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1. Introduction

During the last century scientists attempt to reach lower and lower tempe-
ratures to generate new physical states ant to prepare degenerate quantum
systems. With each step towards absolute zero new and rich physical pheno-
mena emerged. The most recent milestone during this process was the expe-
rimental realization of Bose-Einstein condensation in dilute gases. The Bose-
Einstein condensation is based on the wave nature and the indistinguishabi-
lity of particles with integer spin. It is initiated if the spatial extension of the
atomic wave packet, given by the de-Broglie-wavelength ΛB = h/

√
2πmkBT ,

becomes comparable to the interatomic separation (∼ n−3). At a critical

phase space density of D =
n·Λ3

B

�3 ≈ 2.612�
−3 the atomic wave packets overlap

and the ground state of the system becomes macroscopically populated. For
dilute alkali gases extremely low temperatures on the order of a few 100nK
are necessary to reach this critical phase space density. Therefore, it is not
surprising that the lowest temperatures ever observed (below 500pK [1]) were
in such systems.

For the first time Bose-Einstein condensation was observed in 1995, 70 years
after its proposal by Albert Einstein [2] based on a letter of Satyendra N.
Bose [3] about the quantum statistics of particles with integer spin. Eric A.
Cornell, Carl E. Wiemann [4] and Wolfgang Ketterle [5] were awarded with
the Nobel Price in 2001 [6] for the generation and experimental examination
of Bose-Einstein condensates (BEC).

The main experimental features of BECs are their low temperature, their glo-
bal phase-coherence and nonlinearities due to interatomic interactions. These
advantageous properties are limited by different quantities: the temperature
by the interaction energy and the ground state energy of the trap potenti-
al, the coherence length by the confinement and the mean-field energy [7]
and the interactions by heating and loss mechanism. Due to its properties
completely new applications of BECs are imaginable. At the extremely low
temperatures measurements with high momentum resolution may be achie-
ved, the phase-coherence can be used for interference experiments and the
most versatile effects in BECs result from interatomic interactions. Elemen-
tary properties as the s-wave scattering length or the physical dimensions
can be manipulated.

The first experiments with BECs were performed to investigate the interplay
of quantum statistic and the mean-field energy. Elementary excitations as
phonons and vortices were studied [8]. The next milestones were the reali-
zation of atom-lasers [9, 10] and the phase coherent amplification of matter
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waves [11]. A recent development was the preparation of BECs in periodic
potentials, which opened up the possibility to investigate new phenomena
at the border between different areas of physics. Combining a BEC with an
optical lattice for example provides an opportunity for exploring a quantum
system analogous to electrons in solid state crystals but with unprecedented
control over the lattice and the particles. The transition from a superfluid to
a Mott-insulator state could be obtained by the variation of the depth of the
optical potential [12].

At the moment the tendency is to find new applications for BECs like
precision-measurements as Heisenberg-limited interferometry [13] and to stu-
dy interatomic interactions. The ability of controlling these interactions ena-
bles the experimentalists to tune the properties of the condensate and to
manufacture quantum states. A promising application would be the realiza-
tion of a quantum computer [14].

The isotropic short range s-wave interaction was already the subject of
early studies. Its strength can be varied over a wide range by Feshbach-
resonances [15,16] and was used for example to create a molecular condensa-
te of fermionic 40K [17]. Recently the interest in static magnetic and induced
electric dipole-dipole interactions in degenerate quantum gases rouse. Several
proposals about new applications [18–26] and discussions on new phenome-
na like dipolar relaxations [27] were published. The main features of the
dipole-dipole interaction are its anisotropy and its long interaction range.
Furthermore, the light induced dipole-dipole interaction has another two ad-
vantages: the range of interaction is increased due to retardation effects and
the dipole moment can be manipulated by changing the polarization and the
intensity of the irradiated light field. Therefore, it is a magnificent tool to
control the interatomic interaction. The induced interaction was successfully
demonstrated by observing a series of bound states of two 1.43-µm-diam pla-
stic spheres in water [28]. However, so far it was not possible to measure the
mechanical effects caused by the retarded interaction on atomic systems, only
indirect experimental evidence was found by photoassociation-spectroscopy
on ultra-cold atoms [29].

The subject of this thesis is the investigation of the mechanical effects caused
by the light induced dipole-dipole interaction. Numerical calculations of the
induced potentials within dense BECs were performed for a wide range of
different initial conditions and configurations to investigate for example the
necessity of optical lattices or the behaviour of the induced potential on the
properties of the incident light field. The aim of the calculations was not only
to gain a deeper understanding of the interaction of light and atoms and the
interatomic interactions but also to find an experimental access to probe the
mechanical effects caused by the induced potentials and to set boundary con-
ditions for the experimental parameters. The computations confirmed that
with our experimental setup we can reach a regime where the light induced
dipole-dipole interaction significantly changes the momentum distribution of
the atoms and measurable effects can be observed in time-of-flight measure-
ments.
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This thesis is structured in the following way. In chapter 2 the theoretical
basics of the light induced dipole-dipole interaction are introduced. The dis-
cussion on two-level atoms and the optical Bloch equations necessary for the
calculation of the magnitude of the dipole moments and the spatial depen-
dance of the dipole-dipole interaction is followed by the theoretical presenta-
tion of Bose-Einstein condensation in the noninteracting and the interacting
case. The chapter is completed by a review on optical traps.

Chapter 3 contains a short review of the experimental setup and its different
components like the vacuum system and the laser system. The latest progress
as the construction of a 1D-optical lattice and the current status of the
experiment are discussed at the end of this chapter.

The main subject of chapter 4 is the presentation of the numerical calcula-
tions and the considerations on the effects which were taken into account.
Calculations for two different sets of typical parameters are shown and the
problems encountered during the calculations are discussed. The two cases
are the induction of dipole-dipole interaction with resonant and far-detuned
light.

Chapter 5 is devoted to the presentation of the results of the numerical cal-
culations. The induced potentials and the momentum distributions and their
correlation to different experimental parameters are discussed. An estimation
on the expected error is given and the first experimental approach pointed
out.

The thesis is closed by chapter 6. The conclusions are presented and an out-
look on possible measurements and applications of the light induced dipole-
dipole interaction is given.





2. Theoretical Basics

In this chapter we are going to discuss the general theoretical basics needed
for the treatment of the mechanical effects caused by the light induced dipole-
dipole interaction. We will first introduce the theoretical formalism of the
interaction of a single atom and an electromagnetic field. Then we are going
to concentrate on static and dynamic dipoles and their interaction. At the
end of the chapter a review of Bose-Einstein condensation will be given and
the theoretical treatment of optical lattices discussed.

2.1 Interaction of Light and Matter

The internal degrees of freedom of an atom can be described in terms of diffe-
rent energy levels and several possible transitions between them. Transitions
can be induced by the interaction of the atom and a coherent light beam.
The detuning:

δL = ωL − ω0 , (2.1)

is the difference between the frequency of the monochromatic light field ωL

and one of the transition frequencies ω0. If this quantity for a transition is
small compared to the detuning with respect to all other allowed transitions,
the atom may be treated as a two-level system. The two levels are called
ground state |g〉 and excited state |e〉, and are separated by the energy �ω0.

2.1.1 Optical Bloch Equations

A quantum mechanical description of the interaction of a single two-level
atom with a monochromatic coherent light field is given by the optical Bloch
equations. A derivation of the Bloch equations and a discussion can be found
[30,31].

The full Hamiltonian for the system is:

Ĥ = Ĥatom + Ĥrad + Ĥint , (2.2)

where Ĥatom is the Hamiltonian of the atomic system, Ĥrad is the Hamiltoni-
an of the radiation (light) field and Ĥint is the interaction Hamiltonian which
takes the coupling of the radiation field and the atom into account. For the
derivation of the optical Bloch equations using the Raman-Nath approxima-
tion, the kinetic energy of the atoms is neglected and the light field is treated
classically.
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If the wavelength of the monochromatic light field is much larger than the va-
riance of the density distribution of the electron, the interaction Hamiltonian
can be reduced. In the reduced interaction Hamiltonian the atom interacts
with the light field only due to its electric dipole moment �d:

Ĥint = −d̂ · �E , (2.3)

where �E is the electric field �E = E0 �ep ·cos(ω0t), with E0 being the amplitude
and �ep the unit vector in the direction of the polarization.

Having applied this approximation, the density matrix elements can be cal-
culated by using the Hamilton equation:

i�
d

dt
ρ̂ = [Ĥ, ρ̂] with ρ̂ =

(|g〉〈g| |g〉〈e|
|e〉〈g| |e〉〈e|

)
, 〈Ô〉 = Tr[ρ̂Ô] , (2.4)

where ρ̂ is the density matrix and 〈Ô〉 is the expectation value of operator
Ô.

Because a two-level system is formally equivalent to a fictitious spin 1
2
, the

eigenstates may be expressed in terms of spin-vectors:

|g〉 =

(
0
1

)
and |e〉 =

(
1
0

)
, (2.5)

and the Hamiltonian of the atomic system and the interaction Hamiltonian
in terms of the Pauli spin matrices:

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
. (2.6)

By calculating the expectation values of the density matrix elements, apply-
ing the rotating wave approximation and using the Bloch-vector (u, v, w) the
optical Bloch equations can be derived. The components of the Bloch vector
are given by:

u =
1

2
< ρ̂gee

iωLt + ρ̂ege
−iωLt > (2.7)

v =
1

2i
< ρ̂gee

iωLt − ρ̂ege
−iωLt > (2.8)

w =
1

2
< ρ̂ee − ρ̂gg > , (2.9)

where ρ̂ab = |a〉〈b|. By adding damping terms1 due to spontaneous emission
the optical Bloch equations can be written as:

u̇ = δLv − uΓ/2 (2.10)

v̇ = −δLu − vΓ/2 − wΩ (2.11)

ẇ = Ωv − wΓ − Γ/2 , (2.12)

1 The damping can be derived in terms of a dressed atom approach [30,32]
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where Γ is the natural linewidth of the transition |g〉 ↔ |e〉, δL is the laser
detuning (equation 2.1) and Ω is the so called Rabi frequency, which corre-
sponds to the strength of the coupling:

Ω = −dge · E0

�
, (2.13)

with dge the dipole matrix element. w represents half the difference between
the populations of the ground and the excited state, and u and v are, respec-
tively, proportional to the components of the dipole moment in phase and in
quadrature with the incident beam.

The optical Bloch equations are similar to the equations describing the evo-
lution of a magnetic spin in a homogenous time-dependent magnetic field2.
Their solution is a damped precession of the Bloch-vector. This damping
occurs due to spontaneous emissions, which destroys the phase coherence of
the precession. Without damping, the atom would be excited and deexcited
coherently.

2.1.2 Steady State

For times longer than the inverse damping rate, the Bloch vector approaches
a final position and the system tends towards a steady state. The Bloch vector
in steady state is given by (ust, vst, wst) with

ust =
δL

Ω

s

s + 1
(2.14)

vst =
Γ

2Ω

s

s + 1
(2.15)

wst +
1

2
= σst =

1

2

s

s + 1
, (2.16)

where σst is the population of the upper state and s is the so called saturation
parameter:

s =
Ω2/2

δ2
L + Γ2/4

. (2.17)

The rate of spontaneously emitted photons in steady state is proportional to
the probability of finding the atom in the excited state σst and to the rate of
decay of the excited state:

Γsp =
Γ

2

s

s + 1
. (2.18)

The damping of the Bloch vector due to spontaneous emissions is exponential,
the steady state will be reached on the scale of the lifetime of the excited
state τ = 1/Γ. A more detailed discussion of the timescale will be presented
in section 4.1.2 for 87Rb.

2 There is no damping in the case of a single magnetic spin.
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2.1.3 Experimental Parameters

To compare the calculated quantities with the experimental results the dipole
matrix element dge, the Rabi frequency Ω and the saturation parameter s
have to be expressed in terms of the frequency ω0 and the natural linewidth
Γ of the transition |g〉 ↔ |e〉 and the detuning δL and the intensity I0 of the
incident light beam. ω0 and Γ are constants and are listed in section 3.1. δL

and I0 are the parameters which can be varied in the experimental setup.

The dipole matrix element can be expressed in terms of the natural linewidth
as derived in [33]:

dge =

√
3ε0hc3

2ω3
0

Γ . (2.19)

The Rabi frequency (equation 2.13) may be rewritten in terms of the incident
intensity as:

Ω = Γ

√
I0

2Isat

, (2.20)

where we have used that:

E0 =

√
2I0

ε0c
, (2.21)

and Isat is the so called saturation intensity given by:

Isat =
�Γω3

0

12πc2
. (2.22)

The saturation parameter s is:

s =
I0

Isat

(
1

1 + 4
δ2
L

Γ2

)
. (2.23)

2.1.4 Dipole Moment

A dipole consists of two equivalent charges q of different sign separated by �l.
The dipole moment is defined as:

�d = q ·�l . (2.24)

For low light intensities, the classical picture of the driven harmonic oscilla-
tor may be considered to calculate the dipole moment. In the center-of-mass
system, the atom can be described as an electron bound to the nucleus by a
harmonic potential with the resonance frequency equal to the transition fre-
quency ω0. The driving force is the electric field of the electromagnetic wave
and the damping is due to spontaneously emitted photons. The deflection of
the electron multiplied by the charge is the corresponding dipole moment.
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In the quantum mechanical calculation, which is also valid for high intensities,
the optical Bloch equations have to be used in order to find the expectation
value of the dipole moment operator.

The dipole moment operator is defined as d̂ = q · l̂, where l̂ is the position ope-
rator of the electron with respect to the nucleus. Because l̂ is antisymmetric,
the dipole moment of atomic eigenstates 〈a〉 vanishes:

〈d̂〉 = 〈a|d̂|a〉 = 0 . (2.25)

Superpositions of eigenstates like c1 · |g〉+ c2 · |e〉, may have a non vanishing
dipole moment:

〈d̂〉 = c∗1c1〈g|d̂|g〉 + c∗2c2〈e|d̂|e〉 + c∗1c2〈e|d̂|g〉 + c∗2c1〈g|d̂|e〉
= c∗1c2〈e|d̂|g〉 + c∗2c1〈g|d̂|e〉 . (2.26)

+ =

Fig. 2.1: Qualitative graph of the superposition of an s-orbital (left-
hand side) and a p-orbital (middle) to a superposition state (right
hand side).

Such a superposition of states as shown in figure 2.1 exists for example du-
ring the transition between different eigenstates. As long as the Bloch vector
has nonzero components in the uv-plane there is always an effective dipole
moment induced.

