring patterns which reduce the quality of fits to the density distribution as depicted

schematically in Fig. 3.2. This particularly matters for small numbers of atoms or

long times of flight, where the optical density has already severely dropped and comes

close to the typical order of depth of these fringes of about 5 − 10% of the probe light

intensity. The origin of these fluctuations could be mechanical vibrations transmitted to

the chamber or the optical setup when switching on the quantisation field for imaging.

A running cooling fan of the camera would also be one possible source for vibrations. In

3Newport RES-1
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3.2 Reduction of fringe patterns in absorption images

scatteringscattering
centercenter

Figure 3.2: Left figure: a dust particle in the plain wave of the probe beam causes an
interference pattern on the CCD chip. Right two figures: Remaining patterns on a 4mm2

area of the CCD chip when Eqn. (3.1) is applied to images where the particle has moved by
50 nm (left pattern) and 200 nm (right pattern) towards the CCD chip between the images,
respectively. The calculation was performed for a distance of 30 cm between the scattering
particle and the chip. The colour bars measure the relative amplitude of the pattern compared
to full visibility, i.e. 180◦ phase shift between image and reference image.

our setup however, these mechanical sources of noise could not be eliminated completely.

To overcome this drawback in a different way, we have implemented a method in our

image evaluation software that has been developed by the group of Klaus Sengstock at

Hamburg University [99] and presented on the annual meeting of the DPG (German

Physical Society) 2005. Since this is not a standard method of image manipulation and

has to my knowledge not been published in written form yet, I will discuss it in more

detail.

The basic concept of this technique is to not use only one reference picture which

contains a fringe pattern with an arbitrary phase with respect to the absorption image.

Instead, the reference is constructed from an orthogonal set of reference images by

projecting the absorption image onto their basis. In the ideal case, the basis contains

a full set of orthogonal patterns, such that any pattern in the absorption image can be

reproduced through the projection by linear combinations of the basis vectors and the

fringes can be completely removed from the processed image.

To generate a suitable set of base vectors, first a number N of reference images in the

form of matrices R1..RN is chosen which have been taken within a not too long interval

before or after the absorption image4. The reference basis is generated from these images

using the Schmidt orthogonalisation method. The N vectors B1..BN which span the new

basis are calculated as follows:

4Pictures which have been taken a few minutes (and ideally not longer than half an hour) before or
after the absorption image are best suited. If the delay is longer, the result is worse and a new set
has to be generated.
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3 Measurement procedure

Figure 3.3: Three examples of orthogonal base vectors in a set of 30 reference images. The
1st, 2nd and 6th elements of the set are shown (left to right). The phase shift between the
fringes in the right two images is clearly visible (arrows).

• One of the reference pictures is chosen as the first base vector and normalised to

unity length

B1 =
R1√

R1 •R1

.

where we define the scalar product of two pictures with nx and ny pixels in x and

y direction, similar to the scalar product of vectors

U •V =
nx∑

x=1

ny∑
y=1

U [x, y]V [x, y]

• The further base vectors have to be constructed by taking the reference pictures

one after another, eliminating all information from the image that can already be

reproduced by the existing basis and normalising the remaining information M.

Mi = Ri −
i−1∑
j=1

Ri •Bj

Bi =
Mi√

Mi •Mi

.

• The most effective result is obtained by taking a set of reference images which

is larger than the desired number of base vectors and selecting the best suited

images. Assume the basis already contains k vectors. The one image R which is

worst represented in the already existing basis, i.e. the one which carries the most

new information, is best suited to generate the next basis vector Bk+1.

A measure for the information content of a basis vector is its length before nor-

malisation or the total count of the squares of all of its pixel values. Figure 3.5

displays the information content for a set of 40 vectors. Obviously, the larger the

set already is, the less additional information comes with a new vector. One has

to find a trade-off between quality and computation time to decide when the set
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3.2 Reduction of fringe patterns in absorption images
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Figure 3.5: Information contend of an or-
thogonal set of 40 base vectors measured by
the sum over the squares of all pixel values.

of basis vectors is large enough.

The computation time for the projection of the absorption images grows linearly

with the size of the basis, whereas it grows quadratically for the generation of the

basis itself because of the above-mentioned preselection. For every new basis vec-

tor, all remaining pictures have to be projected into the existing basis first to find

the best suited image. It has turned out that efficient fringe reduction is achieved

with 20 to 30 basis vectors, whereas larger sets do not significantly improve the

images anymore.

The images shown in Figure 3.3 are typical basis vectors and display B1, B2 and

B6 of an orthogonal set. In B2 and B6 the phase shift of one prominent pattern

(marked with arrows) between the two images can be seen. B1 additionally con-

tains the enveloping profile of the probe beam which is not contained in the other

images because it is basically constant. If the basis set has reached the desired

size, the generation process is stopped and the remaining reference images which

with certainty carry less information than the last basis image are withdrawn.

To process an absorption image, the orthogonal basis is now used to generate a reference

image. Before projecting the absorption image on every base image, the border of the

images and the central area, which contains the cloud, are masked. The latter contains

information that can not be displayed by the basis, whereas the outermost regions are

almost dark and governed rather by stray light or background noise than by the probe

beam, and therefore should not be taken into account, either. In practice this is done

by multiplying the image in the following way with a matrix M which is filled with ones
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3 Measurement procedure

Figure 3.6: Comparison of a typical TOF image of a thermal cloud without (left image)
and with (right image) projection into a basis of reference images. The basis that was used to
process the right image contained 30 orthogonal vectors. Almost all fringes could be eliminated
from the processed image and the improved quality is obvious.

except for the masked regions where all elements are zeros:

Ã = M�A =

 M1,1A1,1 M2,1A2,1 ...

M1,2A1,2 M2,2A2,2 ...

... ... ....


Here we have defined the element wise product of two images A�B. A typical absorption

image, already multiplied with the mask M, is shown in Fig. 3.4. White areas are covered

by the mask M.

The scalar product of the absorbtion images with the basis delivers a coefficient for every

base vector:

cj = Ã •Bj = (M�A) •Bj.

The reference image is then constructed by adding up the basis vectors after multiplying

each with its coefficient cj:

R̃ =
N∑

j=1

cjBj

This reference is finally used to gain the density profile of the cloud according to

Eqn. (3.1). The result of a projection of a typical time of flight picture of 300000

thermal atoms onto a basis set of 30 images and the same image processed with only

one reference are compared in Fig. 3.6.

40



3.3 Extracting data from images

3.3 Extracting data from images

All measurements with condensed and non-condensed clouds in this thesis rely on the

correct determination of the density distribution of the atoms obtained from absorption

images. Several aspects have to be considered, when evaluating these images. First, in

general, all images produced in the above way measure the column density of the cloud,

i.e. the integral of the density distribution along the probe beam direction. In our

trap, this direction is always referred to as the x-axis. Only if one uses a tomographic

technique that is capable of recording slice by slice [100] the distribution along the x-

axis, would one directly gain knowledge of the 3D density distribution. With the usual

absorption imaging technique in our experiment however, information about the full

3D distribution and in particular the distribution along the imaging axis can only be

recovered by applying an adequate theoretical description of the distribution function

and the trapping potential to fit the 2D image. Depending on the regime in which the

cloud is prepared (far above, well below or close to Tc), the function used to fit the

image must hence describe either the thermal density distribution, the distribution of

the condensate fraction, or, in the intermediate regime, both fractions. In either case,

their projection on the CCD chip plane has to be considered.

Because the extension of the trapped cloud is close to or even below the resolution of our

imaging system, all images are taken after some time of flight. Such an image monitors

not only the initial distribution of atoms in space, but, as the time of flight gets longer,

it is more and more determined by the momentum distribution. Furthermore, in the

Thomas-Fermi limit (Eqn. (1.4.3)), where the kinetic energy of the atoms is negligible

compared to the external potential and interaction energy (ng � ~ω), the largest energy

in the system after the trap is switched off stems from interactions.

If the time of flight is very long compared to the inverse trapping frequency (t �
1/ω), the initial spatial density distribution becomes negligible and the camera image

describes the distribution of the thermal atoms in momentum space. This is of particular

advantage for thermometry because in this case inaccuracies in the determination of the

trap frequencies become negligible and the sources of errors are reduced to exact timing

and determination of the widths of the cloud.

3.3.1 Determination of temperature and number of atoms

The total number of atoms is determined by fitting a distribution function to the den-

sity profile on the image and integrating this function over the whole image plane. The

temperature of the cloud is determined from the width of the respective distribution.

Depending on whether the cloud is purely thermal, partly condensed or a pure conden-

sate, the proper distribution functions have to be used for the fits.
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3 Measurement procedure

Thermal clouds far above Tc

The in-trap density distribution of a thermal cloud far from the critical temperature,

where Bose enhancement is negligible, can be approximated by a Boltzmann distribution

which has the shape of a Gaussian:

nT (x, y, z) = n̂T e−U(x,y,z)/kBT = n̂T e
− x2

2σ2
x
− y2

2σ2
y
− z2

2σ2
z .

n̂T being the peak density of the thermal cloud, and U(x, y, z) = 1
2
m(ωxx

2+ωyy
2+ωzz

2)

the harmonic trapping potential. σx, σy and σz are the standard deviations

σi(0) =

√
kBT

mω2
i

, i = [x, y, z]

of the Gaussian in x, y and z direction, respectively. The velocity distribution nv(|~v|)
is isotropic and given by a Boltzmann distribution with a standard deviation of σv =√

kBT/m. If interaction between the particles can be neglected, which is usually the

case in thermal clouds, the velocity distribution is kept constant also after releasing the

cloud from the trap. The density distribution of the cloud after time t of free flight is

therefore given by the convolution n(~r, t) =
∫

n(~r − ~vt, t = 0)nv(|~v|)d~v. The resulting

Gaussian has a standard deviation [101] of

σi(t) =

√
σi(0)2 +

kBT

m
t2 =

√
kBT

mω2
i

+
kBT

m
t2, i = x, y, z

The column density distribution Eqn. (3.1) recorded on the camera chip is given by

ñT (y, z) = n̂T

√
2πσxe

− (y−by)2

2σ2
y

− (z−bz)2

2σ2
z

which is used to fit the image. Free parameters in these fits are the peak column densitŷ̃nT =
√

2πn̂T σx, the position ( ŷ, ẑ ) of the center of mass, and the standard deviations

σy and σz. The number of atoms in the thermal cloud is

NT =

+∞∫
−∞

nT (x, y, z)dV = (2π)3/2n̂T σxσyσz.

Solving equation (3.3.1), one obtains the temperature of the cloud:

T =
m

kB

σi(t)
2

1
ω2

i
+ t2

and the initial size

σi(0) =

√
1

1 + ω2
i t

2
σi(t)

which can be used in turn to calculate the initial peak density according to Eqn. (3.3.1)
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Figure 3.7: 2D projections of Bose distribution functions g2 for 100000 atoms in a spherical
potential with a trap frequency of 1 kHz at temperatures of 2Tc, 1Tc and 0.5Tc from left to
right. The distribution functions have been generated using numerical solutions of Eqn. (1.18)
in Eqn. (3.3.1). Black solid lines are the g2 functions, dotted red lines are Gaussian fits to
obtain the temperatures. Grey shaded regions have been excluded from the data for the
Gaussian fit. Real temperatures T and the results of the Gaussian fits Tfit are displayed in
units of the critical temperature in every graph. As can be seen from these graphs, a Gaussian
fit is not able to reproduce the distribution anymore if the system temperature is close to Tc.
It is therefore not suited to determine the number of atoms with an ample accuracy whereas
the fitted temperatures are in good agreement with the real values.

Systems close to Tc and partly condensed clouds

In clouds still above but close to the critical temperature, the difference between the

Maxwell-Boltzmann and Bose-Einstein distribution starts to be important. Figure 3.7

displays numerically generated column density distributions of thermal atoms in the trap

at 0.5Tc, 1Tc and 2Tc. It becomes clear that, at temperatures close to Tc, the enhanced

occupation probability of lower lying states in the harmonic trapping potential has to

be regarded when fitting the density distribution. To determine the temperature and

number of atoms in the thermal cloud and the condensate phase, adequate fit functions

have to be found. It has been shown by Bagnato et al. in [76] that in the ideal gas

limit, at temperatures much higher than the level spacing kBT � ~ω, a semiclassical

approach can be used to approximate the spatial distribution resulting in:

n(~r) =
1

λ3
dB

∞∑
j=1

e
j(µ−U(~r))

kBT

j3/2
=

1

λ3
dB

g3/2

(
e

(µ−U(~r))
kBT

)
.

Integration along the x-direction yields

nT (y, z) = n̂T

√
πx0g2

(
e
− y2

y2
0
− z2

z2
0

)
.

Since the cloud usually contains a sufficiently large number of atoms (compare 1.4.3) in

all experiments discussed here, the Thomas-Fermi distribution (1.4.3) is used to fit the
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3 Measurement procedure

condensate fraction whose column density reads

nc(y, z) = max

[√
2mµ3

3π~2aωx

(
1−

mω2
yy

2

2µ
− mω2

zz
2

2µ

)
, 0

]
(3.1)

= max

[
4

3
n̂cRx

(
1− y2

R2
y

− z2

R2
z

)3/2

, 0

]
.

The free parameters in equations (3.3.1) and (3.1) are the peak column densities ̂̃nT =

n̂T

√
πx0 and ̂̃nc = 4

3
n̂cx0,c, the 1/e widths y0 and z0 of the thermal cloud, and the

Thomas-Fermi radii Ry and Rz of the condensate. The center of mass positions can be

incorporated in the same manner as in equation (3.3.1).

Because of the superior accuracy compared to 1D fits, a full 2D fit of the functions (3.3.1),

(3.1) or (3.3.1) is carried out to an area of the image which is approximately four times

larger than the size of the cloud. To gain appropriate starting parameters for these 2D

fits, we first fit 1-D Gaussians in two directions through the center of the cloud.

At temperatures far above Tc, Eqn. (3.3.1) is used to determine the temperature as well

as the number of atoms.

Close to Tc and for partly condensed systems, the number of thermal atoms is determined

from a fit of Eqn. (3.3.1) to the data. The g2 function that is used in this equation

assumes a chemical potential of µ = 0 (i.e. a fugacity z of 1). Besides the fact that this

is not true for partly condensed clouds, Eqn. (3.3.1) does neither include interaction

of the thermal cloud with itself nor with the much denser condensate fraction in the

center of the trap. Hence, using the width obtained from this fit to determine the

temperature with Eqn. (3.3.1) would introduce a systematic error of up to 20% in

the temperature [102]. In order to circumvent this error, we use first Eqn. (3.3.1) to

measure the temperature, restricting the fit to the far outer wings of the thermal cloud.

The high energetic atoms in this part of the trap spend most of their time in regions

of low density where interaction is weak. In these high energy levels of the trapping

potential, the chemical potential is much smaller than the kinetic energy. Hence Bose

enhancement is low, and a Maxwell-Boltzmann distribution characterises the atomic

distribution well [50]. The number of atoms obtained from the g2 fit still contains a

systematic error due to the above mentioned neglect of interaction.

Because the polylogarithm g2 cannot be represented in a closed form, the sum in

Eqn. (1.8) has to be carried out until the infinite sum is represented with sufficient

accuracy. Figure 3.8 shows that when the summation index runs from one to more

than ten, the distribution is well approximated. In our fitting routine, the summation

is carried out up to j = 20. The resulting best fit is subsequently subtracted from the

absorption image and we fit Eqn. (3.1) to the remaining part of the image to determine

the size of the condensate.
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Figure 3.8: Bose distribution functions approximated by carrying out the summation (1.8)
up to different limits of the summation index. We use jmax = 20 to evaluate our data.

Almost pure condensates far below Tc

Far below the BEC transition, the thermal fraction becomes very small and the extension

of the cloud is comparable to the size of the condensate. The two fractions can not be

clearly distinguished anymore, mainly because the optical density of the condensate

becomes very large in contrast to the thermal fraction whose optical density becomes

comparable to the noise on the image. In this regime, the fit on the thermal cloud does

not yield reliable quantities anymore and is skipped in the fitting routine. A small error

is introduced in the fit of the condensate fraction by this simplification, but since the

thermal cloud has a much lower density, this error is always negligible. In this very low

temperature regime, we speak of almost pure condensates.

3.4 Time of flight series

Taking a whole series of pictures of clouds (prepared in the same way and released from

the same trapping potential but after different times of ballistic expansion), offers a much

more accurate way of measuring temperatures than using Eqn. (3.3.1) and the cloud size

obtained from only one image. Eqn. (3.3.1) indicates that if the time of flight is larger

than the inverse trapping frequency ttof > 1/ω, the trap frequency and therefore the

initial spatial distribution of the atoms become less and less important. For very long

times, the 1/ω term can be completely neglected and the cloud expands linearly. Hence,
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Figure 3.9: Left: TOF series of 1/
√

e-widths σy of a thermal cloud of ∼ 1.7 · 105 atoms
released from the crossed trap with 930mW and 4.5W laser power in the horizontal and
vertical beam, respectively. Solid line: fit of Eqn. (3.3.1) to the data. The temperature
obtained from this fit is 1.02 µK. Right: Temperatures obtained from Eqn. (3.3.1) for every
single image of the same series as in the left figure. The solid line displays the 1.02 µK obtained
from the fit on the left. For times of flight of more than 2.2ms, the single-image temperatures
are in very good agreement with the one from the series fit.

images of thermal clouds5 taken after long expansion times reflect the initial momentum

distribution, whereas the initial spatial distribution is unimportant. A fit of Eqn. (3.3.1)

to an experimentally obtained series of data as shown in Fig. 3.9 therefore delivers a

very precise measure of the temperature. In particular, the obtained temperature is

independent of the type of model – Boltzmann or Bose statistics – that is used for the

thermal distribution of atoms because both reveal the same linear expansion dynamics

if interaction is neglected. In contrast to BECs, this is justified since the kinetic energy

of thermal clouds is usually much larger than the interaction energy (Ekin � Eint).

5This is only true in the limit of weak interaction. If – like in an expanding condensate or very dense
thermal clouds – interaction between atoms is not negligible, also the interaction energy influences
the expansion. In a large condensate in the Thomas-Fermi limit, the expansion dynamics is even
governed by the interatomic interaction whereas the momentum distribution can be neglected.
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4 Chromium atoms in an optical dipole trap

Abstract

One of the crucial factors that made Bose-Einstein condensation of chromium

possible is the step from a magnetic to a purely optical trapping potential. This

technique allows one to trap atoms in the energetically lowest Zeeman state where

dipolar relaxation is suppressed. The optical trap is loaded by superimposing the

optical trap potential with the magnetic trap and cooling the trapped sample in this

hybrid optical/magnetic trap to temperatures below the depth of the optical trap

using radiofrequency (rf) evaporation. A large part of the sample is transferred to

the pure optical trap by ramping down the magnetic trapping potential adiabatically

subsequent to rf cooling. In this way, the atoms that were magnetically trapped

before, slowly expand into the optical trapping potential.

Optical dipole traps make use of the conservative dipole force resulting from the

dispersive interaction of the electric dipole moments of atoms that are induced by

a far detuned light field with the field itself. The minima of the potentials arising

from this interaction can be used to confine atoms in space. The absorptive part of

the atom-light interaction in the form of scattering of photons from the light field

represents a dissipative process which limits the lifetime of a trapped atomic sample

in a dipole trap. It is also the part of the interaction that is used in optical cooling

techniques like Zeeman slowers, magneto-optical traps (MOT) and Doppler-cooling

which are described in [103].

Sections 4.1 to 4.3 discuss the general concept and physical basics of optical trapping.

I concentrate on the aspects that are important for the experimental realisation of such

a trap. For a quantum mechanical description of the interaction of atoms with light

fields, I refer the reader to Appendix C of this thesis, where a summary of the standard

textbook approach in the dressed atom picture can be found. A detailed discussion is

found in e.g. [104, 105].

The experimental setup, the realisation of a dipole trap for chromium atoms and a

discussion of the characteristic properties are presented in Sections 4.4 to 4.5. The

experimental determination of the trapping parameters are presented in Section 4.6.
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4 Chromium atoms in an optical dipole trap

Section 4.7 treats the preparation of a pre-cooled sample of chromium atoms in the

magnetic trap and the transfer to the optical trap. Finally, the transfer of the sample

to the high field seeking state mJ = −3 is discussed in Section 4.8. This crucial step in

the preparation scheme leads to a drastic increase of the lifetime of the trapped cloud

and makes efficient evaporative cooling in the dipole trap possible at all.

4.1 The physics of optical trapping

A classical description of the dipole force has been discussed by Grimm, Weidemüller

and Ovchinnikov in [106, 107] where they present a detailed review of theoretical and

experimental aspects of optical traps. They also give some useful approximations which

are derived using the Lorentz model for an atom in the laser field of an optical trap. In

this model, the atom is considered as a classical oscillator where the electron is elastically

bound to the nucleus with a characteristic eigenfrequency ω0. An oscillating electric field

with polarisation ~ε, frequency ωL and amplitude E(~r)

~E(~r, t) = ~εE(~r)eiωt + ~εE∗(~r)e−iωt

displaces the electron by a distance r which results in an induced dipole moment ~p =

e~r = α~E where α(ω) is the complex polarisability. The interaction energy of the induced

dipole moment with the laser field is determined by polarisability α(ω) of the atom. Two

parts contribute to the interaction of the induced electric dipole moment with the field:

• The in-phase component of the dipole oscillation i.e. the real part of the polaris-

ability is responsible for the conservative dipole potential:

Udip = −1

2
〈~p(~r, t) ~E(~r, t)〉 = − 1

2ε0c
<(α)I(~r). (4.1)

Here the brackets 〈...〉 denote a time average over fast oscillations. I(~r) =

2ε0c|E(~r)|2 is the intensity of the field. The frequency difference between the

driving field and the resonance frequency of the electron results in a frequency

dependent amplitude of the oscillation and a phase shift between driving field

and oscillating dipole. The dispersive character of the interaction stems from this

frequency dependence.

• The imaginary part of the polarisability is related to the out-of-phase part of the

oscillation. It is responsible for absorption of power from the light field by the

oscillator which the oscillator re-emits as dipole radiation. The absorbed power

Pabs = 〈~̇p ~E〉 can be considered as repeated absorption – spontaneous emission

processes of photons with energy ~ω at a scattering rate

Γsc(~r) =
Pabs

~ω
=

1

~ε0c
=(α)I(~r). (4.2)
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4.1 The physics of optical trapping

4.1.1 The Lorentz model

To derive an expression for the polarisability, we make use of the Lorentz model, where

an electron with mass me and charge −e is elastically bound to the nucleus of an atom

with a characteristic eigenfrequency ω0 equal to the frequency of the optical transition.

Energy loss due to the radiation emitted by the accelerated charge of the electron is

taken into account by introducing a damping rate Γ. The solution of the equation of

motion ẍ + Γẋ + ω2
0 = −eE(t)/me of the driven electron is then

x(t) =
e

me

1

(−ω0
2 + iΓ ω + ω2)

E(t) (4.3)

and the polarisability resulting from this model is

α(ω) =
e2

me

1

ω2
0 − ω2 − iωΓ

. (4.4)

The average total radiation power emitted by the oscillating charge is

Prad =
e2ω4x2

0

12πε0c3
(4.5)

where x0 is the amplitude of the oscillation and ε0 is the dielectric constant. If the

emitted power is not supplied to the oscillator from an external source, it has to be

compensated for by a change of the energy Eosc = Ekin+Epot = 1
2
meω

2x2
0 of the oscillator

Prad = − d
dt

Eosc, i.e. the amplitude x0 decays with time. The damping constant of the

oscillation is therefore defined by the relative change of the oscillator energy

Γ(ω) = −dEosc/dt

Eosc

=
Prad

Eosc

=
e2ω2

6πε0mec3
. (4.6)

Inserting this result in Eqn. (4.4), we get an expression for the polarisability:

α(ω) = 6πε0c
3 Γ0/ω

2
0

ω2
0 − ω2 − i(ω3/ω2

0)Γ0

, Γ0 =
(ω0

ω

)2

Γ(ω) (4.7)

where Γ0 is the damping rate on resonance and corresponds to the decay rate of the

excited state.

In a semiclassical approach, where the atom is considered as a two-level quantum system

but the light field is still classical, the classical damping in Eqn. (4.7) has to be replaced

by the dipole matrix element

Γ0 =
ω2

0

3πε0~c3

∣∣∣〈 e |~p · ~̂e| g 〉∣∣∣2 , (4.8)

where | g 〉 is the ground state and | e 〉 is the excited state of the atom. The classical

approach of Eqn. (4.7) yields the same results as a full quantum-mechanical treatment
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4 Chromium atoms in an optical dipole trap

would if saturation effects of the transition can be neglected. Saturation, i.e. a sig-

nificant occupation of the excited state, is only incorporated in a quantum mechanical

calculation.

The regime, however, that is interesting for dipole traps, is the case of far detuned laser

fields where the scattering rate of photons is much smaller than the spontaneous decay

rate Γsc << Γ. This is equivalent to a negligible population of the excited state. In

this situation, the expressions for the polarisability and dipole-potential derived from

equations (4.7) and (4.1) are very good approximations. The decay rates Γ0 and transi-

tion frequencies ω0 of the transitions that have to be considered are best obtained from

spectroscopic data and can for example be found in the NIST database [108].

The following expressions for the dipole potential and scattering rate, which have been

used in the framework of this thesis to calculate the properties of the dipole trap, are

obtained by substituting the above results (4.8) or (4.6) in (4.7):

Udip(~r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(~r)

Γsc(~r) =
3πc2

2~ω3
0

(
ω

ω0

)3(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(~r)

These equations give good approximations under most realistic conditions of dipole traps

where the detuning is large and saturation effects can be neglected.

If the detuning δ ≡ ω − ω0 of the light from resonance is not too large (|δ| � ω0), the

counter rotating term Γ
ω0+ω

in Eqn. (4.1.1) can be neglected and ω/ω0 ≈ 1. This is the

so called rotating-wave approximation where expressions (4.1.1) and (4.1.1) simplify to

Udip(~r) =
3πc2

2ω3
0

(
Γ

δ

)
I(~r) (4.9)

and

Γsc(~r) =
3πc2

2~ω3
0

(
Γ

δ

)2

I(~r). (4.10)

Traps operating in this regime are often called far off resonant traps (FORT). At light

frequencies below the atomic transition (δ < 0), the potential energy Udip of an atom in

the light-field is negative and the atom is attracted towards regions of higher intensity

(red detuned trap). If the detuning is positive, the atoms are repelled from the light-field.

