Exercise 1: Three-Level System

We consider the interaction of a three-level system with two light fields using the density-matrix formalism. The important quantities are noted in the following diagram:

The Hamiltonian of the system and the density matrix are given by:

\[
\hat{H} = -\frac{\hbar}{2} \begin{pmatrix}
0 & 0 & \Omega_p \\
0 & 2(\delta_1 - \delta_2) & \Omega_c \\
\Omega_p & \Omega_c & 2\delta_1
\end{pmatrix}
\]

and

\[
\dot{\rho} = \begin{pmatrix}
\rho_{1,1} & \rho_{1,2} & \rho_{1,3} \\
\rho_{2,1} & \rho_{2,2} & \rho_{2,3} \\
\rho_{3,1} & \rho_{3,2} & \rho_{3,3}
\end{pmatrix}.
\]

The time-evolution follows the von Neumann equation

\[
\frac{\partial \rho}{\partial t} = -\frac{i}{\hbar} \left[\hat{H}, \rho \right] + \begin{pmatrix}
\Gamma_1 \rho_{3,3} & 0 & -\frac{1}{2} \rho_{1,3} (\Gamma_1 + \Gamma_2) \\
0 & \Gamma_2 \rho_{3,3} & -\frac{1}{2} \rho_{2,3} (\Gamma_1 + \Gamma_2) \\
-\frac{1}{2} \rho_{3,1} (\Gamma_1 + \Gamma_2) & -\frac{1}{2} \rho_{3,2} (\Gamma_1 + \Gamma_2) & -\rho_{3,3} (\Gamma_1 + \Gamma_2)
\end{pmatrix}
\] \hspace{1cm} (1)

In this exercise sheet we will find the stationary solutions to this system of equations and use the solutions to understand the effects described in:
Read both papers for discussion in the group and work out the following exercises:

a) Solve the system of equations (1) for the stationary case \(\frac{\partial \hat{\rho}}{\partial t} = 0 \) and for a resonant coupling laser \((\delta_2 = 0) \) leaving the frequency of the probe laser \(\delta_1 \) as a variable and the Rabi frequencies \((\Omega_p \text{ and } \Omega_c) \) as parameters. You can use a mathematical program for this.

b) Derive the expression for the group velocity \(v_g \) (the exact equality in equation (1) in the 1999 paper).

Note: The group velocity is defined by \(v_g = \frac{\partial \omega}{\partial k} \). To obtain the expression consider \(\frac{\partial k}{\partial \omega} \).

c) The complex index of refraction \(n = n + ik \) which affects the probe laser can be obtained by \(n = \sqrt{1 + \chi} \), where \(\chi \) is the electric susceptibility given by

\[
\chi = \frac{N |\mu_{13}|}{V \epsilon_0 E_0} \rho_{31}.
\]

Here \(N/V \) is the atom number density, \(\mu_{13} \) is the transition matrix dipole element between state \(|1\rangle \) and \(|3\rangle \), \(\epsilon_0 \) is the vacuum permittivity and \(E_0 \) is the amplitude of the applied electric field.

Using your solution from a), determine the real and imaginary parts of the refractive index and plot them vs \(\delta_1 \). (See Figure 2a in the paper).

Note: Useful relations: \(\Omega_p = \mu_{13}E_0/\hbar \) and \(I/I_{sat} = 2 (\Omega/\Gamma)^2 \).

d) Finally, calculate the propagation velocity of the probe light at resonance \((\delta_1 = 0) \).

e) Now consider an additional dephasing process between the states \(|1\rangle \) and \(|2\rangle \). The time evolution for this system is

\[
\frac{\partial \hat{\rho}}{\partial t} = -\frac{i}{\hbar} \left[\hat{H}, \hat{\rho} \right] + \begin{pmatrix}
\Gamma_1 \rho_{3,3} & -\frac{1}{2} \rho_{1,2} \gamma_{12} & -\frac{1}{2} \rho_{1,3} (\Gamma_1 + \Gamma_2) \\
-\frac{1}{2} \rho_{2,1} \gamma_{12} & \Gamma_2 \rho_{3,3} & -\frac{1}{2} \rho_{2,3} (\Gamma_1 + \Gamma_2) \\
-\frac{1}{2} \rho_{3,1} (\Gamma_1 + \Gamma_2) & -\frac{1}{2} \rho_{3,2} (\Gamma_1 + \Gamma_2) & -\rho_{3,3} (\Gamma_1 + \Gamma_2)
\end{pmatrix}
\]

finding the stationary solutions for this case, plot the resulting real and imaginary parts of the index of refraction of the medium.