The dipole moment operator may be expressed as:

d̂ = dge|g〉〈e| + deg|e〉〈g| = dge(|g〉〈e| + |e〉〈g|) . (2.27)

Using equation 2.4-2.6, the expectation value of the dipole moment operator
for a single atom driven by a monochromatic electromagnetic field is given
by:

〈d̂〉 = d = 2dge(u · cos(ωLt) − v · sin(ωLt)) . (2.28)

The steady state expectation value of the dipole moment is (equation 2.14-
2.16):

dst =
2dge

Ω

s

s + 1
(δL · cos(ωLt) − Γ

2
· sin(ωLt)) . (2.29)

d oscillates at the laser frequency and there is a phase shift between the
dipole moment and the driving electromagnetic field which depends on the
detuning. If δL = 0 the cos(ωLt) term vanishes and the phase shift is π/2.
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The amplitude of the dipole moment is:

d0 = 2dge

√
u2 + v2 . (2.30)

The amplitude of the expectation value in steady state, expressed in terms
of I0 and δL is:

d0,st =

√
3Γε0hc3

ω3
0

·
√

I0
Isat

· (1 +
4δ2

L

Γ2 )

1 +
4δ2

L

Γ2 + I0
Isat

. (2.31)

1 2 3 4 5

1

2

3

4

5

0

�L = 0 � �L = /2 � �L = � �L = 2 I [I ]0 sat

d
[D

eb
y

e]
0
,s

t

max(d )0,st

Fig. 2.2: Expectation value of the dipole moment versus I0 in steady
state for different δL. 1Debye = 3.336 · 10−30Cm is the dipole mo-
ment of two charges +e and −e separated by a distance of 0.208Å.

Figure 2.2 shows the steady state amplitudes of dipole moment calculated
using equation 2.31 versus the intensity of the driving field for different δL.
Only the intensity at which the dipole moment has its maximum depends on
the detuning, but not the value at the maximum itself. The largest possible
dipole moment is reached if:

I0 = Isat

(
1 +

4δ2
L

Γ2

)
, (2.32)

and its magnitude is given by:

max(d0,st) =

√
3Γε0hc3

ω3
0

· 1

2
. (2.33)

Note that 2.33 is independent of both parameters δL and I0. Hence, for every
detuning the highest possible dipole moment can be obtained by choosing
the incident intensity according to equation 2.32.
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2.1.5 Scattering Cross Section

The intensity within a medium is described by the one dimensional differen-
tial equation [34]:

dI(x)

dx
= −σscatn(x)I(x) , (2.34)

where σscat is the scattering cross section and n(x) the local density. The
number of scattered photons is equal to the number of spontaneous emissions,
and the scattering cross section can be expressed as:

σscat =
Γ�ωL

I0

· σst , (2.35)

where σst is the population of the excited state. By expressing σst in terms
of δL and I0, equation 2.35 becomes:

σscat =
Γ�ωL

2Isat

· 1

1 +
4δ2

L

Γ2 + I0
Isat

. (2.36)

In the limit I0 � Isat and δL = 0, σscat is independent of the intensity and
equal to the absorption cross section:

σscat = σ0 =
Γ�ωL

2Isat

=
3λ2

2π
, (2.37)

where λ is the wavelength of the incident beam. σ0 is the well known formula
for the absorption cross section in the low intensity regime.

2.2 Dipole Potentials

Two equivalent charges q of different sign separated by some distance �l are
called a dipole as already mentioned. The dipole moment is defined as �d = q·�l.
A static dipole is the source of an electric field, a dynamic dipole of an
electromagnetic field. The classical potential of a static dipole acting on a
positive probe charge is given by:

V (�r) =
1

4πε0

�r · �d

|�r|3 , (2.38)

where �r is the position of the probe charge with respect to the dipole. Equa-
tion 2.38 is only valid for a point-like dipole, but for distances �r which are
large compared to the separation of the charges of the dipole, it is a very
good approximation.

The spatial distribution of the interaction potential of a dipole and a positive
probe charge is shown in figure 2.3.
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Fig. 2.3: Qualitative graph of the interaction potential of a static
dipole and a positive probe charge separated by �r in the xz-plane
(right-hand side). The dipole is located at x, y, z = 0 and points into
the z-direction (as depicted on the left-hand side). The yellow field
corresponds to a repulsive and the blue to an attractive potential
felt by the probe charge. The potential is cylindrical symmetric in
the z-direction.

2.2.1 Static Dipole-Dipole Interaction

The interaction potential of two static dipoles is given by [32]:

VAB(�r) =
∑
i,j

dA,i dB,j

4πε0r3
· (δij − 3

ri rj

r2
) , (2.39)

where A,B are the dipoles, i, j refer to the components of the vectors, �r is
the relative position of the dipoles and r = |�r|. By considering two parallel
dipoles pointing into the z-direction and rewriting equation 2.39 in spherical
coordinates, the interaction potential becomes:

�r =

⎛
⎝r sin(θ) cos(φ)

r sin(θ) sin(φ)
r cos(θ)

⎞
⎠ : VAB(�r) =

d(A)d(B)

4πε0r3
· (1 − 3 cos2(θ)) . (2.40)

As shown in figure 2.4 the potential has attractive and repulsive parts. If
the dipoles are separated in the z-direction (x, y = 0) the interaction is
attractive, if they are separated in the x, y-direction (z = 0) it is repulsive.
There is an angle of vanishing interaction (VAB = 0), the so called magic angle
θmagic = 54.74◦, where the attractive and repulsive parts of the potential
cancel each other.

2.2.2 Dynamic Dipole-Dipole Interaction

We discussed in section 2.1.4 that the light induced dipoles are oscillating
at the optical frequency ωL. Since we are not able to measure any effects
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Fig. 2.4: Qualitative graph of the interaction potential of two static
dipoles in the xz-plane (right-hand side). One dipole is located at
x, y, z = 0, the second at �r and both point into the z-direction (as
depicted on the left-hand side). The yellow field corresponds to a
repulsive and the blue to an attractive potential felt by the second
dipole. The potential is cylindrical symmetric in the z-direction.

at these frequencies, time averages have to be considered. The time average
over a period of oscillation of any interaction between the oscillating dipole
and a static charge or dipole is zero. The timescale on which the interaction
of two oscillating dipoles is averaged out is given by the decoherence time
of the dipoles and by their inverse beat frequency. This timescale might
become large for long coherence times and similar oscillation frequencies of
the dipoles.

In our qualitative picture the dipole A emits an electromagnetic field. The
electromagnetic field travels to the position of dipole B and interacts there
with the charges of B. In order to derive the potential of the light induced
dipole-dipole interaction, the retardation has to be taken into account. The
electromagnetic field emitted at A needs a time ∆t to reach B. During ∆t,
the phase of both dipoles changes due to the driving field. If the phase shift
is small, the interaction is approximately equal to the interaction of static
dipoles. If the phase shift is of the order of π the dipoles point into the
opposite direction and the interaction changes its sign. Hence, the interaction
potential is oscillatory with the separation.

As an example we consider the interaction of two parallel dipoles pointing into
the z-direction. The dipoles are separated in the x-direction (y, z = 0) while
the incident beam, which is the driving electromagnetic field, is travelling
into the y-direction. If the separation is much smaller than the wavelength
of the electromagnetic field, the interaction is repulsive. If the separation is
half a wavelength, the phase difference is π and the second dipole points
into the opposite direction when the electromagnetic field arrives. Hence,
the interaction is attractive. If the separation is a wavelength, the phase
difference is 2π and the interaction is repulsive again.
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There are two types of forces that dominate the interaction between the
atoms. The first arises from the induced dipole moment of one oscillating
dipole acted on by the electric field of the other oscillating dipole. The se-
cond, perhaps more interesting force, is a magnetic force that arises from the
interaction between the induced currents in the two dipoles. This interaction
results from a Lorentz-force involving a cross product of the time derivative
of the dipole moment with the magnetic-flux density from the other dipole.
When the separation between the two induced currents is perpendicular to
the electric field polarization of the incident field this force dominates all
others.

The full interaction potential is given by the equation [32]:

VAB(�r) =
dAdB cos(�k · �r + ∆φ)

4πε0r3
· (2.41)∑

i,j[(δij − 3
ri rj

r2 )(cos(kr) + kr sin(kr)) − (δij − ri rj

r2 )(k2r2 cos(kr))] ,

where dA and dB are the amplitudes of the dipole moments of the two atoms,
�r is the separation of the dipoles, �k the wavevector of the electromagnetic
field, r = |�r| and k = |�k|. The cos(�k · �r) term is the phase difference of
the dipoles due to the driving field. An additional phase shift ∆φ occurs if
for example the two levels of the atom are shifted differently by additional
potentials.
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Fig. 2.5: Qualitative graph of the retarded interaction potential of
two light induced dipoles in the xz-plane (right-hand side). One
dipole is located at x, y, z = 0 and the second at �r (as depicted on
the left-hand side). The z-polarized driving field is travelling into
the y-direction. The yellow field corresponds to repulsive and the
blue to attractive potentials felt by the second dipole.

Figure 2.5 and figure 2.6 show the interaction potential in the xz- and the
yz-plane, for an incident light beam linearly in the z-direction polarized that
is travelling into the y-direction. The potential is anisotropic and oscillatory
on the scale of the wavelength. The maxima and minima of the interaction
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Fig. 2.6: Qualitative graph of the retarded interaction potential of
two light induced dipoles in the yz-plane (right-hand side). One
dipole is located at x, y, z = 0 and the second at �r (as depicted on
the left-hand side). The z-polarized driving field is travelling into
the y-direction. The yellow field corresponds to repulsive and the
blue to attractive potentials felt by the second dipole.

potential in the x- and z-direction are separated due to the retardation by λ,
respectively. In the y-direction, the direction of the wavevector of the driving
field the separation of the maxima and of the minima is λ/2. This results
from the additional phase-change of the driving field in this direction.

2.2.3 Many Interacting Dipoles

In the sections above we have discussed the interaction of two localized di-
poles, but in the experiment we are investigating the interaction of many
atoms. Therefore, we have to extend the picture to more than two dipoles.

The light induced dipole-dipole interaction potential of N dipoles acting on
a probe dipole that is driven by the same electromagnetic field is given by:

Uliddi(�r0) =
N∑

i=1

Vi0(�ri − �r0) , (2.42)

where ri is the position of dipole i, r0 is the position of the probe dipole and
Vi0 is the interaction potential of dipole i and the probe dipole. By making the
transition from localized objects to a density distribution, the sum becomes
an integral and the potential can be expressed as:

Uliddi(�r0) =

∞∫
−∞

VAB(�r0 − �r)n(�r)d3r , (2.43)

where n(�r) is the density distribution of the atoms. In general there is no
analytic solution of equation 2.43, but as we are interested in the interac-
tion potential of many delocalized dipoles this is exactly what we need to
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calculate. The numerical computation of this equation will be presented and
discussed in chapter 4.

2.3 Bose-Einstein Condensation

The atom cloud in our experiment is a BEC (Bose-Einstein Condensate) in
an optical lattice. A general overview is presented in [35–37]. The properties
of a BEC are advantageous for the analysis of the light induced dipole-dipole
interaction. To a good approximation all atoms are decribed by the same
wavefunction. The temperature is lower and the density is higher than in the
case of a thermal gas cloud. The optical lattice imprints a structure smaller
than the wavelength of the light field inducing the dipole-dipole interaction,
which is important, since the static part of the interaction vanishes for clouds
with isotropic density distribution on the scale of the wavelength as shown
in Appendix A.

2.3.1 Non-Interacting Bosons

We consider an ensemble of cold bosonic atoms in a harmonic trap. Due
to the quantum statistics a transition from a thermal cloud to a BEC can
be achieved, by cooling the ensemble below a certain threshold temperature
which is called the critical temperature Tc. The transition is described in the
grand canonical ensemble, where the exchange of particles and energy with
a reservoir is allowed. The interaction of the atoms will be neglected for the
moment. The trap potential is given by:

Utrap(�r) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) , (2.44)

where m is the mass of the bosons and ωx,y,z are the trap frequencies. The
eigenenergies of the trap potential are:

El =

(
lx +

1

2

)
�ωx +

(
ly +

1

2

)
�ωy +

(
lz +

1

2

)
�ωz , (2.45)

where lx,y,z are natural numbers.

The state of the system may be described by the grand canonical N-particle
density matrix:

ρ̂ =
1

Z
exp(−β(Ĥ − µN̂)) , (2.46)

where Ĥ is the Hamilton operator of the system, N̂ the particle number
operator, Z the partition function, µ the chemical potential and β = 1/kBT
the inverse temperature with kB the Boltzman constant. µ is the energy
needed for adding an additional particle to the system.
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By using standard quantum statistical methods described in many textbooks
(eg. [37]) the number of particles in a given state can be calculated with
respect to the density matrix and written in terms of:

nl =

[
1

z
exp(βEl) − 1

]−1

, (2.47)

where z = exp(βµ) is the so called fugacity. The fugacity is the tendency
of a gas to expand or escape (from one phase to another). Since for bosons
µ ≤ 0, the fugacity has the limits:

0 ≤ z ≤ 1 . (2.48)

The number of particles in the system is given by N =
∑

l nl. We separate
this quantity into the number of particles in the ground state of the trap
potential N0 and the number of particles in the excited states of the trap
potential N ′ and find by setting z = 1 that there is an upper limit for the
number of particles in the excited states:

N ′ =
∑
l �=0

[
1

z
exp(βEl) − 1

]−1

<
∑
l �=0

[
exp(βEl) − 1

]−1

= N ′
max . (2.49)

In the quantum degenerate regime (z → 1) the number of atoms in the
excited states is saturated and the ground state is macroscopically populated,
since

N0 =
z

1 − z
−−→
z→1

∞ , (2.50)

is diverging for (z → 1). The transition occurs, when the phase space density
D(T, n) becomes larger than the critical value:

Dc(Tc, n0) :=
ρ0 · Λ3

B(Tc)

�3
≈ 2.612�

−3 , (2.51)

where ΛB(T ) =
√

h2

2πmkBT
is the thermal de Broglie wavelength and ρ0 is the

density in the center of the trap. The phase space density multiplied by �
3

corresponds to the number of atoms within a unit volume in phase space.

The critical temperature Tc for atoms confined in a harmonic trap is:

kBTc =
�ωN1/3

[ζ(3)]1/3
≈ 0.94 �ωN1/3 , (2.52)

where ζ(z) =
∑∞

l=1 l−z is Riemann’s Zeta-function and ω = (ωxωyωy)
1/3 is

the mean trap frequency.

In order to achieve quantum degeneracy the critical phase space density
(equation 2.51) has to be reached by cooling the ensemble below the critical
temperature (equation 2.52). For T = 0 all atoms are in the ground state of
the trap potential.
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2.3.2 Interacting Bosons

The short-range interatomic interaction can be described in terms of a mean-
field approach with the interaction potential:

V (�r − �r0) = gδ(�r − �r0) , (2.53)

where g = 4π�
2a

m
is the coupling constant and a is the s-wave scattering length.

The probability wavefunction is described by the Gross-Pitaevskii equation:(
− �

2

2m
∇2 + Upot(�r) + g|Φ(�r)|2

)
Φ(�r) = µΦ(�r) . (2.54)

It is possible to classify the BEC by comparing the kinetic and the interaction
energy: Eint

Ekin
∝ N |a|

aho
, where aho =

√
�/(mw) is the average width of the trap

potential. There are two regimes [38]:

•
√

2
π

N |a|
aho

� 1, linear regime of the harmonic oscillator

•
√

2
π

N |a|
aho

 1. hydrodynamic regime

We can estimate a characteristic length scale of the BEC by setting the
kinetic and the interaction energy to be equal. The healing length ξ is the
scale on which perturbations of the density distributions are smoothed out.