The relation between scattering rate and dipole potential in FORT traps is very simple,

Γsc =
Γ

~δ
Udip, (4.11)

showing that in a trap with the same depth, the scattering rate can be reduced by

increasing the detuning. Therefore, optical dipole traps are preferably operated rather

at large intensities than small detunings. In practice, the available power at a desired
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Figure 4.1: Shape of the beam and trapping potential for chromium atoms assuming a waist
of 30 µm, a power of 9.5 W and a wavelength of 1060 nm. Trap depth measured in units of kB.

wavelength and the costs of high power lasers as well as considerations like ease of use

of the system and availability and costs of adequate optics force the experimentalist to

compromise.

4.2 Trap geometry

The profile I(~r) of a Gaussian beam is given by

I(r, z) = I0
1

1 +
(

z
zR

)2 exp

(
−2r2

w2
0

1

1 + (z/zR)2

)

where r and z are the radial and longitudinal position with respect to the focus of the

beam. The intensity drops within the distance w0 (the minimum beam waist of the

beam in the focus) from the optical axis from its maximum value I0 in the focus to I0/e
2

which leads to a Gaussian shape. The intensity dependence along the symmetry axis z

is given by the Rayleigh range zR which is fully defined by the waist and the wavelength

λL of the laser:

zR =
πw2

0

λL

.

The beam waist at a position z along the direction of propagation is

w(z) = w0

√
1 +

(
z

zR

)2

.
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4 Chromium atoms in an optical dipole trap

According to Eqn. (4.1.1), the dipole potential Udip is directly proportional to the light

field intensity:

Udip(r, z) = U0
1

1 +
(

z
zR

)2 exp

(
−2r2

w2
0

1

1 + (z/zR)2

)
,

where the trap depth U0 can be calculated using I0 in Eqn. (4.9). The high intensity

region in the focus of the beam is an attractive center for an atom if the laser field is

detuned to the red with respect to its transition. If the attractive potential is steeper in

all directions than any inhomogeneity of other external fields like magnetic field gradients

or - most prominent - the earth gravitational field, the potential is suited to trap at least

one atom 1 if its kinetic energy is low enough.

Given a laser power P and a waist w0, the maximum intensity is

I0 =
2P

πw2
0

.

Figure 4.1 shows the beam profile and corresponding potential calculated with the

above formulae for one of the trapping beams of our experimental setup. If several laser

beams are used to form the trapping potential, their contributions have to be summed

according to the superposition principle to calculate the total trapping potential.

4.2.1 Harmonic approximation

In the case of atoms with a thermal energy kBT much smaller than the potential depth

U0, most of the atoms will always stay in the central region of the potential and the

extension of the cloud is much smaller than the waist in radial direction and also much

smaller than the Rayleigh range in axial direction. In this region, the optical potential

in Eqn. (4.2) is best approximated by a three dimensional harmonic oscillator with an

axial symmetry along the optical axis. According to equations (4.2), (4.2) and (4.9), the

harmonic approximation of the trapping potential reads

Utrap(r, z) = −U0

(
1− 2

(
r

w0

)2

−
(

z

zR

)2
)

.

With the harmonic oscillation frequencies

ωr =

√
4U0

mw2
0

1Repulsive interaction between atoms can prevent the trap from confining more than one atom [15].
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4.3 Heating by photon scattering

in radial and

ωz =

√
2U0

mz2
R

axial direction, given by the beam waist, the wavelength and the laser power, this can

be written

Utrap(r, z) = −U0 +
m

2
(ω2

rr
2 + ω2

zz
2).

Typically, the radial trap frequencies of optical traps are relatively high compared to

magnetic traps but the depth is much smaller. Another difference to magnetic traps

is that trap depth and frequencies can not be varied independently2. When the laser

power is ramped down, the depth as well as the maximum gradient of the potential

drop linearly with the power. The trap frequencies, in contrast, drop proportional to

the square root of the power. This leads to the fact that at very low trap depths,

i.e. very low powers, the trap is not able to compensate for gravity anymore. This is

the case when the potential gradient at the steepest point of the potential is smaller

than gravity. The dependence of the potential on the position in radial direction is

U(r) = U0 exp(−2r2/w2
0), thus the force on an atom is

F (r) = −dU(r)

dr
= 4

r

w2
0

U0 exp

(
−2r2

w2
0

)
.

The maximum of this force Fmax = F (rmax) is at the position rmax = w0/2 where

dF (r)/dr = 0. Hence, if Fmax < mg, the trap is to weak and can not hold the atoms

anymore. This sets a limit for the minimum laser power that is needed to operate the

trap. In our setup, the minimum power obtained from the above equation is

Pmin = 107mW.

4.3 Heating by photon scattering

The spontaneous force

~Fdip(~r) = −∇Udip(~r) =
1

2ε0c
<(α)∇I(~r). (4.12)

on an atom in a light field is caused by the net momentum transfer during cycles of

absorption and spontaneous emission where in each of these processes one photon mo-

mentum ~~k is transferred to the atom. Although the momentum of an absorbed photon

2This is effectively the case in magnetic traps, since it is possible to limit the trap depth with a radio
frequency shield but keep the trap frequencies constant [51].
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4 Chromium atoms in an optical dipole trap

from the laser field is always directed, the momentum transfer averaged over many emis-

sion processes cancels out and the net transfer is governed by the absorption of photons.

Hence the spontaneous force is proportional to the photon scattering rate

~Fsp(~r) = ~~kΓsc = ~~kΓ
s

2(s + 1)
.

The momentum transfer in each absorption and emission process also means deposition

of energy in the trapped atomic cloud. Because this energy transfer represents a heating

mechanism, the recoil energy an atom gets in form of kinetic energy in every such process,

is commonly measured in units of kB by the recoil temperature Trec = (~k)2

2m
= Erec/kB.

The heating rate due to light scattering is given by the product of the energy transfer per

scattered photon times twice the scattering rate to account for absorption and emission

Ė = 2ErecΓsc = 2kBTrecΓsc.

In the case of large detunings and weak saturation, the scattering rate can be approxi-

mated by Eqn. (4.1.1). In an optical trapping experiment, this rate should be as small

as possible to keep the above heating rate small.

In equilibrium, every motional degree of freedom carries 1/2kBT , and the same amount

is stored in potential energy if the trap is harmonic, leading to Eth = Ekin + Epot =

6 ·1/2kBT for the thermal energy. Hence the rate at which the temperature of a trapped

cloud in a harmonic potential changes, is given by

Ṫ =
2

3

Ė

kB

=
2

3
TrecΓsc.

In this consideration, one neglects the directional dependence of absorption which

always happens in the propagation direction of the trap light and leads to an in-

creased heating in longitudinal direction. Because the collision rate, i.e. the rate

at which energy redistribution among atoms happens, is much faster than the pho-

ton scattering rate, the assumption of an isotropic heating effect is nevertheless justified.

4.4 An optical trap for chromium atoms

In the previous sections, the simple case of only two levels contributing to the atom-

light interaction has been discussed. Real atoms possess many electronic transitions

between energy levels which can have a complex fine and hyperfine sub-structure. In

such multilevel systems, the shift of a ground state | gj 〉 in the laser field depends on all

dipole matrix elements between the ground state and the excited states | ei 〉:

∆Ej =
|〈 ei |µ| gj 〉|2

δij

I

2πε0c
.
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Figure 4.2: Transitions contributing to the ground state 7S3 trap potential of chromium
atoms in the optical trap. Most important are the a7S ↔ y7P transition at 359 nm and the
cooling transition a7S ↔ z7P at 427 nm. (numbers taken from [108])

The system may be treated like a two level atom only if the frequency of the light field

is very close to one transition whereas it is far detuned with respect to all other possible

transitions. In contrast, for the realisation of optical traps, usually far detuned lasers

are used to prevent heating by keeping the photon scattering rate (Eqn. (4.1.1)) low.

In the case of these large detunings, all states that couple to the ground state have to

be considered. Figure 4.2 shows the properties of the transitions that have to be taken

into account to calculate the trap parameters for ground state 52Cr atoms. The data

has been obtained from the NIST atomic spectra data base [108]. All transitions are at

wavelengths below 427 nm. In the experiments presented in this thesis, a laser operating

at a wavelength of 1064 nm was used to generate the optical trapping potential. In this

very far detuned case, where the detuning of the trap laser from any transition is much

larger than the fine structure splitting (δ � ∆FS), can the fine, hyperfine, and the

magnetic sub-structure be ignored [107]. The multilevel problem reduces to summing

the contributions of the different electronic states that couple to the ground state without

considering the substructure. Each of these transitions can be treated like a two level

system with the same transition strength, independent of the laser polarisation. The

electron spins 3 couple to the shifted states like in the unperturbed system and therefore

all magnetic sub-states experience the same light shift. The resulting dipole potential

3For the hyperfine structure, the same arguments hold with regard to the nuclear spins.
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4 Chromium atoms in an optical dipole trap

Figure 4.3: Potential of the crossed dipole trap in the y-z-plane where the z-beam is operated
at 1 W and the y-beam at 4.5 W. Potential measured in units of kB.

of the ground state and the total photon scattering rate are:

Udip =
∑

j

3πc2Γj

2ω3
j

(
1

ωj − ω
+

1

ωj + ω

)
I(~r, t)

and

Γdip =
∑

j

3πc2Γj

2~ω3
j

(
ω

ωj

)3(
1

ωj − ωi

+
1

ωj + ω

)
I(~r, t).

Where the average ωj over the transition frequency of the fine structure levels is used

as the transition frequency in these equations.

The transitions, that contribute significantly to the trap potential of chromium are the

a7S ↔ y7P transition at 359 nm and the cooling transition a7S ↔ z7P at 427 nm. All

other transitions are at least two orders of magnitude weaker and even farther detuned

from resonance in the 1064 nm laser field. The resulting dipole potential and photon

scattering rate are

Udip(I) = −0.273 · 10−36J
m2

W 2
· I, Γsc(I) = 0.533 · 10−11 1

s

m2

W 2
· I

The heating rate due to photon scattering is

Ṫ (I) = 1.79 · 10−18K

s

m2

W 2
· I.

4.5 Expected properties of the trap

The properties of the trapping beams were determined by shining them directly on

the CCD chip of our camera. To measure the dependence of the waist on the axial
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4.5 Expected properties of the trap

horizontal beam

f 1W
I,x 513Hz

f 1W
I,y 513Hz

f 1W
I,z 4.15Hz

depth U0 -14.3µK

scattering rate Γsc 3.9·10−3 1/s

vertical beam

f 1W
II,x 180Hz

f 1W
II,y 0.86Hz

f 1W
II,z 180Hz

depth −U0 -5.03µK

scattering rate Γsc 1.4·10−3 1/s

crossed trap at PI=10W, PII=5W

fx 1672Hz

fy 1622Hz

fz 402Hz

heating rate Ṫ 30.6 nK/s

scattering rate Γsc 45·10−3 1/s

Table 4.1: Expected trap frequencies, heating rates, and photon scattering rates for our
optical dipole trap. The frequencies in the horizontal and vertical beam are given for a laser
power of 1 W in the corresponding beam. The crossed trap is specified at maximum power in
both beams.
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4 Chromium atoms in an optical dipole trap

position, the camera was moved along the beams. By fitting Eqn. (4.2) to the measured

dependence, we obtained waists of 29.0±0.58µm in the horizontal and 50±0.36µm in

the vertical beam. Based on these values, the expected properties of the trap were

calculated. Figure 4.3 shows the potential of the ODT in the y-z-plane in the crossed

region. Both beams (beam I in horizontal direction and beam II in vertical direction)

contribute to the total trap frequencies fi = ωi/2π in a direction i = x, y, z with their

frequency fI,i and fII,i, respectively. The effective trap frequencies fj,i at given powers

Pj (in W) are easily calculated if we define f 1W
j,i as the trap frequency produced by beam

j = I, II on the i−axis at 1W power in the respective beam:

fj,i = f 1W
j,i Pj.

The trap frequencies in each direction in the field of multiple superimposed beams are

given by

fi =

√∑
j

f 2
j,i i = [x, y, z].

The expected trap frequencies as well as the photon scattering rates and heating rates for

our setup are listed in table 4.1. The experimental determination of the trap parameters

will be discussed in the next section.

4.6 Determination of the trapping parameters

Particularly for the crossed optical dipole trap, theoretical calculations do not deliver

reliable values for the trap frequencies in all directions because the relative alignment

of the two trap beams is decisive for the form of the trapping potential. As it turned

out in our experiment, at least in one direction (the z-axis) in the crossed trap, the real

value of the trap frequency always differs significantly from the calculated one. Thus an

experimental determination of the trapping parameters is inevitable.

4.6.1 Axial frequency in the single beam trap

A number of techniques have been used by several groups to determine trap frequencies

by either directly observing oscillations of the atomic cloud in the trap [109] or by

observing atom loss when the trap is being shaken in space [110] or modulated [106] in

strength on resonance.

The most intuitive method is to observe directly the oscillation of a cloud in a series

of absorption images. After displacing the cloud in a controlled way from the center

of the trapping potential, it is allowed to live and slosh in the trap for a variable time
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Figure 4.4: Frequency measurement in the single beam trap along the symmetry axis (z
direction). Left: Experimental data with error bars. The dashed line displays the best fit of a
damped sine oscillation to the data. Right: Frequency spectrum obtained by a Fourier analysis
of the same data. Both methods of analysing the data yield the same result of ∼10.5 Hz.

before an image is taken. By determining the position of the center of mass depending

on the storage time, it is possible to resolve its trajectory if the time shift between

two subsequent images is smaller than half of an oscillation period ∆t < τ/2 = 1/(2f)

(Nyquist theorem [111]). The time resolution in our experiment is on the order of 100µs

and would in principle allow measurement up to 5 kHz. Since the size of the cloud in

the trap is on the order of the size of a camera pixel, the position would have to be

determined from time of flight images. On the other hand, the cloud expands and loses

optical density during time of flight such that in practice the images become worse and

this method is not suited for the measurement of the high radial trapping frequencies

in our experiment.

In the elongated axial direction of the horizontal single beam trap however, we expect

a trapping frequency of 10 to 15Hz and the method is well suited to determine this

frequency. The initial kick on the cloud can be applied easily by switching off the

magnetic trapping potential rapidly after rf evaporation instead of transforming the

trap adiabatically from the magnetic to the optical trap (see Section 4.7). The left

graph of Fig. 4.4 shows typical experimental data measured in a trap with a laser power

of 9.2W with this method. As a simple model for the oscillation, we assume a sinusoidal

dependence with an exponential damping like

z(t) = ze−γt sin(2πft + φ0) + z̄

and use it as a fit function for the experimental data. Free parameters of the fit are the

initial amplitude A0, initial phase φ0, damping rate γ, an offset z̄ and the frequency f .

A best fit of this function to the data (displayed by the dashed curve in the left graph

of Fig. 4.4) yields a trap frequency of 10.4Hz with a remarkably small error of ±0.2Hz.
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Figure 4.5: Frequency measurement in the crossed trap. Width of the cloud after 4ms
expansion plotted versus modulation frequency. Left graph: width in y-direction when the
horizontal beam is modulated. Right graph: width in z-direction when the vertical beam is
modulated.

The frequency spectrum obtained by a Fourier analysis of the same experimental data

is shown in the right graph of Fig. 4.4. The measured 10.4Hz is 16% lower than the

expected 12.6Hz, most likely due to an imperfect beam.

4.6.2 Trap frequencies in the crossed dipole trap

The frequencies that are expected in the crossed dipole trap are on the order of 1 kHz.

To determine these frequencies experimentally, we use a parametric heating technique

with a trapped thermal cloud by modulating the trap frequencies ωtrap at a modulation

frequency ωmod. In such a trap, the motion of an atom in one direction is described by

the following equation:

ẍ(t) + ω2
trap(1 + ε0 sin(ωmodt))x(t) = 0

where ε0 is the modulation index. This equation can be transformed into a Math-

ieu differential equation which is well known from classical studies of parametric reso-

nances [112] in mechanical systems. It has been shown that it has periodic solutions

x(t) = x0(t) cos(ωtrapt) whose energy increases exponentially with a rate constant ε0ωmod

when ωmod = 2ωtrap [113]. The width of the resonance is also given by ε0ωmod. Sub-

harmonic resonances with a smaller growth rate of the oscillation energy occur when

the modulation frequency is ωmod = 2ωtrap/n, where n > 1 is an integer number. Thus,

if the modulation frequency in the experiment is close to a resonance in one direction

ωm = 2ωtrap or subharmonics ωm = 2ωtrap/n, energy is transferred to the atoms and the

atomic cloud heats up. This heating effect is most effective at twice the trap frequency
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4.6 Determination of the trapping parameters

calculated measured relative deviation

fx 799Hz 750Hz 6%

fy 714Hz 616Hz 14%

fz 358Hz 122Hz 66%

Table 4.2: Comparison of measured vs. calculated trap frequencies in a trap with laser powers
of 1.91W in the horizontal and 3.95 W in the vertical beam.

which is reflected in a decrease of the number of atoms and a drastic increase of the

width of the expanded cloud.

Each beam of a crossed dipole trap contributes mainly to the trap frequencies in the

directions orthogonal to the corresponding beam. Its contribution in the longitudinal

direction is rather small and this frequency is mainly determined by the other beam.

Therefore, it is only possible to excite the transversal directions efficiently.

For the measurements, we prepare a cold thermal cloud by stopping the evaporation

ramp just above Tc and subsequently change the trap parameters adiabatically (within

∼100ms) to form the trapping potential that has to be calibrated. A remote pro-

grammable function generator (Stanford Research Systems DS345) in burst mode mod-

ulates the intensity of one of the trapping beams by a few percent (≤ 3% in the horizontal

and ≤ 4% in the vertical beam) by varying the rf-power of one of the AOMs that con-

trol the laser intensities sinusoidally for ∼500ms. Subsequently, the cloud is released

and we take an image of the cloud after 4ms time of flight. In a series of experiments,

the intensity is varied at different frequencies. The resonance frequency is obtained by

fitting a Lorentzian to the measured widths of the cloud. Since the atoms thermalise

within the 500ms of modulation, the heating reflects in the widths of the cloud in both

visible axes. To measure ωx and ωy, we modulate the horizontal beam whereas ωz is

measured by modulating the vertical beam.

The measurements presented in Fig. 4.5 were carried out in a trap with laser powers of

1.91W in the horizontal and 3.95W in the vertical beam. These powers corresponded to

80% and 20% of the maximum power of the trap, respectively and have both been mea-

sured while modulating the power. The resonance at the highest frequency of 1500±9Hz

in the left figure corresponds to twice the trapping frequency fx =750Hz in x-direction,

where both the horizontal and the vertical beam contribute with their strong radial

confinement. The resonance peak at 1231±9Hz belongs to the y-axis which is almost

solely determined by the radial frequency of the horizontal beam and yields a frequency

of fy =616Hz.
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4 Chromium atoms in an optical dipole trap

Comparison with theoretical values

Table 4.2 contains a comparison of the measured trap frequencies with the calculated

values according to Chapter 4.5. The measured frequency in x-direction, which is domi-

nated by the horizontal beam, matches the calculation with a relative difference of only

6%. In contrast, the frequencies in y- and z-directions in which the vertical beam con-

tributes more, differ significantly from the calculations. The frequency on the z-axis

shows a deviation of as much as 66%. Possible reasons are a deviation of the beam pro-

file from a perfect Gaussian and imperfect alignment of the two trapping beams since

the frequencies depend strongly on the overlap of the two beams. If the crossing point

of the vertical and the horizontal beam is displaced from their foci, the depth of the

potential dimple and the trap frequencies are reduced.

4.6.3 Radial frequencies in the single beam trap

The same method as in the previous section has been used to measure the radial fre-

quency in the single beam trap. In a trap with 8.9W in the horizontal beam, the

measured frequency was 1416±10Hz. The theoretically expected value for this power

is 1532Hz. Thus the relative deviation of the measured value from the theoretical pre-

diction is 7.5%. This deviation is a bit smaller than the deviation on the long axis of

the trap measured in Section 4.6.2. At 6.4W the same measurement yielded a radial

frequency of 1294±4Hz compared to a theoretical value of 1299Hz.

4.7 Loading the optical trap

4.7.1 Preparation of a cold cloud in the magnetic trap

The high magnetic moment in the ground state as well as in the metastable states of

chromium (see Section A) allows for a continuous loading scheme (CLIP-trap) [69, 67]

of magneto-optically cooled atoms directly into a magnetic Ioffe-Pritchard (cloverleaf)

trap. The loading procedure is illustrated in Figure 4.6. After being slowed down by a

Zeeman slower, the atoms are laser cooled and trapped in a 2−dimensional magneto-

optical trap (MOT) in radial direction of the Ioffe-Pritchard trap. The curved field

along the trap axis does not allow a usual MOT operation. Therefore the atoms are

only cooled in this direction using a σ+−σ+ optical molasses. For both the MOT and the

molasses, the 7P4 ↔ 7S3 is used. Due to the branching ratio of ΓP→S/ΓP→D =250000:1

between transitions from the excited 7P4 to the 7S3 ground state or the long lived
5D4 and 5D3 states, respectively, an atom undergoes on average 250000 cycles on the
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Figure 4.6: The continuous loading scheme consists of three stages: (a) Loading: accumula-
tion of 1.3 · 108 magnetically trapped cold atoms in the metastable D-state due to a branching
ratio of 250000 : 1 between transitions to the ground state and the metastable state. (b)
Repumping: The MOT light is switched off and the atoms are pumped to the ground state
via the 5D4 → 7P3 transition. (c) Ground state trap: all lasers off, atoms are trapped in the
ground state.

cooling transition before it eventually decays to one of the metastable states. These

states have a magnetic moment of 6µB and 4µB, respectively. Without the repumping

laser, the metastable states are decoupled from the cooling cycle and atoms which end

up in a low-field seeking sub-state4 of these states stay trapped in the shallow magnetic

potential (radial gradient5 B′ =9.5G/cm, axial curvature B′′ =7.5G/cm2) used during

the loading stage. With this technique it is possible to accumulate about 1.3 · 108

magnetically trapped atoms at roughly the Doppler temperature [114] of 124µK and

a phase-space density (PSD) of a few times 10−9 within a loading time of 10 s. The

number of magnetically trapped atoms in the metastable states is limited due to light

induced collisions [68]. After the steady state number of atoms in the magnetic trap is

reached, the cooling lasers are switched off and the atoms in the 5D4 state are pumped

back to the ground state within 20ms using laser light resonant with the 5D4 ↔ 7P3

transition at 663.2 nm (see Section 2.3). The magnetic trap is subsequently being fully

compressed by ramping up the currents through the trap coils to 300A. In doing so the

cloud is heated up again to ∼1mK and Doppler cooling of the optically dense cloud [71]

is performed within the trap at an offset field of 14G using the cooling beam propagating

in z-direction. This Doppler cooling step increases the phase-space density by two orders

of magnitude to ∼ 10−7 without losing atoms. Subsequently, the currents through the

coils are lowered to form a trap with an aspect ratio as close as possible to the later

shape of the optical dipole trap to provide for efficient transfer between the traps.
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Figure 4.7: rf cooling in the hybrid trap. (a): Schematic drawing of the pure magnetic trap
potential for an atom with total spin S = 1. At the positions marked with red circles, the
frequency of the rf-field matches the resonance condition and drives transitions from trapped
(mS = +1) to untrapped (mS = 0,−1) states when an atom gets into this region. (b): Align-
ment of the optical trapping beam in the magnetic trap. (c) and (d): Hybrid magnetic/optical
trap potential, when both traps are operated at the same time. (c): Potential in radial di-
rection. The confinement of the optical trap (red line) is much stronger than the magnetic
trap. The black curve is the pure magnetic trap potential. Its outer regions are tied down by
the presence of the rf-field. (d): Solid red line: hybrid potential in z-direction. The dashed
black and dotted red curves are the pure magnetic and optical potentials, respectively. The
horizontal grey dotted line marks the energy of the two upper atoms in figure (c) and (d).
Although this energy is in a range that can be trapped by the magnetic potential in the radial
direction (c), it is larger than the cut off energy in the axial direction (d). Thus an atom
having this energy would be expelled from the trap in axial direction.
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4.7 Loading the optical trap

Radio-frequency evaporation

In this trap, we perform radio frequency (rf) evaporation [22, 23]. The principle of

rf-evaporation is to remove high energetic atoms selectively from the trap by transferring

them to untrapped Zeeman states. This is achieved by applying a radio frequency field.

Let mS be the magnetic quantum number of the total spin S of an atom and gS be the

associated Landé factor. Due to the inhomogeneity of the magnetic field, the rf-field

is resonant with transitions between neighbouring mS levels on a surface around the

center of the trap, provided that the rf frequency is larger than the resonance frequency

ω = gSµBB0/~ in the center of the trap. If an atom has a sufficiently large energy

to reach this surface, the rf-field drives a Landau-Zener-transition to low-field seeking

Zeeman states and the atom is expelled from the trap. The trap depth is determined

by the difference between the offset field in the center of the trap and the magnetic

field Bres at which the resonance condition is fulfilled. A schematic illustration is found

in Figure 4.7 (a). The rf-sweep is composed of 3 linear rf-ramps from 45MHz down to

1.25MHz. After this step, the cloud contains 4.5 · 106 to 5 · 106 atoms at a phase-space

density of 10−5 and a temperature of 22µK. The overall gain in phase-space density

during the magnetic trapping phase is thus about four orders of magnitude whereas the

number of atoms is reduced by 1.5 orders of magnitude.

4.7.2 Transfer into the optical trap

Beginning from the first step of the rf-ramp, the magnetic trap is superimposed by a

single beam ODT in horizontal direction with the same symmetry axis as the magnetic

trap. This trap is formed by beam I in Fig. 2.4 and Fig. 2.1 b) with a maximum

power of 9.8W. Figure 4.7 shows a schematic drawing of the hybrid potential formed

by the superposition of the two traps. The energy cutoff in this trap is still given by the

resonance position of the rf field. In contrast to the radial direction, where the optical

trap is much steeper than the magnetic trap, the axial confinement is still dominated by

the magnetic potential. Thus atoms need a larger energy to reach the region where the

rf-field is resonant in radial than in axial direction as becomes clear from Fig. 4.7. If the

temperature of the atoms is comparable or smaller than the depth of the optical trap,

evaporation can only happen in z-direction and the cooling efficiency becomes weak.

The combination of the optical and magnetic potential produces a dimple in the

4Low-field seeking states or “low field seekers” are Zeeman states that have lower Zeeman energy
EZ = gF mF µBB in lower magnetic fields, i.e. gF mF > 0.