Ekin = Eint ⇒ ξ =
1√

8πρ0a
. (2.55)

In the hydrodynamic regime the interaction energy is dominant and the ki-
netic energy may be neglected, which is called Thomas-Fermi approximation.
The density distribution becomes:

n(�r) = |Φ(�r)|2 =

{
µ−Upot(�r)

g
, if Upot(�r) ≤ µ

0 , if Upot(�r) > µ ,
(2.56)

which for a harmonic trap potential is a parabolic function for Upot(�r) ≤ µ.
The chemical potential is given by:

µ =
152/5

2

(
Na

aho

)2/5

�ω , (2.57)

and the mean interaction energy per atom by:

Eint

N
=

7

2
µ . (2.58)

The Thomas-Fermi radius RTF is the distance from the center of the trap to
the edge of the density distribution:

R2
TF,i =

2µ

mω2
i

, i = x, y, z . (2.59)
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2.4 Optical Traps / Optical Lattices

In a far detuned light beam, the induced dipole moment of an atom interacts
with the electric field. The dispersive interaction between the gradient of the
intensity and the dipole moment leads to dipolar forces discussed in [30,39].
Due to these dipolar forces atoms can be trapped in a laser beam.

Optical lattices are optical traps with perfectly periodic potentials and have
a wide range of applications in atom optics [40, 41]. In combination with
a BEC they are used for example to model crystal structures or as tools
for investigating different properties of the atomic clouds as in momentum
spectroscopy [42].

An optical lattice may be produced by overlapping two or more at least
partially counterpropagating electromagnetic waves with non-orthogonal po-
larizations. In the case of two laser fields at the same frequency, the optical
lattice is a standing electromagnetic wave. The one dimensional potential for
a retro reflected 1D lattice along the direction of the standing wave is derived
in [43]:

U(z) =

(
− 3πc2Γ

ω2
0 − ω2

· 4I0

)
· cos2(klatz) = −Ulat · cos2(klatz) , (2.60)

where klat is the wavevector of the standing wave, z is the position within the
lattice and Ulat the depth of the potential. Usually, the depth of the lattice
potential is expressed in recoil energies:

Erec =
�

2k2
lat

2m
, (2.61)

where m is the mass of the atom.

If the kinetic energy of the atoms is much smaller than the potential energy
of the lattice, the trap can be approximated by a harmonic potential. The
expansion for small values of z gives:

U(z) = −Ulat · cos2(klatz) ≈ Ulat(−1 + k2
latz

2) . (2.62)

If the BEC has a cigar shape, the optical lattice is directed into the axial
direction of the cloud and the confinement in the radial direction is much
smaller than the confinement due to the optical lattice, then the density
distribution will consist of thin discs separated by half the wavelength of the
lattice beams in the axial direction. The density distribution within the discs
is given by:

n(z) = N
π1/2

1
zlat

exp

(
− z2

z2
lat

)

with zlat = 1
2

√
�λlat

π
1

(Ulatm)1/2 , (2.63)

where λlat is the wavelength of the lattice beams and zlat is the full width of a
disc measured from 1/e2 of the peak density on one side to 1/e2 on the other
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side. For optical potentials on the order of a few hundred Erec, the width
of the discs is an order of magnitude smaller than the wavelength and the
density an order of magnitude higher than the density of the BEC without
a lattice.

2.5 Summary

In this chapter we introduced all quantities needed for the calculation of the
mechanical effects caused by the light induced dipole-dipole interaction. To
be able to maximize the effects caused by the interaction the dependency of
the potential on the parameters was investigated:

• Dipole moment:
The interaction potential of two dipoles is proportional to the dipole
moment of both atoms. The dipole moment is maximized by choosing
the detuning and the intensity of the incident beam with respect to
equation 2.32:

I0 = Isat

(
1 +

4δ2
L

Γ2

)
. (2.64)

• Density and atom number:
The effective interaction potential is proportional to the density of the
cloud. Since the light induced dipole-dipole interaction is a long range
interaction, not only the local density is of importance but also the
number of atoms within the range of interaction. The length scale of
the interaction is given by the optical wavelength (equation 2.41).

• Size and shape of the gas cloud:
As described in Appendix A the static part of the interaction vanishes
for isotropic distributions of dipoles. Hence, the density distribution
should not be isotropic on the scale of the interaction in order to maxi-
mize the potential. On the other hand, if the distribution is much larger
than the wavelength, the interaction potential is averaged out due to its
oscillatory behavior. Therefore, the width of the cloud perpendicular
to the optical lattice should be on the order of the wavelength.

• Temperature:
The interaction potential is oscillating spatially on the scale of the
wavelength. If the atoms move significantly on this scale during the
interaction, the attractive and repulsive parts of the interaction will
partially cancel each other and the effective potential will be decreased.
The temperature of the cloud has to be:

T � mλ2

kB∆t2
(2.65)

where λ is the wavelength of the incident electromagnetic wave ∆t the
time of interaction.
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Due to their properties Bose-Einstein condensates are an outstanding tool for
the investigation of the light induced dipole-dipole interaction. High densities
can be produced at low temperatures. With an optical lattice we are able to
transform the 3D-cloud into many separate quasi 2D-discs and increase the
density by an order of magnitude.





3. Experimental Setup

In this chapter we are going to present the experimental apparatus and the
techniques used for the measurements. A short review on the element Ru-
bidium is followed by the discussion of the different parts of the experiment
consisting of the vacuum system, the laser system, the trapping and cooling
part and the imaging. An the end of this chapter the design of the optical
lattice and its properties are presented.

3.1 Rubidium

Alkali atoms are commonly used for laser cooling and magnetic trapping be-
cause of their relatively simple hydrogen-like term scheme and advantageous
properties. Especially Rubidium has earned itself a reputation as a workhor-
se because it is relatively easy to handle. Its relevant transitions are located
around 780nm, which can be accessed by commercial diode and titanium-
sapphire laser systems. Due to its high vapor pressure of 4 · 10−7mbar at
room temperature, gaseous Rubidium may be generated efficiently by hea-
ting slightly above room temperature.

The two natural most abundant isotopes of Rubidium are 85Rb with 72% and
87Rb with 28%. In our experiment 87Rb is used because 85Rb has a negative
scattering length at magnetic field strengths common for magnetic trapping
and 87Rb has favorable collision parameters. 87Rb is radioactive but stable
on the usual timescale of the experiment. It decays by a β−-transition into
87Sr, with a lifetime of 4.88 1010 years [44]. 32 other isotopes are known [45],
the most prominent are 83Rb (τ = 86.2days), 84Rb (τ = 32.77days) and 86Rb
(τ = 18.631days).

Some physical properties of 87Rb are [46,47]:

mass m 86.909 180 520(15) u
1.443 160 60(11) ×10−25kg

Melting point at 1013mbar TM 39.31◦C
Boiling point at 1013mbar TB 688◦C
vapor pressure at 25◦C PV 4 ×10−7mbar

Figure 3.1 shows the hyperfine levels of 87Rb. For the light induced dipole-
dipole interaction the transition |52S1/2, F=2, mF = 2〉 → |52P3/2, F=3,
mF = 2〉 (indicated by the dotted line) is considered. Its relevant optical
properties are:
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D2-line 52S1/2 → 52P3/2

Wavelength (vacuum) λ 780.246 291 692(11) nm
Wavelength (air) λair 780.037 08 nm
Frequency ω0 2π · 384.2279818773(55) THz
Lifetime 52P3/2 τ 26.24(4) ns
Linewidth (FWHM) Γ 2π · 6.065(9) MHz
Saturation intensity Isat 1.67 mW/cm2

Recoil temperature at 780nm Trec (�k)2/mkB = 361.95 nK
Recoil velocity at 780nm vrec �k/m = 5.8845 mm/s
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Fig. 3.1: Hyperfine levels of 87Rubidium and the D1- and D2-line.
The dotted line corresponds to the transition used for the light
induced dipole-dipole interaction.

3.2 Setup

The design and the characterization of the experimental setup is described
in detail in [43,48,49]. Here, we will only present the most important details
and the changes made in the scope of this thesis.

The Bose-Einstein condensation and the experiments with 87Rb are perfor-
med in a large volume ultra high vacuum chamber. A magneto-optical trap
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(3D-MOT) is loaded by a collimated beam of slow atoms produced by trans-
versal optical cooling (2D-MOT) in a Rubidium vapor cell. The cooling light
at a wavelength of 780nm is produced by a Titanium-Sapphire laser, which is
pumped by a frequency doubled Nd : YVO4 laser system. Additional grating
stabilized diode lasers are used for detection, optical pumping and repum-
ping. Subsequent to the MOT the atoms are loaded into a magnetic trap,
which is created by a set of water-cooled coils attached to the chamber and
capable of carrying more than 1000A. The temperature of the trapped Rubi-
dium cloud is decreased by Radio-frequency induced evaporative cooling until
Bose-Einstein condensation is reached. The atomic clouds and condensates
are observed with CCD-cameras.

3.2.1 Vacuum System

The vacuum system is divided by a differential pumping tube into two sec-
tions as shown in figure 3.2: the high vacuum (HV) section and the ultra
high vacuum (UHV) section. The main components of the HV side are the
Rb-reservoir and the glass cell of the 2D-MOT. The whole HV section is
heated to about 40◦C to increase the pressure of the Rubidium vapor in the
2D-MOT. The vacuum is maintained by a turbo pump with a pumping speed
of 20 l/s. The pressure is about 10−6 to 10−7mbar.

The HV part is connected to the UHV part by the differential pumping tube
through which the atomic beam of the 2D-MOT enters the main chamber.
The tube is normally blocked by a mechanical shutter and is only opened
to load the 3D-MOT. The main vacuum chamber is connected via a five-
way-cross to an ion-pump (200 l/s), a cryogenic reservoir and a Titanium-
sublimator (ca. 1000 l/s). The main chamber was designed to combine the
advantages of glass cells and steel chambers. It has a good optical access
and the Ioffe-bars, which are introduced trough the four ’feedthrough’ holes,
are close to the atomic cloud. The UHV side operates at a pressure below
3 · 10−11mbar.

3.2.2 Laser System

Four laser systems provide the experiment with light of different frequencies:
the MOT laser, the repumper laser, the probe laser and the laser for the
optical lattice. The first three systems are actively stabilized by feedback
loops using doppler-free spectroscopy on Rb-vapor. Figure 3.3 shows the
schematic of the laser setup used in the experiment.

The MOT laser is a Titanium-Sapphire solid state laser system (model Co-
herent MBR 110 ) and is pumped by a frequency doubled diode-pumped Nd
: YVO4 laser system (model Coherent VERDI V-10 ) with a maximal output
power of 10.5W at 532nm. It provides the 2D- and 3D-MOT with a total
power of 1.4W at 780nm. The laser beam can be redirected into the main
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Fig. 3.2: Experimental setup. The dashed line divides the setup
into the HV part and the UHV part. The main chamber is located
at the center of the setup and is connected to the 2D-MOT by a
differential pumping tube.
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Fig. 3.3: Schematics of the laser setup used in the experiment. The
cooling and trapping light is produced by a Titanium-Sapphire laser
and passes twice through an AOM before it is split up into the
beams for 2D- and 3D-MOT, switched by a flipping mirror it also
provides the experiment with the resonant light needed for inducing
dipoles. Two diode lasers are producing the light for repumping,
optical pumping and detection by absorption imaging. The light
for the optical lattice is produced by a second Titanium-Sapphire
laser.
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chamber by a flipping mirror to induce the dipole-dipole interaction in the
cloud.

The repumper and the probe laser are self built grating stabilized diode lasers
(using Sharp laser diodes and electronics from Toptica) with an output power
of 60mW at 780nm. The repumper is used to transfer atoms back into the
MOT cycle, which were removed by spontaneous decay. The light of the probe
laser is used for optically pumping the atoms into the mF = 2-state before
introducing them into the magnetic trap and for absorption imaging as the
probe beam.

The laser system of the optical lattice is a Titanium-Sapphire solid state
laser system (model Tekhnoscan TIS-SF-07 ) and is pumped by a frequency
doubled diode-pumped Nd : YVO4 laser system (model Coherent VERDI
V-10 ) with a maximal output power of 10W at 532nm. The maximal power
output of the Tekhnoscan is 1.2W and the wavelength is tunable over a wide
range between 750 and 850nm. A discussion in more detail on the setup of
the optical lattice is given in section 3.3.

3.2.3 2D- / 3D-MOT and Magnetic Trap

The 2D-MOT is an intense source of slow atoms, its design and experimental
results are described in [50]. It operates by transversally cooling Rb-vapor
in two dimensions to create a collimated atomic beam. The 2D-MOT yields
a flux of 2 · 1010atoms/s of which about 50-60% can be captured by the
3D-MOT.

Detailed considerations and measurements concerning the 3D-MOT are pre-
sented in [51]. The main purpose of the 3D-MOT is the fast trapping of
a large number of cold atoms. The prolate ellipsoid geometry of the 3D-
MOT was chosen to improve the cooling capacity and efficiency. The atomic
beam from the 2D-MOT is directed horizontally at an angle of 27◦ with re-
spect to the z-axis (long axis of the MOT) into the trapping volume, hence
incoming atoms are cooled by the axial and the radial beams along the who-
le length of the elongated MOT. The field gradient in the radial direction
dB/dr = 15G/cm is generated by the quadrupole field of the Ioffe-bars ope-
rated at 40A, in the axial direction dB/dz = 0.7G/cm by the field of the
extra-coils in anti-Helmholtz configuration operated at 17A. At the density
reached in the MOT the atomic cloud becomes optically thick for the de-
tuning of −2Γ of the MOT-beams. To increase the density and to decrease
the temperature, the detuning of the MOT-beams is linearly ramped to −7Γ
within a few ms. The density achieved is 4 · 1010cm−3 at N = 6 · 109atoms
and at T = 40 - 80µK. Due to the detuned MOT the phase-space density is
increased to D ≈ 10−6

�
−3 (see equation 2.51).

From the detuned MOT the atoms are loaded into a Ioffe-Pritchard-type
magnetic trap. The schematics of the trap is shown in figure 3.4. The ra-
dial confinement is generated by the quadrupole field of the Ioffe-bars and
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Fig. 3.4: Ioffe-Pritchard configuration of the elements creating the
magnetic fields. The radial gradients are produced by the quadru-
pole field of the Ioffe bars, the axial by the dipole field of the pinch
coils. The magnetic field offset generated by the pinch coils is com-
pensated by the bias coils. The extra coils produce an adjustable
offset field.

the axial confinement by the dipole field of the pinch-coils. After the atoms
are loaded from the MOT into the magnetic trap the atomic cloud is adia-
batically compressed. A high offset field is necessary for mode matching of
the magnetic trap and the MOT but in order to reach high trap frequen-
cies a compensation of the offset field generated by the pinch-coils is needed.
Therefore, two additional coil pairs are integrated: with the extra-coils large
offset fields can be added and with the bias-coils small offset fields nearly
compensated.