5 In addition, the trap produces a magnetic offset field B0 6= 0 in the center of the trap that leads to
a harmonic potential in radial direction, in a certain range around the trap center, too [51].
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Figure 4.8: Occurrence of loss when the offset field is overcompensated. The black curve
shows the magnetic trapping potential µ|B| formed by the inhomogeneous magnetic field
(dashed line) along the symmetry axis of the magnetic trap. Bres (marked by a horizontal
red dotted line) is the magnetic field strength where the rf-field is resonant with the Larmor
frequency of the atoms. The dashed horizontal line marks the magnetic offset field (negative
sign of B0 stands for ~B0 pointing in opposite direction.) (a) Positive offset in the center of
the trap. Not ideal regarding dipolar relaxation. (b) Very low but no-zero offset field. Lowest
dipolar relaxation and highest compression in radial direction. (c) Overcompensation of the
magnetic field. Majorana loss occurs in the marked regions.

trap potential and leads to an increased density in the center which promotes density

dependent loss mechanisms like dipolar relaxation. To achieve the lowest possible dipolar

relaxation rate, the magnetic offset in the center of the trap has to be as low as possible.

Besides that, lowering the offset leads to a radial compression of the magnetic trap

which improves the mode matching of the magnetic and optical traps. The offset field is

adjusted close to 0G by applying some extra current in the bias coils. The calibration

of this offset field is performed by looking at loss from the purely magnetic trap due to

Majorana spin-flips [102] in regions of very small magnetic field. In such regions, the

Larmor frequency of the precessing magnetic moments is so low that they are not able

anymore to follow the changing magnetic field adiabatically as they move through the

trap. Hence, if such regions are produced by compensating the offset field as depicted

in Figure 4.8 close to zero, Majorana loss leads to a decrease of the number of trapped

atoms. This zero field adjustment has an accuracy of ∼35mG corresponding to the scale

on which the number of atoms changes from maximum number of atoms to no atoms

when changing the current in the bias coils as depicted in Fig. 4.9. Perfect alignment

of the ODT with best possible overlap between the magnetic and the optical trap is

essential for an efficient transfer into the ODT. In particular, the first beam must be

aligned in perfectly horizontal direction because of its rather poor confinement in axial

direction resulting in a longitudinal trap frequency of only ∼ 13Hz. In radial direction,

the trap has a frequency of ∼ 1450Hz. Best alignment is achieved by taking absorption

images of the dipole trap within the magnetic trap as depicted in Fig. 4.10 to overlap

the two trapping potentials.

The final frequency of the rf-sequence is chosen such that the highest number of atoms is
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Figure 4.9: Calibration of zero magnetic field. Number of remaining atoms after rf cooling
plotted vs. extra offset current in the bias coils. The extra offset field produced in by the coils
is ∼1.6G/A. The cloud vanishes at a current of 1.68 A which overcompensates the magnetic
offset field whereas at 1.66 A the maximum number of atoms remain. At lower currents, the
number of atoms decreases because the offset and therefore the minimum of the magnetic
trapping potential comes closer to the rf frequency knife.

Figure 4.10: Image of the hybrid magnetic/optical trap. The beam of the optical trap was
intentionally misaligned for this image to show both traps.
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Figure 4.11: Dipolar relaxation of 52Cr atoms measured in an optical dipole trap. Two
lifetime measurements were performed at different homogeneous magnetic fields (B0 ≈0.8G
and B0 ≈0 G). The life time of the trapped sample clearly depends on the magnetic field.

transferred adiabatically to the single beam optical trap by ramping down the magnetic

trapping potential within 100ms. With these optimisations, the transfer efficiency from

the magnetic to the optical trap is 40% and we start with up to 2·106 atoms in the ODT.

The phase-space density at this stage is 5 · 10−5, a factor of five higher than the phase-

space density that is found in the pure magnetic trap after the final rf-ramp without

an optical trap present. The phase space densities in the dipole trap and the magnetic

trap have both been determined from time of flight series of absorption images.

4.8 Transfer to the lowest Zeeman state

Even at very low magnetic offset field, dipolar relaxation leads to a redistribution of the

atoms among the Zeeman sub states and to heating. A heating rate of 3µK/s at an

offset field of 0.7G, and a relaxation rate constant on the order of βdr =1 ·10−121/cm3

at 0.15G have been measured in an optical dipole trap [86]. Figure 4.11 shows the

field dependence of dipolar relaxation in the results of two lifetime measurements in the

optical trap at magnetic offset fields of 0.8G and ∼0G, respectively.

The only way to suppress this relaxation process completely is to bring all atoms to the

energetically lowest Zeeman state in a magnetic offset field B0 � kBT/µ. In this state,

atoms can not gain energy anymore by flipping their spins. This means that relaxation

to higher states is energetically forbidden if the atoms do not have enough kinetic energy
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4.8 Transfer to the lowest Zeeman state

to bring up the difference in Zeeman energy that is needed to occupy such a level6.

Previous attempts to circumvent dipolar relaxation by a radio frequency-induced

Landau-Zener transition to the lower Zeeman-states have not been successful [86] be-

cause such a technique can only invert the already existing spin distribution but not

purify it. Since the optical trap is loaded from a magnetic trap where not only the

extreme but all low field seeking Zeeman states are present, the atoms in the optical

trap are also in a spin mixture.

It is possible however to use optical means to polarise the atoms in the lowest Zeeman

state. We make use of the fact that if the trapped atoms are exposed to pure σ− light

resonant with the 7S3 ↔ 7P3 transition 7 at a wavelength of 427.6 nm , the energetically

lowest mJ = −3 state is a dark state and not influenced by the light field. The σ−

light drives ∆mJ = −1 transitions from | g,mJ 〉 to | e, mJ − 1 〉 from where the decay

happens to | g,mJ − 1 〉, | g,mJ 〉 or | g,mJ + 1 〉 with a probability given by the corre-

sponding Clebsch-Gordan coefficients as depicted in Figure 4.12. If an atom ends up in

state | g,−3 〉, there is no ∆mJ = −1 transition and the atom stays in this state – unaf-

fected by the light field. The suppression of light scattering in this state is additionally

supported by a magnetic field which breaks the degeneracy of the magnetic substruc-

ture and leads to a shift between ∆mJ = +1, ∆mJ = −1, and ∆mJ = 0 transitions.

A magnetic field of 11.5G along the axis of the pumping beam requires a detuning of

32MHz to the red with respect to the resonance at zero magnetic field. Because the

Landé factors in 7S3 and 7P4 are almost equal, the shift between different transitions

with the same ∆mJ is negligible at the magnetic fields that are used. In contrast, the

relative detunings for ∆mJ = 0 and ∆mJ = +1 transitions induced by this field are 2.3Γ

and 6.2Γ if the laser is tuned on resonance with the ∆mJ = −1 transition. This helps

prevent transitions other than the desired ∆mJ = −1 which are not fully suppressed

if the polarisation of the beam is not purely circular. The average number of photons

needed to bring an atom from mJ = +3 to mJ = −3 has been calculated using a recur-

sive algorithm which can be found in Appendix D of this thesis. Assuming perfectly σ−

polarised light, the average number of scattered photons is nphot = 6.2. To keep heating

due to these scattered photons low, the pumping beam is retro-reflected after passing

through the cloud and passes it again. Assuming that the atoms scatter photons with

equal probability from either of these two beams, heating is only due to momentum

diffusion and thus proportional to the square root of the number of scattered photons.

6This effect has recently been suggested to be used for a novel cooling scheme [115] where the external
magnetic field is low enough for the atoms to undergo spin flips by converting energy from external
degrees of freedom into internal Zeeman energy. In this scheme, the atoms are always optically
pumped back to the lowest lying substate subsequent to such a flip. If the energy loss through the
Zeeman-flips is larger than the afterward heating by the photon-scattering from the pumping beam,
this constitutes a lossless cooling mechanism that is currently being investigated experimentally by
our group.

7Compare the level scheme in Chapter A. For the setup of the laser system refer to Section 2.5.
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Figure 4.13: Time dependent occupation
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ing optical pumping. Theoretical data calcu-
lated using Eqn. (4.13).

The energy transferred to the cloud during optical pumping is thus

∆E =
√

nphot

~2k2
phot

2m
= 2.15µK · kB

per atom which is low compared to the temperature of >50µK at that time.

To tune the laser on resonance with the 7S3 ↔ 7P3 transition, we expose the MOT

to the light. On resonance, the 7P3 state becomes occupied from where atoms can

– in addition to transitions back to the ground state and metastable D-states – also

decay to the 5S2 state. This state is not reachable from 7P4 and is decoupled from the

lasers. Such transitions constitute a loss mechanism in the MOT which is only present

when atoms are pumped to 7P3. Hence, a decrease in the fluorescence of the MOT due

to a reduction of the number of trapped atoms indicates the pumping laser being on

resonance. The atoms are pumped to mJ = −3 by shining in 0.5mW of σ−-polarised

light for 1ms in the optical dipole trap immediately after the magnetic trap is switched

off. The intensity of the beam is on the order of 1mW/cm2 and the light propagates in

radial (y-)direction. The rather small intensity and correspondingly long pumping time

are chosen such that power fluctuations at frequencies far above the bandwidth of the

doubling-cavity and diode laser stabilisation are averaged out.

The pumping process is described by the rate equations of the occupation numbers Nj
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of the levels mJ = 0,±1,±2,±3 of the 7S3 ground state in presence of the light field:

d

dt
Nj(t) = −

1∑
∆mJ=−1

(
Cj,j+∆mJ

Γ∆mJ
sc Nj(t)

)
+ (4.13)

+
1∑

∆mJ=−1

(
∆mJ+1∑

l=∆mJ−1

(
Cj+l,j+∆mJ

Cj,j+∆mJ
Γ∆mJ

sc Nj+l(t)
))

Γ∆mJ
sc =

{
Γsc(I, δ) : ∆mJ = P

0 : ∆mJ 6= P
,

where CmJ ,m′
J

are the squares of the Clebsch-Gordan coefficients for transitions from

mJ to m′
J , ∆mJ = m′

J − mJ = 0,±1, and Γ∆mJ
sc is the scattering rate on the ∆mJ

transition. The polarisation of the pumping beam is characterised by the parameter P

which is P = 0 for π-light, P = 1 for σ+-light, and P = −1 for σ−-light8. This set

of rate equations has been solved numerically to obtain the time dependent occupation

numbers of the states mJ = +3 and mJ = −3.

The solutions are plotted together with the experimental data in Fig. 4.13 where the

saturation parameter in the calculation has been adjusted such that the numerical data

match best with the experiment. The time dependent populations of mJ = +3 and

mJ = −3 during the pumping process have been recorded by taking images of the cloud

trapped in the horizontal ODT beam after variable time of exposure to the pumping

8Perfect polarisation of the pumping beam is assumed.
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4 Chromium atoms in an optical dipole trap

light. To be able to resolve the time dependence, the power in the beam was reduced

to only a few µW such that 300ms were needed to transfer the atoms to mJ = −3.

The same sequence was repeated twice, where in one run blue detuned σ+-light and

in the other red detuned σ−-light was used to image the mJ = +3 and mJ = −3

atoms, respectively. Because the number of trapped atoms decays very rapidly due to

plain evaporation after the optical trap is loaded (this is discussed in Section 5.2.1), the

number of atoms found in mJ = −3 after 300ms never reaches the starting value of

mJ = +39. The atom numbers in the graph have therefore been corrected by the decay

rate to be comparable to be able to compare the experimental time dependence with the

theoretical calculation. With higher pumping light intensity and therefore much faster

pumping that is commonly used in the experiment, the efficiency of the transfer is close

to 100% which is reflected in a dramatic increase of the lifetime of the trapped cloud

from ∼6 s in mJ = +3 to >140 s in mJ = −3 as shown in Fig. 4.14. This long lifetime

is a very important precondition for efficient evaporative cooling in the optical dipole

trap.

To prevent later thermal redistribution of the spins, the magnetic offset field of 11.5G

used for pumping is kept on during all further preparation steps.

9 It is not possible to delay the pumping stage until plain evaporation is over because dipolar relaxation
leads to strong loss and limits the trapping period to a time shorter than that.
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5 Evaporative cooling in the dipole trap

Abstract

Most experiments with ultracold atoms make use of optical cooling techniques.

They have been used very successfully in almost all1 BEC experiments. How-

ever, all these techniques have fundamental limits (see eg. [103]) and the phase

space densities which can be reached are usually orders of magnitude away from

the critical value. The temperatures which can be reached by the optical cooling

techniques that are used in the experiments I discuss in this thesis to prepare a

cloud of chromium atoms in the magnetic trap are given by the Doppler limit of

TD = ~Γ/2kB =120µK. The phase-space density (PSD) at this stage is on the

order of 10−7 , yet seven orders of magnitude away from degeneracy. To overcome

this gap, we use evaporative cooling first in the magnetic and then in the optical

dipole trap. Radio frequency (rf) induced evaporative cooling of chromium atoms

in a magnetic trap has been demonstrated in earlier works [86] and will not be

further discussed here. In the experimental part, I will concentrate on evaporative

cooling of chromium in an optical dipole trap. However, the general theoretical

description of evaporative cooling that will be presented in the next section applies

to rf evaporation as well.

The principle of evaporative cooling is the withdrawal of atoms from a sample which

carry more than the average energy. Thus the average energy per atom in the remaining

sample is lower than before. This is well known in everyday life as it is for example

the principle that cools a cup of coffee when the most energetic water molecules – the

steam – are blown away. Evaporative cooling has been discussed already 20 years ago in

1986 in the context of ultracold gases and Bose-Einstein condensation by Hess [20] and

was demonstrated with magnetically trapped hydrogen in 1988 [21]. In 1994, rf induced

evaporative cooling was demonstrated with sodium and rubidium atoms by the groups

of Cornell and Ketterle [22, 23] who managed to generate the first BECs in dilute gases

one year later using exactly this technique. In our experiment, the evaporative cooling

technique permits us to cool the sample in the dipole trap from an initial temperature

of 50µK to temperatures around 100 nK. The gain in phase-space density is about 4

orders of magnitude, while one order of magnitude in the number of atoms is lost during
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Figure 5.1: Left: Maxwell-Boltzmann distribution corresponding to a temperature T0; Cen-
ter: truncated Maxwell-Boltzmann distribution. Atoms with total energies Etot > εt are
removed from the trap; Right: distribution after the system has relaxed again (red solid line)
compared to the initial distribution (dotted black line). The temperature of the system is
lower than before (T1 < T0) if the cutoff energy was higher than the average energy of the
atoms εt > ηkBT0.

evaporation.

5.1 Theoretical description

In the classical regime, far away from the BEC transition, the equilibrium distribution

of atoms in phase space is given by the Maxwell-Boltzmann (MB) distribution2

f(~r, ~p) =

(
ω

2πkBT

)3

exp

(
−U(~r) + ~p2/2m

kBT

)
, (5.1)

whose integral is normalised to 1. It is closely related to the density distribution of atoms

in space. The spatial distribution in an infinitely deep trap is given by the product of

the total number of atoms with the integral of Eqn. (5.1) over the whole momentum

space:

n(~r) = N

∫
f(~r, ~p)d3p = N

(
mω2

2πkBT

)3/2

exp

(
−U(~r)

kBT

)
.

As a side effect we have found the peak density in the center of the cloud by identifying

it with all the prefactors of the integral: n0 = N
(

mω2

2πkBT

)3/2

.

If the system is ergodic, i.e. the whole phase space can be reached, the energy dis-

tribution is a function f(ε) of the single particle energy ε and can be derived from

2 In comparison to the Bose distribution, which is strictly speaking the correct distribution function
of Bosonic atoms, the MB distribution does not show an enhanced population of low energy states.
In the classical regime however, the difference between the two is small and the distribution is well
approximated by the MB distribution. Compare also Section 3.3.1.
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Eqn. (5.1):

f(ε) =

√
4ε

π(kBT )3
e
− ε

kBT (5.2)

where ε(~r, ~p) = ~p2

2m
+ U(~r) is the total single particle energy.

The energy distribution function f(ε) is shown by the solid line in Fig. 5.1 (a). Obvi-

ously, in thermal equilibrium there is always a finite probability of finding an atom at

energies much higher than the mean energy 3kBT .

The idea of evaporative cooling is now to cut away the high energy tail of the MB dis-

tribution by taking away atoms with energies higher than εt as displayed in Fig. 5.1 (b).

Without energy exchange among the atoms, this truncated energy distribution would

just stay like it is for all times and one would not find an atom with ε > εt anymore, nor

would a real temperature be defined in this non-equilibrium system. Efficient cooling

becomes possible if elastic collisions among the atoms happen which rethermalise the

gas. With atoms which have all the same mass, about 3 elastic collisions per atom

are necessary to bring the system from an initially non-thermal distribution back to

thermal equilibrium [116, 117, 70]. If the gas is left alone without a restriction of the

atomic energies after throwing away the high energy atoms, it will reproduce the tail of

the MB distribution but with a final temperature that is lower than before like depicted

in Figure 5.1 (c).

Now one could remove the high energy tail again in a second step and so on, cooling

the sample further and further. On the other hand, the ratio between the cutoff energy

εt and the thermal energy kBT becomes larger and larger with every such imaginary

evaporation step if εt stays constant. Thus the probability that atoms acquire energies

larger than that becomes lower and lower and the cooling slows down.

5.1.1 Forced evaporation

To cool the sample further, evaporation is forced by lowering the cutoff energy continu-

ously (forced evaporation). Finding out the rate at which εt has to be lowered to achieve

the most effective cooling is crucial for all BEC experiments. The following theoretical

description of evaporative cooling follows the argumentation of Luiten et al. [118] and

O’Hara et al. [119]. Since the rate at which high energy states are populated depends

on elastic scattering, the change of εt on the timescale of the inverse scattering rate

should be small, to keep the rate at which atoms are thrown away small. In this case,

Luiten et al. [118] have shown that the gas stays in a quasi-equilibrium where the energy

distribution is described by a truncated MB distribution function which can be written
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5 Evaporative cooling in the dipole trap

by multiplying the MB function with the Heaviside step function Θ(εt − ε):

ft(ε) = f(ε)Θ(εt − ε) = n0λ
3
dBe

− ε
kBT Θ(εt − ε).

This distribution is still characterised by a ”temperature” T which is at any time related

to the cutoff energy εt via the cutoff parameter η:

εt = ηkBT.

In the strict sense, this T is only a temperature in the limit η →∞ which is the usual

equilibrium situation in an infinitely deep trap.

The rate at which atoms in high energy states are produced determines the rate Ṅevap at

which atoms are lost by evaporation. This rate is proportional to the elastic scattering

rate

γel = n0σelvt,

where vt is the average thermal velocity of the atoms and σel is the elastic scattering

cross section. Including a collision energy dependence up to second order in the atom

momentum k, the elastic scattering cross section is given by3

σel =
8πa2

1 + k2a2
,

where a is the s-wave scattering length. Ṅevap also depends on the cutoff parameter

η. The larger the trap depth is compared to the average thermal energy, the less the

probability that an atom gains enough energy to escape the trap. This is taken into

account by a Boltzmann-factor e−η. Hence the evaporative loss rate reads

Ṅevap

N
= −n0σelvte

−η.

The total energy of a trapped gas in the classical limit is given by the partition func-

tion [118] E = (3/2 + χ)NkBT . The parameter χ = (T/Ueff )∂Ueff/∂T determines the

fraction of potential energy in the total energy Epot = χkBT . In trap potentials which

can be described by power laws of the form U(~r) = cx|x|1/χx + cy|y|1/χy + cz|z|1/χz , χ is

given by [76, 118]

χ =
∑

i

χi.

Thus χ = 3/2 in harmonic potentials where χx = χy = χz = 1/2. In such power law

potentials, the density of states D(E) is proportional to Eχ. The rate at which the total

energy changes in a constant harmonic potential is therefore Ė = 3kB( ˙NevapT + NṪ ).

O’Hara et al. find that for any harmonic potential, the average energy that is taken

3For an introduction to ultracold collision see e.g. [81].
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5.1 Theoretical description

away by an evaporated atom is (η − 5)/(η − 4)ηkBT which is ηkBT for large η. Hence

the energy loss rate is also proportional to this average energy and the evaporative loss

rate Ė = (η − 5)/(η − 4)ηkBTṄevap. Equating the above two expressions for Ė finally

yields an equation for the change of the temperature:

Ṫ /T = (η/3− 1) Ṅ/N.

The evaporation is more efficient (stronger decrease of the temperature with the same

atom loss rate) the larger the cutoff parameter η is. On the other hand Eqn. (5.1.1)

shows that a larger η slows down the evaporation. A trapped cloud of atoms is always

subject to loss due to background gas collisions or inelastic collisions among the atoms.

Therefore a slower evaporation leads to an increased loss due to such processes.

5.1.2 Evaporative cooling in dipole traps

As has been shown in Chapter 4, optical trapping potentials possess a finite depth. If

the total energy Ekin + Epot of an atom exceeds this depth, it will escape the trap by

climbing up the trapping potential unless it loses the excess energy in a collision process

before it can leave the trap. Thus evaporation is always present in optical dipole traps.

The evaporation rate however is suppressed by exp(−U0/kBT ) and stagnates in a trap

with constant depth as the sample cools down. When the cutoff parameter reaches

values η > 10, evaporation becomes very slow. Evaporative cooling in a dipole trap can

be forced by reducing the intensity of the trapping laser adiabatically and thus lowering

the trap depth. Unlike in magnetic potentials, where the trap depth can be varied

independently from the trap parameters by applying an rf-knife, the trap parameters of

a dipole trap are connected to the trap depth by equations (4.2.1) and (4.2.1). Hence the

density and elastic collision rate scale with the trap depth, too. O’Hara et al. [119] have

found scaling laws which can be used to calculate the evolution of the thermodynamic

properties for a given constant cutoff parameter η as well as the time dependence of

the trap depth that is needed to keep η constant. According to their theory, the time

dependence of the trap depth has to follow the equation

U0(t)

Ui

=

(
1 +

t

τ

)−2(η′−3)/η′

where the time constant τ of the evaporation is given by

1

τ
=

2

3
η′(η − 4)e−ηγi

and η′ = η + (η − 5)/(η − 4). Ui, γi = 4πNimσel(ωho/(2π))3/(kBTi), Ni, and Ti are the

initial trap depth, collision rate, number of atoms, and temperature, respectively. To
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5 Evaporative cooling in the dipole trap

take background loss into account, they rescale time with the background loss rate Γbg:

t → 1− e−Γbgt

Γbg

.

Atom loss now consists of two parts: the evaporative loss and loss by background gas

collisions:

Ṅ = Ṅevap − ΓbgN.

The evolution of the phase-space density is given by

ρ(t) = N(t)

(
~ωho(t)

kBT (t)

)3

These results have been successfully used to produce Bose-Einstein condensates in run-

ning beam traps [120]. Eqn. (5.1.2) shows that successful cooling in a single beam dipole

trap strongly depends on the initial collision rate which determines the time constant τ

throughout the evaporation. It has turned out that this initial collision rate is too low

in our chromium experiment. Attempts to cool the cloud in the single beam trap using

this method only lead to a small increase of the PSD (see Section 5.2.2).

5.2 Evaporative cooling of chromium

5.2.1 Plain evaporation

During the first seconds in the ODT, a very fast decay of the number of atoms is

observed which becomes slower after about half of the atoms are lost (see fig. 5.2).

Along with this decrease of the number comes a very large increase in the phase-space

density which was determined from time of flight pictures taken during the lifetime of

the trap. As two-body loss processes are suppressed in the lowest Zeeman state and

there is also no hint for three-body loss in the regime of relatively low density at this

stage of optical trapping, the observed loss can be attributed to essentially pure plain

evaporation. Figure 5.3 shows the evolution of the phase-space density during the first

120 s in the ODT plotted vs. the number of remaining atoms and vs. time. The straight

line in the main graph has a slope of 3.6 orders of magnitude gain in phase-space

density per lost order of magnitude in the number of atoms and is a linear fit to the

data. This illustrates the very high efficiency of the plain evaporation stage. After 5 s

it gets less efficient which is identifiable by the data points in fig. 5.3 snapping off from

the straight line. During plain evaporation the temperature of the trapped cloud drops

from an initial value of 60µK to 14µK at the end. After about 10 s in the dipole trap,

the change of the temperature is so small that it can not be measured anymore. Even
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Figure 5.2: Lifetime measurement in the
single beam ODT after pumping the atoms to
the lowest Zeeman substate. The inset shows
the change of the axial size of the expanded
cloud in time of flight images depending on
the time it lived in trap.

1010
55

1010
66

1010
-4-4

1010
-3-3

number of atomsnumber of atoms

p
h

a
s
e

s
p

a
c
e

d
e
n

s
it
y

p
h

a
s
e

s
p

a
c
e

d
e
n

s
it
y

0.010.01 0.10.1 11 1010 100100

1010
-4-4

1010
-3-3

holding time [s]holding time [s]

p
h
a
s
e

s
p

p
h
a
s
e

s
p
a
c
e

d
e
n
s
it
y

a
c
e

d
e
n
s
it
y

Figure 5.3: Double logarithmic plots of the
phase-space density vs. number of remain-
ing atoms and vs. holding time in the single
beam trap (inset). Arrows mark the chronol-
ogy in the plots. An open circle marks in
both plots the optimum point in time to start
forced evaporation.

after 300 s in the trap, when still more than 100000 atoms are trapped, we find the

same temperature within error bars. It corresponds to a cutoff parameter of η =9.6 .

5.2.2 Forced evaporative cooling in the single beam trap

The approach of Section 5.1.2 has been used to estimate the possibility of successful cool-

ing of chromium atoms in the single beam configuration by calculating the evolution of

the phase-space density, number of atoms, and trap depth under the starting conditions

that are possible in the chromium experiment. Best values that could be achieved are

106 atoms at 15µK after plain evaporation in a trap with a depth of 148µK and a mean

frequency of ωho = 2π(1650Hz·1650Hz·14.5Hz)1/3 using 12.8W of laser power in the

horizontal trapping beam. The background loss rate obtained from a fit of an expo-

nential decay on the data of Fig. 4.14 is γ =1/150 1/s. Figure 5.4 shows the evolution

of the phase-space density and number of atoms under these assumptions as well as

the evaporation ramp of the trap depth which would keep the cutoff parameter at the

value of η ≈ 10 found at the end of the plain evaporation stage. These figures indicate

that with the starting conditions that could be achieved, it is not possible to reach

degeneracy. A factor of two higher number of atoms at the beginning would produce

a large enough elastic scattering rate to reach Bose-Einstein condensation in principle

(dash-dotted line in Figure 5.4(d)) after more than 50 s. However, the final trap depth
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Figure 5.4: Evaporation ramp in the single beam dipole trap calculated for the different atom
numbers in the beginning. (a) Time dependence of the trap depth starting with a depth of
148 µK. (b) Evolution of the number of atoms. (c) Phase-space density as a function of the
remaining number of atoms. The grey shaded area shows the border to quantum degeneracy.
(d) Evolution of the phase-space density. Red circles in plots (a), (c), and (d) mark the points,
where degeneracy could be reached when starting with 2 and 4 million atoms, neglecting the
influence of gravity.

would have to be very low (below 1% of the initial trap depth). In such a shallow optical

trap, evaporation happens mainly in vertical direction due to the influence of gravity.