The trapping frequencies for 87Rb of the full compressed trap at B′′ =
4.5G/cm2, B′ = 400G/cm and B0 = 3.2 − 0.05G are ωz = 2π · 2.7Hz
and ωr = 2π · 300 − 2300Hz, an aspect ratio of up to ωr/ωz = 850 may
be achieved. For an offset of B0 ≈ 0.8G the number of atoms is typically
N = 4 · 109, the density is about ρ0 = 5.5 · 1011cm−3 and the phase space
density D ≈ 1.3 · 10−7

�
−3.
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3.2.4 RF-Evaporative Cooling and Bose-Einstein
Condensation

Evaporative cooling is the final step to reach Bose-Einstein condensation.
The radio frequency (RF) is swept down in a sequence of linear ramps from
44.5MHz to a few kHz above the trap bottom.
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Fig. 3.5: Temporal progression of the RF-ramp (top) and the phase
space density versus atom number (bottom) The different symbols
correspond to different measurements.

Figure 3.5 shows on the top the temporal progression of the linear RF-ramps.
The sequence was experimentally optimized. On the bottom the phase space
density versus the atom number is plotted. Above N = 106 the efficiency of
the evaporation is constant, below the efficiency decreases due to a heating
rate of 2µK/s in the magnetic trap. At N = 105 Bose-Einstein condensation
is initiated after an overall reduction of the atom number by four orders of
magnitude.
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3.2.5 Imaging and Time-of-Flight

In our experiment all information about the atomic clouds is extracted from
images taken with CCD-cameras. From these images for different times of
flight it is possible to determine the total number of atoms N , the density
distribution n(�r) and by examining the rate of expansion the momentum

distribution ñ(�k).

Two different imaging techniques are used in our experiment. Large clouds
are probed by fluorescence imaging. The cloud is flashed by a highly satura-
ted resonant laser beam and the resulting fluorescence recorded. The other
technique is absorption imaging. The absorption of a mode-cleaned resonant
laser beam due to the atomic cloud is observed. By comparing the image
taken with a second image of the unperturbed beam, the optical density can
be calculated. The optical density is proportional to the column density:

n′(x, z) =

∫
n(x, y, z)dy . (3.1)

For the measurement of the momentum distribution the time-of-flight method
is applied. The confinement is turned off at t0 and the atoms expand freely.
Absorption images are taken after different times-of-flight t. By analyzing the
temporal evolution of the density distribution the momentum distribution
can be calculated. For a thermal ensemble with a gaussian profile which was
confined in a harmonic trap and was in steady state, the evolution of the full
width of the density distribution σi measured from 1/e2 to 1/e2 is given by:

σi(t) =

√
σ2

i (t0) + 16
2kBT

m
(t − t0)2 (3.2)

where i refers to the x-, y- or z-direction. The expansion of a Bose-Einstein
condensate is described in [52]. By introducing a scaling factor for the radial
direction λr and for the axial direction λz, expressing the time in terms of
τ = ωr · t and assuming ε = ωr/ωz � 1, the expansion of the BEC in first
order in ε can be expressed as:

λr =
√

1 + τ 2

λz = 1 + ε2

[
τ arctan τ − ln

√
1 + τ 2

]
. (3.3)

In the far-field the expansion is linear and the density distribution is propor-
tional to the momentum distribution. The far-field is reached for a thermal
cloud if σi(t)  σi(t0) or for a BEC if λr  1.

The top-mounted CCD-camera (model Princton NTE / CCD-512-TK ) is
used to observe the BEC. By different lens systems the magnification can be
changed to 1×, 4× or 10×magnification. A measured resolution of 7.8µm at
10× and 12µm at 4×magnification may be reached.
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3.3 Optical Lattice

Two 1D optical lattices were build up for this experiment. The first was
generated by the Coherent VERDI V-10 laser system. Lattice depths on
the order of 40Erec were reached. A discussion on the setup can be found
in [43,49].
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Fig. 3.6: Schematics of the optical lattice. The light produced in the
Titanium-Sapphire laser is directed through an optical isolator and
collimated. The optical lattice is turned on and off by an AOM and a
mechanical shutter. The waist required at the position of the atoms
is obtained by a 2:1 telescope. The beam is reflected and overlapped
with itself to produce the optical lattice. Two 4-quadrant diodes are
used to fix the position of the beam. The reflected beam is adjusted
with a photo diode.

After the first lattice was disassembled a second was build up. This optical
lattice is generated by the TIS-SF-07 Titanium-Sapphire laser system. The
schematic of the optical path is shown in figure 3.6.

The optical lattice is turned on and off by an AOM and a mechanical shutter.
With the AOM it is possible to switch the beam within less than 50ns but
residual light of 0.1% can still pass. The mechanical shutter turns the beam
off completely but it switches on the timescale of a few ms. A pin-hole is
adjusted onto the position of the beam which is needed for fine tuning. The
required waist at the position of the BEC is obtained by a 2:1 telescope with
large focal lengths in order to avoid radial confinement due to dipolar forces.
The focal length are f = 1000mm and f = 500mm. The lattice beam is
reflected and overlapped with itself in order to produce the optical lattice.
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The adjustment of the optical lattice is done by two 4-quadrant diodes and a
pin-hole. The 4-quadrant diodes are used to fix the beam at a given position.
The first 4-quadrant diode is placed after the first lens of the telescope. It is
attached onto a magnetic mount and can be set into and removed from the
beam. The second 4-quadrant diode is fixed after the 0◦-mirror for the retro-
reflection and is illuminated by the fraction of the beam that is transmitted
through the mirror. The reflected beam is fixed by adjusting it onto a photo
diode after it passed a second time through the pin-hole.

The optical lattice was designed to create extremely deep potentials with
depths on the order of several hundred Erec. This is needed, as will be discus-
sed in chapter 4, to increase the density of the atomic cloud and to imprint a
structure into the density distribution which is smaller than the wavelength
of the light field driving the dipole-dipole interaction.

3.4 Status of the Experiment

The road-map of Bose-Einstein condensation in our Experiemt is presented
in figure 3.7. The plot shows the progression of the phase space density during
the different steps towards the BEC. Typically the density of the condensate
is 1014cm−3 at an atom number of 105 and a temperature of 200nK.
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Fig. 3.7: The route to Bose-Einstein condensation. (1) elongated
3D-MOT, (2) detuned MOT, (3) loading into the magnetic trap,
(4) full compressed magnetic trap, (5) evaporative cooling, (6) Bose-
Einstein condensation.

Figure 3.8 shows on the left-hand side absorption images at different steps
of the evaporative cooling, the thermal cloud, the BEC-transition and two
images below TC . On the right-hand side the optical density along the z-axis
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Fig. 3.8: Absorption images at different steps of the evaporative
cooling (left-hand side), the thermal cloud above the critical tem-
perature, the transition and two images below TC . The optical den-
sity along the z-axis at x = y = 0 is plotted on the right-hand side.
The thermal cloud has a gaussian and the condensate a parabolic
profile. The parameters are ωr = 2π · 1.3kHz, ωz = 2π · 2.7Hz and
the bottom of the trap is at 150mG.
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at x = y = 0 is plotted. The thermal cloud has a gaussian and the condensate
a parabolic profile. The parameters are ωr = 2π ·1.3kHz, ωz = 2π ·2.7Hz and
the bottom of the trap is at 150mG.

After Bose-Einstein condensation was accomplished and the far blue-detuned
optical lattice successfully characterized, we are currently working on the ad-
justment and analysis of the second lattice. First experiments with the lattice
at P = 400mW, λlat = 777nm and σ = 300µm were already performed.
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Fig. 3.9: Broadening of the cloud in the axial direction (black dots)
due to the optical lattice versus the flash-time of the optical lattice.
The three curves correspond to the theoretical width of the cloud
for different lattice depths assuming the broadening is caused by
the energy deposited in the cloud due to diffraction and distributed
by collisions.

Diffraction measurements were done by switching the optical lattice on for
∆t and observing the axial broadening of the cloud in time-of-flight. Due to
collisions the diffraction orders couldn’t be resolved and the resulting sha-
pe had a gaussian-profile. Figure 3.9 shows the measured axial width of our
atomic cloud (dots) with respect to the flash-time of the optical lattice. The
oscillation demonstrates that the experiment was performed in the channe-
ling regime [53]. The black curve corresponds to the theoretical broadening
of the cloud for Ulat = 152Erec. The two dashed-curves correspond to the
variation of the lattice depth by 10%. For the theoretical curve we assumed
that the whole energy deposited in the cloud due to the diffraction results
because of collisions in an effective broadening. This broadening can be de-
scribed in terms of an effective temperature. This temperature is calculated
by determining the fraction of atoms in the different diffraction orders and
summing their energies (nD2�k)2/2m, where nD is the diffraction order. The
revival time (minimum in the broadening) is characteristic for the lattice
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depth and independent of the scaling of σz. An additional empirical factor
of 0.8 in σz for the broadening was taken into account which corresponds to
the transfer of energy from the z- into the other directions.

Due to the revival at ∆t ≈ 8µs the lattice depth can be estimated to Ulat ≈
150Erec. The theoretically expected value of the optical potential of Ulat =
380Erec was not achieved due to imperfect adjustment of the lattice beams.

3.5 Summary

In the scope of this thesis several modifications of the experimental apparatus
were made in order to allow the planned measurements. The more important
modifications were:

• The laser-diodes for probing and repumping were exchanged to reach
higher intensities. A new spectroscopy [54] was set up to achieve a
higher stability of the frequencies.

• An existing blue detuned 1D optical lattice using a Verdi laser system at
532nm and 978W/mm2 was optimized and characterized. The optical
potentials obtained were on the scale of 36Erec and not deep enough
for the planned experiments. So we decided to set up a more resonant
optical lattice.

• The new 1D optical lattice at 777nm and 4.2W/mm2 was build up,
adjusted and characterized. The optical potentials already achieved on
the order of 150Erec are about a factor of 2.5 lower than the theore-
tically expected value, but sufficiently deep to start with the planned
experiments.

• The flash beam was set up making use of the MRB Titanium-Sapphire
laser system. The flash can be switched by an acousto-optical modula-
tor triggered by a function generator within 50ns on and within 100ns
off.

All the components needed for the experiment are set up and operational,
the experimental apparatus is ready to start with the planned measurements.



4. Numerical Calculations

In this chapter we are going to discuss the general structure and the details
of the calculation of the light induced dipole-dipole interaction potentials
within BECs and the resulting momentum distributions. Two different cases
with resonant and far-detuned light will be presented. The general theoretical
basis for the light induced dipole-dipole interaction was presented in chapter
2, the parameters and properties of the experimental setup were shown in
chapter 3. The results of the calculation will be discussed in chapter 5.

4.1 Outline of the Numerical Calculation

The light induced dipole-dipole interaction is anisotropic and oscillates tem-
porally and spatially. In the regime we are considering, it is not possible to
express the induced potential analytically. Therefore, numerical calculations
have to be carried out to investigate theoretically the response of the atoms
to the interaction. The computational program we developed for the calcu-
lations is written in Mathematica 4.2. Prior to the detailed discussion of the
calculations, a brief outline of the procedure is presented.

The boundary conditions for the atomic cloud we are considering are T <
1µK, radial widths of the cloud on the order of the wavelength, peak densities
on the order of ρ0 ≈ 1014 to 1015cm−3 and mean-field energies on the order
of Emean/h ≈ 10kHz. We are only considering short flash times ∆t ≤ 1µs.
Hence we do not have to take any changes of the density distribution due to
the interaction into account (Raman-Nath regime).

We start the calculation with the discretization of the density distribution
and of the spatial part of the dipole-dipole interaction potential. For the
magnitude of a single dipole moment embedded in an ensemble and for the
relative phase of the dipoles to the driving field we need the spatial distri-
bution of the intensity and the detuning of the incident light. In the case
of high absorption, we also have to take the intensity of the spontaneously
emitted light into account. The full interaction potential within the BEC is
calculated by performing the convolution of the density distribution and the
dipole-dipole interaction potential.

If the induced potential Uliddi � �δL we have to calculate the potential self-
consistently in order to increase the accuracy as the induced potential shifts
the resonance frequency of the atoms locally and with it the scattering cross
section and the induced dipole moment. Selfconsistency can be achieved by



44 4. Numerical Calculations

reinserting the interaction potential computed into the calculation as an ad-
ditional effective detuning and repeat the procedure until the potential con-
verges.

The final part is the calculation of the resulting momentum distribution. This
is done by determining the unperturbed wavefunction and propagating it in
time. Due to the induced potential a spatially varying phase is imprinted and
the momentum distribution is changed. The broadening due to spontaneous
emission is also taken into account.

4.1.1 Initialization

Before starting the calculations we set the values of all constants, fix the
numerical parameters and the initial and boundary conditions like the pro-
perties of the incident light field, the parameters of the density distribution
and the time of interaction, in order to initialize the program. The transiti-
on we are considering is the |52S1/2, F = 2〉 → |52S3/2, F = 3〉. This was
chosen because laser light at the right frequency is already present at a high
intensity (MOT-beams). The transition to the F = 3-level has the advantage
that for detunings on the order of up to +100MHz the other F -levels are
only slightly populated and their influence may be neglected.

Since we are using numerical methods on a discrete space we need to define a
three dimensional grid, which is the discretized representation of the volume
we are interested in. The physical dimension of the discretized space depends
on two length-scales: the first is the size of the volume we are considering,
for example a cube with a length of the edges equal to the full width of the
cloud in the radial direction σr, the second is the length scale of the range
of interaction. As the light induced dipole-dipole interaction is a long range
interaction, the size of the discretized space may be found by investigating the
behaviour of the induced potential for different grid sizes. The full physical
dimension of the discretized space is the volume considered enlarged by the
range of interaction. The volume we are considering is 4λlat in the radial
direction and 8λlat in the axial direction. By doubling the size of the grid the
change in the potential is smaller than a few percent.

The FFT-algorithm (FFT : Fast Fourier Transformation) uses grid sizes of
the form N = 2nx × 2ny × 2nz . For high resolution calculations we choose
the grid to be 64 × 64 × 128 = 524.288 grid points and for low resolution
calculations 32 × 32 × 64 = 65.536 grid points. To avoid a beat between the
grid spacing ∆l and the optical lattice spacing λ/2 in the density distribution
of the atoms, we set ∆l to:

∆l =
λlat

2j
: j ∈ N , (4.1)

where λlat is the wavelength of the lattice beams. For the high resolution
calculations the grid spacing is ∆l = λlat/16 and for the low resolution cal-
culations ∆l = λlat/8.
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4.1.2 Reaching the Steady State

For the calculation we assume that the internal degrees of freedom of the
atomic systems are in steady state. Therefore, we need to investigate on which
timescale the steady state is reached in order to fix the time of interaction.
The evolution of the Bloch vector can be calculated by integrating the optical
Bloch equations numerically for the given parameters.
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Fig. 4.1: Population of the excited state versus the time of interac-
tion at δL = 0 and different incident intensities, from the numerical
integration of the optical Bloch equations.
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Fig. 4.2: Population of the excited state versus the time of interac-
tion at δL = 5Γ, I0 = 1000Isat (left-hand side) and δL = 20Γ, I0 =
100Isat (right-hand side), from the numerical integration of the op-
tical Bloch equations.

In figure 4.1 and 4.2 the population of the excited state of a single atom σe

is plotted versus the time of interaction for different parameters. The initial
conditions were u(0) = v(0) = σe(0) = 0. Figure 4.1 shows σe(t) for δL = 0
and different incident intensities. Figure 4.2 shows σe(t) for large detunings
and high intensities. After 150 to 200ns, which corresponds to a few lifetimes
of the excited state, the system is in steady state almost independently of the



46 4. Numerical Calculations

detuning and the incident intensity. Therefore, we set the time of interaction
to at least 300ns to guarantee that the system is in steady state.

4.1.3 Density Distribution

The density distribution of the BEC in our experiment is strongly anisotropic
with an aspect ratio of up to 1:850. It has a cigar shape, with a radial width
of a few µm and an axial width of a few 100µm as described in section 3.2. In
the axial direction the Thomas-Fermi approximation is valid and the shape
of the density distribution is a parabola. In the radial direction, � times the
trapping frequency is on the order of the mean-field energy and the Thomas-
Fermi approximation is not valid. The healing length is comparable to the
radial width of the cloud, hence we assume a gaussian density profile like in
the case of non-interaction atoms in the trap (section 2.3.2).
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Fig. 4.3: Qualitative graph of the equidensity surface (ρ = ρ0/e
2)

of the BEC

The density distribution as shown in fig 4.3 is:

n(x, y, z) = ρ0 exp

(
−8x2+y2

σ2
r

)
· 1

2

(
1 − 4z2

σ2
z

+

∣∣∣∣1 − 4z2

σ2
z

∣∣∣∣
)

(4.2)

with
∫

n(�r)d3r = N , (4.3)

where the distribution is described by the parameters ρ0, σr and σz. σr is the
full width of the cloud in the radial direction, measured from ρ0/e

2 to ρ0/e
2

and σz is twice the Thomas-Fermi radius (equation 2.59). The modulus in
the last term was taken in order to guarantee, that the density is zero outside
the Thomas-Fermi radius.

The full density distribution of the BEC in a 1D optical lattice as shown in
figure 4.4 is given by:

nlat(x, y, z) = ρlat
n(x, y, z)

ρ0

· exp

(
−8

(z − λlat

2
· [ z

λlat/2
])2

σlat2

)
, (4.4)
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Fig. 4.4: Qualitative graph of the equidensity surface (ρ = ρ0/e
2)

of the BEC in the optical lattice

where ρlat is the peak density in the lattice, σlat is the width of a lattice site
measured from ρlat/e

2 to ρlat/e
2 and [X] is the rounded value of X. [ z

λlat/2
] is

the number of the disc within the optical lattice, where the disc in the center
(z = 0) is labelled zero.

4.1.4 Discretization

A three dimensional discretization is performed by approximating a function
by mean values in a grid. The mean values are taken within unit cubes of
the size ∆l3, where ∆l is the separation of the grid points:

fi1,i2,i3
!
=

1

∆l3

(i3+1/2)∆l∫
(i3−1/2)∆l

(i2+1/2)∆l∫
(i2−1/2)∆l

(i1+1/2)∆l∫
(i1−1/2)∆l

f(x, y, z)dxdydz , (4.5)

where i1,2,3 are integers, f(x, y, z) is an analytic function and fi1,i2,i3 the
discretized function of f(x, y, z).

The discretization of the light induced dipole-dipole interaction potential
by numerically integrating equation 4.5 is time-consuming. Therefore, we
approximate the potential given by equation 2.41 of two interacting dipoles
by:

Vi1,i2,i3 = 1
20

· ∑
corners

VAB((i1 ± 1/2)∆l, (i2 ± 1/2)∆l, (i3 ± 1/2)∆l)

+12
20

· VAB(i1∆l, i2∆l, i3∆l) , (4.6)

where not only the potential at center of the unit cubes but also the magni-
tudes of the potential at its corners are taken into account. Effectively we
are not only evaluating a single point of the potential per unit cube for the
discretization but nine. We determined the weights 1/20 and 12/20 by calcu-
lating the error for different weights, different grid spacings and one thousand
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randomly chosen points within the grid respectively. The error is minimal for
the weights as presented above and is on the order of a few percent.

The interaction potential diverges for �r → �0, hence the central grid point
has to be treated separately. For two dipoles, with dipole one at (0, 0, 0) and
dipole two at (x, y, z) and both pointing into the z-direction the divergence
is:

VAB(x, y, z) →

⎧⎪⎨
⎪⎩

+∞ , for x → 0, y = 0, z = 0

+∞ , for x = 0, y → 0, z = 0

−∞ , for x = 0, y = 0, z → 0 .

(4.7)

To fix the divergence we introduce a cutoff on the order of the s-wave scat-
tering length1. For |�r| � λlat, the interaction potential is given by the static
dipole-dipole potential (section 2.2.2). The density distribution can be as-
sumed to be isotropic as the cut off is much smaller than all length-scales
involved: |a| � σlat ≈ 100nm � σr ≈ 1µm. Due to the cutoff a spherical
symmetric part is cut out of the potential. In Appendix A is shown that the
static interaction potential vanishes for isotropic distributions of dipoles, the-
refore we may neglect the potential in the center and take only the potential
at the corners of the unit cube into account:

V0,0,0 =
1

20
·

∑
corners

VAB(±∆l/2,±∆l/2,±∆l/2) . (4.8)

For the discretization of the density distribution it is already sufficient to
evaluate the value of the density at the position of the grid points:

ni1,i2,i3 = n(i1∆l, i2∆l, i3∆l) , (4.9)

where ni1,i2,i3 is the discretized density distribution. The error is < 1%.

4.1.5 Electromagnetic Field Intensity and Detuning

In order to calculate the interaction potential of two dipoles, we have to
calculate the spatial distribution of the dipole moments within the atomic
cloud. As we discussed in section 2.1.4, by knowing the detuning and the
intensity of the incident beam and the properties of the atoms (section 3.1),
the expectation value of the dipole moment is given by equation 2.31.

The effective detuning of the light field can vary in space due to either a
potential that shifts the ground and the excited state differently or due to
potentials acting only on superpositions of the two states. The dipole-dipole
interaction potential is such a potential as it only acts on atoms with induced
dipole moments. During the transition the potential energy of the atom is
changed and with it the energy needed to excite the atom. The effective
detuning at the position �r is given by:

δeff(�r) = δL − Uliddi(�r)

�
. (4.10)

1 S-wave scattering length for |F=2,mF=+2 〉 is 109(10) a0 = 5.77 nm [55]
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The calculation of the intensity profile is more involved. The differential
equation 4.11 describes the intensity of the coherent light along a line of
absorbers. As the intensity profile is changed only in one direction, deflection,
refraction and other more dimensional effects are neglected. The error made
by this approximation depends strongly on the density, the detuning and the
intensity and will be discussed in section 4.2.1 for typical parameters. By
choosing the incident beam to propagate into the y-direction the differential
equations can be written as:

�k = k · �ey : dI = −I(�r)n(�r)σscat(I(�r), δ(�r))dy , (4.11)

where �ey is the unit vector into the y-direction, I is the intensity, n the density
distribution and σscat the scattering cross section as given by equation 2.36.
In general there is no analytic solution for this differential equation2. We are
interested in different regimes, for resonant incident light the absorption and
the saturation are high, for far-detuned incident light the absorption is low
and s ≈ 1. Therefore we solve equation 4.11 numerically:

∆Ii = −Ii−1 ni σscat(Ii−1, δi−1) ∆y , (4.12)

where x and z are fixed, the index i is refereing to the position in the y-
direction and ∆y is the step size. For higher accuracy we set the step size
to ∆y = ∆l/2 = λlat/32. To compute the full intensity distribution within
the BEC equation 4.12 is solved for every grid line along the y-direction
separately.

Due to the one-dimensionality of equation 4.11 special care has to be taken
when performing calculations involving BECs in optical lattices or using
selfconsistent methods. In these cases unphysical structures much smaller
than the wavelength emerge in the spatial distribution of the coherent light
intensity.

4.1.6 Spontaneous Emissions

Spontaneous emissions create an incoherent background intensity in the
BEC. If the background intensity is on the order of the coherent light in-
tensity within the cloud we have to take the spontaneously emitted light into
account, as it partially saturates the atomic transition.

In order to estimate the intensity of the background, we consider a region
with homogeneous distribution of atoms and a homogeneous distribution of
the incident intensity and neglect reabsorption. In steady state the power ab-
sorbed is equal to the power emitted. Therefore, we approximate the intensity
of the spontaneous background at any point to be the absorbed intensity at
this point. In an optically thin medium the spontaneous background decays

2 Analytic solutions may be found in special cases, for example for low saturation s � 1
and n = const the well known Beer’s law.
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with 1/r2, hence a more accurate approximation is to convolve the calcula-
ted background intensity with a normalized 1/r2-function. This dependance
is modified due to reabsorption. In the following we are going to neglect
this convolution as we are only interested in the order of magnitude of the
background intensity.

By applying this approximation to our calculation and assuming the density
and the intensity distribution around the grid points to be homogeneous, the
background intensity at every point is approximately equal to the absorbed
intensity at this grid point:

Isp,i = Icoh,i−1 − Icoh,i , (4.13)

where Isp is the intensity of the background and Icoh is the intensity of the
coherent incident light field. This method of calculating the intensity of the
spontaneous background is the first approach and neglects the contribution
of the intensity emitted at all other grid points.

The local electric field is given by the sum of the electric fields, hence the
local intensity Iloc can be expressed as:

Iloc =

(√
Icoh + e−iφ

√
Isp

)2

= Icoh + Isp + 2 cos φ
√

IcohIsp , (4.14)

where φ is the relative phase of the two fields. φ is arbitrary and all phases
have the same probability. For background intensities on the order of the
incident light intensity we can estimate the amplitude of the effective dipole
moment deff by inserting equation 4.14 into equation 2.31 and averaging over
the phase:

deff =
1

2π

π∫
−π

d0(φ)dφ (4.15)

However, no analytic solution could be found for this equation. Therefore,
we approximate equation 4.14 by

Iloc =

(√
Icoh + cos(φ)

√
Isp

)2

= Icoh + cos2 φIsp + 2 cos φ
√

IcohIsp , (4.16)

The error made due to this approximation is up to 15% for Icoh = Isp. The
analytic solution of equation 4.16 is given by:

deff =
√

3Γ3ε0hc3

ω3
0

Re

[
S+

(
log−

√
Ssp

S− −log

√
Ssp

S−

)
+S−

(
log−

√
Ssp

S+ −log

√
Ssp

S+

)]
S− S+

with S± =
√

1 ± 2ı
√

Scoh − Scoh + Ssp ,

Scoh = Γ2

(Γ2+4δ2
L)

Icoh
Isat

, Ssp = Γ2

(Γ2+4δ2
L)

Isp
Isat

. (4.17)

The derivation of equation 4.17 is shown in Appendix C. The results of
this approximation are shown in section 4.2.1 and section 4.2.2 for typical
parameters.
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4.1.7 Phase Shift of the Dipole Moment

The relative phase of two oscillating dipoles can change the magnitude and
the sign of the interaction, as the interaction potential is scaled by the scalar
product of the two dipoles:

VAB(�s) → [�dA · �dB]ṼAB(�s) = [dA(�r)dB(�r0) cos(�k · �s + ∆φ)]ṼAB(�s) , (4.18)

where �s = �r − �r0, ∆φ is the relative phase and ṼAB is the spatial part of the
light induced dipole-dipole interaction potential.

The cos(�k ·�s) term corresponds to the spatial dependence of the phase of the
driving field. If the effective detuning varies in space, the relative phase of the
dipoles will be affected. The relative phase φ′ of a dipole to the driving field
expressed in terms of δL and I0 in steady state is given by (from equation
2.28):

φ′(�r) = arctan(−v(�r)/u(�r0)) = arctan

(
− Γ

2δL(�r)

)
. (4.19)

Analytically for δL → 0 : φ → π/2 but numerically we can not handle 1/0
infinities. As we are only interested in the relative phase of the dipoles, we
shift all phases by π/2:

φ(�r) = arctan

(
2δL(�r)

Γ

)
. (4.20)

The relative phase of the dipoles ∆φ is:

∆φ(�r, �r0) = φ′
A(�r) − φ′

B(�r0) = φA(�r) − φB(�r0) , (4.21)

where φA is the relative phase of dipole A and φB the relative phase of dipole
B to the driving field shifted by π/2.

4.1.8 Full Interaction Potential

Due to the spatial dependance of the dipole moments and the phase shift, the
convolution of the interaction potential and the density distribution (equation
2.43) becomes the integral:

Uliddi(�r0) =

∞∫
−∞

VAB(�r0, �r)n(�r)d3r , (4.22)

where VAB not only depends on �s = �r − �r0 but on �r0 and �r separately.

It is only possible to integrate two functions f, g by the method described in
Appendix B, if the integral can be expressed as a convolution:

∞∫
−∞

f(�r, �r0)g(�r, �r0)d
3r → h′(�r0)

∞∫
−∞

f ′(�s)g′(�r)d3r (4.23)
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where f ′, g′, h′ are some new functions depending only on �r, �r0 and �s respec-
tively. Therefore, we separate the terms of the interaction potential:

Uliddi(�r0) =

∞∫
−∞

VAB(�r0, �r)n(�r)d3r

=

∞∫
−∞

dA(�r)dB(�r0) cos(�k · �s + ∆φ)ṼAB(�s)n(�r)d3r . (4.24)

In order to detach all terms, the phase has to be expanded:

cos(�k · �s + φA(�r) − φB(�r0)) = cos(�k · �s) · cos φA(�r) · cos φB(�r0)

+ cos(�k · �s) · sin φA(�r) · sin φB(�r0)

− sin(�k · �s) · sin φA(�r) · cos φB(�r0)

+ sin(�k · �s) · cos φA(�r) · sin φB(�r0) .(4.25)

In order to calculate the full induced potential and take the phase shift of the
dipoles into account we insert equation 4.25 into equation 4.24 and have to
evaluate four convolutions instead of only one as there are four independent
terms. The first term is rewritten as:

∞∫
−∞

dA(�r)dB(�r0) · cos(�klat · �s) · cos φA(�r) · cos φB(�r0) · ṼAB(�s)n(�r)d3r

=

(
dB(�r0) cos φB(�r0)

) ∞∫
−∞

(
cos(�klat · �s)ṼAB(�s)

) (
dA(�r) cos φA(�r)n(�r)

)
d3r

= h′(�r0)

∞∫
−∞

f ′(�r − �r0)g
′(�r)d3r , (4.26)

the other three terms can be rewritten in the same way. The full interaction
potential of the light induced dipoles in the BEC can be computed by evalua-
ting equation 4.26 and the other three integrals using the method described
in Appendix B.

4.1.9 Selfconsistency

If Uliddi � �δL, the calculation has to be done selfconsistently. The indu-
ced potential changes the resonance frequency of the atomic transition and
can be treated as an effective detuning. Due to the change of the detuning
the dipole moment distribution is altered and with it the induced potential
itself. The new potential corresponds to a new effective detuning. Hence, we
have to take the effective detuning into account and repeat the calculation
until the potential converges. If the potential reproduces itself, it is called
selfconsistent. The effective detuning is given by equation 4.10.
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4.1.10 Momentum Distribution and Broadening

During the interaction of the dipoles the induced potential acts onto the
atoms and the momentum distribution is changed. Information about the
interaction potential can be extracted from the analysis of the momentum
distribution and to suggest a promising set of parameters for the experiment,
we calculate the evolution of the momentum distribution during the inter-
action. The optical lattice is present for the time the interaction is induced
and the atoms stay confined in the axial direction. Therefore, we will restrict
the calculations to the xy-plane at z = 0 which is a radial cut though the
center of a disk within the density distribution and ignore all effects in the
axial direction.