Since in such a “one-dimensional” (1-D) evaporation process, the kinetic energy in only

one direction instead of the total kinetic energy of an atom decides whether the atom

stays trapped or can leave the trap, evaporation in this 1-D case is known to be less

efficient than 3-D evaporation [121, 122, 118]. The above model does not consider this

lower efficiency at the end of the evaporation ramp. It is thus questionable whether BEC

could be realised experimentally under these conditions. Starting with 4million atoms,

which would be an approvement by a factor of 4 in the number of atoms compared to

the current status of our experiment, the above model leads to degeneracy already after

∼10 s and successful condensation is more likely in this case. The smaller efficiency of

1-D evaporation could be compensated by slowing down the evaporation ramp at the
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Figure 5.5: Results of evaporative cooling performed in the single beam trap with two differ-
ent time constants τ . The figures show the evolution of the number of atoms, temperature, and
phase-space density depending on the time over which the trap depth was reduced according
to Eqn. (5.1.2).

end. In this case, BEC in the single beam ODT could be possible if we assume that all

other parameters would not change to the worse when the number of atoms is improved

e.g. by the use of a stronger laser for the generation of deeper traps.

Early attempts to perform evaporative cooling only in the horizontal beam have con-

firmed these findings. Starting with about 400000 atoms in a trap with 12.5W and an

initial elastic collision rate of 60 1/s, the laser power was ramped down subsequent to

the plain evaporation stage following the time dependence given by Eqn. (5.1.2). Fig-

ure 5.2.2 shows the best result (black squares) obtained with this method. The black

curve was obtained with the theoretically expected τ = 8 s corresponding to the above

collision rate and η = 10 . The second set of data (red curve) resulted from a slightly

faster ramp with τ = 7 s. Slower ramps lead to even worse results. The figures show

that with τ = 8 s, after a small initial gain of phase-space density of roughly a factor

of 1.6 , evaporative cooling does not work anymore and the phase-space density drops

again. The maximum phase-space density that could be reached was ρ =5 ·10−4.
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Figure 5.6: False colour image of atoms 1.2ms after release from the trap where the vertical
beam has been ramped up during plain evaporation. The increased density of the atoms in the
crossed region is indicated by the central pixels appearing in red which corresponds to a large
optical density (see the colour bar on the right side). The white bars in the figure indicate
the length scales of the two directions. Note that the image has been stretched in the vertical
direction to show more detail. The in-trap aspect ratio in the horizontal beam is in reality
∼ 1/140.

5.2.3 Cooling in the crossed configuration

The results of the previous section showed that the collision rates in the optical trap

formed by only one beam are not high enough to support evaporative cooling under

the starting conditions we have or that could be expected. To increase the density

and the collision rate, we increase the power of the vertical trapping beam (Fig. 2.1 b)

during the plain evaporation stage linearly from 0W to ∼4.5W. This creates a dimple

in the center of the trapping potential. Such an adiabatic deformation can be viewed

as changing the power law (compare Section 5.1.1) of the trapping potential and thus

leads to an increased density and phase-space density as suggested and experimentally

demonstrated by Pinkse et al. [123]. The principle has since then been used successfully

for the reversible generation of Bose-Einstein condensates in a hybrid magnetic/optical

trap [124] and for Bose-Einstein condensation in optical traps [7]. The increase of the

phase-space density ρ = λ3
dBn0 by an adiabatic deformation (constant entropy ∆S = 0)

can be understood if we use the relation A = −kBT lnQ between the Helmholtz energy

A and the partition function Q = (V/λdB)N/N !. With the entropy being given by

S = −∂A
∂T

, we can calculate the entropy per particle

S

N
= − 1

N

∂A

∂T
=

kB

N

(
lnQ + T

∂lnQ

∂T

)
.

In the case of power law potentials, the volume Vi =
∫

e−U(~r)/kBTid3r that gives the right

peak density n̂ = N/V at a temperature Ti, scales as Vi ∝ T χ
i with χ from Eqn. (5.1.1).
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5.2 Evaporative cooling of chromium

The entropy per particle is then given by

S

N
= kB

(
5

2
+ χ− ln(n̂λ3

dB)

)
,

where ρi = n̂λ3
dB is the initial phase-space density. If we change the shape of the trapping

potential χi → χf adiabatically (∆S = Sf − Si = 0), the phase-space density becomes

χf = χfe
χf−χi . The adiabatic transformation from the single beam to the crossed beam

configuration can be understood as such a change of the potential shape. Stamper-Kurn

explains this effect by a two-box model [102]. Consider N atoms with a phase-space

density ρ0 in a homogeneous box with volume V0 = V1+V2. If we now lower the potential

in the small volume V2 to a depth U2 while keeping the entropy and number of particles

constant, the phase-space density in the small volume V2 is given by

ρf = ρi exp

(
U/kBTf

1 + (V2/V1)eU/kBTf

)
.

If the volume of the well V2 is much smaller than the overall volume V2/V1 � 1 (as in the

case of the dimple trap), the increase in phase-space density is given by the Boltzmann

factor eU/kBTf . If the number of atoms in the dimple region is sufficiently small, the rest

of the atoms act as a heat bath and the final temperature Tf does not differ much from

the initial temperature Ti but the density in V2 is larger than that in V1 by a factor of

eU/kBTf . For a crossed dipole trap with chromium atoms, an increase of the phase-space

density by a factor of 50 has been already shown [86]. Figure 5.6 shows an image of

atoms released from a trap at this stage. About 20% of the 7.5 · 105 atoms are trapped

in the crossed region at a peak density and phase-space density which is one order of

magnitude larger than the peak density of the atoms in the wings.

The increased density in the center also leads to a higher collision rate (see Eqn. (5.1.1))

and allows forced evaporation ro proceed in the crossed configuration by gradually re-

ducing the laser intensity in the horizontal trapping beam. To keep the density and

collision rate in the dimple at a high level, the intensity of the vertical beam is held at

100% throughout the further evaporation steps.

The theoretical description of evaporative cooling in this configuration is however not as

straightforward as in the single beam trap (Section 5.1). One has to take into account

the atoms that are trapped in the crossed region as well as those located in the wings

of the horizontal trap. This leads to much more complicated dynamics in the trap.

Although evaporative cooling in a crossed configuration was demonstrated already in

1995 by Adams et al. [125] and has been used in several experiments to cool an atomic

sample down to degeneracy [126, 7, 10] since then, an adequate theoretical description

of evaporative cooling in such a trap is still missing. The main feature of these traps

is the persistent loading of atoms from the wings into the crossed region [127, 128] by

elastic collisions. This effect clearly shows up in our experiment (Section 5.2.4). In this
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Figure 5.7: Optimisation of the evaporation ramp. The duration t2− t1 of the ramp during
which the trap depth is reduced from U1 to U2 is varied. In every experiment, the phase space
density and number of remaining atoms is measured.

situation, one can not expect that the exponential form of the evaporation ramp that

is found to be the optimum for a single beam setup (see previous section) is still suited

to obtain highest phase-space densities and smallest possible atom loss. The ”road” to

degeneracy has to be found experimentally. This experimental method will be described

in the next section. The efficiency of the evaporation is however not determined by an

optimised ramp alone. The trap geometry, particularly the waist of the dimple beam also

plays a crucial role. Although our setup led to success and allowed us to reach degen-

eracy with a substantial number of atoms, there might still be room for improvements

of the trap geometry with regard to the number of atoms that can be obtained in the

condensate. Since changing the trap parameters in the experiment involves substantial

modifications of the experimental setup and requires a lot of experimental effort to find

a suitable evaporation ramp before the situations can be compared, I have developed

a fast numerical simulation method of evaporative cooling in arbitrary trap geometries

that will be discussed in Chapter 6.

Optimisation of the cooling procedure

Evaporation in the crossed trap is carried out by decreasing the intensity of the hori-

zontal beam. The intensity of the vertical beam is kept constant throughout the whole

evaporation procedure. The aim of optimising the evaporation ramp is to reach highest

possible phase space densities at the end of the ramp and to keep atom loss as small as

possible. The evaporation ramp is divided into several consecutive segments. In every

segment, the trap depth is decreased linearly from a starting value Ui to an endpoint

Ui+1. Optimisation of the ramp is achieved by varying the duration of every segment
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Figure 5.8: Optimisation of the second evaporation ramp from 50% to 70%. Left graph:
phase-space density gain per atom loss ln ρi+1/ρi

Ni+1/Ni
. Right graph: phase-space density at the

end of the ramp. Red dashed lines are guides to the eye. The red arrows mark the duration
that was finally chosen.

as depicted in Fig. 5.7, where the measure for the efficiency of a ramp is the gain Gi of

orders of magnitude in PSD per order of atom loss:

Gi =
log [ρi+1/ρi]

log [Ni+1/Ni]

and the maximum phase-space density that can be reached at the end of the ramp.

Figure 5.8 shows an example of such an optimisation experiment for the second ramp

step from 70% to 50% of the initial trap depth. In the left graph, the efficiency G2 is

plotted vs. the duration of the ramp. The right graph displays the phase-space density

at the end of the ramp. In this example, the highest phase-space density and efficiency

was obtained with a duration of 1800ms.

5.2.4 Discussion of the optimised evaporation ramp

With the final optimised evaporation ramp, degeneracy was reached with 100.000 atoms

at a temperature of 450nK . Six evaporation steps were needed to increase the phase-

space density to values larger than one. The final roadmap to reach quantum degeneracy

is the ramp of the horizontal beam depicted in Figure 5.9: within 5 s to 70%, 1.8 s to

50%, 1.1 s to 30%, 1.2 s to 20%, and 1.6 s to 10% which is just above condensation. In

a final ramp, we finally pass the critical PSD of ∼1.2 and Bose-Einstein condensation

occurs. This last ramp takes 250ms and we additionally hold the trap at constant power

for another 250ms to let the system equilibrate before the atoms are released from the

trap to take an absorption image.

Fig. 5.10 illustrates the evolution of the phase-space density during the whole prepa-
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Figure 5.9: Optimised evaporation ramp of trap beam intensity. After switching off the mag-
netic trap, transferring the atoms to the lowest Zeeman state, the intensity of the vertical beam
is ramped up to 100% during 5 s of plain evaporation in the horizontal beam. Subsequently
the intensity of the horizontal beam is lowered in 5 steps to 10% of its maximum. About
1.7 ·105 atoms are left after this ramp and the temperature is 1.0 µK. One final ramp is needed
to bring the sample from there to degeneracy.

ration cycle plotted vs. the number of atoms. Step (I) represents the magnetic trap

after repumping the atoms to the ground state where we find 1.3 · 108 atoms at a PSD

of ∼ 10−9. After Doppler cooling (step (II)), the same number of atoms is found but

the PSD increases by two orders of magnitude to 10−7. During rf-cooling, 2.5 orders of

magnitude in the number of atoms are lost and we end up at step (III) with ∼ 5 · 106

atoms and a PSD of 10−5. The transfer to the optical trap (step (IV)) increases the

phase-space density by a factor of 5 after the magnetic trap has been ramped down

while we lose about 60% of the atoms. Right after step (IV), the atoms are transferred

to the lowest Zeeman state and plain evaporation increases the PSD to 10−3 at step

(V). Between step(IV) and (V), we ramp up the second beam of the crossed trap. The

number of atoms at this point is > 7.5 · 105.

From there on, evaporation is forced by ramping down the horizontal beam in 6 steps.

The phase-space density and number of atoms after each of these evaporation steps are

represented by (VI) to (XI). From step (VI) on, open circles represent the number of

atoms trapped in the crossed region of the trap. Particularly during the first evaporation

steps, a larger number of atoms are still trapped in the outer regions (”wings”) of the

first beam shown in the inset of Figure 5.10. During the evaporation process, atoms

are permanently loaded from the wings into the crossed region, causing the number of

atoms in this region to stay almost constant during steps (VI) to (IX). After stage (IX),

finally all remaining atoms are in the crossed trap and the wings of the horizontal beam

are empty. From there on we lose less than half of the atoms in steps (X) and (XI) until

quantum degeneracy is reached at a remaining ∼ 6% of the initial power corresponding
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Figure 5.10: Evolution of phase-space density vs. number of atoms during the whole prepa-
ration process. After CLIP-loading (I). Doppler-cooling (II). RF-cooling (III). Transfer to the
ODT (IV). Plain evaporation (V). Forced evaporation (VI) to (XI). From step (VI) on, filled
circles represent the total number of atoms. Open circles represent only the atoms trapped
in the steep potential in the crossed region. For steps (IV) to (XI), the power in the hori-
zontal trapping beam in percent of the maximum power is also displayed. The inset shows
a typical image of a cloud at 70% power in the horizontal beam. A large number of atoms
are still located in the wings of the horizontal beam. Note that beginning from step (VI), the
phase-space density always refers to the measured peak value in the crossed region.

to ∼600mW.

The overall gain in phase-space density during the optical trapping period, starting at

a PSD of 5 · 10−5 with 1.5 · 106 atoms and ending at a PSD on the order of 1 with

105 atoms, is more than 4 orders of magnitude, whereas we lose only 1.2 orders in the

number of atoms. Thus the overall quotient of orders of PSD gain vs. orders of atom

loss is > 3.6 – almost twice as large as in the magnetic trap. This suggests the use of

higher laser power for the optical trap to form a deeper potential and therefore be able

to reduce the time of rf-evaporation in the magnetic trap and transfer the atoms into

the ODT already at an earlier stage.
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6 Molecular dynamics simulation of the

evaporation process

Abstract

To optimise the evaporation strategy and the trap geometry used for evaporative

cooling, a theoretical model is needed to estimate the PSD gain and atom number

loss during evaporation. The non-trivial trap potential and the complicated inter-

play between the atoms trapped in the crossed region and those roaming around in

the wings of the single beams at very different densities and trap frequencies com-

plicate such an analysis. A mathematical description of evaporation in a crossed

dipole trap in a way similar to what was discussed in Chapter 5 has not been for-

mulated yet. In this situation, where a theoretical model for the evolution of the

thermodynamic quantities of the whole system is missing, the analytical approach

has to be replaced by a microscopic description of the particle motion. A molecu-

lar dynamics simulation usually uses such a microscopic treatment of the motion

and interaction of a relatively small number of particles. Except for the generation

of starting conditions (and in the present case loss due to background collisions

which is implemented as a random removal of particles), these simulations are

completely deterministic by keeping track of all particle trajectories and using well

defined laws to calculate their motion and interaction. The basic structure of a

molecular dynamics simulation therefore consists of a linear approximation of the

particle motion by calculating the momentary velocity, letting the system evolve on

the single particle trajectories with constant velocity for a short time step, testing

for collisions and computing the results, re-calculating the particle velocities, and

so on.

The intention of simulating evaporative cooling in the crossed optical trap is obvious:

the experimental effort to implement a new trap geometry in the real apparatus, and

to test and compare the performance of the different setups is immense. However, it

is of great interest to know the right strategy that should be chosen when the setup

has to be changed. In our situation, the 20W trapping laser was to be replaced by a

device with 100W output at the same wavelength. The concrete question is, where to
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invest the extra power. Having four times more power in this beam, one could either

increase the waist by a factor of two, producing a dimple with the same depth but

twice the volume, or keep the volume constant and increase the depth by a factor of

four. The argument of increasing the density by an adiabatic deformation, as discussed

in Section 5.2.3, would suggest to make the dimple deeper to have the largest initial

gain in phase-space density. In addition, the gain in spatial density would lead to high

collision rates rates in the crossed region. However, not only is the density and phase

space density of interest but so are the number of atoms that can be cooled to high phase

space density. Additionally, it is clear that the density in the crossed region will become

larger, the deeper the dimple is. Although there is at the moment no evidence for a

large three-body loss constant, such loss could arise suddenly due to its n3 dependence

if the densities become larger than in the situations that have been studied up to now.

It would therefore be a valuable result to have an estimation of the maximum densities

that are expected in a certain setup.

Furthermore, it was also the question whether it would be possible at all to simulate a

comparably large system of millions of atoms with such a small number of particles in

the simulation that motivated me to write a molecular dynamics simulation.

6.1 Basic idea

Molecular dynamics (MD) simulations have one major drawback, namely the immense

increase of computation time with increasing number of simulated particles. To test

the system for collisions and to calculate the collision processes, one has to compare all

particle coordinates with each other. That means the computation time grows quadratic

with the number of particles1. For realistic system sizes, like in the case of our evap-

oration problem, the number of simulated particles would have to be on the order of

millions, leading to extremely long computation times2. To circumvent this restriction,

other groups have used Bird’s method [129] which simulates atom motion by tracing the

classical trajectories like in the MD method but uses a Monte-Carlo acceptance-rejection

method for the collision by randomly selecting a pair of atoms which are close in space 3

and comparing a random number with the calculated probability that they will collide.

The method has for instance been applied to the simulation of evaporative cooling of

cesium [130, 131, 132] and the generation of a sodium BEC [133].

The approach that I use is a strict molecular dynamics simulation where a Monte-

1The time needed for collisionless simulations however only grows linearly with the number of parti-
cles.

2Using the program that will be discussed in this chapter and trying to simulate 2 million atoms,
one simulation step which corresponds to 1 µs real time would take more than 12 hours.

3The whole space is divided into cells and only atoms living in the same cell can possibly collide.

90



6.1 Basic idea

v

v v

Figure 6.1: Three equivalent systems at equal temperature and mean velocity v. The par-
ticles all have the same mass. Left: 20 hard spheres with radius r0; middle: 10 hard spheres
with radius

√
2r0; right: 5 hard spheres with radius 2r0.

Carlo step is only used to generate new particles in the system. The atoms are treated

as classical hard spheres whose collision dynamics follows straight-forward classical rules

of energy and momentum conservation. To keep the computation time on an acceptable

level, the number of atoms that can be stimulated is restricted to a few hundred or

thousand. On first sight, this seems to prevent one from simulating evaporative cooling

of as many as one million or more atoms in a straight forward way. On the other hand,

the discussion in Chapter 5 suggests that the only determinant factor for evaporative

cooling is the elastic collision rate:

γel = n0σelvt.

If we intend to use a number Ns particles in the simulation instead of Nr particles in the

real system, this means that the collision rate is reduced by Ns/Nr and the simulation

will not be able to reproduce the real dynamics if all other parameters that describe

the system (length and time units, cutoff energy, system volume, temperature, and trap

frequencies), are identical to the real system. On the other hand, Eqn. (6.1) shows that

it is possible to conform the elastic scattering rate in the simulation to the one in the

real system by scaling the elastic scattering cross section. A multiplication of σel with

Nr/Ns in the simulation increases the scattering rate to the value in the real one. In this

case, the considerations made in Chapter 5 lead to the conclusion that the efficiency of

evaporative cooling should be the same in both the simulated and the real system.

The classical cross section of colliding hard spheres is given by

σcl
el = 4πR2,

where R is the radius of the sphere. The quantum mechanical scattering cross section

in the s-wave regime is

σqm
el =

8πa2

1 + k2a2

If we demand that within a certain time, a classical particle in the simulation undergoes

the same number of collisions as a quantum mechanical atom in the real system, the
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Figure 6.2: Harmonic approximation of the trapping potential in one beam. Black solid
line: real potential; red dotted line: harmonic approximation. The horizontal line in both
plots marks the zero energy level.

radius of the simulated particles has to be

R =

√
2
Nr

Ns

a2

1 + m2a2

~2 v2
r

,

where vr is the relative velocity of the colliding atoms. This can be viewed as a simula-

tion of macro-atoms, each of which represents α = Nr/Ns real atoms. This is illustrated

in Figure 6.1 for three different numbers of atoms. The collision rate in all three sys-

tems would be the same. The macro-atom method has also been used in the previously

mentioned Bird’s-type simulations [130, 131, 132, 133].

In the following, I will describe the general functionality of the MD simulation without

going too much into detail concerning programming and the concrete implementation.

For a nice overview over MD methods and general physical simulation, see for example

[134, 135].

The external potential in which the particles shall move is formed by two dipole trap

beams plus gravity. Some simplifications were made to allow for easy handling of the

external potential. Firstly, since we are not interested in rapid evaporation and systems

far from equilibrium but rather in optimum evaporation where the ratio between trap

depth and temperature is always large, the atoms will mainly be found in regions of the

trap where the potential can be approximated by a harmonic oscillator as depicted in

Figure 6.2. Second if we use this harmonic approximation, the acceleration at a posi-

tion ~r is ai = P1ω
2
1,iri + P2ω

2
2,iri ( i = x, y, z ) where P1 and P2 are the powers in W

of the two trap lasers, respectively, and ω1,i and ω2,i are the trap frequencies at 1W.

In y-direction, gravity accelerates the atoms additionally. Finally, the energy cutoff is

easily implemented with the harmonic approximation, since the approximated potential

crosses zero energy at z = ±zr in axial direction and r = ±1/
√

2w0 in radial direction.
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6.1 Basic idea

Thus, if |z| > zr of the horizontal beam, or y > 1/
√

2w0 of the horizontal beam, or

x > 1/
√

2w0 of the vertical beam, the particle will be removed from the system. Usu-

ally, if one would discard a particle from the simulation without replacing it, the system

would soon be empty. To keep the number of particles in the simulation constant, a

new particle is generated every time when one is removed from the system. Since this

changes the number of real atoms represented by one macro-atom in the simulation,

the hard-sphere radius has to be adapted according to Eqn. (6.1) to keep the elastic

scattering rate constant. The question that remains is which phase space coordinates

such a new particle should get. Wu et al. [130] have used a duplication method where

they wait until half of the atoms have been discarded from the system and then gener-

ate the same number of atoms by mirroring the existing particles. Every new particle

is a “clone” of another particle in the system. They only differ by the sign of their

phase space coordinates. In the simulation discussed here, a different approach was

chosen. Since the number of simulated particles is only 200 to 400 (Wu et al. were using

several thousand), copying one particle’s coordinates and simply inverting them would

possibly produce too strong correlations between the particles and could significantly

influence the collision probability4. Therefore, the new phase space coordinates of the

new particle that is born immediately after evaporating one particle are generated by

a Monte-Carlo method. The idea was to assume that the system is close to equilib-

rium, and thus the coordinates can be generated with random numbers such that the

probability of generating a particle with a certain set of coordinates ~p and ~r follows the

Maxwell-Boltzmann distribution f(E(~r, ~p)) = exp(−E(~r, ~p)/kBT ) for the total energy

that corresponds to these coordinates. It has to be mentioned that the largest deficiency

of the whole method is directly related to this way of generating the particles. First,

generating particles with the above method implies the assumption that the tempera-

ture T exists at all and second it is assumed that the properties of the whole system

do not change with the creation of such a particle. The temperature of the system is

determined by calculating the total energy of all particles and assuming that, according

to the equipartition theorem,

T ({~pi, ~ri}) =
1

3NkB

(
N∑

i=1

~pi
2

2m
+

N∑
i=1

U(~ri)

)
.

This restricts the method to systems close to equilibrium, where the above assumptions

are fulfilled. The distribution of energies in the system was compared with the expected

distribution in thermal equilibrium at different times during the evaporation. Figure 6.3

shows an example of such a comparison for the kinetic energy. The agreement is even

4 Imagine for instance a particle with an orbital trajectory. If this particle would be “cloned” by just
inverting the momentum ~pclone = −~poriginal and spatial coordinates ~rclone = −~roriginal, they would
simply circle on the same orbit with a 180 ◦ phase shift and not meet again before one of them is
thrown out of its orbit by a collision with another particle.
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with the distribution generated by many ran-
dom placements (black dotted line).

better when the potential energy is also considered. This leads to a better statistics since

twice the number of degrees of freedom are considered in this way. In all cases where

such a comparison was made, the assumed equilibrium distribution and the histogram

closely agreed.

The problem is now to generate random coordinates which reproduce the Maxwell-

Boltzmann distribution at temperature T . Random number generators always produce

equally distributed numbers. One method to generate random numbers with a Gaussian

normal distribution is the Box-Muller transformation method [136]. The distribution

that we have to generate is even more complicated due to the dimple in the potential.

The solution of this problem was to first decide whether an atom should be placed in the

dimple region or in the wings. This is accomplished by comparing an equally distributed

random number to the relative probability

pdimple =
1

1 + ξ
with ξ =

e
−

bU1
kBT

−e
−

bU1+ bU2
kBT − e

−
bU1

kBT

;

of finding an atom in the dimple. Here Û2 is the trap depth of the dimple and Û1 is the

depth of the single beam trap. If the random number is larger than pdimple, the atom

will be placed in the wings, otherwise in the dimple. Once we have decided in which

potential the atom will be placed, the generation of adequate coordinates is simple. One

94



6.1 Basic idea

has to calculate the variance of the thermal Gaussian in the respective potential and

generate normal distributed random numbers with the same variance. In Figure 6.4, the

real thermal distribution is compared with the distribution resulting from many such

random placements. Only a small difference is visible at the border between the dimple

and the wings.

The algorithm used to integrate Newton’s equations of motion is the “Leap frog al-

gorithm” [137]. After an initial configuration is generated, the system propagates as

follows

• The system time is increased by one time-step ∆t that is adapted to the largest

speed in the system, such that within one time step, two particles can not penetrate

each other by more than 1% of their radius. The maximum time step is 1µs.

• If one of the coordinates of a particle is larger than the previously discussed limits,

it is evaporated, Nr/Ns is adapted, the total energy (i.e. the quasi temperature) is

calculated, and a new particle is generated randomly. If the newly generated atom

would overlap with another one in the system, the procedure is repeated until the

atom sits at a position where it is not in direct contact with another atom.

• Background loss is incorporated by removing atoms randomly from the trap with

a probability that fits with the experimentally observed lifetime of the trapped

sample.

• The speeds of all particles are updated to ~vi(t) = ~vi(t−∆t) + ~ai(t−∆t)∆t.

• The particle positions are updated to ~ri(t) = ~ri(t−∆t) + ~vi(t)∆t.

• The system is checked for collisions by calculating the distances δ~ri,j = ~ri − ~rj

for all pairs i, j of atoms. If |δ ~ri,j| < Nr/Nsa, where a is the scattering length

in the unitarity limit, the relative velocity δ~vi,j = ~vi − ~vj is calculated and the

inter-particle distance is compared to the velocity dependent scattering length

from Eqn. (6.1). If the distance is smaller than this number, the new velocities

are calculated using simple hard-sphere collision mechanics with total momentum

and energy conservation. Furthermore, the atoms are moved radially outwards

such that they just touch and do not penetrate each other anymore. Otherwise a

collision of the same two particles would be detected in the next simulation step

again.