We will calculate the momentum distribution by propagating the unpertur-
bed spatial wavefunction in time. We are assuming that the experiment is
performed in the Raman-Nath regime3 and the unperturbed density distribu-
tion is preserved. The effect of the interaction potential on the wavefunction
is the imprint of a spatially varying phase. The momentum distribution is
calculated by Fourier-transforming the propagated wavefunction and taking
the modulus squared.

During the interaction a number of photons per atom nph is absorbed and
the mean momentum p̄ of the cloud changed from zero to p̄ = nph �k. For
our calculations we will consider the momentum distribution of the atoms in
the center-of-mass frame.

In order to calculate the momentum distribution, we need the unperturbed
wavefunction Φ0(�r) of the atoms in the trap. The initial probability wa-
vefunction in our harmonic trap can be expressed in terms of the density
distribution:

Φ0(�r) = eiφ0(t)
√

n0(�r) . (4.27)

where n0 is the unperturbed density distribution and φ0(t) a global phase
factor. This phase factor may be different for all atoms. Fluctuations of the
phase are neglected. As this global phase factor can be pulled out of an
integral over spatial coordinates and we are only considering the modulus
squared of the wavefunction, we are going to neglect eiφ0(t).

If the interaction is turned on at t = t0, the wavefunction is propagated in
time by:

Φ(�r, t) = Û(�r, t − t0)Φ(�r, t0) , (4.28)

where Û(�r, t − t0) is the time evolution operator:

Û(�r, t − t0) = exp

(−iĤ(�r)(t − t0)

�

)
, (4.29)

3 Raman-Nath regime in this context means that the atoms are not moving significantly
on the smallest scale of the system (axial width of a disc σz/2) during the interaction.
This is valid if T � m(σz/2)2

kB ∆t2 ≈ 120µK for ∆t = 500ns. The temperature of the BEC
is increased during the interaction by up to 20µK.
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with Ĥ = Ĥkin + Ĥtrap + Ĥlat + Ĥmean + Ĥint is the full Hamilton operator
of the system. The energy of the system consists of five independent terms,
the kinetic energy of the atoms Ekin, their potential energy in the trap Etrap,
their potential energy in the optical lattice Elat, the mean-field energy Emean

and the dipole-dipole interaction energy Eint.

Ekin/h is on the order a few 10kHz after the interaction, Etrap/h is on the
order of a few kHz, Elat/h is on the order of 100kHz, Emean/h is on the order
of 30kHz and Eint/h is on the order of 10MHz. Therefore, we take only the
interaction energy into account as it is one to two orders of magnitude larger
than all other energies involved4:

Φ(�r, t) = exp

(−iUliddi(�r) ∆t

�

)
Φ(�r, t0) , (4.30)

where ∆t = t − t0.

The momentum distribution of the atoms ñ(�k, t) after the interaction is given
by the Fourier transformation of the in time propagated wavefunction:

ñ(�k, t) =

∣∣∣∣ 1√
2π

3

∞∫
−∞

e(−i�k·�r)Φ(�r, t)d3r

∣∣∣∣
2

=

∣∣∣∣ 1√
2π

3

∞∫
−∞

e(−i�k·�r) exp

(
−iUliddi(�r)∆t

�

)√
n(�r, t0)d

3r

∣∣∣∣
2

. (4.31)

During the interaction, the momentum distribution is broadened by spon-
taneous emissions [56, 57]. We assume that the broadening is isotropic as
there are different transitions allowed in our experiment: The quantization
axis due to the magnetic trap points into the z-direction and the transition
is 5S1/2 → 5P3/2. If the incident light field is polarized in the z-direction the
atoms are excited F = 2,mF = 2 → F = 3,mF = 2. If the polarization is
in the x-direction the atoms are excited F = 2,mF = 2 → F = 3,mF = 1
or F = 2,mF = 2 → F = 3,mF = 3. The deexcitation may take place to all
allowed mF -levels. The different transitions have different probabilities and
different emission patterns, hence to a good approximation the broadening
is considered to be isotropic.

The momentum of a single atom after the emission of a photon is changed
by �|�k|. For isotropic broadening in three dimensions the probability of the
emission is equal for all directions. We describe the change of momentum in
the frame in which the atom was at rest before the emission took place. The
projection of the probability of the momentum transfer into the x-direction
for a single emission is given by:

p1(kx) =

{
(2�|�k|)−1 |kx| ≤ |�k|
0 |kx| > |�k| , (4.32)

where kx is the momentum transfered into the x-direction.

4 Note that Im(Uliddi) = 0 → |Φ(�r, t0)|2 = |Φ(�r, t)|2, the density distribution is not
changed during the interaction.
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Fig. 4.5: Qualitative graph of the broadening of the momentum
distribution due to 1,2,3 and 4 spontaneously emitted photons. The
red curves correspond to the momentum distribution in �k in the
frame of reference of the atom and the blue curves are gaussian fits.

The red curves in figure 4.5 show the relative probability of momentum trans-
fer after nph emissions. The blue curves are gaussian fits. The gaussian ap-
proximation is already very good for only a few spontaneous emissions, for
nph = 4 the standard deviation is < 0.3%. Therefore the broadening will be
described in terms of a convolution of the original momentum distribution
and a two dimensional gaussian function:

ñeff(k0x, k0y, nph) =

∞∫
−∞

ñ(kx, ky) B̃(k0x − kx, k0y − ky, nph)dkxdky , (4.33)

where B̃ is the broadening of a single atom in momentum space, given by
equation 4.34. As a convolution in real space can be calculated as a product
in momentum space (Appendix B), a convolution in momentum space can
be carried out as a product in real space. Therefore, we Fourier-transform
the momentum distribution, which is done numerically, and the broadening
function, which is done analytically:

B̃(k0x, k0y, nph) =
√

2
nph k2

phπ
exp

(
−

√
2 ((k0x−kx)2+(k0y−ky)2)

nph k2
ph

)
(4.34)

⇒ B(x, y, nph) =
nph k2

ph

4π
√

2
exp

(
−nph k2

ph(x2+y2)

4
√

2

)
, (4.35)

where kph is the wavevector of the emitted photon. The broadened momen-
tum distribution is calculated by multiplying the numerically transformed
unbroadened momentum distribution by B(x, y, nph) in real space and trans-
forming back into momentum space.
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The results of the measurement are projections of the momentum distribution
onto the x- or onto the y-axis. Therefore, the results are integrated momen-
tum distributions ñ′ in the xy-plane along the direction of observation:

ñ′(x) =
∞∫

−∞
ñ(x, y)dy ⇒ ñ′

i =
Ny/2∑

j=−Ny/2

ñi,j (4.36)

ñ′(y) =
∞∫

−∞
ñ(x, y)dx ⇒ ñ′

j =
Nx/2∑

i=−Nx/2

ñi,j , (4.37)

where ñi,j is the discretized momentum distribution and Nx, Ny the number
of grid points in the x- and y-direction.

4.2 Calculations for Possible Realizations of

the Experiments

In this section we are going to discuss two approaches for possible realizations
of the measurement. The two cases we are interested in are:

• resonant flash beams : |δL| < Γ/2

• far-detuned flash beams : |δL| > 10Γ

We refer to the incident light beam as the flash beam, as it is turned on for
short times only. To induce the largest possible dipole moments we have to
adjust the detuning and the intensity with respect to equation 2.32.
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Fig. 4.6: Amplitude of the steady state expectation value of the
dipole moment versus the incident intensity. Left-hand side: δL =
0Γ, right-hand side: δL = 2π · 100 MHz.

The left-hand side of figure 4.6 shows the dependence of the amplitude of
the dipole moment on the incident intensity for δL = 0. The maximum is
exactly at I = Isat. On the right-hand side the amplitude of the expectation
value of the dipole moment for δL = 2π 100MHz = 16.7Γ is plotted. The
maximum is at I = 1120Isat. To reach at least 90% of the highest possible
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dipole moment, for δL = 0 , 0.4Isat ≥ I0 ≥ 2.5Isat and for δL = 2π 100MHz,
440Isat ≥ I0 ≥ 2850Isat.

The separation of the different F -levels in Rubidium, as shown in section 3.1,
are in the far-detuned case on the order of the detuning, and the two-level
approximation is only valid, if the flash light is blue detuned. The influence
of the next F -level on the dipole moment and the scattering rate is on the
order of a few percent up to ten percent.

4.2.1 Resonant Flash

In this section we present typical intermediate results of the calculations in
the case of resonant flash beams and discuss the problems encountered. We
consider the density distribution of a BEC without an optical lattice. The
parameters of the calculation are:

BEC Flash Beam
σr = 2µm δL = 0
σz = 7µm I0 = 10 Isat

ρ0 = 2 · 1014cm−3 z-polarized
�k = k �ey

The small axial size of the BEC, which is untypical and hardly producible
within our experimental setup was chosen in order to exclude numerical ar-
tifacts for selfconsistent calculations arising from density distributions which
are larger than the field of view. We further assume that the incident intensi-
ty is homogeneous in the region of interest and set it to be higher than Isat in
order to reach further into the cloud. σr and σz are referring to the full width
of the cloud in the radial and the axial direction as described in section 4.1.3
and ρ0 is the peak density of the BEC.
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Fig. 4.7: Intensity profile for δL = 0 and I0 = 10Isat with �k = k �ey

within the BEC in the yz-plane at x = 0. Left-hand side: intensity
of the flash beam, right-hand side: intensity of the spontaneous
background.

The first quantity calculated is the absorption within the cloud. Figure 4.7
shows on the left-hand side the intensity profile in the yz-plane. Almost no
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coherent light reaches the middle of the cloud, but to induce high interaction
potentials it is essential to induce large dipole moments in the center of the
BEC, where the density is high. As shown in figure 4.6 (left-hand side), the
dipole moment is large if the local intensity is on the order of Isat. Due
to saturation 35Isat are absorbed in the first half of the BEC. Hence, the
intensity of the coherent light field has to be about 36Isat that 1Isat reaches
the center. A 3% change in initial value of I0 leads to a change of 100% in the
intensity in the center. We have to know the optical thickness of the cloud
precisely to be able to tune the incident intensity to an appropriate value.

In the case of optically thick media and high absorption the Bloch equations
are not valid, the coupled Maxwell-Bloch equations [31,58–60] should be used
instead of the Bloch equations to approximate the system. The Maxwell-
Bloch equations describe the quantum mechanical state of many atoms in-
teracting with a classical electromagnetic field. From here on the results of
the calculation have to be considered carefully as they are only giving the
order of magnitude of the expected effects. However, to get a general idea of
the structure of the calculation and the order of magnitude for the quantities
we are interested in, we are continuing the calculation.

The intensity of the incoherent background is shown on the right hand side
in figure 4.7. It is of the order of the local coherent intensity Icoh at the
center. For low background intensities compared to Icoh the approximations
we made in section 4.1.6 in order to derive the effective dipole moment are
valid. For high background intensities we also have to take the inhomogeneity
of the absorption profile and reabsorption into account. The change of the
local intensity corresponds to the modification of the scattering cross section.
Hence, to estimate the background intensity a selfconsistent method has to
be used.
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Fig. 4.8: Cut through the distribution of the dipole moments at
x = 0 in the yz-plane. δL = 0, I0 = 5Isat

The distribution of the induced dipole moments is shown in figure 4.8. The



4.2. Calculations for Possible Realizations of the Experiments 59

shape of the distribution is similar to the shape of the background intensity as
the induced dipole moments and the intensity of the background are connec-
ted to the absorption. The maximum of the induced dipole moment per grid
point is about 0.15 Debye (number of atoms per grid point: ρ0∆l3 ≈ 0.1).
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Fig. 4.9: Different stages of the selfconsistent calculation of the
induced interaction potential for δL = 0, I0 = 10Isat and ρ0 = 2·1014

cm−3. The calculation converges after 10 iterations to an accuracy
of 1.5%. Cut through the unperturbed potential at x = 0 in the yz-
plane left-hand side) and potential along z at x = 0, y = 532nm.

A cut at x = 0 through the resulting potential in the yz-plane is shown on the
left hand side of figure 4.9. As discussed in section 4.1.5 the potential changes
the effective detuning and with it the induced dipole moments. Therefore, the
calculation is performed selfconsistently. The detuning due to the potential
for this parameters is of the order of ±0.5Γ. As figure 4.9 shows on the right
hand side, the potential converges after ten iterations to the accuracy of
1.5%, which is the mean variance of the potential at a grid point from step
to step.

By using different parameters, the depth of the potential can be increased
significantly. If the peak density is increased to ρ0 = 6 · 1014cm−3 and the
incident intensity to I0 = 20Isat the magnitude of the potential changes to
±2Γ. The convergence of the selfconsistent calculation takes longer, after the
fortieth step there are still fluctuations in the center of the potential on the
order of 10%.

The index of refraction for δL = 0 nref = 1, but for |δL| ≤ Γ√
2

at I = Isat it
varies over a range of nref = 0.36 − 1.64 and the focal length of a cylindrical
lens with d = 2µm is f = −0.3µm−1.28µm. The error due to the negligence
of refraction is high as the local intensity is changed significantly.

The induced potential is sensitive to fluctuations of the initial conditions,
noise is amplified and fluctuations in the density may result in different shapes
and magnitudes of the induced potential. We performed several computations
for different grid sizes and parameters and found that the instability is not
a result of the numerical calculation but of the system itself, therefore, the
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experimental setup has to be more stable and better controllable in the case
of resonant light than for experiments with far-detuned light.

As the calculation in the case of resonant light is inaccurate and time-
consuming resonant light is not suitable for precision measurements. These
problems don’t appear in the case of far-detuned flashes and the precision of
the expected results can be increased significantly.

4.2.2 Far-Detuned Flash Beam

In this section we present typical intermediate results of the calculation in
the case of far-detuned flash beams. We consider the density distribution of
a BEC within a 1D optical lattice. The parameters of the calculation are:

BEC Lattice Flash Beam
σr = 1.4µm Ulat = 240Erec δL = 2π 100MHz
σz = 300µm σlat = 110nm I0 = 1120Isat

ρ0 = 1014cm−3 ρlat = 5.9 · 1014cm−3 z-polarized
�klat = klat �ez

�k = k �ey

where Erec is the recoil energy (equation 2.61) and the density distribution is
given by equation 4.4. We consider the incident intensity to be homogeneous
in the region. The index of refraction is nref = 1.03 and the focal length of a
cylindrical lens with d = 1.4µm is f = 12µm. Therefore, refraction may be
neglected without changing the results significantly.
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Fig. 4.10: Cut through the intensity profile at z = 0 in the xy-plane
(left:incident flash beam, right:background) at δL = 2π 100MHz
detuning

In figure 4.10 on the left-hand side a cut through the intensity distribution
of the flash beam at z = 0 in the xy-plane is plotted. The maximum of the
absorption is about 1.6%, the BEC is optically thin. The intensity of the
background is shown on the righthand side in figure 4.10. It is only 0.1% of
the coherent intensity and can be neglected.