• If the external potentials are time dependent, they are now set to the new values

according to the given time-dependence.

• The acceleration ~ai(t) are calculated depending on the position of a particle.

• After a certain number of simulation steps, the total energy, total kinetic energy,
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Figure 6.5: Comparison of experimental results (black circles) and simulation (blue line)
of the plain evaporation stage in the single beam trap. The simulation was performed using
250 particles. Error bars on the experimental data are estimated ±10% deviations of the
temperature and the number of atoms (compare Section 7.2).

total potential energy, the numbers of atoms in the dimple and the whole trap, the

trap parameters and the system time, and optionally all phase space coordinates

of the atoms are written to file.

• The whole procedure is repeated.

The data output is analysed by external Matlab programs, either by generating 2D

histograms of the particle coordinates and using gaussian fits to determine the tempera-

ture, density distribution and phase space density or by extracting these numbers from

the temperature, number of atoms and the trap parameters which are exactly known.

To get rid of fluctuations due to the small number of simulated particles, these numbers

are averaged over some tens of milliseconds by a moving average over the data output.

A simulation of the full evaporation ramp takes about 4 hours on a standard PC5.

6.2 Comparison with experimental data

To prove that it is possible to simulate the evolution of a sample of 1.5 · 106 atoms using

only a few hundred particles in the simulation, an initial configuration was created that

corresponds to the situation found in the single beam trap directly after pumping the

atoms to mJ = −3 (compare Chapter 5.2.1). The evolution of the trapped cloud was

simulated for 5 s at constant power in the horizontal beam and without the vertical

beam. Figure 6.5 shows a comparison of the simulation results with the experimentally

5 Intel Pentium IV, 3GHz, 2GB RAM, Linux
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Figure 6.6: Snapshots of the density distribution in the simulation. Left figure: Initial
distribution in the single beam trap. Right figure: Distribution with about 60% power in the
horizontal beam. The black bars give the real length scale in the figure.

measured time dependence of the number of atoms and the temperature.

The next step is to simulate the whole plain and forced evaporation with exactly the

time dependent potentials as in the experimental procedure (see Fig. 5.9). Two snap-

shots of the spatial distribution of the particles at the beginning of the plain evaporation

and at one intermediate time are represented in Figure 6.6 in the form of 2-dimensional

histograms of the y- and z- spatial coordinates.

The result of a simulation using only 200 particles is compared to the experimental

findings in Fig. 6.7. The experimental data is the same as in Fig. 5.10 and error bars

correspond to a 20% uncertainty in the number of atoms. As for plain evaporation, the

simulation agrees very well with the experimental data. The number of atoms at the

end of the ramp deviates only by 15% and the phase space density found at the end of

the simulation is 50% smaller than in the experiment. This is a small difference, hav-

ing in mind that we simulate the evolution of the phase space density over four orders

of magnitude. Moreover, the starting conditions in the experimental runs, where the

evaporative cooling in the crossed trap was studied, were probably better with regard to

the initial number of atoms6. The larger difference between the experimental data and

the simulation in the earlier data points between 70% and 30% power in the horizontal

beam is probably caused by the different methods of counting the number of atoms in

the simulation and the experiment. The number of atoms in the dimple is not easy to

measure experimentally if the number of atoms in the wings of the horizontal beam is

still larger. In such a situation, the distribution of the atoms in the dimple sits on top

of a large background produced by the atoms in the wings along the z-axis whereas in

the y-direction the offset is essentially 0. Our standard 2-D fit of time of flight images

does not deliver reliable numbers in this case. On the other hand, in the simulation

the number of atoms can simply be determined by deciding whether an atom has to be

6These measurements were performed a few months after the plain evaporation had been studied
and the whole experimental setup was already more optimised.
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Figure 6.7: Comparison of a simulation of the full evaporation ramp using 200 particles
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counted or not on the basis of its spatial coordinate.

6.3 Simulation with different parameters

6.3.1 Comparison of phase space densities

Since the simulation agrees well with the experimental data, it is expected to give

realistic results also for other traps. The concrete task is finding a strategy for the

implementation of the 100W laser. In a first set of simulation runs, the performance

of the evaporation ramp was simulated with a waist of 86µm because this waist has

already been used in an earlier setup. The required extra telescope in the beam path

of the vertical beam is already prepared and could be easily reactivated by inserting

lenses in posts which are already mounted at the correct positions. Three simulations

were carried out with two different maximum powers in the vertical beam and the time

dependent potential of the experimental ramp. First with 4.5W laser power in the

vertical beam like in the previous run and second with 13.3W which produces a dimple

with the same depth as with 4.5W and 50µm waist. In a third run I finally simulated

evaporation with 13.3W and 50µm where the extra power was used to increase the
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Figure 6.8: Comparison of the efficiencies of three different combinations of laser powers
and waists of the vertical (dimple) beam.

depth and frequencies but not the volume. The results of these simulations are shown

in Figure 6.8. This shows clearly that evaporation in the 86µm configuration works

less efficient (less atoms in the end at a smaller final phase space density) than in our

experimental setup whereas evaporation in the deeper trap with 13W laser power and

a waist of 50µm leads to a higher final phase space density. Moreover this phase space

density is reached with a larger number of remaining atoms.

As already mentioned, the trap depth scales linearly with the power and inversely

quadratic with the waist whereas the frequencies scale with the square-root of the power

and inversely with the waist. The trap frequencies produced by the vertical beam in

the second simulation are therefore smaller than in the experiment although the depth

is the same. Hence finding a less efficient evaporation in the 86µm setup with the

same ramp could also be due to the wrong evaporation ramp because it is optimised

for the larger collision rate in the 50µm waist trap. To check this the ramp was also

simulated with a different time dependence. Strictly speaking, the ramp would have to

be optimised for this geometry first to be able to make a full quantitative comparison

of the evaporation performances, which could in principle be done with the simulation.

However, we are mainly interested in a qualitative trend and it is therefore sufficient to

estimate the change of the collision rate to adapt the slope of the evaporation ramps.

The main contribution to the trapping frequencies in the x- and y-direction stems from

the horizontal beam. The only frequency that is mainly affected by the vertical beam

is the frequency on the z-axis. At the same trap depth, the frequency in the 86µm

configuration is a factor 50/86 ≈ 1/1.7 smaller than with 50µm, i.e. the volume of the

trap is smaller by the same factor, too. Assuming that the density changes approximately
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Figure 6.9: Comparison of the efficiencies of two different speeds of the evaporation ramp in
a dimple with 86µm waist and 13.3W power. One ramp uses the “standard” time dependence
that was optimised experimentally for a dimple with 50 µm waist and 4.5 W laser power. The
other evaporation ramp at half speed to compensate for the smaller collision rate. Obviously,
the slower ramp thus not significantly improve the effectiveness of evaporative cooling.

proportional to the trap volume, the times for all ramps in that run were doubled. Since

the background collision limited lifetime is relatively long compared to the ramps, the

optimum should be close to that. If a general trend in the dependence on the ramp speed

would be observed, the simulation could be repeated with yet another time dependence.

Figure 6.9 shows a comparison of the simulation with 50µm and 4.5W and 86µm and

13.3W with the slower ramp. Remarkably, the two ramps produce nearly the same

final results, as well as a similar evolution during the ramp. The use of three times

more power did not improve the evaporation efficiency in both cases compared to our

experimental setup. One can therefore clearly argue that the best way of investing extra

laser power is to increase the trap depth instead of the volume.

6.3.2 Comparison of spatial densities

However, one problem in interpreting this result is that no loss mechanisms other than

background gas collisions are incorporated in the simulation, mainly because there is no

experimental hint that would suggest the use of a certain value for the three-body loss

rate. This could give rise to deviations between the simulation and the real system if

the densities that occur during the ramp would be much higher than the density ranges

that have been explored experimentally because three-body loss increases very fast with

growing density. A comparison of the maximum densities in the different simulations
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Figure 6.10: Evolution of the spatial density in three different combinations of waist and
laser power in the dimple beam. The horizontal dotted line marks the maximum density
that has been observed in a chromium BEC. The measured lifetime of the condensate at that
density was 5.8 s.

gives an estimation of whether density dependent loss will play a roll in the case of

a deeper dimple. The evolution of the spatial density for evaporative cooling in three

different traps is displayed in Figure 6.10. The first one is the usual 50µm,4.5W trap.

The second is a trap twice as deep but with a
√

2 larger waist of 70.7µm at 18W. The

third one with a waist of 50µm and a laser power of 18W produces the largest number of

atoms and phase space density at the end and was another factor of 1.4 deeper than the

50µm, 13.3W trap considered before. This ramp resulted in 210000 atoms in the dimple

when a phase space density of 1 was reached after 7 s of forced evaporation. Figure 6.10

shows that even in this trap, the maximum density stays below 1020 1/m3 most of the

time, i.e. a factor of 2.5 smaller than the maximum density observed in a chromium

condensate where a lifetime of 5.8 s was found (discussed later in Chapter 7). Although

this lifetime was probably not limited by three-body loss, let us assume such a limit in

a conservative approximation. Since these losses would depend on n3, the three-body

loss rate would be more than 10 times smaller than that. Even taking into account the

sixfold suppression of three body recombination in a BEC [138, 139] compared to thermal

clouds, one can expect a three-body limited lifetime of around 10 s also in the deep trap.

This is not expected to be a limiting factor for an efficient evaporation. Moreover, we

have not taken into account so far that the evaporation in this steep trap can be much

faster due to a higher collision rate. The collision rate increases proportional to the

density in the dimple which is almost two orders of magnitude larger in the deep dimple

than in the standard configuration, theoretically allowing the evaporation to happen 100
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6 Molecular dynamics simulation of the evaporation process

times faster. Hence the lifetime relative to the time needed for evaporative cooling is

even increased in the deep trap. Another possibility to circumvent potential three-body

loss is to make use of the deep dimple in the beginning of the evaporation ramp to load

as many atoms as possible into the crossed region and lowering the depth of the dimple

gradually during evaporation to keep the density on a constant, acceptable level.

6.4 Conclusions

The molecular dynamics simulation that has been presented in this chapter has proven

to give results that agree very well with experimental studies of evaporative cooling in

the crossed dipole trap. It provides a fast possibility to try evaporation under different

conditions. The simulation has been used to find a strategy on how to take advantage

of the enhanced laser power that is now available in our lab. It was found that the

best strategy is to invest the power to generate a deeper dimple instead of increasing its

volume. The simulation also showed that one can expect a four times larger number of

atoms in the condensate when the dimple is made a factor of four deeper. The maximum

density that occurs in this configuration is lower than densities that have been observed

experimentally and which showed no evidence of density dependent loss.

Some improvements of the program could however increase its consistence when very

dense clouds are simulated. Loss processes other than loss due to background collisions

are not implemented in the simulation yet. Therefore the results of simulations at

much higher densities than those found in the experiments that have been performed

so far would be questionable. Once the three body loss constant is known, such losses

could be implemented in the simulation by introducing a local, density dependent loss.

This would require a routine which is able to determine the density distribution at any

time within the simulation program. Such a routine is not implemented up to now.

Furthermore, to be able to also simulate situations which are further away from thermal

equilibrium, like a continuously loaded trap or rapid cooling, it would be necessary to

change the method that is used to generate particles in the system. One solution might

be the cloning method used by Wu and Ma [130, 131]. But due to the small number of

atoms in the simulation, one should first analyse the consequences on the probability of

collisions among the atoms before employing the method.

Additionally valuable insight into the transfer from the magnetic to the optical trap

could be gained by simulating this situation with different depths and frequencies of

the optical potential. This would require dipolar relaxation to be implemented in the

program.
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7 Bose-Einstein condensation of chromium

atoms

Abstract

This chapter documents the first experimental realisation of a Bose-Einstein con-

densate of chromium atoms. By comparing the shape of the momentum distribution

and the expansion dynamics qualitatively with the predictions for a degenerate Bose

gas (see Chapter 1), it is proven that the gas has indeed undergone the phase transi-

tion. Cuts through the density distribution and corresponding fits to the data under

different conditions show that the system is well described by the functions used to

determine the thermodynamic quantities under all these conditions. A quantitative

analysis of the dependence of the condensate fraction on the reduced temperature

is presented. It is compared to theoretical predictions (compare Section 1.4.3) and

used to calibrate the atom number determination in the experiment. The basic

results presented in this chapter have been published in [1] and [47].

7.1 Reaching degeneracy

When the trap depth is lowered in one final evaporation ramp to a value below 6% of the

maximum, Bose-Einstein condensation of chromium atoms is observed at a temperature

of 450 nK by the appearance of a narrow peak (compare Section 1.4.1) in the center of

the density distribution gained from time of flight images taken 4ms after the sudden

switch-off of the two trapping lasers. Shortly before the peak appears, the closeness

to degeneracy announces itself by a deviation of the momentum distribution from the

ideal gas limit. As has been discussed in Section 3.3.1, the proper distribution function

to describe a Bose gas is the Bose-Einstein integral. Only at temperatures far above

Tc, this distribution is well approximated by the Maxwell-Boltzmann distribution, such

that a Gaussian is suited to fit the density profile in an absorption image in this case.

Close to Tc, the Gaussian and Bose fits on the wings of the density distribution start

to differ. This effect is illustrated in Figure 7.1. The first column shows 3-dimensional
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Figure 7.2: Trap potential in the vertical y direction at the final 2.5% of the maximum
power in the horizontal beam. Gravity g adds an additional gradient in y direction to the trap
potential which lowers the effective depth of the trap.

representations of the density distributions obtained from images taken after different

final powers of the last evaporation ramp. In these 3-D diagrams, dense regions are

represented by large values on the vertical axis. The x- and y- directions correspond

to the position on CCD chip. Cuts through the density profiles obtained from cuts

through the center of mass of the distribution along one axis are displayed in the second

column together with the Gaussian-, Bose-, and Thomas-Fermi-fits to the distributions.

The third column contains some important data obtained from these fits. The profile

in the first row is well represented by a Gaussian (Eqn. (3.3.1)), whereas the one in

the second row is clearly non-Gaussian although it is still not in the degenerate regime.

In this case, Eqn. (3.3.1), represented by the red line, has to be used to describe the

distribution properly. In the center, where the distribution is affected most by the Bose

enhancement, the Gaussian fit represented by the black line deviates significantly from

the measured density profile. Beginning from the third row, corresponding to 5.8% of

the maximum trap depth, the density profile shows a Bose-Einstein condensate in the

center. When the trap depth is reduced further, this central peak grows on cost of a

diminishing number of atoms in the surrounding thermal cloud. The last row shows the

profile of a nearly pure Bose-Einstein condensate at a very low final power of 2.5% of

the maximum corresponding to 230mW. Gravity adds a potential gradient in vertical

direction and ’tilts’ the trapping potential as depicted in Fig. 7.2. Therefore the trap

depth in this situation is less than 2µK. The temperature of the remaining thermal

atoms has been measured 120 nK which is the lowest temperature ever observed in a

sample of chromium atoms.
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Figure 7.3: Condensate fraction (N0/N) dependence on scaled temperature (T/T 0
c ). Black

circles represent the measured data. The red dotted line represents the predicted fraction,

approximated by N
N0

= 1−
(

T
Tc

)3
where Tc = T 0

c +δT int
c +δT fs

c . δT fs
c = −0.73 ω

ωho
N−1/3T 0

c is a

shift in the critical temperature due to the finite number of atoms and δT int
c = −1.33 a

aho
N1/6T 0

c

takes into account the contact interaction (Eqn. (1.4.3)). Here a = 103 a0 is the chromium
scattering length [19] at 10G (Compare Appendix B), aho is the harmonic oscillator length, T

is the temperature of the thermal cloud, ωho is the geometric and ω the arithmetic mean of the
trap frequencies. The dashed line is for an ideal gas but takes into account the finite number of
atoms. The solid line shows the dependence for the ideal gas. The error-bars are representative
for all data points. They are due to a uncertainty in the number of atom determination which
affects both the calculated critical temperature and partly the condensate fraction and in the
determination of the temperature. For the condensate fraction, the uncertainty of the total
number of atoms (such as a detuning of the probe laser) does not contribute but only the error
in the weighting between the two fractions.

7.2 Analysing the BEC transition

To analyse the dependence of the condensate fraction on the system temperature, the

trap depth was lowered in subsequent experiments from 10% to 2.1% in a series of

consecutive experiments. Absorption images were taken after a relaxation time of 250 ms

in the final trap and a time of flight of 4ms. The temperature was determined from

the width of a 2-dimensional gaussian to the outer wings of the thermal cloud (see

Section 3.3.1) and the number of atoms in the thermal and the condensed part was

determined from 2-dimensional fits of Eqns. (3.1) and (3.3.1) to the density profiles. In

an optical dipole trap, the trap parameters vary together with the depth of the trap and

lead to a dependence of Tc on the final trap depth. To eliminate this dependence, the

measured temperature was re-scaled to the corresponding prediction for the transition

temperature T 0
c of an ideal gas which was calculated from the measured number of
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7.3 Expansion of the condensate

atoms and the trap parameters using Eqn. (1.16). This re-scaled temperature, the

trap parameters, and the total number of atoms from the fits were used to calculate

the expected condensate fraction under consideration of the finite size of the system

(Eqn. (1.4.2)) and contact interaction among the atoms (Eqn. (1.4.3)) for every data

point. A comparison of the T/Tc dependence of the measured condensate fraction with

this prediction showed a systematic ∼5% shift of the measured dependence to higher

temperatures. The trapping parameters have been determined with remarkable precision

(see Chapter 4.6), the calibration of the imaging system was cross-checked to exclude

errors in the measurement of sizes, and timing errors are also expected to be orders of

magnitude below the 4ms of time of flight. Therefore the determination of the number

of atoms was supposed to be the most likely source for this systematic deviation. Right

at the critical temperature, equation (1.4.3) can be used to calculate the total number

of atoms by setting N0 to zero and inserting the measured temperature in the equation

Ntot = NT =
T 3ζ(3)kB

3

ωho
3~3

. (7.1)

To calibrate the number determination with this method, an image was chosen, where no

condensate was visible yet but which was just above Tc. It turned out that a correction

factor of 1.16 had to be applied to correct the number of atoms obtained from the

image such that it fulfills Eqn. (7.1). If the imaging light is assumed to be detuned

from resonance by 0.20Γ =1MHz, the measured number of atoms is increased by the

16% according to Eqn. (3.1). The assumption of a deviation of the laser detuning from

δL = 0 on this order is reasonable since the width of the error signal for the 426 nm

light stabilisation is about 40MHz (corresponding to 8 times the linewidth). A 0.20Γ

detuning therefore corresponds to a shift of the lock point by only 1/40 of the signal

amplitude. Additionally, the spectroscopy signal is subject to a long term drift with

respect to the resonance in the chamber due to changes of the magnetic fields at the

position of the chamber and the position of the spectroscopy cell. With this calibration

of the atom number determination, the measured dependence of the condensate fraction

on the scaled temperature agrees with the prediction for an interacting Bose-gas given

by Eqn. (1.4.3) within errors as depicted in Figure 7.3. However, the experimental data

seems to lie systematically slightly below the theoretical prediction. Since this kind

of measurement is obviously very sensitive to a correct determination of the number of

atoms, this deviation could still be due to an error in the atom number. An interpretation

is therefore not possible.
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7 Bose-Einstein condensation of chromium atoms

Figure 7.4: Three series of absorption images of expanding clouds taken after 1..9 ms time of
flight. a) Thermal cloud just above Tc b) Condensate released from an almost spherical trap.
c) Clearly anisotropic expansion after release from a trap with an aspect ratio of 1 : 4.8

7.3 Expansion of the condensate

A further clear signature of Bose-Einstein condensation is the anisotropy of the expan-

sion in time of flight 1 when the sample is released from an anisotropic trapping potential

as has been discussed in Section 1.5. To study this effect, we prepared condensates in

traps with different anisotropy. Figure 7.4 shows typical series of time of flight images

taken after 1ms to 9ms of free expansion. The upper row a) shows images of a thermal

cloud just above condensation and b) shows a condensate which was released from a trap

with a power of 240mW in the horizontal beam. The trap frequencies on the visible axes

are fz=144Hz and fy=222Hz, resulting in a relatively small anisotropy of fy/fz =1.5 ,

reflected in an almost isotropic expansion of the condensate. For the set of images in

the second row, the condensate was prepared in the same trap, but before releasing the

1An anisotropy in the expansion of thermal clouds has also been predicted by Kagan et al. [140] and
observed experimentally by Shvarchuck et al. [141] in a thermal gas of 87Rb. However, this only
happens in the hydrodynamic regime, where the mean free path is much smaller than the extension
of the cloud and the collision rate is much higher than the trap frequencies which is not the case in
the experiments presented here.
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Figure 7.5: Dependence of the condensate size on the expansion time. The recorded quan-
tities ry and rz are the radial extensions of the BEC in vertical and horizontal direction,
respectively. Initially, the condensate is elongated in horizontal direction (rz > ry). After
1.5 ms time of flight, the aspect ratio is one. For larger times, the aspect ratio is inverted.

atoms, the laser power was adiabatically increased to 2.3W within 250ms. The frequen-

cies are fz=144Hz and fy=689Hz corresponding to an aspect ratio of fy/fz =4.8 . As

expected, the condensate expands faster on the vertical y-axis in which it was confined

more before the trap was switched off. This leads to the typical change of the aspect

ratio.

Figure 7.5 shows the widths in the two visible directions plotted versus the expansion

time. At t ≈1.5ms, the radii ry and rz are equal (the aspect ratio of the condensate is

1) and for longer expansion times, the condensate is elongated in vertical direction.

7.4 Lifetime of the condensate

The lifetime of the Bose-Einstein condensate in the trap is of special interest, since only

if this state is stable for a sufficient time, can one hope to have enough time for experi-

ments.2 Changes of the trap parameters, of the external magnetic fields, and transfer

of the condensate into an optical lattice in future experiments, have to be performed

adiabatically to prevent unwanted excitations or even destruction of the condensate.

The relevant timescale is the trap frequency which is on the order of 100Hz in the trap

where the evaporation ends. Thus, manipulations like the ones mentioned above take

2Studying the density dependence of the condensate lifetime is also of scientific interest, since the
2-body and 3-body loss coefficients K2 and K3 that one gains from analysing the decay are closely
related to the correlations between the particles [139]. Such an analysis was however not the intend
of the measurement presented here.
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Figure 7.7: Density of the condensate
(black circles) and thermal cloud (red
squares) in the same trap.

several milliseconds. For the detection of the dipolar interaction between the atoms (see

Chapter 8), the trap had to be compressed to generate an anisotropic potential and the

magnetic field had to be rotated by 90 ◦ during the lifetime. In this trap, the spatial

peak density of the condensate reaches values of n̂c ≈5 × 1020 1/m3. A three-body

loss constant larger than the Kc
3 = 5.8 · 10−42m6/s measured in condensates of Rb87 in

|F = 1, mF = 1 〉 [139] and Kc
3 = 1.8 · 10−41m6/s in |F = 2, mF = 2 〉 [139, 142] would

limit the condensate lifetime in this regime to much less then a second and possibly limit

the experimental possibilities. Additionally, heating rates in the stored sample can be

different at different trap parameters due to noise induced parametric heating [143] and

limit the lifetime at certain parameters. Therefore, we have measured the condensate

lifetime under two conditions to have a rough estimate of these limits.

The first measurement was carried out under the conditions found after the final

evaporation ramp. Figures 7.6 and 7.7 show the dependence of the condensate and

thermal atom number and density on the storage time in the trap, directly after the end

of the evaporation ramp. The 250ms holding time after the ramp, that is usually given

to the cloud to equilibrate, is also contained in the data. Within the first 100ms, the

condensate fraction is still growing and reaches its maximum at t =100ms. This growth

of the condensate and the initial decay of the thermal atom number can be better viewed

in Figure 7.8 where the number of atoms in the BEC as well as the number of thermal

atoms and the total number are plotted vs. a logarithmic timescale. Up to the time

500ms after the end of the evaporation ramp, the thermal atom number drops rapidly

while the condensate is growing. This is a hint that the system has not equilibrated
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Figure 7.8: Number of atoms in the condensate (black circles), in the thermal cloud (red
squares) and the total atom number (blue triangles) plotted vs. logarithmic time. Lines
connecting the thermal and total number data are guides to the eye. The solid line is the fit
result for one-body loss.

yet and evaporation is still going on. Such a supposition is encouraged by the fact

that within the same time, the temperature of the cloud drops from 400 nK to 170 nK.

Assuming only one-body loss which is justified by the decay of the condensate number of

atoms showing an apparently pure exponential behaviour, the lifetime of the condensate

has been determined. Fitting an exponential decay according to dN/dt = −γN(t) to

the data, beginning at 100ms where the condensate atom number is maximum, yields a

lifetime of τ =5.8 s or γ = 1/τ=0.17 ·1/s in the shallow trap which is a convenient time

scale for experiments to be performed with the condensate.

The reason why the lifetime of the condensate is substantially smaller than that of

the thermal cloud remains unclear. Since the decay of the condensate atom number

is – like the decay of the thermal cloud – obviously governed by one-body loss, one

would expect the same lifetime for both the thermal and the condensed fraction. For

the second measurement at higher densities, we prepared a BEC in a trap with 3%

power in the horizontal beam. After the end of the evaporation ramp, the system was

given an equilibration time of 250ms. Subsequently we increased the intensity of the

horizontal beam adiabatically3 to 25% within 25ms. The condensate was held in this

compressed trap for variable times before it was released and an image was taken after

an expansion time of 5ms.

The measured number of atoms in the condensate and the thermal cloud are shown in

Fig. 7.9. The corresponding peak densities are plotted in Fig. 7.10. As can be seen

from these figures, the lifetime of the condensate in this trap is much shorter than

3The timescale for this change of the trap frequencies was given by the lowest trap frequency in the
initial potential of 128Hz in z direction.
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Figure 7.9: Decay of the number of atoms
in the condensate (black circles) and the
thermal cloud (red squares) in the steep trap
at 25 % power in the horizontal beam corre-
sponding to 2.3W.
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Figure 7.10: Time dependence of the peak
density of the condensate (black circles) and
the thermal cloud (red squares) in the steep
trap.

in the weak one. The condensate number decays to zero within 2 s. The density in

the condensate is initially 6.5 ·10201/m3, almost a factor of three higher than in the

weak trap. Due to this fact, one could suspect three-body loss as the reason for the

rapid decay since these recombination losses depend on the probability of three atoms

colliding and therefore are proportional to the third power of the density. A threefold

increase of the local density increases the three-body loss rate by a factor of 27. But

since in our measurements, the decay of the condensate happens in favour of a growing

number of atoms in the thermal cloud, the faster decay of the BEC is attributed rather

to a heating effect than to three-body loss. This assumption is strengthened when

viewing the time dependence of the temperature of the cloud.

Figure 7.11 shows the temperature determined from the width of the expanded thermal

cloud. Starting at 500 nK, the cloud heats up at a rate of ∼350 nK/s and approaches

the critical temperature from below which is reached after 2 s, consistent with the

finding that after 2 s, the condensate has vanished completely. Such a plot however

has to be viewed with care: the observation that there is no condensate and that the

temperature is above Tc are equipollent. As discussed in Chapter 1, the condensate

fraction and critical temperature of the system are both fully determined by the trap

parameters, the interaction strength and the total number of atoms in the system. The

condensed and non condensed fraction are in a balance. If the number of atoms in

the system is reduced by a loss mechanism, the system temperature and the critical

temperature approach each other, too – with one difference: in the latter case, the

critical temperature lowers. This is not the case in the measurement being discussed.

Here the critical temperature stays almost constant because the total number of atoms
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line: temperature determined form the width in z-direction; solid line: mean value; red dots:
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is stable and the temperature of the atoms in fact rises. As an additional argument

against three-body recombination being the main reason for the fast loss, the decay

does not level off when the density of 2·1020 1/m3 is reached where a lifetime of 5.8 s

was found in the weak trap.

The source of the heating remains yet unclear. Most likely, the motion of the trapped

atoms is resonantly excited by fluctuations of the laser pointing or intensity at frequen-

cies close to subharmonics of the trap frequencies. A similar heating rate of 150 nK/s

has also been found in a trap operated at 4.2% directly after the evaporation but was

not present in the 3% trap which shows almost the same peak density. An excitation

during the ramp up of the laser power can be excluded since the heating rate seems to

stay constant throughout the measurement period.

7.5 Conclusion

In this chapter I have presented the first experimental realisation of a Bose-Einstein

condensate of chromium atoms – the first realisation of a Bose-Einstein condensate of

atoms which carry a large magnetic dipole moment.

The first almost pure condensates that we were able to produce already contained 20000

to 30000 atoms which is an excellent basis for further experiments. Meanwhile, we are

able to produce condensates containing up to 100.000 atoms. The observation of the

typical features of Bose-Einstein condensates – the appearance of a sharp and dense
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7 Bose-Einstein condensation of chromium atoms

peak in the momentum distribution and the typical anisotropy in the expansion – are

clear proof that the atoms have undergone the Bose-Einstein phase transition. I have

also shown that the condensate is very stable. The measured lifetime of 5.8 s in the

shallow trap is a very comfortable basis for upcoming experiments, giving us enough

time for all kinds of manipulation and the possibility to work under stable conditions.

The somewhat shorter lifetime that is observed in a eight times deeper trap is probably

limited by technical noise.

As a conclusion, there is no hint for strong three body loss in the density regime that

has been studied so far. At least such processes are weak enough loss mechanisms to

be covered by other sources of atom loss. In the 25% trap, a relatively strong heating

rate has been made up, that could so far not be explained. Closer analysis of the

laser intensity and positioning noise spectrum as well as a detailed examination of the

dependence of the heating rate on the trap parameters could help find the reason for the

heating. Despite this reduced lifetime, it is sufficiently long to carry out experiments

with this trap and the decay is not too rapid to prevent the generation of stable starting

conditions in a series of experiments.

The successful generation of a chromium Bose-Einstein condensate, together with its

sufficiently long lifetime, opens the door to new types of experiments which aim on the

anisotropic and long-range character of the magnetic dipole-dipole interaction among

the chromium atoms. So far it is the only system where one can expect to observe such

effects.

The manifestation of this kind of interaction in the chromium BEC will be presented in

the next chapter.
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8 Magnetic dipole-dipole interaction in a

Bose-Einstein condensate

8.1 Theoretical description

Abstract

In this chapter, I will discuss the first experimental observation of dipole-dipole

interaction in a degenerate quantum gas. The chapter starts with a summary of

the theoretical description of dipole-dipole interaction in a BEC in Sections 8.1.1

and 8.1.2. The expansion of a dipolar BEC will be discussed in Section 8.1.3. A

theoretical introduction is followed by a presentation of the first experimental ob-

servation of magnetic dipole-dipole interaction in a gas.

The magnetic dipole-dipole interaction between the 52Cr atoms is identified by mon-

itoring the expansion of the condensate from an anisotropic trap potential. With a

significant change of the aspect ratio, depending on the orientation of the atomic

magnetic dipoles with respect to the orientation of the trap, we observe a clear

evidence of dipole-dipole interaction in the BEC. The results of the measurements

are compared to exact solutions of the superfluid hydrodynamic equations in Sec-

tion 8.2. The analysis of the expansion dynamics will be used in Section 8.3 to

determine the relative strength of the dipole-dipole interaction and the s-wave scat-

tering length of chromium, both with a high degree of accuracy and in excellent

agreement with theoretical predictions and previous measurements. Parts of the

results presented in this chapter have been published in [2], [144], and [145].

8.1.1 Interaction potential

Consider two atoms (Fig. 8.1) with a magnetic moment ~µm = µm~eµ oriented along the

direction of an external magnetic field ~B (~µm‖ ~B). Here ~eµ is a unit vector defining the

orientation of the magnetic moment. The interaction energy of the two dipoles separated
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Figure 8.1: Two dipoles ~µ aligned in an external field ~B.

by the vector ~r is given by

Udd(~r) =
µ0µ

2
m

4πr3

(
1− 3(~eµ~r)

2

r2

)
The strength of the dipole-dipole interaction is given by the pre-factor of Eqn. (8.1.1).

This strength can be compared to the coupling constant g of the s-wave interac-

tion (1.4.3) and measured by the dimensionless dipole-dipole strength parameter

εdd =
µ0µ

2
mm

12π~2a
.

Per definition, homogeneous condensate is unstable 1 against collapse if εdd > 1 in a

static magnetic field [26]. With the scattering length a = 103 a0 of 52Cr [19] and its

magnetic moment of µ =6µB in the ground state 2, the dipole-dipole strength parameter

of chromium is εdd = 0.148. This is much larger than for any other element that has

been cooled to quantum degeneracy so far. The alkalis which form the largest family

of Bose-Einstein condensates have a magnetic moment which is six times smaller than

that of chromium, thus the magnetic dipole-dipole interaction among them is a factor

of 36 smaller than in a chromium BEC. The corresponding strength parameters are

εdd = 0.0064 for 87Rb and εdd = 0.0035 for 23Na.

As has been shown in [40], in general, the dipole-dipole interaction Udd can be tuned by

using a time dependent field to align the dipoles

B(t) = B (cos ϕ~ez + sin ϕ (cos(Ωt)~ex + sin(Ωt)~ey)) ,

1 If the effective interaction is attractive, the condensate collapses [14].
2The value of 103 a0 corresponds to the theoretical prediction for the scattering length at magnetic
fields around 10G at which the experiments are carried out. Compare Appendix B.
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8.1 Theoretical description

where ~ex, ~ey and ~ez are unit vectors defining the x-, y- and z- axis, respectively. The

rotation frequency Ω of the magnetic field around the z-axis has to be chosen such that

the magnetic moments can adiabatically follow the rotation but fast enough for the

atomic motion on the time scale of one rotation to be negligible. In this case, the atoms

will feel a time averaged dipole-dipole interaction. This is provided if ωLarmor � Ω �
ωtrap and puts a constraint on the minimum field to be used since the Larmor frequency

of the atomic precession is ωLarmor = µmB/~. However, in a trap with frequencies

in the ωtrap/2π ≈1 kHz range, this lower boundary is at very small fields of 10−4 G

corresponding to the magnetic moment of chromium of 6µB and does not restrict the

experimental possibilities. The effective long-range interaction between atoms oriented

in such a field and separated by the vector ~r is then given by

Udd(~r, ϕ) = −µ0µ
2
m

4π

(
3 cos2 ϕ− 1

2

)(
3 cos2 Θ− 1

r3

)
,

where ϕ is the angle between the magnetic field direction and the z-axis and Θ is the

angle between the separation vector r and the z-axis.

Using this method to tune the dipole-dipole interaction strength and additionally utilis-

ing a Feshbach resonance [19] (see also Appendix B) to tune the s-wave scattering length

a close to zero will permit one to explore different regimes of dominating short-range or

long-range interaction and attractive or repulsive dipole-dipole interaction.

8.1.2 Trapped dipolar condensates

In contrast to the s-wave interaction which can be understood as a local, contact-like

interaction (Eqn. (1.4.3)), the dipole-dipole interaction is long-range and anisotropic. In

a condensate with density distribution n(~r), it gives rise to the mean field potential [26,

31]

Φdd =

∫
Udd(~r − ~r ′)n(~r ′)d3r ′ =

∫
Udd(~r − ~r ′)|φ(~r ′)|2d3r ′.

The integral in equation (8.1.2) reflects the non local character of the interaction. Taking

this interaction into account in addition to the contact interaction, the Gross-Pitaevskii

equation (1.22) gets the form

i~
∂

∂t
φ(~r, t) =

(
− ~2

2m
∇2 + Uext(~r) + g|φ(~r, t)|2 +

∫
Udd(~r − ~r ′)|φ(~r ′)|2d3r ′

)
φ(~r, t).

O’Dell et al. have shown in [31], that even under the influence of the dipole-dipole

mean field potential Φdd(~r), the wave function has the shape of an inverted parabola

in the Thomas-Fermi limit (compare Section 1.4.3). Like in the case of pure contact
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8 Magnetic dipole-dipole interaction in a Bose-Einstein condensate

interaction, a wave function of the form

|φ(~r)|2 = nc(~r) = nc,0

(
1− x2

R2
x

− y2

R2
y

− z2

R2
z

)
is a self consistent solution of the superfluid hydrodynamic equations [79] derived

from the Gross-Pitaevskii equation (8.1.2), also in presence of dipole-dipole interac-

tion [31, 146]. Rx, Ry, and Rz are the Thomas-Fermi radii similar to the discussion in

Section 1.4.3. The anisotropy of the dipole-dipole interaction manifests itself in a modifi-

cation of the aspect ratio of the trapped condensate. In the case of an axially symmetric

trap, one derives the following equations for the aspect ratio κ = R⊥/Rz [40, 146]:

λ2 = κ2 1− εdd(f(κ) + κ∂f
∂κ

(κ))([3 cos2 ϕ− 1]/2)

1− εdd(f(κ)− 1
2
κ∂f

∂κ
(κ))([3 cos2 ϕ− 1]/2)

where λ = ωz

ω⊥
and f(κ) = 1+2κ2

1−κ2 − 3κ2 tanh−1 √1−κ2

(1−κ2)3/2 . Setting the dipole-dipole inter-

action to zero (εdd = 0), i.e. notionally ’switching off’ the dipole-dipole interaction,

Eqn. (8.1.2) reveals the well known TF relation (1.4.3) for the aspect ratio. Given a

trap anisotropy λ, one can find a solution for the condensate anisotropy κ by solving

Eqn. (8.1.2) numerically. To understand the anisotropy of the condensate, we look for

the dipole potential (8.1.2) that is generated by the aligned dipoles of the BEC. Let us,

for simplicity, assume a spherically symmetric trap (ωx = ωy = ωz ≡ ω0). Eberlein et al.

have solved the problem of the integral (8.1.2) for dipolar condensates in axial symmetric

trap potentials using a Green’s functional approach [146]. The solutions, however, are

not illustrative. The anisotropy, which is introduced by the dipole-dipole interaction,

becomes even more obvious in the case of an isotropic distribution. Qualitatively, an

anisotropic trap and distribution does not change the following considerations.

As already discussed, the density distribution of the Bose-Einstein condensate has the

shape of an inverted paraboloid as depicted in Fig. 8.2. Inside the condensate (r < RTF ),

the dipole-dipole mean-field potential at a position ~r with distance r from the center of

mass is given by [31, 40, 146]

Φinside
dd (~r) =

εddmω2
0

5

[
1− 3

(
~emu · ~r
|r|

)2
]

r2 r ≤ RTF .

This equation shows that the potential is harmonic in r but has an angular dependence.

Note that the term in square brackets varies depending on the angle between the ori-

entation of the dipoles ~eµ and the position vector ~r between −2 if the position and the

polarisation are parallel and +4 if they are anti-parallel. The potential therefore has the

form of a saddle with a negative curvature along the direction of magnetisation and a

positive curvature in transverse direction. Outside the condensate, the potential looks
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Figure 8.2: Inverted parabolic profile of
a BEC in the Thomas-Fermi limit without
dipole-dipole interaction. The distribution
corresponds to a spherically symmetric trap
potential.

Figure 8.3: Saddle shaped dipole potential
generated by dipolar atoms of a BEC in a
spherical trap. The atomic dipoles which are
illustrated as small magnets in the figure are
aligned by an external magnetic field B. Note
the orientation of the saddle potential rela-
tive to the magnetic field direction.

like the field generated by N dipoles sitting in the center of the distribution and is given

by

Φoutside
dd (~r) =

εddmω2
0

5

[
1− 3

(
~emu · ~r
|r|

)2
]

R5
TF

|r|3
r > RTF .

The total potential Φdd(~r) = Φinside
dd +Φoutside

dd (~r) in the y−z−plane is depicted in Fig 8.3.

where z is the direction in which the dipoles are aligned.

The presence of such an anisotropic potential, in addition to the isotropic trap, has the

consequence that the total energy

Etot = Etrap + Econtact + Edd

can be minimised if the atoms redistribute from regions where Φdd is positive to regions

where it is negative. The redistribution leads to a decreasing contribution of the dipole-

dipole energy Edd and a repulsive contact interaction among the atoms prevents the

BEC from collapsing. Even if the redistribution happens on the cost of an increased

potential energy and contact-interaction energy, it will be favoured as long as the total

energy is diminished in doing so. Hence the redistribution leads to an elongation along

the direction of magnetisation and a contraction perpendicular to it.

8.1.3 Expansion dynamics of a dipolar condensate

Now let us consider the case of a sudden switch-off of the external potential. First of

all, this will change the terms that contribute to the energy in the Gross-Pitaevskii

equation (8.1.2). After the switch off, the only contributions stem from the contact
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Figure 8.4: Figure to illustrate the change of the condensate shape under the influence of
magnetisation in-trap (top row) and during time of flight (bottom row). Left column: magneti-
sation in transversal direction; center column: non-dipolar atoms; right column: longitudinal
polarisation. Dashed ellipses represent the non-dipolar condensate.

interaction and the dipole-dipole interaction. Since this interaction energy will be con-

verted into kinetic energy due to the lack of a confining potential, the kinetic energy

term has to be considered, too. Due to its direct proportionality to the local density,

the contact interaction part of the mean field potential reveals the same parabola shape

as depicted in Fig. 8.2. The dipole potential Φdd(~r) still has its (harmonic) saddle shape

(see Figure 8.3). Caused by the negative curvature of this energy term in the direction

of magnetisation, the gradient of the total mean field energy (Umf = g|φ(~r)|2 + Φdd(~r))

in this direction will be larger than without dipole-dipole interaction. Therefore the

atoms will obey a larger acceleration along the direction of magnetisation than with-

out dipole-dipole interaction. In the directions perpendicular to the magnetisation, the

curvature of the dipole potential is positive, heaving an attractive character. Thus the

repulsive contact interaction is weakened by the dipole-dipole interaction in transversal

direction and the acceleration that atoms feel perpendicular to the magnetisation will

be smaller. The general trend of deforming the condensate with an elongation along

the magnetisation and a contraction in the transversal directions is kept also during the

expansion of the condensate as can be seen from the schematic drawing of Figure 8.4.

At this point, it has to be stressed, that the argument of minimisation of the total energy

leads to a behaviour of the expanding condensate that is somewhat counterintuitive. Hav-

ing in mind the simple picture of holding two parallel bar magnets in hands and observing

that they repel in the direction perpendicular to the bars, one could expect, that the atoms

expand faster in the transversal direction. But on the contrary, the opposite is the case.

Since the atoms can move almost freely (i.e only on the cost of higher potential energy

and restricted by the repulsive contact interaction) in 3 dimensions, the total energy is

minimised by redistributing atoms from the transversal to the longitudinal direction as

long as the gain in potential energy and contact interaction energy is small compared to

the loss of dipole-dipole interaction energy. This happens also during time of flight since

the shape of the condensate and therefore also the shape of the dipole-dipole potential
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stays qualitatively constant even during expansion.

For a quantitative analysis, the expansion has to be treated numerically but with a

much simpler equation (Eqn. (8.1.3) below) than a 3-dimensional nonlinear Schrödinger

equation (8.1.2) [28, 29, 85, 64]. In the Thomas-Fermi limit (Section 1.4.3), solutions

for the density distribution
√

n(~r, t) = φ(~r, t)eiϕ(~r,t) and velocity field ~v that is related

to the phase ϕ(~r, t) by ~v(~r, t) = (~/m)~∇ϕ(~r, t) have the form

n(~r, t) = |Φ(~r, t)|2 =
15N

8πRxRyRz

(
1− x2

R2
x

− y2

R2
y

− z2

R2
z

)
(8.1)

~v(~r, t) =
1

2
~∇
(
αxx

2 + αyy
2 + αzz

2
)
. (8.2)

According to the hydrodynamic theory of Bose-Einstein condensates [147, 148, 79], the

density and the superfluid velocity fulfill the continuity equation and the Euler equation

∂n

∂t
= −~∇(nv) (8.3)

∂~v

∂t
= −~∇

(
v2

2
+ Uext +

~2∇2
√

n

2m2
√

n
+

Umf (~r)

m

)
, (8.4)

respectively, where the external potential Uext has to be set to 0 to study the expansion,

and where Umf is the mean-field potential including s-wave and dipole-dipole interac-

tions. The density and velocity are time dependent through the radii Ri(t) and the

coefficients αi(t). Because αi = vi

ri
, the αi(t) are given by

αi(t) =
∂

∂t
(log(Ri(t)).

The radii follow the equations of motion

m
d2Ri

dt2
= −7

∂

∂Ri

Htot(Rx, Ry, Rz)

N
,

Htot/N being the total energy per particle. Htot = Hkin + Hext + Hmf consists of the

classical kinetic energy (neglecting ground state motion)

Hkin =
1

14
Nm(Ṙx

2
+ Ṙy

2
+ Ṙz

2
),

the energy in the external trapping potential

Hext =
1

14
Nm(ω2

xR
2
x + ω2

yR
2
y + ω2

zR
2
z),

and the mean-field energy which consists of the s-wave scattering and dipole-dipole

interaction energies

Hmf = Hcont + Hdd =
15

7

(
N2~2a

m

)
1

RxRyRz

(1− f(Rx, Ry, Rz)εdd).

121



8 Magnetic dipole-dipole interaction in a Bose-Einstein condensate

Where f(Rx, Ry, Rz) is a function that depends on the trap anisotropy and the orienta-

tion of the atomic dipoles [64].

If we define the aspect ratios κyx = Ry/Rx and κzx = Ry/Rx and consider the case of

polarisation along x, function f(κyx, κzx) is given by

f(κyx, κzx) = 1 + 3κyxκzx
E(ϕ \ α)− F(ϕ \ α)

(1− κ2
zx)
√

1− κ2
yx

,

with

sin ϕ =
√

1− κ2
yx,

and

sin2 α =
1− κ2

zx

1− κ2
yx

,

and where F(ϕ \ α) and E(ϕ \ α) are incomplete elliptic integrals of first and second

kind,respectively [149]. The equations of motion (8.1.3) can now be solved numerically,

using Eqns. (8.1.3), (8.1.3), and (8.1.3) to calculate the derivatives of Htot.

8.2 Observation of dipole-dipole interaction in a degen-

erate quantum gas

To measure the effect of the magnetic dipole-dipole interaction on the expansion dy-

namics of the condensate, we prepare an almost pure BEC as described in Chapters 5

and 7 by decreasing the power in the horizontal trapping beam to 280mW. A schematic

illustration of the subsequent experimental cycle is depicted in Figure 8.5. After 250ms

equilibration, the intensity of the horizontal beam is increased adiabatically to 2.3W

to form an anisotropic trap (trap parameters fx =942Hz, fy =712Hz, and fz =128Hz;

compare Section 7.4). The homogeneous offset field of ∼11.5G along the y-axis that

is used for optical pumping (Section 4.8) is always kept on until the trap has been

ramped up. After this change of the trap parameters, we either keep the field aligned

along y (situation b) in Fig. 8.5) or we rotate the field adiabatically from the y- to the

z-direction (situation a) in Fig. 8.5). This is done by increasing the field in z-direction

linearly within 40ms to ∼11.5G while reducing the field in y-direction during the same

time to 0G. After the field has reached the steady state, we keep the atoms for another

7ms in the trap to give them enough time to redistribute. The total storage time in both

cases of longitudinal (‖~ez) or transversal (‖~ey) magnetisation is equal. Subsequently, the

atoms are released by a sudden switch-off of the trapping beams. The polarisation field

is kept constant for 1ms after release from the trap and then rotated suddenly to the
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Figure 8.5: Experimental cycle for measuring the dipole-dipole interaction. Left figures:
alignment of the field relative to the chamber just before releasing them. Gravity ~g marks y
as the vertical axis. Right figures: schematic cycle. The magnetic field during preparation is
in either case along the y-axis. To measure with z-polarisation (a), the field has to be turned
slowly (within 40 ms) within the trap before releasing the atoms. After 1 ms of expansion, the
field is switched suddenly to x-direction. For y-polarisation (b), the field is kept in y-direction
until 1 ms after release.

transversal x-axis in either case by switching on the field in the x-direction and switch-

ing off the z- or y-fields. This 1ms of free expansion is long enough for the mean-field

energy to drop to such a small part of its initial value that changing the alignment of

the dipoles after this time does not influence the expansion anymore. In other words,

after this time the gas is already so dilute that any kind of interaction among the atoms

can be neglected compared to the kinetic energy. After an additional time of flight of

up to 18ms plus 1ms for the detection field to settle (total time of flight 2ms to 20ms),

an absorption image of the cloud is taken.

The images were evaluated using the fringe reduction method described in Appendix 3.2

and two dimensional fits to the density profiles. Figure 8.6 shows 1D cuts through the

density profile of an expanded, almost pure condensate. The most convenient quantity to

analyse the expansion is the aspect ratio κ = Ry/Rz since it is insensitive to fluctuations

of the number of atoms (Section 1.5). The only quantities that have to be known exactly

are the trap parameters and the ratio εdd between magnetic dipole-dipole interaction

and contact interaction (Eqn. (8.1.1)). The trap frequencies of ωx/2π =(942±6)Hz,

ωy/2π =(712±4)Hz, and ωz/2π =(128±7)Hz have been determined using the method

described in Chapter 4.6.
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Figure 8.6: Density profiles in y- and z-direction of an almost pure condensate of 84000
atoms after 90ms of expansion. Grey shaded areas have been excluded from the fit of the
thermal cloud.

Figure 8.7 shows the aspect ratio of the BEC for different times of ballistic expansion.

The set of data marked with red squares represent the experiments performed with the

polarisation in vertical (y-) direction and black circles represent the results with hor-

izontal (z-) polarisation. The upper graph shows the result of sequential experiments

where the total time of flight was varied between 2ms and 14ms. Since one shot, (i.e.

catching atoms in the CLIP trap, Doppler cooling, compressing, rf-cooling, transfer to

the ODT, pumping, plain evaporation in the ODT, forced evaporation, modification of

the trap and the fields, taking an image, resetting the system), takes about 1minute

and 20 seconds, the data of the time of flight series presented in Figure 8.7 corresponds

to a total measuring time of more than 4 hours 3. To reduce the influence of systematic

drifts during that time, the time of flight of subsequent pictures was chosen randomly.

For the same reason, we also changed between y- and z-polarisation every 10 shots. An

11-point linear moving average (corresponding to averaging over 2.2ms in the figure)

has been applied to both sets of data in the left graph to average out fluctuations in the

condensate widths. A moving average of that length is reasonable since the expected

behaviour does not show features on shorter time scales that could be concealed by av-

eraging. As proof, Figure 8.8 shows the same moving average applied to the theoretical

values. Even a 20-point average would produce deviations much less than the error bars

of the measurements. To be able to display all measured data, the range of the moving

average was increased from 1 to 11 within the first six data points. The data point

corresponding to 2ms time of flight is thus not averaged, the one at 2.2ms is averaged

3Such kind of measurements under conditions as stable as possible (concerning stability of the laser
system and thus a reproducible number of atoms in every measurement as well as a minimum of
vibrations transmitted to the apparatus by the building) were only possible late at night. Hence
the above data represent measurements that were taken between 1.00 to 7.30 in the morning.
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Figure 8.7: Aspect ratio of the expanding dipolar condensate. Data points in the left figure
are averaged with an 11-point moving average. Error bars in the upper graph represent errors
from the fits to the density distribution. Upper, red data: Field aligned in vertical y-direction.
Lower, black data: Field in horizontal z-direction. The solid lines represent the corresponding
theoretical predictions. The blue dotted line is the behaviour that one would expect for pure
contact interaction without the presence of dipole-dipole interaction among the atoms. The
pictures on the right illustrate the evolution of the condensate shape as seen by the camera.
The lower figure shows a detail of the upper figure (grey shaded area). We have performed a
series of measurements under the same conditions at ten milliseconds time of flight. The two
corresponding data points represent the mean values of 42 measurements with y-polarisation
(red circle) and 32 with z-polarisation (black square). The solid error bars are derived from the
statistics of the measured value and represent one standard deviation in both directions. They
do not include the systematic error on the single measurements. These errors affect both the
measurements with z- and y-polarisation in the same way and do not change the significance
of the measured difference in the expansion dynamics with different polarisation. The shift of
the measured aspect ratios due to such systematic errors is indicated by the dashed/dotted
representation of the error-bars (displaced laterally for clarity) in the lower figure. 125
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Figure 8.8: Comparison of the plain theory data with 11-point and 21-point moving aver-
ages over the data. Theoretical values are sampled with the same 0.2 ms resolution as the
experimental data. No significant deviation is introduced by an 11-point moving average. The
inset displays an enlarged detail of the area where the maximum deviation occurs with the
21-point moving average.

over 3 points, the one at 2.4ms over 5, and so on.

The measured data are compared to the results of theoretical calculations carried out

as discussed in Section 8.1.3. The theory does not contain any adjustable parameters.