The distribution of the dipole moment as shown in 4.11 on the left-hand side
corresponds directly to the density distribution as the driving intensity is
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almost homogeneous in the region. The resulting potential shown in figure
4.11 on the right-hand side is on the same order of magnitude as in the
resonant case. Due to the potential the detuning is changed by about 10%
and the effective dipole moment by about 0.4%, hence no selfconsistency is
needed.
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Fig. 4.12: Rate of spontaneous emissions per atom versus the in-
tensity of the δL = 2π · 100MHz detuned flash beam

For the calculation of the broadened momentum distribution the number of
scattered photons is required. Due to the discussion in section 4.1.2 the time
of interaction is set to ∆t = 500ns. As shown in figure 4.12 the scattering
rate is on the order of 107 photons per second per atom, hence during the
interaction in average 5 photons are scattered per atom.

The momentum distribution without and with broadening due to sponta-
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neous emissions is shown in figure 4.13. On the left-hand side the momentum
distribution in the pxpy-plane without broadening is plotted. There are high
momentum components of up to 5�k0. The broadened momentum distri-
bution in the pxpy-plane is shown on the right-hand side. The structure of
the momentum distribution was smoothed out and the distribution has a
gaussian-like profile in the center. For different polarizations of the flash be-
am the width of the broadened momentum distribution changes, which can
be used to analyze the correlation of the induced dipole moments and the
interaction potential. We will present a discussion in more detail in the next
chapter.

4.3 Ideal Numerical Parameters

Calculations in the far-detuned case are more accurate and much faster than
in the resonant case. Therefore, in the following we will restrict the computa-
tion to cases with far-detuned light. The dependance of the induced potential
on the numerical parameters was investigated in order to find an ideal set.

The parameter we will use for the numerical calculations are a grid size of
64 × 64 × 128 points with a spacing of ∆l = 49nm. The size of the region
covered by the grid is 3.14µm×3.14µm×6.28µm. In the radial direction the
full width of the condensate is on the order of the region. In the axial direction
the condensate is two orders of magnitude longer than the field of view, but
we found the influence on the induced potential of the atoms separated more
than 3µm to be negligible.

4.4 Summary

In this chapter we discussed the general structure of the calculation and the
different quantities needed. We applied the calculations to two cases, the
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resonant flash beam and the far-detuned flash beam and discussed the pro-
blems encountered. We found that the computation of the resonant case is too
time-consuming, as the intensity profile has to be calculated selfconsistently
in every step of the selfconsistent calculation of the interaction potential,
and the interaction potential depends more strongly on the initial conditions
than in the case of the far-detuned flash beam. On the contrary in the case of
the far-detuned flash beam no selfconsistency is required and the incoherent
background can be neglected. Therefore, in the following we will focus on the
case of the far-detuned flash beam. The results and the interpretation of the
calculations will be presented in the next chapter.





5. Results of the Numerical
Calculations

In this chapter we are going to present the results achieved by applying the
methods shown in the last section for different parameters. The parameters
we are going to vary are the polarization of the incident beam, the radial
width of the cloud, the depth of the optical lattice and the separation of
the lattice sites. The polarization of the incident light beam corresponds to
the orientation of the dipoles, the radial width of the cloud to the aspect
ratio of the cloud and the radial broadening of the interaction potential, the
depth of the optical lattice to the peak density and the axial broadening of
the interaction potential and the separation of the discs to the next neighbor
interaction. Thereafter, we will discuss the resulting momentum distribution
of the atoms for different interaction times and present boundary conditions
for the first approach for measurements of the mechanical effects caused by
the light induced dipole-dipole interaction.

5.1 Light Induced Dipole-Dipole Interaction

Potential

In the following we are going to discuss the dependance of the induced po-
tential on different parameters. This is important to set boundary conditions
for the experiment and for the estimation of the expected error. After the
theoretical examination of the interaction we found that the ideal parame-
ters for the experiment are as listed below. If not mentioned otherwise, these
parameters will be used for all following calculations:

BEC Lattice Flash Beam
σr = 1.4µm Ulat = 240Erec δL = 2π 100MHz
σz = 300µm σlat = 110nm I0 = 1120Isat

ρ0 = 1014cm−3 ρlat = 5.9 · 1014cm−3 z-polarized

long axis = z-axis �klat = klat �ez
�k = k �ey

λlat = 785nm

The power and the waist of the lattice beam are P = 0.58W and σ = 300µm.
We are going to neglect three-body losses, the attenuation and refraction of
the flash beam and the spontaneous background intensity. The momentum
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distribution will be observed either in the the x- or the y-direction. The
density distribution is shown in figure 4.4.

One parameter that can be varied experimentally is the density of the BEC.
The interaction potential is scaled linearly by the peak density of the cloud:

Uliddi(�r0) =

∞∫
−∞

VAB(�r0 − �r)n(�r)d3r = ρlat

∞∫
−∞

VAB(�r0 − �r)n′(�r)d3r , (5.1)

where n′(�r) is the atomic density distribution n(�r) divided by the peak den-
sity ρlat. For different densities or atom numbers the potentials can be scaled.
Further calculations will be done using the same peak density.

5.1.1 Variation of the Polarization

We will start the discussion with the behaviour of the induced potential for
different polarizations of the flash beam.

We decompose the induced potentials into a short-range static and long-
range dynamic part. The static part corresponds to the interaction with a
1/r3 dependance of all dipoles pointing into the same direction, the dynamic
part to the retardation with up to 1/r-terms. The contribution of these two
parts to the full interaction potential for different polarizations is shown
in figure 5.1. ϕ is the angle of the polarization with respect to the z-axis
(ϕ = 0◦ : z-polarized beam, ϕ = 90◦ : x-polarized beam).

The static part of the potential varies over a range of 2�Γ and changes its
sign at the magic angle ϕ = 54.7◦, where as discussed in section 2.2.1 the
static interaction vanishes. The shape of the static potential is similar to
the shape of the density distribution. The dynamic part of the interaction is
approximately 1�Γ, is mainly attractive in the direction of the flash beam and
tends to zero perpendicular to it. Only the center of the dynamic potential
is depending on the polarization.

The resulting potential varies over a range of 4�Γ and is dominated in the
center by the static and at the boarder by the dynamic part. The mecha-
nical effects we are interested in are caused by the gradients of the induced
potentials. The direction and the magnitude of the gradients for different
polarizations of the flash beam are shown in figure 5.2. For z-polarized light
the interaction is repulsive and for x-polarized light it is attractive. The ma-
ximum acceleration of the atoms due to the potential is on the order of 50000
m/s2 ≈ 0.226 �kΓ

m
.

By considering the x- and the y-direction separately, we find two characteri-
stic angles where the gradients vanish, namely ϕ = 36◦ and ϕ = 54◦ as can
be seen in figures 5.1 and 5.2. At these angles the momentum distribution is
hardly changed by the potential. At ϕ = 54◦ the gradient into the y-direction
is zero because the static part vanishes and the dynamic part doesn’t have a
gradient in that direction. At ϕ = 36◦ the gradient in the x-direction vanishes
because the static and dynamic effects cancel each other.
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Fig. 5.1: Cut at z = 0 through the static and dynamic parts of
the light induced dipole-dipole interaction potential and the full
potential for different incident polarizations. ϕ is referring to the
angle of the polarization with respect to the z-axis.
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5.1.2 Variation of the Radial Width of the BEC

The general shape of the interaction potential in the radial direction is stron-
gly correlated to the widths of the dipole moment distribution. The interacti-
on potential along the y-axis for different widths is plotted on the left-hand si-
de in figure 5.3, where the peak density is kept constant at ρlat = 6·1014cm−3.

On the right-hand side the maximal gradient of the induced potential in
the radial direction is shown. As can be seen the gradient increases with
decreasing widths of the cloud: max(|dU/dr|) ∝ σ−1

r . Note that at the same
time the number of atoms is decreased and with it the depth of the potential.

The maximum of the curve max(|dU/dr|) is at σr = λ/2,its progression can
be explained by considering the convolution of the interaction potential and
the density distribution as a broadening of the potential. If the broadening
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is larger than the scale on which the interaction potential decreases then the
change of the gradient is dominated by the broadening, if it is smaller the
change is dominated by the loss in atom number. Further analysis showed a
similar qualitative behaviour for all polarizations of the flash-beam.

A quadratic fit of the potentials for σr = 0.7 , 1.4 and 2.8µm is given by:

U = −0.136 �Γ(−5.79µm + σr)(1.38µm + σr) , (5.2)

where σr is expressed in µm. This fit will be used for the estimation of possible
systematic errors in the planned experiment in section 5.1.5.
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6 · 1014cm−3 and different width of the BEC.

Figure 5.4 shows on the left-hand side the contribution of the central lattice
site to the full potential and on the right-hand side the contribution of all
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other lattice sites for an x-polarized flash beam and the same parameters as
for figure 5.3. The attractive potential within the disk is partially cancelled
by the repulsive interaction with the other disks. For a z-polarized flash
beam the situation is reversed. The contribution of the central lattice site is
repulsive and is enlarged due to the interaction with the other lattice sites.

A small radial width is crucial for measurements of the mechanical effects
in order to maximize the gradients, even if this is connected to the loss of
atoms and a decrease of the potential depth. The main effect results from
the dipole-dipole interaction within the discs but due to the next neighbor
interaction the depth is changed significantly. For the parameters presented
the interaction potential is reduced by the next neighbor interaction induced
by x-polarized light and it is increased by the next neighbor interaction
induced by z-polarized light.

5.1.3 Variation of the Lattice Spacing

Variations of the lattice spacing on the scale of the radial width of the cloud
don’t affect the qualitative shape of the potential. The width of the potential
and its value at the surface of the cloud remain approximately unchanged,
the gradient is scaled by the value of the potential at the center.
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Fig. 5.5: Potential at the center of the BEC versus the separation of
the lattice sites for a x-polarized flash beam (left-hand side) and a
z-polarized flash beam (right-hand side). The full line corresponds
to the interaction potential of 16 discs, the dotted line to the in-
teraction potential of 100 point-like oscillating dipoles separated by
∆z = λlat/2 and the dashed line to the interaction potential within
a single disc. The interaction potential depth approaches this value
for large separations of the discs (∆z → ∞).

In figure 5.5 the potential at the center of the cloud is plotted versus the
lattice spacing for z- and x-polarized flash beams. For comparison the dot-
ted lines correspond to the interaction potential for 100 point-like dipoles
separated by ∆z for both polarizations. The resonances in the point-like di-
pole picture result from the λ-periodicity of the interaction potential. For an
x-polarized flash beam the resonance structure is broadened and the minima
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appear slightly shifted to higher separations compared to the resonances of
the point-like picture at ∆z = j λ with j ε N. In the case of a z-polarized
flash beam, the structure expected due to the point-like picture is smeared
out.

The broadening of the resonance structure for x-polarized flash beams ap-
pears because the separation of the lattice sites is comparable to the radial
width of the cloud and the interaction for different angles and separations is
integrated. In contrast the structure for z-polarized flash beams tends to be
smeared out much more because the potential in the point-like picture varies
slower and doesn’t show sharp resonances.

By tuning the separation of the lattice sites and with it the next neighbor
interaction not only the depth but also the sign of the interaction potential
can be altered. For large separations (∆z → ∞) the depth of the interaction
potential approaches the single disc potential.

5.1.4 Variation of the Depth of the Optical Lattice

The variation of the lattice depth has two consequences on the atomic density
distribution, the axial width of the discs and the peaks density are changed.
The qualitative shape of the interaction potentials is not altered by these
variations. The potential along the y-axis for different lattice depths is shown
on the left-hand side in figure 5.6, where the initial peak density of the BEC
was set to ρ0 = 1014cm−3.
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Fig. 5.6: Light induced interaction potential along the y-axis for
different lattice depths for a z-polarized flash beam (left-hand side)
and the potential at the center of the cloud versus the lattice depth
(right hand side). The black curve is representing the numerical
data and the red-dashed curve is a 4

√
Ulat fit.

The peak density within an optical lattice is given by equation 2.63 and is
proportional to ρlat ∝ 4

√
Ulat. Figure 5.6 shows on the right-hand side the

dependance of the induced potential at the center of the cloud on the lattice
depth (black curve). The red-dashed curve is a f(Ulat) = c0

4
√

Ulat + c1 fit
which approximates the numerical data for depths larger than 10Erec very
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well1.

Hence, for lattices deeper than 10Erec the changes of the potential are main-
ly caused by the increase of the atomic density and not by a change of the
shape of the atomic cloud. Without an optical lattice the static interacti-
on is averaged out and the potential becomes basically independent of the
polarization2 of the incident beam. Deep lattices are needed to increase the
magnitude of the interaction potential and its gradient, to transform a 3D-
into a quasi 2D-dipole distribution (with Uz(0) �= Ux(0)) and with that to
allow us to reach into a regime where measurable effects can be expected.

5.1.5 Error due to Imperfect Initial Conditions

With the discussion from above we can estimate to which extent variations
of the initial conditions modify the interaction potential. This “stability”
analysis is very important as its results constrain the experimental setup.
We are considering explicitly the influence of the atomic density, the radial
width of the cloud, the lattice depth, the flash beam intensity and the angle of
the flash beam polarization with respect to the z-axis. All other parameters
(like the light frequency, the axial length of the cloud etc.) are not changing
the resulting potential significantly as long as they are correct within 10%.

Assuming that the potential induced by x-polarized light and the potential
induced by z-polarized light are independent and may be added to get the
full interaction potential for imperfectly polarized light, then in first order
the interaction potential can be approximated by:

U(0) = Ux(0)
d2|I=Ix

d2|I=I0

+ Uz(0)
d2|I=Iz

d2|I=I0

, (5.3)

where d is the induced dipole moment, Ix and Iz are the intensities of the x-
and z-polarized fraction of the flash beam intensity and Ux(0) and Uz(0) are
the interaction potentials at the center of the cloud for x- and z-polarized
light respectively. Equation 5.3 approximates the potential at the center of
the cloud for a composition of x- and z-polarized light, for Iz = 0 → U(0) =
Ux(0) and for Ix = 0 → U(0) = Uz(0).

The error of the potential can be approximated by:

∆U

U
≈ 1

U

(∣∣∣∣ ∂U

∂ρlat

∆ρlat

∣∣∣∣ +

∣∣∣∣ ∂U

∂σr

∆σr

∣∣∣∣ +

∣∣∣∣ ∂U

∂Ulat

∆Ulat

∣∣∣∣ +

∣∣∣∣U |I=I0 − U |I=Ix

∣∣∣∣
)

.

(5.4)
As an example we are considering the potential induced by an x-polarized

1 For lattice depths larger than 100Erec the error is < 0.1%, for lattice depths between
10Erec and 100Erec the error is < 5%.

2 Uz(�0) = −0.277�Γ and Ux(�0) = −0.250�Γ
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flash beam:

∆Ux(0)

Ux(0)
≈ 1

Ux(0)

(∣∣∣∣Ux(0)
∆ρlat

ρlat

∣∣∣∣ +

∣∣∣∣(0.459�Γ − 0.204�Γµm−1σr)∆σr

∣∣∣∣
+

∣∣∣∣0.608�Γ
∆ Ulat

4(Ulat/Erec)3/4

∣∣∣∣ +

∣∣∣∣Ux(0) −
(

Ux(0)
d2|I=Ix

d2|I=I0

+ Uz(0)
d2|I=Iz

d2|I=I0

)∣∣∣∣
)

.