Instead it only relies on known or measured quantities, namely the number of atoms,

the trap frequencies, the magnetic moment, and the s-wave scattering length that char-

acterises the contact interaction [19]. The blue dotted line represents the expectation

for a gas interacting solely via s-wave scattering. Compared to this non-dipolar be-

haviour, the expansion of the condensate shows a dependence on the polarisation of the

atoms that is in agreement with theory: With transversal polarisation (field along the

y-axis), the condensate is elongated in the transversal direction and the aspect ratio

is increased; if the polarisation is in longitudinal direction (field along the z-axis), the

condensate is contracted in vertical direction and the aspect ratio is decreased. The

quantitative agreement is remarkable.

The error bars in the upper graph of Figure 8.7 include only errors that stem from the fit

of the condensate size. Systematic errors, e.g. uncertainty of the magnification, are not

contained. These systematic errors can be found in the lower graph of Figure 8.7 where

the mean value of the results of 42 and 32 measurements with y- and z-polarisation are
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8.3 Measurement of the dipole-dipole strength parameter

represented by a red circle and a black square, respectively4. All measurements were

performed after the same time of flight of 10ms.

The solid error bars in the lower graph are the statistical errors of all measurements and

represent ±1 standard deviation with respect to the mean value. Systematic errors that

stem from a systematic 2% uncertainty in the size of the cloud affect all measurements

in the same way, i.e. they shift the measured aspect ratios of both longitudinal and

transversal polarisation by the same amount but do not change the relative difference

between the expansion data for the two polarisations. The shift of the measured aspect

ratios due to systematic errors is indicated by the dashed/dotted representation of the

error-bars (displaced laterally for clarity) in the lower figure. Taking the systematic

error into account, also the upper data point for y-polarisation (which deviates a little

from the theoretical expectation), agrees with theory within error bars.

A t-test analysis [150] of the two sets of data at 10ms yields a 99% confidence in-

terval of 0.35 to 0.53 for the difference κ⊥ − κ‖ between the aspect ratios in the two

cases of transversal and longitudinal polarisation. Although the theoretical prediction

of κ⊥ − κ‖ = 0.31 does not lie within this interval, the large confidence level confirms

that the two mean values of the measurements are clearly separated and strongly cor-

related with the polarisation of the sample. In the series of measurements at different

times of flight however (upper graph), the agreement between theoretical prediction and

measurement seems to be much better. Since these measurements were performed first

and also closer to the measurement of the trap frequencies, the deviation between the

experimental and theoretical values at 10ms TOF is most likely due to a temporal drift

in the laser power or the adjustment of the trap.

8.3 Measurement of the dipole-dipole strength parame-

ter and the scattering length

In this section, I will present and discuss a method of measuring the relative strength of

the dipole-dipole interaction with high accuracy. Since the contribution of the dipole-

dipole interaction is exactly known, the relative strength of the dipole-dipole interaction

can be used to calculate the s-wave scattering length. The special feature of this method

4 In all, 50 measurements have been performed at 10 ms with both polarisations. Some of the mea-
surements had to be withdrawn due to an obvious instability of the system which on the one hand
lead to a number of shots where the number of atoms was substantially smaller than the average
4.0 ± 0.6 · 104 of the remaining measurements. On the other hand, in the measurements with z-
polarisation, some of the condensates did not fall down vertically but moved significantly to one or
the other side during their flight, which we considered a signature that the condensate was kicked
(probably by mechanical noise on the optical table) prior to or during a switching of the trap. These
images were also withdrawn.
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8 Magnetic dipole-dipole interaction in a Bose-Einstein condensate

is that the result is independent of the number of atoms and provides results with a high

degree of accuracy. For comparison I will first also present a more direct measurement

of the scattering length which has a small statistical error but relies on the number

of atoms in the condensate which is always associated with large systematic error (see

e.g. [9]).

The starting point for the determination of the dipole-dipole strength parameter εdd

is to analyse the asymptotic behaviour of the condensate radii Ri(t) for long times of

flight. In this asymptotic limit, which is governed by a collisionless and potential free

(except for gravity) ballistic flight, the radii of the cloud can be parameterised as

Ri(t) = R∗
i + v∗i t.

These radii, as well as the asymptotic velocities v∗i = Ṙi(t) of the expansion scale with

the square-root of the total energy Eqn. (1.4.3). Hence, they are proportional to (Na)1/5:

v∗i ∝ (Na)1/5

and

Ri(t) = R∗
i + v∗i t ∝ (Na)1/5, i = [x, y, z].

Note that the initial values Ri(0) = R∗
i are not the Thomas-Fermi radii Ri but are

actually smaller than these because the initial acceleration due to the conversion of

mean-field energy to kinetic energy is neglected if the parametrisation (8.3) is used. To

proof the proportionality, we consider the equations of motion (8.1.3) in the steady state

at t = 0, where the accelerations R̈i(0) have to vanish. The radii at t = 0 are given by

the solution

R̂i ≡ Ri(0) (8.5)

of the Thomas-Fermi equation including dipole-dipole interaction

R̈i(0) = − 2

m

∂

∂Ri

(
mω2

i

14
Ri(t)

2 +
15

7

N~2a

m

1

RxRyRz

(1− εddf({Ri}))
)

= 0.

Up to a small correction caused by the dipole-dipole interaction, this solution is similar

to the solution obtained for pure contact interaction Ri(0) ≈ Ri =
√

2µ
mω2

i
(see Sec-

tion 1.4.3). Now we define dimensionless radii R̃(t) that are re-scaled to the Thomas-

Fermi radii in the form

R̃i(t) =
Ri(t)

Ri

,

with R̃i(0) = 1. With these re-scaled radii, Eqn. (8.3) gets the form

¨̃Ri(0) = − 2

m

∂

∂R̃i

(
mω2

i

14
R̃2

i +
15

7

(
N~2a

m

)
1

R̂2
i

∏
j R̂j

1∏
k R̃k

(
1− εddf

(
{R̂i}

)))
= 0
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8.3 Measurement of the dipole-dipole strength parameter

polarisation v∗y = Cy · (30000 · 103 a0)
1/5 Cy [m4/5]

no dipoles 8.528 · 10−3m/s 0.0488

y-polarisation 9.085 · 10−3m/s 0.0519

z-polarisation 8.283 · 10−3m/s 0.0474

Table 8.1: Asymptotic velocity in y-direction and corresponding proportionality constant
Cy for the case of vanishing dipole-dipole interaction εdd = 0, polarisation along the y-axis,
and along the z-axis. The scattering length of 103 a0 corresponds to a dipole-dipole strength
parameter of εdd = 0.148.

Since this condition must hold for any number of atoms N and any trap geometry

defined by the set of trap parameters {ωx, ωy, ωz}, all radii fulfill the condition

Ri(0) = R̂i ∝ (aN)1/5,

which was what we wanted to prove.

8.3.1 Direct determination of the scattering length

One can now use Eqn. (8.3) to calculate the scattering length from a measurement of

the asymptotic velocity, having in mind that the constant of proportionality Cy that

connects v∗i to (Na):

v∗i = Cy(Na)1/5

only depends on the known or measured quantities that determine the chemical poten-

tial, i.e. ωx, ωy, ωz, m and a small contribution of εdd. Using the hydrodynamic theory of

an expanding dipolar condensate, the asymptotic velocity for a certain number of atoms

and scattering length can be calculated numerically. Because the scaling is known from

Eqn. (8.3.1), this immediately delivers the constant Cy. Table 8.1 shows the expected

asymptotic velocities in y-direction and the corresponding values for Cy, calculated nu-

merically for pure contact interaction (εdd = 0), y-polarisation and z-polarisation. The

velocities are calculated for the measured trap parameters, 30000 atoms, and a scatter-

ing length of a = 103 a0

To determine the asymptotic velocity, we use the condensate radii R(t) measured in a

time-of-flight series. Since the number of camera pixels that are covered by the conden-

sate is much larger in the direction of fast expansion, one can expect the most accurate

results from the radius Ry(t) in y-direction. We first consider the case of polarisation

along the y-axis. The left Figure 8.9 shows the dependence of the condensate radius

y-axis with polarisation along y on the time of flight for 67 different expansion times.

Since the number of atoms is fluctuating during such a series of experiments, a linear fit
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Figure 8.9: Measured dependence of the condensate radius Ry(t) on the time of flight. Left
figure: dipoles aligned along the y-axis, average number of atoms: 29100; Right figure: dipoles
aligned along the z-axis, average number of atoms: 31000. Open circles: measured radii;
crosses: measured radii rescaled using Eqn. (8.3.1); solid black line: linear fit to the re-scaled
radii.

directly to the measured data would contain these fluctuations as a statistical error. To

get rid of this dependence, we make use of the scaling behavior (Eqn. (8.3)). By dividing

all measured radii Ry by the number of atoms in the condensate and multiplying them

with the mean value of the fifth root of all measured atom numbers < N1/5 >, we get

a series of time dependent radii which are now independent of the atom number

Ry =
Ry

N1/5
< N1/5 > .

The average number of atoms in this measurement was < N >= 29100. Red circles in

Fig. 8.9 represent the measured Ry(t), black crosses with error bars mark the re-scaled

R(t) which show much less fluctuations. A linear fit to the re-scaled data for times larger

than 3ms to focus only on the asymptotic behavior yields v∗y( ~B‖~ey) = (9.56± 0.24)m/s

and R∗
y = (10.1 ± 1.0)µm for y−polarisation. For z−polarisation, we get v∗y( ~B‖~ez) =

(8.78 ± 0.12)m/s and R∗
y = (10.3 ± 0.9)µm. By using the above re-scaling, the errors

∆v∗y = ±0.24m/s and ∆v∗y = ±0.12m/s in the fitted slope v∗y for y- and z-polarisation,

respectively, do not contain fluctuations of the atom-number anymore.

If we invert equation (8.3.1) and insert this number and the constant Cy for z-polarisation

from table 8.1, we get a value for the scattering length:

a =
1

< N >

(
v∗y( ~B‖~ez)

Cy

)5

= 133 a0.

The error on this measurement consists of two contributions: first, the fitted asymptotic

velocity comes with an error ∆v∗ due to the noise on the data that is not correlated
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8.3 Measurement of the dipole-dipole strength parameter

with the number of atoms. Since v∗ appears in the fifth power in a, ∆v∗ appears with

a factor of 5 in ∆a. Second, the mean value of the number of atoms has an uncertainty,

mainly due to an uncertainty in the detuning of the probe beam (compare Section 7.2).

Since a detuning from resonance can only lead to an underestimation of the number of

atoms, the error in the scattering length a caused by this uncertainty is only towards

smaller values of a. We estimate a maximum detuning of ∆δprobe = ±0.25Γ which leads

to an estimated error in the number of atoms of ∆N/N = −0.25%. The relative error

in a is then
∆a

a
=

∆ < N >

< N >
+ 5

∆v∗y
v∗y

= −0.25± 0.073.

Hence, the scattering length of 52Cr determined with this method is

a =
(
133

+9

−42

)
a0.

For y-polarization, we get a consistent value of
(
138+10

−45

)
a0. Due to the relatively large

systematic error in the number of atoms, determining the scattering length this way

yields only quite inaccurate values, typical for condensate expansion experiments.

8.3.2 Determination of the dipole-dipole strength parameter

If the expansion data that was obtained for polarisation along the z-axis (Fig. 8.9) is

additionally taken into account, one can extract the dipole-dipole strength parameter εdd

by analysing the ratio of the two asymptotic velocities. In particular, this ratio depends

only on the asymmetry introduced by the dipole-dipole interaction since the contribution

of the s-wave scattering to the total energy is independent of the polarisation. We use

the two rescaled asymptotic velocities

ṽ∗y =
v∗y

< N1/5 >

ṽ∗y( ~B‖~ey) and ṽ∗y( ~B‖~ez) for polarisation along ~ey and ~ez, respectively to determine εdd

by analysing their ratio. To first order in εdd (in the expected range of εdd, higher orders

are negligible), the ratio has the form

ṽ∗y ( ~B‖~ey)

ṽ∗y ( ~B‖~ez)
= 1 + Dεdd,

where D = 0.6523 is a real constant that can be obtained from a numerical solution of

v∗y( ~B‖~ey)/v
∗
y( ~B‖~ez) for the given trap parameters. It is now possible to calculate εdd for

the measured ratio v∗y( ~B‖~ey)/v
∗
y( ~B‖~ez) by inverting relation (8.3.2). This relation has
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8 Magnetic dipole-dipole interaction in a Bose-Einstein condensate

been tested numerically and is a very good approximation for a wide range of scattering

lengths. It delivers the correct value for εdd with less than 5% error if the scattering

length is larger than 37 a0. For a > 60 a0 (i.e. εdd < 0.25), the error is smaller than

1% and for a > 85 a0, it is smaller than 0.2%, i.e. in the expected range of εdd, higher

order terms are negligible. If we use the measured asymptotic velocities, we obtain

εdd =

(
ṽ∗y ( ~B‖~ey)

ṽ∗y ( ~B‖~ez)
− 1

)
/D.

Including the error

∆εdd =

√√√√( ∂εdd

∂v∗y( ~B‖~ey)

)2

(∆v∗y( ~B‖~ey))2 +

(
∂εdd

∂v∗y( ~B‖~ez)

)2

(∆v∗y( ~B‖~ez))2

from the velocity fits, this yields a measured value of

εdd = 0.159± 0.034.

This is in very good agreement with the strength parameter of εdd = 0.148 that is

expected for a scattering length of a = 103 a0.

8.3.3 s-wave scattering length of 52Cr

Since the dipole-dipole interaction strength is exactly known (Eqn. (8.1.1)), this result

can be used to calculate the scattering length:

a =
µ0µ

2
mm

12π~2εdd

= (5.08± 1.06) · 10−9 m = (96± 20) a0.

This result is in excellent agreement with the value of (103 ± 13) a0 that has been

obtained by comparing the measured positions of Feshbach resonances in chromium

collisions with multichannel calculations [19], see also Appendix B. Furthermore, the

relative error of ±20% makes it a comparably precise method. Many different techniques

have been used to determine the s-wave scattering lengths of ultra-cold atoms but most

of them come along with large error bars, often because the number of atoms enters

the measurement. Examples are the 23Na scattering length in |F = 1, mF = −1 〉 of

aNa = (92± 25) a0 (i.e. 27% error) determined from thermalization measurements [22],

and aNa = (65 ± 30) a0 (i.e. 46% error) from the measurement of the mean field

energy of a BEC [51]. The scattering length of metastable aHe∗ = (16 ± 8) nm was

determined from the mean field energy by analysing the size of the BEC [151]. The
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Figure 8.10: Comparison of the values of the s-wave scattering length of chromium de-
termined using three different approaches. The earliest measurement from cross-dimensional
thermalisation experiments depended strongly on the number of atom determination, whereas
the value obtained from the theoretical description of the measured positions of Feshbach
resonances and the measurement presented here, are independent of the number of atoms.

error of 50% stems from an uncertainty of the number of atoms in the condensate.

Our first determination of the chromium scattering length [70] was based on cross-

dimensional thermalisation measurements [152] and resulted in aCr = (170±39) a0. The

error was mostly due to an uncertainty in the density and atom-number determination.

Some other scattering lengths have been determined with much better accuracy, from

photoassociation spectroscopy e.g. 7Li in |F = 2, mF = 2 〉: a[7]Li = (27.3 ± 0.8) a0,

i.e. 3% error, and very recently a = (7.512 ± 0.005)nm for metastable He∗ with per

mille accuracy [153, 154, 155]. However, such methods require detailed knowledge of

the molecular potentials. Figure 8.10 shows a comparison of the measured values of the

s-wave scattering length of chromium.

8.4 Conclusion

In conclusion, the above experiments constitute the direct observation of magnetic

dipole-dipole interaction in a quantum gas. This is the first mechanical manifestation

of dipole-dipole interaction in a gas. When a homogeneous magnetic field is applied

to magnetise the chromium BEC, the atoms redistribute to minimise the total energy.

The alignment of the dipolar chromium atoms along the direction of magnetisation is

similar to what is known as magnetostriction [156] from magnetic solids or ferrofluids

– an effect that has been identified first by James Joule in 1842. The experimental re-

sults show that the magnetic dipole-dipole interaction among the atoms in a chromium

BEC is strong enough to influence the properties of the condensate. The good agree-

ment of the measured dynamics with a parameter-free theory proves that the theory
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8 Magnetic dipole-dipole interaction in a Bose-Einstein condensate

of dipolar superfluids is well suited to describe the expansion dynamics of a dipolar

Bose-Einstein condensate. Furthermore, the relative strength parameter was measured

εdd = 0.159 ± 0.034 and was used to calculate the s-wave scattering length of 52Cr

a = (5.08 ± 1.06 · 10−9)m= (96 ± 20) a0 in excellent agreement with the results of

theoretical analysis of measured Feshbach resonances (a = (103± 13) a0).
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9 Summary and outlook

The achievement of Bose-Einstein condensation of chromium atoms in a dilute gas and

the proof of magnetic dipole-dipole interaction among the atoms in the condensate were

the central subjects of this thesis.

The observation of the transition from a classical gas to a quantum degenerate state

in a chromium vapour not only constitutes the first generation of such a state with

chromium atoms but also the first observation of a dipolar BEC. Among all existing

BECs, a chromium BEC is the only one in which atoms interact significantly via mag-

netic dipole-dipole forces.

Starting with a descriptive discussion of the relation between indistinguishability and

statistical properties of particles, I presented an overview of basic condensate physics.

The theoretical concepts that are important to understand and interpret the experimen-

tal findings were discussed. These considerations started with the case of a free ideal gas

and were extended to real systems of finite size, interacting particles and confinement

in external potentials. Under these conditions, the critical temperature and the fraction

of condensed atoms are subject to a shift with respect to an ideal gas.

A brief overview of the experimental setup has been given. Besides the large parts of

the setup that already existed and were discussed in detail in other works, a frequency-

doubled diode-laser system that is used for optical pumping between Zeeman states,

and a crossed optical dipole trap based on a 20W, 1064 nm fibre laser were assembled

within the framework of this thesis.

All experimental data presented in this thesis rely on only one method of measuring,

namely absorption imaging of atomic clouds. The methods of taking, processing and

evaluating such images were discussed.

The considerations that are necessary for optical trapping of chromium in a far-off-

resonant light field have been presented as well as the characterisation of the crossed

optical dipole trap. The trap consists of two beams with different waists of 30µm and

50µm in the horizontal and vertical beam, respectively. At an optical power of 10W in

in the horizontal beam, the trap has a depth of 143µK. I discussed the methods that

we use to measure the trap frequencies and compared them to the expected numbers.

Although two of the three trap frequencies agree well with the calculated ones, one fre-
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9 Summary and outlook

quency deviates significantly. The reason for this discrepancy could not be explained

definitely.

Huge dipolar relaxation rates prevent chromium from reaching degeneracy in a magnetic

trap and necessitate a transfer into an optical trap which can also trap the lowest lying

Zeeman state. Loading of the optical trap is achieved by overlapping the optical poten-

tial with an rf cooled sample of chromium atoms in the magnetic trap. At this stage

4.5 ·106 atoms at a phase space density of 10−5 are located in the magnetic trap. The

transfer efficiency to the optical trap after reducing the magnetic trapping potential to

zero is 40%. To polarise the sample, we utilise the 7S3 ↔ 7P3 transition of chromium at a

wavelength of 427.2 nm. When we apply 0.5mW of σ−-polarised light immediately after

the transfer to the optical trap for 1ms, we achieve a transfer efficiency from mJ = +3

to mJ = −3 of nearly 100%. The lifetime of the trapped cloud is increased dramatically

from 6.3 s in the mJ = +3 state to 142 s if the atoms polarised in mJ = −3 and is only

limited by background gas collisions. A long lifetime is the most important prerequisite

for successful evaporative cooling.

I continued with a presentation of the results of evaporative cooling in the optical dipole

trap. The starting conditions are 1.5 · 106 atoms at 60µK and a phase space density of

5 · 10−5. After turning off the magnetic trap, we observe a rapid decay of the number of

atoms to about 50% of its starting value which could be attributed to plain evaporative

cooling. After this initial decay, the phase space density has increased to 10−3. Attempts

to cool the cloud in only one beam did not succeed due to an insufficient elastic scat-

tering rate. Evaporative cooling became possible by applying a second trapping beam

to increase the density in the central region of the trap. I presented the technique used

to optimise the evaporation technique and the evaporation ramp that is finally used to

reach BEC. We achieve a total efficiency of evaporative cooling in the ODT of 3.6 orders

of magnitude gain in phase space density per lost order of magnitude in the number of

atoms.

Bose-Einstein condensation of chromium is achieved at a remaining power of 6% of

the initial power in the horizontal beam. Ramping the optical potential further down,

we are able to produce almost pure condensates of 105 atoms. We identify the occur-

rence of BEC by the typical appearance of a bimodal momentum distribution and an

anisotropic expansion when releasing the cloud from an asymmetric trap. I analysed

the dependence of the condensate fraction on the rescaled temperature and measured

the lifetime of the trapped condensate. In the weak trapping potential at the end of the

evaporation ramp, the condensate lives for 5.8 s. Found when the trap is compressed

adiabatically afterwards, we attributed a shorter lifetime to a heating mechanism whose

origin remains unclear. We find no hint for strong three body loss.

The presence of dipole-dipole interaction between the atoms in a chromium BEC has

been confirmed by analysing the expansion of the condensate in a homogeneous magnetic

field. Depending on the Polarisation of the atoms, the condensate expands anisotropi-
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cally after release from the trap. I summarised the superfluid hydrodynamic theory for

dipolar condensates followed by the discussion of the experimental results. The mea-

sured dependence of the condensate aspect ratio on the time of free flight with different

polarisation – along and perpendicular to the weak axis of the trap – was compared to

numerical results of the hydrodynamic equations. The experimental findings reproduce

the theoretical predictions very well and constitute the first observation of a mechanical

effect of MDDI in a gas. I have discussed a method to measure the relative strength

of the MDDI compared to the contact interaction. The value of εdd = 0.159 ± 0.034

that we measure with this method is in excellent agreement with the predicted value

εdd = 0.148 that is obtained assuming a s-wave scattering length of a = 103 a0 resulting

from Feshbach resonance measurements. I have used the experimental value of εdd for a

determination of the s-wave scattering length of chromium. The result of a = (96±20) a0

agrees with the above results. Since this way of measuring a is independent of measure-

ments of the number of atoms and density, there are some advantages in this technique

compared to many other techniques. Furthermore, it does not require knowledge of any

details of the molecular potentials.

Outlook

The above experiments constitute proof of the dipolar character of a Bose-Einstein con-

densate of chromium atoms. The possibility to generate BECs in series of experiments

under stable conditions and to store them for sufficiently long time make the chromium

BEC the most promising system for further studies of dipolar effects in quantum gases

(see the introduction). Although heteronuclear molecular BECs are expected to have

much larger (electric) dipole moments, such condensates are not available at the mo-

ment. It is also questionable whether these condensates would live for reasonably long

time to perform experiments, once they are available. Long lifetimes and large dipole

moments are only expected for heteronuclear fermion-fermion molecules [157, 158, 159]

that are generated in a low vibrational state which is not easy to achieve (for a review

on ultracold molecules see [160]).

Since it is in fact favourable for most of the expected phenomena to have an even larger

relative strength of the MDDI, gaining control over the s-wave scattering length is cer-

tainly one of the most important future goals. We have already found 14 Feshbach

resonances in ultracold chromium collisions (see Appendix B) but up to now we were

limited by the stability of the currents used to generate the magnetic fields. With a pre-

cision control of the currents that is currently being set up in our lab, it should become

possible to gain exact control over the magnetic field and to study the characteristic de-

pendence of the s-wave scattering length on the applied field. The method of measuring
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the scattering length that was discussed in Chapter 8 might in this respect become a

useful tool to determine the magnetic field dependence of the scattering length close to a

Feshbach resonance. Once this dependence is known, one of the Feshbach resonances can

be utilised [161, 162, 9, 163, 14, 164, 165, 166] to tune the s-wave interaction strength

close to zero and thereby increase the relative strength of the dipole-dipole interaction.

Recent publications have shown that the MDDI is tuneable. If an external magnetic

field that aligns the atoms is rotated on a cone with a frequency that is fast compared

to the atomic motion, the atoms feel a time averaged MDDI potential whose strength

can be tuned by changing the apex angle of the cone. In this way, the MDDI can not

only be varied in strength but also its sign can be changed [40]. The electronic circuitry

to drive precisely rotating fields at 10 kHz rotation frequency has been assembled but

not yet tested with a condensate. Measurements similar to the ones that were used to

proof the dipolar interaction in this thesis could be used to demonstrate the tunability

of the MDDI in the BEC.

The results of the molecular dynamics simulation of evaporative cooling that I have pre-

sented in this thesis show that there is a large potential of reaching quantum degeneracy

with a much larger number of atoms under the same starting conditions in the ODT.

The old 20W fibre laser is currently being replaced by a new one with a maximum

power output of 100W. According to the simulation results, a fourfold increase of the

number of atoms can be expected when 15W extra laser power is used to create a deeper

dimple. This will result in an even better signal to noise ratio for all measurements and

will enhance the experimental possibilities.

The occurrence of new quantum phases, the “supersolid” and “checkerboard” phase [36],

is predicted if the dipolar BEC is stored in a two-dimensional lattice. Also pancake

shaped trapping geometries promise exciting effects like the existence of a roton-maxon

in the excitation spectrum [32]. Modifications of the experimental setup that will allow

the generation of steep standing-wave traps are on the way.�



A Chromium

Abstract

All experiments presented in this thesis were performed with the bosonic chromium

isotope 52Cr. In this section, I summarise the most important properties that

are relevant for the experiments that have been discussed in this thesis. For a

detailed discussion of the scattering properties and the aspects of magneto-optical

and magnetic trapping of chromium and (also of the fermionic isotope and bosonic
50Cr), refer to [88, 68, 86].

element mass [au] natural abundance nuclear spin I statistic s

chromium 50 4.35% 0 bosonic

chromium 52 83.79% 0 bosonic

chromium 53 9.5% 3/2 fermionic

chromium 54 2.36% 0 bosonic

Table A.1: Chromium isotopes, their natural abundance, spin and statistics.

52Cr is the isotope with the largest natural abundance of 83.79% (see table A.1). The

nuclear charge of chromium is 24 and the bosonic isotopes 52Cr, 50Cr, and 54Cr have no

nuclear spin. Only the fermionic 53Cr isotope has a nuclear spin of I = 3/2. In its pure
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Figure A.1: Part of the level scheme of 52Cr that is relevant for laser cooling.
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Appendix A Chromium

nuclear charge 24

mass 8.7·10−26 kg

nuclear spin 0

ground state 7S3

electron configuration in 7S3 1s22s22p63s23p63d54s

Landé factor gJ in ground state 2

MOT transition 7S3 ↔7P4

Landé factor gJ in excited state 1.75

wavelength MOT transition λ 425.5 nm

recoil temperature Trec 1.02µK

recoil velocity vrec 1.8 cm/s

line width Γ/2π 5.02MHz

excited state lifetime 32 ns

saturation intensity Is 8.52mW/cm2

Doppler temperature TD 124µK

transition used for optical pumping 7S3 ↔7P3

wavelength λ 427.2 nm

Table A.2: Important general and spectroscopic properties of bosonic 52Cr .

natural form, chromium at room temperature is a very hard crystalline metal. Its melt-

ing point is 1850 ◦C and its boiling point is at 2690 ◦C. To create gaseous chromium

atoms, the experimental setup makes use of the fact that chromium sublimates un-

der vacuum conditions. The vapour pressure of chromium at 1500 ◦C is 6×10−7 mbar.

Therefore we generate a beam of chromium atoms by the use of a high temperature effu-

sion cell (normal operation is at 1600 ◦C) in the ultra-high vacuum chamber. Operating

an oven at such a high temperature under vacuum conditions, is eased by the getter

property of chromium. Similar to titanium, which is a well known getter material and

often used in ultra-high vacuum technologies, gas atoms that hit a chromium surface

get stuck. The chromium gas evaporated out of the effusion cell continuously coats the

inner walls of the vacuum chamber and in that way constantly renews the getter surface,

providing good vacuum even during operation of the effusion cell.

The spectroscopic properties of chromium are important for laser cooling and trapping

(Chapter 4). The part of the level scheme that is relevant for optical cooling is depicted

in Figure A.1. The figure shows all relevant levels of the septet and quintet system

and the transitions that are relevant for laser cooling: cooling transition at 425.6 nm,

repumping transitions 654.0 nm and 663.2 nm (usually only the latter one is used in the

experiments), and the decay channels from the excited state of the cooling transition to
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the metastable 5D states (corresponding transition wavelengths 658.3 nm and 649.2 nm).

The magneto-optical trap is operated on the strong transition between the 7S3 ground

state and the excited 7P4 state with a transition wavelength of 425.6 nm in the blue.

The important properties of this transition are summarised in table A.2. Atoms in

the 7P state can undergo (spin-forbidden) transitions to the 5D states which is used to

load the magnetic trap continuously with 5D atoms. Atoms that undergo transitions

on the 7P4 ↔5D4 intercombination line accumulate in the 5D4 state during operation

of the magneto-optical trap and are later on pumped back to the ground state via the
5D4 ↔7P3 transition at 663.2 nm [69, 88](see also Section 4.7).

The 7S3 ↔7P3 is used to pump the atoms optically from the low-field seeking mJ = +3

to the high-field seeking mJ = −3 state after transferring them from the magnetic to

the optical trap (Section 4.8).
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B Feshbach resonances in chromium

collisions – an overview

Abstract

We have observed 14 Feshbach resonances in collisions of chromium atoms (for

ultra-cold collision theory see e.g. [80, 81, 82, 89]). The experimental resonance

positions are in very good agreement with theory taking into account only dipole-

dipole coupling and allowing us to extract the scattering lengths a6 = (112±14) a0,

a4 = (58 ± 6) a0 and a2 = (−7 ± 20) a0 of the molecular potentials involved in

the resonances. The zero-field scattering length of a = 102 a0 that results from the

comparison of theory and experiment is a very important quantity since it deter-

mines the interaction energy among the atoms (see Chapter 1). The experimental

accessability of Feshbach resonances in chromium is a very promising step towards

tuning a and exploring regimes of degenerate quantum gases where the magnetic

dipole-dipole interaction is the dominating interaction effect. The results and the-

oretical background of our Feshbach resonance measurements will be discussed in

detail by Jörg Werner [89] and have been published in [19] and partly in [167].

A Feshbach resonance occurs when the kinetic energy of a colliding pair of atoms (open

channel) is equal to the energy of a (quasi-) bound state of an interatomic potential

(closed channel) to which a coupling exists from the incoming channel. In this case, the

probability of occupying the bound state temporally during the collision is resonantly

enhanced. Depending on the energy difference of the bound state and the energy of the

incoming channel, the radial part of the asymptotic wave function of the scattering par-

ticles is shifted in radial direction relative to the wave function of non-interacting atoms.

Far away from any kind of scattering resonance, the shift, i.e. the scattering length, is

determined by the molecular potential of the two atoms in the incoming channel. If the

bound state in the other channel has an energy just above/below the collision energy,

the shift of the scattering length is negative/positive. Exactly on resonance, the scat-

tering length and the elastic scattering cross section diverge. Generally, the scattering

channels in ultra-cold atomic Feshbach resonances are molecular potentials stemming

from different configurations of the atomic spins which in most cases also have different
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Appendix B Feshbach resonances in chromium collisions – an overview

magnetic moments. It is therefore possible to generate such a resonance situation ar-

tificially by applying an external magnetic field of a certain strength. In this field, the

energy shift of the dissociation limit in the incoming channel and bound states in other

molecular potentials will be different due to the different magnetic moments and with

an appropriate magnetic field the incoming channel and the bound level can be brought

into resonance.

To localise and characterise a Feshbach resonance, one can analyse the elastic scattering

properties, e.g. by measurement of the mean-field energy of a Bose-Einstein condensate

depending on the external magnetic field [164] or by cross-dimensional re-thermalisation

measurements [166, 152]. Since not only the elastic scattering rate but also the three-

body loss rate increases [168], monitoring the occurrence of strong loss in the vicinity

of a Feshbach resonance is also a very powerful technique. This has some experimental

advantages compared to techniques which detect the elastic properties because it does

neither require the atoms to be in the condensed phase nor a time-consuming tracing

in time of the re-thermalisation . We have found 14 Feshbach resonances in ultra-cold

chromium collisions by analysing atom loss from the crossed optical trap. For the mea-

surements, we prepared 120000 atoms at 6µK in the crossed trap with ∼5W power in

both beams. Subsequently, we rapidly switched on a magnetic field in z- direction and

performed short sweeps of 30G between 0G and 600G and a duration of 5 s. Once an

enhanced loss was located, the resolution in that region was increased by decreasing the

width of the sweep. We used either a pair of coils in Helmholtz configuration (B <20G)

or the pinch coils of the cloverleaf trap (20G< B <600G) to generate the magnetic

field. The first set of coils produces no significant inhomogeneity of the magnetic field

on the scale of the extension of the cloud. With the pinch coils, the magnetic field varies

by 50mG over the cloud at the highest applied magnetic fields. This inhomogeneity

contributes to the errors of the measured widths. To finally resolve the structure of the

resonance, a different technique was chosen because the high currents of up to 450A

used to generate the magnetic field lead to a substantial change of the temperature of

the coils. After setting such high currents, the system has to equilibrate first to prevent

a broadening of the measured resonance by thermal drifts. For this purpose, the field

was switched on rapidly but with a value just above the resonance. We held this value

for 2 s to let the magnetic field and temperature settle, followed by a quick ramp to the

final value which was kept for a variable time between 0.1 s and 10 s, depending on the

strength of the resonance. Finally, the atoms where released and an image was taken to

determine the number of remaining atoms. Figure B.1 shows all resonances that have

been detected in the range from 0G to 600G.

The channels involved in the resonances can be identified having in mind the selection

rules for the angular momenta ` of the nuclei, their projections M` on the quantisation

axis, and the total spin S with dipole-dipole coupling between colliding atoms. In
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Figure B.1: Comparison of the positions of all measured resonances with theoretical calcula-
tions. Upper graph: Theoretical dependence of the s-wave scattering length a on the magnetic
field. Lower graph: remaining number of atoms found after holding the cloud in the crossed
dipole trap at different magnetic field. The number of atoms is normalised to the maximum
number found away from the resonances.

Figure B.2: Illustrated selection rules for first order and second order transitions from the
` = 0,M` = 0, S = 6,MS = −6 entrance channel.
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Figure B.3: Recorded atom loss at the 14 resonances. S: total spin; MS : projection of the
spin on the direction of the magnetic field B; `: angular momentum of the nuclei; numbers
above the graphs measure the field on resonance and the measured width σ of the resonance.146



Appendix B Feshbach resonances in chromium collisions – an overview

addition to momentum conservation ∆MS = −∆M`, the following selection rules hold

for first order coupling:

∆S = ±0,±2; ∆` = 0,±2; ∆M` = 0,±1± 2

and for second order:

∆S = ±0,±2,±4; ∆` = 0,±2,±4; ∆M` = 0,±1,±2,±3,±4.

Additionally transitions from ` = 0 to ` = 0 are forbidden and only channels which have

different spin projections ∆MS 6= 0 can be shifted relative to each other by a magnetic

field. Entering the collision in an s-wave channel (` = 0, M` = 0), first order rules allow

three resonances, and eight more are allowed in second order. This explains the eleven

strongest resonances. Two of the weaker resonances that have been additionally found

at low fields can be explained by collisions entering on the d-wave. The resonance at

6.14G can not be explained up to now. Comparison of the experimentally determined

positions of the resonances with multi-channel scattering calculations results in values

for the scattering lengths a6 = (112 ± 14) a0, a4 = (58 ± 6) a0 and a2 = (−7 ± 20) a0

and the C6 and C8 values that parameterise the molecular potential [19]. Figure B.3

shows all measured resonances in their highest resolution and their positions together

with the theoretically predicted widths.

The Feshbach resonance at 589G has a theoretical width of 1.7G and is related to a

three-body loss coefficient L3 ≈ 3 · 10−36m6/s which is smaller than the ones observed

in 85Rb [169] and Cs [170] but larger than for 23Na [162] and 87Rb [171]. The zero-

field s-wave scattering length of chromium can be extracted from the intersection of the

theoretical curve in Figure B.1 with the vertical axis at B = 0. It carries the same

relative error as a6 and we therefore specify a = (102± 13) a0 and a = (103± 13) a0 at

zero field and at 10G offset field, respectively.

We expect that one of the resonances can be used to tune the contact interaction to

increase the relative strength εdd of the dipole-dipole interaction (compare Section 8)

by performing experiments at a magnetic field close to the zero-crossing of a. The

requirements on the stability of the magnetic field for such an experiment depends on

the slope of the field dependence of a close to a = 0. It is expected that a resonance with

a large width ∆B relative to the absolute field B is best suited. The resonance with

the largest theoretical ∆B/B is the one measured at B =589G with a theoretical width

of 1.7G. Performing an experiment with stable scattering length on such a resonance

requires a control and stability of the current through the coils on the 10−5 level at

currents around 400A. Already the measurement of currents with an accuracy on that

level is challenging. An experimental realisation of such a precision control by the

means of a feed-back loop which uses the signal of a high-precision current transducer1

is currently being implemented in the setup.
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C Atoms in light fields

In the presence of a light field, the coupling of the atomic dipole moment ~p to the

electric component ~E of the light field disturbs the stationary Eigenfunctions Φi(~r) with

eigenenergies En = ~ωn of the free Hamiltonian H0. Since the Φi(~r) form a complete set

of basis vectors, the new Eigenfunctions Ψ(~r, t) of the disturbed Hamiltonian H(t) =

H0 + H ′(t) can be displayed as linear combinations of the Φi(~r):

Ψ(~r, t) =
∑

i

ci(t)Φi(~r)

The evolution of the amplitudes ci(t) is described by the time dependent Schr¨odinger

equation:

i~
d

dt
ci(t) =

∑
k

ck(t)H
′
ik(t)e

iωikt,

where Hik ≡ 〈Φi |H ′(t)|Φk 〉 and ωik = ωi − ωk is the energy difference between two

statesi and k. If we consider an atom with ground state | g 〉 in a monochromatic light

field with a frequency ωL close to resonance1 with a transition to an excited state | e 〉,
the problem can be reduced to two-level system with state vector

|Ψ 〉 = cg| g 〉+ ce| e 〉.

By displacing an electron with charge −e by a distance ~r, the oscillating electric field

of a plane wave which propagates in z-direction with wave vector kL, frequency ωL,

amplitude E(~r) and unit polarisation vector ~ε(~r, t) induces an electric dipole moment

p̃(ω) = α(ω)E

which oscillates at the frequency of the driving field and whose amplitude p̃ is related

to the field amplitude E by the frequency dependent polarisability α(ω). The interac-

tion energy H ′(t) is determined by the coupling of this induced dipole moment to the

1For the two level system approximation to hold, the detuning δ = ωL − ω0 between the light and
the considered transition has to be small compared to the energy difference between the considered
excited state | e 〉 and any other excited state | e′ 〉 of the atom δ � (E′

e − Ee) .
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Appendix C Atoms in light fields

oscillating field: H ′(t) = −eE0~ε(~r, t) cos(kLz−ωlt) ·~r and can be written in the basis of

| g 〉 and | e 〉:
H ′

eg = ~Ω cos(k · z − ωLt),

where we have introduced the Rabi-frequency

Ω =
−eE0

~
|〈 e |~r~ε| g 〉|.

To solve the remaining two Eqns. (C), two approximations have to be made. The first

one – the so called rotating-wave approximation – is to neglected terms of order1/ωL

compared to terms of order 1/δ where δ is the detuning of the laser frequency ωL with

respect to the atomic resonance frequency δ ≡ ωL − ω0. Secondly, the spatial variation

of the field amplitude ε(~r, t) is neglected – the so called dipole approximation, which is

reasonable because the wavelength λ of the laser field is much larger than the extension

of the wave functions Φn(~r). Under these estimations, Eqns. (C) decouple and cg(t) and

ce(t) can be calculated. The probabilities of finding the atom in either state | g 〉 or | e 〉
are then the time dependent squares of the amplitudes |cg(t)|2 and |ce(t)|2, respectively.

They oscillate at the effective Rabi-frequency Ω′ =
√

Ω2 + δ2.

So far, we have only considered stimulated absorbtion and emission. In a semi-classical

treatment, spontaneous emission can be accounted for by introducing a spontaneous

exponential decay of the excited to the ground state at a certain rate Γ which is the

inverse lifetime of the excited state τ = 1/Γ. The optical Bloch equations describe the

time evolution i~dρ
dt

= [H, ρ] of the density matrix

ρ =

(
ρee ρeg

ρge ρgg

)
=

(
cec

∗
e cec

∗
g

cgc
∗
e cgc

∗
g

)
. (C.1)

under consideration of spontaneous emission. The solution for the probability of finding

an atom in the excited state is

ρee =
1

2

s

1 + s
=

s0/2

1 + s0 + (2δ/Γ)2
, (C.2)

where

s =
s0

1 + (2δeff/Γ)2
, (C.3)

s0 = I/Is, (C.4)

Is =
πhcΓ

3λ3
, (C.5)

Ω = Γ
√

s0/2. (C.6)

The resonant saturation parameter s0 normalises the intensity I of the resonant light

field on the saturation intensity Is of the two level system. δeff = δ + δD + δZ ... is the
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Appendix C Atoms in light fields

effective detuning in the rest frame of the atom and takes into account all shifts like

Doppler- δD = ~k~v and Zeeman-shift δZ = ∆µB/~ in addition to the detuning of the

laser. Here ~v is the velocity of the atom, ~k is the wave vector of the light field, B is

the magnetic field and ∆µ the difference between the magnetic moment in ground and

excited state. If an atom is excited by a light field with the saturation intensity I = Is at

resonance, i.e. vanishing effective detuning δeff = 0, the population of the excited state

is 1/4. A further increase of the intensity lets the excited state population approach its

saturation value of 1/2 asymptotically.

The spontaneous force

In the stationary case where the excitation rate is equal to the rate Γ at which the excited

state decays to the ground state, the total scattering rate in our two-level problem is

given by the product of excited state population and decay rate:

Γsc = Γρee =
s0Γ/2

1 + s0 + (2δeff/Γ)2

In every absorption process, the photon momentum ~k is transferred to the atom. The

re-emission process is isotropic, such that the net momentum transfer by emission aver-

aged over many absorption–re-emission cycles is zero whereas the momentum transferred

during absorbtion processes is always directed along the direction of the laser. Thus the

dissipative net force on the atom due to absorption, the so called spontaneous force or

radiation pressure is given by
~Fsp(~r) = ~~kΓsc(~r). (C.7)

The dipole force

The additional conservative force exerted on an atom by a spatially varying light field

is best understood in the dressed atom picture that was used by Dalibard and Cohen-

Tannoudji to explain the origin of this dipole force [172]. In the presence of the light field,

the eigenvalues Ee and Eg of the undisturbed Hamiltonian H0 are no longer eigenvalues

of the full Hamiltonian H(t) = H0 + H ′(t). Instead, one has to consider the coupled

atom+laser system whose eigenstates are the so called dressed states. The eigenvalues

differ from the free eigenenergies by a value which is proportional to the square of the

local Rabi-frequency (ac Stark shift or light shift) and the new eigenstates are superpo-

sitions of the ”bare” states | g 〉 and | e 〉. The shift is space dependent if the atom is

placed in a spatially inhomogeneous light field. Thus the dipole force results from the

gradient of this potential energy.
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Light shifts and the dressed atom picture

In the dressed-atom picture, the Hamiltonian at a position ~r consists of three parts: the

internal energy of the atom, the energy in the light mode and the atom-light coupling:

H(~r) = Ha + Hl + Hal.

Without the coupling between atom and laser mode, the eigenstates of Hamiltonian are

given by manifolds ε(N) consisting of two states | g,N + 1 〉 and | e,N 〉. The meaning

of | g,N + 1 〉 and | e, N 〉 is here: atom in state | g 〉 or | e 〉 and N + 1 or N photons

in the laser mode, respectively. These states are separated by the energy ~δ which is

small when we assume the detuning to be much smaller than the transition frequency

δ = ωL − ω0 � ω0. The manifolds ε(N) in turn are separated by the energy ~ωL. Only

the two states of each manifold are now coupled by the stimulated absorbtion of one

photon from the field (N +1 → N) and the transition | g 〉 → | e 〉 or the inverse process.

The interaction energies are given by

〈 e,N |Hal| g,N + 1 〉 = 〈 g,N + 1 |Hal| e,N 〉 = −
√

N + 1~p ~E(~r) =
1

2
~Ω(~r).

The new eigenenergies of the manifold ε(N) are

E1N(~r) = (N + 1)~ωL −
~δ

2
+

~Ωeff (~r)

2
,

E2N(~r) = (N + 1)~ωL −
~δ

2
− ~Ωeff (~r)

2
,

where

Ωeff (~r) =
√

Ω(~r)2 + δeff (~r)2

is the effective Rabi-frequency. The left diagram in Fig. C represents the eigenstates of

the dressed Hamiltonian which are bunched in manifolds ε(N). In the right diagram, the

variation of the energy levels in radial direction within a Gaussian beam is illustrated.

The corresponding eigenvectors are mixtures of the base vectors| g,N + 1 〉 and | e,N 〉:

| 1, N 〉 = + cos Θ| e,N 〉+ sin Θ| g,N + 1 〉

| 2, N 〉 = − sin Θ| e,N 〉+ cos Θ| g,N + 1 〉,

where Θ is the so called Stückelberg angle with, cos 2Θ(~r) = − δ
Ωeff (~r)

,sin 2Θ(~r) = Ω(~r)
Ωeff (~r)

,

tan 2Θ = −Ω
δ

and Ω = Γ
√

I/2Is.
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|g,N+1>|g,N+1>

|e,N>|e,N>
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Figure C.1: Energy diagram in the dressed atom picture. Left: Eigenstates of the combined
system of atom and laser-mode at a fixed position with and without coupling. The states form
manifolds ε(N) which are well separated by the laser frequencyωL � δ. The coupling splits
the two levels of a manifold by the Rabi frequency Ω. Without the coupling, the splitting is
given by the detuning δ. Right: Dressed states in the field of a gaussian laser mode depending
on the location r in the field. The splitting depends on the local Rabi frequency Ω(~r). Outside
the laser beam, the eigenstates approach the uncoupled states.

Mean dipole force

The spatial variation of the eigenenergies of the dressed states in an inhomogeneous

light field leads to a force given by the gradient of the light shift

~Fdip(~r) = −∇Udip(~r)

Its sign is determined by the sign of δ and the state the atom is in. In a red detuned2

laser field, the energy shift for the population Π1 of state | 1, N 〉 is positive, i.e. an atom

experiences a repulsive force from regions of high intensity, whereas for the population

Π2 of state | 2, N 〉 or blue detuning, the sign is inverted and the force points towards high

intensities. Since the disturbed states | 1 〉 and | 2 〉 are both mixtures of the undisturbed

states | g 〉 and | e 〉, spontaneous transitions are allowed between all states of a manifold

ε(N) and the manifold ε(N + 1) which results in the so called Mollow triplet [173] of

fluorescence lines with frequencies ωL ± [Ωeff , 0]. Consequently, the atom is found in

a mixture of | 1 〉 and | 2 〉 and the probabilities Π1 and Π2 of finding an atom in these

states are needed to calculate the exact resulting force:

~Fdip(~r) = −Π1
~∇E1(~r)− Π2

~∇E2(~r)

2Red (blue) detuned in this context means that the laser frequency is lower (higher) than the reso-
nance frequency of the atoms δ < 0 (δ > 0).
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Formulating the equations of motion of the populations and setting the time derivative

to zero, one gets the stationary populations

Π1 =
sin4 Θ

sin4 Θ + cos4 Θ
, Π2 =

cos4 Θ

sin4 Θ + cos4 Θ
.

The resulting total Potential is

Udip =
~δ

2
ln(1 +

Ω2

2δ2
).

when the logarithm is expanded to first order of Ω2

2δ2 , this result is identical to the one

of Eqn. (4.1.1). From Eqns. (C) and (C) one gets

~Fdip = −~δ

4

~∇I/Is

1 + I/Is + (2δ/Γ)2
.

This is the expression for an atom at rest where the population is always in equilibrium

with the field. If the atom moves in the inhomogeneous field, the populations can not

instantaneously follow the local intensity and start to deviate from the stationary distri-

bution which results in an additional dissipative contribution to the dipole force. This

non adiabatic effects have been discussed in [172] and shall only be mentioned at this

point.

If a weak laser field is switched on adiabatically, the state that emerges from the uncou-

pled state | g,N 〉 is the state | 2, N 〉. Therefore, in a red detuned field, atoms which are

initially in the ground state are attracted by regions of high intensity (high field seeking

state). Neglecting the energy of the field N~ωL and the splitting ~δ which are identical

for two levels of a manifold, the energies of the dressed states are

E1(~r) = +
1

2
~Ω(~r), E2(~r) = −1

2
~Ω(~r) = −E1(~r).

This leads to the well known energy diagram in the dressed atom picture depicted in C.
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D A short recursive algorithm in Matlab to

calculate the average number of scattered

photons in an optical pumping process

The following Matlab program was used to calculate the average number of photons that
are needed in the optical pumping process to bring an atom from mJ = +3 to mJ = −3
(see Section 4.8). The calculation weights every possible path from mJ = +3 to mJ = −3
with its statistical weight by recursively going along the path and multiplying the squares
of the corresponding Clebsch-Gordan coefficients of all transitions from states | 7P3, mJ 〉
to | 7S3, m

′
J 〉 that occur on the way with each other. Such a transition implies that a

photon has been scattered before to bring the atom to state | 7P3, mJ 〉 and hence the
product of the result of this multiplication with the number nstates,i of visited | 7P3, mJ 〉
states yields the probability of scattering nstates,i on path i. Without an exit condition,
in principle arbitrarily long paths would be allowed and the calculation would never
stop. Thus, if a path passes more than 25 states, the path is withdrawn because such
paths are very unlikely. The average number of scattered photons is then given by the
sum over all these paths. nphot =

∑
i nstates,i.

function n=photcount

global CG;

CG=defCG; % table with Clebsch-Gordan coefficients

[n]=gs(3+6,0); % all paths start in m_J=+3

% (+6 is to avoid negative indices)

% ground state %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [n]=gs(j,n) % function for the ground states

global CG;

persistent reccount; % make table of recursion level persitent in gs

if isempty(reccount) % if first call on path then generate an empty

reccount=zeros(length(CG),1); % array to map the number of recursive calls

% (visits of state j)

end;

reccount(j)=reccount(j)+1;

if sum(reccount)>25, % assume that paths where more than 25 states

n=0; % are visited are very unlikely. Thus,

% if number of recursive calls >25
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Appendix D Matlab program to calculate the number of scattered photons

% withdraw this path by setting photon count to 0

else

if j<-3+6|j>3+6, % only states mJ=-3..mJ=+3 exist

n=0; % paths which end in mJ>+3 or mJ<-3 are invalid

else

if j==-3+6, % this is the trivial case:

n=n; % if mJ=-3 the path is finished, return number of

% return number photons

else

n=n+1; % photon count increased by one

n=es(j-1,n); % purely sigma- light ->

% transition happen only to excited state mJ’=mJ-1

end;

end;

reccount(j)=0;

end;

% excited state %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [nout]=es(j,nin)

global CG;

% from every excited state, there are

% three possible paths: decay to mJ’=[mJ+1, mJ, mJ-1].

[n1]=gs(j-1,nin); % number photons needed on that path

p1=CG(j-1,j); % probability (C.-G.^2 coefficient) of that path

n1=n1;

[n2]=gs(j,nin);

p2=CG(j,j);

n2=n2;

j+1;

[n3]=gs(j+1,nin);

p3=CG(j+1,j);

n3=n3;

nout=n1*p1+n2*p2+n3*p3; % return number of photons multiplied with their

% statistical weight

% define squares of the Clebsch-Gordan coefficients for 7S3 -> 7P3 transition %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function CG=defCG

CG(-5+6,-4+6)=0;CG(-4+6,-5+6)=0;CG(-4+6,-4+6)=0;CG(-4+6,-3+6)=0;

CG(-3+6,-4+6)=0;CG(-3+6,-3+6)=9/12;CG(-3+6,-2+6)=3/12;CG(-2+6,-3+6)=3/12;

CG(-2+6,-2+6)=4/12; CG(-2+6,-1+6)=5/12; CG(-1+6,-2+6)=5/12;

CG(-1+6,-1+6)=1/12; CG(-1+6,0+6)=6/12; CG(0+6,-1+6)=6/12;

CG(0+6,0+6)=0; CG(0+6,1+6)=6/12; CG(1+6,0+6)=6/12; CG(1+6,1+6)=1/12;

CG(1+6,2+6)=5/12; CG(2+6,1+6)=5/12; CG(2+6,2+6)=4/12;
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Appendix D Matlab program to calculate the number of scattered photons

CG(2+6,3+6)=3/12; CG(3+6,2+6)=3/12; CG(3+6,3+6)=9/12; CG(3+6,4+6)=0;

CG(4+6,3+6)=0; CG(4+6,4+6)=0; CG(4+6,5+6)=0; CG(5+6,4+6)=0;
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