For our standard experimental parameters and assuming high fluctuations
∆ρlat/ρlat = 0.1, ∆σr/σr = 0.1, ∆Ulat/Ulat = 0.2 and (I0 − Ix)/I0 = 0.05 the
error is3:

∆Ux(0)

Ux(0)
= 0.3 . (5.5)

The error of 30% results mainly from the imperfection of the polarization
and from density fluctuations. The error of the potential induced by flash
beams with different polarizations is on the same order of magnitude.

5.2 Momentum Distribution

The first approach to investigate the light induced dipole-dipole interaction
is to measure the resulting atomic momentum distribution for different pola-
rizations of the incident beam. The momentum is broadened due to three ef-
fects, the mean-field, the dipole-dipole interaction and the spontaneous emis-
sions σk = σk,mean +σk,int +σk,sp. The dependance of the half-width σk of the
momentum distribution in the x- and y-direction on the polarization of the
incident beam for different interaction times ∆t is shown in figure 5.7. The
half-width σk is found by fitting a gaussian function f̃(k) = c0 exp(−2 k2

σ2
k
)

to the distribution. The dotted lines correspond to the broadening due to
spontaneous emissions. For ∆t = 500ns the half width of the momentum
distribution varies over a range of σk = 3 to 10 �|�k| which corresponds to
T = 0.27 to 3.02µK and mean velocities of v̄ = 8.8 to 29mm/s.

In the Raman-Nath regime σk,int ∝ ∆t and σk,sp ∝ √
nsp ∝ √

∆t. For ∆t <
100ns the broadening is dominated by spontaneous emissions, for ∆t > 100ns
by the interaction as shown in figure 5.7. The atoms reach the steady state
after 150ns to 200ns. With our methods we are not able to estimate the
magnitude of the induced potential during the transient period. Therefore,
we choose the interaction time for the given parameters to be at least 100ns
longer than the transient period ∆t > 300ns to make sure that the regime
in which the broadening is dominated by the interaction is reached.

In both directions there is an angle of minimal broadening. Minimal broade-
ning appears, if the gradient of the full interaction potential vanishes. The
gradient of the dynamic part is mainly directed into the x-direction as can be
seen in figure 5.1. Hence, the angle of minimal broadening in the y-direction

3 For ∆ρlat/ρlat = 0.05 and (I0 − Ix)/I0 = 0.02 : ∆Ux(0)
Ux(0) = 0.15.
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Fig. 5.7: Half-width of the momentum distribution in the x-
direction (left-hand side) and y-direction (right-hand side) after the
interaction versus the polarization of the incident beam for different
interaction times. The dotted lines correspond to the broadening
due to spontaneous emissions for the different times.
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ϕ = 52◦ is close to the magic angle for static dipoles ϕM = 55◦. As the gradi-
ent of the potential vanishes almost completely the momentum distribution
is only broadened by spontaneous emissions min(σk) = σk,sp(∆t).

Due to the gradient of the dynamic part the angle of minimal broadening
in the x-direction is shifted with respect to the magic angle. The gradient
of the full interaction potential vanishes at ϕ = 38◦, but it vanishes only in
the center of the cloud, therefore the minimal half-width of the momentum
distribution min(σk) > σk,sp(∆t).

The momentum distribution is broadened by the dipole-dipole interaction to
a width that is several times larger than σk,sp(∆t). Assuming high fluctuations
as discussed in section 5.1.5 the error is: ∆σk/σk(∆t = 500ns) ≤ 0.20 and
∆σk/σk(∆t = 100ns) ≤ 0.15. For ∆t > 100ns the broadening due to the
interaction is still dominant, even if the initial conditions are imperfect.

On the experimental side the flash-time, which corresponds to the mean
velocity of the atoms, is constrained by the time in which the magnetic
confinement is switched off. The momentum distribution is approximated
correctly by the method used in our calculation, if the expansion of the cloud
is not perturbed. Therefore, we have to turn the magnetic fields off rapidly.
Due to the average velocity of the atoms after the flash we can estimate the
timescale by:

Ttrap � σr/2

v̄
=

m σr/2

�|�k|Γsp∆t
, (5.6)

where v̄ is the mean velocity. Equation 5.6 is valid, if the atoms are not
moving further than half the radial width of the cloud in average during the
time the magnetic trap is turned off. For our standard parameters (Γsp∆t ≈ 5,
σr = 2µm) Ttrap ≈ 35µs. In the experiment the magnetic fields are switched
off in 40µs which corresponds to an additional broadening4 of about 2%.

As described in this section we plan the measurement to be carried out by ir-
radiating the BEC with far-detuned laser light and measure the momentum
distribution for different polarizations of the flash beam. We expect mini-
mal broadening for characteristic angles, which are depending on the initial
conditions. More insight into the effects caused by the interaction may be
won by varying the initial conditions like density, width of the BEC or the
parameters of the optical lattice.

4 The rapid switching of the magnetic trap is very important. If the magnetic field is
ramped down in 300µs the broadening is up to 120%.
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6.1 Conclusions

In this thesis we presented a semiclassical theory describing the light in-
duced dipole-dipole interaction within an atomic cloud in the Raman-Nath
regime and applied the methods discussed to the case of light induced dipoles.
We investigated theoretically the mechanical effects that the light induced
dipole-dipole potential exerts onto atoms of a BEC. The main results of the
calculations are the proposal under which experimental conditions and how
these mechanical effects can be observed and measured for the first time.
The calculation of the induced potential was carried out by determining the
dipole moment with the optical Bloch equations and evaluating the convo-
lution of the dipole-dipole interaction potential and the density distributi-
on in Fourier-space. The resulting momentum distribution was obtained by
propagating the wavefunction of the atomic cloud in time and taking the
broadening due to spontaneous emissions into account. The regime in which
we plan to carry out the experiment is characterized by a density on the
order of ρ0 ≈ 6 · 1014 atoms/cm3, a radial width of the cloud of σr ≈ 2µm,
an optical lattice depth of Ulat = 200Erec and a flash time of ∆t ≈ 500ns.
A high density is needed as it linearly scales the interaction potential and
the small radial width as the interaction potential is broadened by the radial
shape of the cloud. Due to the deep optical lattice the dipole distribution
becomes two dimensional and the interaction becomes strongly dependant
on the polarization of the flash-beam.

The first approach to measure mechanical effects caused by the light in-
duced dipole-dipole interaction will be the measurement of the momentum
distribution for different polarizations of the incident flash beam. We expect
an angle of minimal broadening which corresponds to a vanishing gradient
of the induced potential. By investigating the minima for different initial
conditions and different directions of observation the influence of the static
and the retarded interaction can be analyzed. By varying the lattice depth
and the lattice spacing more information about the dipole-dipole interaction
potential is gained.

From the experimental point of view our system is basically ready to perform
the measurements. We can produce Bose-Einstein condensates on a daily
basis with high radial confinement and the 1D optical lattice is set up and
operational as demonstrated. The magnetic trap (∼ 1000A) can be switch off
within 40µs which is necessary to not to perturb the expansion of the BEC.
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6.2 Outlook

After the first measurement of the mechanical effects caused by the light in-
duced dipole-dipole was carried out successfully by demonstrating that the
broadening of the momentum distribution is depending on the flash-beam
polarization as predicted, we plan to repeat the measurement for different
initial conditions and for several configurations of the optical lattice. Measu-
rements without optical lattices are also of interest as the static interaction
is averaged out and we are able to investigate the effects caused only by the
retardation.

The discussion presented in the last chapter was about the interaction of
periodic quasi two-dimensional dipole distributions in 1D optical lattices.
2D-lattices may be considered in order to increase the density even further
and to analyze the interaction between periodic quasi one-dimensional dipole
distributions. By investigating the interaction in 3D-optical lattices at mode-
rate densities (one atom per lattice site) the long range interaction of single
dipoles becomes dominant. By varying the lattice spacing and the polariza-
tion of the driving field more insight into the effects caused by retardation
may be won.

The light induced dipole-dipole interaction has a wide range of possible ap-
plications. It might be used for example as a tool for investigating the po-
pulation of Mott-insulator states in a 3D-optical lattice [12,61]. By inducing
dipole moments in the atoms, only lattice sites with two (or more) atoms are
affected. If the induced potential is deep enough the atoms can gain enough
energy to leave the trap and only lattice site with less then two atoms stay
populated.

Another effect that is worth being investigated is superradiance. Even if
superradiance in the Bragg regime [62] is suppressed due to the short pul-
se times and the deep lattices used for the experiment, superradiance in the
Raman-Nath regime [63] may be of interest. It is challenging to find a transiti-
on from the regime where the superradiance is dominant to the dipole-dipole
interaction regime which can be analyzed by varying the intensity of the flash
beam.

The light induced dipole-dipole interaction has also proposed applications
in quantum information processing [64], which is accomplished by exciting
states with strong interactions. The resulting dipole blockade can be used to
inhibit transitions into all but singly excited collective states. This can be
employed for controlled generation of collective atomic spin states as well as
nonclassical photonic states and for scalable quantum logic gates. Other pos-
sibilities for the creation of entangled states and the realization of quantum
computation in periodic potentials is discussed in [14,65].

The spin dynamics of BECs confined in 1D optical lattices may be studied
as well by controlling the light induced dipole-dipole interaction [66]. The
condensates at each lattice sites behave like spin magnets. Their site-to-
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site interaction can distort the ground-sate spin orientation and lead to the
excitation of spin waves.

Other applications of the light induced dipole-dipole interaction have been
proposed in [18–23] like one-dimensional compression, collective excitations
or supersolid formation in BECs.

The program for the computation developed in this thesis is not restricted
to the light induced dipole-dipole interaction but may be used to compute a
wide range of interaction potentials. Potentials may be calculated for any kind
of density distribution and any kind of two body interaction which can be
described as a classical potential spatially only depending on the separation
of the two particles. For example the interaction potential within a magnetic
fluid or a spin condensate can be computed but also Coulomb or mean-field
interactions may be considered as well.





Appendix A

Dipole-Dipole Interaction in Isotropic
Dipole Distributions

The potential of a spherical symmetric distribution of identical dipoles may
be calculated using equation 2.43:

Ueff(�0) =

R∫
0

π∫
0

2π∫
0

VAB(r, θ, φ)| sin(θ)|r2dφdθdr , (A.1)

where we are using spherical coordinates. In the static case VAB(r, θ, φ) is
equation 2.40:

Ueff(�0) =

R∫
0

π∫
0

2π∫
0

d2

4πε0r
· (1 − 3 cos2(θ))| sin(θ)|dφdθdr . (A.2)

The θ integral:

π∫
0

(| sin(θ)| − 3| cos2(θ) sin(θ)|)dθ =

[− cos[θ] − 3 cos(θ)+cos(3θ)
12

]π0 = [2 − 3 · 2
3
] = 0 , (A.3)

vanishes, which means that the potential Ueff in the center of a spherical
symmetric distribution of dipoles is zero.

For the case of light induced dipoles the static part of the interaction becomes
zero as well, but there is still an effective potential left due to dynamical
effects. A discussion on this topic in more detail may be found in [18].





Appendix B

Convolution in Fourier Space

A convolution might be calculated by using the Fourier transformation, de-
fined in one dimension as:

F̃ (k) =
1√
2π

∞∫
−∞

e(−ikx)F (x)dx (B.1)

F (x) =
1√
2π

∞∫
−∞

e(ikx)F̃ (k)dk , (B.2)

but can also be extended to three dimensions by performing three separate
Fourier transformations for every spacial dimension.

By using equation B.2 a convolution can be rewritten as:

h(x0) =

∫ ∞

−∞
f(x0 − x)g(x)dx (B.3)

=

∞∫
−∞

1

2π

( ∞∫
−∞

eik(x0−x)f̃(k)dk

)( ∞∫
−∞

eik′xg̃(k′)dk′
)

dx

=

∞∫
−∞

∞∫
−∞

eikx0 f̃(k)g̃(k′)
1

2π

∞∫
−∞

(
ei(k′−k)xdx

)
dkdk′

=

∞∫
−∞

∞∫
−∞

eikx0 f̃(k)g̃(k′)δ(k′ − k)dkdk′

h(x0) =
√

2π
1√
2π

∞∫
−∞

eikx0 f̃(k)g̃(k)dk . (B.4)

To carry out the convolution and calculate h(x0), we have to Fourier-
transform f(x0 − x) and g(x) separately, multiply the two functions and
transform back.

By using algorithms like FFT (fast Fourier transformation) the numerical
calculation of convolutions of large arrays becomes possible on acceptable
timescales.





Appendix C

Dipole Moment with Spontaneous
Background

As described in section 2.1.4, the amplitude of the dipole moment is given
by (equation 2.31):

d0,st = dM =

√
3Γε0hc3

ω3
0

·
√

I0
Isat

· (1 +
4δ2

L

Γ2 )

1 +
4δ2

L

Γ2 + I0
Isat

, (C.1)

and the local intensity approximated by (equation 4.16):

Iloc =

(√
Icoh + cos(φ)

√
Isp

)2

. (C.2)

The effective dipole moment in the presence of a coherent electromagnetic
field and an incoherent background may be calculated by inserting Iloc → I0

in equation C.1 and average over the phase φ of the incoherent background:

deff =
1

2π

π∫
−π

dM(φ)dφ , (C.3)

where

dM(φ) = d0

√
Icoh+

√
Isp cos(φ)

Isat+(
√

Icoh+
√

Isp cos(φ))2+4Isatδ2
L/Γ2

(C.4)

d0 =
√

3Γε0hc3

ω3
0

√
Isat (1 +

4δ2
L

Γ2 ) . (C.5)

To solve the integral (equation C.3) a substitution has to be made:

a → √
Icoh +

√
Isp cos(φ) (C.6)

da
dφ

= − 1√
Isat−(a−√

Icoh)2
. (C.7)

The amplitude of the dipole moment becomes:

dM(a) = d0
a

Isat+a2+4Isatδ2
L/Γ2 = d0 d1 a

1+d1 a2 (C.8)

d1 =

(
Isat + Isat

4δ2
L

Γ2

)−1

. (C.9)
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In order to calculate dM, the integral (equation C.3) has to be solved:

deff = − d0 d1

2π

a(π)∫
a(−π)

a

1 + d1 a2

1√
Isat − (a −√

Icoh)2
da (C.10)

= − d0 d1

π

a(π)∫
a(0)

a

1 + d1 a2

1√
Isat − (a −√

Icoh)2
da , (C.11)

the integral may be split into two parts from u(−π) to u(0) and from u(0)
to u(π), which are equivalent since u(φ) = u(−φ) is symmetric in φ. The
integration was carried out using Mathematica 4.2 and the result is:

deff =
√

3Γ3ε0hc3

ω3
0

Re

[
S+

(
log−

√
Ssp

S− −log

√
Ssp

S−

)
+S−

(
log−

√
Ssp

S+ −log

√
Ssp

S+

)]
S− S+

with S± =
√

1 ± 2ı
√

Scoh − Scoh + Ssp ,

Scoh = Γ2

(Γ2+4δ2
L)

Icoh
Isat

, Ssp = Γ2

(Γ2+4δ2
L)

Isp
Isat

. (C.12)
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